WO2022127251A1 - 一种固体姿轨控发动机燃气阀及其控制方法 - Google Patents

一种固体姿轨控发动机燃气阀及其控制方法 Download PDF

Info

Publication number
WO2022127251A1
WO2022127251A1 PCT/CN2021/119502 CN2021119502W WO2022127251A1 WO 2022127251 A1 WO2022127251 A1 WO 2022127251A1 CN 2021119502 W CN2021119502 W CN 2021119502W WO 2022127251 A1 WO2022127251 A1 WO 2022127251A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
valve core
control
pipeline
valve
Prior art date
Application number
PCT/CN2021/119502
Other languages
English (en)
French (fr)
Inventor
林德福
孙昕
王辉
王江
王伟
宋韬
莫雳
张福彪
王亚宁
李涛
纪毅
王雨辰
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to JP2022545417A priority Critical patent/JP2023511608A/ja
Publication of WO2022127251A1 publication Critical patent/WO2022127251A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/30Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants with the propulsion gases exhausting through a plurality of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/34Casings; Combustion chambers; Liners thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
    • F02K9/88Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control using auxiliary rocket nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles

Definitions

  • the invention belongs to the field of aircraft, and in particular relates to a solid attitude and orbit control engine gas valve and a control method thereof.
  • the most commonly used method is to give the projectile an external force that deviates from the axial direction to correct the trajectory and attitude of the rocket.
  • the swing nozzle has high requirements on the process, and has high requirements on the thermal protection of the nozzle connection, and the cost is also high; although the structure of the external gas cylinder is relatively simple, the gas cylinder itself is a negative mass, and the rocket engine works At the same time, there are higher requirements for the safety of gas cylinders, so it is still not perfect.
  • the object of the present invention is to provide a device and a control method thereof, so that the attitude and trajectory correction of the solid rocket motor are controlled by the gas generated in the combustion chamber of the engine, which simplifies the structure of the engine, reduces the negative mass of the rocket itself, and improves the control response speed.
  • the present inventor has made great progress and designed a solid attitude and orbit control engine gas valve, which uses part of the gas generated by the combustion chamber of the aircraft solid rocket engine, , control it to be ejected from the side of the aircraft, and use the lateral force generated by the gas ejection to adjust the flight attitude of the aircraft.
  • the object of the present invention is to provide a kind of 1.
  • a solid attitude orbit control engine gas valve it is characterized in that, described solid attitude orbit control engine gas valve is fixed below the combustion chamber of aircraft solid rocket motor; Described gas valve comprises Valve body 1, gas control pipeline 2 and side nozzle gas pipeline 3;
  • the gas control pipeline 2 is used to control the gas to be sprayed from the side nozzle of the side nozzle gas pipeline 3.
  • the gas control pipeline 2 includes a filter screen 21, a control gas supply pipeline 22, a solenoid valve 23, and a gas control sheet.
  • the side nozzle gas pipeline 3 is used to eject the gas generated by the combustion chamber from the side of the aircraft.
  • the filter screen 21 is used to filter the gas flowing into the gas control pipeline 2 from the combustion chamber.
  • the filter screen 21 is fixed at the connection between the gas control pipeline 2 and the combustion chamber.
  • the filter screen 21 is completely Cover the inlet of gas control line 2;
  • the upper end of the gas supply pipeline 22 is connected with the attitude-tracking gas outlet at the bottom of the combustion chamber shell, and the lower end is connected with the solenoid valve 23;
  • the gas supply pipeline 22 includes a gas supply pipeline a221 and a gas supply pipeline b222;
  • the solenoid valve 23 includes a valve core 231, a valve core cavity 232, a coil, and a coil cover 234;
  • the gas sheet control pipeline includes an opening control pipeline 241, a closing control pipeline 242 and a sliding pipeline 243;
  • the solenoid valve 23 generates magnetic force by energizing different coils disposed at both ends of the valve core 231, thereby attracting the valve core to move;
  • the valve core cavity 232 is used to install the valve core 231.
  • the valve core cavity 232 includes the valve core cavity upper part 2321, the valve core cavity middle part 2322 and the valve core cavity lower part 2323.
  • the valve core cavity upper part 2321 and the valve core cavity middle part 2322 and the lower part 2323 of the spool cavity are both cylindrical cavities and communicate with each other.
  • the inner diameter of the upper part 2321 of the spool cavity and the lower part 2323 of the spool cavity are the same, and the inner diameter of the upper part of the spool cavity is larger than that of the middle part of the spool cavity.
  • the valve core 231 is used to control the opening or closing of the gas supply pipeline 22.
  • the valve core 231 includes a middle plug 2313, the middle plug 2313 is a cylinder, and an upper connecting rod 2314 is vertically arranged on the upper end of the cylinder.
  • the lower end is vertically provided with a lower connecting rod 2315, the end of the upper connecting rod 2314 is provided with an upper piston 2311, and the end of the lower connecting rod 2315 is provided with a lower piston 2312, and the valve core 231 can be attracted by the energized coil;
  • the outer diameter of the middle plug 2313 is the same as the inner diameter of the middle part 2322 of the valve core cavity.
  • the coil is used to attract the valve core 231 after being energized, the coil includes an upper coil 2331 and a lower coil 2332, the upper coil 2331 is arranged on the upper part of the solenoid valve 23, and the lower coil 2332 is arranged on the lower part of the solenoid valve 23;
  • the coil cover 234 is a hollow cylindrical shell, and a through hole is provided above the coil cover 234; the coil cover 234 includes an upper coil cover 2341 and a lower coil cover 2342, and the upper coil cover 2341 is disposed on the upper coil cover 2341. Outside the coil 2331, the lower coil cover 2342 is disposed outside the lower coil 2332.
  • the sliding pipe 243 is arranged at the connection of the opening control pipe 241 and the closing control pipe 242;
  • One end of the opening control pipeline 241 is connected to the valve core cavity 232 of the solenoid valve 23, and the other end is connected to the left side of the sliding pipeline 243.
  • One end of the closing control pipeline 242 is connected to the valve core cavity 232 of the solenoid valve 23, and the other One end is connected with the right side of the sliding pipe 243;
  • the sliding pipe 243 is perpendicular to the side nozzle gas pipe 3;
  • One end of the opening control pipeline 241 is connected to the valve core cavity 232 of the solenoid valve 23, and the other end is connected to the left side of the sliding pipeline 243.
  • One end of the closing control pipeline 242 is connected to the valve core cavity 232 of the solenoid valve 23, and the other One end is connected with the right side of the sliding pipe 243;
  • a gas control sheet 25 capable of sliding left and right is arranged inside the sliding pipe 243;
  • the sliding pipe 243 is provided with a chute, so that the gas control sheet reciprocates in the left and right directions in the sliding pipe.
  • the gas control sheet 25 is used to control the opening or closing of the side nozzle gas pipeline 3;
  • the gas control piece 25 is in the shape of a long plate, and a control piece hole 251 is provided on the board.
  • the length of the control piece is greater than twice the diameter of the through hole. Both ends of the control piece are vertically provided with discs 253, and the diameter of the disc 253 is consistent with the inner diameter of the sliding pipe 243;
  • the sliding pipe 243 is divided into an open cavity 2431 on the left side and a closed cavity 2432 on the right side.
  • the side nozzle gas pipeline 3 ejects the gas generated by the combustion chamber through the side nozzle 31 arranged on the side of the aircraft; the end of the side nozzle 31 protrudes from the valve body 1 .
  • the gas valves there are a plurality of the gas valves, which are evenly distributed around the axial direction of the aircraft, and preferably, the number of gas valves is set to 8.
  • a main nozzle 41 and a plurality of attitude and orbit control gas nozzles 42 surrounding the main nozzle 41 are arranged at the bottom of the combustion chamber,
  • each gas valve is connected an attitude-orbit-controlled gas nozzle 42 .
  • a cylindrical cavity is provided in the middle of the valve, and the cylindrical axis coincides with the axis of the main nozzle 41 at the bottom of the solid rocket motor combustion chamber.
