WO2022131179A1 - Glass molding device - Google Patents

Glass molding device Download PDF

Info

Publication number
WO2022131179A1
WO2022131179A1 PCT/JP2021/045707 JP2021045707W WO2022131179A1 WO 2022131179 A1 WO2022131179 A1 WO 2022131179A1 JP 2021045707 W JP2021045707 W JP 2021045707W WO 2022131179 A1 WO2022131179 A1 WO 2022131179A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
molded body
point
arm member
glass
Prior art date
Application number
PCT/JP2021/045707
Other languages
French (fr)
Japanese (ja)
Inventor
道幸 中村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020237008811A priority Critical patent/KR20230115289A/en
Priority to CN202180072741.9A priority patent/CN116568643A/en
Priority to JP2022569961A priority patent/JPWO2022131179A1/ja
Publication of WO2022131179A1 publication Critical patent/WO2022131179A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/068Means for providing the drawing force, e.g. traction or draw rollers

Definitions

  • This disclosure relates to glass molding equipment.
  • Patent Document 1 discloses an example of a manufacturing facility capable of executing the overflow downdraw method.
  • Patent Document 1 The manufacturing equipment disclosed in Patent Document 1 includes a wedge-shaped molded body for molding a glass ribbon (sheet glass plate SG in the same document) from molten glass, and one end side and the other end side of the molded body in the longitudinal direction thereof.
  • a pair of supporting bricks (the first supporting member 410 and the second supporting member 420 in the same document) and a pressing device that presses one of the pair of supporting bricks toward the molded body (in the same document). It is equipped with a pressurizing device 422).
  • the technical problem to be solved in view of the above circumstances is to provide a manufacturing facility capable of suppressing creep deformation even when the molded body is large.
  • the glass molding device for solving the above problems is a molded body that molds a glass ribbon from molten glass by an overflow down draw method, and a molded body that supports the molded body from the side while supporting the end portion in the longitudinal direction of the molded body from below. It is a device including a supporting brick for pressing, a pressing device for pressing the supporting brick toward the molded body, and a molding furnace for accommodating the molded body inside, and the pressing device amplifies the force applied to the force point. It has a lever mechanism that acts on the point of action and a source of force applied to the point of action, and is characterized in that it is configured to press the supporting brick using the force that acts on the point of action.
  • the pressing device that presses the supporting brick toward the molded body has a lever mechanism that amplifies the force applied to the force point and exerts it on the point of action, and has a source of the force applied to the force point.
  • the supporting brick is pressed using the force acting on the point. From this, when the molded body is large, even if it is necessary to apply a large force to the point of action in order to suppress creep deformation, the force to be applied to the point of action for this purpose is amplified by the lever mechanism. It will be smaller as much as it is. Therefore, the output of the source of the force to be applied (for example, the output of the actuator) can also be small. As a result, even when the compact is large, it is possible to suppress creep deformation.
  • the forming furnace is formed with an opening that connects the inside and outside of the furnace, and the lever mechanism is a part that receives the force applied from the source of the force and is a part corresponding to the point of force, and a pressure receiving part.
  • An arm member having a pressing portion which is a portion for pressing the supporting brick and a portion corresponding to the point of action, and a holding member for holding the arm member in a state where the arm member is allowed to swing around the fulcrum.
  • the force source and holding member are arranged outside the forming furnace, and the supporting brick or arm member is arranged so as to straddle the inside and outside of the forming furnace through the opening.
  • both the force generating source and the holding member are arranged outside the molding furnace, it is possible to avoid the occurrence of a situation in which both are damaged by heat.
  • the force generating source, the arm member, and the holding member can move integrally with the molding furnace.
  • the force generation source is fixed to the pressure receiving part so that the force generation source is arranged between the outer surface of the molding furnace and the pressure receiving part, and the output part of the force generating part is the molding furnace. As the outer surface is pushed, it is preferable that the reaction force is used to exert a force on the pressure receiving portion.
  • the reaction force is used to act on the pressure receiving part of the arm member, and the force received by the pressure receiving part is a brick. It is a force that presses the support brick after being amplified by the mechanism (the force that the pressing portion of the arm member presses the support brick). Further, in this configuration, since the force generation source is fixed to the pressure receiving portion of the arm member, for example, it is not necessary to install the force generation source in the molding furnace, and the structure of the equipment can be simplified.
  • the pressure receiving portion of the arm member is arranged above the pressing portion and the center of gravity of the force generation source is located on the side opposite to the outer surface of the molding furnace with the fulcrum as a reference.
  • the weight of the force source can be effectively used to press the supporting brick. That is, (1) the pressure receiving portion of the arm member is arranged above the pressing portion, and (2) the center of gravity of the force generation source is located on the opposite side of the outer surface of the molding furnace with respect to the fulcrum. Therefore, it is possible to press the supporting brick by using the moment of the force around the fulcrum due to the own weight of the force generation source.
  • the pressing portion can rotate around an axis extending parallel to the central axis of the swing of the arm member.
  • the pressing portion can rotate around an axis extending parallel to the central axis of the swing of the arm member, the pressing portion swings as the arm member swings, and the pressing portion and the supporting brick It is possible to suitably maintain the contact state with.
  • the source of force is located above the supporting brick.
  • the supporting bricks are arranged on both one end side and the other end side in the longitudinal direction of the molded body so that the pressing device presses only one supporting brick of both supporting bricks. It is preferable that the other supporting brick of both supporting bricks is made immovable with respect to the forming furnace.
  • the structure of the equipment can be further simplified because the pressing device is configured to press only one of the supporting bricks out of both supporting bricks.
  • the molded body is provided with a supply pipe that supplies molten glass from one end in the longitudinal direction thereof, and the pressing device is arranged on the side opposite to the supply pipe in the longitudinal direction of the molded body.
  • the pressing device is arranged on the side opposite to the supply pipe in the longitudinal direction of the molded body, it is possible to prevent the pressing device from being damaged by the heat from the supply pipe and shortening the life. Further, if the pressing device and the supply pipe are arranged on the same side in the longitudinal direction of the molded body, the structure of the equipment may be complicated, but the arrangement on the opposite side ensures such a fear. It is possible to eliminate it. Further, in this configuration, of both of the above-mentioned supporting bricks, from the same side as the other supporting brick which is immovable with respect to the molding furnace (the same side in the longitudinal direction of the molded body) to the molded body through the supply pipe. It will supply molten glass. Therefore, it is possible to prevent the occurrence of a situation in which a gap is generated between the molded body and the supply pipe and the molten glass leaks out.
  • the force generation source is an actuator.
  • the pressing device may include two or more of the lever mechanisms.
  • the force applied to the force point can be further amplified, and the pressing force applied to the supporting brick can be increased.
  • the glass molding apparatus According to the glass molding apparatus according to the present disclosure, it is possible to suppress creep deformation even when the molded body is large.
  • the glass molding apparatus 1 As shown in FIG. 1, the glass molding apparatus 1 according to the first embodiment (hereinafter, simply referred to as a molding apparatus 1) is a molded body 4 for molding a glass ribbon 3 from a molten glass 2 and a molded body 4 formed of molten glass.
  • a pair of support bricks 6 and 7 that support the supply pipe 5 that supplies 2 and the molded body 4 in a state of being sandwiched between one end side and the other end side in the longitudinal direction (X direction), and both support bricks 6, It is provided with a pressing device 8 for pressing the supporting brick 6 out of 7 toward the molded body 4, and a molding furnace 9 for accommodating the molded body 4 and the like inside.
  • the molding furnace 9 has a metal frame 10 holding both supporting bricks 6 and 7, a refractory brick wall (not shown) for surrounding the molded body 4 arranged inside the frame 10, and a beam of the frame 10. It is provided with a heating device (not shown, for example, a panel heater) arranged between the frame 10 and the refractory brick wall in a state of being attached to the frame.
  • a heating device not shown, for example, a panel heater
  • the molding furnace 9 is formed with an opening 9a that connects the inside and outside of the furnace.
  • the opening 9a is formed at a position corresponding to the support brick 6, and the opening 9a is in a state where a part of the surface of the support brick 6 is exposed.
  • the molded body 4 is a molded body for the overflow down draw method having a wedge-shaped cross-sectional shape (shape of a cross section orthogonal to the X direction).
  • the molded body 4 is made of refractory bricks such as dense zircon, alumina-based, and zirconia-based.
  • the molten glass 2 overflowing from the groove on both sides is transferred to the pair of side surfaces 4b, 4b (not shown) of the molded body 4.
  • FIG. 1 only one of the pair is displayed), and each of them flows down.
  • the molten glass 2 flowing down the both side surfaces 4b and 4b is merged at the lower end portion 4c of the molded body 4.
  • the glass ribbon 3 is formed from the molten glass 2 merged at the lower end portion 4c.
  • the dimensions of the molded body 4 along the longitudinal direction are, for example, 1500 mm to 6000 mm. Since the molding apparatus 1 is particularly effective when the large molded body 4 is provided, the preferable lower limit of the dimensions along the longitudinal direction of the molded body 4 is 2000 mm or more, 2500 mm or more, 3000 mm or more, 3500 mm or more, Especially, it is 4000 mm or more.
  • the supply pipe 5 supplies the molten glass 2 to the molded body 4 from one end in the longitudinal direction thereof.
  • Each of the pair of supporting bricks 6 and 7 presses the molded body 4 from the side while supporting the end portion of the molded body 4 in the longitudinal direction from below. Specifically, both ends of the upper portion of the molded body 4 in the longitudinal direction are placed on the upper surfaces of the pair of supporting bricks 6 and 7, so that the molded body 4 is supported in a state of being bridged. Further, each of the pair of support bricks 6 and 7 has a pressing surface S for pressing the molded body 4, and the pressing surface S is in surface contact with the end surface 4d in the longitudinal direction in the lower portion of the molded body 4. Below, the molded body 4 is pressed from the side.
  • the pressing surface S of the support bricks 6 and 7 and the end surface 4d of the molded body 4 are both vertical planes, but may be inclined surfaces or may include curved surfaces.
  • the supporting brick 7 is fixed in position so as to be immovable with respect to the forming furnace 9.
  • the support brick 6 can be moved to the molded body 4 side by being pressed by the pressing device 8. More specifically, the support brick 7 is fixed to the frame 10, and the support brick 6 is held by the frame 10 so as to be movable along the longitudinal direction of the molded body 4.
  • the pressing device 8 is arranged on the side opposite to the supply pipe 5 in the longitudinal direction of the molded body 4.
  • the pressing device 8 presses only the supporting brick 6 out of the pair of supporting bricks 6 and 7. Then, as the pressing device 8 presses the supporting brick 6, the compressive stress in the longitudinal direction is applied to the molded body 4 sandwiched between the supporting bricks 6 and 7. As a result, creep deformation caused by the weight of the molded body 4 and the like is suppressed.
  • the pressing device 8 has a lever mechanism 11 that amplifies the force applied to the force point P1 and exerts it on the action point P2, and an air cylinder 12 as an actuator that is a source of the force applied to the force point P1. Then, the pressing device 8 presses the support brick 6 by utilizing the force acting on the point of action P2.
  • an air cylinder 12 which is an actuator is used as a force generation source, but the present invention is not limited to this.
  • another actuator for example, a hydraulic cylinder
  • a force generation source a mechanical jack, a screw mechanism, or the like may be used.
  • the lever mechanism 11 includes an arm member 13 having a pressure receiving portion 13a and a pressing portion 13b, and a holding member 14 for holding the arm member 13 in a state where the arm member 13 is allowed to swing around the fulcrum P3. ..
  • the arm member 13 is a member that extends vertically and is long in one direction.
  • the pressure receiving portion 13a located on the lower end side of the arm member 13 is a portion that receives a force generated by the air cylinder 12 and is a portion corresponding to the force point P1.
  • the pressing portion 13b located on the upper end side of the arm member 13 is a portion for pressing the support brick 6 and a portion corresponding to the point of action P2.
  • the pressing portion 13b of the arm member 13 contacts the supporting brick 6 in the form of point contact or line contact.
  • the distance L1 from the fulcrum P3 to the force point P1 is longer than the distance L2 from the fulcrum P3 to the action point P2.
  • the distance L1 may be, for example, 1.2 to 3.0 times the distance L2, whereby the force due to the air cylinder 12 can be amplified 1.2 to 3.0 times and applied to the support brick 6.
  • the holding member 14 is fixed to the side portion of the molding furnace 9 (the side portion of the frame 10).
  • the holding member 14 has a rod body 14a that penetrates the arm member 13 in a state of extending in the Y direction, and the rod body 14a serves as a central axis for the swing of the arm member 13 and also serves as a fulcrum P3 of the lever mechanism 11. Become.
  • the air cylinder 12 is installed on an L-shaped installation member 15 fixed below the molding furnace 9 (below the frame 10).
