WO2022131309A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022131309A1
WO2022131309A1 PCT/JP2021/046375 JP2021046375W WO2022131309A1 WO 2022131309 A1 WO2022131309 A1 WO 2022131309A1 JP 2021046375 W JP2021046375 W JP 2021046375W WO 2022131309 A1 WO2022131309 A1 WO 2022131309A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric layer
elastic wave
wave device
conductive film
Prior art date
Application number
PCT/JP2021/046375
Other languages
English (en)
French (fr)
Inventor
和則 井上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180084426.8A priority Critical patent/CN116686214A/zh
Publication of WO2022131309A1 publication Critical patent/WO2022131309A1/ja
Priority to US18/209,516 priority patent/US20230327634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps

Definitions

  • This disclosure relates to an elastic wave device.
  • Patent Document 1 describes an elastic wave device.
  • the present disclosure solves the above-mentioned problems and aims to suppress heat accumulation.
  • the elastic wave device includes a support substrate and a piezoelectric layer containing lithium niobate or lithium tantalate provided in the first direction, which is the thickness direction of the support substrate, and has a main surface in the first direction.
  • a first bus bar provided between the support substrate and the piezoelectric layer, a first bus bar provided on the main surface of the piezoelectric layer and facing each other, a second bus bar, and the first bus bar.
  • An IDT electrode including a plurality of first electrode fingers having a proximal end connected to one bus bar and a plurality of second electrode fingers having a proximal end connected to the second bus bar, and the principal of the piezoelectric layer.
  • a wiring electrode provided on the surface and connected to the IDT electrode, and a high thermal conductivity film provided in the piezoelectric layer in the first direction and having a thermal conductivity higher than that of the piezoelectric layer are provided. At least a part of the IDT electrode is provided in a region that overlaps the cavity in a plan view in the first direction, and the high thermal conductive film is a region that overlaps the cavity in a plan view in the first direction. At least one of the IDT electrode and the wiring electrode is connected to the high heat conductive film directly or via a metal.
  • heat accumulation can be suppressed.
  • FIG. 1A is a perspective view showing an elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion of FIG. 1A along line II-II.
  • FIG. 3A is a schematic cross-sectional view for explaining a Lamb wave propagating in the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining the bulk wave of the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of the bulk wave in the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 1A is a perspective view showing an elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion of FIG. 1A along line
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 6 shows d / 2p as a resonator in the elastic wave apparatus of the first embodiment, where p is the center-to-center distance or the average distance between the centers of adjacent electrodes and d is the average thickness of the piezoelectric layer. It is explanatory drawing which shows the relationship with the specific band of.
  • FIG. 7 is a plan view showing an example in which a pair of electrodes is provided in the elastic wave device of the first embodiment.
  • FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 9 shows the specific band of the elastic wave apparatus of the first embodiment when a large number of elastic wave resonators are configured, and the phase rotation amount of the impedance of the spurious standardized at 180 degrees as the size of the spurious.
  • FIG. 10 is an explanatory diagram showing the relationship between d / 2p, the metallization ratio MR, and the specific band.
  • FIG. 11 is an explanatory diagram showing a map of the specific band with respect to Euler angles (0 °, ⁇ , ⁇ ) of LiNbO 3 when d / p is brought as close to 0 as possible.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure.
  • FIG. 10 is an explanatory diagram showing the relationship between d / 2p, the metallization ratio MR, and the specific band.
  • FIG. 11 is an explanatory diagram showing a map of the specific band with respect to Euler angles (0 °, ⁇ , ⁇ ) of LiNbO
  • FIG. 13 is a plan view showing an embodiment of the elastic wave device according to the first embodiment.
  • FIG. 14 is a diagram showing an example of a cross section of a portion along the XIV-XIV line of FIG.
  • FIG. 15 is a diagram showing a first modification of the cross section of the portion along the XIV-XIV line of FIG.
  • FIG. 16 is a diagram showing a second modification of the cross section of the portion along the XIV-XIV line of FIG.
  • FIG. 17 is a diagram showing a third modification of the cross section of the portion along the XIV-XIV line of FIG.
  • FIG. 1A is a perspective view showing an elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • the elastic wave device 1 of the first embodiment has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is a Z cut in the first embodiment.
  • the cut angle of LiNbO 3 or LiTaO 3 may be a rotary Y cut or an X cut. Propagation directions of Y propagation and X propagation ⁇ 30 ° are preferable.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness slip primary mode.
  • the piezoelectric layer 2 has a first main surface 2a facing each other in the Z direction and a second main surface 2b.
  • the electrode 3 and the electrode 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode finger”
  • the electrode 4 is an example of the "second electrode finger”.
  • the plurality of electrodes 3 are a plurality of "first electrode fingers” connected to the first bus bar electrode 5.
  • the plurality of electrodes 4 are a plurality of "second electrode fingers” connected to the second bus bar electrode 6.
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • an IDT (Interdigital Transducer) electrode 30 including a plurality of electrodes 3, a plurality of electrodes 4, a first bus bar electrode 5, and a second bus bar electrode 6 is configured.
  • the electrode 3 and the electrode 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the electrode 4 adjacent to the electrode 3 face each other in a direction orthogonal to the length direction.
  • the length direction of the electrode 3 and the electrode 4 and the direction orthogonal to the length direction of the electrode 3 and the electrode 4 are all directions intersecting with each other in the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the electrode 4 adjacent to the electrode 3 face each other in a direction intersecting with each other in the thickness direction of the piezoelectric layer 2.
  • the thickness direction of the piezoelectric layer 2 is the Z direction (or the first direction)
  • the length direction of the electrodes 3 and 4 is the Y direction (or the second direction)
  • the electrodes 3 and 4 are orthogonal to each other.
  • the direction may be described as the X direction (or the third direction).
  • the length directions of the electrodes 3 and 4 may be replaced with the directions orthogonal to the length directions of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may be extended in the direction in which the first bus bar electrode 5 and the second bus bar electrode 6 are extended. In that case, the first bus bar electrode 5 and the second bus bar electrode 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B. Then, a plurality of pairs of structures in which the electrode 3 connected to one potential and the electrode 4 connected to the other potential are adjacent to each other are provided in a direction orthogonal to the length direction of the electrodes 3 and 4. ing.
  • the case where the electrode 3 and the electrode 4 are adjacent to each other does not mean that the electrode 3 and the electrode 4 are arranged so as to be in direct contact with each other, but that the electrode 3 and the electrode 4 are arranged so as to be spaced apart from each other. Point to. Further, when the electrode 3 and the electrode 4 are adjacent to each other, the electrode connected to the hot electrode or the ground electrode, including the other electrode 3 and the electrode 4, is not arranged between the electrode 3 and the electrode 4. This logarithm does not have to be an integer pair, and may be 1.5 pairs, 2.5 pairs, or the like.
  • the distance between the centers between the electrode 3 and the electrode 4, that is, the pitch is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the center-to-center distance between the electrode 3 and the electrode 4 is the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the width dimension of.
  • the electrodes 3 and 4 when there are a plurality of at least one of the electrodes 3 and 4 (when the electrodes 3 and 4 are a pair of electrodes and there are 1.5 or more pairs of electrodes), the electrodes 3 and 4
  • the center-to-center distance refers to the average value of the center-to-center distances of 1.5 pairs or more of the electrodes 3, the adjacent electrodes 3 and the electrodes 4.
  • the width of the electrode 3 and the electrode 4, that is, the dimensions of the electrode 3 and the electrode 4 in the facing direction are preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrode 3 and the electrode 4 is a direction orthogonal to the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the length direction of the electrode 4. It is the distance connected to the center of the dimension (width dimension) of the electrode 4 in.
