WO2022131177A1 - Glass molding apparatus - Google Patents

Glass molding apparatus Download PDF

Info

Publication number
WO2022131177A1
WO2022131177A1 PCT/JP2021/045701 JP2021045701W WO2022131177A1 WO 2022131177 A1 WO2022131177 A1 WO 2022131177A1 JP 2021045701 W JP2021045701 W JP 2021045701W WO 2022131177 A1 WO2022131177 A1 WO 2022131177A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
supporting
pressing device
lever mechanism
molding apparatus
Prior art date
Application number
PCT/JP2021/045701
Other languages
French (fr)
Japanese (ja)
Inventor
光晴 野田
道幸 中村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2022569960A priority Critical patent/JPWO2022131177A1/ja
Priority to CN202180071890.3A priority patent/CN116438144A/en
Priority to KR1020237008810A priority patent/KR20230121597A/en
Publication of WO2022131177A1 publication Critical patent/WO2022131177A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/068Means for providing the drawing force, e.g. traction or draw rollers

Definitions

  • This disclosure relates to glass molding equipment.
  • Patent Document 1 discloses an example of a manufacturing facility capable of executing the overflow downdraw method.
  • Patent Document 1 The manufacturing equipment disclosed in Patent Document 1 includes a wedge-shaped molded body for molding a glass ribbon (sheet glass plate SG in the same document) from molten glass, and one end side and the other end side of the molded body in the longitudinal direction thereof.
  • a pair of supporting bricks (the first supporting member 410 and the second supporting member 420 in the same document) and a pressing device that presses one of the pair of supporting bricks toward the molded body (in the same document). It is equipped with a pressurizing device 422).
  • the position may be adjusted by moving the molded body or the molding furnace that houses the molded body before or during the operation.
  • the pressing device is fixed to the building, for example, it is necessary to change the position of the pressing device according to the movement of the molded body or the like. Therefore, the work of adjusting the position of the molded body or the like becomes complicated.
  • a mechanism for changing the position of the pressing device is required, which complicates the equipment configuration.
  • the technical problem to be solved in view of the above circumstances is to provide a manufacturing facility capable of easily adjusting the position of the molded body while suppressing creep deformation of the molded body.
  • the glass molding apparatus for solving the above problems supports and molds a molded body that molds a glass ribbon from molten glass by an overflow down draw method and a longitudinal end portion of the molded body in the upper part of the molded body from below. It is a glass molding device including a support brick that presses the lower part of the body in the longitudinal direction, a pressing device that presses the support brick toward the molded body side, and a molding furnace that houses the molded body inside, and the pressing device is molding. It is characterized by being fixed to the furnace.
  • the molding furnace has a refractory brick wall surrounding the molded body, a heating device for heating the molded body from the side, and a frame surrounding the refractory brick wall and the heating device and to which the pressing device is fixed. It is preferable to have.
  • the reaction force can be absorbed by the frame. Since the frame surrounds both the refractory brick wall and the heating device and the frame is arranged outside the two, it is possible to avoid the occurrence of a situation where the frame is damaged by heat.
  • the supporting bricks are arranged on both one end side and the other end side in the longitudinal direction of the molded body so that the pressing device presses only one supporting brick of both supporting bricks.
  • the other supporting brick is preferably held by the frame.
  • the structure of the equipment can be further simplified because the pressing device is configured to press only one of the supporting bricks out of both supporting bricks. Further, since the other supporting brick is held by the frame, the reaction force can be absorbed by the frame.
  • the frame includes a pair of main frames arranged corresponding to both ends in the longitudinal direction of the molded body, and a bar spanning the pair of main frames.
  • reaction force can be suitably absorbed by the bar.
  • the frame by providing the frame with a bar, it is possible to eliminate as much as possible the risk of plastic deformation of the frame when absorbing the reaction force.
  • the bars are arranged on both sides of the molded body with the molded body in between.
  • the bars arranged on both sides of the molded body can absorb the reaction force in a well-balanced manner.
  • the bar extends parallel to the longitudinal direction of the molded body.
  • the direction of the pressing force applied when the pressing device presses the supporting brick and the direction in which the bar extends are in the same direction, so that the reaction force can be efficiently absorbed by the frame. can.
  • the pressing device has a lever mechanism configured to press the supporting brick by utilizing the force applied to the force point and then amplified and acting on the point of action, and the bar is a fulcrum of the lever mechanism. It is preferable that they are arranged at the same height as.
  • the pressing device has a lever mechanism, and the pressing device presses the supporting brick by using the force acting on the action point of the lever mechanism, which is advantageous in pressing the supporting brick with a large force. .. Further, since the bar is arranged at the same height as the fulcrum of the lever mechanism, it is possible to efficiently absorb the force in the direction of separation.
  • the glass molding apparatus it is possible to easily adjust the position of the molded body or the like while suppressing creep deformation of the molded body.
  • the glass molding apparatus 1 (hereinafter, simply referred to as a molding apparatus 1) supplies a molded body 4 for molding a glass ribbon 3 from a molten glass 2 and a molten glass 2 to the molded body 4.
  • the molding furnace 9 is arranged inside the frame 10 and the enclosure formed by the frame 10, and is between the refractory brick wall 11 (shown only in FIG. 2) for surrounding the molded body 4 and the frame 10 and the refractory brick wall 11. It is equipped with a heating device 12 (shown only in FIG. 2) arranged in.
  • the frame 10 has a rectangular parallelepiped box-shaped outer shape that is long in the X direction, and also functions as a casing.
  • the frame 10 includes a pair of mainframes 10a and 10b arranged corresponding to both ends of the molded body 4 in the longitudinal direction, and beams 10c and bars 10d bridged over both mainframes 10a and 10b. There is.
  • the frame 10 is made of metal, specifically carbon steel, stainless steel, heat-resistant steel, or the like.
  • the Young's modulus of the metal constituting the frame 10 is preferably 80 GPa or more, and more preferably 150 GPa or more.
  • Each of the two mainframes 10a and 10b has a skeleton structure made by combining a plate body and a rod body extending in each direction of XYZ.
  • the lower portions of both mainframes 10a and 10b hold supporting bricks 6 and 7, respectively.
  • the beams 10c and the bars 10d extend parallel to the longitudinal direction of the compact 4.
  • the beam 10c is equipped with at least four beams, and these four beams correspond to the four sides of the rectangular parallelepiped formed by the outer shape of the frame 10 extending in the X direction.
  • the bars 10d are arranged on both sides of the molded body 4 with the molded body 4 in between. That is, a pair of bars 10d are arranged at intervals in the Y direction. Each of the pair of bars 10d and 10d is arranged at a height located between the beam 10c arranged on the upper side and the beam 10c arranged on the lower side of the four beams 10c. The height at which the pair of bars 10d and 10d are arranged is the same as the height of the fulcrum P3 of the lever mechanism 13 described later. As in the present embodiment, the fulcrum P3 exists at a height located between the upper end and the lower end of the frame 10 (here, a height located between the upper beam 10c and the lower beam 10c).
  • each of the pair of bars 10d and 10d is fixed to the side of both mainframes 10a and 10b. That is, both mainframes 10a and 10b are sandwiched between the pair of bars 10d and 10d.
  • the cross-sectional shape of the bar 10d (the shape of the cross section orthogonal to the X direction) may be any shape, and is, for example, a rectangle or a circle.
  • the bar 10d is not limited to only one pair, and a plurality of pairs may be provided in the frame 10. That is, in addition to the pair of bars 10d and 10d arranged at the same height as the fulcrum P3 of the lever mechanism 13, a pair or a plurality of pairs of bars 10d and 10d arranged at a height different from the fulcrum P3 are placed in the frame 10. It may be equipped. Further, it is not essential that each bar 10d is fixed to the side of both mainframes 10a and 10b. For example, each bar 10d is fixed so as to be interposed between both mainframes 10a and 10b. May be good. In this case, one end of each bar 10d is connected to the main frame 10a, and the other end is connected to the main frame 10b.
  • the refractory brick wall 11 is composed of a plurality of refractory bricks and is formed in a room shape that covers the molded body 4 from above and from the side.
  • the refractory brick wall 11 includes a pair of plate-shaped refractory bricks 11a, 11a arranged at intervals in the Y direction.
  • the pair of plate-shaped refractory bricks 11a, 11a are arranged on both sides of the molded body 4 with the molded body 4 interposed therebetween.
  • Each plate-shaped refractory brick 11a is in contact with both supporting bricks 6 and 7 from the side.
  • the refractory brick wall 11 is held by the frame 10 via a heat insulating member (for example, refractory brick) (not shown).
  • the heating device 12 can heat the molded body 4 from the side via the plate-shaped refractory bricks 11a.
  • the heating device 12 is arranged on both sides of the molded body 4 with the molded body 4 interposed therebetween. Further, a plurality of heating devices 12 are arranged along the longitudinal direction of the molded body 4 on both sides of the molded body 4. Each of the plurality of heating devices 12 is attached to a beam (separate from the above four beams 10c) provided in the frame 10 and is in contact with the plate-shaped refractory bricks 11a.
  • a panel heater is used as the heating device 12.
  • a device other than the panel heater may be used as the heating device 12.
  • the molding furnace 9 is formed with an opening 9a that connects the inside and outside of the furnace.
  • the opening 9a is formed at a position corresponding to the support brick 6, and the opening 9a is in a state where a part of the surface of the support brick 6 is exposed.
  • the molded body 4 is a molded body for the overflow down draw method having a wedge-shaped cross-sectional shape (shape of a cross section orthogonal to the X direction).
  • the molded body 4 is made of refractory bricks such as dense zircon, alumina-based, and zirconia-based.
  • the molten glass 2 overflowing from the groove on both sides is transferred to the pair of side surfaces 4b and 4b of the molded body 4 (FIG. In 1, only one of the pair is displayed), and each is made to flow down. After that, the molten glass 2 flowing down the both side surfaces 4b and 4b is merged at the lower end portion 4c of the molded body 4. Then, the glass ribbon 3 is formed from the molten glass 2 merged at the lower end portion 4c.
  • the dimensions of the molded body 4 along the longitudinal direction are, for example, 1500 mm to 6000 mm. Since the above-mentioned frame 10 is effective when the large-sized molded body 4 is provided, the preferable lower limit of the dimensions along the longitudinal direction of the molded body 4 is 2000 mm or more, 2500 mm or more, 3000 mm or more, 3500 mm or more, particularly 4000 mm. That is all.
  • the supply pipe 5 supplies the molten glass 2 to the molded body 4 from one end in the longitudinal direction thereof.
  • Each of the pair of supporting bricks 6 and 7 presses the molded body 4 in the longitudinal direction while supporting the end portion of the molded body 4 in the longitudinal direction from below. Specifically, both ends of the molded body 4 in the longitudinal direction in the upper part of the molded body 4 are placed on the upper surfaces of the pair of supporting bricks 6 and 7, so that the molded body 4 is supported in a bridged state. There is. Further, each of the pair of support bricks 6 and 7 has a pressing surface S for pressing the molded body 4, and the pressing surface S is in surface contact with the end surface 4d in the longitudinal direction in the lower portion of the molded body 4. Underneath, the molded body 4 is pressed in the longitudinal direction.
  • the pressing surface S of the support bricks 6 and 7 and the end surface 4d of the molded body 4 are both vertical planes, but may be inclined surfaces or may include curved surfaces.
  • the supporting brick 7 is held so as to be immovable along the longitudinal direction of the molded body 4.
  • the support brick 6 can be moved to the molded body 4 side by being pressed by the pressing device 8.