  • the present invention also provides a method for controlling a gas valve of a solid attitude orbit control engine, the method comprising:
  • the upper coil 2331 of the solenoid valve 23 is energized and the lower coil 2332 is closed, which drives the valve core 231 to move upward.
  • the middle plug 2313 blocks the gas supply pipe a221, and the lower piston 2312
  • the lower part of the valve core cavity is blocked, and the upper part of the valve core cavity is communicated with the middle part of the valve core cavity, so that the gas in the combustion chamber enters the gas supply pipeline b222 through the attitude-orbit control gas nozzle 42, and then passes through the valve core cavity 232 and the opening control pipe in turn.
  • the lower coil 2332 of the solenoid valve 23 is energized to work, which drives the valve core 231 to move downward. At this time, the middle plug 2313 blocks the gas supply.
  • the upper piston 2311 blocks the upper part 2321 of the valve core cavity, and the lower part 2323 of the valve core cavity communicates with the middle part 2322 of the valve core cavity, so that the gas in the combustion chamber enters the gas supply pipeline a221 through the attitude-tracking gas nozzle 42, and then in turn After passing through the upper section of the valve core cavity 232 and the closing control pipeline 242, it finally flows into the closing cavity 2432, pushes the gas control piece 25, moves the gas control piece 25 to the left, blocks the side nozzle gas pipeline 3, and simultaneously presses the open air
  • the gas in the cavity 2431 flows into the opening control pipeline 241 , passes through the lower section of the valve core cavity 232 , and is discharged to the outside of the valve body 1 from the through hole on the lower coil cover 2342 of the solenoid valve 23 .
  • the present invention is simple in structure and low in cost
  • the present invention directly utilizes the gas in the combustion chamber, without the need for external gas cylinders, the quality is lighter, and the negative mass of the rocket is reduced;
  • the invention controls a small part of the gas to push the control valve through the solenoid valve, and then controls more gas to be ejected laterally, with extremely high control efficiency and low power consumption;
  • FIG. 1 shows a schematic diagram of the bottom structure of the combustion chamber according to the present invention
  • FIG. 2 shows a schematic diagram of the general structure of the gas valve of a solid attitude orbit control engine according to the present invention
  • FIG. 3 shows a schematic structural diagram of the control gas supply pipeline in the gas control pipeline of the gas valve according to the present invention
  • FIG. 4 shows a schematic structural diagram of the solenoid valve of the gas valve according to the present invention
  • Fig. 5 is a schematic diagram showing the structure of the valve core cavity of the solenoid valve of the gas valve according to the present invention.
  • FIG. 6 shows a schematic structural diagram of the valve core of the solenoid valve of the gas valve according to the present invention
  • FIG. 7 shows a schematic structural diagram of the coil cover of the solenoid valve of the gas valve according to the present invention.
  • Fig. 8 is a schematic diagram showing the structure when the through hole of the gas control sheet of the present invention communicates with the gas pipe of the side nozzle;
  • FIG. 9 shows a schematic structural diagram of the gas control sheet of the gas valve according to the present invention when the gas pipe of the side nozzle is closed;
  • FIG. 10 shows a schematic structural diagram of the gas control sheet of the gas valve according to the present invention.
  • FIG. 11 shows a schematic structural diagram of the gas pipeline of the side nozzle of the gas valve according to the present invention.
  • 2-gas control pipeline 21-filter; 22-control gas supply pipeline; 221-gas supply pipeline a; 222-gas supply pipeline b;
  • 23-solenoid valve 231-spool; 2311-upper piston; 2312-lower piston; 2313-middle plug;
  • 25-gas control piece 251-control piece hole; 252-slide part; 253-disc;
  • the gas valve of the solid attitude orbit control engine provided by the present invention, the gas valve is arranged below the combustion chamber of the solid rocket motor;
  • the bottom structure of the combustion chamber of the solid rocket motor is shown in FIG. 1, including a main nozzle 41 and an attitude and orbit control gas nozzle 42; the main nozzle 41 is used to eject the gas generated by the combustion of the combustion chamber through the main nozzle 41, using The generated reaction force pushes the aircraft forward, and the main nozzle 41 is arranged in the center of the bottom of the combustion chamber; the attitude-orbit-controlled gas nozzle 42 is used to supply gas to the solid attitude-orbit-controlled engine gas valve, and the attitude-orbit-controlled gas nozzle 42 is arranged around the axis of the combustion chamber, and the attitude and orbit control gas nozzle is a hollow structure protruding from the bottom plane of the combustion chamber.
  • the main structure of the solid attitude orbit control engine gas valve includes a valve body 1 , a gas control pipeline 2 and a side nozzle gas pipeline 3 .
  • the valve body 1 is fixedly connected to the bottom structure of the combustion chamber, preferably using bolts, and the valve body 1 is provided with bolt installation holes;
  • the gas control pipeline 2 and the side nozzle gas pipeline 3 are both arranged in the valve body 1, so that the gas control pipeline 2 and the side nozzle gas pipeline 3 can be organically combined with the valve body 1 to improve the performance.
  • the strength of the valve body reduces the volume of the gas valve.
  • the gas control pipeline 2 also includes a solenoid valve 23 and a gas control sheet 25,
  • the solenoid valve 23 receives the aircraft command, and the solenoid valve 23 controls the movement of the gas control sheet 25 by controlling the gas flow channel in the gas control pipeline 2,
  • the gas control sheet 25 is arranged perpendicular to the side nozzle gas pipe and divides the side nozzle gas pipe into two parts.
  • the gas control sheet 25 is provided with a control sheet hole.
  • the axis of the valve body is provided with a cylindrical cavity, and the cylindrical axis coincides with the axis of the main nozzle 41 at the bottom of the combustion chamber of the solid rocket motor, which is used to make most of the gas in the combustion chamber set through the bottom structure of the combustion chamber.
  • the main nozzle 41 is ejected to provide forward power for the aircraft.
  • the gas control pipeline 2 is used to control the gas to be sprayed from the side nozzle of the side nozzle gas pipeline 3.
  • the gas control pipeline 2 includes a filter screen 21, a control gas supply pipeline 22, a solenoid valve 23, and a gas control sheet. Control line and gas control sheet 25.
  • the filter screen 21 is used to filter the gas flowing into the gas control line from the combustion chamber.
  • the filter screen 21 is fixed at the connection between the gas control line 2 and the combustion chamber, and the filter screen 21 completely covers the gas control line 2. entrance, as shown in Figure 3;
  • the upper end of the gas supply pipeline 22 is connected to the attitude-tracking gas outlet at the bottom of the combustion chamber shell, and the lower end is connected to the solenoid valve 23;
  • gas supply pipeline 22 includes two gas supply pipelines a221 and b222 respectively, which are connected to the solenoid valve 23 .
  • the solenoid valve 23 as shown in FIG. 4, includes a valve core 231, a valve core cavity 232, a coil, a coil cover 234, a wire and an external motor;
  • the solenoid valve 23 generates magnetic force by energizing different coils disposed at both ends of the valve core, thereby attracting the valve core 231 to move;
  • the valve core cavity 232 is used to install the valve core 231 and make it slide linearly along the valve core cavity 232.
  • the valve core cavity 232 includes the valve core cavity upper part 2321, the valve core
  • the middle part 2322 of the core cavity and the lower part 2323 of the valve core cavity, the upper part 2321 of the valve core cavity, the middle part 2322 of the valve core cavity and the lower part 2323 of the valve core cavity are all cylindrical cavity structures and are located on the same axis and communicate with each other.
  • the diameter of the upper part 2321 is the same as that of the lower part 2323 of the valve core cavity, and the diameter of the upper part of the valve core cavity is larger than that of the middle part 2322 of the valve core cavity.
  • the valve core 231 is arranged in the valve core cavity 232, and the valve core 231 controls the opening or closing of the gas supply pipeline a221 and the gas supply pipeline b222 by moving to different positions;
  • the valve The core 231 includes a middle plug 2313, an upper connecting rod 2314, a lower connecting rod 2315, an upper piston 2311 and a lower piston 2312;