  • the direction orthogonal to the length direction of the electrodes 3 and 4 is the direction orthogonal to the polarization direction of the piezoelectric layer 2. This does not apply when a piezoelectric material having another cut angle is used as the piezoelectric layer 2.
  • “orthogonal” is not limited to the case of being strictly orthogonal, and is substantially orthogonal (the angle formed by the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90 ° ⁇ 10 °). ) May be.
  • a support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 via a dielectric film 7.
  • the dielectric film 7 and the support substrate 8 have a frame-like shape, and as shown in FIG. 2, have openings 7a and 8a. As a result, the cavity 9 (air gap) 9 is formed.
  • the cavity 9 is provided so as not to interfere with the vibration of the excitation region C of the piezoelectric layer 2. Therefore, the support substrate 8 is laminated on the second main surface 2b via the dielectric film 7 at a position where it does not overlap with the portion where the at least one pair of electrodes 3 and the electrodes 4 are provided.
  • the dielectric film 7 may not be provided. Therefore, the support substrate 8 can be directly or indirectly laminated on the second main surface 2b of the piezoelectric layer 2.
  • the dielectric film 7 is made of silicon oxide.
  • the dielectric film 7 can be formed of an appropriate insulating material such as silicon nitride or alumina in addition to silicon oxide.
  • the support substrate 8 is made of Si.
  • the plane orientation of Si on the surface of the piezoelectric layer 2 side may be (100), (110), or (111).
  • high resistance Si having a resistivity of 4 k ⁇ or more is desirable.
  • the support substrate 8 can also be configured by using an appropriate insulating material or semiconductor material.
  • the material of the support substrate 8 include piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mulite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, the electrode 4, the first bus bar electrode 5, and the second bus bar electrode 6 are made of an appropriate metal or alloy such as Al or AlCu alloy.
  • the electrode 3, the electrode 4, the first bus bar electrode 5, and the second bus bar electrode 6 have a structure in which an Al film is laminated on a Ti film. An adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar electrode 5 and the second bus bar electrode 6. As a result, it is possible to obtain resonance characteristics using the bulk wave of the thickness slip primary mode excited in the piezoelectric layer 2.
  • the thickness of the piezoelectric layer 2 when the thickness of the piezoelectric layer 2 is d, the distance between the centers of the plurality of pairs of electrodes 3, the adjacent electrodes 3 of the electrodes 4, and the electrodes 4 is p, d / p is It is said to be 0.5 or less. Therefore, the bulk wave in the thickness slip primary mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d / p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the electrodes 3 and 4 are 1.5 pairs.
  • the distance p between the centers of the adjacent electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
  • the elastic wave device 1 of the first embodiment has the above configuration, the Q value is unlikely to decrease even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size. This is because it is a resonator that does not require reflectors on both sides and has little propagation loss. Further, the reason why the above reflector is not required is that the bulk wave of the thickness slip primary mode is used.
  • FIG. 3A is a schematic cross-sectional view for explaining a Lamb wave propagating in the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining the bulk wave of the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of the bulk wave in the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 3A is an elastic wave device as described in Patent Document 1, in which a ram wave propagates in a piezoelectric layer.
  • the wave propagates in the piezoelectric layer 201 as indicated by an arrow.
  • the piezoelectric layer 201 has a first main surface 201a and a second main surface 201b, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. ..
  • the X direction is the direction in which the electrodes 3 and 4 of the IDT electrodes 30 are lined up.
  • the wave propagates in the X direction as shown in the figure.
  • the piezoelectric layer 201 vibrates as a whole because it is a plate wave, the wave propagates in the X direction, so reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when the size is reduced, that is, when the logarithm of the electrodes 3 and 4 is reduced.
  • the wave is generated by the first main surface 2a and the second main surface 2a of the piezoelectric layer 2. It propagates substantially in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. And since the resonance characteristic is obtained by the propagation of the wave in the Z direction, the reflector is not required. Therefore, there is no propagation loss when propagating to the reflector. Therefore, even if the logarithm of the electrode pair consisting of the electrodes 3 and 4 is reduced in order to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude directions of the bulk waves in the thickness slip primary mode are the first region 451 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 451 included in the excitation region C.
  • FIG. 4 schematically shows a bulk wave when a voltage at which the electrode 4 has a higher potential than that of the electrode 3 is applied between the electrode 3 and the electrode 4.
  • the first region 451 is a region of the excitation region C between the virtual plane VP1 orthogonal to the thickness direction of the piezoelectric layer 2 and dividing the piezoelectric layer 2 into two, and the first main surface 2a.
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the elastic wave device 1 At least one pair of electrodes consisting of the electrode 3 and the electrode 4 is arranged, but since the wave is not propagated in the X direction, the logarithm of the electrode pair consisting of the electrode 3 and the electrode 4 Does not necessarily have to be multiple pairs. That is, it is only necessary to provide at least one pair of electrodes.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential as described above, and is not provided with a floating electrode.
  • FIG. 5 is an explanatory diagram showing an example of the resonance characteristics of the elastic wave device of the first embodiment.
  • the design parameters of the elastic wave device 1 that has obtained the resonance characteristics shown in FIG. 5 are as follows.
  • Piezoelectric layer 2 LiNbO 3 with Euler angles (0 °, 0 °, 90 °) Piezoelectric layer 2 thickness: 400 nm
  • Excitation region C (see FIG. 1B) length: 40 ⁇ m
  • Dielectric film 7 1 ⁇ m thick silicon oxide film
  • the excitation region C (see FIG. 1B) is a region where the electrode 3 and the electrode 4 overlap when viewed in the X direction orthogonal to the length direction of the electrode 3 and the electrode 4.
  • the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the distance between the electrodes of the electrode pair consisting of the electrodes 3 and 4 is the same for the plurality of pairs. That is, the electrodes 3 and 4 are arranged at equal pitches.
  • d / p is 0.5 or less, more preferably 0.24. It is as follows. This will be described with reference to FIG.
  • FIG. 6 shows d / 2p and a resonator in the elastic wave apparatus of the first embodiment, where p is the center-to-center distance or the average distance between the centers of adjacent electrodes and d is the average thickness of the piezoelectric layer 2. It is explanatory drawing which shows the relationship with the specific band as.
  • the ratio band is less than 5% even if d / p is adjusted.
  • the specific band can be set to 5% or more by changing d / p within that range. That is, a resonator having a high coupling coefficient can be constructed.
  • the specific band can be increased to 7% or more.
  • d / p is adjusted within this range, a resonator having a wider specific band can be obtained, and a resonator having a higher coupling coefficient can be realized. Therefore, as in the second invention of the present application, by setting d / p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the bulk wave of the thickness slip primary mode. I understand.
  • At least one pair of electrodes may be one pair, and in the case of a pair of electrodes, p is the distance between the centers of the adjacent electrodes 3 and 4. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of the adjacent electrodes 3 and 4 may be p.
  • the thickness d of the piezoelectric layer 2 if the piezoelectric layer 2 has a thickness variation, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view showing an example in which a pair of electrodes is provided in the elastic wave device of the first embodiment.
  • a pair of electrodes having an electrode 3 and an electrode 4 is provided on the first main surface 2a of the piezoelectric layer 2.
  • K in FIG. 7 is an intersection width.
  • the logarithm of the electrodes may be one pair. Even in this case, if the d / p is 0.5 or less, the bulk wave in the thickness slip primary mode can be effectively excited.
  • the excitation region C which is a region in which any of the adjacent electrodes 3 and 4 are overlapped when viewed in the opposite direction, is provided. It is desirable that the metallization ratio MR of the adjacent electrodes 3 and 4 satisfies MR ⁇ 1.75 (d / p) +0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 8 and 9.
  • FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device of the first embodiment.