  • the air cylinder 12 presses the pressure receiving portion 13a of the arm member 13 as it operates.
  • the piston rod provided in the air cylinder 12 presses the pressure receiving portion 13a in a direction away from the molded body 4.
  • the force applied to the force point P1 is amplified by the lever mechanism 11 and then acts on the action point P2.
  • the pressing portion 13b of the arm member 13 presses the support brick 6 by the amplified force.
  • the holding member 14 provided in the lever mechanism 11 and the air cylinder 12 are arranged outside the molding furnace 9.
  • the arm member 13 provided in the lever mechanism 11 is arranged so as to straddle the inside and outside of the furnace through the opening 9a of the molding furnace 9. Specifically, in the pressure receiving portion 13a of the arm member 13, the entire pressure receiving portion 13a exists outside the molding furnace 9, whereas in the pressing portion 13b of the arm member 13, at least the portion corresponding to the point of action P2 is inside the molding furnace 9. Is entering.
  • a part of the support brick 6 is squeezed out of the molding furnace 9 through the opening 9a of the molding furnace 9, and the squeezed out portion is pressed by the pressing portion 13b of the arm member 13. May be configured to press. In this case, the entire arm member 13 is present outside the molding furnace 9.
  • the position of the molding furnace 9 can be adjusted during operation.
  • the air cylinder 12, the arm member 13, and the holding member 14 can be moved integrally with the molding furnace 9. As a result, the molding furnace 9 can be easily moved.
  • the pressing device 8 that presses the support brick 6 toward the molded body 4 has a lever mechanism 11 that amplifies the force applied to the force point P1 and exerts the force on the action point P2, and the force applied to the force point P1.
  • It has an air cylinder 12 that is a source of the above, and presses the support brick 6 by utilizing the force acting on the point of action P2. Therefore, when the molded body 4 is large, even if it is necessary to apply a large force to the action point P2 in order to suppress creep deformation, the force to be applied to the force point P1 for this purpose is the lever mechanism 11. It will be smaller by the amount of amplification. Therefore, the output of the air cylinder 12, which is the source of the force to be applied, can also be small. As a result, even when the molded body 4 is large, it is possible to suppress creep deformation.
  • the main difference between the molding apparatus 1 according to the second embodiment and the molding apparatus 1 according to the first embodiment is that the pressing portion 13b of the arm member 13 is a plate-shaped member.
  • the point to be configured the point where the pressing portion 13b comes into contact with the supporting brick 6 in the form of surface contact, the point where the pressing portion 13b is rotatable around the shaft 16, and the arm member 13 for weight reduction. It is a point where the opening 13c is formed.
  • the arm member 13 includes an intermediate portion 13d for inserting the rod body 14a provided in the holding member 14, an upper portion arm 13e for holding the pressing portion 13b connected above the intermediate portion 13d, and an intermediate portion 13d. It is provided with a lower partial arm 13f which is connected downward and has a pressure receiving portion 13a at the lower end.
  • the intermediate portion 13d is directly held by the holding member 14 via the rod body 14a.
  • the upper partial arm 13e has a pair of plate bodies 13ea and 13ea arranged at intervals in the Y direction.
  • a rectangular opening 13c is formed in each of the two plates 13ea and 13ea.
  • the opening 13c is formed in an area sufficient to avoid damage to the arm member 13 due to insufficient strength.
  • the shaft 16 extends in the Y direction and is bridged over the upper ends of both plate bodies 13ea and 13ea.
  • the shaft 16 penetrates the pressing portion 13b.
  • the pressing portion 13b is rotatably held between the two plates 13ea and 13ea.
  • the shaft 16 extends in parallel with the rod body 14a.
  • the pressing portion 13b is a rectangular plate-shaped member.
  • the end face of the plate-shaped member constituting the pressing portion 13b comes into surface contact with the support brick 6. Since the pressing portion 13b is rotatable around the shaft 16, even if the arm member 13 swings, the surface contact between the pressing portion 13b and the supporting brick 6 can be suitably maintained.
  • a rectangular opening 13c is formed in the lower partial arm 13f.
  • the opening 13c is formed in an area sufficient to avoid damage to the arm member 13 due to insufficient strength.
  • the pressing portion 13b may have any shape as long as it can be surface-contacted with the supporting brick 6 and is rotatable around the shaft 16. , It may be a member other than a plate shape. Further, as a member constituting the upper portion arm 13e and the lower portion arm 13f, a hollow pipe, a ceramic porous body, or the like may be used for weight reduction.
  • the main difference between the molding apparatus 1 according to the third embodiment and the molding apparatus 1 according to the first embodiment is that the arrangement of the air cylinder 12 is different, and the arm.
  • the pressing portion 13b of the member 13 has a convex curved surface that comes into direct contact with the supporting brick 6, the pressing portion 13b can swing around the shaft 17, and the pressure receiving portion 13a of the arm member 13 has a rectangular parallelepiped shape. It is a point composed of members and a point where the pressure receiving portion 13a is rotatable around the shaft 18.
  • the air cylinder 12 is fixed above the molding furnace 9 (above the frame 10). That is, the air cylinder 12 is arranged above the supporting brick 6. As a result, the positional relationship between the force point P1 and the action point P2 in the vertical direction is opposite to that of the first embodiment and the second embodiment.
  • the arm member 13 includes a lower portion arm 13g for holding the pressing portion 13b and an upper portion arm 13h for holding the pressure receiving portion 13a.
  • a shaft 17 is provided at the lower end of the lower arm 13g.
  • the shaft 17 penetrates the pressing portion 13b.
  • the pressing portion 13b is held in a state where the swing is allowed at the lower end portion of the lower portion arm 13g.
  • the shaft 17 extends in parallel with the rod body 14a provided on the holding member 14.
  • the convex curved surface provided on the pressing portion 13b is formed as a cylindrical surface or a spherical surface. In this way, the pressing portion 13b is held in a state where the swing is allowed, and the convex curved surface is provided on the pressing portion 13b, so that the corner portion of the pressing portion 13b is supported by the supporting brick 6 as the arm member 13 swings. It is possible to prevent the supporting brick 6 from being worn by biting into the brick.
  • the upper partial arm 13h has a pair of plate bodies 13ha and 13ha arranged at intervals in the Y direction.
  • the shaft 18 extends in the Y direction and is bridged over the upper ends of both plates 13ha and 13ha.
  • the shaft 18 penetrates the pressure receiving portion 13a.
  • the pressure receiving portion 13a is rotatably held between the two plates 13ha and 13ha.
  • the shaft 18 extends in parallel with the rod body 14a in the same manner as the shaft 17.
  • One surface of the rectangular parallelepiped member constituting the pressure receiving portion 13a comes into contact with the piston rod of the air cylinder 12. Since the pressure receiving portion 13a can rotate around the shaft 18, even if the arm member 13 swings, the piston rod can be suitably maintained in a state of being vertical with respect to one surface of the rectangular parallelepiped member. There is.
  • the main difference between the molding apparatus 1 according to the fourth embodiment and the molding apparatus 1 according to the first embodiment is that the air cylinder 12 is fixed to the pressure receiving portion 13a of the arm member 13.
  • the end of the air cylinder 12 (the end located on the side opposite to the tip of the piston rod) is fixed to the pressure receiving portion 13a of the arm member 13.
  • the air cylinder 12 is arranged above the rod body 14a (fulcrum P3) provided on the holding member 14 between the pressure receiving portion 13a of the arm member 13 and the outer surface 9b (side portion of the frame 10) of the molding furnace 9. Has been done.
  • the piston rod of the air cylinder 12 is in contact with the outer surface 9b of the molding furnace 9.
  • the piston rod extends in a direction orthogonal to the longitudinal direction of the arm member 13, and its tip (a portion in direct contact with the outer surface 9b of the molding furnace 9) is formed on a convex curved surface.
  • the center of gravity of the air cylinder 12 is located on the side opposite to the outer surface 9b of the molding furnace 9 with respect to the rod body 14a (fulcrum P3) in the X direction. As a result, the air cylinder 12 generates a moment of a clockwise (clockwise in FIG. 6) force around the rod body 14a due to its own weight.
  • the piston rod which is the output unit thereof, pushes the outer surface 9b of the molding furnace 9.
  • the reaction force at this time is used to act on the pressure receiving portion 13a of the arm member 13.
  • the force received by the pressure receiving portion 13a is amplified by the lever mechanism 11 and then becomes a force for pressing the support brick 6.
  • the support brick 6 is further pressed by utilizing the moment of the force due to the weight of the air cylinder 12 described above.
  • the shaft 19 is provided at the lower end of the arm member 13. This shaft 19 serves as the rotation center of the disk body constituting the pressing portion 13b. As described above, the pressing portion 13b is rotatably held at the lower end portion of the arm member 13. The shaft 19 extends in parallel with the rod body 14a provided on the holding member 14.
  • the lever mechanism 11 of the pressing device 8 is the upper first lever mechanism.
  • the point is that it is composed of 21 and the lower second lever mechanism 22.
  • the first lever mechanism 21 includes a first arm member 23 provided with an air cylinder 12 and a pressure receiving portion 13a (including a first force point P1a) at the upper end thereof.
  • the second lever mechanism 22 includes a second arm member 24 provided with a pressing portion 13b (including a second action point P2b) at the lower end thereof via a shaft 19.
  • the first fulcrum P3a of the first lever mechanism 21 is composed of a shaft convex portion 25 fixed to the lower end portion of the first arm member 23, and is arranged above the holding member 14.
  • the shaft protrusion 25 does not penetrate the second arm member 24.
  • the first point of action P2a of the first lever mechanism 21 is composed of a rod shaft 27 supported by the vertical intermediate portion of the first arm member 23, and is formed at the upper end portion of the second arm member 24. It is inserted through the long hole 26.
  • the second fulcrum P3b of the second lever mechanism 22 is composed of a rod shaft 28 arranged under the holding member 14, and supports the vertical intermediate portion of the second arm member 24. Further, the second force point P1b of the second lever mechanism 22 is composed of the shaft 27 of the rod body described above. Therefore, the shaft 27 of the rod body is configured to serve as both the first action point P2a of the first lever mechanism 21 and the second force point P1b of the second lever mechanism 22.
  • the first arm member 23 of the first lever mechanism 21 includes two first arm plates 23a arranged in parallel with a first predetermined interval.
  • the shaft 27 of the rod body which also serves as the first action point P2a and the second force point P1b is fixed across the two first arm plates 23a.
  • the axial convex portion 25 constituting the first fulcrum P3a is projected from the outer surface 23aa of the two first arm plates 23a, respectively.
  • Each of these shaft protrusions 25 is supported by a shaft hole 29 formed in the upper part of the holding member 14.
  • the second arm member 24 of the second lever mechanism 22 includes two second arm plates 24a arranged in parallel with a second predetermined interval smaller than the first predetermined interval. Long holes 26 long in the vertical direction are formed at the upper ends of these two second arm plates 24a, respectively.
  • the shaft 27 of the rod body described above is inserted through these elongated holes 26.
  • the axis 27 of the rod body is allowed to move relative to the longitudinal direction of the elongated hole 26 and is restricted from moving relative to the width direction orthogonal to the long hole 26.
  • Shaft holes 30 are formed in the vertical intermediate portions of the two second arm plates 24a, respectively.
  • the shaft 28 of the rod body constituting the second fulcrum P3b supported under the holding member 14 is fitted into these shaft holes 30.
  • the distance L1a from the first fulcrum P3a to the first force point P1a in the first lever mechanism 21 is, for example, 1.5 to 10 times the distance L2a from the first fulcrum P3a to the first action point P2a.
  • the distance L1b from the second fulcrum P3b to the second force point P1b in the second lever mechanism 22 varies slightly with the rotational movement of the first arm member 23.
  • the distance to P2b is 1.5 to 10 times the distance L2b.
  • the piston rod which is the output unit thereof, pushes the outer surface 9b of the molding furnace 9.
  • the reaction force at this time is utilized to act on the pressure receiving portion 13a (first force point P1a of the first lever mechanism 21) provided at the upper end of the first arm member 23.
  • the force received by the pressure receiving portion 13a is amplified by the first lever mechanism 21, and the moment of the clockwise force is around the shaft convex portion 25 (the first fulcrum P3a of the first lever mechanism 21) of the rod body. It acts on the shaft 27 (first point of action P2a of the first lever mechanism 21).
  • the force acting on the first force point P1a due to the operation of the air cylinder 12 is amplified 1.5 to 10 times by the first lever mechanism 21, and further 1.5 to 10 times by the second lever mechanism 22. It is amplified to the support brick 6 from the second point of action P2b. Therefore, according to the molding apparatus 1 according to the fifth embodiment, a stronger pressing force can be applied to the support brick 6 as compared with the case where a single lever mechanism is provided.
  • lever mechanisms 21 and 22 are provided, but three or more lever mechanisms may be provided.
  • the arm member 13 is configured to extend vertically, but the present invention is not limited to this.
  • the arm member 13 may be configured to extend horizontally, or may be configured to extend vertically or diagonally with respect to a horizontal plane.
  • the pressing device 8 is configured to press only the supporting brick 6 out of the pair of supporting bricks 6 and 7, but this is not the case.
  • the pressing device 8 may be configured to press only the supporting brick 7, or the pressing device 8 (two pressing devices 8) may be arranged corresponding to each of the pair of supporting bricks 6 and 7. It may be configured to press both of the pair of supporting bricks 6 and 7.
  • the pressing device 8 is fixed to the molding furnace 9, but this is not the case.
  • the holding member 14 of the pressing device 8 and the force generating source (air cylinder 12) may be fixed to the building.