  • the middle plug 2313 is a cylinder, the upper end of the cylinder is vertically provided with an upper connecting rod 2314, the lower end is vertically provided with a lower connecting rod 2315, the end of the upper connecting rod 2314 is provided with an upper piston 2311, and the end of the lower connecting rod 2315 is provided with a lower connecting rod 2311.
  • Piston 2312, the valve core 231 can be attracted by the energized coil;
  • the outer diameter of the middle plug 2313 is the same as the inner diameter of the middle part 2322 of the valve core cavity.
  • the middle plug 2313 is installed in the middle part 2322 of the valve core cavity.
  • the cavity 232 is divided into upper and lower sections, which are not connected to each other;
  • the piston diameter of the valve core 231 is slightly smaller than the inner diameter of the upper part 2321 of the valve core cavity, and larger than the inner diameter of the middle part 2322 of the valve core cavity;
  • the valve core 231 has two pistons, which are the upper piston and the lower piston, respectively.
  • the upper piston stops at the bottom end of the upper part 2321 of the valve core cavity, closes the upper part 2321 of the valve core cavity, and controls the valve core 231 to stop at the outlet of the gas supply line a221, and the lower piston is located at the In the lower part 2323 of the valve core cavity, the lower part 2323 of the valve core cavity communicates with the middle part 2322 of the valve core cavity;
  • Two ends of the valve core cavity 232 are respectively provided with coils.
  • the coils are used to attract the valve core 231 to move after being energized.
  • the coils are wound by metal guide wires.
  • the upper coil 2331 is arranged on the upper part of the solenoid valve 23
  • the lower coil 2332 is arranged on the lower part of the solenoid valve 23 .
  • the coil cover 234 is a hollow cylindrical shell, and a through hole is provided above the coil cover 234 .
  • the coil cover 234 is also provided with two countersunk holes above it, which is convenient for assembly with tools;
  • the coil cover 234 includes an upper coil cover 2341 and a lower coil cover 2342, and the upper coil cover 2341 is arranged on the upper coil 2331.
  • the lower coil cover 2342 is disposed outside the lower coil 2332, and the coil cover 234 is connected to the valve body 1 through threads;
  • the wire is used to connect the coil and the external generator
  • the external generator is used to power the coil
  • the fixed solid part of the valve body 1 which is connected to the combustion chamber housing is provided with through-holes, which are used to lead out the wires and connect them to an external generator.
  • the gas sheet control pipeline includes an opening control pipeline 241, a closing control pipeline 242 and a sliding pipeline 243, as shown in Figure 4, Figure 8 and Figure 9;
  • a sliding conduit 243 is provided at the connection between the opening control conduit 241 and the closing control conduit 242;
  • One end of the opening control pipeline 241 is connected to the valve core cavity 232 of the solenoid valve 23, and the other end is connected to the left side of the sliding pipeline 243.
  • One end of the closing control pipeline 242 is connected to the valve core cavity 232 of the solenoid valve 23, and the other One end is connected with the right side of the sliding pipe 243;
  • the sliding pipe 243 as shown in FIG. 8, is used to install the gas control sheet 25 and allow the gas control sheet 25 to slide left and right;
  • the sliding pipe 243 is arranged perpendicular to the side nozzle gas pipe 3, and the side nozzle gas pipe 3 is opened or closed by using the gas control sheet 25 in different positions;
  • the sliding pipe 243 also includes a chute, so that the gas control sheet moves in a straight line in the left and right directions in the sliding pipe 243.
  • the total length of the sliding pipe 243 is greater than the gas control sheet 25 and the aperture on the control sheet.
  • the total length, the sliding pipe 243 is also provided with a limit block, so that the gas control sheet is always perpendicular to the side nozzle gas pipe 3, and the through hole of the gas control sheet 25 is communicated with the side nozzle gas pipe 3 (Fig. 8, or the side nozzle gas pipeline 3 is closed, that is, the state in FIG. 9 .
  • the gas control sheet 25, as shown in FIG. 10, is in the shape of a long plate, and a control sheet hole 251 is provided on the plate.
  • the length of the control sheet is greater than 2 times the diameter of the through hole, and the gas control sheet 25 is provided with protruding sliding parts 252 up and down, and discs 253 are vertically provided at both ends of the control piece.
  • the control piece hole 251 overlaps or partially overlaps with the side nozzle gas pipe 3, it can allow the side nozzle gas pipe 3 to emit gas outward, and the control piece hole 251 slides with the gas control piece 25, and the side nozzle gas pipe
  • the gas control sheet 2 can block the side nozzle gas pipeline 3, so that it does not emit gas outward.
  • the sliding member 252 is matched with the sliding groove of the sliding pipe 243, and the diameter of the disk 253 is consistent with the inner diameter of the sliding pipe 243; the gas control sheet 25 is installed in the sliding pipe 243, as shown in FIG. 9, the gas After the control sheet 25 is installed in the sliding pipe 243, an open cavity 2431 is formed between the left side of the gas control sheet 25 and the left inner wall of the sliding pipe 243, and between the right side of the gas control sheet 25 and the right inner wall of the sliding pipe 243 A closed cavity 2432 is formed.
  • the side nozzle gas pipe 3 is used to eject the gas generated by the combustion chamber from the side of the aircraft, and one end of the side nozzle gas pipe 3 passes through the opening provided on the valve body 1 and the position of the bottom structure of the combustion chamber.
  • the rail-controlled gas nozzle 42 is connected, and the other end is provided with a side nozzle 31, which is connected to the outside world through the side nozzle 31, as shown in Figure 11;
  • the end of the side nozzle 31 protrudes from the valve body 1 .
  • holes are machined in the valve body 1 to serve as the gas control pipeline 2 and the side nozzle gas pipeline 3 .
  • FIG. 2 there are multiple gas valves, which are evenly distributed around the axial direction of the aircraft, and further, the number of gas valves is set to 8;
  • the resultant lateral force is applied to the aircraft through the simultaneous operation of the multiple gas valves, so as to better adjust the attitude and trajectory of the aircraft.
  • the interface between the valve body 1 and the combustion chamber is arranged in a ring shape and partitioned, so that the gas flows into different gas valves of the solid attitude orbit control engine respectively.
  • the present invention also provides a method for controlling a gas valve of a solid attitude orbit control engine, the solid attitude orbit control engine in the method is as described above, and the method includes:
  • the upper coil 2331 of the solenoid valve 23 is energized and the lower coil 2332 is closed, which drives the valve core 231 to move upward, the middle plug 2313 blocks the gas supply pipe a221, and the lower piston 2312 blocks
  • the lower part of the valve core cavity and the upper part of the valve core cavity are connected with the middle part of the valve core cavity, so that the gas in the combustion chamber enters the gas supply pipeline b222 through the attitude-tracking gas nozzle 42, and then passes through the valve core cavity 232 and the opening control pipeline 241 in turn.
  • the lower coil 2332 of the solenoid valve 23 is energized to work, which drives the valve core 231 to move downward, and the middle plug 2313 blocks the gas supply pipe b222 , the upper piston 2311 blocks the upper part 2321 of the valve core cavity, and the lower part 2323 of the valve core cavity communicates with the middle part 2322 of the valve core cavity, so that the gas in the combustion chamber enters the gas supply pipeline a221 through the attitude-tracking gas nozzle 42, and then passes through the valve in turn
  • the core cavity 232 and the closing control pipeline 242 eventually flow into the closing cavity 2432, push the gas control piece 25, move the gas control piece 25 to the left, block the side nozzle gas pipe 3, and simultaneously press and open the gas in the cavity 2431.
  • the gas flows into the opening control pipeline 241, passes through the lower section of the valve core cavity 232, and is discharged from the hole on the lower coil cover 2342 of the solenoid valve 23 to the outside
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “outer”, “left”, “right”, etc. is based on the working state of the present invention.
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种固体姿轨控发动机燃气阀,固体姿轨控发动机燃气阀固接于飞行器固体火箭发动机的燃烧室下方;燃气阀包括阀体(1)、燃气控制管路(2)和侧喷管燃气管道(3);燃气控制管路(2)用于控制燃气从侧喷管燃气管道(3)的侧喷口喷出,燃气控制管路(2)包括过滤网(21)、控制燃气供给管路(22)、电磁阀(23)、燃气控制片控制管路和燃气控制片(25);侧喷管燃气管道(3)用于将燃烧室产生的燃气从飞行器的侧向喷出。