  • the support brick 7 is fixed to the frame 10, and the support brick 6 is held by the frame 10 so as to be movable along the longitudinal direction of the molded body 4.
  • the pressing device 8 is arranged on the side opposite to the supply pipe 5 in the longitudinal direction of the molded body 4.
  • the pressing device 8 presses only the supporting brick 6 out of the pair of supporting bricks 6 and 7. Then, as the pressing device 8 presses the supporting brick 6, the compressive stress in the longitudinal direction is applied to the molded body 4 sandwiched between the supporting bricks 6 and 7. As a result, creep deformation caused by the weight of the molded body 4 and the like is suppressed.
  • the pressing device 8 has a lever mechanism 13 that amplifies the force applied to the force point P1 and exerts it on the action point P2, and an air cylinder 14 as an actuator that is a source of the force applied to the force point P1. Then, the pressing device 8 presses the support brick 6 by utilizing the force acting on the point of action P2.
  • the air cylinder 14 is used as the actuator, but the present invention is not limited to this.
  • a hydraulic cylinder, a mechanical jack, a ball screw mechanism, or the like may be used instead of the air cylinder 14.
  • a weight may be used instead of the actuator.
  • the lever mechanism 13 includes an arm member 15 having a pressure receiving portion 15a and a pressing portion 15b, and a holding member 17 for holding the arm member 15 in a state where the arm member 15 is allowed to swing around the fulcrum P3. ..
  • the arm member 15 is a member that extends vertically and is long in one direction.
  • the pressure receiving portion 15a located on the upper end side of the arm member 15 is a portion that receives a force generated by the air cylinder 14 and is a portion corresponding to the force point P1.
  • the pressing portion 15b located on the lower end side of the arm member 15 is a portion that presses the support brick 6 and is a portion corresponding to the point of action P2.
  • the distance L1 from the fulcrum P3 to the force point P1 is longer than the distance L2 from the fulcrum P3 to the action point P2.
  • the distance L1 is preferably 1.2 to 3.0 times the distance L2.
  • the pressing portion 15b of the arm member 15 is composed of a disk body that can rotate around the shaft 16. That is, the pressing portion 15b is rotatably held at the lower end portion of the arm member 15 by the shaft 16.
  • the shaft 16 extends in parallel with the rod body 17a described later provided in the holding member 17.
  • the holding member 17 is fixed to the outer surface 10e of the frame 10. That is, the lever mechanism 13 is fixed to the outer surface 10e of the frame 10 via the holding member 17.
  • the holding member 17 has a rod body 17a that penetrates the arm member 15 in a state of extending in the Y direction, and the rod body 17a serves as a central axis for the swing of the arm member 15 and also serves as a fulcrum P3 of the lever mechanism 13. Become.
  • the end of the air cylinder 14 (the end located on the side opposite to the tip of the piston rod) is fixed to the pressure receiving portion 15a of the arm member 15.
  • the air cylinder 14 is arranged above the rod body 17a (fulcrum P3) provided on the holding member 17 between the pressure receiving portion 15a of the arm member 15 and the outer surface 10e of the frame 10.
  • the piston rod of the air cylinder 14 is in contact with the outer surface 10e of the frame 10.
  • the piston rod extends in a direction orthogonal to the longitudinal direction of the arm member 15, and its tip (a portion in direct contact with the outer surface 10e of the frame 10) is formed on a convex curved surface.
  • the center of gravity of the air cylinder 14 is located on the side opposite to the outer surface 10e of the frame 10 with respect to the rod body 17a (fulcrum P3) in the X direction. As a result, the air cylinder 14 generates a moment of a clockwise (clockwise in FIG. 1) force around the rod body 17a due to its own weight.
  • the piston rod which is the output unit, pushes the outer surface 10e of the frame 10.
  • the reaction force at this time is used to act on the pressure receiving portion 15a of the arm member 15.
  • the force received by the pressure receiving portion 15a is amplified by the lever mechanism 13 and then becomes a force for pressing the support brick 6.
  • the support brick 6 is further pressed by utilizing the moment of the force due to the weight of the air cylinder 14 described above.
  • the height at which the pair of bars 10d and 10d are arranged does not necessarily have to be the same as the height of the fulcrum P3 of the lever mechanism 13, and may have a difference. From the viewpoint of efficiently absorbing the reaction force, the height at which the pair of bars 10d and 10d are arranged preferably has a difference of 200 mm or less from the height of the fulcrum P3 of the lever mechanism 13, and is 150 mm or less. Is more preferable, and it is even more preferable that the height is the same as the height of the fulcrum P3 of the lever mechanism 13.
  • the height at which the pair of bars 10d and 10d are arranged is the same as the height of the fulcrum P3 of the lever mechanism 13.
  • the following effects can be obtained by the bar 10d when the support brick 6 is pressed by the pressing device 8.
  • a force reaction force
  • a force in a direction away from the molded body 4 acts on a portion of the frame 10 at a height where the fulcrum P3 exists.
  • this force can be efficiently absorbed by the bar 10d arranged at the same height as the fulcrum P3.
  • the holding member 17 provided in the lever mechanism 13 and the air cylinder 14 are arranged outside the molding furnace 9.
  • the arm member 15 provided in the lever mechanism 13 is arranged so as to straddle the inside and outside of the furnace through the opening 9a of the molding furnace 9. Specifically, in the pressure receiving portion 15a of the arm member 15, the entire pressure receiving portion 15a exists outside the molding furnace 9, whereas in the pressing portion 15b of the arm member 15, at least the portion corresponding to the point of action P2 is inside the molding furnace 9. Is entering.
  • a part of the supporting brick 6 is squeezed out of the molding furnace 9 through the opening 9a of the molding furnace 9, and the squeezed out portion is pressed by the pressing portion 15b of the arm member 15. May be configured to press. In this case, the entire pressing portion 15b of the arm member 15 is present outside the molding furnace 9.
  • the pressing device 8 is fixed to the molding furnace 9. Specifically, the pressing device 8 is fixed to the molding furnace 9 by fixing the holding member 17 of the pressing device 8 to the outer surface 10e of the frame 10. Therefore, when adjusting the position of the molding furnace 9, the pressing device 8 having the air cylinder 14, the arm member 15, and the holding member 17 can be moved integrally with the molding furnace 9. Therefore, when adjusting the position of the molded body 4, etc., the work of changing the position of the pressing device 8 becomes unnecessary, and the work becomes easy. Further, the mechanism for changing the position of the pressing device 8 becomes unnecessary, and the equipment configuration can be simplified.
  • the bar 10d provided on the frame 10 extends in parallel with the longitudinal direction of the molded body 4, but as a modification, a form as shown in FIG. 3 may be adopted. .. In the same embodiment, the two bars 10d extend along the diagonal line of the rectangle formed by the frame 10 in the side view. As a further modification, one of the two bars 10d may be omitted.
  • the air cylinder 14 is fixed to the arm member 15, but the air cylinder 14 may be fixed to the molding furnace 9. Further, the fulcrum P3 was positioned above the action point P2 and the force point P1 was positioned above the fulcrum P3, but the fulcrum P3 was positioned below the action point P2 and the force point P1 was positioned below the fulcrum P3. May be good.
  • the actuator air cylinder 14 which is the source of force presses the support brick 6 via the lever mechanism 13, but the actuator (source of force) presses another mechanism.
  • the support brick 6 may be pressed via the actuator, or the actuator may directly press the support brick 6.
  • a weight may be used instead of the actuator. For example, a downward force due to the weight of the weight may be converted laterally by a lever mechanism 13 or the like to press the support brick 6. ..
  • the pressing device 8 of the above embodiment is configured to include one lever mechanism 13, but may include two lever mechanisms. This will be described below.
  • the lever mechanism 13 of the pressing device 8 is composed of an upper first lever mechanism 21 and a lower second lever mechanism 22.
  • the first lever mechanism 21 includes a first arm member 23 provided with an air cylinder 14 and a pressure receiving portion 15a (including a first force point P1a) at the upper end thereof.
  • the second lever mechanism 22 includes a second arm member 24 provided with a pressing portion 15b (including a second working point P2b) at the lower end thereof via a shaft 16.
  • the first fulcrum P3a of the first lever mechanism 21 is composed of a shaft convex portion 25 fixed to the lower end portion of the first arm member 23, and is arranged above the holding member 17.
  • the shaft protrusion 25 does not penetrate the second arm member 24.
  • the first point of action P2a of the first lever mechanism 21 is composed of a rod shaft 27 supported by the vertical intermediate portion of the first arm member 23, and is formed at the upper end portion of the second arm member 24. It is inserted through the long hole 26.
  • the second fulcrum P3b of the second lever mechanism 22 is composed of a shaft 28 of a rod body arranged under the holding member 17, and supports an intermediate portion in the vertical direction of the second arm member 24. Further, the second force point P1b of the second lever mechanism 22 is composed of the shaft 27 of the rod body described above. Therefore, the shaft 27 of the rod body is configured to serve as both the first action point P2a of the first lever mechanism 21 and the second force point P1b of the second lever mechanism 22.
  • the first arm member 23 of the first lever mechanism 21 includes two first arm plates 23a arranged in parallel with a first predetermined interval.
  • the shaft 27 of the rod body which also serves as the first action point P2a and the second force point P1b is fixed across the two first arm plates 23a.
  • the axial convex portion 25 constituting the first fulcrum P3a is projected from the outer surface 23aa of the two first arm plates 23a, respectively.
  • Each of these shaft protrusions 25 is supported by a shaft hole 29 formed in the upper part of the holding member 17.
  • the second arm member 24 of the second lever mechanism 22 includes two second arm plates 24a arranged in parallel with a second predetermined interval smaller than the first predetermined interval. Long holes 26 long in the vertical direction are formed at the upper ends of these two second arm plates 24a, respectively.
  • the shaft 27 of the rod body described above is inserted through these elongated holes 26.
  • the axis 27 of the rod body is allowed to move relative to the longitudinal direction of the elongated hole 26 and is restricted from moving relative to the width direction orthogonal to the long hole 26.
  • Shaft holes 30 are formed in the vertical intermediate portions of the two second arm plates 24a, respectively.
  • the shaft 28 of the rod body constituting the second fulcrum P3b supported under the holding member 17 is fitted into these shaft holes 30.
  • the distance L1a from the first fulcrum P3a to the first force point P1a in the first lever mechanism 21 is, for example, 1.5 to 10 times the distance L2a from the first fulcrum P3a to the first action point P2a.
  • the distance L1b from the second fulcrum P3b to the second force point P1b in the second lever mechanism 22 varies slightly with the rotational movement of the first arm member 23.
  • the distance to P2b is 1.5 to 10 times the distance L2b.
  • the piston rod which is the output unit thereof, pushes the outer surface 10e of the molding furnace 9.
  • the reaction force at this time is utilized to act on the pressure receiving portion 15a (first force point P1a of the first lever mechanism 21) provided at the upper end of the first arm member 23.
  • the force received by the pressure receiving portion 15a is amplified by the first lever mechanism 21, and the moment of the clockwise force is around the shaft convex portion 25 (the first fulcrum P3a of the first lever mechanism 21) of the rod body. It acts on the shaft 27 (first point of action P2a of the first lever mechanism 21).
  • the force acting on the first force point P1a due to the operation of the air cylinder 14 is amplified 1.5 to 10 times by the first lever mechanism 21, and further 1.5 to 10 times by the second lever mechanism 22. Is amplified and applied to the supporting brick 6 from the second point of action P2b. Therefore, according to the molding apparatus 1 according to the fifth embodiment, a stronger pressing force can be applied to the support brick 6 as compared with the case where a single lever mechanism is provided.
  • lever mechanisms 21 and 22 are provided, but three or more lever mechanisms may be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