Abstract

This glass molding device 1 comprises: a molding body 4 that molds a glass ribbon 3 from molten glass 2 by the overflow downdraw method; support bricks 6, 7 that support the ends of the molding body 4 in the lengthwise direction from below while pressing the molding body 4 from the sides; a pressing device 8 that presses the support bricks 6 toward the molding body 4 side; and a molding furnace 9 having the molding body 4 accommodated therein. The pressing device 8 includes a lever mechanism 11 that amplifies the force applied to a point of force P1 and causes the result to act on a point of action P2, and an air cylinder 12 serving as the source of the force applied to the point of force P1. The pressing device 8 presses the support brick 6 using the force acting on the point of action P2.

Description

ガラス成形装置Glass molding equipment
 本開示は、ガラス成形装置に関する。 This disclosure relates to glass molding equipment.
 周知のように、ガラス板を製造するための手法の一つとして、オーバーフローダウンドロー法がある。特許文献1には、オーバーフローダウンドロー法を実行することが可能な製造設備の一例が開示されている。 As is well known, there is an overflow downdraw method as one of the methods for manufacturing a glass plate. Patent Document 1 discloses an example of a manufacturing facility capable of executing the overflow downdraw method.
 特許文献1に開示された製造設備は、溶融ガラスからガラスリボン(同文献では、シートガラス板SG)を成形する楔状形状の成形体と、成形体をその長手方向の一方端側と他方端側とから挟んだ状態で支持する一対の支持煉瓦(同文献では、第1支持部材410および第2支持部材420)と、一対の支持煉瓦の一方を成形体側に押圧する押圧装置(同文献では、加圧装置422)とを備えている。 The manufacturing equipment disclosed in Patent Document 1 includes a wedge-shaped molded body for molding a glass ribbon (sheet glass plate SG in the same document) from molten glass, and one end side and the other end side of the molded body in the longitudinal direction thereof. A pair of supporting bricks (the first supporting member 410 and the second supporting member 420 in the same document) and a pressing device that presses one of the pair of supporting bricks toward the molded body (in the same document). It is equipped with a pressurizing device 422).
 上記の製造設備では、押圧装置が支持煉瓦を押圧するのに伴い、成形体に長手方向の圧縮応力が作用する。これにより、成形体の自重や溶融ガラスの重み等に起因した成形体のクリープ変形を抑制している。 In the above manufacturing equipment, as the pressing device presses the supporting brick, a compressive stress in the longitudinal direction acts on the molded body. This suppresses creep deformation of the molded body due to the weight of the molded body, the weight of the molten glass, and the like.
国際公開第2012/132309号International Publication No. 2012/132309
 近年、製品ガラス板の大型化が推進されており、これに伴って成形体もまた大型化が進んでいる。そのため、成形体のクリープ変形を抑制するべく、より大きな力で支持煉瓦を押圧できる製造設備が求められているが、押圧装置の出力不足に起因して、このような要請に十分に応えられていないのが現状であった。 In recent years, the size of the product glass plate has been promoted, and along with this, the size of the molded product is also increasing. Therefore, in order to suppress the creep deformation of the molded body, there is a demand for a manufacturing facility capable of pressing the supporting brick with a larger force, but due to the insufficient output of the pressing device, such a request is sufficiently met. The current situation was that there was no such thing.
 上述の事情に鑑みて解決すべき技術的な課題は、成形体が大型の場合でも、クリープ変形の抑制に対応できる製造設備を提供することである。 The technical problem to be solved in view of the above circumstances is to provide a manufacturing facility capable of suppressing creep deformation even when the molded body is large.
 上記の課題を解決するためのガラス成形装置は、オーバーフローダウンドロー法により溶融ガラスからガラスリボンを成形する成形体と、成形体の長手方向における端部を下方から支持しながら成形体を側方から押圧する支持煉瓦と、支持煉瓦を成形体側に押圧する押圧装置と、成形体を内部に収容する成形炉と、を備えた装置であって、押圧装置が、力点に加えられた力を増幅させて作用点に働かせる梃子機構と、力点に加えられる力の発生源とを有し、作用点に働く力を利用して支持煉瓦を押圧するように構成されていることを特徴とする。 The glass molding device for solving the above problems is a molded body that molds a glass ribbon from molten glass by an overflow down draw method, and a molded body that supports the molded body from the side while supporting the end portion in the longitudinal direction of the molded body from below. It is a device including a supporting brick for pressing, a pressing device for pressing the supporting brick toward the molded body, and a molding furnace for accommodating the molded body inside, and the pressing device amplifies the force applied to the force point. It has a lever mechanism that acts on the point of action and a source of force applied to the point of action, and is characterized in that it is configured to press the supporting brick using the force that acts on the point of action.
 本ガラス成形装置では、支持煉瓦を成形体側に押圧する押圧装置が、力点に加えられた力を増幅させて作用点に働かせる梃子機構と、力点に加えられる力の発生源とを有し、作用点に働く力を利用して支持煉瓦を押圧する。このことから、成形体が大型である場合に、クリープ変形の抑制のために大きな力を作用点に働かせる必要があったとしても、このために力点に加えるべき力は、梃子機構が増幅させている分だけ小さくて済むようになる。従って、この加えるべき力の発生源の出力(例えばアクチュエータの出力)もまた小さくて済むことになる。その結果、成形体が大型の場合でも、クリープ変形の抑制に対応することが可能となる。 In this glass molding device, the pressing device that presses the supporting brick toward the molded body has a lever mechanism that amplifies the force applied to the force point and exerts it on the point of action, and has a source of the force applied to the force point. The supporting brick is pressed using the force acting on the point. From this, when the molded body is large, even if it is necessary to apply a large force to the point of action in order to suppress creep deformation, the force to be applied to the point of action for this purpose is amplified by the lever mechanism. It will be smaller as much as it is. Therefore, the output of the source of the force to be applied (for example, the output of the actuator) can also be small. As a result, even when the compact is large, it is possible to suppress creep deformation.
 上記の構成では、成形炉に、炉の内外を連続させる開口部が形成され、梃子機構が、力の発生源から加えられる力を受ける部位であり且つ力点に対応する部位である受圧部、及び、支持煉瓦を押圧する部位であり且つ作用点に対応する部位である押圧部、を有するアーム部材と、支点を中心としたアーム部材の揺動を許容した状態でアーム部材を保持する保持部材と、を備え、力の発生源および保持部材が、成形炉の外に配置され、支持煉瓦またはアーム部材が、開口部を通じて成形炉の内外に跨るように配置されることが好ましい。 In the above configuration, the forming furnace is formed with an opening that connects the inside and outside of the furnace, and the lever mechanism is a part that receives the force applied from the source of the force and is a part corresponding to the point of force, and a pressure receiving part. An arm member having a pressing portion which is a portion for pressing the supporting brick and a portion corresponding to the point of action, and a holding member for holding the arm member in a state where the arm member is allowed to swing around the fulcrum. , The force source and holding member are arranged outside the forming furnace, and the supporting brick or arm member is arranged so as to straddle the inside and outside of the forming furnace through the opening.
 このようにすれば、力の発生源および保持部材の両者が成形炉の外に配置されているため、両者が熱により破損してしまうような事態の発生を回避できる。 By doing so, since both the force generating source and the holding member are arranged outside the molding furnace, it is possible to avoid the occurrence of a situation in which both are damaged by heat.
 上記の構成では、力の発生源、アーム部材、及び保持部材が、成形炉と一体に移動可能であることが好ましい。 In the above configuration, it is preferable that the force generating source, the arm member, and the holding member can move integrally with the molding furnace.
 このようにすれば、支持煉瓦を押圧した状態を維持しつつ、成形炉を移動させることが可能となる。そのため、操業中における成形炉の位置調整を容易にできる。 By doing so, it is possible to move the molding furnace while maintaining the state in which the supporting brick is pressed. Therefore, the position of the molding furnace can be easily adjusted during the operation.
 上記の構成では、成形炉の外面と受圧部との相互間に力の発生源が配置されるように、受圧部に力の発生源が固定され、力の発生源の出力部が成形炉の外面を押すのに伴い、その反力を利用して受圧部に力を作用させるように構成されていることが好ましい。 In the above configuration, the force generation source is fixed to the pressure receiving part so that the force generation source is arranged between the outer surface of the molding furnace and the pressure receiving part, and the output part of the force generating part is the molding furnace. As the outer surface is pushed, it is preferable that the reaction force is used to exert a force on the pressure receiving portion.
 このようにすれば、力の発生源の出力部が成形炉の外面を押すのに伴い、その反力が利用されてアーム部材の受圧部に力が作用し、受圧部が受けた力が梃子機構により増幅された上で支持煉瓦を押圧する力(アーム部材の押圧部が支持煉瓦を押圧する力)となる。さらに、本構成では、アーム部材の受圧部に力の発生源が固定されているため、例えば、力の発生源を成形炉に据え付けるような必要がなく、設備の構造を簡素にできる。 In this way, as the output part of the force generation source pushes the outer surface of the molding furnace, the reaction force is used to act on the pressure receiving part of the arm member, and the force received by the pressure receiving part is a brick. It is a force that presses the support brick after being amplified by the mechanism (the force that the pressing portion of the arm member presses the support brick). Further, in this configuration, since the force generation source is fixed to the pressure receiving portion of the arm member, for example, it is not necessary to install the force generation source in the molding furnace, and the structure of the equipment can be simplified.
 上記の構成では、アーム部材の受圧部が、押圧部よりも上方に配置され、支点を基準として成形炉の外面とは反対側に力の発生源の重心が位置していることが好ましい。 In the above configuration, it is preferable that the pressure receiving portion of the arm member is arranged above the pressing portion and the center of gravity of the force generation source is located on the side opposite to the outer surface of the molding furnace with the fulcrum as a reference.
 このようにすれば、支持煉瓦を押圧するのに力の発生源の自重を有効に利用することができる。つまり、(1)アーム部材の受圧部が押圧部よりも上方に配置されていること、(2)支点を基準として成形炉の外面とは反対側に力の発生源の重心が位置していることから、力の発生源の自重による支点周りの力のモーメントを利用して支持煉瓦を押圧することが可能になる。 By doing so, the weight of the force source can be effectively used to press the supporting brick. That is, (1) the pressure receiving portion of the arm member is arranged above the pressing portion, and (2) the center of gravity of the force generation source is located on the opposite side of the outer surface of the molding furnace with respect to the fulcrum. Therefore, it is possible to press the supporting brick by using the moment of the force around the fulcrum due to the own weight of the force generation source.
 上記の構成では、押圧部が、アーム部材の揺動の中心軸と平行に延びる軸周りで回転可能であることが好ましい。 In the above configuration, it is preferable that the pressing portion can rotate around an axis extending parallel to the central axis of the swing of the arm member.
 このようにすれば、押圧部が、アーム部材の揺動の中心軸と平行に延びる軸周りで回転可能であるため、アーム部材の揺動に伴い押圧部が揺動し、押圧部と支持煉瓦との接触状態を好適に維持することが可能となる。 In this way, since the pressing portion can rotate around an axis extending parallel to the central axis of the swing of the arm member, the pressing portion swings as the arm member swings, and the pressing portion and the supporting brick It is possible to suitably maintain the contact state with.
 上記の構成では、力の発生源が、支持煉瓦よりも上方に配置されていることが好ましい。 In the above configuration, it is preferable that the source of force is located above the supporting brick.
 支持煉瓦の下方には、成形体から流下するガラスリボンを表裏両側から挟持するためのローラーや、その周辺設備が配置されるのが通例である。そのため、力の発生源を支持煉瓦よりも下方に配置した場合には、ローラーや周辺設備と干渉しやすくなるので、干渉の回避のために設備の構造が煩雑になる恐れがある。しかしながら、力の発生源を支持煉瓦よりも上方に配置すれば、上述のような恐れを的確に排除することができる。 Below the supporting bricks, it is customary to place rollers for holding the glass ribbon flowing down from the molded body from both the front and back sides, and peripheral equipment around it. Therefore, when the source of force is arranged below the supporting brick, it tends to interfere with the rollers and peripheral equipment, and the structure of the equipment may become complicated in order to avoid the interference. However, if the source of the force is placed above the supporting brick, the above-mentioned fear can be accurately eliminated.
 上記の構成では、支持煉瓦が、成形体の長手方向の一方端側と他方端側との両方に配置され、押圧装置が、両方の支持煉瓦のうち、一方の支持煉瓦のみを押圧するように構成され、両方の支持煉瓦のうち、他方の支持煉瓦が、成形炉に対して移動不能とされていることが好ましい。 In the above configuration, the supporting bricks are arranged on both one end side and the other end side in the longitudinal direction of the molded body so that the pressing device presses only one supporting brick of both supporting bricks. It is preferable that the other supporting brick of both supporting bricks is made immovable with respect to the forming furnace.
 このようにすれば、押圧装置が、両方の支持煉瓦のうち、一方の支持煉瓦のみを押圧する構成であることから、設備の構造を更に簡素にできる。 By doing so, the structure of the equipment can be further simplified because the pressing device is configured to press only one of the supporting bricks out of both supporting bricks.
 上記の構成では、成形体にその長手方向の一端から溶融ガラスを供給する供給パイプを備え、押圧装置が、成形体の長手方向において供給パイプとは反対側に配置されていることが好ましい。 In the above configuration, it is preferable that the molded body is provided with a supply pipe that supplies molten glass from one end in the longitudinal direction thereof, and the pressing device is arranged on the side opposite to the supply pipe in the longitudinal direction of the molded body.