  • the spurious indicated by the arrow B appears between the resonance frequency and the antiresonance frequency.
  • the metallization ratio MR will be described with reference to FIG. 1B.
  • the excitation region C is a region in the electrode 4 where the electrode 3 and the electrode 4 overlap with the electrode 4 in the electrode 3 when viewed in a direction orthogonal to the length direction of the electrode 3 and the electrode 4, that is, in an opposite direction. It is a region where the electrode 3 overlaps and a region where the electrode 3 and the electrode 4 overlap in the region between the electrode 3 and the electrode 4.
  • the metallization ratio MR is a ratio of the area of the metallization portion to the area of the excitation region C.
  • the ratio of the metallization portion included in the total excitation region C to the total area of the excitation region C may be MR.
  • FIG. 9 shows the specific band of the elastic wave apparatus of the first embodiment when a large number of elastic wave resonators are configured, and the phase rotation amount of the impedance of the spurious standardized at 180 degrees as the size of the spurious. It is explanatory drawing which shows the relationship of.
  • the specific band was adjusted by variously changing the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4. Further, FIG. 9 shows the result when the piezoelectric layer 2 made of Z-cut LiNbO 3 is used, but the same tendency is obtained when the piezoelectric layer 2 having another cut angle is used.
  • the spurious is as large as 1.0.
  • the specific band exceeds 0.17, that is, when it exceeds 17%, the pass band even if a large spurious having a spurious level of 1 or more changes the parameters constituting the specific band. Appears in. That is, as shown in the resonance characteristic of FIG. 8, a large spurious indicated by an arrow B appears in the band. Therefore, the specific band is preferably 17% or less. In this case, the spurious can be reduced by adjusting the film thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, and the like.
  • FIG. 10 is an explanatory diagram showing the relationship between d / 2p, the metallization ratio MR, and the specific band.
  • various elastic wave devices 1 having different MRs from d / 2p were configured, and the specific band was measured.
  • the portion shown with hatching on the right side of the broken line D in FIG. 10 is a region having a specific band of 17% or less.
  • FIG. 11 is an explanatory diagram showing a map of the specific band with respect to Euler angles (0 °, ⁇ , ⁇ ) of LiNbO 3 when d / p is brought as close to 0 as possible.
  • the portion shown with hatching in FIG. 11 is a region where a specific band of at least 5% or more can be obtained. When the range of the region is approximated, it becomes the range represented by the following equations (1), (2) and (3).
  • Equation (1) (0 ° ⁇ 10 °, 20 ° -80 °, 0 ° -60 ° (1- ( ⁇ -50) 2/900) 1/2 ) or (0 ° ⁇ 10 °, 20 ° -80 °, [180] ° -60 ° (1- ( ⁇ -50) 2/900) 1/2 ] to 180 °).
  • Equation (2) (0 ° ⁇ 10 °, [180 ° -30 ° (1- ( ⁇ 90) 2/8100) 1/2 ] to 180 °, arbitrary ⁇ ).
  • the specific band can be sufficiently widened, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure.
  • the outer peripheral edge of the cavity 9 is shown by a broken line.
  • the elastic wave device of the present disclosure may utilize a plate wave.
  • the elastic wave device 301 has reflectors 310 and 311.
  • the reflectors 310 and 311 are provided on both sides of the electrodes 3 and 4 of the piezoelectric layer 2 in the elastic wave propagation direction.
  • a lamb wave as a plate wave is excited by applying an AC electric field to the electrodes 3 and 4 on the cavity 9.
  • the reflectors 310 and 311 are provided on both sides, the resonance characteristic of the lamb wave as a plate wave can be obtained.
  • the bulk wave in the thickness slip primary mode is used.
  • the electrodes 3 and 4 are adjacent electrodes, and when the thickness of the piezoelectric layer 2 is d and the distance between the centers of the electrodes 3 and 4 is p, d / p is It is said to be 0.5 or less. As a result, the Q value can be increased even if the elastic wave device is miniaturized.
  • the piezoelectric layer 2 is formed of lithium niobate or lithium tantalate.
  • the first main surface 2a or the second main surface 2b of the piezoelectric layer 2 has electrodes 3 and 4 facing each other in a direction intersecting the thickness direction of the piezoelectric layer 2 to protect the electrodes 3 and 4. It is desirable to cover with a film.
  • FIG. 13 is a plan view showing an embodiment of the elastic wave device according to the first embodiment.
  • FIG. 14 is a diagram showing an example of a cross section of a portion along the XIV-XIV line of FIG.
  • the elastic wave device 1A according to the first embodiment further includes a high thermal conductive film 11.
  • a wiring electrode 12 is connected to the IDT electrode 30, and a through hole 10 is provided in the piezoelectric layer 2.
  • the piezoelectric layer 2 includes a first piezoelectric body 21 and a second piezoelectric body 22.
  • the thickness d of the piezoelectric layer 2 refers to the distance between the first main surface 2a and the second main surface 2b in the Z direction.
  • the first piezoelectric body 21 is a piezoelectric body having a first main surface 2a.
  • the second piezoelectric body 22 is a piezoelectric body having a second main surface 2b, and is laminated on the first piezoelectric body 21 in the Z direction.
  • the first piezoelectric body 21 and the second piezoelectric body 22 are made of the same material.
  • the high thermal conductive film 11 is a heat dissipation layer provided in the piezoelectric layer 2 in the Z direction.
  • the high thermal conductive film 11 is provided so as to be sandwiched between the piezoelectric layers 2 in the Z direction.
  • the high thermal conductive film 11 is provided between the first piezoelectric body 21 and the second piezoelectric body 22 of the piezoelectric layer 2.
  • the high thermal conductive film 11 has higher thermal conductivity than the piezoelectric layer 2, and is used as a bonding layer between the first piezoelectric body 21 and the second piezoelectric body 22 in the production of the elastic wave device 1A described later. It is preferable that the product can be used.
  • the high thermal conductive film 11 can be made of, for example, alumina, silicon nitride, aluminum nitride, or silicon oxide.
  • the wiring electrode 12 is an electrode provided on the first main surface 2a.
  • a plurality of wiring electrodes 12 are provided and are electrically connected to the bus bar electrodes 5 and 6 of the IDT electrode 30, respectively.
  • the wiring electrode 12 can be made of an appropriate metal or alloy.
  • the IDT electrode 30 is connected to the high thermal conductive film 11.
  • the bus bar electrodes 5 and 6 penetrate the first piezoelectric body 21 in the Z direction and are in direct contact with the high thermal conductive film 11. With this structure, the heat generated by the excitation of the IDT electrode 30 can be dissipated to the high thermal conductive film 11.
  • the through hole 10 is a hole that penetrates the piezoelectric layer 2 in the Z direction.
  • the through hole 10 is provided at a position overlapping the cavity 9 in a plan view in the Z direction, and communicates with the cavity 9 in the Z direction. Thereby, in the production of the elastic wave device 1A described later, the cavity portion 9 can be easily formed.
  • the through holes 10 are rectangular in a plan view in the Z direction, and are provided at both ends of the cavity 9 in the X direction, but this is just an example and may have an arbitrary shape. And the number is not limited to this.
  • the manufacturing method of the elastic wave device 1A is not limited to the following manufacturing method.
  • the cavity 9 is formed on the flat plate-shaped support substrate 8 by resist patterning, dry etching, and resist removal.
  • a sacrificial layer is formed in the cavity 9 of the support substrate 8, and the sacrificial layer is embedded by surface polishing.
  • a dielectric film 7 is formed as a bonding layer on the sacrificial layer side of the support substrate 8, and the dielectric film 7 is similarly bonded to the second piezoelectric substrate on which the dielectric film 7 is formed.