A glass molding apparatus 1 provided with a molded body 4 for molding a glass ribbon 3 from a molten glass 2 by an overflow downdraw method, supporting bricks 6, 7 for respectively supporting length-direction end parts of the molded body 4 from below in the upper part of the molded body 4 and for pressing the lower part of the molded body 4 in the length direction, a pressing device 8 for pressing the supporting brick 6 toward the molded body 4 side, and a molding furnace 9 in which the molded body 4 is accommodated therein, in which the pressing device 8 is fixed to the molding furnace 9.

Description

ガラス成形装置Glass molding equipment
 本開示は、ガラス成形装置に関する。 This disclosure relates to glass molding equipment.
 周知のように、ガラス板を製造するための手法の一つとして、オーバーフローダウンドロー法がある。特許文献1には、オーバーフローダウンドロー法を実行することが可能な製造設備の一例が開示されている。 As is well known, there is an overflow downdraw method as one of the methods for manufacturing a glass plate. Patent Document 1 discloses an example of a manufacturing facility capable of executing the overflow downdraw method.
 特許文献1に開示された製造設備は、溶融ガラスからガラスリボン(同文献では、シートガラス板SG)を成形する楔状形状の成形体と、成形体をその長手方向の一方端側と他方端側とから挟んだ状態で支持する一対の支持煉瓦(同文献では、第1支持部材410および第2支持部材420)と、一対の支持煉瓦の一方を成形体側に押圧する押圧装置(同文献では、加圧装置422)とを備えている。 The manufacturing equipment disclosed in Patent Document 1 includes a wedge-shaped molded body for molding a glass ribbon (sheet glass plate SG in the same document) from molten glass, and one end side and the other end side of the molded body in the longitudinal direction thereof. A pair of supporting bricks (the first supporting member 410 and the second supporting member 420 in the same document) and a pressing device that presses one of the pair of supporting bricks toward the molded body (in the same document). It is equipped with a pressurizing device 422).
 上記の製造設備では、押圧装置が支持煉瓦を押圧するのに伴い、成形体に長手方向の圧縮応力が作用する。これにより、成形体の自重や溶融ガラスの重み等に起因した成形体のクリープ変形を抑制している。 In the above manufacturing equipment, as the pressing device presses the supporting brick, a compressive stress in the longitudinal direction acts on the molded body. This suppresses creep deformation of the molded body due to the weight of the molded body, the weight of the molten glass, and the like.
国際公開第2012/132309号International Publication No. 2012/132309
 上記のような製造設備では、操業前や操業中に成形体や成形体を収容する成形炉を移動させて位置を調整する場合がある。この場合、押圧装置が例えば建屋に固定されていると、成形体等の移動に応じて押圧装置の位置を変更する必要がある。このため、成形体等の位置を調整する作業が煩雑となる。また、押圧装置の位置を変更する機構が必要となり、設備構成が煩雑となる。 In the above manufacturing equipment, the position may be adjusted by moving the molded body or the molding furnace that houses the molded body before or during the operation. In this case, if the pressing device is fixed to the building, for example, it is necessary to change the position of the pressing device according to the movement of the molded body or the like. Therefore, the work of adjusting the position of the molded body or the like becomes complicated. In addition, a mechanism for changing the position of the pressing device is required, which complicates the equipment configuration.
 上述の事情に鑑みて解決すべき技術的な課題は、成形体のクリープ変形を抑制しながら、成形体等の位置調整を容易に行える製造設備を提供することである。 The technical problem to be solved in view of the above circumstances is to provide a manufacturing facility capable of easily adjusting the position of the molded body while suppressing creep deformation of the molded body.
 上記の課題を解決するためのガラス成形装置は、オーバーフローダウンドロー法により溶融ガラスからガラスリボンを成形する成形体と、成形体の上部における成形体の長手方向の端部を下方から支持すると共に成形体の下部を長手方向に押圧する支持煉瓦と、支持煉瓦を成形体側に押圧する押圧装置と、成形体を内部に収容する成形炉と、を備えるガラス成形装置であって、押圧装置は、成形炉に固定されていることを特徴とする。 The glass molding apparatus for solving the above problems supports and molds a molded body that molds a glass ribbon from molten glass by an overflow down draw method and a longitudinal end portion of the molded body in the upper part of the molded body from below. It is a glass molding device including a support brick that presses the lower part of the body in the longitudinal direction, a pressing device that presses the support brick toward the molded body side, and a molding furnace that houses the molded body inside, and the pressing device is molding. It is characterized by being fixed to the furnace.
 本ガラス成形装置においては、押圧装置が成形炉に固定されていることから、成形炉と共に押圧装置が移動する。このため、成形体等の位置を調整する際に、押圧装置の位置を変更する作業が不要となり、作業が容易となる。また、押圧装置の位置を変更する機構が不要となり、設備構成を簡略化できる。 In this glass molding device, since the pressing device is fixed to the molding furnace, the pressing device moves together with the molding furnace. Therefore, when adjusting the position of the molded body or the like, the work of changing the position of the pressing device becomes unnecessary, and the work becomes easy. In addition, a mechanism for changing the position of the pressing device becomes unnecessary, and the equipment configuration can be simplified.
 上記の構成では、成形炉が、成形体を囲繞する耐火煉瓦壁と、成形体を側方から加熱する加熱装置と、耐火煉瓦壁および加熱装置を囲い且つ押圧装置が固定されるフレームと、を有することが好ましい。 In the above configuration, the molding furnace has a refractory brick wall surrounding the molded body, a heating device for heating the molded body from the side, and a frame surrounding the refractory brick wall and the heating device and to which the pressing device is fixed. It is preferable to have.
 このようにすれば、成形体のクリープ変形を抑制するに際して、押圧装置が支持煉瓦を成形体側に押圧した際に、その反力をフレームに吸収させることが可能となる。なお、フレームが耐火煉瓦壁および加熱装置の両者を囲っており、フレームが両者の外側に配置されているので、フレームが熱で損傷したりする事態の発生についても回避できる。 By doing so, when the pressing device presses the supporting brick toward the molded body when suppressing the creep deformation of the molded body, the reaction force can be absorbed by the frame. Since the frame surrounds both the refractory brick wall and the heating device and the frame is arranged outside the two, it is possible to avoid the occurrence of a situation where the frame is damaged by heat.
 上記の構成では、支持煉瓦が、成形体の長手方向の一方端側と他方端側との両方に配置され、押圧装置が、両方の支持煉瓦のうち、一方の支持煉瓦のみを押圧するように構成され、両方の支持煉瓦のうち、他方の支持煉瓦が、フレームに保持されていることが好ましい。 In the above configuration, the supporting bricks are arranged on both one end side and the other end side in the longitudinal direction of the molded body so that the pressing device presses only one supporting brick of both supporting bricks. Of the two supporting bricks configured, the other supporting brick is preferably held by the frame.
 このようにすれば、押圧装置が、両方の支持煉瓦のうち、一方の支持煉瓦のみを押圧する構成であることから、設備の構造を更に簡素にできる。また、他方の支持煉瓦が、フレームに保持されているので、反力をフレームに吸収させることが可能となる。 By doing so, the structure of the equipment can be further simplified because the pressing device is configured to press only one of the supporting bricks out of both supporting bricks. Further, since the other supporting brick is held by the frame, the reaction force can be absorbed by the frame.
 上記の構成では、フレームが、成形体の長手方向における両端部にそれぞれ対応して配置された一対のメインフレームと、一対のメインフレームに架け渡されたバーと、を備えていることが好ましい。 In the above configuration, it is preferable that the frame includes a pair of main frames arranged corresponding to both ends in the longitudinal direction of the molded body, and a bar spanning the pair of main frames.
 このようにすれば、反力をバーで好適に吸収することが可能となる。その上、フレームにバーが備わることで、反力を吸収させるにあたりフレームが塑性変形するような恐れを可及的に排除できる。 By doing so, the reaction force can be suitably absorbed by the bar. Moreover, by providing the frame with a bar, it is possible to eliminate as much as possible the risk of plastic deformation of the frame when absorbing the reaction force.
 上記の構成では、バーが、成形体を間に挟んで成形体の両側方に配置されていることが好ましい。 In the above configuration, it is preferable that the bars are arranged on both sides of the molded body with the molded body in between.
 このようにすれば、成形体の両側方(成形体を間に挟んだ一方側と他方側)に配置されたバーがバランスよく反力を吸収することが可能となる。 By doing so, the bars arranged on both sides of the molded body (one side and the other side sandwiching the molded body) can absorb the reaction force in a well-balanced manner.
 上記の構成では、バーが、成形体の長手方向と平行に延びていることが好ましい。 In the above configuration, it is preferable that the bar extends parallel to the longitudinal direction of the molded body.
 このようにすれば、押圧装置が支持煉瓦を押圧した際に負荷される押圧力の方向と、バーの延びる方向とが同方向になることから、効率的に反力をフレームに吸収させることができる。 By doing so, the direction of the pressing force applied when the pressing device presses the supporting brick and the direction in which the bar extends are in the same direction, so that the reaction force can be efficiently absorbed by the frame. can.
 上記の構成では、押圧装置は、力点に加えられたのち増幅されて作用点に働く力を利用して支持煉瓦を押圧するように構成される梃子機構を有し、バーが、梃子機構の支点と同じ高さに配置されていることが好ましい。 In the above configuration, the pressing device has a lever mechanism configured to press the supporting brick by utilizing the force applied to the force point and then amplified and acting on the point of action, and the bar is a fulcrum of the lever mechanism. It is preferable that they are arranged at the same height as.
 このようにすれば、押圧装置が梃子機構を有し、押圧装置が梃子機構の作用点に働く力を利用して支持煉瓦を押圧するため、支持煉瓦を大きな力で押圧する上で有利となる。また、バーが梃子機構の支点と同じ高さに配置されていることで、離反する向きの力を効率的に吸収することが可能となる。 In this way, the pressing device has a lever mechanism, and the pressing device presses the supporting brick by using the force acting on the action point of the lever mechanism, which is advantageous in pressing the supporting brick with a large force. .. Further, since the bar is arranged at the same height as the fulcrum of the lever mechanism, it is possible to efficiently absorb the force in the direction of separation.
 本開示に係るガラス成形装置によれば、成形体のクリープ変形を抑制しながら、成形体等の位置調整を容易に行うことが可能である。 According to the glass molding apparatus according to the present disclosure, it is possible to easily adjust the position of the molded body or the like while suppressing creep deformation of the molded body.
ガラス成形装置を示す側面図である。It is a side view which shows the glass molding apparatus. 図1におけるA-A断面を示す断面図である。It is sectional drawing which shows the AA cross section in FIG. ガラス成形装置の一の変形例を示す側面図である。It is a side view which shows the modification of one of the glass molding apparatus. ガラス成形装置の他の変形例を示す側面図である。It is a side view which shows the other modification of the glass molding apparatus. ガラス成形装置の他の変形例の一部構成を示す部品分解配列図である。It is a part disassembly arrangement diagram which shows the partial structure of another modification of a glass molding apparatus.
 以下、実施形態に係るガラス成形装置について添付の図面を参照しながら説明する。なお、実施形態の説明で参照する各図面に表示したX方向、Y方向、及びZ方向は、互いに直交する方向である。 Hereinafter, the glass molding apparatus according to the embodiment will be described with reference to the attached drawings. The X, Y, and Z directions displayed in the drawings referred to in the description of the embodiment are orthogonal to each other.
 図1及び図2に示すように、ガラス成形装置1(以下、単に成形装置1と表記)は、溶融ガラス2からガラスリボン3を成形する成形体4と、成形体4に溶融ガラス2を供給する供給パイプ5と、成形体4を支持する一対の支持煉瓦6,7と、両支持煉瓦6,7のうちの支持煉瓦6を成形体4側に押圧する押圧装置8と、成形体4を内部に収容する成形炉9とを備えている。 As shown in FIGS. 1 and 2, the glass molding apparatus 1 (hereinafter, simply referred to as a molding apparatus 1) supplies a molded body 4 for molding a glass ribbon 3 from a molten glass 2 and a molten glass 2 to the molded body 4. A supply pipe 5 to be formed, a pair of supporting bricks 6 and 7 supporting the molded body 4, a pressing device 8 for pressing the supporting brick 6 out of both supporting bricks 6 and 7 toward the molded body 4, and the molded body 4. It is equipped with a molding furnace 9 to be housed inside.