 このようにすれば、押圧装置が、成形体の長手方向において供給パイプとは反対側に配置されているため、供給パイプからの熱により押圧装置が傷んで寿命が短命化することを回避できる。また、押圧装置と供給パイプとを成形体の長手方向において同じ側に配置した場合、設備の構造が煩雑になる恐れがあるが、反対側に配置されていることで、このような恐れを確実に排除することが可能である。さらに、本構成では、上記の両方の支持煉瓦のうち、成形炉に対して移動不能とされている他方の支持煉瓦と同じ側(成形体の長手方向において同じ側)から供給パイプを通じて成形体に溶融ガラスを供給することになる。このため、成形体と供給パイプとの間に隙間が生じ、溶融ガラスが漏れ出てしまうような事態の発生を防止できる。 By doing so, since the pressing device is arranged on the side opposite to the supply pipe in the longitudinal direction of the molded body, it is possible to prevent the pressing device from being damaged by the heat from the supply pipe and shortening the life. Further, if the pressing device and the supply pipe are arranged on the same side in the longitudinal direction of the molded body, the structure of the equipment may be complicated, but the arrangement on the opposite side ensures such a fear. It is possible to eliminate it. Further, in this configuration, of both of the above-mentioned supporting bricks, from the same side as the other supporting brick which is immovable with respect to the molding furnace (the same side in the longitudinal direction of the molded body) to the molded body through the supply pipe. It will supply molten glass. Therefore, it is possible to prevent the occurrence of a situation in which a gap is generated between the molded body and the supply pipe and the molten glass leaks out.
 上記の構成では、力の発生源が、アクチュエータであることが好ましい。 In the above configuration, it is preferable that the force generation source is an actuator.
 このようにすれば、力点に所望の力を容易に加えることができると共に、加える力を容易に変更することができる。このため、成形体に作用させる圧縮応力を好適に維持することができる。 By doing so, a desired force can be easily applied to the force point, and the applied force can be easily changed. Therefore, the compressive stress acting on the molded body can be suitably maintained.
 上記の構成では、押圧装置が、前記梃子機構を2つ以上備えるようにしてもよい。 In the above configuration, the pressing device may include two or more of the lever mechanisms.
 このようにすれば、力点に加えられた力をより一層増幅させて、支持煉瓦に付与する押圧力を増大させることができる。 By doing so, the force applied to the force point can be further amplified, and the pressing force applied to the supporting brick can be increased.
 本開示に係るガラス成形装置によれば、成形体が大型の場合でも、クリープ変形の抑制に対応することが可能である。 According to the glass molding apparatus according to the present disclosure, it is possible to suppress creep deformation even when the molded body is large.
第一実施形態に係るガラス成形装置を示す側面図である。It is a side view which shows the glass molding apparatus which concerns on 1st Embodiment. 第二実施形態に係るガラス成形装置を示す側面図である。It is a side view which shows the glass molding apparatus which concerns on 2nd Embodiment. 第二実施形態に係るガラス成形装置に備わったアーム部材の押圧部周辺を拡大して示す斜視図である。It is an enlarged perspective view which shows the periphery of the pressing part of the arm member provided in the glass molding apparatus which concerns on 2nd Embodiment. 第三実施形態に係るガラス成形装置を示す側面図である。It is a side view which shows the glass molding apparatus which concerns on 3rd Embodiment. 第三実施形態に係るガラス成形装置に備わったアーム部材の受圧部周辺を拡大して示す斜視図である。It is an enlarged perspective view which shows the periphery of the pressure receiving part of the arm member provided in the glass molding apparatus which concerns on 3rd Embodiment. 第四実施形態に係るガラス成形装置を示す側面図である。It is a side view which shows the glass molding apparatus which concerns on 4th Embodiment. 第五実施形態に係るガラス成形装置を示す側面図である。It is a side view which shows the glass molding apparatus which concerns on 5th Embodiment. 第五実施形態に係るガラス成形装置に備わった梃子機構を拡大して示す部品分解配列斜視図である。It is an enlarged part disassembly arrangement perspective view which shows the lever mechanism provided in the glass molding apparatus which concerns on 5th Embodiment.
 以下、実施形態に係るガラス成形装置について添付の図面を参照しながら説明する。なお、実施形態の説明で参照する各図面に表示したX方向、Y方向、及びZ方向は、互いに直交する方向である。なお、各実施形態において対応する構成要素には同一符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Hereinafter, the glass molding apparatus according to the embodiment will be described with reference to the attached drawings. The X, Y, and Z directions displayed in the drawings referred to in the description of the embodiment are orthogonal to each other. By assigning the same reference numerals to the corresponding components in each embodiment, duplicate description may be omitted. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other parts of the configuration. Further, not only the combination of the configurations specified in the description of each embodiment but also the configurations of a plurality of embodiments can be partially combined even if the combination is not specified.
<第一実施形態>
 図1に示すように、第一実施形態に係るガラス成形装置1(以下、単に成形装置1と表記)は、溶融ガラス2からガラスリボン3を成形する成形体4と、成形体4に溶融ガラス2を供給する供給パイプ5と、成形体4をその長手方向(X方向)の一方端側と他方端側とから挟んだ状態で支持する一対の支持煉瓦6,7と、両支持煉瓦6,7のうちの支持煉瓦6を成形体4側に押圧する押圧装置8と、成形体4等を内部に収容する成形炉9とを備えている。
<First Embodiment>
As shown in FIG. 1, the glass molding apparatus 1 according to the first embodiment (hereinafter, simply referred to as a molding apparatus 1) is a molded body 4 for molding a glass ribbon 3 from a molten glass 2 and a molded body 4 formed of molten glass. A pair of support bricks 6 and 7 that support the supply pipe 5 that supplies 2 and the molded body 4 in a state of being sandwiched between one end side and the other end side in the longitudinal direction (X direction), and both support bricks 6, It is provided with a pressing device 8 for pressing the supporting brick 6 out of 7 toward the molded body 4, and a molding furnace 9 for accommodating the molded body 4 and the like inside.
 成形炉9の内部には、成形体4及び両支持煉瓦6,7が配置される。成形炉9は、両支持煉瓦6,7を保持する金属製のフレーム10と、フレーム10の内側に配置され、成形体4を囲繞するための耐火煉瓦壁(図示省略)と、フレーム10の梁に取り付けられた状態で、フレーム10と耐火煉瓦壁との間に配置される加熱装置(図示省略、例えばパネルヒーター)とを備えている。 Inside the molding furnace 9, the molded body 4 and the double-supported bricks 6 and 7 are arranged. The molding furnace 9 has a metal frame 10 holding both supporting bricks 6 and 7, a refractory brick wall (not shown) for surrounding the molded body 4 arranged inside the frame 10, and a beam of the frame 10. It is provided with a heating device (not shown, for example, a panel heater) arranged between the frame 10 and the refractory brick wall in a state of being attached to the frame.
 成形炉9には、炉の内外を連続させる開口部9aが形成されている。開口部9aは、支持煉瓦6に対応する位置に形成されており、開口部9aでは、支持煉瓦6の表面の一部が露出した状態となっている。 The molding furnace 9 is formed with an opening 9a that connects the inside and outside of the furnace. The opening 9a is formed at a position corresponding to the support brick 6, and the opening 9a is in a state where a part of the surface of the support brick 6 is exposed.
 成形体4は、楔状の断面形状(X方向と直交する断面の形状)を有するオーバーフローダウンドロー法用の成形体である。成形体4は、デンスジルコンやアルミナ系、ジルコニア系等の耐火煉瓦により構成される。 The molded body 4 is a molded body for the overflow down draw method having a wedge-shaped cross-sectional shape (shape of a cross section orthogonal to the X direction). The molded body 4 is made of refractory bricks such as dense zircon, alumina-based, and zirconia-based.
 成形体4は、その上部に形成された溝(図示略)に溶融ガラス2を流入させたのち、その溝から両側方に溢れ出た溶融ガラス2を成形体4の一対の側面4b,4b(図1では一対の一方のみ表示)に沿ってそれぞれ流下させる。その後、両側面4b,4bをそれぞれ流下した溶融ガラス2を成形体4の下端部4cで合流させる。そして、下端部4cで合流した溶融ガラス2からガラスリボン3が成形される。 In the molded body 4, after the molten glass 2 is poured into a groove (not shown) formed in the upper portion thereof, the molten glass 2 overflowing from the groove on both sides is transferred to the pair of side surfaces 4b, 4b (not shown) of the molded body 4. In FIG. 1, only one of the pair is displayed), and each of them flows down. After that, the molten glass 2 flowing down the both side surfaces 4b and 4b is merged at the lower end portion 4c of the molded body 4. Then, the glass ribbon 3 is formed from the molten glass 2 merged at the lower end portion 4c.
 成形体4の長手方向に沿った寸法は、例えば1500mm~6000mmである。本成形装置1は、大型の成形体4を備えている場合に特に有効であるので、成形体4の長手方向に沿った寸法の好ましい下限は、2000mm以上、2500mm以上、3000mm以上、3500mm以上、特に4000mm以上である。 The dimensions of the molded body 4 along the longitudinal direction are, for example, 1500 mm to 6000 mm. Since the molding apparatus 1 is particularly effective when the large molded body 4 is provided, the preferable lower limit of the dimensions along the longitudinal direction of the molded body 4 is 2000 mm or more, 2500 mm or more, 3000 mm or more, 3500 mm or more, Especially, it is 4000 mm or more.
 供給パイプ5は、成形体4にその長手方向の一端から溶融ガラス2を供給する。 The supply pipe 5 supplies the molten glass 2 to the molded body 4 from one end in the longitudinal direction thereof.
 一対の支持煉瓦6,7の各々は、成形体4の長手方向における端部を下方から支持しながら成形体4を側方から押圧している。詳細には、成形体4の上部の長手方向における両端部が一対の支持煉瓦6,7の上面に載置されることにより、架け渡された状態で成形体4が支持されている。また、一対の支持煉瓦6,7の各々は、成形体4を押圧するための押圧面Sを有し、この押圧面Sを成形体4の下部における長手方向の端面4dに面接触させた状態の下、成形体4を側方から押圧している。なお、両支持煉瓦6,7の押圧面Sおよび成形体4の端面4dは、いずれも鉛直な平面であるが、傾斜面であってもよく、曲面を含んでもよい。両支持煉瓦6,7のうち、支持煉瓦7は、成形炉9に対して移動不能となるように位置が固定されている。一方、支持煉瓦6は、押圧装置8による押圧に伴って成形体4側に移動させることが可能となっている。より具体的には、支持煉瓦7は、フレーム10に固定されており、支持煉瓦6は、成形体4の長手方向に沿って移動可能にフレーム10に保持されている。 Each of the pair of supporting bricks 6 and 7 presses the molded body 4 from the side while supporting the end portion of the molded body 4 in the longitudinal direction from below. Specifically, both ends of the upper portion of the molded body 4 in the longitudinal direction are placed on the upper surfaces of the pair of supporting bricks 6 and 7, so that the molded body 4 is supported in a state of being bridged. Further, each of the pair of support bricks 6 and 7 has a pressing surface S for pressing the molded body 4, and the pressing surface S is in surface contact with the end surface 4d in the longitudinal direction in the lower portion of the molded body 4. Below, the molded body 4 is pressed from the side. The pressing surface S of the support bricks 6 and 7 and the end surface 4d of the molded body 4 are both vertical planes, but may be inclined surfaces or may include curved surfaces. Of the both supporting bricks 6 and 7, the supporting brick 7 is fixed in position so as to be immovable with respect to the forming furnace 9. On the other hand, the support brick 6 can be moved to the molded body 4 side by being pressed by the pressing device 8. More specifically, the support brick 7 is fixed to the frame 10, and the support brick 6 is held by the frame 10 so as to be movable along the longitudinal direction of the molded body 4.
 押圧装置8は、成形体4の長手方向において供給パイプ5とは反対側に配置されている。押圧装置8は、一対の支持煉瓦6,7のうち、支持煉瓦6のみを押圧する。そして、押圧装置8は、支持煉瓦6を押圧するのに伴い、両支持煉瓦6,7に挟まれた成形体4に長手方向の圧縮応力を作用させる。これにより、成形体4の自重等に起因したクリープ変形を抑制する。 The pressing device 8 is arranged on the side opposite to the supply pipe 5 in the longitudinal direction of the molded body 4. The pressing device 8 presses only the supporting brick 6 out of the pair of supporting bricks 6 and 7. Then, as the pressing device 8 presses the supporting brick 6, the compressive stress in the longitudinal direction is applied to the molded body 4 sandwiched between the supporting bricks 6 and 7. As a result, creep deformation caused by the weight of the molded body 4 and the like is suppressed.
 押圧装置8は、力点P1に加えられた力を増幅させて作用点P2に働かせる梃子機構11と、力点P1に加えられる力の発生源となるアクチュエータとしてのエアシリンダー12とを有する。そして、押圧装置8は、作用点P2に働く力を利用して支持煉瓦6を押圧する。 The pressing device 8 has a lever mechanism 11 that amplifies the force applied to the force point P1 and exerts it on the action point P2, and an air cylinder 12 as an actuator that is a source of the force applied to the force point P1. Then, the pressing device 8 presses the support brick 6 by utilizing the force acting on the point of action P2.
 ここで、本実施形態では、力の発生源としてアクチュエータであるエアシリンダー12を用いているが、これに限定されるものではない。本実施形態の変形例として、エアシリンダー12の代わりに、他のアクチュエータ(例えば油圧シリンダー)を用いてもよい。また、力の発生源として、機械式ジャッキ、ネジ機構等を用いてもよい。 Here, in the present embodiment, an air cylinder 12 which is an actuator is used as a force generation source, but the present invention is not limited to this. As a modification of this embodiment, another actuator (for example, a hydraulic cylinder) may be used instead of the air cylinder 12. Further, as a force generation source, a mechanical jack, a screw mechanism, or the like may be used.
 梃子機構11は、受圧部13aおよび押圧部13bを有するアーム部材13と、支点P3を中心としたアーム部材13の揺動を許容した状態でアーム部材13を保持する保持部材14とを備えている。 The lever mechanism 11 includes an arm member 13 having a pressure receiving portion 13a and a pressing portion 13b, and a holding member 14 for holding the arm member 13 in a state where the arm member 13 is allowed to swing around the fulcrum P3. ..
 アーム部材13は、上下に延びた一方向に長尺な部材となっている。アーム部材13の下端側に位置する受圧部13aは、エアシリンダー12を発生源とする力を受ける部位であり、且つ、力点P1に対応する部位である。一方、アーム部材13の上端側に位置する押圧部13bは、支持煉瓦6を押圧する部位であり、且つ、作用点P2に対応する部位である。アーム部材13の押圧部13bは、支持煉瓦6と点接触または線接触の形態で接触する。支点P3から力点P1までの距離L1は、支点P3から作用点P2までの距離L2よりも長くなっている。距離L1は、例えば距離L2の1.2~3.0倍とすればよく、これにより、エアシリンダー12による力を1.2~3.0倍に増幅して支持煉瓦6に付与できる。 The arm member 13 is a member that extends vertically and is long in one direction. The pressure receiving portion 13a located on the lower end side of the arm member 13 is a portion that receives a force generated by the air cylinder 12 and is a portion corresponding to the force point P1. On the other hand, the pressing portion 13b located on the upper end side of the arm member 13 is a portion for pressing the support brick 6 and a portion corresponding to the point of action P2. The pressing portion 13b of the arm member 13 contacts the supporting brick 6 in the form of point contact or line contact. The distance L1 from the fulcrum P3 to the force point P1 is longer than the distance L2 from the fulcrum P3 to the action point P2. The distance L1 may be, for example, 1.2 to 3.0 times the distance L2, whereby the force due to the air cylinder 12 can be amplified 1.2 to 3.0 times and applied to the support brick 6.
 保持部材14は、成形炉9の側部(フレーム10の側部)に固定されている。保持部材14は、Y方向に延びた状態でアーム部材13を貫通する棒体14aを有し、当該棒体14aがアーム部材13の揺動の中心軸となると共に、梃子機構11の支点P3となる。 The holding member 14 is fixed to the side portion of the molding furnace 9 (the side portion of the frame 10). The holding member 14 has a rod body 14a that penetrates the arm member 13 in a state of extending in the Y direction, and the rod body 14a serves as a central axis for the swing of the arm member 13 and also serves as a fulcrum P3 of the lever mechanism 11. Become.