  • the second piezoelectric substrate is thinned by grinding to form the second piezoelectric body 22.
  • the high thermal conductive film 11 is formed on the second piezoelectric body 22 as a bonding layer, and is bonded to the first piezoelectric substrate on which the high thermal conductive film 11 is formed.
  • the joined first piezoelectric substrate is thinned by grinding to form the first piezoelectric body 21.
  • the first main surface 2a of the piezoelectric layer 2 is further subjected to resist patterning and dry etching to provide an opening in a part of the first piezoelectric layer 21.
  • the IDT electrode 30 and the wiring electrode 12 are formed on the first main surface 2a by lift-off.
  • the through holes 10 are formed by etching the first piezoelectric body 21, the high thermal conductive film 11, the second piezoelectric body 22, and the dielectric film 7. To. In this state, the resist is once removed, the surface is protected again by resist patterning, and the sacrificial layer and a part of the dielectric film 7 are removed to form the cavity portion 9. Then, by removing the resist, the elastic wave device 1A according to the first embodiment is manufactured.
  • the configuration of the elastic wave device is not limited to the example shown in FIG.
  • the high thermal conductive film 11 is not limited to the layer provided between the first piezoelectric body 21 and the second piezoelectric body 22 in the Z direction, and may be a layer contained in the piezoelectric layer 2. That is, in the example of FIG. 14, the high thermal conductive film 11 is exposed in the X direction and the Y direction, but may be inside the piezoelectric layer 2 in either direction.
  • the IDT electrode 30 is not limited to being in direct contact with the high thermal conductive film 11, and may be connected to the high thermal conductive film 11 via another metal member such as the wiring electrode 12.
  • another metal member such as the wiring electrode 12.
  • FIG. 15 is a diagram showing a first modification of the cross section of the portion along the XIV-XIV line of FIG.
  • the IDT electrode 30 may be connected to the high thermal conductive film 11 via the through electrode 13.
  • the through electrode 13 is an electrode in which one end in the Z direction is connected to the IDT electrode 30 or the wiring electrode 12.
  • the through electrode 13 is provided at a position where it overlaps with the wiring electrode 12 in a plan view in the Z direction, and the wiring electrode 12, the piezoelectric layer 2, and the high thermal conductive film 11 are provided.
  • the dielectric film 7 and the support substrate 8 are provided so as to penetrate in the Z direction. With this structure, the heat generated by the excitation of the IDT electrode 30 can be dissipated to the high thermal conductive film 11 via the through electrode 13.
  • the through electrode 13 can be made of an appropriate metal or alloy.
  • FIG. 16 is a diagram showing a second modification of the cross section of the portion along the XIV-XIV line of FIG.
  • the through electrode 13 may be in contact with the IDT electrode 30 or the wiring electrode 12 and the high thermal conductive film 11, and may penetrate only the piezoelectric layer 2.
  • the heat generated by the excitation of the IDT electrode 30 can be dissipated to the high thermal conductive film 11 via the through electrode 13.
  • FIG. 17 is a diagram showing a third modification example of a cross section of a portion along the XIV-XIV line of FIG.
  • the IDT electrode 30 may be connected to the high thermal conductive film 11 via a metal member that does not penetrate the piezoelectric layer 2.
  • the metal member that does not penetrate the piezoelectric layer 2 is, for example, a side electrode 14.
  • the side electrode 14 is an electrode provided on a plane parallel to the Z direction of the piezoelectric layer 2 and the dielectric film 7. As shown in FIG. 17, the side electrode 14 is connected to the wiring electrode 12 at one end in the Z direction. With this structure, the heat generated by the excitation of the IDT electrode 30 can be dissipated to the high thermal conductive film 11 via the side electrode 14.
  • the side electrode 14 can be made of an appropriate metal or alloy like the IDT electrode 30.
  • the elastic wave devices 1A to 1D include the support substrate 8 and lithium niobate or lithium tantalate provided in the first direction, which is the thickness direction of the support substrate 8.
  • the piezoelectric layer 2 having the first main surface 2a in the first direction, the cavity 9 provided between the support substrate 8 and the piezoelectric layer 2, and the first main surface 2a of the piezoelectric layer 2 are provided.
  • the first bus bar 5 facing each other, the second bus bar 6, the plurality of electrodes 3 whose base ends are connected to the first bus bar 5, and the base ends are connected to the second bus bar 6.
  • An IDT electrode 30 including a plurality of electrodes 4, a wiring electrode 12 provided on the first main surface 2a of the piezoelectric layer 2 and connected to the IDT electrode 30, and provided in the piezoelectric layer 2 in the first direction.
  • a high thermal conductivity film 11 having a thermal conductivity higher than that of the piezoelectric layer 2 is provided, and at least a part of the IDT electrode 30 is provided in a region overlapping the cavity 9 in a plan view in the first direction.
  • the high heat conductive film 11 is provided in a region overlapping the cavity 9 in a plan view in the first direction, and the IDT electrode 30 is directly connected to the high heat conductive film 11 or via a metal.
  • the heat generated by the excitation of the IDT electrode 30 can be released to the high thermal conductive film 11, so that the accumulation of heat can be suppressed.
  • the high thermal conductive film 11 preferably contains at least one of alumina, silicon nitride, and aluminum nitride. As a result, the thermal conductivity of the high thermal conductive film 11 can be increased, and the accumulation of heat can be further suppressed.
  • the high thermal conductive film 11 preferably contains silicon oxide. As a result, the thermal conductivity of the high thermal conductive film 11 can be increased, and the accumulation of heat can be further suppressed.
  • the high thermal conductive film 11 may be provided in a region that does not overlap with the cavity 9 in a plan view in the first direction. Even in this case, it is possible to suppress the accumulation of heat.
  • a through electrode 13 penetrating the piezoelectric layer 2 may be further provided, and the through electrode 13 may be in contact with at least one of the IDT electrode 30 and the wiring electrode 12 and the high thermal conductive film 11.
  • the IDT electrode 30 can release heat to the high thermal conductive film 11 via the through electrode 13, so that it is possible to suppress the accumulation of heat.
  • the through electrode 13 penetrates the high thermal conductive film 11.
  • the IDT electrode 30 can more reliably release heat to the high thermal conductive film 11 via the through electrode 13, so that it is possible to further suppress the accumulation of heat.
  • the dielectric film 7 is further provided between the support substrate 8 and the piezoelectric layer 2, and the through electrode 13 is in contact with the dielectric film 7.
  • the piezoelectric layer 2 can be bonded to the support substrate 8 via the dielectric film 7, so that the elastic wave device 1A can be easily manufactured.
  • the through electrode 13 is in contact with the support substrate 8.
  • the IDT electrode 30 can also release heat to the support substrate 8 via the through electrode 13, so that it is possible to further suppress the accumulation of heat.
  • a side electrode 14 provided on a surface parallel to the first direction of the piezoelectric layer 2 may be further provided, and the side electrode 14 may come into contact with the wiring electrode 12 and the high thermal conductive film 11.
  • the IDT electrode 30 can release heat to the high thermal conductive film 11 via the wiring electrode 12 and the side electrode 14, so that the accumulation of heat can be further suppressed.
  • d / p is 0.5 or less.
  • the elastic wave device 1 can be miniaturized and the Q value can be increased.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer 2 are in the range of the following equations (1), (2) or (3). It is in. In this case, the specific band can be sufficiently widened.
  • Equation (1) (0 ° ⁇ 10 °, 20 ° -80 °, 0 ° -60 ° (1- ( ⁇ -50) 2/900) 1/2 ) or (0 ° ⁇ 10 °, 20 ° -80 °, [180] ° -60 ° (1- ( ⁇ -50) 2/900) 1/2 ] -180 °).