Description

一种固体姿轨控发动机燃气阀及其控制方法 技术领域
本发明属于飞行器领域,特别涉及一种固体姿轨控发动机燃气阀及其控制方法。
背景技术
对于固体火箭的姿轨控,目前比较常用的方法就是给予弹体一个偏离轴向的外力来对火箭的弹道和姿态进行修正,比较常用的方法有两种,其一是控制喷管的摆动来改变推力的方向,其二是外带气瓶,通过气瓶产生的反向推力来给飞行器施加一个侧向力以达到改变飞行器飞行姿态的目的。摆动喷管对工艺的要求很高,且对喷管连接处的热防护有较高要求,成本也较高;外带气瓶虽然结构比较简单,但是气瓶本身属于消极质量,而且火箭发动机工作时对气瓶的安全性有较高要求,所以还是不完善的。
本发明的目的在于提供一种装置及其控制方法,使得固体火箭发动机的姿态与弹道修正由发动机燃烧室内产生的燃气控制,简化了发动机的结构,同时减小了火箭本身的消极质量,也提高了控制的响应速度。
发明内容
基于上述技术背景,为解决上述问题,本发明人进行了锐意进取,设计出一种固体姿轨控发动机燃气阀,该燃气阀利用飞行器固体火箭发动机的燃烧室产生的部分燃气,通过本燃气阀,控制其从飞行器的侧面喷出,利用燃气喷出产生的侧向力从而调整飞行器的飞行姿态,该结构制造工艺简单,有效的减小了消极质量,从而完成了本发明。
本发明的目的在于提供一种1.一种固体姿轨控发动机燃气阀,其特征在于,所述固体姿轨控发动机燃气阀固接于飞行器固体火箭发动机的燃烧室下方;所述燃气阀包括阀体1、燃气控制管路2和侧喷管燃气管道3;
所述燃气控制管路2用于控制燃气从侧喷管燃气管道3的侧喷口喷出,所述燃气控制管路2包括过滤网21、控制燃气供给管路22、电磁阀23、燃气控制片控制管路和燃气控制片25;
所述侧喷管燃气管道3用于将所述燃烧室产生的燃气从飞行器的侧向喷出。
其中,所述过滤网21用于过滤燃烧室流入所述燃气控制管路2的燃气,所述过滤网21固定在燃气控制管路2与燃烧室之间的连接处,所述过滤网21完全覆盖燃气控制管路2入口;
所述燃气供给管路22上端与燃烧室壳体底部的姿轨控燃气出口相连,下端与电磁阀23相连;
所述燃气供给管路22包括燃气供给管路a221与燃气供给管路b222;
所述电磁阀23包括阀芯231、阀芯腔232、线圈、线圈盖234;
所述燃气片控制管路包括开启控制管路241、关闭控制管路242和滑动管道243;
其中,所述电磁阀23通过给设置于阀芯231两端的不同线圈通电产生磁力,进而吸引阀芯移动;
所述阀芯腔232用于安装阀芯231,所述阀芯腔232包括阀芯腔上部2321、阀芯腔中部2322和阀芯腔下部2323,所述阀芯腔上部2321、阀芯腔中部2322和阀芯腔下部2323均为圆柱体空腔,且互相连通,所述阀芯腔上部2321与阀芯腔下部2323的内径尺寸相同,所述阀芯腔上部内径尺寸大于阀芯腔中部的内径尺寸2322;
所述阀芯231用于控制开启或关闭燃气供给管路22,所述阀芯231包括中部堵头2313,所述中部堵头2313为圆柱体,圆柱体上端垂直设有上连接杆2314,在下端垂直设有下连接杆2315,上连接杆2314末端设有上活塞2311,下连接杆2315末端设有下活塞2312,所述阀芯231可被通电线圈吸引;
所述中部堵头2313外径与阀芯腔中部2322内径尺寸一致,通过将所述中部堵头2313安装于阀芯腔中部2322中,使得所述阀芯腔232分为互不连通的上下两段;
所述线圈用于在通电后吸引阀芯231,所述线圈包括上线圈2331和下线圈2332,所述上线圈2331设置于电磁阀23上部,所述下线圈2332设置于电磁阀23下部;
所述线圈盖234为空心圆柱状壳体,所述线圈盖234上方设有通孔;所述线圈盖234包括上线圈盖2341和下线圈盖2342,所述上线圈盖2341设置在所述上线圈2331外侧,所述下线圈盖2342设置在下线圈2332外。
其中,所述滑动管道243设置在所述开启控制管路241和关闭控制管路242的连接处;
所述开启控制管路241一端与电磁阀23的阀芯腔232相连,另一端与滑动管道243的左侧相连,所述关闭控制管路242一端与电磁阀23的阀芯腔232相连,另一端与滑动管道243的右侧相连;
所述滑动管道243垂直于侧喷管燃气管道3;
所述开启控制管路241一端与电磁阀23的阀芯腔232相连,另一端与滑动管道243的左侧相连,所述关闭控制管路242一端与电磁阀23的阀芯腔232相连,另一端与滑动管道243的右侧相连;
在所述滑动管道243内部设置有能够左右滑动的燃气控制片25;
所述滑动管道243设有滑槽,使燃气控制片在滑动管道中,在左右方向上往复运动。
其中,所述燃气控制片25用于控制侧喷管燃气管道3开启或关闭;
所述燃气控制片25呈长板状,板上设置有控制片孔251,所述控制片长度大于2倍所述通孔直径,燃气控制片25上下设有凸起的滑动部件252,所述控制片两端都垂直设置有圆盘253,所述圆盘253直径与滑动管道243内径一致;
通过将所述燃气控制片25安装入滑动管道243中,将所述滑动管道243分隔成位于左侧的开启空腔2431和位于右侧的关闭空腔2432。
其中,所述侧喷管燃气管道3通过设置在飞行器侧方的侧喷管31将所述燃烧室产生的燃气喷出;所述侧喷管31的端部从阀体1中伸出。
其中,所述燃气阀设置有多个,绕着飞行器的轴向方向均匀分布,优选地,燃气阀数量设置为8个。
其中,在所述燃烧室底部设置有主喷管41和环绕在所述主喷管41周围的多个姿轨控燃气喷口42,
每个燃气阀上方都连接有一个姿轨控燃气喷口42。
其中,在所述阀中部设有圆柱形空洞,圆柱形轴线与固体火箭发动机燃烧室底部主喷管41的轴线重合。
本发明还提供一种固体姿轨控发动机燃气阀的控制方法,该方法包括:
在收到开启侧喷管3的指令后,电磁阀23的上线圈2331通电工作,下线圈2332关闭,带动阀芯231向上移动,此时中部堵头2313堵住燃气供给管道a221,下活塞2312封堵阀芯腔下部,阀芯腔上部与阀芯腔中部连通,使得燃烧室中的燃气经过姿轨控燃气喷口42进入到燃气供给管路b222,再依次经过阀芯腔232和开启控制管路241,最终流入开启空腔2431,推动燃气控制片25向右移动,燃气控制片25上的控制片孔251与侧喷管燃气管路3相通,使燃气从侧喷管31喷出,同时燃气控制片25推动关闭腔室2432的气体,使其流入关闭控制管路242经过阀芯腔232的上段,并从电磁阀23的上线圈盖2341上的孔洞排出至阀体1外部;