 エアシリンダー12は、成形炉9の下方(フレーム10の下方)に固定されたL字状の据付用部材15に据え付けられている。エアシリンダー12は、稼働に伴ってアーム部材13の受圧部13aを押圧する。具体的には、エアシリンダー12に備わったピストンロッドが、成形体4から離反する向きに受圧部13aを押圧する。これに伴って力点P1に加えられた力が梃子機構11により増幅された上で作用点P2に働く。そして、増幅された力によりアーム部材13の押圧部13bが支持煉瓦6を押圧する。 The air cylinder 12 is installed on an L-shaped installation member 15 fixed below the molding furnace 9 (below the frame 10). The air cylinder 12 presses the pressure receiving portion 13a of the arm member 13 as it operates. Specifically, the piston rod provided in the air cylinder 12 presses the pressure receiving portion 13a in a direction away from the molded body 4. Along with this, the force applied to the force point P1 is amplified by the lever mechanism 11 and then acts on the action point P2. Then, the pressing portion 13b of the arm member 13 presses the support brick 6 by the amplified force.
 梃子機構11に備わった保持部材14、及び、エアシリンダー12は、成形炉9の外に配置されている。一方、梃子機構11に備わったアーム部材13は、成形炉9の開口部9aを通じて炉の内外に跨るように配置されている。詳細には、アーム部材13の受圧部13aは、受圧部13aの全体が成形炉9外に存在するのに対し、アーム部材13の押圧部13bは、少なくとも作用点P2にあたる箇所が成形炉9内に進入している。 The holding member 14 provided in the lever mechanism 11 and the air cylinder 12 are arranged outside the molding furnace 9. On the other hand, the arm member 13 provided in the lever mechanism 11 is arranged so as to straddle the inside and outside of the furnace through the opening 9a of the molding furnace 9. Specifically, in the pressure receiving portion 13a of the arm member 13, the entire pressure receiving portion 13a exists outside the molding furnace 9, whereas in the pressing portion 13b of the arm member 13, at least the portion corresponding to the point of action P2 is inside the molding furnace 9. Is entering.
 ここで、本実施形態の変形例として、成形炉9の開口部9aを通じて支持煉瓦6の一部を成形炉9の外に食み出させ、食み出した部位をアーム部材13の押圧部13bが押圧するように構成されていてもよい。この場合、アーム部材13の全体が成形炉9外に存在する状態となる。 Here, as a modification of the present embodiment, a part of the support brick 6 is squeezed out of the molding furnace 9 through the opening 9a of the molding furnace 9, and the squeezed out portion is pressed by the pressing portion 13b of the arm member 13. May be configured to press. In this case, the entire arm member 13 is present outside the molding furnace 9.
 成形炉9は、操業中に位置を調節することが可能となっている。成形炉9の位置を調節する際には、エアシリンダー12、アーム部材13、及び保持部材14を、成形炉9と一体に移動させることが可能である。これにより、成形炉9の移動を容易に行うことができる。 The position of the molding furnace 9 can be adjusted during operation. When adjusting the position of the molding furnace 9, the air cylinder 12, the arm member 13, and the holding member 14 can be moved integrally with the molding furnace 9. As a result, the molding furnace 9 can be easily moved.
 以下、上記の成形装置1による主たる作用・効果について説明する。 Hereinafter, the main actions / effects of the above-mentioned molding apparatus 1 will be described.
 上記の成形装置1では、支持煉瓦6を成形体4側に押圧する押圧装置8が、力点P1に加えられた力を増幅させて作用点P2に働かせる梃子機構11と、力点P1に加えられる力の発生源となるエアシリンダー12とを有し、作用点P2に働く力を利用して支持煉瓦6を押圧する。このため、成形体4が大型である場合に、クリープ変形の抑制のために大きな力を作用点P2に働かせる必要があったとしても、このために力点P1に加えるべき力は、梃子機構11が増幅させている分だけ小さくて済むようになる。従って、この加えるべき力の発生源であるエアシリンダー12の出力もまた小さくて済むことになる。その結果、成形体4が大型の場合でも、クリープ変形の抑制に対応することが可能となる。 In the above-mentioned molding device 1, the pressing device 8 that presses the support brick 6 toward the molded body 4 has a lever mechanism 11 that amplifies the force applied to the force point P1 and exerts the force on the action point P2, and the force applied to the force point P1. It has an air cylinder 12 that is a source of the above, and presses the support brick 6 by utilizing the force acting on the point of action P2. Therefore, when the molded body 4 is large, even if it is necessary to apply a large force to the action point P2 in order to suppress creep deformation, the force to be applied to the force point P1 for this purpose is the lever mechanism 11. It will be smaller by the amount of amplification. Therefore, the output of the air cylinder 12, which is the source of the force to be applied, can also be small. As a result, even when the molded body 4 is large, it is possible to suppress creep deformation.
 以下、他の実施形態に係るガラス成形装置について添付の図面を参照しながら説明する。なお、他の実施形態の説明において、上記の第一実施形態で既に説明済みの要素と実質的に同一の要素については、他の実施形態の説明で参照する図面に同一の符号を付すことで重複する説明を省略する。 Hereinafter, the glass molding apparatus according to another embodiment will be described with reference to the attached drawings. In the description of the other embodiments, the elements substantially the same as the elements already described in the above-mentioned first embodiment are designated by the same reference numerals to the drawings referred to in the description of the other embodiments. Duplicate explanations will be omitted.
<第二実施形態>
 図2及び図3に示すように、第二実施形態に係る成形装置1が、第一実施形態に係る成形装置1と相違する主な点は、アーム部材13の押圧部13bが板状部材で構成される点、押圧部13bが支持煉瓦6と面接触の形態で接触する点、押圧部13bが軸16の周りで回転自在になっている点、及び、アーム部材13に軽量化のための開口部13cが形成されている点である。
<Second embodiment>
As shown in FIGS. 2 and 3, the main difference between the molding apparatus 1 according to the second embodiment and the molding apparatus 1 according to the first embodiment is that the pressing portion 13b of the arm member 13 is a plate-shaped member. The point to be configured, the point where the pressing portion 13b comes into contact with the supporting brick 6 in the form of surface contact, the point where the pressing portion 13b is rotatable around the shaft 16, and the arm member 13 for weight reduction. It is a point where the opening 13c is formed.
 アーム部材13は、保持部材14に備わった棒体14aを挿通させるための中間部13dと、中間部13dの上方に連なって押圧部13bを保持するための上側部分アーム13eと、中間部13dの下方に連なると共に下端に受圧部13aを有する下側部分アーム13fとを備えている。 The arm member 13 includes an intermediate portion 13d for inserting the rod body 14a provided in the holding member 14, an upper portion arm 13e for holding the pressing portion 13b connected above the intermediate portion 13d, and an intermediate portion 13d. It is provided with a lower partial arm 13f which is connected downward and has a pressure receiving portion 13a at the lower end.
 中間部13dは、棒体14aを介して保持部材14に直接に保持されている。 The intermediate portion 13d is directly held by the holding member 14 via the rod body 14a.
 上側部分アーム13eは、Y方向に間隔を空けて配置された一対の板体13ea,13eaを有する。両板体13ea,13eaの各々には、矩形の開口部13cが形成されている。開口部13cは、強度不足によるアーム部材13の破損を回避できる程度の面積に形成されている。軸16は、Y方向に延びて両板体13ea,13eaの上端部に架け渡された状態となっている。この軸16が押圧部13bを貫通している。これにより、両板体13ea,13eaの相互間で押圧部13bが回転自在に保持されている。なお、軸16は、棒体14aと平行に延びている。 The upper partial arm 13e has a pair of plate bodies 13ea and 13ea arranged at intervals in the Y direction. A rectangular opening 13c is formed in each of the two plates 13ea and 13ea. The opening 13c is formed in an area sufficient to avoid damage to the arm member 13 due to insufficient strength. The shaft 16 extends in the Y direction and is bridged over the upper ends of both plate bodies 13ea and 13ea. The shaft 16 penetrates the pressing portion 13b. As a result, the pressing portion 13b is rotatably held between the two plates 13ea and 13ea. The shaft 16 extends in parallel with the rod body 14a.
 押圧部13bは矩形の板状部材でなる。この押圧部13bを構成する板状部材の端面が、支持煉瓦6と面接触する。押圧部13bは軸16の周りで回転自在であるため、アーム部材13が揺動したとしても、押圧部13bと支持煉瓦6との面接触を好適に維持できるようになっている。 The pressing portion 13b is a rectangular plate-shaped member. The end face of the plate-shaped member constituting the pressing portion 13b comes into surface contact with the support brick 6. Since the pressing portion 13b is rotatable around the shaft 16, even if the arm member 13 swings, the surface contact between the pressing portion 13b and the supporting brick 6 can be suitably maintained.
 下側部分アーム13fには、矩形の開口部13cが形成されている。開口部13cは、強度不足によるアーム部材13の破損を回避できる程度の面積に形成されている。 A rectangular opening 13c is formed in the lower partial arm 13f. The opening 13c is formed in an area sufficient to avoid damage to the arm member 13 due to insufficient strength.
 ここで、本実施形態の変形例として、押圧部13bは、支持煉瓦6との面接触が可能であり、更に軸16の周りで回転自在なものであれば、任意の形状であって構わないし、板状以外の部材であっても構わない。また、上側部分アーム13eおよび下側部分アーム13fを構成する部材として、軽量化のために中空パイプやセラミック多孔体等を使用してもよい。 Here, as a modification of the present embodiment, the pressing portion 13b may have any shape as long as it can be surface-contacted with the supporting brick 6 and is rotatable around the shaft 16. , It may be a member other than a plate shape. Further, as a member constituting the upper portion arm 13e and the lower portion arm 13f, a hollow pipe, a ceramic porous body, or the like may be used for weight reduction.
<第三実施形態>
 図4及び図5に示すように、第三実施形態に係る成形装置1が、第一実施形態に係る成形装置1と相違する主な点は、エアシリンダー12の配置が異なっている点、アーム部材13の押圧部13bが支持煉瓦6と直接に接触する凸湾曲面を有する点、押圧部13bが軸17を中心として揺動が可能である点、アーム部材13の受圧部13aが直方体状の部材で構成される点、及び、受圧部13aが軸18の周りで回転自在になっている点である。
<Third embodiment>
As shown in FIGS. 4 and 5, the main difference between the molding apparatus 1 according to the third embodiment and the molding apparatus 1 according to the first embodiment is that the arrangement of the air cylinder 12 is different, and the arm. The pressing portion 13b of the member 13 has a convex curved surface that comes into direct contact with the supporting brick 6, the pressing portion 13b can swing around the shaft 17, and the pressure receiving portion 13a of the arm member 13 has a rectangular parallelepiped shape. It is a point composed of members and a point where the pressure receiving portion 13a is rotatable around the shaft 18.
 エアシリンダー12は、成形炉9の上方(フレーム10の上方)に固定されている。つまり、エアシリンダー12が支持煉瓦6よりも上方に配置される位置関係となっている。これにより、力点P1と作用点P2との上下方向における位置関係が、第一実施形態および第二実施形態とは逆になっている。 The air cylinder 12 is fixed above the molding furnace 9 (above the frame 10). That is, the air cylinder 12 is arranged above the supporting brick 6. As a result, the positional relationship between the force point P1 and the action point P2 in the vertical direction is opposite to that of the first embodiment and the second embodiment.
 アーム部材13は、押圧部13bを保持する下側部分アーム13gと、受圧部13aを保持する上側部分アーム13hとを備えている。 The arm member 13 includes a lower portion arm 13g for holding the pressing portion 13b and an upper portion arm 13h for holding the pressure receiving portion 13a.
 下側部分アーム13gの下端部には軸17が備わっている。この軸17が押圧部13bを貫通している。これにより、下側部分アーム13gの下端部において、押圧部13bが揺動を許容された状態で保持されている。なお、軸17は、保持部材14に備わった棒体14aと平行に延びている。押圧部13bに設けられた凸湾曲面は、円筒面や球面として形成されている。このように押圧部13bが揺動を許容された状態で保持されると共に凸湾曲面を押圧部13bに設けることにより、アーム部材13の揺動に伴い、押圧部13bの角部が支持煉瓦6に食い込んで、支持煉瓦6を損耗することを防止できる。 A shaft 17 is provided at the lower end of the lower arm 13g. The shaft 17 penetrates the pressing portion 13b. As a result, the pressing portion 13b is held in a state where the swing is allowed at the lower end portion of the lower portion arm 13g. The shaft 17 extends in parallel with the rod body 14a provided on the holding member 14. The convex curved surface provided on the pressing portion 13b is formed as a cylindrical surface or a spherical surface. In this way, the pressing portion 13b is held in a state where the swing is allowed, and the convex curved surface is provided on the pressing portion 13b, so that the corner portion of the pressing portion 13b is supported by the supporting brick 6 as the arm member 13 swings. It is possible to prevent the supporting brick 6 from being worn by biting into the brick.
 上側部分アーム13hは、Y方向に間隔を空けて配置された一対の板体13ha,13haを有する。軸18は、Y方向に延びて両板体13ha,13haの上端部に架け渡された状態となっている。この軸18が受圧部13aを貫通している。これにより、両板体13ha,13haの相互間で受圧部13aが回転自在に保持されている。なお、軸18は、軸17と同様にして棒体14aと平行に延びている。 The upper partial arm 13h has a pair of plate bodies 13ha and 13ha arranged at intervals in the Y direction. The shaft 18 extends in the Y direction and is bridged over the upper ends of both plates 13ha and 13ha. The shaft 18 penetrates the pressure receiving portion 13a. As a result, the pressure receiving portion 13a is rotatably held between the two plates 13ha and 13ha. The shaft 18 extends in parallel with the rod body 14a in the same manner as the shaft 17.
 受圧部13aを構成する直方体状の部材の一面は、エアシリンダー12のピストンロッドと接触する。そして、受圧部13aが軸18の周りで回転できることにより、アーム部材13が揺動したとしても、直方体状の部材の一面に対してピストンロッドが鉛直となる状態を好適に維持できるようになっている。 One surface of the rectangular parallelepiped member constituting the pressure receiving portion 13a comes into contact with the piston rod of the air cylinder 12. Since the pressure receiving portion 13a can rotate around the shaft 18, even if the arm member 13 swings, the piston rod can be suitably maintained in a state of being vertical with respect to one surface of the rectangular parallelepiped member. There is.
<第四実施形態>
 図6に示すように、第四実施形態に係る成形装置1が、第一実施形態に係る成形装置1と相違する主な点は、アーム部材13の受圧部13aに対してエアシリンダー12が固定されている点、受圧部13aと押圧部13bとの上下方向における位置関係が逆転して受圧部13aが押圧部13bよりも上方に配置されている点、押圧部13bが軸19の周りで回転自在な円盤体で構成される点である。
<Fourth Embodiment>
As shown in FIG. 6, the main difference between the molding apparatus 1 according to the fourth embodiment and the molding apparatus 1 according to the first embodiment is that the air cylinder 12 is fixed to the pressure receiving portion 13a of the arm member 13. The point that the pressure receiving portion 13a and the pressing portion 13b are reversed in the vertical direction and the pressure receiving portion 13a is arranged above the pressing portion 13b, and the pressing portion 13b rotates around the shaft 19. It is a point composed of a free disk body.