  • Equation (2) (0 ° ⁇ 10 °, [180 ° -30 ° (1- ( ⁇ 90) 2/8100) 1/2 ] to 180 °, arbitrary ⁇ ).
  • the elastic wave device 1 is configured to enable the use of bulk waves in the thickness slip mode. As a result, the coupling coefficient is increased and good resonance characteristics can be obtained.
  • d / p is 0.24 or less.
  • the elastic wave device 1 can be miniaturized and the Q value can be increased.
  • the region where the adjacent electrodes 3 and 4 overlap in the opposite direction is the excitation region C
  • the metallization ratio of the plurality of electrodes 3 and 4 with respect to the excitation region C is MR.
  • the specific band can be surely reduced to 17% or less.
  • the elastic wave device 1 is configured to be able to use a plate wave. Thereby, good resonance characteristics can be obtained.
  • Elastic wave device 2 Piezoelectric layer 2a First main surface 2b Second main surface 3 Electrode (first electrode finger) 4 electrodes (second electrode finger) 5 Bus bar electrode (first bus bar electrode) 6 Bus bar electrode (second bus bar electrode) 7 Dielectric film 8 Support substrate 7a, 8a Opening 9 Cavity 10 Through hole 11 High heat conductive film 12 Wiring electrode 13 Through electrode 14 Side electrode 21 First piezoelectric body 22 Second piezoelectric body 30 IDT electrode 201 Piezoelectric layer 201a First Main surface 201b Second main surface 310, 311 Reflector 451 First region 452 Second region C Excitation region VP1 Virtual plane

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

熱の蓄積を抑制する。支持基板と、支持基板の厚さ方向である第1方向に設けられたニオブ酸リチウムまたはタンタル酸リチウムを含み、第1方向に主面を有する圧電層と、支持基板と圧電層との間に設けられた空洞部と、圧電層の主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、第1のバスバーに基端が接続された複数の第1電極指と、第2のバスバーに基端が接続された複数の第2電極指と、を含むIDT電極と、圧電層の主面に設けられ、IDT電極に接続された配線電極と、第1方向について圧電層内に設けられ、圧電層の熱伝導率より高い熱伝導率を有する高熱伝導膜と、を備え、IDT電極の少なくとも一部は、第1方向に平面視して空洞部と重なる領域に設けられ、高熱伝導膜は、第1方向に平面視して空洞部と重なる領域に設けられ、IDT電極及び配線電極の少なくとも一方は、高熱伝導膜と直接または金属を介して接続されている。

Description

弾性波装置
 本開示は、弾性波装置に関する。
 特許文献1には、弾性波装置が記載されている。
特開2012-257019号公報
 特許文献1に示すような弾性波装置では、電極が励振することによって圧電層に熱が発生する。支持基板に空洞部を介して圧電層が積層される場合、放熱性が悪化し、熱が蓄積する可能性があった。
 本開示は、上述した課題を解決するものであり、熱の蓄積を抑制することを目的とする。
 一態様に係る弾性波装置は、支持基板と、前記支持基板の厚さ方向である第1方向に設けられたニオブ酸リチウムまたはタンタル酸リチウムを含み、前記第1方向に主面を有する圧電層と、前記支持基板と前記圧電層との間に設けられた空洞部と、前記圧電層の前記主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、前記第1のバスバーに基端が接続された複数の第1電極指と、前記第2のバスバーに基端が接続された複数の第2電極指と、を含むIDT電極と、前記圧電層の前記主面に設けられ、前記IDT電極に接続された配線電極と、前記第1方向について前記圧電層内に設けられ、前記圧電層の熱伝導率より高い熱伝導率を有する高熱伝導膜と、を備え、前記IDT電極の少なくとも一部は、前記第1方向に平面視して前記空洞部と重なる領域に設けられ、前記高熱伝導膜は、前記第1方向に平面視して前記空洞部と重なる領域に設けられ、前記IDT電極及び前記配線電極の少なくとも一方は、前記高熱伝導膜と直接または金属を介して接続されている。
 本開示によれば、熱の蓄積を抑制することができる。
図1Aは、第1実施形態の弾性波装置を示す斜視図である。 図1Bは、第1実施形態の電極構造を示す平面図である。 図2は、図1AのII-II線に沿う部分の断面図である。 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。 図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。 図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。 図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離または中心間距離の平均距離をp、圧電層の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。 図8は、第1実施形態の弾性波装置の共振特性の一例を示す参考図である。 図9は、第1実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。 図12は、本開示の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。 図13は、第1実施形態に係る弾性波装置の実施例を示す平面図である。 図14は、図13のXIV-XIV線に沿う部分の断面の一例を示す図である。 図15は、図13のXIV-XIV線に沿う部分の断面の第1変形例を示す図である。 図16は、図13のXIV-XIV線に沿う部分の断面の第2変形例を示す図である。 図17は、図13のXIV-XIV線に沿う部分の断面の第3変形例を示す図である。
 以下に、本開示の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。なお、本開示に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能である変形例や第2実施の形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 (第1実施形態)
 図1Aは、第1実施形態の弾性波装置を示す斜視図である。図1Bは、第1実施形態の電極構造を示す平面図である。
 第1実施形態の弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、第1実施形態では、Zカットである。LiNbOやLiTaOのカット角は、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。
 圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。
 圧電層2は、Z方向に対向し合う第1の主面2aと、第2の主面2bとを有する。第1の主面2a上に、電極3及び電極4が設けられている。
 ここで電極3が「第1電極指」の一例であり、電極4が「第2電極指」の一例である。図1A及び図1Bでは、複数の電極3は、第1のバスバー電極5に接続されている複数の「第1電極指」である。複数の電極4は、第2のバスバー電極6に接続されている複数の「第2電極指」である。複数の電極3及び複数の電極4は、互いに間挿し合っている。これにより、複数の電極3と、複数の電極4と、第1のバスバー電極5と、第2のバスバー電極6とを備えるIDT(Interdigital Transuducer)電極30が構成されている。
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、電極3と隣接する電極4とが対向している。電極3、電極4の長さ方向、及び、電極3、電極4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、電極3と隣接する電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。以下の説明では、圧電層2の厚み方向をZ方向(または第1方向)とし、電極3、電極4の長さ方向をY方向(または第2方向)とし、電極3、電極4の直交する方向をX方向(または第3方向)として、説明することがある。
 また、電極3、電極4の長さ方向が図1A及び図1Bに示す電極3、電極4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー電極5及び第2のバスバー電極6が延びている方向に電極3、電極4を延ばしてもよい。その場合、第1のバスバー電極5及び第2のバスバー電極6は、図1A及び図1Bにおいて電極3、電極4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3、電極4の長さ方向と直交する方向に、複数対設けられている。
 ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3、電極4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。
 電極3と電極4との間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3と電極4との間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。