 成形炉9の内部には、成形体4及び両支持煉瓦6,7が配置される。成形炉9は、フレーム10と、フレーム10による囲いの内側に配置され、成形体4を囲繞するための耐火煉瓦壁11(図2にのみ図示)と、フレーム10と耐火煉瓦壁11との間に配置される加熱装置12(図2にのみ図示)とを備えている。 Inside the molding furnace 9, the molded body 4 and the double-supported bricks 6 and 7 are arranged. The molding furnace 9 is arranged inside the frame 10 and the enclosure formed by the frame 10, and is between the refractory brick wall 11 (shown only in FIG. 2) for surrounding the molded body 4 and the frame 10 and the refractory brick wall 11. It is equipped with a heating device 12 (shown only in FIG. 2) arranged in.
 フレーム10は、X方向に長尺な直方体状の箱型の外形を有し、ケーシングとしても機能する。フレーム10は、成形体4の長手方向における両端部にそれぞれ対応して配置された一対のメインフレーム10a,10bと、両メインフレーム10a,10bに架け渡された梁10cおよびバー10dとを備えている。フレーム10は金属で構成され、具体的には炭素鋼やステンレス鋼、耐熱鋼等により構成される。フレーム10を構成する金属のヤング率は、好ましくは80GPa以上であり、更に好ましくは150GPa以上である。 The frame 10 has a rectangular parallelepiped box-shaped outer shape that is long in the X direction, and also functions as a casing. The frame 10 includes a pair of mainframes 10a and 10b arranged corresponding to both ends of the molded body 4 in the longitudinal direction, and beams 10c and bars 10d bridged over both mainframes 10a and 10b. There is. The frame 10 is made of metal, specifically carbon steel, stainless steel, heat-resistant steel, or the like. The Young's modulus of the metal constituting the frame 10 is preferably 80 GPa or more, and more preferably 150 GPa or more.
 両メインフレーム10a,10bの各々は、板体やXYZの各方向に延びる棒体を組み合わせて作製された骨組構造を有する。両メインフレーム10a,10bの下部は、それぞれ支持煉瓦6,7を保持している。梁10cおよびバー10dは、成形体4の長手方向と平行に延びている。 Each of the two mainframes 10a and 10b has a skeleton structure made by combining a plate body and a rod body extending in each direction of XYZ. The lower portions of both mainframes 10a and 10b hold supporting bricks 6 and 7, respectively. The beams 10c and the bars 10d extend parallel to the longitudinal direction of the compact 4.
 梁10cは少なくとも四本が備わっており、この四本はフレーム10の外形がなす直方体のX方向に延びる四辺にそれぞれ相当する。 The beam 10c is equipped with at least four beams, and these four beams correspond to the four sides of the rectangular parallelepiped formed by the outer shape of the frame 10 extending in the X direction.
 バー10dは、成形体4を間に挟んで成形体4の両側方に配置されている。つまり、バー10dは、Y方向に間隔を空けて一対が配置されている。一対のバー10d,10dの各々は、上記四本の梁10cのうち、上側に配置された梁10cと下側に配置された梁10cとの相互間に位置する高さに配置されている。この一対のバー10d,10dが配置された高さは、後述する梃子機構13の支点P3と同じ高さとなっている。なお、本実施形態のごとく、フレーム10の上端と下端との間に位置する高さ(ここでは、上側の梁10cと下側の梁10cとの間に位置する高さ)に支点P3が存在する場合に、バー10dと支点P3との高さを揃えることで、バー10dはその機能を効果的に発揮する(詳細は後述)。一対のバー10d,10dの各々は、両メインフレーム10a,10bの側方に固定されている。つまり、一対のバー10d,10dの相互間に両メインフレーム10a,10bが挟まれた状態となっている。バー10dの断面形状(X方向に直交する断面の形状)は任意の形状であってよく、一例として矩形や円形である。 The bars 10d are arranged on both sides of the molded body 4 with the molded body 4 in between. That is, a pair of bars 10d are arranged at intervals in the Y direction. Each of the pair of bars 10d and 10d is arranged at a height located between the beam 10c arranged on the upper side and the beam 10c arranged on the lower side of the four beams 10c. The height at which the pair of bars 10d and 10d are arranged is the same as the height of the fulcrum P3 of the lever mechanism 13 described later. As in the present embodiment, the fulcrum P3 exists at a height located between the upper end and the lower end of the frame 10 (here, a height located between the upper beam 10c and the lower beam 10c). In this case, by aligning the heights of the bar 10d and the fulcrum P3, the bar 10d effectively exerts its function (details will be described later). Each of the pair of bars 10d and 10d is fixed to the side of both mainframes 10a and 10b. That is, both mainframes 10a and 10b are sandwiched between the pair of bars 10d and 10d. The cross-sectional shape of the bar 10d (the shape of the cross section orthogonal to the X direction) may be any shape, and is, for example, a rectangle or a circle.
 ここで、本実施形態の変形例として、バー10dは、一対のみに限ることなく、複数対がフレーム10に備わっていてもよい。すなわち、梃子機構13の支点P3と同じ高さに配置された一対のバー10d,10dの他に、支点P3とは異なる高さに配置された一対または複数対のバー10d,10dがフレーム10に備わっていてもよい。また、各バー10dは、両メインフレーム10a,10bの側方に固定されることが必須ではなく、例えば、両メインフレーム10a,10bの相互間に各バー10dが介在した状態で固定されていてもよい。この場合、各バー10dの一端がメインフレーム10aに連結され、他端がメインフレーム10bに連結される。 Here, as a modification of the present embodiment, the bar 10d is not limited to only one pair, and a plurality of pairs may be provided in the frame 10. That is, in addition to the pair of bars 10d and 10d arranged at the same height as the fulcrum P3 of the lever mechanism 13, a pair or a plurality of pairs of bars 10d and 10d arranged at a height different from the fulcrum P3 are placed in the frame 10. It may be equipped. Further, it is not essential that each bar 10d is fixed to the side of both mainframes 10a and 10b. For example, each bar 10d is fixed so as to be interposed between both mainframes 10a and 10b. May be good. In this case, one end of each bar 10d is connected to the main frame 10a, and the other end is connected to the main frame 10b.
 耐火煉瓦壁11は、複数の耐火煉瓦で構成されると共に、成形体4を上方および側方から覆う部屋状に形成されている。耐火煉瓦壁11には、Y方向に間隔を空けて配置された一対の板状耐火煉瓦11a,11aが含まれている。一対の板状耐火煉瓦11a,11aは、成形体4を間に挟んで成形体4の両側方に配置されている。各板状耐火煉瓦11aは、両支持煉瓦6,7に対して側方から接触している。耐火煉瓦壁11は、図示しない断熱部材(例えば耐火煉瓦)を介してフレーム10に保持されている。 The refractory brick wall 11 is composed of a plurality of refractory bricks and is formed in a room shape that covers the molded body 4 from above and from the side. The refractory brick wall 11 includes a pair of plate-shaped refractory bricks 11a, 11a arranged at intervals in the Y direction. The pair of plate-shaped refractory bricks 11a, 11a are arranged on both sides of the molded body 4 with the molded body 4 interposed therebetween. Each plate-shaped refractory brick 11a is in contact with both supporting bricks 6 and 7 from the side. The refractory brick wall 11 is held by the frame 10 via a heat insulating member (for example, refractory brick) (not shown).
 加熱装置12は、板状耐火煉瓦11aを介して成形体4を側方から加熱することが可能である。加熱装置12は、成形体4を間に挟んで成形体4の両側方に配置されている。さらに、加熱装置12は、成形体4を間に挟む両側において、成形体4の長手方向に沿って複数が並べられている。複数の加熱装置12の各々は、フレーム10に備わった図示省略の梁(上記四本の梁10cとは別)に取り付けられ状態で板状耐火煉瓦11aに接触している。本実施形態では、加熱装置12としてパネルヒーターを用いている。勿論この限りではなく、本実施形態の変形例として、パネルヒーター以外のものを加熱装置12として用いてもよい。 The heating device 12 can heat the molded body 4 from the side via the plate-shaped refractory bricks 11a. The heating device 12 is arranged on both sides of the molded body 4 with the molded body 4 interposed therebetween. Further, a plurality of heating devices 12 are arranged along the longitudinal direction of the molded body 4 on both sides of the molded body 4. Each of the plurality of heating devices 12 is attached to a beam (separate from the above four beams 10c) provided in the frame 10 and is in contact with the plate-shaped refractory bricks 11a. In this embodiment, a panel heater is used as the heating device 12. Of course, this is not limited to this, and as a modification of the present embodiment, a device other than the panel heater may be used as the heating device 12.
 成形炉9には、炉の内外を連続させる開口部9aが形成されている。開口部9aは、支持煉瓦6に対応する位置に形成されており、開口部9aでは、支持煉瓦6の表面の一部が露出した状態となっている。 The molding furnace 9 is formed with an opening 9a that connects the inside and outside of the furnace. The opening 9a is formed at a position corresponding to the support brick 6, and the opening 9a is in a state where a part of the surface of the support brick 6 is exposed.
 成形体4は、楔状の断面形状(X方向と直交する断面の形状)を有するオーバーフローダウンドロー法用の成形体である。成形体4は、デンスジルコンやアルミナ系、ジルコニア系等の耐火煉瓦により構成される。 The molded body 4 is a molded body for the overflow down draw method having a wedge-shaped cross-sectional shape (shape of a cross section orthogonal to the X direction). The molded body 4 is made of refractory bricks such as dense zircon, alumina-based, and zirconia-based.
 成形体4は、その上部に形成された溝(図示なし)に溶融ガラス2を流入させたのち、溝から両側方に溢れ出た溶融ガラス2を成形体4の一対の側面4b,4b(図1では一対の一方のみ表示)に沿ってそれぞれ流下させる。その後、両側面4b,4bをそれぞれ流下した溶融ガラス2を成形体4の下端部4cで合流させる。そして、下端部4cで合流した溶融ガラス2からガラスリボン3が成形される。 In the molded body 4, after the molten glass 2 is poured into a groove (not shown) formed in the upper portion thereof, the molten glass 2 overflowing from the groove on both sides is transferred to the pair of side surfaces 4b and 4b of the molded body 4 (FIG. In 1, only one of the pair is displayed), and each is made to flow down. After that, the molten glass 2 flowing down the both side surfaces 4b and 4b is merged at the lower end portion 4c of the molded body 4. Then, the glass ribbon 3 is formed from the molten glass 2 merged at the lower end portion 4c.
 成形体4の長手方向に沿った寸法は、例えば1500mm~6000mmである。大型の成形体4を備えている場合に上述のフレーム10は有効であるので、成形体4の長手方向に沿った寸法の好ましい下限は、2000mm以上、2500mm以上、3000mm以上、3500mm以上、特に4000mm以上である。 The dimensions of the molded body 4 along the longitudinal direction are, for example, 1500 mm to 6000 mm. Since the above-mentioned frame 10 is effective when the large-sized molded body 4 is provided, the preferable lower limit of the dimensions along the longitudinal direction of the molded body 4 is 2000 mm or more, 2500 mm or more, 3000 mm or more, 3500 mm or more, particularly 4000 mm. That is all.
 供給パイプ5は、成形体4にその長手方向の一端から溶融ガラス2を供給する。 The supply pipe 5 supplies the molten glass 2 to the molded body 4 from one end in the longitudinal direction thereof.
 一対の支持煉瓦6,7の各々は、成形体4の長手方向における端部を下方から支持しながら成形体4を長手方向に押圧している。詳細には、成形体4の上部における成形体4の長手方向の両端部が一対の支持煉瓦6,7の上面に載置されることにより、架け渡された状態で成形体4が支持されている。また、一対の支持煉瓦6,7の各々は、成形体4を押圧するための押圧面Sを有し、この押圧面Sを成形体4の下部における長手方向の端面4dに面接触させた状態の下、成形体4を長手方向に押圧している。なお、両支持煉瓦6,7の押圧面Sおよび成形体4の端面4dは、いずれも鉛直な平面であるが、傾斜面であってもよく、曲面を含んでもよい。両支持煉瓦6,7のうち、支持煉瓦7は、成形体4の長手方向に沿う移動が不能となるように保持されている。一方、支持煉瓦6は、押圧装置8による押圧に伴って成形体4側に移動させることが可能となっている。本実施形態では、支持煉瓦7は、フレーム10に固定されており、支持煉瓦6は、成形体4の長手方向に沿って移動可能にフレーム10に保持されている。 Each of the pair of supporting bricks 6 and 7 presses the molded body 4 in the longitudinal direction while supporting the end portion of the molded body 4 in the longitudinal direction from below. Specifically, both ends of the molded body 4 in the longitudinal direction in the upper part of the molded body 4 are placed on the upper surfaces of the pair of supporting bricks 6 and 7, so that the molded body 4 is supported in a bridged state. There is. Further, each of the pair of support bricks 6 and 7 has a pressing surface S for pressing the molded body 4, and the pressing surface S is in surface contact with the end surface 4d in the longitudinal direction in the lower portion of the molded body 4. Underneath, the molded body 4 is pressed in the longitudinal direction. The pressing surface S of the support bricks 6 and 7 and the end surface 4d of the molded body 4 are both vertical planes, but may be inclined surfaces or may include curved surfaces. Of the both supporting bricks 6 and 7, the supporting brick 7 is held so as to be immovable along the longitudinal direction of the molded body 4. On the other hand, the support brick 6 can be moved to the molded body 4 side by being pressed by the pressing device 8. In the present embodiment, the support brick 7 is fixed to the frame 10, and the support brick 6 is held by the frame 10 so as to be movable along the longitudinal direction of the molded body 4.