 エアシリンダー12は、その端部(ピストンロッドの先端とは反対側に位置した端部)がアーム部材13の受圧部13aに固定されている。エアシリンダー12は、保持部材14に備わった棒体14a(支点P3)よりも上方において、アーム部材13の受圧部13aと成形炉9の外面9b(フレーム10の側部)との相互間に配置されている。 The end of the air cylinder 12 (the end located on the side opposite to the tip of the piston rod) is fixed to the pressure receiving portion 13a of the arm member 13. The air cylinder 12 is arranged above the rod body 14a (fulcrum P3) provided on the holding member 14 between the pressure receiving portion 13a of the arm member 13 and the outer surface 9b (side portion of the frame 10) of the molding furnace 9. Has been done.
 エアシリンダー12のピストンロッドは、成形炉9の外面9bに接触した状態となっている。ピストンロッドは、アーム部材13の長手方向と直交する方向に延びており、その先端(成形炉9の外面9bと直接に接触する箇所)が凸湾曲面に形成されている。 The piston rod of the air cylinder 12 is in contact with the outer surface 9b of the molding furnace 9. The piston rod extends in a direction orthogonal to the longitudinal direction of the arm member 13, and its tip (a portion in direct contact with the outer surface 9b of the molding furnace 9) is formed on a convex curved surface.
 エアシリンダー12の重心は、X方向において、棒体14a(支点P3)を基準として成形炉9の外面9bとは反対側に位置している。これにより、エアシリンダー12は、自重により棒体14aの周りで時計回り(図6において時計回り)の力のモーメントを発生させている。 The center of gravity of the air cylinder 12 is located on the side opposite to the outer surface 9b of the molding furnace 9 with respect to the rod body 14a (fulcrum P3) in the X direction. As a result, the air cylinder 12 generates a moment of a clockwise (clockwise in FIG. 6) force around the rod body 14a due to its own weight.
 エアシリンダー12が稼働すると、その出力部であるピストンロッドが成形炉9の外面9bを押す。この際の反力が利用されてアーム部材13の受圧部13aに力が作用する。そして、受圧部13aが受けた力が梃子機構11により増幅された上で支持煉瓦6を押圧する力となる。加えて、上述したエアシリンダー12の自重による力のモーメントが利用されて支持煉瓦6が更に押圧される。 When the air cylinder 12 operates, the piston rod, which is the output unit thereof, pushes the outer surface 9b of the molding furnace 9. The reaction force at this time is used to act on the pressure receiving portion 13a of the arm member 13. Then, the force received by the pressure receiving portion 13a is amplified by the lever mechanism 11 and then becomes a force for pressing the support brick 6. In addition, the support brick 6 is further pressed by utilizing the moment of the force due to the weight of the air cylinder 12 described above.
 軸19は、アーム部材13の下端部に備わっている。この軸19が押圧部13bを構成する円盤体の回転中心となる。このとおり、アーム部材13の下端部において、押圧部13bが回転自在に保持されている。なお、軸19は、保持部材14に備わった棒体14aと平行に延びている。 The shaft 19 is provided at the lower end of the arm member 13. This shaft 19 serves as the rotation center of the disk body constituting the pressing portion 13b. As described above, the pressing portion 13b is rotatably held at the lower end portion of the arm member 13. The shaft 19 extends in parallel with the rod body 14a provided on the holding member 14.
<第五実施形態>
 図7に示すように、第五実施形態に係る成形装置1が、第四実施形態に係る成形装置1と相違する主な点は、押圧装置8の梃子機構11が、上側の第一梃子機構21と、下側の第二梃子機構22とから構成されている点である。第一梃子機構21は、上端にエアシリンダー12及び受圧部13a(第一力点P1aを含む)が設けられた第一アーム部材23を備える。また、第二梃子機構22は、下端に軸19を介して押圧部13b(第二作用点P2bを含む)が設けられた第二アーム部材24を備える。
<Fifth Embodiment>
As shown in FIG. 7, the main difference between the molding device 1 according to the fifth embodiment and the molding device 1 according to the fourth embodiment is that the lever mechanism 11 of the pressing device 8 is the upper first lever mechanism. The point is that it is composed of 21 and the lower second lever mechanism 22. The first lever mechanism 21 includes a first arm member 23 provided with an air cylinder 12 and a pressure receiving portion 13a (including a first force point P1a) at the upper end thereof. Further, the second lever mechanism 22 includes a second arm member 24 provided with a pressing portion 13b (including a second action point P2b) at the lower end thereof via a shaft 19.
 第一梃子機構21の第一支点P3aは、第一アーム部材23の下端部に固定された軸凸部25で構成され、保持部材14の上部に配設される。この軸凸部25は、第二アーム部材24を貫通していない。また、第一梃子機構21の第一作用点P2aは、第一アーム部材23の上下方向中間部に支持された棒体の軸27で構成され、第二アーム部材24の上端部に形成された長孔26に挿通される。 The first fulcrum P3a of the first lever mechanism 21 is composed of a shaft convex portion 25 fixed to the lower end portion of the first arm member 23, and is arranged above the holding member 14. The shaft protrusion 25 does not penetrate the second arm member 24. Further, the first point of action P2a of the first lever mechanism 21 is composed of a rod shaft 27 supported by the vertical intermediate portion of the first arm member 23, and is formed at the upper end portion of the second arm member 24. It is inserted through the long hole 26.
 第二梃子機構22の第二支点P3bは、保持部材14の下部に配設された棒体の軸28で構成され、第二アーム部材24の上下方向中間部を支持する。また、第二梃子機構22の第二力点P1bは、既述の棒体の軸27で構成される。したがって、この棒体の軸27は、第一梃子機構21の第一作用点P2aと、第二梃子機構22の第二力点P1bとを兼ねる構成とされている。 The second fulcrum P3b of the second lever mechanism 22 is composed of a rod shaft 28 arranged under the holding member 14, and supports the vertical intermediate portion of the second arm member 24. Further, the second force point P1b of the second lever mechanism 22 is composed of the shaft 27 of the rod body described above. Therefore, the shaft 27 of the rod body is configured to serve as both the first action point P2a of the first lever mechanism 21 and the second force point P1b of the second lever mechanism 22.
 この梃子機構11の詳細な構成を図8に基づいて説明する。同図に示すように、第一梃子機構21の第一アーム部材23は、第一所定間隔を空けて平行に配列された二枚の第一アーム板23aを備える。第一作用点P2a及び第二力点P1bを兼ねる棒体の軸27は、二枚の第一アーム板23aに跨って固定される。第一支点P3aを構成する軸凸部25は、二枚の第一アーム板23aの外側面23aaにそれぞれ突設されている。これら軸凸部25は、保持部材14の上部に形成された軸孔29にそれぞれ支持される。 The detailed configuration of the lever mechanism 11 will be described with reference to FIG. As shown in the figure, the first arm member 23 of the first lever mechanism 21 includes two first arm plates 23a arranged in parallel with a first predetermined interval. The shaft 27 of the rod body which also serves as the first action point P2a and the second force point P1b is fixed across the two first arm plates 23a. The axial convex portion 25 constituting the first fulcrum P3a is projected from the outer surface 23aa of the two first arm plates 23a, respectively. Each of these shaft protrusions 25 is supported by a shaft hole 29 formed in the upper part of the holding member 14.
 第二梃子機構22の第二アーム部材24は、第一所定間隔よりも小さい第二所定間隔を空けて平行に配列された二枚の第二アーム板24aを備える。これら二枚の第二アーム板24aの上端部には上下方向に長い長孔26がそれぞれ形成されている。これら長孔26に上述の棒体の軸27が挿通される。棒体の軸27は、長孔26の長手方向に対する相対移動が許容され且つこれと直交する幅方向に対する相対移動が規制される。二枚の第二アーム板24aの上下方向中間部には、軸孔30がそれぞれ形成される。これら軸孔30には、保持部材14の下部に支持された第二支点P3bを構成する棒体の軸28が嵌り込む。 The second arm member 24 of the second lever mechanism 22 includes two second arm plates 24a arranged in parallel with a second predetermined interval smaller than the first predetermined interval. Long holes 26 long in the vertical direction are formed at the upper ends of these two second arm plates 24a, respectively. The shaft 27 of the rod body described above is inserted through these elongated holes 26. The axis 27 of the rod body is allowed to move relative to the longitudinal direction of the elongated hole 26 and is restricted from moving relative to the width direction orthogonal to the long hole 26. Shaft holes 30 are formed in the vertical intermediate portions of the two second arm plates 24a, respectively. The shaft 28 of the rod body constituting the second fulcrum P3b supported under the holding member 14 is fitted into these shaft holes 30.
 第一梃子機構21における第一支点P3aから第一力点P1aまでの距離L1aは、例えば、第一支点P3aから第一作用点P2aまでの距離L2aの1.5~10倍である。一方、第二梃子機構22における第二支点P3bから第二力点P1bまでの距離L1bは、第一アーム部材23の回転動に伴って若干変動するが、例えば、第二支点P3bから第二作用点P2bまでの距離L2bの1.5~10倍である。 The distance L1a from the first fulcrum P3a to the first force point P1a in the first lever mechanism 21 is, for example, 1.5 to 10 times the distance L2a from the first fulcrum P3a to the first action point P2a. On the other hand, the distance L1b from the second fulcrum P3b to the second force point P1b in the second lever mechanism 22 varies slightly with the rotational movement of the first arm member 23. The distance to P2b is 1.5 to 10 times the distance L2b.
 次に、上記構成を備えた第五実施形態に係る成形装置1の作用効果を説明する。エアシリンダー12が稼働すると、その出力部であるピストンロッドが成形炉9の外面9bを押す。この際の反力が利用されて第一アーム部材23の上端に設けられた受圧部13a(第一梃子機構21の第一力点P1a)に力が作用する。そして、受圧部13aが受けた力は第一梃子機構21により増幅されて、軸凸部25(第一梃子機構21の第一支点P3a)の周りで、時計回りの力のモーメントが棒体の軸27(第一梃子機構21の第一作用点P2a)に作用する。 Next, the operation and effect of the molding apparatus 1 according to the fifth embodiment having the above configuration will be described. When the air cylinder 12 operates, the piston rod, which is the output unit thereof, pushes the outer surface 9b of the molding furnace 9. The reaction force at this time is utilized to act on the pressure receiving portion 13a (first force point P1a of the first lever mechanism 21) provided at the upper end of the first arm member 23. Then, the force received by the pressure receiving portion 13a is amplified by the first lever mechanism 21, and the moment of the clockwise force is around the shaft convex portion 25 (the first fulcrum P3a of the first lever mechanism 21) of the rod body. It acts on the shaft 27 (first point of action P2a of the first lever mechanism 21).
 このとき、棒体の軸27(第二梃子機構22の第二力点P1b)に生じた力は、第二梃子機構22により増幅されて、棒体の軸28(第二梃子機構22の第二支点P3b)の廻りで、時計回りの力のモーメントが第二アーム部材24の下端に設けられた押圧部13b(第二梃子機構22の第二作用点P2b)に作用する。これにより、支持煉瓦6に押圧力が付与される。 At this time, the force generated on the shaft 27 of the rod body (second force point P1b of the second lever mechanism 22) is amplified by the second lever mechanism 22 and is amplified by the shaft 28 of the rod body (second lever mechanism 22). Around the fulcrum P3b), a moment of clockwise force acts on the pressing portion 13b (second working point P2b of the second lever mechanism 22) provided at the lower end of the second arm member 24. As a result, a pressing force is applied to the supporting brick 6.
 本実施形態では、エアシリンダー12の動作によって第一力点P1aに作用する力が、第一梃子機構21で1.5~10倍に増幅され、さらに第二梃子機構22で1.5~10倍に増幅されて、第二作用点P2bから支持煉瓦6に付与される。したがって、この第五実施形態に係る成形装置1によれば、単一の梃子機構を備える場合よりも、より強い押圧力を支持煉瓦6に付与することができる。 In the present embodiment, the force acting on the first force point P1a due to the operation of the air cylinder 12 is amplified 1.5 to 10 times by the first lever mechanism 21, and further 1.5 to 10 times by the second lever mechanism 22. It is amplified to the support brick 6 from the second point of action P2b. Therefore, according to the molding apparatus 1 according to the fifth embodiment, a stronger pressing force can be applied to the support brick 6 as compared with the case where a single lever mechanism is provided.
 この第五実施形態では2つの梃子機構21、22を備えているが、3つ以上の梃子機構を備えるようにしてもよい。 In this fifth embodiment, two lever mechanisms 21 and 22 are provided, but three or more lever mechanisms may be provided.
 ここで、上記の各実施形態には、以下のような変形例を適用することも可能である。 Here, it is also possible to apply the following modified examples to each of the above embodiments.
 上記の各実施形態では、アーム部材13が上下に延びる構成となっているが、これに限定されるものではない。変形例として、アーム部材13が水平に延びる構成であってもよいし、上下又は水平面に対して斜めに延びる構成であってもよい。 In each of the above embodiments, the arm member 13 is configured to extend vertically, but the present invention is not limited to this. As a modification, the arm member 13 may be configured to extend horizontally, or may be configured to extend vertically or diagonally with respect to a horizontal plane.
 また、上記の各実施形態では、押圧装置8が、一対の支持煉瓦6,7のうち、支持煉瓦6のみを押圧する構成となっているが、この限りではない。変形例として、押圧装置8が、支持煉瓦7のみを押圧する構成としてもよいし、一対の支持煉瓦6,7のそれぞれに対応させて押圧装置8(二基の押圧装置8)を配置し、一対の支持煉瓦6,7の双方を押圧する構成としてもよい。 Further, in each of the above embodiments, the pressing device 8 is configured to press only the supporting brick 6 out of the pair of supporting bricks 6 and 7, but this is not the case. As a modification, the pressing device 8 may be configured to press only the supporting brick 7, or the pressing device 8 (two pressing devices 8) may be arranged corresponding to each of the pair of supporting bricks 6 and 7. It may be configured to press both of the pair of supporting bricks 6 and 7.
 また、上記の各実施形態では、押圧装置8が成形炉9に固定されているが、この限りではない。変形例として、押圧装置8の保持部材14や力の発生源(エアシリンダー12)を建屋に固定する構成としてもよい。 Further, in each of the above embodiments, the pressing device 8 is fixed to the molding furnace 9, but this is not the case. As a modification, the holding member 14 of the pressing device 8 and the force generating source (air cylinder 12) may be fixed to the building.
 1      ガラス成形装置
 2      溶融ガラス
 3      ガラスリボン
 4      成形体
 5      供給パイプ
 6      支持煉瓦
 7      支持煉瓦
 8      押圧装置
 9      成形炉
 9a     開口部
 9b     外面
 11     梃子機構
 12     エアシリンダー(力の発生源)
 13     アーム部材
 13a    受圧部
 13b    押圧部
 14     保持部材
 16     軸
 P1     力点
 P2     作用点
 P3     支点
 21     第一梃子機構
 22     第二梃子機構
 23     第一アーム部材
 24     第二アーム部材
 25     軸凸部
 27     軸
 28     軸
 P1a    第一力点
 P1b    第二力点
 P2a    第一作用点
 P2b    第二作用点
 P3a    第一支点
 P3b    第二支点
1 Glass molding device 2 Molten glass 3 Glass ribbon 4 Molded body 5 Supply pipe 6 Supporting brick 7 Supporting brick 8 Pressing device 9 Molding furnace 9a Opening 9b Outer surface 11 Cylinder mechanism 12 Air cylinder (source of force)
13 Arm member 13a Pressure receiving part 13b Pressing part 14 Holding member 16 Axis P1 Power point P2 Action point P3 Support point 21 First lever mechanism 22 Second lever mechanism 23 First arm member 24 Second arm member 25 Axis convex part 27 Axis 28 Axis P1a First point of force P1b Second point of force P2a First point of action P2b Second point of action P3a First fulcrum P3b Second fulcrum