 さらに、電極3、電極4の少なくとも一方が複数本ある場合(電極3、電極4を一対の電極組とした場合に、1.5対以上の電極組がある場合)、電極3、電極4の中心間距離は、1.5対以上の電極3、電極4のうち隣り合う電極3、電極4それぞれの中心間距離の平均値を指す。
 また、電極3、電極4の幅、すなわち電極3、電極4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3と電極4との間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、第1実施形態では、Zカットの圧電層を用いているため、電極3、電極4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3、電極4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。
 圧電層2の第2の主面2b側には、誘電体膜7を介して支持基板8が積層されている。誘電体膜7及び支持基板8は、枠状の形状を有し、図2に示すように、開口部7a、8aを有する。それによって、空洞部(エアギャップ)9が形成されている。
 空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持基板8は、少なくとも1対の電極3、電極4が設けられている部分と重ならない位置において、第2の主面2bに誘電体膜7を介して積層されている。なお、誘電体膜7は設けられずともよい。従って、支持基板8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 誘電体膜7は、酸化ケイ素で形成されている。もっとも、誘電体膜7は、酸化ケイ素の他、窒化ケイ素、アルミナなどの適宜の絶縁性材料で形成することができる。
 支持基板8は、Siにより形成されている。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持基板8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持基板8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3、電極4及び第1のバスバー電極5、第2のバスバー電極6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。第1実施形態では、電極3、電極4及び第1のバスバー電極5、第2のバスバー電極6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー電極5と第2のバスバー電極6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3、電極4のうちいずれかの隣り合う電極3、電極4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 なお、第1実施形態のように電極3、電極4の少なくとも一方が複数本ある場合、すなわち、電極3、電極4を1対の電極組とした場合に電極3、電極4が1.5対以上ある場合、隣り合う電極3、電極4の中心間距離pは、各隣り合う電極3、電極4の中心間距離の平均距離となる。
 第1実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3、電極4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。
 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。
 図3Aでは、特許文献1に記載のような弾性波装置であり、圧電層をラム波が伝搬する。図3Aに示すように、圧電層201中を矢印で示すように波が伝搬する。ここで、圧電層201には、第1の主面201aと、第2の主面201bとがあり、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極30の電極3、4が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電層201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極3、4の対数を少なくした場合、Q値が低下する。
 これに対して、図3Bに示すように、第1実施形態の弾性波装置では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3、電極4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域C(図1B参照)に含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3、電極4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。第1実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。なお、図5に示す共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°、0°、90°)のLiNbO
 圧電層2の厚み:400nm
 励振領域C(図1B参照)の長さ:40μm
 電極3、電極4からなる電極の対数:21対
 電極3と電極4との間の中心間距離(ピッチ):3μm
 電極3、電極4の幅:500nm
 d/p:0.133
 誘電体膜7:1μmの厚みの酸化ケイ素膜
 支持基板8:Si
 なお、励振領域C(図1B参照)とは、電極3と電極4の長さ方向と直交するX方向に視たときに、電極3と電極4とが重なっている領域である。励振領域Cの長さとは、励振領域Cの電極3、電極4の長さ方向に沿う寸法である。
 第1実施形態では、電極3、電極4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、第1実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離または中心間距離の平均距離をp、圧電層2の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。
 図6に示すように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本願の第2の発明のように、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 なお、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3、電極4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3、電極4の中心間距離の平均距離をpとすればよい。
 また、圧電層2の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。
 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。弾性波装置101では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極3、電極4において、いずれかの隣り合う電極3、電極4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極3、電極4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図8及び図9を参照して説明する。
 図8は、第1実施形態の弾性波装置の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と***振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°、0°、90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極3、電極4に着目した場合、この1対の電極3、電極4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極3と電極4とを、電極3、電極4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極3、電極4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。
 なお、複数対の電極3、電極4が設けられている場合、励振領域Cの面積の合計に対する全励振領域Cに含まれているメタライゼーション部分の割合をMRとすればよい。
 図9は、第1実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。なお、比帯域については、圧電層2の膜厚や電極3、電極4の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層2を用いた場合の結果であるが、他のカット角の圧電層2を用いた場合においても、同様の傾向となる。
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3、電極4の寸法などを調整することにより、スプリアスを小さくすることができる。
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。第1実施形態の弾性波装置1において、d/2pと、MRが異なる様々な弾性波装置1を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域である。領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2)または(0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。
 図12は、本開示の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。図12において、空洞部9の外周縁を破線で示す。本開示の弾性波装置は、板波を利用するものであってもよい。この場合、図12に示すように、弾性波装置301は、反射器310、311を有する。反射器310、311は、圧電層2の電極3、4の弾性波伝搬方向両側に設けられる。弾性波装置301では、空洞部9上の電極3、4に、交流電界を印加することにより、板波としてのラム波が励振される。このとき、反射器310、311が両側に設けられているため、板波としてのラム波による共振特性を得ることができる。
 以上説明したように、弾性波装置1、101では、厚み滑り1次モードのバルク波が利用されている。また、弾性波装置1、101では、電極3及び電極4は隣り合う電極同士であり、圧電層2の厚みをd、電極3及び電極4の中心間距離をpとした場合、d/pが0.5以下とされている。これにより、弾性波装置が小型化しても、Q値を高めることができる。