 押圧装置8は、成形体4の長手方向において供給パイプ5とは反対側に配置されている。押圧装置8は、一対の支持煉瓦6,7のうち、支持煉瓦6のみを押圧する。そして、押圧装置8は、支持煉瓦6を押圧するのに伴い、両支持煉瓦6,7に挟まれた成形体4に長手方向の圧縮応力を作用させる。これにより、成形体4の自重等に起因したクリープ変形を抑制する。 The pressing device 8 is arranged on the side opposite to the supply pipe 5 in the longitudinal direction of the molded body 4. The pressing device 8 presses only the supporting brick 6 out of the pair of supporting bricks 6 and 7. Then, as the pressing device 8 presses the supporting brick 6, the compressive stress in the longitudinal direction is applied to the molded body 4 sandwiched between the supporting bricks 6 and 7. As a result, creep deformation caused by the weight of the molded body 4 and the like is suppressed.
 押圧装置8は、力点P1に加えられた力を増幅させて作用点P2に働かせる梃子機構13と、力点P1に加えられる力の発生源となるアクチュエータとしてのエアシリンダー14とを有する。そして、押圧装置8は、作用点P2に働く力を利用して支持煉瓦6を押圧する。 The pressing device 8 has a lever mechanism 13 that amplifies the force applied to the force point P1 and exerts it on the action point P2, and an air cylinder 14 as an actuator that is a source of the force applied to the force point P1. Then, the pressing device 8 presses the support brick 6 by utilizing the force acting on the point of action P2.
 ここで、本実施形態では、アクチュエータとしてエアシリンダー14を用いているが、これに限定されるものではない。本実施形態の変形例として、エアシリンダー14の代わりに、油圧シリンダー、機械式ジャッキ、ボールネジ機構等を用いてもよい。また、力の発生源として、アクチュエータに代えて錘を用いてもよい。 Here, in the present embodiment, the air cylinder 14 is used as the actuator, but the present invention is not limited to this. As a modification of the present embodiment, a hydraulic cylinder, a mechanical jack, a ball screw mechanism, or the like may be used instead of the air cylinder 14. Further, as a force generation source, a weight may be used instead of the actuator.
 梃子機構13は、受圧部15aおよび押圧部15bを有するアーム部材15と、支点P3を中心としたアーム部材15の揺動を許容した状態でアーム部材15を保持する保持部材17とを備えている。 The lever mechanism 13 includes an arm member 15 having a pressure receiving portion 15a and a pressing portion 15b, and a holding member 17 for holding the arm member 15 in a state where the arm member 15 is allowed to swing around the fulcrum P3. ..
 アーム部材15は、上下に延びた一方向に長尺な部材となっている。アーム部材15の上端側に位置する受圧部15aは、エアシリンダー14を発生源とする力を受ける部位であり、且つ、力点P1に対応する部位である。一方、アーム部材15の下端側に位置する押圧部15bは、支持煉瓦6を押圧する部位であり、且つ、作用点P2に対応する部位である。支点P3から力点P1までの距離L1は、支点P3から作用点P2までの距離L2よりも長くなっている。距離L1は、距離L2の1.2~3.0倍とすることが好ましい。 The arm member 15 is a member that extends vertically and is long in one direction. The pressure receiving portion 15a located on the upper end side of the arm member 15 is a portion that receives a force generated by the air cylinder 14 and is a portion corresponding to the force point P1. On the other hand, the pressing portion 15b located on the lower end side of the arm member 15 is a portion that presses the support brick 6 and is a portion corresponding to the point of action P2. The distance L1 from the fulcrum P3 to the force point P1 is longer than the distance L2 from the fulcrum P3 to the action point P2. The distance L1 is preferably 1.2 to 3.0 times the distance L2.
 アーム部材15の押圧部15bは、軸16の周りで回転自在な円盤体で構成される。つまり、軸16により、アーム部材15の下端部にて押圧部15bが回転自在に保持されている。軸16は、保持部材17に備わった後述の棒体17aと平行に延びている。 The pressing portion 15b of the arm member 15 is composed of a disk body that can rotate around the shaft 16. That is, the pressing portion 15b is rotatably held at the lower end portion of the arm member 15 by the shaft 16. The shaft 16 extends in parallel with the rod body 17a described later provided in the holding member 17.
 保持部材17は、フレーム10の外面10eに対して固定されている。つまり、梃子機構13は、保持部材17を介してフレーム10の外面10eに固定された状態にある。保持部材17は、Y方向に延びた状態でアーム部材15を貫通する棒体17aを有し、当該棒体17aがアーム部材15の揺動の中心軸となると共に、梃子機構13の支点P3となる。 The holding member 17 is fixed to the outer surface 10e of the frame 10. That is, the lever mechanism 13 is fixed to the outer surface 10e of the frame 10 via the holding member 17. The holding member 17 has a rod body 17a that penetrates the arm member 15 in a state of extending in the Y direction, and the rod body 17a serves as a central axis for the swing of the arm member 15 and also serves as a fulcrum P3 of the lever mechanism 13. Become.
 エアシリンダー14は、その端部(ピストンロッドの先端とは反対側に位置した端部)がアーム部材15の受圧部15aに固定されている。エアシリンダー14は、保持部材17に備わった棒体17a(支点P3)よりも上方において、アーム部材15の受圧部15aとフレーム10の外面10eとの相互間に配置されている。 The end of the air cylinder 14 (the end located on the side opposite to the tip of the piston rod) is fixed to the pressure receiving portion 15a of the arm member 15. The air cylinder 14 is arranged above the rod body 17a (fulcrum P3) provided on the holding member 17 between the pressure receiving portion 15a of the arm member 15 and the outer surface 10e of the frame 10.
 エアシリンダー14のピストンロッドは、フレーム10の外面10eに接触した状態となっている。ピストンロッドは、アーム部材15の長手方向と直交する方向に延びており、その先端(フレーム10の外面10eと直接に接触する箇所)が凸湾曲面に形成されている。 The piston rod of the air cylinder 14 is in contact with the outer surface 10e of the frame 10. The piston rod extends in a direction orthogonal to the longitudinal direction of the arm member 15, and its tip (a portion in direct contact with the outer surface 10e of the frame 10) is formed on a convex curved surface.
 エアシリンダー14の重心は、X方向において、棒体17a(支点P3)を基準としてフレーム10の外面10eとは反対側に位置している。これにより、エアシリンダー14は、自重により棒体17aの周りで時計回り(図1において時計回り)の力のモーメントを発生させている。 The center of gravity of the air cylinder 14 is located on the side opposite to the outer surface 10e of the frame 10 with respect to the rod body 17a (fulcrum P3) in the X direction. As a result, the air cylinder 14 generates a moment of a clockwise (clockwise in FIG. 1) force around the rod body 17a due to its own weight.
 エアシリンダー14が稼働すると、その出力部であるピストンロッドがフレーム10の外面10eを押す。この際の反力が利用されてアーム部材15の受圧部15aに力が作用する。そして、受圧部15aが受けた力が梃子機構13により増幅された上で支持煉瓦6を押圧する力となる。加えて、上述したエアシリンダー14の自重による力のモーメントが利用されて支持煉瓦6が更に押圧される。 When the air cylinder 14 operates, the piston rod, which is the output unit, pushes the outer surface 10e of the frame 10. The reaction force at this time is used to act on the pressure receiving portion 15a of the arm member 15. Then, the force received by the pressure receiving portion 15a is amplified by the lever mechanism 13 and then becomes a force for pressing the support brick 6. In addition, the support brick 6 is further pressed by utilizing the moment of the force due to the weight of the air cylinder 14 described above.
 一対のバー10d,10dが配置された高さは、梃子機構13の支点P3の高さと必ずしも同じでなくてもよく、差を有してもよい。反力を効率的に吸収する観点から、一対のバー10d,10dが配置された高さは、梃子機構13の支点P3の高さとの差が200mm以下であることが好ましく、150mm以下であることがより好ましく、梃子機構13の支点P3の高さと同じであることがさらにより好ましい。 The height at which the pair of bars 10d and 10d are arranged does not necessarily have to be the same as the height of the fulcrum P3 of the lever mechanism 13, and may have a difference. From the viewpoint of efficiently absorbing the reaction force, the height at which the pair of bars 10d and 10d are arranged preferably has a difference of 200 mm or less from the height of the fulcrum P3 of the lever mechanism 13, and is 150 mm or less. Is more preferable, and it is even more preferable that the height is the same as the height of the fulcrum P3 of the lever mechanism 13.
 ここで、上述のとおり、一対のバー10d,10dが配置された高さは、梃子機構13の支点P3と同じ高さとなっている。これにより、押圧装置8による支持煉瓦6の押圧時に、バー10dにより下記の効果が得られる。支持煉瓦6が押圧装置8により押圧されると、フレーム10における支点P3が存する高さにあたる部位には、成形体4から離反する向きの力(反力)が作用する。しかしながら、支点P3と同じ高さに配置されたバー10dにより、この力を効率的に吸収することができる。 Here, as described above, the height at which the pair of bars 10d and 10d are arranged is the same as the height of the fulcrum P3 of the lever mechanism 13. As a result, the following effects can be obtained by the bar 10d when the support brick 6 is pressed by the pressing device 8. When the support brick 6 is pressed by the pressing device 8, a force (reaction force) in a direction away from the molded body 4 acts on a portion of the frame 10 at a height where the fulcrum P3 exists. However, this force can be efficiently absorbed by the bar 10d arranged at the same height as the fulcrum P3.
 梃子機構13に備わった保持部材17、及び、エアシリンダー14は、成形炉9の外に配置されている。一方、梃子機構13に備わったアーム部材15は、成形炉9の開口部9aを通じて炉の内外に跨るように配置されている。詳細には、アーム部材15の受圧部15aは、受圧部15aの全体が成形炉9外に存在するのに対し、アーム部材15の押圧部15bは、少なくとも作用点P2にあたる箇所が成形炉9内に進入している。 The holding member 17 provided in the lever mechanism 13 and the air cylinder 14 are arranged outside the molding furnace 9. On the other hand, the arm member 15 provided in the lever mechanism 13 is arranged so as to straddle the inside and outside of the furnace through the opening 9a of the molding furnace 9. Specifically, in the pressure receiving portion 15a of the arm member 15, the entire pressure receiving portion 15a exists outside the molding furnace 9, whereas in the pressing portion 15b of the arm member 15, at least the portion corresponding to the point of action P2 is inside the molding furnace 9. Is entering.
 ここで、本実施形態の変形例として、成形炉9の開口部9aを通じて支持煉瓦6の一部を成形炉9の外に食み出させ、食み出した部位をアーム部材15の押圧部15bが押圧するように構成されていてもよい。この場合、アーム部材15の押圧部15bの全体が成形炉9外に存在する状態となる。 Here, as a modification of the present embodiment, a part of the supporting brick 6 is squeezed out of the molding furnace 9 through the opening 9a of the molding furnace 9, and the squeezed out portion is pressed by the pressing portion 15b of the arm member 15. May be configured to press. In this case, the entire pressing portion 15b of the arm member 15 is present outside the molding furnace 9.
 以下、上記の成形装置1による主たる作用・効果について説明する。 Hereinafter, the main actions / effects of the above-mentioned molding apparatus 1 will be described.
 上記の成形装置1では、押圧装置8が成形炉9に固定されている。具体的には、押圧装置8の保持部材17をフレーム10の外面10eに対して固定することで、押圧装置8が成形炉9に固定されている。このため、成形炉9の位置を調整する際には、エアシリンダー14、アーム部材15、及び保持部材17を有する押圧装置8を、成形炉9と一体に移動させることが可能である。このため、成形体4等の位置を調整する際に、押圧装置8の位置を変更する作業が不要となり、作業が容易となる。また、押圧装置8の位置を変更する機構が不要となり、設備構成を簡略化できる。 In the molding device 1 described above, the pressing device 8 is fixed to the molding furnace 9. Specifically, the pressing device 8 is fixed to the molding furnace 9 by fixing the holding member 17 of the pressing device 8 to the outer surface 10e of the frame 10. Therefore, when adjusting the position of the molding furnace 9, the pressing device 8 having the air cylinder 14, the arm member 15, and the holding member 17 can be moved integrally with the molding furnace 9. Therefore, when adjusting the position of the molded body 4, etc., the work of changing the position of the pressing device 8 becomes unnecessary, and the work becomes easy. Further, the mechanism for changing the position of the pressing device 8 becomes unnecessary, and the equipment configuration can be simplified.