Claims (11)

  1.  オーバーフローダウンドロー法により溶融ガラスからガラスリボンを成形する成形体と、
     前記成形体の長手方向における端部を下方から支持しながら前記成形体を側方から押圧する支持煉瓦と、
     前記支持煉瓦を前記成形体側に押圧する押圧装置と、
     前記成形体を内部に収容する成形炉と、
    を備えたガラス成形装置であって、
     前記押圧装置が、力点に加えられた力を増幅させて作用点に働かせる梃子機構と、前記力点に加えられる力の発生源とを有し、
     前記作用点に働く力を利用して前記支持煉瓦を押圧するように構成されていることを特徴とするガラス成形装置。
    A molded body that molds a glass ribbon from molten glass by the overflow down draw method,
    A supporting brick that presses the molded body from the side while supporting the end portion in the longitudinal direction of the molded body from below.
    A pressing device that presses the supporting brick toward the molded body, and
    A molding furnace that houses the molded body inside, and
    It is a glass molding device equipped with
    The pressing device has a lever mechanism that amplifies the force applied to the force point and exerts it on the point of action, and a source of the force applied to the force point.
    A glass molding apparatus configured to press the supporting brick by utilizing the force acting on the point of action.
  2.  前記成形炉に、炉の内外を連続させる開口部が形成され、
     前記梃子機構が、
      前記力の発生源から加えられる力を受ける部位であり且つ前記力点に対応する部位である受圧部、及び、前記支持煉瓦を押圧する部位であり且つ前記作用点に対応する部位である押圧部、を有するアーム部材と、
      支点を中心とした前記アーム部材の揺動を許容した状態で前記アーム部材を保持する保持部材と、を備え、
     前記力の発生源および前記保持部材が、前記成形炉の外に配置され、
     前記支持煉瓦または前記アーム部材が、前記開口部を通じて前記成形炉の内外に跨るように配置されることを特徴とする請求項1に記載のガラス成形装置。
    An opening is formed in the molding furnace to make the inside and outside of the furnace continuous.
    The lever mechanism
    A pressure receiving portion that receives a force applied from the force generation source and corresponds to the force point, and a pressing portion that presses the supporting brick and corresponds to the action point. With an arm member
    A holding member that holds the arm member in a state where the arm member is allowed to swing around a fulcrum is provided.
    The force generation source and the holding member are arranged outside the molding furnace.
    The glass molding apparatus according to claim 1, wherein the supporting brick or the arm member is arranged so as to straddle the inside and outside of the molding furnace through the opening.
  3.  前記力の発生源、前記アーム部材、及び前記保持部材が、前記成形炉と一体に移動可能であることを特徴とする請求項2に記載のガラス成形装置。 The glass molding apparatus according to claim 2, wherein the force generation source, the arm member, and the holding member can move integrally with the molding furnace.
  4.  前記成形炉の外面と前記受圧部との相互間に前記力の発生源が配置されるように、前記受圧部に前記力の発生源が固定され、
     前記力の発生源の出力部が前記成形炉の外面を押すのに伴い、その反力を利用して前記受圧部に力を作用させるように構成されていることを特徴とする請求項2又は3に記載のガラス成形装置。
    The force generation source is fixed to the pressure receiving portion so that the force generation source is arranged between the outer surface of the molding furnace and the pressure receiving portion.
    2. 3. The glass molding apparatus according to 3.
  5.  前記アーム部材の前記受圧部が、前記押圧部よりも上方に配置され、
     前記支点を基準として前記成形炉の外面とは反対側に前記力の発生源の重心が位置している請求項4に記載のガラス成形装置。
    The pressure receiving portion of the arm member is arranged above the pressing portion, and the pressure receiving portion is arranged above the pressing portion.
    The glass molding apparatus according to claim 4, wherein the center of gravity of the force generation source is located on the side opposite to the outer surface of the molding furnace with the fulcrum as a reference.
  6.  前記押圧部が、前記アーム部材の揺動の中心軸と平行に延びる軸周りで回転可能であることを特徴とする請求項2~5のいずれかに記載のガラス成形装置。 The glass molding apparatus according to any one of claims 2 to 5, wherein the pressing portion can rotate around an axis extending parallel to the central axis of the swing of the arm member.
  7.  前記力の発生源が、前記支持煉瓦よりも上方に配置されていることを特徴とする請求項1~6のいずれかに記載のガラス成形装置。 The glass forming apparatus according to any one of claims 1 to 6, wherein the source of the force is arranged above the supporting brick.
  8.  前記支持煉瓦が、前記成形体の長手方向の一方端側と他方端側との両方に配置され、
     前記押圧装置が、前記両方の支持煉瓦のうち、一方の支持煉瓦のみを押圧するように構成され、
     前記両方の支持煉瓦のうち、他方の支持煉瓦が、前記成形炉に対して移動不能とされていることを特徴とする請求項1~7のいずれかに記載のガラス成形装置。
    The supporting bricks are arranged on both one end side and the other end side in the longitudinal direction of the molded body.
    The pressing device is configured to press only one of the two supporting bricks.
    The glass molding apparatus according to any one of claims 1 to 7, wherein of the both support bricks, the other support brick is immovable with respect to the molding furnace.
  9.  前記成形体にその長手方向の一端から溶融ガラスを供給する供給パイプを備え、
     前記押圧装置が、前記成形体の長手方向において前記供給パイプとは反対側に配置されていることを特徴とする請求項8に記載のガラス成形装置。
    The molded body is provided with a supply pipe for supplying molten glass from one end in the longitudinal direction thereof.
    The glass molding device according to claim 8, wherein the pressing device is arranged on the side opposite to the supply pipe in the longitudinal direction of the molded body.
  10.  前記力の発生源が、アクチュエータであることを特徴とする請求項1~9のいずれかに記載のガラス成形装置。 The glass molding apparatus according to any one of claims 1 to 9, wherein the source of the force is an actuator.
  11.  前記押圧装置が、前記梃子機構を2つ以上備えることを特徴とする請求項1~10のいずれかに記載のガラス成形装置。 The glass molding device according to any one of claims 1 to 10, wherein the pressing device includes two or more lever mechanisms.
PCT/JP2021/045707 2020-12-16 2021-12-10 Glass molding device WO2022131179A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237008811A KR20230115289A (en) 2020-12-16 2021-12-10 glass forming device
CN202180072741.9A CN116568643A (en) 2020-12-16 2021-12-10 Glass forming device
JP2022569961A JPWO2022131179A1 (en) 2020-12-16 2021-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020208617 2020-12-16
JP2020-208617 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022131179A1 true WO2022131179A1 (en) 2022-06-23