在未收到开侧喷管3的指令或收到关闭侧喷管的指令时,电磁阀23的下线圈2332通电工作,带动阀芯231向下移动,此时中部堵头2313堵住燃气供给管道b222,上活塞2311封堵阀芯腔上部2321,阀芯腔下部2323与阀芯腔中部2322连通,使得燃烧室中的燃气经过姿轨控燃气喷口42进入到燃气供给管路a221,再依次经过阀芯腔232的上段和关闭控制管路242,最终流入关闭空腔2432,推动燃气控制片25,使燃气控制片25向左移动,并堵住侧喷管燃气管道3,同时压迫开启空腔2431内的气体,使其流入开启控制管路241,途径阀芯腔232的下段,并从电磁阀23的下线圈盖2342上的通孔排出至阀体1外部。
本发明提供的一种固体姿轨控发动机燃气阀具有以下优势:
(1)本发明结构简单,成本低;
(2)本发明直接利用燃烧室内的气体,无需外带气瓶,质量更轻,减小了火箭的消极质量;
(3)发明通过电磁阀控制小部分燃气推动控制阀门,进而控制较多的燃气侧向喷出,其控制效率极高,且用电量小;
(4)控制响应迅速,提高了对飞行器姿态控制的精度。
附图说明
图1示出本发明所述燃烧室底部结构示意图;
图2示出本发明所述一种固体姿轨控发动机燃气阀总结构示意图;
图3示出本发明所述燃气阀的燃气控制管路中控制燃气供给管路结构示意图;
图4示出本发明所述燃气阀的电磁阀的结构示意图;
图5示出本发明所述燃气阀的电磁阀的阀芯腔结构示意图;
图6示出本发明所述燃气阀的电磁阀的阀芯的结构示意图;
图7示出本发明所述燃气阀的电磁阀的线圈盖的结构示意图;
图8示出本发明所述燃气控制片的通孔与所述侧喷管燃气管道连通时的结构示意图;
图9示出本发明所述燃气阀的燃气控制片关闭侧喷管燃气管道时的结构示意图;
图10示出本发明所述燃气阀的燃气控制片的结构示意图;
图11示出本发明所述燃气阀的侧喷管燃气管道的结构示意图。
附图标号说明
1-阀体;
2-燃气控制管路;21-过滤网;22-控制燃气供给管路;221-燃气供给管路a;222-燃气供给管路b;
23-电磁阀;231-阀芯;2311-上活塞;2312-下活塞;2313-中部堵头;
2314-上连接杆;2315-下连接杆;
232-阀芯腔;
2321-阀芯腔上部;2322-阀芯腔中部;2323-阀芯腔下部;
2331-上线圈;2332-下线圈;
234-线圈盖;2341-上线圈盖;2342-下线圈盖;
241-开启控制管路;242-关闭控制管路;243-滑动管道;
2431-开启空腔;2432-关闭空腔;
25-燃气控制片;251-控制片孔;252-滑动部件;253-圆盘;
3-侧喷管燃气管道;31-侧喷管;
41-主喷口;42-姿轨控燃气喷口。
具体实施方式
下面将对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
根据本发明提供的固体姿轨控发动机燃气阀,所述燃气阀设置在固体火箭发动机燃烧室下方;
所述固体火箭发动机燃烧室的底部结构如图1所示,包括主喷口41和姿轨控燃气喷口42;所述主喷口41用于将燃烧室燃烧产生的气体经主喷口41喷出,利用产生的反作用力推动飞行器前进,所述主喷口41设置在燃烧室底部中心;所述姿轨控燃气喷口42用于向所述固体姿轨控发动机燃气阀供给燃气,所述姿轨控燃气喷口42绕燃烧室轴线布置,所述姿轨控燃气喷口为突出于燃烧室底部平面的中空结构。所述固体姿轨控发动机燃气阀主要结构,如图2所示,包括阀体1、燃气控制管路2和侧喷管燃气管道3。
所述阀体1与燃烧室底部结构之间固接,优选地,使用螺栓连接,所述阀体1设置有螺栓安装孔;
所述燃气控制管路2和侧喷管燃气管道3均设置于阀体1中,这样可以将所述燃气控制管路2和侧喷管燃气管道3与阀体1有机的结合在一起,提高阀体强度,缩小燃气阀体积。
所述燃气控制管路2还包括电磁阀23和燃气控制片25,
当所述飞行器需要进行姿轨控时,电磁阀23接收飞行器指令,所述电磁阀23通过控制燃气控制管路2中燃气的流经渠道,来控制燃气控制片25的移动,
所述燃气控制片25垂直于侧喷管燃气管道设置并将侧喷管燃气管道分为两部分,所述燃气控制片25设有控制片孔,当所述控制片孔与侧喷管燃气管道相通时,侧喷管燃气管道两部分互相连通,进而将燃烧室产生的部分燃气从侧喷管燃气管道3设置于阀体1侧面的侧喷口31喷出。
更具体的,所述阀体轴线位置设有圆柱形空洞,圆柱形轴线与固体火箭发动机燃烧室底部主喷管41的轴线重合,用于使燃烧室的大部分燃气经燃烧室底部结构设置的主喷口41喷出,为飞行器提供前进动力。
所述燃气控制管路2用于控制燃气从侧喷管燃气管道3的侧喷口喷出,所述燃气控制管路2包括过滤网21、控制燃气供给管路22、电磁阀23、燃气控制片控制管路和燃气控制片25。
所述过滤网21用于过滤燃烧室流入所述燃气控制管路的燃气,所述过滤网21固定在燃气控制管路2与燃烧室连接处,所述过滤网21完全覆盖燃气控制管路2入口,如图3所示;
所述燃气供给管路22,上端与燃烧室壳体底部的姿轨控燃气出口相连,下端与电磁阀23相连;
进一步的,所述燃气供给管路22包括两条,分别为燃气供给管路a221与燃气供给管路b222,并与电磁阀23相连。
所述电磁阀23,如图4所示,包括阀芯231、阀芯腔232、线圈、线圈盖234、导线和外接电机;
所述电磁阀23通过给设置于阀芯两端的不同线圈通电产生磁力,进而吸引阀芯231移动;
所述阀芯腔232,如图5所示,所述阀芯腔232用于安装阀芯231并使其沿阀芯腔232直线滑动,所述阀芯腔232包括阀芯腔上部2321、阀芯腔中部 2322和阀芯腔下部2323,所述阀芯腔上部2321、阀芯腔中部2322和阀芯腔下部2323均为圆柱体空腔结构且位于同一轴线并互相连通,所述阀芯腔上部2321与阀芯腔下部2323的直径相同,所述阀芯腔上部直径大于阀芯腔中部2322。
所述阀芯231,如图6所示,设置于阀芯腔232中,所述阀芯231通过移动至不同位置,控制开启或关闭燃气供给管路a221以及燃气供给管路b222;所述阀芯231包括中部堵头2313、上连接杆2314、下连接杆2315、上活塞2311和下活塞2312;
所述中部堵头2313为圆柱体,圆柱体上端垂直设有上连接杆2314,在下端垂直设有下连接杆2315,上连接杆2314末端设有上活塞2311,下连接杆2315末端设有下活塞2312,所述阀芯231可被通电线圈吸引;