 ここで、上記の実施形態には、以下のような変形例を適用することも可能である。 Here, it is also possible to apply the following modification to the above embodiment.
 上記の実施形態においては、フレーム10に備わったバー10dが、成形体4の長手方向と平行に延びる形態になっているが、変形例として、図3に示すような形態を採用してもよい。同形態においては、側面視でフレーム10がなす矩形の対角線に沿って二本のバー10dが延びている。なお、更なる変形例として、二本のバー10dのうちの一本を省略してもよい。 In the above embodiment, the bar 10d provided on the frame 10 extends in parallel with the longitudinal direction of the molded body 4, but as a modification, a form as shown in FIG. 3 may be adopted. .. In the same embodiment, the two bars 10d extend along the diagonal line of the rectangle formed by the frame 10 in the side view. As a further modification, one of the two bars 10d may be omitted.
 上記の実施形態の梃子機構13においては、エアシリンダー14をアーム部材15に固定したが、エアシリンダー14を成形炉9に固定してもよい。また、作用点P2の上方に支点P3を位置させると共に支点P3の上方に力点P1を位置させたが、作用点P2の下方に支点P3を位置させると共に支点P3の下方に力点P1を位置させてもよい。 In the lever mechanism 13 of the above embodiment, the air cylinder 14 is fixed to the arm member 15, but the air cylinder 14 may be fixed to the molding furnace 9. Further, the fulcrum P3 was positioned above the action point P2 and the force point P1 was positioned above the fulcrum P3, but the fulcrum P3 was positioned below the action point P2 and the force point P1 was positioned below the fulcrum P3. May be good.
 上記の実施形態の押圧装置8においては、力の発生源であるアクチュエータ(エアシリンダー14)が梃子機構13を介して支持煉瓦6を押圧するが、アクチュエータ(力の発生源)が他の機構を介して支持煉瓦6を押圧してもよく、アクチュエータが支持煉瓦6を直接押圧してもよい。また、力の発生源として、アクチュエータに代えて錘を用いてもよく、例えば、錘の重さによる下向きの力を梃子機構13等で横方向に変換して支持煉瓦6を押圧してもよい。 In the pressing device 8 of the above embodiment, the actuator (air cylinder 14) which is the source of force presses the support brick 6 via the lever mechanism 13, but the actuator (source of force) presses another mechanism. The support brick 6 may be pressed via the actuator, or the actuator may directly press the support brick 6. Further, as a force generation source, a weight may be used instead of the actuator. For example, a downward force due to the weight of the weight may be converted laterally by a lever mechanism 13 or the like to press the support brick 6. ..
 上記の実施形態の押圧装置8においては、一つの梃子機構13を備える構成としたが、2つの梃子機構を備えるようにしてもよい。以下、この事について説明する。 The pressing device 8 of the above embodiment is configured to include one lever mechanism 13, but may include two lever mechanisms. This will be described below.
 図4に示すように、押圧装置8の梃子機構13は、上側の第一梃子機構21と、下側の第二梃子機構22とから構成されている。第一梃子機構21は、上端にエアシリンダー14及び受圧部15a(第一力点P1aを含む)が設けられた第一アーム部材23を備える。また、第二梃子機構22は、下端に軸16を介して押圧部15b(第二作用点P2bを含む)が設けられた第二アーム部材24を備える。 As shown in FIG. 4, the lever mechanism 13 of the pressing device 8 is composed of an upper first lever mechanism 21 and a lower second lever mechanism 22. The first lever mechanism 21 includes a first arm member 23 provided with an air cylinder 14 and a pressure receiving portion 15a (including a first force point P1a) at the upper end thereof. Further, the second lever mechanism 22 includes a second arm member 24 provided with a pressing portion 15b (including a second working point P2b) at the lower end thereof via a shaft 16.
 第一梃子機構21の第一支点P3aは、第一アーム部材23の下端部に固定された軸凸部25で構成され、保持部材17の上部に配設される。この軸凸部25は、第二アーム部材24を貫通していない。また、第一梃子機構21の第一作用点P2aは、第一アーム部材23の上下方向中間部に支持された棒体の軸27で構成され、第二アーム部材24の上端部に形成された長孔26に挿通される。 The first fulcrum P3a of the first lever mechanism 21 is composed of a shaft convex portion 25 fixed to the lower end portion of the first arm member 23, and is arranged above the holding member 17. The shaft protrusion 25 does not penetrate the second arm member 24. Further, the first point of action P2a of the first lever mechanism 21 is composed of a rod shaft 27 supported by the vertical intermediate portion of the first arm member 23, and is formed at the upper end portion of the second arm member 24. It is inserted through the long hole 26.
 第二梃子機構22の第二支点P3bは、保持部材17の下部に配設された棒体の軸28で構成され、第二アーム部材24の上下方向中間部を支持する。また、第二梃子機構22の第二力点P1bは、既述の棒体の軸27で構成される。したがって、この棒体の軸27は、第一梃子機構21の第一作用点P2aと、第二梃子機構22の第二力点P1bとを兼ねる構成とされている。 The second fulcrum P3b of the second lever mechanism 22 is composed of a shaft 28 of a rod body arranged under the holding member 17, and supports an intermediate portion in the vertical direction of the second arm member 24. Further, the second force point P1b of the second lever mechanism 22 is composed of the shaft 27 of the rod body described above. Therefore, the shaft 27 of the rod body is configured to serve as both the first action point P2a of the first lever mechanism 21 and the second force point P1b of the second lever mechanism 22.
 この梃子機構13の詳細な構成を図5に基づいて説明する。同図に示すように、第一梃子機構21の第一アーム部材23は、第一所定間隔を空けて平行に配列された二枚の第一アーム板23aを備える。第一作用点P2a及び第二力点P1bを兼ねる棒体の軸27は、二枚の第一アーム板23aに跨って固定される。第一支点P3aを構成する軸凸部25は、二枚の第一アーム板23aの外側面23aaにそれぞれ突設されている。これら軸凸部25は、保持部材17の上部に形成された軸孔29にそれぞれ支持される。 The detailed configuration of the lever mechanism 13 will be described with reference to FIG. As shown in the figure, the first arm member 23 of the first lever mechanism 21 includes two first arm plates 23a arranged in parallel with a first predetermined interval. The shaft 27 of the rod body which also serves as the first action point P2a and the second force point P1b is fixed across the two first arm plates 23a. The axial convex portion 25 constituting the first fulcrum P3a is projected from the outer surface 23aa of the two first arm plates 23a, respectively. Each of these shaft protrusions 25 is supported by a shaft hole 29 formed in the upper part of the holding member 17.
 第二梃子機構22の第二アーム部材24は、第一所定間隔よりも小さい第二所定間隔を空けて平行に配列された二枚の第二アーム板24aを備える。これら二枚の第二アーム板24aの上端部には上下方向に長い長孔26がそれぞれ形成されている。これら長孔26に上述の棒体の軸27が挿通される。棒体の軸27は、長孔26の長手方向に対する相対移動が許容され且つこれと直交する幅方向に対する相対移動が規制される。二枚の第二アーム板24aの上下方向中間部には、軸孔30がそれぞれ形成される。これら軸孔30には、保持部材17の下部に支持された第二支点P3bを構成する棒体の軸28が嵌り込む。 The second arm member 24 of the second lever mechanism 22 includes two second arm plates 24a arranged in parallel with a second predetermined interval smaller than the first predetermined interval. Long holes 26 long in the vertical direction are formed at the upper ends of these two second arm plates 24a, respectively. The shaft 27 of the rod body described above is inserted through these elongated holes 26. The axis 27 of the rod body is allowed to move relative to the longitudinal direction of the elongated hole 26 and is restricted from moving relative to the width direction orthogonal to the long hole 26. Shaft holes 30 are formed in the vertical intermediate portions of the two second arm plates 24a, respectively. The shaft 28 of the rod body constituting the second fulcrum P3b supported under the holding member 17 is fitted into these shaft holes 30.
 第一梃子機構21における第一支点P3aから第一力点P1aまでの距離L1aは、例えば、第一支点P3aから第一作用点P2aまでの距離L2aの1.5~10倍である。一方、第二梃子機構22における第二支点P3bから第二力点P1bまでの距離L1bは、第一アーム部材23の回転動に伴って若干変動するが、例えば、第二支点P3bから第二作用点P2bまでの距離L2bの1.5~10倍である。 The distance L1a from the first fulcrum P3a to the first force point P1a in the first lever mechanism 21 is, for example, 1.5 to 10 times the distance L2a from the first fulcrum P3a to the first action point P2a. On the other hand, the distance L1b from the second fulcrum P3b to the second force point P1b in the second lever mechanism 22 varies slightly with the rotational movement of the first arm member 23. The distance to P2b is 1.5 to 10 times the distance L2b.
 次に、上記構成を備えた第五実施形態に係る成形装置1の作用効果を説明する。エアシリンダー14が稼働すると、その出力部であるピストンロッドが成形炉9の外面10eを押す。この際の反力が利用されて第一アーム部材23の上端に設けられた受圧部15a(第一梃子機構21の第一力点P1a)に力が作用する。そして、受圧部15aが受けた力は第一梃子機構21により増幅されて、軸凸部25(第一梃子機構21の第一支点P3a)の周りで、時計回りの力のモーメントが棒体の軸27(第一梃子機構21の第一作用点P2a)に作用する。 Next, the operation and effect of the molding apparatus 1 according to the fifth embodiment having the above configuration will be described. When the air cylinder 14 operates, the piston rod, which is the output unit thereof, pushes the outer surface 10e of the molding furnace 9. The reaction force at this time is utilized to act on the pressure receiving portion 15a (first force point P1a of the first lever mechanism 21) provided at the upper end of the first arm member 23. Then, the force received by the pressure receiving portion 15a is amplified by the first lever mechanism 21, and the moment of the clockwise force is around the shaft convex portion 25 (the first fulcrum P3a of the first lever mechanism 21) of the rod body. It acts on the shaft 27 (first point of action P2a of the first lever mechanism 21).
 このとき、棒体の軸27(第二梃子機構22の第二力点P1b)に生じた力は、第二梃子機構22により増幅されて、棒体の軸28(第二梃子機構22の第二支点P3b)の廻りで、時計回りの力のモーメントが第二アーム部材24の下端に設けられた押圧部15b(第二梃子機構22の第二作用点P2b)に作用する。これにより、支持煉瓦6に押圧力が付与される。 At this time, the force generated on the shaft 27 of the rod body (second force point P1b of the second lever mechanism 22) is amplified by the second lever mechanism 22 and is amplified by the shaft 28 of the rod body (second lever mechanism 22). Around the fulcrum P3b), a moment of clockwise force acts on the pressing portion 15b (second working point P2b of the second lever mechanism 22) provided at the lower end of the second arm member 24. As a result, a pressing force is applied to the supporting brick 6.
 本実施形態では、エアシリンダー14の動作によって第一力点P1aに作用する力が、第一梃子機構21で1.5~10倍に増幅され、さらに第二梃子機構22で1.5~10倍に増幅されて、第二作用点P2bから支持煉瓦6に付与される。したがって、この第五実施形態に係る成形装置1によれば、単一の梃子機構を備える場合よりも、より強い押圧力を支持煉瓦6に付与することができる。 In the present embodiment, the force acting on the first force point P1a due to the operation of the air cylinder 14 is amplified 1.5 to 10 times by the first lever mechanism 21, and further 1.5 to 10 times by the second lever mechanism 22. Is amplified and applied to the supporting brick 6 from the second point of action P2b. Therefore, according to the molding apparatus 1 according to the fifth embodiment, a stronger pressing force can be applied to the support brick 6 as compared with the case where a single lever mechanism is provided.
 ここでは、2つの梃子機構21、22を備えるようにしたが、3つ以上の梃子機構を備えるようにしてもよい。 Here, two lever mechanisms 21 and 22 are provided, but three or more lever mechanisms may be provided.
 1      ガラス成形装置
 2      溶融ガラス
 3      ガラスリボン
 4      成形体
 6      支持煉瓦
 7      支持煉瓦
 8      押圧装置
 9      成形炉
 10     フレーム
 10a    メインフレーム
 10b    メインフレーム
 10d    バー
 10e    外面
 11     耐火煉瓦壁
 12     加熱装置
 13     梃子機構
 P1     力点
 P2     作用点
 P3     支点
1 Glass molding device 2 Molten glass 3 Glass ribbon 4 Molded body 6 Supporting brick 7 Supporting brick 8 Pressing device 9 Molding furnace 10 frame 10a Main frame 10b Main frame 10d bar 10e Outer surface 11 Refractory brick wall 12 Heating device 13 Lever mechanism P1 Power point P2 Point of action P3 fulcrum