Family

ID=82057733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045707 WO2022131179A1 (en) 2020-12-16 2021-12-10 Glass molding device

Country Status (4)

Country Link
JP (1) JPWO2022131179A1 (en)
KR (1) KR20230115289A (en)
CN (1) CN116568643A (en)
WO (1) WO2022131179A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437470A (en) * 1966-06-17 1969-04-08 Corning Glass Works Constant force internal support for glass overflow wedge
US3519411A (en) * 1966-12-28 1970-07-07 Corning Glass Works Method and apparatus for supporting sheet glass forming device
JP4193115B2 (en) * 2003-03-20 2008-12-10 日本電気硝子株式会社 Sheet glass forming apparatus and sheet glass forming method
JP2009519884A (en) * 2005-12-15 2009-05-21 ブルース テクノロジー エルエルシー Overflow downdraw glass forming method and apparatus
JP2010526761A (en) * 2007-05-11 2010-08-05 コーニング インコーポレイテッド Isopipe sag control using improved end support conditions
JP2012501289A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Isopipe with improved dimensional stability
WO2012132309A1 (en) * 2011-03-28 2012-10-04 AvanStrate株式会社 Production method for glass plate and glass plate production device
JP2015147732A (en) * 2013-03-29 2015-08-20 AvanStrate株式会社 Method of manufacturing glass plate
JP2018503587A (en) * 2014-12-19 2018-02-08 コーニング インコーポレイテッド Method and apparatus for isopipe support and deflection relief
JP2020045261A (en) * 2018-09-20 2020-03-26 日本電気硝子株式会社 Molding device, and plate glass manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437470A (en) * 1966-06-17 1969-04-08 Corning Glass Works Constant force internal support for glass overflow wedge
US3519411A (en) * 1966-12-28 1970-07-07 Corning Glass Works Method and apparatus for supporting sheet glass forming device
JP4193115B2 (en) * 2003-03-20 2008-12-10 日本電気硝子株式会社 Sheet glass forming apparatus and sheet glass forming method
JP2009519884A (en) * 2005-12-15 2009-05-21 ブルース テクノロジー エルエルシー Overflow downdraw glass forming method and apparatus
JP2010526761A (en) * 2007-05-11 2010-08-05 コーニング インコーポレイテッド Isopipe sag control using improved end support conditions
JP2012501289A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Isopipe with improved dimensional stability
WO2012132309A1 (en) * 2011-03-28 2012-10-04 AvanStrate株式会社 Production method for glass plate and glass plate production device
JP2015147732A (en) * 2013-03-29 2015-08-20 AvanStrate株式会社 Method of manufacturing glass plate
JP2018503587A (en) * 2014-12-19 2018-02-08 コーニング インコーポレイテッド Method and apparatus for isopipe support and deflection relief
JP2020045261A (en) * 2018-09-20 2020-03-26 日本電気硝子株式会社 Molding device, and plate glass manufacturing method

Also Published As

Publication number Publication date
JPWO2022131179A1 (en) 2022-06-23
KR20230115289A (en) 2023-08-02
CN116568643A (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP2010248389A (en) Side-surface heat shielding apparatus and installation method of side-surface heat shielding plate for hot replacement in coke oven carbonization chamber
WO2022131179A1 (en) Glass molding device
CN104396000A (en) Table device and carrier device
JP4796276B2 (en) Rolling equipment
WO2022262348A1 (en) Adaptive hanging structure for converter
KR20030041830A (en) An apparatus for an emergency stop of a elevator
JP5418089B2 (en) Transfer device for offset printing
WO2022131177A1 (en) Glass molding apparatus
JP2006323268A (en) Exposing device
JP5297394B2 (en) Slab roll roll stand for continuous casting equipment
JP2010064108A (en) Guide roll segment of equipment for continuous casting
JP2010120005A (en) Reaction force offset apparatus and paste dispenser equipped with the same
JP2017039615A (en) Glass melting furnace, temperature raising method for the same, and production method of glass article
JP5657159B1 (en) Roll reduction device
KR100646627B1 (en) Continuous casting machine segment for controlling linear gap between rolls
CN103803781B (en) A kind of continuous thermal bending furnace for glass
JP2016153135A (en) Immersed nozzle holding device
KR20210063809A (en) Sheet compression tester for room and elevated temperatures
CN220703510U (en) Grating body replacing mechanism convenient for regenerator of photovoltaic glass furnace
US9216452B2 (en) Edge dam upper portion sealing apparatus for twin roll strip caster
JP2016156212A (en) Floor joint device
CN212511182U (en) Two-section reciprocating type garbage incinerator furnace wall supporting structure
CN100357690C (en) Wide roller way kiln
KR100871915B1 (en) Cold rolling mill
CN218112626U (en) Novel track traffic overhauls device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569961

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180072741.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906541

Country of ref document: EP

Kind code of ref document: A1