所述中部堵头2313的外径与阀芯腔中部2322的内径一致,所述中部堵头2313安装于阀芯腔中部2322中,通过与阀芯腔中部2322腔体配合,将所述阀芯腔232分为上下两段,且互不连通;
所述阀芯231的活塞直径略小于阀芯腔上部2321的内径,并且大于阀芯腔中部2322的内径;阀芯231的活塞有两个,分别为上活塞和下活塞,当所述阀芯231向下运动时,所述上活塞停止于阀芯腔上部2321的底端,将所述阀芯腔上部2321封闭,并控制阀芯231停止于燃气供给管路a221的出口,此时下活塞位于阀芯腔下部2323中,所述阀芯腔下部2323与阀芯腔中部2322连通;
所述阀芯腔232两端分别设有线圈,所述线圈用于在通电后吸引阀芯231移动,所述线圈由金属导丝缠绕而成,所述线圈包括上线圈2331和下线圈2332,所述上线圈2331设置于电磁阀23上部,所述下线圈2332设置于电磁阀23下部。
所述线圈盖234,如图7所示,为一空心圆柱状壳体,所述线圈盖234上方设有一通孔,所述通孔一方面用于将导线引出,另一方面起到排气作用;所述线圈盖234上方还设有两沉孔,便于使用工具进行装配;所述线圈盖234包括上线圈盖2341和下线圈盖2342,所述上线圈盖2341设置在所述上线圈2331外侧,所述下线圈盖2342设置在下线圈2332外,所述线圈盖234通过螺纹与阀体1连接;
所述导线用于连接线圈和外部发电机;
所述外部发电机用于给线圈供电;
在与燃烧室壳体连接的阀体1的起固定作用的实心部分上设有通孔,所述通孔用于将导线导出并与外部发电机相连。
所述燃气片控制管路包括开启控制管路241、关闭控制管路242和滑动管道243,如图4、图8和图9所示;
在所述开启控制管路241和关闭控制管路242的连接处设置有滑动管道243;
所述开启控制管路241一端与电磁阀23的阀芯腔232相连,另一端与滑 动管道243的左侧相连,所述关闭控制管路242一端与电磁阀23的阀芯腔232相连,另一端与滑动管道243的右侧相连;
所述滑动管道243,如图8所示,所述滑动管道243用于安装燃气控制片25并供燃气控制片25左右滑动;
所述滑动管道243垂直于侧喷管燃气管道3设置,利用燃气控制片25处于不同位置使侧喷管燃气管道3开启或关闭;
所述滑动管道243,如图9所示,还包括滑槽,使燃气控制片在滑动管道243中在左右方向上沿直线运动,所述滑动管道243总长大于燃气控制片25和控制片上孔径的总长,所述滑动管道243还设有限位块,使燃气控制片始终垂直于所述侧喷管燃气管道3,并且使燃气控制片25的通孔与所述侧喷管燃气管道3相通即图8中的状态,或将所述侧喷管燃气管道3封闭即图9中的状态。
所述燃气控制片25,如图10所示,所述燃气控制片25呈长板状,板上设置有控制片孔251,所述控制片长度大于2倍所述通孔直径,燃气控制片25上下设有凸起的滑动部件252,所述控制片两端都垂直设置有圆盘253。控制片孔251与侧喷管燃气管道3重合或者部分重合时,能够允许侧喷管燃气管道3向外喷发燃气,在控制片孔251随着燃气控制片25滑动,而与侧喷管燃气管道3不再重合时,所述燃气控制片2即可封堵侧喷管燃气管道3,使之不在向外喷发燃气。
所述滑动部件252与滑动管道243的滑槽相匹配,所述圆盘253直径与滑动管道243内径一致;所述燃气控制片25安装于滑动管道243中,如图9所示,所述燃气控制片25安装入滑动管道243后,所述燃气控制片25左侧与滑动管道243左侧内壁之间形成开启空腔2431,所述燃气控制片25右侧与滑动管道243右侧内壁之间形成关闭空腔2432。
所述侧喷管燃气管道3用于将所述燃烧室产生的燃气从飞行器的侧向喷出,所述侧喷管燃气管道3一端通过阀体1上设置的开口与燃烧室底部结构的姿轨控燃气喷口42相连,另一端设有侧喷管31,通过侧喷管31与外界相连,如图11所示;
优选的,所述侧喷管31的端部从阀体1中伸出。
在一种优选的实施方式中,在制备该述阀体1时,在所述阀体1内加工出孔洞作为燃气控制管路2和侧喷管燃气管道3。
在进一步优选的实施方式中,如图2所示,所述燃气阀设置有多个,绕着飞行器的轴向方向均匀分布,进一步的,燃气阀数量设置为8个;
当所述燃气阀设置有多个时,通过多个燃气阀同时工作产生的对飞行器施加侧向力合力,更好的对飞行器进行姿轨控调整。
在更进一步的实施方式中,如图2所示,所述阀体1与燃烧室的接口设置为环形并进行分区,使燃气分别流入不同的所述固体姿轨控发动机燃气阀。
本发明还提供一种固体姿轨控发动机燃气阀的控制方法,该方法中 的固体姿轨控发动机如上文所述,该方法包括:
在收到开启侧喷管3的指令后,电磁阀23的上线圈2331通电工作,下线圈2332关闭,带动阀芯231向上移动,中部堵头2313堵住燃气供给管道a221,下活塞2312封堵阀芯腔下部,阀芯腔上部与阀芯腔中部连通,使得燃烧室中的燃气经过姿轨控燃气喷口42进入到燃气供给管路b222,再依次经过阀芯腔232和开启控制管路241,最终流入开启空腔2431,推动燃气控制片25向右移动,燃气控制片25上的通孔2521与侧喷管燃气管路3相通,使燃气从侧喷管31喷出,同时燃气控制片25推动关闭腔室2432的气体,使其流入关闭控制管路242经过阀芯腔232的上段,并从电磁阀23的上线圈盖2341上的孔洞排出至阀体1外部。
在未收到开侧喷管3的指令或收到关闭侧喷管的指令时,电磁阀23的下线圈2332通电工作,带动阀芯231向下移动,中部堵头2313堵住燃气供给管道b222,上活塞2311封堵阀芯腔上部2321,阀芯腔下部2323与阀芯腔中部2322连通,使得燃烧室中的燃气经过姿轨控燃气喷口42进入到燃气供给管路a221,再依次经过阀芯腔232和关闭控制管路242,最终流入关闭空腔2432,推动燃气控制片25,使燃气控制片25向左移动,并堵住侧喷管燃气管道3,同时压迫开启空腔2431内的气体,使其流入开启控制管路241,途径阀芯腔232的下段,并从电磁阀23的下线圈盖2342上的孔洞排出至阀体1外部;
本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“左”、“右”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上结合了优选的实施方式对本发明进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本发明进行多种替换和改进,这些均落入本发明的保护范围内。

Claims (10)

  1. 一种固体姿轨控发动机燃气阀,其特征在于,所述固体姿轨控发动机燃气阀固接于飞行器固体火箭发动机的燃烧室下方;所述燃气阀包括阀体(1)、燃气控制管路(2)和侧喷管燃气管道(3);
    所述燃气控制管路(2)用于控制燃气从侧喷管燃气管道(3)的侧喷口喷出,所述燃气控制管路(2)包括过滤网(21)、控制燃气供给管路(22)、电磁阀(23)、燃气控制片控制管路和燃气控制片(25);
    所述侧喷管燃气管道(3)用于将所述燃烧室产生的燃气从飞行器的侧向喷出。
  2. 根据权利要求1所述的燃气阀,其特征在于,
    所述过滤网(21)用于过滤燃烧室流入所述燃气控制管路(2)的燃气,所述过滤网(21)固定在燃气控制管路(2)与燃烧室之间的连接处,所述过滤网(21)完全覆盖燃气控制管路(2)入口;
    所述燃气供给管路(22)上端与燃烧室壳体底部的姿轨控燃气出口相连,下端与电磁阀(23)相连;
    所述燃气供给管路(22)包括燃气供给管路a(221)与燃气供给管路b(222);
    所述电磁阀(23)包括阀芯(231)、阀芯腔(232)、线圈、线圈盖(234);
    所述燃气片控制管路包括开启控制管路(241)、关闭控制管路(242)和滑动管道(243)。
  3. 根据权利要求2所述的燃气阀,其特征在于,
    所述电磁阀(23)通过给设置于阀芯(231)两端的不同线圈通电产生磁力,进而吸引阀芯移动;
    所述阀芯腔(232)用于安装阀芯(231),所述阀芯腔(232)包括阀芯腔上部(2321)、阀芯腔中部(2322)和阀芯腔下部(2323),所述阀芯腔上部(2321)、阀芯腔中部(2322)和阀芯腔下部(2323)均为圆柱体空腔,且互相连通,所述阀芯腔上部(2321)与阀芯腔下部(2323)的内径尺寸相同,所述阀芯腔上部内径尺寸大于阀芯腔中部的内径尺寸(2322);
    所述阀芯(231)用于控制开启或关闭燃气供给管路(22),所述阀芯(231)包括中部堵头(2313),所述中部堵头(2313)为圆柱体,圆柱体上端垂直设有上连接杆(2314),在下端垂直设有下连接杆(2315),上连接杆(2314)末端设有上活塞(2311),下连接杆(2315)末端设有下活塞(2312),所述阀芯231可被通电线圈吸引;
    所述中部堵头(2313)外径与阀芯腔中部(2322)内径尺寸一致,通过将所述中部堵头(2313)安装于阀芯腔中部(2322)中,使得所述阀芯腔(232)分为互不连通的上下两段;
    所述线圈用于在通电后吸引阀芯(231),所述线圈包括上线圈(2331)和下线圈(2332),所述上线圈(2331)设置于电磁阀(23)上部,所述下线圈(2332)设置于电磁阀(23)下部;
    所述线圈盖(234)为空心圆柱状壳体,所述线圈盖(234)上方设有通孔;所述线圈盖(234)包括上线圈盖(2341)和下线圈盖(2342),所述上线圈盖(2341)设置在所述上线圈(2331)外侧,所述下线圈盖(2342)设置在下线圈(2332)外。
  4. 根据权利要求2所述的燃气阀,其特征在于,
    所述滑动管道(243)设置在所述开启控制管路(241)和关闭控制管路(242)的连接处;
    所述开启控制管路(241)一端与电磁阀(23)的阀芯腔(232)相连,另一端与滑动管道(243)的左侧相连,所述关闭控制管路(242)一端与电磁阀(23)的阀芯腔(232)相连,另一端与滑动管道(243)的右侧相连;
    所述滑动管道(243)垂直于侧喷管燃气管道(3);
    所述开启控制管路(241)一端与电磁阀(23)的阀芯腔(232)相连,另一端与滑动管道(243)的左侧相连,所述关闭控制管路(242)一端与电磁阀(23)的阀芯腔(232)相连,另一端与滑动管道(243)的右侧相连;
    在所述滑动管道(243)内部设置有能够左右滑动的燃气控制片(25);
    所述滑动管道(243)设有滑槽,使燃气控制片在滑动管道中,在左右方向上往复运动。
  5. 根据权利要求2所述的燃气阀,其特征在于,
    所述燃气控制片(25)用于控制侧喷管燃气管道(3)开启或关闭;
    所述燃气控制片(25)呈长板状,板上设置有控制片孔(251),所述控制片长度大于2倍所述通孔直径,燃气控制片(25)上下设有凸起的滑动部件(252),所述控制片两端都垂直设置有圆盘(253),所述圆盘(253)直径与滑动管道(243)内径一致;
    通过将所述燃气控制片(25)安装入滑动管道(243)中,将所述滑动管道(243)分隔成位于左侧的开启空腔(2431)和位于右侧的关闭空腔(2432)。
  6. 根据权利要求1所述的燃气阀,其特征在于,
    所述侧喷管燃气管道(3)通过设置在飞行器侧方的侧喷管(31)将所述燃烧室产生的燃气喷出;所述侧喷管(31)的端部从阀体(1)中伸出。
  7. 根据权利要求1所述的燃气阀,其特征在于,
    所述燃气阀设置有多个,绕着飞行器的轴向方向均匀分布,优选地,燃气阀数量设置为8个。
  8. 根据权利要求1所述的燃气阀,其特征在于,
    在所述燃烧室底部设置有主喷管(41)和环绕在所述主喷管(41)周围的多个姿轨控燃气喷口(42),
    每个燃气阀上方都连接有一个姿轨控燃气喷口(42)。
  9. 根据权利要求1所述的燃气阀,其特征在于,
    在所述阀中部设有圆柱形空洞,圆柱形轴线与固体火箭发动机燃烧室底部主喷管(41)的轴线重合。
  10. 一种固体姿轨控发动机燃气阀的控制方法,其特征在于,该方法包括:
    在收到开启侧喷管(3)的指令后,电磁阀(23)的上线圈(2331)通电工作,下线圈(2332)关闭,带动阀芯(231)向上移动,此时中部堵头(2313)堵住燃气供给管道a(221),下活塞(2312)封堵阀芯腔下部,阀芯腔上部与阀芯腔中部连通,使得燃烧室中的燃气经过姿轨控燃气喷口(42)进入到燃气供给管路b(222),再依次经过阀芯腔(232)和开启控制管路(241),最终流入开启空腔(2431),推动燃气控制片(25)向右移动,燃气控制片(25)上的控制片孔(251)与侧喷管燃气管路(3)相通,使燃气从侧喷管(31)喷出,同时燃气控制片(25)推动关闭腔室(2432)的气体,使其流入关闭控制管路(242)经过阀芯腔(232)的上段,并从电磁阀(23)的上线圈盖(2341)上的孔洞排出至阀体(1)外部;
    在未收到开侧喷管(3)的指令或收到关闭侧喷管的指令时,电磁阀(23)的下线圈(2332)通电工作,带动阀芯(231)向下移动,此时中部堵头(2313)堵住燃气供给管道b(222),上活塞(2311)封堵阀芯腔上部(2321),阀芯腔下部(2323)与阀芯腔中部(2322)连通,使得燃烧室中的燃气经过姿轨控燃气喷口(42)进入到燃气供给管路a(221),再依次经过阀芯腔(232)的上段和关闭控制管路(242),最终流入关闭空腔(2432),推动燃气控制片(25),使燃气控制片(25)向左移动,并堵住侧喷管燃气管道(3),同时压迫开启空腔(2431)内的气体,使其流入开启控制管路(241),途径阀芯腔(232)的下段,并从电磁阀(23)的下线圈盖(2342)上的通孔排出至阀体(1)外部。
PCT/CN2021/119502 2020-12-15 2021-09-22 一种固体姿轨控发动机燃气阀及其控制方法 WO2022127251A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545417A JP2023511608A (ja) 2020-12-15 2021-09-22 固体姿勢軌道制御エンジンガス弁及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011475913.0A CN112594091B (zh) 2020-12-15 2020-12-15 一种固体姿轨控发动机燃气阀及其控制方法
CN202011475913.0 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022127251A1 true WO2022127251A1 (zh) 2022-06-23

Family

ID=75196516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119502 WO2022127251A1 (zh) 2020-12-15 2021-09-22 一种固体姿轨控发动机燃气阀及其控制方法

Country Status (3)

Country Link
JP (1) JP2023511608A (zh)
CN (1) CN112594091B (zh)
WO (1) WO2022127251A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112594091B (zh) * 2020-12-15 2021-12-07 北京理工大学 一种固体姿轨控发动机燃气阀及其控制方法
CN114993681B (zh) * 2022-05-12 2023-01-17 北京理工大学 一种检测射流式微型姿态发动机性能方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926036B2 (en) * 2003-01-06 2005-08-09 Honeywell International, Inc. Fluidic diverter valve with a non-spherical shuttle element
CN109606740A (zh) * 2018-12-28 2019-04-12 湖北航天技术研究院总体设计所 一种基于pwm调整的推力调整***及其调整方法
CN109707536A (zh) * 2018-12-28 2019-05-03 湖北航天技术研究院总体设计所 一种基于能量管控的固体姿控动力***
CN110645118A (zh) * 2019-10-31 2020-01-03 湖北航天技术研究院总体设计所 一种等流量固体姿控推力装置及设计方法
CN112594091A (zh) * 2020-12-15 2021-04-02 北京理工大学 一种固体姿轨控发动机燃气阀及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025645C1 (ru) * 1992-12-30 1994-12-30 Борис Николаевич Лагутин Ракета космического назначения
JP4286388B2 (ja) * 1999-07-02 2009-06-24 ダイセル化学工業株式会社 ロケット
DE102004045855B4 (de) * 2004-09-20 2006-06-29 Eads Space Transportation Gmbh Steuer- und/oder Antriebseinrichtung für einen Flugkörper
CN104747320B (zh) * 2015-01-29 2016-03-02 北京航空航天大学 转动控制固体姿轨控发动机
CN109515757B (zh) * 2018-10-18 2021-10-08 贵州航天林泉电机有限公司 一种喷气式飞行器姿态控制装置
CN110966117A (zh) * 2019-12-13 2020-04-07 中国空气动力研究与发展中心 一种高超声速飞行器反作用控制装置及其防护安装机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926036B2 (en) * 2003-01-06 2005-08-09 Honeywell International, Inc. Fluidic diverter valve with a non-spherical shuttle element
CN109606740A (zh) * 2018-12-28 2019-04-12 湖北航天技术研究院总体设计所 一种基于pwm调整的推力调整***及其调整方法
CN109707536A (zh) * 2018-12-28 2019-05-03 湖北航天技术研究院总体设计所 一种基于能量管控的固体姿控动力***
CN110645118A (zh) * 2019-10-31 2020-01-03 湖北航天技术研究院总体设计所 一种等流量固体姿控推力装置及设计方法
CN112594091A (zh) * 2020-12-15 2021-04-02 北京理工大学 一种固体姿轨控发动机燃气阀及其控制方法

Also Published As

Publication number Publication date
CN112594091A (zh) 2021-04-02
JP2023511608A (ja) 2023-03-20
CN112594091B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2022127251A1 (zh) 一种固体姿轨控发动机燃气阀及其控制方法
KR101236593B1 (ko) 유체 작동 기계
US3288379A (en) Fuel injection valves
JP2730593B2 (ja) 内燃機関のための電磁弁を有する弁制御装置
EP3153693B1 (en) Fuel injector
WO2016045216A1 (zh) 整体式双阀门气体喷射阀及其装配方法
CN104704210A (zh) 混合式凸轮-无凸轮的可变气门致动***
CN1210495C (zh) 燃油喷射阀
US8807463B1 (en) Fuel injector with kinetic energy transfer armature
CN201326477Y (zh) 凝胶推进剂供应***用一位两控气动先导阀
CN104110340B (zh) 具有制动装置的电磁型燃料喷射器
CN110388474A (zh) 一种快速响应的小型化先导式电磁阀
EP3406891B1 (en) A fuel valve for large turbocharged two stroke diesel engines
CN105201687B (zh) 电动滑盘阀式固体火箭冲压发动机燃气流量调节装置
CN107143436B (zh) 一种组合式双电磁燃气喷射阀
CN113720843B (zh) 测量高速气液两相射流内部混合特性的装置、***及方法
US20220049788A1 (en) Electromagnetic regulating valve with check function
CN211449693U (zh) 一种流量平稳的燃油计量阀
CN107420224B (zh) 一种带压电执行器的集成式交叉环槽气体燃料喷射混合装置
CN207212553U (zh) 一种双燃料机用新型微引燃共轨喷油器
US20240067365A1 (en) 2-stage cold gas thruster
CN220991530U (zh) 一种高速点胶阀
CN213776468U (zh) 一种电磁水阀
CN202674470U (zh) 高压电磁阀
CN217784373U (zh) 一体式双座调节阀阀芯

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022545417

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905182

Country of ref document: EP

Kind code of ref document: A1