 弾性波装置1、101では、圧電層2がニオブ酸リチウムまたはタンタル酸リチウムで形成されている。圧電層2の第1の主面2aまたは第2の主面2bには、圧電層2の厚み方向に交差する方向において対向する電極3及び電極4があり、電極3及び電極4の上を保護膜で覆うことが望ましい。
 図13は、第1実施形態に係る弾性波装置の実施例を示す平面図である。図14は、図13のXIV-XIV線に沿う部分の断面の一例を示す図である。図14に示すように、第1実施形態に係る弾性波装置1Aは、高熱伝導膜11をさらに備える。また、図13に示すように、IDT電極30には配線電極12が接続されており、圧電層2には、貫通孔10が設けられている。
 第1実施形態において、圧電層2は、第1圧電体21と、第2圧電体22とを備える。この場合、圧電層2の厚みdは、第1の主面2aと第2の主面2bとのZ方向についての距離を指す。第1圧電体21は、第1の主面2aを有する圧電体である。第2圧電体22は、第2の主面2bを有する圧電体であり、第1圧電体21にZ方向に積層される。なお、第1圧電体21及び第2圧電体22は同様の材料で構成される。
 高熱伝導膜11は、Z方向について圧電層2内に設けられる放熱層である。第1実施例において、高熱伝導膜11は、Z方向について圧電層2に挟まれるように設けられる。図14の例においては、高熱伝導膜11は、圧電層2の第1圧電体21と第2圧電体22との間に設けられる。高熱伝導膜11は、圧電層2より高い熱伝導性を有しており、また、後述する弾性波装置1Aの製造において、第1圧電体21と第2圧電体22との接合層として用いることができるものが好ましい。高熱伝導膜11は、例えば、アルミナ、窒化ケイ素、窒化アルミニウムのほか、酸化ケイ素で構成することができる。
 配線電極12は、第1の主面2aに設けられる電極である。第1実施形態において、配線電極12は、複数設けられ、IDT電極30のバスバー電極5、6にそれぞれ電気的に接続される。配線電極12は、IDT電極30と同様、適宜の金属もしくは合金で構成することができる。
 第1実施形態において、IDT電極30は、高熱伝導膜11と接続されている。図14の例では、IDT電極30のうち、バスバー電極5、6が第1圧電体21をZ方向に貫通しており、高熱伝導膜11と直接接触している。この構造とすることで、IDT電極30の励振によって発生した熱を、高熱伝導膜11に放熱することができる。
 貫通孔10は、圧電層2をZ方向に貫通する孔である。貫通孔10は、Z方向に平面視して空洞部9と重なる位置に設けられ、Z方向について空洞部9と連通している。これにより、後述する弾性波装置1Aの製造において、空洞部9を容易に形成することができる。なお、図13においては、貫通孔10は、Z方向に平面視して矩形であり、空洞部9のX方向についての両端に2つ設けられるが、単なる一例であり、任意の形状とすることができ、数もこれに限られない。
 第1実施形態に係る弾性波装置1Aの製造法の一例を以下に説明する。なお、弾性波装置1Aの製造法は、以下の製造法に限られるものではない。
 まず、平板状の支持基板8にレジストパターニングと、ドライエッチングと、レジスト除去とにより、空洞部9を形成する。次に、支持基板8の、空洞部9に犠牲層を成膜し、表面研磨により犠牲層の埋め込みを行う。そして、支持基板8の犠牲層側に接合層として誘電体膜7を形成し、同様に誘電体膜7を形成した第2の圧電基板と接合させる。接合後、第2の圧電基板は、研削によって薄化し、第2圧電体22とする。第2圧電体22には、同様に接合層として高熱伝導膜11を形成し、高熱伝導膜11を形成した第1の圧電基板と接合させる。接合した第1の圧電基板は、研削によって薄化し、第1圧電体21とする。
 図14の例においては、さらに、圧電層2の第1の主面2aにレジストパターニングとドライエッチングを施し、第1圧電体21の一部に開口を設ける。第1の主面2aには、リフトオフによってIDT電極30及び配線電極12が形成される。
 電極形成後、レジストパターニングによる第1の主面2aを保護した後、第1圧電体21、高熱伝導膜11、第2圧電体22、誘電体膜7をエッチングすることで貫通孔10が形成される。この状態で、レジストを一旦除去してレジストパターニングによる表面保護を再度行い、犠牲層と、誘電体膜7の一部を除去することで空洞部9が形成される。その後、レジストを除去することによって、第1実施形態に係る弾性波装置1Aが製造される。
 以上、第1実施形態に係る弾性波装置1Aについて説明したが、弾性波装置の構成は、図14で示す例に限られない。
 例えば、高熱伝導膜11は、Z方向について第1圧電体21と第2圧電体22との間に設けられる層に限られず、圧電層2に内包された層であってもよい。すなわち、図14の例では、高熱伝導膜11はX方向及びY方向について露出しているが、いずれの方向においても圧電層2内にあってもよい。
 また、IDT電極30は、高熱伝導膜11と直接接触していることに限られず、配線電極12などの他の金属部材を介して高熱伝導膜11と接続していてもよい。以下、IDT電極30と高熱伝導膜11との接続の態様についての変形例を、図面を用いて説明する。なお、以下の説明においては、図13及び図14に示す実施例と同様の構成については符号を付して説明を省略する。
 図15は、図13のXIV-XIV線に沿う部分の断面の第1変形例を示す図である。図15に示すように、IDT電極30は、貫通電極13を介して、高熱伝導膜11に接続されていてもよい。貫通電極13は、Z方向についての一端がIDT電極30または配線電極12に接続されている電極である。第1変形例に係る弾性波装置1Bでは、貫通電極13は、Z方向に平面視して配線電極12と重なる位置に設けられ、配線電極12と、圧電層2と、高熱伝導膜11と、誘電体膜7と、支持基板8とをZ方向に貫通するように設けられる。この構造とすることで、IDT電極30の励振によって発生した熱を、貫通電極13を介して、高熱伝導膜11に放熱することができる。なお、貫通電極13は、IDT電極30と同様、適宜の金属もしくは合金で構成することができる。
 図16は、図13のXIV-XIV線に沿う部分の断面の第2変形例を示す図である。図16に示すように、貫通電極13は、IDT電極30または配線電極12と、高熱伝導膜11とに接触していればよく、圧電層2のみを貫通するものであってもよい。第2変形例に係る弾性波装置1Cにおいても、IDT電極30の励振によって発生した熱を、貫通電極13を介して、高熱伝導膜11に放熱することができる。
 図17は、図13のXIV-XIV線に沿う部分の断面の第3変形例を示す図である。IDT電極30は、圧電層2を貫通しない金属部材を介して、高熱伝導膜11に接続されてもよい。第3変形例に係る弾性波装置1Dにおいて、圧電層2を貫通しない金属部材は、例えば側面電極14である。側面電極14は、圧電層2及び誘電体膜7の、Z方向に平行な面に設けられる電極である。側面電極14は、図17に示すように、Z方向についての一端で配線電極12に接続されている。この構造とすることで、IDT電極30の励振によって発生した熱を、側面電極14を介して、高熱伝導膜11に放熱することができる。なお、側面電極14は、IDT電極30と同様、適宜の金属もしくは合金で構成することができる。
 以上説明したように、第1実施形態に係る弾性波装置1A~1Dは、支持基板8と、支持基板8の厚さ方向である第1方向に設けられたニオブ酸リチウムまたはタンタル酸リチウムを含み、第1方向に第1の主面2aを有する圧電層2と、支持基板8と圧電層2との間に設けられた空洞部9と、圧電層2の第1の主面2aに設けられ、かつ、互いに対向する第1のバスバー5と、第2のバスバー6と、第1のバスバー5に基端が接続された複数の電極3と、第2のバスバー6に基端が接続された複数の電極4と、を含むIDT電極30と、圧電層2の第1の主面2aに設けられ、IDT電極30に接続された配線電極12と、第1方向について圧電層2内に設けられ、圧電層2の熱伝導率より高い熱伝導率を有する高熱伝導膜11と、を備え、IDT電極30の少なくとも一部は、第1方向に平面視して空洞部9と重なる領域に設けられ、高熱伝導膜11は、第1方向に平面視して空洞部9と重なる領域に設けられ、IDT電極30は、高熱伝導膜11と直接または金属を介して接続されている。
 これにより、IDT電極30の励振によって発生した熱は、高熱伝導膜11に放出することができるので、熱が蓄積することを抑制できる。
 望ましい形態として、高熱伝導膜11は、アルミナ、窒化ケイ素、窒化アルミニウムのうち少なくとも1つを含むことが好ましい。これにより、高熱伝導膜11の熱伝導性を高くすることができ、熱が蓄積することをより抑制できる。
 望ましい形態として、高熱伝導膜11は、酸化ケイ素を含むことが好ましい。これにより、高熱伝導膜11の熱伝導性を高くすることができ、熱が蓄積することをより抑制できる。
 また、高熱伝導膜11は、第1方向に平面視して空洞部9と重ならない領域にも設けられていてもよい。この場合においても、熱が蓄積することを抑制できる。
 また、圧電層2を貫通する貫通電極13をさらに備え、貫通電極13は、IDT電極30及び配線電極12の少なくとも一方と、高熱伝導膜11と接触していてもよい。これにより、IDT電極30は、貫通電極13を介して高熱伝導膜11に熱を放出することができるので、熱が蓄積することを抑制できる。
 望ましい態様として、貫通電極13は、高熱伝導膜11を貫通する。これにより、IDT電極30は、貫通電極13を介して高熱伝導膜11に熱をより確実に放出することができるので、熱が蓄積することをより抑制できる。
 より望ましい態様として、支持基板8と圧電層2との間に誘電体膜7をさらに備え、貫通電極13は誘電体膜7と接触している。これにより、弾性波装置1Aの製造において、誘電体膜7を介して支持基板8に圧電層2を接合できるので、容易に弾性波装置1Aを製造することができる。
 より望ましい態様として、貫通電極13は支持基板8と接触している。これにより、IDT電極30は、貫通電極13を介して支持基板8にも熱を放出することができるので、熱が蓄積することをより抑制できる。
 また、圧電層2の第1方向に平行な面に設けられた側面電極14をさらに備え、側面電極14は、配線電極12と高熱伝導膜11と接触してもよい。これにより、IDT電極30は、配線電極12と側面電極14とを介して高熱伝導膜11に熱を放出することができるので、熱が蓄積することをより抑制できる。
 望ましい態様として、圧電層2の膜厚をd、隣り合う電極3及び電極4の中心間距離をpとした場合、d/pが0.5以下である。これにより、弾性波装置1を小型化でき、かつQ値を高めることができる。
 さらに望ましい態様として、圧電層2を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある。この場合、比帯域を十分に広くすることができる。
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
 さらに望ましい態様として、弾性波装置1は、厚み滑りモードのバルク波を利用可能に構成されている。これにより、結合係数が高まり、良好な共振特性を得ることができる。
 さらに望ましい態様として、d/pは0.24以下である。これにより、弾性波装置1を小型化でき、かつQ値を高めることができる。