Claims (7)

  1.  オーバーフローダウンドロー法により溶融ガラスからガラスリボンを成形する成形体と、
     前記成形体の上部における前記成形体の長手方向の端部を下方から支持すると共に前記成形体の下部を前記長手方向に押圧する支持煉瓦と、
     前記支持煉瓦を前記成形体側に押圧する押圧装置と、
     前記成形体を内部に収容する成形炉と、を備えるガラス成形装置であって、
     前記押圧装置は、前記成形炉に固定されていることを特徴とするガラス成形装置。
    A molded body that molds a glass ribbon from molten glass by the overflow down draw method,
    Supporting bricks that support the longitudinal end of the compact in the upper part of the compact from below and press the lower portion of the compact in the longitudinal direction.
    A pressing device that presses the supporting brick toward the molded body, and
    A glass molding apparatus including a molding furnace for accommodating the molded body inside.
    The pressing device is a glass molding device, characterized in that it is fixed to the molding furnace.
  2.  前記成形炉が、前記成形体を囲繞する耐火煉瓦壁と、前記成形体を側方から加熱する加熱装置と、前記耐火煉瓦壁および前記加熱装置を囲い且つ前記押圧装置が固定されるフレームと、を有することを特徴とする請求項1に記載のガラス成形装置。 The molding furnace includes a refractory brick wall that surrounds the molded body, a heating device that heats the molded body from the side, and a frame that surrounds the refractory brick wall and the heating device and to which the pressing device is fixed. The glass molding apparatus according to claim 1, further comprising.
  3.  前記支持煉瓦が、前記成形体の長手方向の一方端側と他方端側との両方に配置され、
     前記押圧装置が、前記両方の支持煉瓦のうち、一方の支持煉瓦のみを押圧するように構成され、
     前記両方の支持煉瓦のうち、他方の支持煉瓦が、前記フレームに保持されていることを特徴とする請求項2に記載のガラス成形装置。
    The supporting bricks are arranged on both one end side and the other end side in the longitudinal direction of the molded body.
    The pressing device is configured to press only one of the two supporting bricks.
    The glass molding apparatus according to claim 2, wherein the other supporting brick of the both supporting bricks is held by the frame.
  4.  前記フレームが、前記成形体の長手方向における両端部にそれぞれ対応して配置された一対のメインフレームと、前記一対のメインフレームに架け渡されたバーと、を備えていることを特徴とする請求項2又は3に記載のガラス成形装置。 A claim comprising: a pair of mainframes arranged corresponding to both ends in the longitudinal direction of the molded body, and a bar spanning the pair of mainframes. Item 2. The glass molding apparatus according to Item 2.
  5.  前記バーが、前記成形体を間に挟んで前記成形体の両側方に配置されていることを特徴とする請求項4に記載のガラス成形装置。 The glass molding apparatus according to claim 4, wherein the bars are arranged on both sides of the molded body with the molded body sandwiched between them.
  6.  前記バーが、前記成形体の長手方向と平行に延びていることを特徴とする請求項4又は5に記載のガラス成形装置。 The glass molding apparatus according to claim 4 or 5, wherein the bar extends in parallel with the longitudinal direction of the molded body.
  7.  前記押圧装置は、力点に加えられたのち増幅されて作用点に働く力を利用して前記支持煉瓦を押圧するように構成される梃子機構を有し、
     前記バーが、前記梃子機構の支点と同じ高さに配置されていることを特徴とする請求項6に記載のガラス成形装置。
    The pressing device has a lever mechanism configured to press the supporting brick by utilizing the force applied to the force point and then amplified and acting on the point of action.
    The glass molding apparatus according to claim 6, wherein the bar is arranged at the same height as a fulcrum of the lever mechanism.
PCT/JP2021/045701 2020-12-16 2021-12-10 Glass molding apparatus WO2022131177A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022569960A JPWO2022131177A1 (en) 2020-12-16 2021-12-10
CN202180071890.3A CN116438144A (en) 2020-12-16 2021-12-10 Glass forming device
KR1020237008810A KR20230121597A (en) 2020-12-16 2021-12-10 glass forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020208616 2020-12-16
JP2020-208616 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022131177A1 true WO2022131177A1 (en) 2022-06-23

Family

ID=82057797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045701 WO2022131177A1 (en) 2020-12-16 2021-12-10 Glass molding apparatus

Country Status (4)

Country Link
JP (1) JPWO2022131177A1 (en)
KR (1) KR20230121597A (en)
CN (1) CN116438144A (en)
WO (1) WO2022131177A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437470A (en) * 1966-06-17 1969-04-08 Corning Glass Works Constant force internal support for glass overflow wedge
US3519411A (en) * 1966-12-28 1970-07-07 Corning Glass Works Method and apparatus for supporting sheet glass forming device
US6895782B2 (en) * 2002-08-08 2005-05-24 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
JP2006298736A (en) * 2005-04-25 2006-11-02 Nippon Electric Glass Co Ltd Apparatus for forming plate glass, supporting member for apparatus for forming plate glass and method for forming plate glass
JP4193115B2 (en) * 2003-03-20 2008-12-10 日本電気硝子株式会社 Sheet glass forming apparatus and sheet glass forming method
JP2010526761A (en) * 2007-05-11 2010-08-05 コーニング インコーポレイテッド Isopipe sag control using improved end support conditions
JP2012501289A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Isopipe with improved dimensional stability
WO2012132309A1 (en) * 2011-03-28 2012-10-04 AvanStrate株式会社 Production method for glass plate and glass plate production device
JP2018503587A (en) * 2014-12-19 2018-02-08 コーニング インコーポレイテッド Method and apparatus for isopipe support and deflection relief
JP2020045261A (en) * 2018-09-20 2020-03-26 日本電気硝子株式会社 Molding device, and plate glass manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437470A (en) * 1966-06-17 1969-04-08 Corning Glass Works Constant force internal support for glass overflow wedge
US3519411A (en) * 1966-12-28 1970-07-07 Corning Glass Works Method and apparatus for supporting sheet glass forming device
US6895782B2 (en) * 2002-08-08 2005-05-24 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
JP4193115B2 (en) * 2003-03-20 2008-12-10 日本電気硝子株式会社 Sheet glass forming apparatus and sheet glass forming method
JP2006298736A (en) * 2005-04-25 2006-11-02 Nippon Electric Glass Co Ltd Apparatus for forming plate glass, supporting member for apparatus for forming plate glass and method for forming plate glass
JP2010526761A (en) * 2007-05-11 2010-08-05 コーニング インコーポレイテッド Isopipe sag control using improved end support conditions
JP2012501289A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Isopipe with improved dimensional stability
WO2012132309A1 (en) * 2011-03-28 2012-10-04 AvanStrate株式会社 Production method for glass plate and glass plate production device
JP2018503587A (en) * 2014-12-19 2018-02-08 コーニング インコーポレイテッド Method and apparatus for isopipe support and deflection relief
JP2020045261A (en) * 2018-09-20 2020-03-26 日本電気硝子株式会社 Molding device, and plate glass manufacturing method

Also Published As

Publication number Publication date
CN116438144A (en) 2023-07-14
KR20230121597A (en) 2023-08-18
JPWO2022131177A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2022131177A1 (en) Glass molding apparatus
JP5271393B2 (en) Laser scribing equipment
CN106226899A (en) A kind of micro-vibration platen of deflecting mirror
JP3616868B2 (en) Uniform pressurizing method and apparatus using multiple cylinders
WO2022131179A1 (en) Glass molding device
KR20030041830A (en) An apparatus for an emergency stop of a elevator
JP4796276B2 (en) Rolling equipment
JP5075729B2 (en) Molding device for injection molding machine
WO2009084654A1 (en) Tundish nozzle exchanging device, and tundish nozzle for use in the device
CN102156032B (en) Precisely-driven vibrating platform
CN211346303U (en) Furnace bottom sealing device of walking beam type heat treatment furnace
KR101103183B1 (en) Correct device for euro form frame
KR102287660B1 (en) Sheet compression tester for room and elevated temperatures
JP6992405B2 (en) Reactor body of coke oven Reactor tightening structure and method of constructing coke oven
JP5297394B2 (en) Slab roll roll stand for continuous casting equipment
JP5139931B2 (en) Guide roll segment for continuous casting equipment
CN210707544U (en) PLC electromechanical device removes auxiliary device
JPS59175386A (en) Mechanical amplifying mechanism
KR100646627B1 (en) Continuous casting machine segment for controlling linear gap between rolls
JP2016153135A (en) Immersed nozzle holding device
JP5657159B1 (en) Roll reduction device
CN217775254U (en) Silica gel hot pressing section bar buffer
CN209811041U (en) Sheet metal die of air conditioner outer casing
CN202550920U (en) Impact-resistant type piezoelectric micro swinging platform
JPH0710837Y2 (en) Mold first zone centering device in continuous casting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906539

Country of ref document: EP

Kind code of ref document: A1