 さらに望ましい態様として、隣り合う電極3、4が対向している方向において重なっている領域が励振領域Cであり、励振領域Cに対する、複数の電極3、4のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす。この場合、比帯域を確実に17%以下にすることができる。
 望ましい態様として、弾性波装置1は、板波を利用可能に構成されている。これにより、良好な共振特性を得ることができる。
 なお、上記した実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更/改良され得るとともに、本開示にはその等価物も含まれる。
1、1A~1D、101、301 弾性波装置
2 圧電層
2a 第1の主面
2b 第2の主面
3 電極(第1電極指)
4 電極(第2電極指)
5 バスバー電極(第1のバスバー電極)
6 バスバー電極(第2のバスバー電極)
7 誘電体膜
8 支持基板
7a、8a 開口部
9 空洞部
10 貫通孔
11 高熱伝導膜
12 配線電極
13 貫通電極
14 側面電極
21 第1圧電体
22 第2圧電体
30 IDT電極
201 圧電層
201a 第1の主面
201b 第2の主面
310、311 反射器
451 第1領域
452 第2領域
C 励振領域
VP1 仮想平面

Claims (15)

  1.  支持基板と、
     前記支持基板の厚さ方向である第1方向に設けられたニオブ酸リチウムまたはタンタル酸リチウムを含み、前記第1方向に主面を有する圧電層と、
     前記支持基板と前記圧電層との間に設けられた空洞部と、
     前記圧電層の前記主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、前記第1のバスバーに基端が接続された複数の第1電極指と、前記第2のバスバーに基端が接続された複数の第2電極指と、を含むIDT電極と、
     前記圧電層の前記主面に設けられ、前記IDT電極に接続された配線電極と、
     前記第1方向について前記圧電層内に設けられ、前記圧電層の熱伝導率より高い熱伝導率を有する高熱伝導膜と、
     を備え、
     前記IDT電極の少なくとも一部は、前記第1方向に平面視して前記空洞部と重なる領域に設けられ、
     前記高熱伝導膜は、前記第1方向に平面視して前記空洞部と重なる領域に設けられ、
     前記IDT電極は、前記高熱伝導膜と直接または金属を介して接続されている、弾性波装置。
  2.  前記高熱伝導膜は、アルミナ、窒化ケイ素、窒化アルミニウムのうち少なくとも1つを含む、請求項1に記載の弾性波装置。
  3.  前記高熱伝導膜は、酸化ケイ素を含む、請求項1に記載の弾性波装置。
  4.  前記高熱伝導膜は、前記第1方向に平面視して前記空洞部と重ならない領域にも設けられている、請求項1から3のいずれか1項に記載の弾性波装置。
  5.  前記圧電層を貫通する貫通電極をさらに備え、
     前記貫通電極は、前記IDT電極及び前記配線電極の少なくとも一方と、前記高熱伝導膜と接触している、請求項1から4のいずれか1項に記載の弾性波装置。
  6.  前記貫通電極は、前記高熱伝導膜を貫通する、請求項5に記載の弾性波装置。
  7.  前記支持基板と前記圧電層との間に誘電体膜をさらに備え、
     前記貫通電極は前記誘電体膜と接触している、請求項6に記載の弾性波装置。
  8.  前記貫通電極は前記支持基板と接触している、請求項6または7に記載の弾性波装置。
  9.  前記圧電層の前記第1方向に対して平行な面に設けられた側面電極をさらに備え、
     前記側面電極は、前記配線電極と前記高熱伝導膜と接触している、請求項1から5のいずれか1項に記載の弾性波装置。
  10.  前記圧電層の膜厚をd、隣り合う前記第1電極指及び前記第2電極指の中心間距離をpとした場合、d/pが0.5以下である、請求項1から9のいずれか1項に記載の弾性波装置。
  11.  前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1から10のいずれか1項に記載の弾性波装置。
     (0°±10°、0°~20°、任意のψ)  …式(1)
     (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
  12.  厚み滑りモードのバルク波を利用可能に構成されている、請求項10または11に記載の弾性波装置。
  13.  d/pが0.24以下である、請求項10から12のいずれか1項に記載の弾性波装置。
  14.  隣り合う前記第1電極指及び前記第2電極指が対向している方向に視たときに重なっている領域が励振領域であり、前記励振領域に対する、複数の前記第1電極指及び前記第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項10から13のいずれか1項に記載の弾性波装置。
  15.  板波を利用可能に構成されている、請求項1から9のいずれか1項に記載の弾性波装置。
PCT/JP2021/046375 2020-12-17 2021-12-15 弾性波装置 WO2022131309A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180084426.8A CN116686214A (zh) 2020-12-17 2021-12-15 弹性波装置
US18/209,516 US20230327634A1 (en) 2020-12-17 2023-06-14 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063126556P 2020-12-17 2020-12-17
US63/126,556 2020-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/209,516 Continuation US20230327634A1 (en) 2020-12-17 2023-06-14 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2022131309A1 true WO2022131309A1 (ja) 2022-06-23

Family

ID=82059514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046375 WO2022131309A1 (ja) 2020-12-17 2021-12-15 弾性波装置

Country Status (3)

Country Link
US (1) US20230327634A1 (ja)
CN (1) CN116686214A (ja)
WO (1) WO2022131309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066021A1 (zh) * 2022-09-30 2024-04-04 见闻录(浙江)半导体有限公司 谐振器、谐振器组件、滤波器、电子设备及制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2015002511A (ja) * 2013-06-18 2015-01-05 太陽誘電株式会社 弾性波デバイス
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
WO2018105201A1 (ja) * 2016-12-08 2018-06-14 株式会社村田製作所 複合部品及びその実装構造
JP2019205164A (ja) * 2018-05-21 2019-11-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 熱放散性の多層圧電基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2015002511A (ja) * 2013-06-18 2015-01-05 太陽誘電株式会社 弾性波デバイス
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
WO2018105201A1 (ja) * 2016-12-08 2018-06-14 株式会社村田製作所 複合部品及びその実装構造
JP2019205164A (ja) * 2018-05-21 2019-11-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 熱放散性の多層圧電基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066021A1 (zh) * 2022-09-30 2024-04-04 见闻录(浙江)半导体有限公司 谐振器、谐振器组件、滤波器、电子设备及制作方法

Also Published As

Publication number Publication date
CN116686214A (zh) 2023-09-01
US20230327634A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US20210408994A1 (en) Acoustic wave device
WO2022044869A1 (ja) 弾性波装置
WO2022085581A1 (ja) 弾性波装置
WO2022059759A1 (ja) 弾性波装置
US20230275556A1 (en) Acoustic wave device
US20230336143A1 (en) Acoustic wave device
US20230327634A1 (en) Acoustic wave device
US20230327636A1 (en) Acoustic wave device
WO2022118970A1 (ja) 弾性波装置
WO2022138328A1 (ja) 弾性波装置
WO2022014496A1 (ja) フィルタ
CN116458063A (zh) 弹性波装置
US20240014795A1 (en) Acoustic wave device
WO2023195409A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023140362A1 (ja) 弾性波装置および弾性波装置の製造方法
US20240014796A1 (en) Acoustic wave device
WO2022102417A1 (ja) 弾性波装置
WO2022071488A1 (ja) 弾性波装置
WO2023210764A1 (ja) 弾性波素子および弾性波装置
WO2022124409A1 (ja) 弾性波装置
US20230412138A1 (en) Acoustic wave device
WO2022138739A1 (ja) 弾性波装置
WO2022210942A1 (ja) 弾性波装置
WO2023210762A1 (ja) 弾性波素子
WO2023219167A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084426.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP