WO2022126559A1 - 目标检测方法、装置、平台及计算机可读存储介质 - Google Patents

目标检测方法、装置、平台及计算机可读存储介质 Download PDF

Info

Publication number
WO2022126559A1
WO2022126559A1 PCT/CN2020/137402 CN2020137402W WO2022126559A1 WO 2022126559 A1 WO2022126559 A1 WO 2022126559A1 CN 2020137402 W CN2020137402 W CN 2020137402W WO 2022126559 A1 WO2022126559 A1 WO 2022126559A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
angle
ground
ranging sensor
movable platform
Prior art date
Application number
PCT/CN2020/137402
Other languages
English (en)
French (fr)
Inventor
王石荣
王俊喜
李勋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/137402 priority Critical patent/WO2022126559A1/zh
Publication of WO2022126559A1 publication Critical patent/WO2022126559A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • the present application relates to the technical field of target detection, and in particular, to a target detection method, apparatus, platform, and computer-readable storage medium.
  • microwave radars are often required to have both ranging capability and angle measurement capability in the vertical dimension to identify obstacles above or close to the ground. object, so as to realize the obstacle avoidance of the movable platform to ensure the safety of the movable platform.
  • the reflected energy of the ground is much higher than that of obstacles, the phenomenon that the obstacles are shielded by ground clutter will cause the obstacles to be unable to be accurately identified, posing a threat to the safety of the movable platform.
  • the embodiments of the present application provide a target detection method, device, platform, and computer-readable storage medium, which aim to improve the accuracy of obstacle recognition and the security of the movable platform.
  • an embodiment of the present application provides a target detection method, which is applied to a movable platform, the movable platform is provided with a ranging sensor, and the echo signals collected by the ranging sensor can be processed to include a distance dimension.
  • a spectrogram of a frequency spectrum the method comprising:
  • the target scanning angle determine the target range-dimensional spectrum in the spectrogram, and the scanning direction corresponding to the target range-dimensional spectrum is substantially parallel to the ground, or away from the ground and forming an included angle with the ground;
  • the distance between the target object in the environment where the movable platform is located and the movable platform is determined.
  • an embodiment of the present application further provides a target detection device, which is applied to a movable platform, the movable platform is provided with a ranging sensor, and the echo signals collected by the ranging sensor can be processed to include a distance a spectrogram of a dimensional spectrum, the target detection device includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the target scanning angle determine the target range-dimensional spectrum in the spectrogram, and the scanning direction corresponding to the target range-dimensional spectrum is substantially parallel to the ground, or away from the ground and forming an included angle with the ground;
  • the distance between the target object in the environment where the movable platform is located and the movable platform is determined.
  • an embodiment of the present application further provides a movable platform, where the movable platform includes:
  • a ranging sensor which is arranged on the platform body, and the echo signals collected by the ranging sensor can be processed into a spectrogram including a distance-dimensional spectrum;
  • the above-mentioned target detection device is provided on the platform body, and is used for determining the distance between the target object in the environment where the movable platform is located and the movable platform, and for controlling the movement of the movable platform.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned The steps of the object detection method.
  • the embodiments of the present application provide a target detection method, device, platform, and computer-readable storage medium, by acquiring the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground, and then determining the spectrogram according to the target scanning angle
  • the target distance-dimensional spectrum in the target distance-dimensional spectrum, the scanning direction corresponding to the target distance-dimensional spectrum is roughly parallel to the ground, or far from the ground and forms an angle with the ground.
  • the scanning direction corresponding to the obtained target range-dimensional spectrum is roughly parallel to the ground, or far away from the ground and forms an angle with the ground, the situation where the target object is obscured by ground clutter can be effectively avoided.
  • the accuracy of object recognition greatly improves the security of the movable platform.
  • FIG. 1 is a schematic structural diagram of a movable platform implementing the target detection method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of steps of a target detection method provided by an embodiment of the present application.
  • Fig. 3 is the sub-step schematic flow chart of the target detection method in Fig. 2;
  • FIG. 4 is a schematic diagram of a scanning range of a rotating microwave radar involved in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a scene of a target scanning angle formed when the scanning direction of the ranging sensor is determined to be substantially parallel to the ground in an embodiment of the present application;
  • FIG. 6 is a schematic block diagram of the structure of a target detection apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • microwave radars are often required to have both ranging capability and angle measurement capability in the vertical dimension to identify obstacles above or close to the ground. object, so as to realize the obstacle avoidance of the movable platform to ensure the safety of the movable platform.
  • the reflected energy of the ground is much higher than that of obstacles, the phenomenon that the obstacles are shielded by ground clutter will cause the obstacles to be unable to be accurately identified, posing a threat to the safety of the movable platform.
  • embodiments of the present application provide a target detection method, device, platform, and computer-readable storage medium.
  • the scanning angle determines the target distance dimension spectrum in the spectrogram.
  • the scanning direction corresponding to the target distance dimension spectrum is roughly parallel to the ground, or far away from the ground and forms an angle with the ground.
  • the target distance dimension spectrum determine where the movable platform is located. The distance between the target object of the environment and the movable platform. Since the scanning direction corresponding to the obtained target range-dimensional spectrum is roughly parallel to the ground, or far away from the ground and forms an angle with the ground, the situation where the target object is obscured by ground clutter can be effectively avoided.
  • the accuracy of object recognition greatly improves the security of the movable platform.
  • FIG. 1 is a schematic structural diagram of a movable platform implementing the target detection method provided by the embodiment of the present application.
  • the movable platform 100 may include a platform body 110 , a power system 120 , a ranging sensor 130 and a control system (not shown in FIG. 1 ).
  • the power system 120 and the ranging sensor 130 are provided on the platform body 110 , the power system 120 is used to provide moving power for the movable platform 100, and the ranging sensor 130 is used to transmit a detection signal to the outside, and collect the echo signal of the detection signal, so that the control system can detect the echo signal collected by the ranging sensor 130.
  • the wave signal is processed to obtain a spectrogram including the range-dimensional spectrum.
  • the ranging sensor 130 may include a rotating microwave radar, a sheet microwave radar, and a laser radar.
  • the power system 120 may include one or more propellers 121 , one or more motors 122 corresponding to the one or more propellers, and one or more electronic governors (referred to as ESCs for short).
  • the motor 122 is connected between the electronic governor and the propeller 121, and the motor 122 and the propeller 121 are arranged on the platform body 110 of the movable platform 100; the electronic governor is used for receiving the driving signal generated by the control system, and according to the driving signal A driving current is provided to the motor 122 to control the rotational speed of the motor 122 .
  • the motor 122 is used to drive the propeller 121 to rotate, thereby providing power for the movement of the movable platform 100, and the power enables the movable platform 100 to achieve one or more degrees of freedom movement.
  • the movable platform 100 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the control system may include a controller and a sensing system.
  • the sensing system is used to measure the attitude information of the movable platform, that is, the position information and state information of the movable platform 100 in space, such as 3D position, 3D angle, 3D velocity, 3D acceleration and 3D angular velocity.
  • the sensing system may include at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, a barometer, and other sensors.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the controller is used to control the movement of the movable platform 100, for example, the movement of the movable platform 100 can be controlled according to the attitude information measured by the sensing system. It should be understood that the controller can control the movable platform 100 according to pre-programmed instructions.
  • the controller acquires the target scanning angle formed when the scanning direction of the ranging sensor 130 is substantially parallel to the ground, and then determines the target distance dimension spectrum in the spectrogram according to the target scanning angle, and the target distance dimension spectrum corresponds to
  • the scanning direction is roughly parallel to the ground, or away from the ground and forms an angle with the ground.
  • the distance between the target object in the environment where the movable platform 100 is located and the movable platform 100 is determined according to the target distance dimension spectrum. Since the scanning direction corresponding to the acquired target range-dimensional spectrum is roughly parallel to the ground, or far away from the ground and forms an angle with the ground, the situation where the target object is obscured by ground clutter can be effectively avoided.
  • the accuracy of object recognition greatly improves the security of the movable platform 100 .
  • the movable platform 100 includes unmanned aerial vehicles and PTZ vehicles, and the unmanned aerial vehicles include rotary-wing unmanned aerial vehicles, such as quad-rotor unmanned aerial vehicles, hexa-rotor unmanned aerial vehicles, octa-rotor unmanned aerial vehicles, or fixed-wing unmanned aerial vehicles.
  • the man-machine can also be a combination of a rotary-wing type and a fixed-wing unmanned aerial vehicle, which is not limited here.
  • the movable platform in FIG. 1 and the above naming of the components of the movable platform are only for the purpose of identification, and therefore do not limit the embodiments of the present application.
  • the target detection method provided by the embodiments of the present application will be described in detail with reference to the scene in FIG. 1 . It should be noted that the scene in FIG. 1 is only used to explain the target detection method provided by the embodiment of the present application, but does not constitute a limitation on the application scene of the target detection method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of steps of a target detection method provided by an embodiment of the present application.
  • the target detection method can be applied to a movable platform to accurately determine the distance between the movable platform and a target object, thereby improving the security of the movable platform.
  • the target detection method includes steps S101 to S103.
  • Step S101 acquiring the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground;
  • Step S102 Determine the target distance-dimensional spectrum in the spectrogram according to the target scanning angle, and the scanning direction corresponding to the target distance-dimensional spectrum is roughly parallel to the ground, or is far from the ground and forms with the ground. included angle;
  • Step S103 Determine the distance between the target object in the environment where the movable platform is located and the movable platform according to the target distance dimension spectrum.
  • microwave radar when working in complex scenes close to the ground, microwave radar is often required to have both ranging capability and angle measurement capability in the vertical dimension to identify obstacles above or close to the ground. object, so as to realize the obstacle avoidance of the movable platform to ensure the safety of the movable platform.
  • the reflected energy of the ground is much higher than that of obstacles, the phenomenon that the obstacles are shielded by ground clutter will cause the obstacles to be unable to be accurately identified, posing a threat to the safety of the movable platform.
  • the target scanning angle formed when the scanning direction of the ranging sensor is approximately parallel to the ground is obtained, and based on the target scanning angle, the scanning direction is approximately parallel to the ground, or is far away from the ground and forms an angle with the ground.
  • the target distance dimension spectrum is used to determine the distance between the target object in the environment where the movable platform is located and the movable platform, so that the movable platform can avoid the target object in the flight direction, emergency braking Stopping or prompting the pilot to avoid obstacles, etc., can greatly improve the safety of the movable platform.
  • the constant false alarm rate (CFAR) detection is performed on the target distance-dimensional spectrum, the target frequency point of the target object in the environment where the movable platform is located is extracted, and the target object and the movable platform are determined by the target frequency point. the distance between.
  • CFAR constant false alarm rate
  • the angle between the rotation axis of the ranging sensor and the plane formed by the pitch axis and the roll axis of the movable platform is within a first preset angle range.
  • the angle between the rotation axis of the ranging sensor and the plane formed by the pitch axis and the roll axis of the movable platform is related to the installation position of the ranging sensor on the movable platform, and the first preset angle range can be based on Set according to the actual situation, for example, the first preset angle range is 30° to 135° or 45° to 135°.
  • the rotation axis of the ranging sensor is substantially perpendicular to the plane formed by the pitch axis and the roll axis of the movable platform, that is, substantially parallel to the yaw axis of the movable platform.
  • the included angle between the rotation axis of the ranging sensor and the plane formed by the pitch axis and the roll axis of the movable platform is within the second preset angle range, then the distance between the rotation axis of the ranging sensor and the movable platform can be determined.
  • the plane formed by the pitch axis and the roll axis is approximately vertical.
  • the second preset angle range is a subset of the first preset angle range, and the second preset angle range can be set based on actual conditions. For example, the second preset angle range is 75° to 105° or 85° ° to 95°.
  • the relationship between the rotation axis of the ranging sensor and the heading axis of the movable platform can be set as required.
  • the purpose is that the ranging sensor can scan points on the ground and non-ground points.
  • the setting of the rotation axis of the corresponding ranging sensor can be different.
  • the rotation axis can be more inclined to match the The panning axis of the movable platform is vertical, and the rotation axis can be more inclined to be parallel to the panning axis of the movable platform when more non-ground points need to be scanned.
  • the spectrogram is obtained by processing the echo signal collected by the ranging sensor at the last moment.
  • the ranging sensor as a rotating microwave radar as an example
  • the method of determining the spectrogram is described.
  • the rotating microwave radar is controlled to rotate within a preset angle range, and a detection signal is emitted, and then the echo signal of the detection signal is collected, and the echo signal of the detection signal is collected.
  • the wave signal is processed by DC isolation and windowing to obtain the time-domain signal matrix corresponding to the echo signal. Finally, the time-domain signal matrix is subjected to fast Fourier transform from the row direction and the column direction respectively, and the spectrum including the distance dimension is obtained.
  • the preset angle range may include 0° to 360°, which is not specifically limited in this embodiment of the present application.
  • the scanning range of the ranging sensor is determined; the ranging sensor is controlled to emit a detection signal within the scanning range, and an echo signal collected by the ranging sensor based on the detection signal is acquired; processing to obtain a spectrogram.
  • the manner of determining the scanning range of the ranging sensor may be as follows: acquiring the moving direction of the movable platform, and determining the scanning range in which the scanning direction of the ranging sensor matches the moving direction.
  • the scanning range includes the target yaw angle of the ranging sensor
  • the manner of controlling the ranging sensor to transmit detection signals within the scanning range may be: adjusting the yaw angle of the ranging sensor until the ranging sensor The yaw angle of the ranging sensor reaches the target yaw angle; after the yaw angle of the ranging sensor reaches the target yaw angle, the ranging sensor is controlled to transmit a detection signal.
  • the rotating microwave radar is controlled to rotate until the yaw angle of the rotating microwave radar reaches the target yaw angle; if the ranging sensor is a time-of-flight TOF sensor, according to the target yaw angle , control the rotation of the gimbal equipped with the TOF sensor until the yaw angle of the TOF sensor reaches the target yaw angle.
  • the scanning range includes the first yaw angle and the second yaw angle of the ranging sensor
  • the manner of controlling the ranging sensor to transmit detection signals within the scanning range may be: adjusting the angular velocity according to the preset angular velocity.
  • the yaw angle of the ranging sensor gradually changes from the first yaw angle to the second yaw angle, or from the second yaw angle to the first yaw angle.
  • the distance sensor emits a detection signal.
  • the rotating microwave radar is controlled to rotate, so that the yaw angle of the rotating microwave radar gradually changes from the first yaw angle to the second yaw angle, or from the second yaw angle gradually is the first yaw angle, and in the process of adjusting the yaw angle, the microwave sensor is controlled to transmit detection signals;
  • the ranging sensor is a TOF sensor
  • the gimbal equipped with the TOF sensor is controlled to rotate to make the yaw angle of the TOF sensor The first yaw angle is gradually changed to the second yaw angle, or the second yaw angle is gradually changed to the first yaw angle, and in the process of adjusting the yaw angle, the TOF sensor is controlled to transmit a detection signal.
  • step S101 specifically includes: sub-steps S1011 to S1012.
  • Sub-step S1011 Obtain the terrain information of the environment where the movable platform is located and the horizontal azimuth of the ranging sensor.
  • the terrain information of the environment where the movable platform is located can be determined according to the straight-line distances of N target points collected by the ranging sensor at the last moment relative to the ranging sensor, where N is a positive integer greater than zero, or can be determined according to a preset
  • the corresponding terrain elevation map area is determined in the terrain elevation map.
  • the straight-line distances of N target points collected by the ranging sensor at the last moment relative to the ranging sensor are obtained, where N is a positive integer greater than zero;
  • the terrain information includes the ground equation, the slope of the ground, and the height of the movable platform from the ground.
  • the terrain information may also include the flatness of the ground.
  • the linear distance of the target point relative to the ranging sensor reflects the distance between the rotating microwave radar and the ground when the rotating microwave radar rotates to the corresponding scanning angle. For the same target point, if the target If the ground where the point is located is high, the distance between the rotating microwave radar and the ground is small; if the ground where the target point is located is low, the distance between the rotating microwave radar and the ground is large. For example, if the distance between the rotating microwave radar and different target points on the ground is large, it means that the ground level is low.
  • the slope of the ground where the multiple target points are located is high; if the distance between the rotating microwave radar and the ground is large, it means that the The ground where multiple target points are located has a low slope.
  • the position information of the N target points in the coordinate system of the movable platform can be determined based on a preset formula and according to the linear distances of the N target points relative to the rotating microwave radar.
  • the preset formula can be:
  • ri is the straight-line distance of the target point i relative to the rotating microwave radar
  • ⁇ i is the declination angle between the target point i and the xy plane
  • x Ri , y Ri , z Ri is the position information of the target point i.
  • the scanning angles of N target points collected by the ranging sensor at the last moment are obtained; according to the position information and scanning angles of the N target points, M target points are determined from the N target points, wherein , M is a positive integer greater than zero; according to the position information of the M target points, determine the terrain information of the environment where the movable platform is located.
  • M is a positive integer less than or equal to N
  • the position information and scanning angle of the M target points satisfy a preset condition
  • the preset condition includes that the scanning angles of the M target points are within the preset scanning angle range
  • the M targets The position information of the point satisfies the preset value, that is, the target point whose scanning angle is within the preset scanning angle range and whose position information satisfies the preset value is determined as a point on the ground.
  • the rotation axis of the ranging sensor when the position of the ranging sensor relative to the movable platform can be adjusted, the rotation axis of the ranging sensor can be perpendicular to the heading axis of the movable platform, because the rotation axis of the ranging sensor is perpendicular to the direction of the movable platform.
  • the yaw axis therefore, can improve the scanning range of the ranging sensor to the ground.
  • the rotation axis of the ranging sensor can be made parallel to the heading axis of the movable platform, or perpendicular to the movable platform.
  • the heading axis of the distance measuring sensor or an included angle of less than 90 degrees with the heading axis of the movable platform, the relationship between the rotation axis of the ranging sensor and the heading axis of the movable platform can be adjusted according to the actual application scenario.
  • the ranging sensor is a rotating microwave radar, as shown in FIG. 4 , the scanning range of the rotating microwave radar in the vertical direction is 120°, and the rotation axis of the rotating microwave radar is parallel to the heading axis of the movable platform. Therefore, the rotating microwave radar can scan not only the points on the ground, but also the points that are not on the ground, which improves the scanning range of the rotating microwave radar, and is beneficial to obtain the ground equation and realize the distance detection of obstacles.
  • the preset scanning angle range may be set based on the actual situation, which is not specifically limited in this embodiment of the present application. For example, the preset scanning angle range is 0° to -60°.
  • the positioning information of the movable platform is obtained, and the terrain elevation map area is extracted from the preset terrain elevation map according to the positioning information; according to the extracted terrain elevation map area, the terrain of the environment where the movable platform is located is determined.
  • the positioning information of the movable platform can be determined by a positioning module in the movable platform, and the positioning module can be a global positioning system (Global Positioning System, GPS) positioning module, or can be a real-time kinematic (Real-time kinematic, RTK) positioning Module; the preset terrain elevation map is drawn in advance and stored in the memory of the movable platform or obtained online from the server, and the preset terrain elevation map includes the terrain information of the current environment of the movable platform.
  • GPS Global Positioning System
  • RTK real-time kinematic
  • the heights of P target points are extracted from the terrain elevation map area, where P is a positive integer greater than zero; the terrain information of the environment where the movable platform is located is determined according to the heights of the P target points.
  • the height difference between the heights of the P target points is large, it means that the slope of the ground where the P target points are located is relatively high, if the height difference between the heights of the P target points is high If the value is small, it means that the slope of the ground where the P target points are located is low.
  • Sub-step S1012 according to the terrain information and the horizontal azimuth angle, determine a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground.
  • the ground normal vector is determined according to the terrain information
  • the horizontal azimuth vector is determined according to the horizontal azimuth angle
  • the target scanning angle formed when the scanning direction of the ranging sensor is approximately parallel to the ground is determined.
  • the difference between the angle between the ground normal vector and the horizontal azimuth vector and the target scanning angle is 90°
  • the horizontal azimuth is set to be ⁇
  • the horizontal azimuth vector is
  • the terrain information includes a ground equation
  • the method of determining the ground normal vector according to the terrain information may be: obtaining the first coefficient on the X axis, the second coefficient on the Y axis, and the Z axis of the ground equation.
  • the third coefficient on ; the ground normal vector is determined according to the first coefficient, the second coefficient and the third coefficient.
  • the coefficients of the ground normal vector are in one-to-one correspondence with the coefficients of the corresponding axes of the ground equation, and they have a linear relationship.
  • a is the first coefficient of the ground equation on the X axis
  • b is the second coefficient on the Y axis
  • the third coefficient on the Z axis is 1
  • d is the partial term
  • the vector inner product of the ground normal vector and the horizontal azimuth vector is determined, and the length of the ground normal vector and the length of the horizontal azimuth vector are determined;
  • the length and the length of the horizontal azimuth vector determine the target scanning angle formed when the scanning direction of the ranging sensor is approximately parallel to the ground.
  • the size of the target scanning angle and the inner product of the vector, the length of the ground normal vector and the length of the horizontal azimuth vector are inverse trigonometric functions. Definition related.
  • the method of obtaining the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground may be: obtaining the attitude information of the movable platform; The target scan angle formed when roughly parallel.
  • the attitude information of the movable platform includes the pitch angle and/or roll angle of the movable platform, the ranging sensor can be fixedly installed on the movable platform, and the ranging sensor can also be mounted on a PTZ connected to the movable platform. On the PTZ, the attitude of the ranging sensor can be adjusted.
  • the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground can be determined according to the pitch angle and/or the roll angle of the movable platform. For example, if the pitch angle of the movable platform is not zero, the pitch angle of the movable platform is determined as the target scanning angle; if the roll angle of the movable platform is not zero, the roll angle of the movable platform is determined as the target scanning angle. For the target scanning angle, if the pitch angle and roll angle of the movable platform are not zero, the pitch angle or roll angle of the movable platform is determined as the target scanning angle.
  • the current pitch angle and/or the current roll angle of the ranging sensor can be obtained, and the current pitch angle and/or the current roll angle of the ranging sensor angle and the pitch angle of the movable platform, and/or the current roll angle and the roll angle of the movable platform, determine the target scanning angle formed when the scanning direction of the ranging sensor is roughly parallel to the ground, that is, it can be determined according to the scanning direction of the ranging sensor.
  • the current pitch angle and the pitch angle of the movable platform are used to determine the scanning angle of the target, or the scanning angle of the target can be determined according to the current roll angle of the ranging sensor and the roll angle of the movable platform.
  • the specific method needs to consider the posture of the movable platform and the positional layout of the ranging sensor relative to the movable platform.
  • the method of determining the target distance dimension spectrum in the spectrogram may be: adjusting the scanning angle of the ranging sensor according to the target scanning angle until the scanning direction of the ranging sensor is approximately the same as that of the ground.
  • the scanning direction of the ranging sensor after the scanning direction of the ranging sensor is roughly parallel to the ground, or away from the ground and forming an included angle with the ground, control the ranging sensor to be roughly parallel to the ground, or away from the ground
  • the scanning direction that forms an angle with the ground transmits the detection signal, and obtains the echo signal collected by the ranging sensor based on the detection signal; processes the echo signal collected based on the detection signal, obtains the target spectrogram, and uses The range-dimensional spectrum in the target spectrogram is determined as the target range-dimensional spectrum.
  • the target distance in the target spectrogram obtained by processing the echo signal collected based on the detection signal
  • the dimensional spectrum can accurately describe the distance information of obstacles above the ground or close to the ground.
  • the method of determining the target distance dimension spectrum in the spectrogram may be: determining the target distance dimension spectrum in the spectrogram according to the target scanning angle and the angle dimension spectrum.
  • the spectrogram is obtained by processing the echo signal collected by the ranging sensor at the last moment. Through the target scanning angle and the angle-dimensional spectrum in the spectrogram, the target range-dimensional spectrum used to describe the distance information of obstacles above or close to the ground can be accurately determined.
  • the scanning angle corresponding to each angular dimension spectrum in the spectrogram and the angular dimension range of the spectrogram are obtained; according to the target scanning angle and the scanning angle corresponding to each angular dimension spectrum, from the angular dimension Select an angle dimension in the range as the target angle dimension; according to the target angle dimension, determine the target distance dimension spectrum in the spectrogram.
  • the target distance dimension spectrum includes one or more distance dimension spectrums, the angle dimension corresponding to the one or more distance dimension spectrums is greater than or equal to the target angle dimension, and the angle dimension range of the spectrogram can be set based on the actual situation. For example, there is no specific limitation on this, for example, the range of the angle dimension is [-64,63].
  • the ranging sensor is a rotating microwave radar
  • the angle measuring formula of the rotating microwave radar and the number of points n of the fast Fourier transform used in generating the spectrogram can determine the formula for determining the scanning angle corresponding to each angle dimension spectrum in the spectrogram in, is the scanning angle corresponding to the angle dimension spectrum, ⁇ is the wavelength, d is the antenna array spacing of the rotating microwave radar, is the phase difference between the detection signal and the echo signal of the detection signal, k is the angle dimension, the value is taken from [-64,63], the number of points n of the fast Fourier transform used in generating the spectrogram It can be set based on the actual situation, for example, n is 128, so by formula and the angle dimension range [-64, 63], the scanning angle corresponding to each angle dimension spectrum in the spectrogram can be determined.
  • the matching degree between the target scanning angle and the scanning angle corresponding to each angle-dimensional spectrum is determined; according to the matching degree between the target scanning angle and the scanning angle corresponding to each angle-dimensional spectrum, from the angle In the dimension range, select an angle dimension with the highest matching degree as the target angle dimension.
  • the matching degree between the target scanning angle and the scanning angle corresponding to the angle-dimensional spectrum may be determined according to the angle difference and/or the angle ratio between the target scanning angle and the scanning angle corresponding to the angle-dimensional spectrum, and the matching degree is the same as the angular ratio.
  • the angle difference has a negative correlation, that is, the larger the angle difference, the lower the matching degree, the smaller the angle difference, the higher the matching degree, and the matching degree and the angle ratio have a positive correlation, that is The larger the angle ratio is, the higher the matching degree is, and the smaller the angle ratio is, the lower the matching degree is.
  • the slope of the ground of the environment where the movable platform is located is obtained; if the slope is greater than the preset slope, the terrain information of the environment where the movable platform is located and the horizontal azimuth of the ranging sensor are obtained; according to the terrain information and the horizontal azimuth angle, determine the target scanning angle formed when the scanning direction of the ranging sensor is roughly parallel to the ground; according to the target scanning angle, determine the target distance dimension spectrum in the spectrogram; The distance between the target object in the environment where the mobile platform is located and the movable platform.
  • the preset gradient may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • the target distance dimension spectrum used to describe the distance information of obstacles above the ground or close to the ground can be determined, so that the target distance dimension spectrum can be determined based on the target distance dimension.
  • the spectrum determines the distance between the target object and the movable platform, improving the safety of the movable platform.
  • the attitude information of the movable platform is obtained; according to the attitude information of the movable platform, the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined; The target scanning angle is used to determine the target distance dimension spectrum in the spectrogram; the distance between the target object in the environment where the movable platform is located and the movable platform is determined according to the target distance dimension spectrum.
  • the target distance dimension spectrum used to describe the distance information of obstacles above or close to the ground can be determined based on the attitude information of the movable platform (when the ranging sensor is mounted on the mobile platform connected to the movable platform)
  • the above-mentioned target distance dimension spectrum can be further determined by combining the attitude information of the ranging sensor, so that the distance between the target object and the movable platform can be determined based on the target distance dimension spectrum, and the security of the movable platform can be improved.
  • FIG. 6 is a schematic structural block diagram of a target detection apparatus provided by an embodiment of the present application.
  • the target detection device can be applied to a movable platform, and the movable platform is provided with a ranging sensor, and the echo signal collected by the ranging sensor can be processed into a spectrogram including a distance-dimensional spectrum.
  • the target detection apparatus 200 may include a processor 201 and a memory 202, and the processor 201 and the memory 202 are connected through a bus 203, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 203 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 201 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 202 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • ROM Read-Only Memory
  • the memory 202 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • the processor 201 is used for running the computer program stored in the memory 202, and implements the following steps when executing the computer program:
  • the target scanning angle determine the target range-dimensional spectrum in the spectrogram, and the scanning direction corresponding to the target range-dimensional spectrum is substantially parallel to the ground, or away from the ground and forming an included angle with the ground;
  • the distance between the target object in the environment where the movable platform is located and the movable platform is determined.
  • the processor realizes the acquisition of the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground, it is used to realize:
  • a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined.
  • the processor when the processor implements acquiring the terrain information of the environment where the movable platform is located, it is used to implement:
  • N is a positive integer greater than zero
  • the terrain information of the environment where the movable platform is located is determined.
  • the processor determines the terrain information of the environment where the movable platform is located according to the position information of the N target points, the processor is configured to:
  • M target points are determined from the N target points, wherein the M is a positive integer greater than zero;
  • the terrain information of the environment where the movable platform is located is determined.
  • the M is a positive integer less than or equal to N, and the position information and the scanning angle of the M target points satisfy a preset condition.
  • the rotation axis of the ranging sensor is parallel to the heading axis of the movable platform.
  • the processor when the processor implements acquiring the terrain information of the environment where the movable platform is located, it is used to implement:
  • the terrain information of the environment where the movable platform is located is determined.
  • the processor determines the terrain information of the environment where the movable platform is located according to the extracted terrain elevation map area, the processor is configured to:
  • the terrain information of the environment where the movable platform is located is determined.
  • the processor realizes, according to the terrain information and the horizontal azimuth angle, when determining the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground, for realizing:
  • a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined.
  • the difference between the angle between the ground normal vector and the horizontal azimuth vector and the target scanning angle is 90°.
  • the processor determines the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground according to the ground normal vector and the horizontal azimuth vector, the processor is used to achieve:
  • a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined.
  • the size of the target scanning angle and the inner product of the vector, the length of the ground normal vector, and the length of the horizontal azimuth vector are in an inverse trigonometric function relationship.
  • the terrain information includes a ground equation
  • the processor determines the ground normal vector according to the terrain information, the processor is configured to:
  • a ground normal vector is determined from the first coefficient, the second coefficient and the third coefficient.
  • the coefficients of the ground normal vector and the coefficients of the corresponding axes of the ground equation are in one-to-one correspondence, and have a linear relationship respectively.
  • the processor realizes the acquisition of the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground, it is used to realize:
  • a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined.
  • the attitude information includes the pitch angle and/or the roll angle of the movable platform, and the processor realizes that according to the attitude information, it is determined that the scanning direction of the ranging sensor is approximately parallel to the ground.
  • the target scan angle of is used to achieve:
  • the current pitch angle and the pitch angle of the movable platform, and/or the current roll angle and the roll angle of the movable platform it is determined when the scanning direction of the ranging sensor is substantially parallel to the ground The resulting target scan angle.
  • the processor determines the target range dimension spectrum in the spectrogram according to the target scanning angle, the processor is used to:
  • the echo signal collected based on the detection signal is processed to obtain a target spectrogram, and the range dimension spectrum in the target spectrogram is determined as the target range dimension spectrum.
  • the spectrogram further includes an angle dimension spectrum, and when the processor determines the target distance dimension spectrum in the spectrogram according to the target scanning angle, it is used to implement:
  • the target distance-dimensional spectrum in the spectrogram is determined.
  • the processor determines the target range-dimensional spectrum in the spectrogram according to the target scanning angle and the angle-dimensional spectrum, the processor is configured to:
  • the target scanning angle and the scanning angle corresponding to each angle dimension spectrum select an angle dimension from the angle dimension range as the target angle dimension;
  • the target distance dimension spectrum in the spectrogram is determined.
  • the target range-dimensional spectrum includes one or more range-dimensional spectrums, and the angle dimension corresponding to the one or more range-dimensional spectrums is greater than or equal to the target angle dimension.
  • the processor selects an angle dimension from the angle dimension range as the target angle dimension according to the target scan angle and the scan angle corresponding to each angle dimension spectrum, it is used to implement:
  • an angle dimension with the highest matching degree is selected from the angle dimension range as the target angle dimension.
  • processor is further configured to implement the following steps:
  • the echo signal is processed to obtain the spectrogram.
  • the processor determines the scanning range of the ranging sensor, the processor is configured to:
  • the moving direction of the movable platform is acquired, and the scanning range in which the scanning direction of the ranging sensor matches the moving direction is determined.
  • the processor realizes the acquisition of the target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground, it is used to realize:
  • the gradient is greater than a preset gradient, acquiring terrain information of the environment where the movable platform is located and the horizontal azimuth of the ranging sensor;
  • a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined.
  • the processor is further configured to:
  • a target scanning angle formed when the scanning direction of the ranging sensor is substantially parallel to the ground is determined.
  • FIG. 7 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform 300 includes a platform body 310 , a power system 320 , a ranging sensor 330 and a target detection device 340 , and the power system 320 , the ranging sensor 330 and the target detection device 340 are arranged on the platform body 310 , and
  • the power system 320 is used to provide moving power for the movable platform
  • the echo signal collected by the ranging sensor 330 can be processed into a spectrum diagram including a distance dimension spectrum
  • the target detection device 340 is used to determine the target in the environment where the movable platform 300 is located
  • the distance between the object and the movable platform 300 is used to control the movable platform 300 to move.
  • the movable platform 300 includes drones and PTZ vehicles, and the drones include rotary-wing drones, such as quad-rotor drones, hexa-rotor drones, octa-rotor drones, or fixed-wing drones.
  • the man-machine can also be a combination of a rotary-wing type and a fixed-wing unmanned aerial vehicle, which is not limited here.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, the computer program includes program instructions, and the processor executes the program instructions, so as to realize the provision of the above embodiments.
  • the steps of the object detection method are described in detail below.
  • the computer-readable storage medium may be an internal storage unit of the removable platform described in any of the foregoing embodiments, such as a hard disk or a memory of the removable platform.
  • the computer-readable storage medium can also be an external storage device of the removable platform, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the removable platform , SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种目标检测方法、装置、平台及计算机可读存储介质,该方法包括:获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度(S101);根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角(S102);根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离(S103)。该方法能够提高障碍物识别的准确性。

Description

目标检测方法、装置、平台及计算机可读存储介质 技术领域
本申请涉及目标检测技术领域,尤其涉及一种目标检测方法、装置、平台及计算机可读存储介质。
背景技术
对于搭载微波雷达的可移动平台而言,在接近地面的复杂场景里作业时,往往需要微波雷达同时具备测距能力和在垂直维度里测角的能力,用于识别地面上方或接近地面的障碍物,从而实现可移动平台的避障,以保证可移动平台的安全。然而,由于地面的反射能量远高于障碍物,因此会出现障碍物被地杂波遮蔽的现象,导致障碍物无法被准确识别,对可移动平台的安全造成威胁。
发明内容
基于此,本申请实施例提供了一种目标检测方法、装置、平台及计算机可读存储介质,旨在提高障碍物识别的准确性和可移动平台的安全性。
第一方面,本申请实施例提供了一种目标检测方法,应用于可移动平台,所述可移动平台设有测距传感器,所述测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图,所述方法包括:
获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;
根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离。
第二方面,本申请实施例还提供了一种目标检测装置,应用于可移动平台,所述可移动平台设有测距传感器,所述测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图,所述目标检测装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;
根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离。
第三方面,本申请实施例还提供了一种可移动平台,所述可移动平台包括:
平台本体;
动力***,用于为所述可移动平台提供移动动力;
测距传感器,设于所述平台本体,所述测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图;
如上所述的目标检测装置,设于所述平台本体,用于确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离以及用于控制所述可移动平台移动。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的目标检测方法的步骤。
本申请实施例提供了一种目标检测方法、装置、平台及计算机可读存储介质,通过获取测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,然后根据该目标扫描角度确定频谱图中的目标距离维频谱,该目标距离维频谱对应的扫描方向与地面大致平行,或远离地面且与地面形成夹角,最后根据该目标距离维频谱,确定可移动平台所处环境的目标对象与可移动平台之间的距离。由于获取到的目标距离维频谱对应的扫描方向与地面大致平行,或远离地面且与地面形成夹角,因此能够有效规避目标对象被地杂波遮蔽的情况,从而通过目标距离维频谱可以提高目标对象识别的准确性,极大的提高了可移动平台的安全性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
图1是实施本申请实施例提供的目标检测方法的可移动平台的一结构示意图;
图2是本申请实施例提供的一种目标检测方法的步骤示意流程图;
图3是图2中的目标检测方法的子步骤示意流程图;
图4是本申请实施例涉及的旋转微波雷达的扫描范围示意图;
图5是本申请实施例中确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度的一场景示意图;
图6是本申请实施例提供的一种目标检测装置的结构示意性框图;
图7是本申请实施例提供的一种可移动平台的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
对于搭载微波雷达的可移动平台而言,在接近地面的复杂场景里作业时,往往需要微波雷达同时具备测距能力和在垂直维度里测角的能力,用于识别地面上方或接近地面的障碍物,从而实现可移动平台的避障,以保证可移动平台的安全。然而,由于地面的反射能量远高于障碍物,因此会出现障碍物被地杂波遮蔽的现象,导致障碍物无法被准确识别,对可移动平台的安全造成威胁。
为解决上述问题,本申请实施例提供了一种目标检测方法、装置、平台及计算机可读存储介质,通过获取测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,然后根据该目标扫描角度确定频谱图中的目标距离维频谱,该目标距离维频谱对应的扫描方向与地面大致平行,或远离地面且与地面形成夹角,最后根据该目标距离维频谱,确定可移动平台所处环境的目标对象与可移动平台之间的距离。由于获取到的目标距离维频谱对应的扫描方向与地面大 致平行,或远离地面且与地面形成夹角,因此能够有效规避目标对象被地杂波遮蔽的情况,从而通过目标距离维频谱可以提高目标对象识别的准确性,极大的提高了可移动平台的安全性。
请参阅图1,图1是实施本申请实施例提供的目标检测方法的可移动平台的一结构示意图。
如图1所示,可移动平台100可以包括平台本体110、动力***120、测距传感器130和控制***(图1中未示出),动力***120和测距传感器130设于平台本体110上,动力***120用于为可移动平台100提供移动动力,测距传感器130用于向外发射探测信号,且采集该探测信号的回波信号,使得控制***能够对测距传感器130采集到的回波信号进行处理,得到包括距离维频谱的频谱图。其中,测距传感器130可以包括旋转微波雷达、片状微波雷达、激光雷达。
其中,动力***120可以包括一个或多个螺旋桨121、与一个或多个螺旋桨相对应的一个或多个电机122、一个或多个电子调速器(简称为电调)。其中,电机122连接在电子调速器与螺旋桨121之间,电机122和螺旋桨121设置在可移动平台100的平台本体110上;电子调速器用于接收控制***产生的驱动信号,并根据驱动信号提供驱动电流给电机122,以控制电机122的转速。电机122用于驱动螺旋桨121旋转,从而为可移动平台100的移动提供动力,该动力使得可移动平台100能够实现一个或多个自由度的运动。在某些实施例中,可移动平台100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。
其中,控制***可以包括控制器和传感***。传感***用于测量可移动平台的姿态信息,即可移动平台100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感***例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。控制器用于控制可移动平台100的移动,例如,可以根据传感***测量的姿态信息控制可移动平台100的移动。应理解,控制器可以按照预先编好的程序指令对可移动平台100进行控制。
在一实施例中,控制器获取测距传感器130的扫描方向与地面大致平行时 形成的目标扫描角度,然后根据该目标扫描角度确定频谱图中的目标距离维频谱,该目标距离维频谱对应的扫描方向与地面大致平行,或远离地面且与地面形成夹角,最后根据该目标距离维频谱,确定可移动平台100所处环境的目标对象与可移动平台100之间的距离。由于获取到的目标距离维频谱对应的扫描方向与地面大致平行,或远离地面且与地面形成夹角,因此能够有效规避目标对象被地杂波遮蔽的情况,从而通过目标距离维频谱可以提高目标对象识别的准确性,极大的提高了可移动平台100的安全性。
其中,可移动平台100包括无人机和云台车、无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
可以理解的,图1中的可移动平台以及上述对于可移动平台各部件的命名仅仅出于标识的目的,并不因此对本申请实施例进行限制。以下,将结合图1中的场景对本申请的实施例提供的目标检测方法进行详细介绍。需知,图1中的场景仅用于解释本申请实施例提供的目标检测方法,但并不构成对本申请实施例提供的目标检测方法应用场景的限定。
请参阅图2,图2是本申请实施例提供的一种目标检测方法的步骤示意流程图。该目标检测方法可以应用可移动平台中,用于准确地确定可移动平台与目标对象之间的距离,提高可移动平台的安全性。
具体地,如图2所示,该目标检测方法包括步骤S101至步骤S103。
步骤S101、获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;
步骤S102、根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
步骤S103、根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离。
以搭载微波雷达的可移动平台为例,在接近地面的复杂场景里作业时,往往需要微波雷达同时具备测距能力和在垂直维度里测角的能力,用于识别地面上方或接近地面的障碍物,从而实现可移动平台的避障,以保证可移动平台的安全。然而,由于地面的反射能量远高于障碍物,因此会出现障碍物被地杂波遮蔽的现象,导致障碍物无法被准确识别,对可移动平台的安全造成威胁。
为解决上述技术问题,通过获取测距传感器的扫描方向与地面大致平行时 形成的目标扫描角度,并基于该目标扫描角度,获取扫描方向与地面大致平行,或远离地面且与地面形成夹角的目标距离维频谱,并通过该目标距离维频谱确定可移动平台所处环境的目标对象与可移动平台之间的距离,使得可移动平台能够基于该距离避开飞行方向上的目标对象、紧急刹停或提示飞手避障等,可以极大地提高可移动平台的安全性。例如,对目标距离维频谱进行恒虚警率(Constant False Alarm Rate,CFAR)检测,提取可移动平台所处环境的目标对象的目标频点,并通过该目标频点确定目标对象与可移动平台之间的距离。
在一实施例中,以测距传感器为旋转微波雷达为例,测距传感器的旋转轴与可移动平台的俯仰轴和横滚轴形成的平面之间的夹角位于第一预设夹角范围。其中,测距传感器的旋转轴与可移动平台的俯仰轴和横滚轴形成的平面之间的夹角与测距传感器在可移动平台上的安装位置有关,第一预设夹角范围可以基于实际情况进行设置,例如,第一预设夹角范围为30°至135°或者45°至135°。
可选的,测距传感器的旋转轴与可移动平台的俯仰轴和横滚轴形成的平面大致垂直,即与可移动平台的航向轴大致平行。其中,测距传感器的旋转轴与可移动平台的俯仰轴和横滚轴形成的平面之间的夹角位于第二预设夹角范围,则可以确定测距传感器的旋转轴与可移动平台的俯仰轴和横滚轴形成的平面大致垂直。第二预设夹角范围为第一预设夹角范围的子集,第二预设夹角范围可以基于实际情况进行设置,例如,第二预设夹角范围为75°至105°或者85°至95°。
可以理解,测距传感器的旋转轴与可移动平台的航向轴的关系可以根据需要设置,目的在于测距传感器能够扫描到地面及非地面上的点,而在不同的场景下,例如需要扫描到更多的地面的点与需要扫描到更多非地面的点,所分别对应的测距传感器的旋转轴的设置可以不同,如需要扫描到更多的地面的点时旋转轴可以更倾向于与可移动平台的航向轴垂直,需要扫描到更多非地面的点时旋转轴可以更倾向于与可移动平台的航向轴平行。
在一实施例中,所述频谱图是对测距传感器在上一时刻采集到的回波信号进行处理得到的。以测距传感器为旋转微波雷达为例对频谱图的确定方式进行说明,控制旋转微波雷达在预设角度范围内旋转,并发射探测信号,然后采集该探测信号的回波信号,并对该回波信号进行隔除直流和加窗等处理,得到回波信号对应的时域信号矩阵,最后分别从行方向和列方向上对该时域信号矩阵进行快速傅里叶变换,得到包括距离维频谱的频谱图。其中,预设角度范围可 以包括0°至360°,本申请实施例对此不做具体限制。
在一实施例中,确定测距传感器的扫描范围;控制测距传感器在该扫描范围内发射探测信号,并获取测距传感器基于所述探测信号采集到的回波信号;对该回波信号进行处理,得到频谱图。其中,确定测距传感器的扫描范围的方式可以为:获取可移动平台的移动方向,并确定测距传感器的扫描方向与该移动方向匹配的扫描范围。通过控制测距传感器在与可移动平台的移动方向匹配的扫描范围内发射探测信号,可以减少测距传感器的扫描时间的同时,保证可移动平台的移动安全。
在一实施例中,所述扫描范围包括测距传感器的目标偏航角,控制测距传感器在该扫描范围内发射探测信号的方式可以为:调整测距传感器的偏航角,直到测距传感器的偏航角达到该目标偏航角;在测距传感器的偏航角达到该目标偏航角后,控制测距传感器发射探测信号。其中,若测距传感器为旋转微波雷达,则控制旋转微波雷达旋转,直到旋转微波雷达的偏航角达到该目标偏航角,若测距传感器为飞行时间TOF传感器,则根据该目标偏航角,控制搭载该TOF传感器的云台旋转,直到TOF传感器的偏航角达到该目标偏航角。
在一实施例中,所述扫描范围包括测距传感器的第一偏航角和第二偏航角,控制测距传感器在该扫描范围内发射探测信号的方式可以为:按照预设角速度,调整测距传感器的偏航角由第一偏航角逐渐变化为第二偏航角,或者由第二偏航角逐渐变化为第一偏航角,并在调整偏航角的过程中,控制测距传感器发射探测信号。其中,若测距传感器为旋转微波雷达,则控制旋转微波雷达旋转,使得旋转微波雷达的偏航角由第一偏航角逐渐变化为第二偏航角,或者由第二偏航角逐渐变化为第一偏航角,并在调整偏航角的过程中,控制微波传感器发射探测信号;若测距传感器为TOF传感器,则控制搭载该TOF传感器的云台旋转,使得TOF传感器的偏航角由第一偏航角逐渐变化为第二偏航角,或者由第二偏航角逐渐变化为第一偏航角,并在调整偏航角的过程中,控制TOF传感器发射探测信号。
在一实施例中,如图3所示,步骤S101具体包括:子步骤S1011至S1012。
子步骤S1011、获取所述可移动平台所处环境的地形信息和所述测距传感器的水平方位角。
其中,可移动平台所处环境的地形信息可以根据测距传感器在上一时刻采集到的N个目标点相对于测距传感器的直线距离确定,N为大于零的正整数,也可以根据预设地形高程图中的对应地形高程图区域确定。
在一实施例中,获取测距传感器在上一时刻采集到的N个目标点相对于测距传感器的直线距离,其中,N为大于零的正整数;根据N个目标点相对于测距传感器的直线距离,确定N个目标点在可移动平台的坐标系下的位置信息;根据N个目标点在可移动平台的坐标系下的位置信息,确定可移动平台所处环境的地形信息。其中,地形信息包括地面方程、地面的坡度、可移动平台距离地面的高度,可选的,地形信息还可以包括地面的平整度等。
示例性的,若测距传感器为旋转微波雷达,则目标点相对于测距传感器的直线距离反映了旋转微波雷达在旋转至对应的扫描角度时与地面的距离,对于同一目标点,若该目标点所在的地面高,则旋转微波雷达与地面的距离小,若该目标点所在的地面低,则旋转微波雷达与地面的距离大。例如:若旋转微波雷达与地面的不同目标点之间的距离差距较大,则说明地面的平整度低。对于相同的多个目标点,若旋转微波雷达与地面的距离均较小,则说明该多个目标点所在的地面的坡度较高,若旋转微波雷达与地面的距离均较大,则说明该多个目标点所在的地面的坡度较低。
示例性的,若测距传感器为旋转微波雷达,则可以基于预设公式,根据N个目标点相对于旋转微波雷达的直线距离,确定N个目标点在可移动平台的坐标系下的位置信息,其中,预设公式可以为:
Figure PCTCN2020137402-appb-000001
其中,r i为目标点i相对于旋转微波雷达的直线距离,θ i为目标点i与xy平面的偏角,
Figure PCTCN2020137402-appb-000002
为单个光栅格的对应角度,(x Ri,y Ri,z Ri)为目标点i的位置信息。
在一实施例中,获取测距传感器在上一时刻采集到的N个目标点的扫描角度;根据N个目标点的位置信息和扫描角度,从N个目标点中确定M个目标点,其中,M为大于零的正整数;根据M个目标点的位置信息,确定可移动平台所处环境的地形信息。其中,M为小于或等于N的正整数,M个目标点的位置信息和扫描角度满足预设条件,预设条件包括M个目标点的扫描角度位于预设扫描角度范围内,且M个目标点的位置信息满足预设值,也即将扫描角度位于预设扫描角度范围内,且位置信息满足预设值的目标点确定为地面上的点。通过M个目标点的位置信息,确定可移动平台所处环境的地形信息,可以进一步地提高地形信息的准确性。
在一实施例中,在测距传感器相对于可移动平台的位置能够调整时,测距传感器的旋转轴可以垂直于可移动平台的航向轴,由于测距传感器的旋转轴垂直于可移动平台的航向轴,因此,可以提高测距传感器对地面的扫描范围。例如,在测距传感器通过转动支架连接于可移动平台时,通过手动调整转动支架或电动控制转动支架,可使得测距传感器的旋转轴平行于可移动平台的航向轴,或垂直于可移动平台的航向轴,或与可移动平台的航向轴之间呈一小于90度的夹角,测距传感器的旋转轴与可移动平台的航向轴之间的关系可以根据实际应用场景进行调整。
可选的,若测距传感器为旋转微波雷达,则如图4所示,旋转微波雷达在竖直方向的扫描范围为120°,且旋转微波雷达的旋转轴平行于可移动平台的航向轴。因此,旋转微波雷达不仅可以扫描到地面上的点,也可以扫描到非地面上的点,进而提高了旋转微波雷达的扫描范围,并有利于得到地面方程以及实现对障碍物的距离检测。预设扫描角度范围可基于实际情况进行设置,本申请实施例对此不做具体限定,例如,预设扫描角度范围为0°至-60°。
在一实施例中,获取可移动平台的定位信息,并根据该定位信息从预设地形高程图中提取地形高程图区域;根据提取到的地形高程图区域,确定可移动平台所处环境的地形信息。其中,可移动平台的定位信息可以通过可移动平台中的定位模块确定,定位模块可以为全球定位***(Global Positioning System,GPS)定位模块,也可以为实时动态(Real-time kinematic,RTK)定位模块;预设地形高程图是提前绘制好的,并存储在可移动平台的存储器中或从服务器在线获取,预设地形高程图包括可移动平台当前所处环境的地形信息。
在一实施例中,从地形高程图区域中提取P个目标点的高度,其中,P为大于零的正整数;根据P个目标点的高度,确定可移动平台所处环境的地形信息。其中,对于P个目标点,若P个目标点的高度之间的高度差值较大,则说明P个目标点所在的地面的坡度较高,若P个目标点的高度之间的高度差值较小,则说明P个目标点所在的地面的坡度较低。
子步骤S1012、根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
示例性的,根据地形信息确定地面法向量,并根据水平方位角确定水平方位角矢量;根据地面法向量和水平方位角矢量,确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。其中,所述地面法向量与所述水平方位角矢量之间的夹角与该目标扫描角度之间的差值为90°,设水平方位角为α, 则水平方位角矢量为
Figure PCTCN2020137402-appb-000003
在一实施例中,该地形信息包括地面方程,根据地形信息确定地面法向量的方式可以为:获取该地面方程在X轴上的第一系数、在Y轴上的第二系数和在Z轴上的第三系数;根据第一系数、第二系数和第三系数,确定地面法向量。其中,地面法向量的各项系数与地面方程对应各轴的系数一一对应,且分别呈线性关系。例如,地面方程为z=ax+by+d,a为地面方程在X轴上的第一系数,b在Y轴上的第二系数,在Z轴上的第三系数为1,d为偏置项,因此,地面法向量为
Figure PCTCN2020137402-appb-000004
在一实施例中,确定该地面法向量与该水平方位角矢量的向量内积,并确定该地面法向量的长度和该水平方位角矢量的长度;根据该向量内积、该地面法向量的长度和该水平方位角矢量的长度,确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。其中,该目标扫描角度的大小与向量内积、地面法向量的长度和该水平方位角矢量的长度为反三角函数关系,反三角函数关系的具体类型可能与相关向量的方向、相关夹角的定义相关。
示例性的,如图5所示,地面与水平面存在夹角,也即地面存在一定的坡度,水平方位角矢量
Figure PCTCN2020137402-appb-000005
与水平面平行,地面法向量
Figure PCTCN2020137402-appb-000006
与地面垂直,向量
Figure PCTCN2020137402-appb-000007
与地面平行,水平方位角矢量
Figure PCTCN2020137402-appb-000008
与地面法向量
Figure PCTCN2020137402-appb-000009
的夹角为β,测距传感器的扫描方向与地面大致平行时形成的目标扫描角度为θ,由于地面法向量
Figure PCTCN2020137402-appb-000010
与地面垂直,向量
Figure PCTCN2020137402-appb-000011
与地面平行,因此地面法向量
Figure PCTCN2020137402-appb-000012
与向量
Figure PCTCN2020137402-appb-000013
垂直,则β=θ+90°,通过三角函数关系可以知道如下关系:
cosβ=cos(θ+90°)=-sinθ,而
Figure PCTCN2020137402-appb-000014
因此
Figure PCTCN2020137402-appb-000015
在一实施例中,获取测距传感器的扫描方向与地面大致平行时形成的目标扫描角度的方式可以为:获取可移动平台的姿态信息;根据该姿态信息,确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。其中,可移动平台的姿态信息包括可移动平台的俯仰角和/或横滚角,测距传感器可以固定的安装在可移动平台上,测距传感器也可以搭载于与可移动平台连接的云台上,通过该云台可以调整测距传感器的姿态。
在一实施例中,在测距传感器固定的安装在可移动平台上的场景下,测距传感器的绝对姿态不发生变化,而测距传感器的相对姿态随着可移动平台的姿态变化而变化,因此,可以根据可移动平台的俯仰角和/或横滚角,确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。例如,若可移动平台 的俯仰角不为零,则将可移动平台的俯仰角确定为该目标扫描角度,若可移动平台的横滚角不为零,则将可移动平台的横滚角确定为该目标扫描角度,若可移动平台的俯仰角和横滚角均不为零,将可移动平台的俯仰角或横滚角确定为该目标扫描角度。
在一实施例中,在测距传感器搭载于与可移动平台连接的云台上的场景下,可以获取测距传感器的当前俯仰角和/或当前横滚角,并根据测距传感器的当前俯仰角和可移动平台的俯仰角,和/或当前横滚角和可移动平台的横滚角,确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,即可以根据测距传感器的当前俯仰角和可移动平台的俯仰角,确定该目标扫描角度,也可以根据测距传感器的当前横滚角和可移动平台的横滚角,确定该目标扫描角度,还可以根据测距传感器的当前俯仰角和当前横滚角以及可移动平台的俯仰角和横滚角,确定该目标扫描角度。具体方式需要考虑可移动平台的姿态以及测距传感器相对于可移动平台的位置布局。
在一实施例中,根据该目标扫描角度,确定频谱图中的目标距离维频谱的方式可以为:根据该目标扫描角度调整测距传感器的扫描角度,直至该测距传感器的扫描方向与地面大致平行,或远离地面且与地面形成夹角;在该测距传感器的扫描方向与地面大致平行,或远离地面且与地面形成夹角后,控制该测距传感器以与地面大致平行,或远离地面且与地面形成夹角的扫描方向发射探测信号,并获取该测距传感器基于探测信号采集到的回波信号;对基于该探测信号采集到的回波信号进行处理,得到目标频谱图,并将该目标频谱图中的距离维频谱确定为目标距离维频谱。通过控制测距传感器以与地面大致平行,或远离地面且与地面形成夹角的扫描方向发射探测信号,使得对基于该探测信号采集到的回波信号进行处理得到的目标频谱图中的目标距离维频谱能够准确地描述地面上方或者接近地面内的障碍物的距离信息。
在一实施例中,根据该目标扫描角度,确定频谱图中的目标距离维频谱的方式可以为:根据目标扫描角度和角度维频谱,确定频谱图中的目标距离维频谱。其中,该频谱图是对测距传感器在上一时刻采集到的回波信号进行处理得到的。通过目标扫描角度和频谱图中的角度维频谱,可准确地确定用于描述地面上方或者接近地面内的障碍物的距离信息的目标距离维频谱。
在一实施例中,获取该频谱图中的每个角度维频谱对应的扫描角度和该频谱图的角度维范围;根据该目标扫描角度和每个角度维频谱对应的扫描角度,从该角度维范围中选择一个角度维作为目标角度维;根据该目标角度维,确定 该频谱图中的目标距离维频谱。其中,目标距离维频谱包括一个或多个距离维频谱,一个或多个距离维频谱对应的角度维大于或等于目标角度维,该频谱图的角度维范围可基于实际情况进行设置,本申请实施例对此不做具体限定,例如,角度维范围为[-64,63]。
示例性的,若该测距传感器为旋转微波雷达,则根据旋转微波雷达的测角公式
Figure PCTCN2020137402-appb-000016
和在生成该频谱图时所使用的快速傅里叶变换的点数n可以确定该频谱图中的每个角度维频谱对应的扫描角度的确定公式
Figure PCTCN2020137402-appb-000017
其中,
Figure PCTCN2020137402-appb-000018
为角度维频谱对应的扫描角度,λ为波长,d为旋转微波雷达的天线阵列间距,
Figure PCTCN2020137402-appb-000019
为探测信号与该探测信号的回波信号之间的相位差,k为角度维,从[-64,63]中取值,在生成该频谱图时所使用的快速傅里叶变换的点数n可以基于实际情况进行设置,例如,n为128,因此通过公式
Figure PCTCN2020137402-appb-000020
和角度维范围[-64,63],可以确定该频谱图中的每个角度维频谱对应的扫描角度。
在一实施例中,确定该目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度;根据目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度,从该角度维范围中选择一个匹配度最高的角度维作为目标角度维。其中,该目标扫描角度与角度维频谱对应的扫描角度之间的匹配度可以根据该目标扫描角度与角度维频谱对应的扫描角度之间的角度差值和/或角度比值确定,该匹配度与该角度差值呈负相关关系,即该角度差值越大,则该匹配度越低,该角度差值越小,则该匹配度越高,该匹配度与该角度比值呈正相关关系,即该角度比值越大,则该匹配度越高,该角度比值越小,则该匹配度越低。
在一实施例中,获取可移动平台所处环境的地面的坡度;若该坡度大于预设坡度,则获取可移动平台所处环境的地形信息和测距传感器的水平方位角;根据该地形信息和水平方位角,确定该测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;根据该目标扫描角度,确定该频谱图中的目标距离维频谱;根据该目标距离维频谱,确定可移动平台所处环境的目标对象与可移动平台之间的距离。其中,预设坡度可基于实际情况进行设置,本申请实施例对此不做具体限定。通过在地面的坡度较大时,基于地形信息和测距传感器的水平方位角,可以确定用于描述地面上方或者接近地面内的障碍物的距离信息的目标距离维频谱,从而能够基于目标距离维频谱确定目标对象与可移动平台之 间的距离,提高可移动平台的安全性。
在一实施例中,若该坡度小于预设坡度,则获取可移动平台的姿态信息;根据可移动平台的姿态信息,确定测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;根据该目标扫描角度,确定该频谱图中的目标距离维频谱;根据该目标距离维频谱,确定可移动平台所处环境的目标对象与可移动平台之间的距离。通过在地面的坡度较小时,基于可移动平台的姿态信息可以确定用于描述地面上方或者接近地面内的障碍物的距离信息的目标距离维频谱(在测距传感器搭载于与可移动平台连接的云台上的场景下,可以进一步结合测距传感器的姿态信息确定上述目标距离维频谱),从而能够基于目标距离维频谱确定目标对象与可移动平台之间的距离,提高可移动平台的安全性。
请参阅图6,图6是本申请实施例提供的一种目标检测装置的结构示意性框图。该目标检测装置可以应用于可移动平台,可移动平台设有测距传感器,该测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图。
如图6所示,目标检测装置200可以包括处理器201和存储器202,处理器201和存储器202通过总线203连接,该总线203比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器201可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器202可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器201用于运行存储在存储器202中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;
根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离。
可选的,所述处理器实现获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
获取所述可移动平台所处环境的地形信息和所述测距传感器的水平方位角;
根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
可选的,所述处理器实现获取所述可移动平台所处环境的地形信息时,用于实现:
获取所述测距传感器在上一时刻采集到的N个目标点相对于所述测距传感器的直线距离,其中,所述N为大于零的正整数;
根据所述N个目标点相对于所述测距传感器的直线距离,确定所述N个目标点在所述可移动平台的坐标系下的位置信息;
根据所述N个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息。
可选的,所述处理器实现根据所述N个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息时,用于实现:
获取所述测距传感器在上一时刻采集到的N个目标点的扫描角度;
根据所述N个目标点的所述位置信息和所述扫描角度,从所述N个目标点中确定M个目标点,其中,所述M为大于零的正整数;
根据所述M个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息。
可选的,所述M为小于或等于N的正整数,所述M个目标点的所述位置信息和所述扫描角度满足预设条件。
可选的,所述测距传感器的旋转轴平行于所述可移动平台的航向轴。
可选的,所述处理器实现获取所述可移动平台所处环境的地形信息时,用于实现:
获取所述可移动平台的定位信息,并根据所述定位信息从预设地形高程图中提取地形高程图区域;
根据提取到的所述地形高程图区域,确定所述可移动平台所处环境的地形信息。
可选的,所述处理器实现根据提取到的所述地形高程图区域,确定所述可移动平台所处环境的地形信息时,用于实现:
从所述地形高程图区域中提取P个目标点的高度,其中,所述P为大于零的正整数;
根据所述P个目标点的高度,确定所述可移动平台所处环境的地形信息。
可选的,所述处理器实现根据所述地形信息和所述水平方位角,确定所述 测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
根据所述地形信息确定地面法向量,并根据所述水平方位角确定水平方位角矢量;
根据所述地面法向量和所述水平方位角矢量,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
可选的,所述地面法向量与所述水平方位角矢量之间的夹角与所述目标扫描角度之间的差值为90°。
可选的,所述处理器实现根据所述地面法向量和所述水平方位角矢量,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
确定所述地面法向量与所述水平方位角矢量的向量内积,并确定所述地面法向量的长度和所述水平方位角矢量的长度;
根据所述向量内积、所述地面法向量的长度和所述水平方位角矢量的长度,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
可选的,所述目标扫描角度的大小与所述向量内积、所述地面法向量的长度和所述水平方位角矢量的长度为反三角函数关系。
可选的,所述地形信息包括地面方程,所述处理器实现根据所述地形信息确定地面法向量时,用于实现:
获取所述地面方程在X轴上的第一系数、在Y轴上的第二系数和在Z轴上的第三系数;
根据所述第一系数、所述第二系数和所述第三系数,确定地面法向量。
可选的,所述地面法向量的各项系数与所述地面方程对应各轴的系数一一对应,且分别呈线性关系。
可选的,所述处理器实现获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
获取所述可移动平台的姿态信息;
根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
可选的,所述姿态信息包括所述可移动平台的俯仰角和/或横滚角,所述处理器实现根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
获取所述测距传感器的当前俯仰角和/或当前横滚角;
根据所述当前俯仰角和所述可移动平台的俯仰角,和/或所述当前横滚角和所述可移动平台的横滚角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
可选的,所述处理器实现根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱时,用于实现:
根据所述目标扫描角度调整所述测距传感器的扫描角度,直至所述测距传感器的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
控制所述测距传感器以所述扫描方向发射探测信号,并获取所述测距传感器基于所述探测信号采集到的回波信号;
对基于所述探测信号采集到的回波信号进行处理,得到目标频谱图,并将所述目标频谱图中的距离维频谱确定为所述目标距离维频谱。
可选的,所述频谱图还包括角度维频谱,所述处理器实现根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱时,用于实现:
根据所述目标扫描角度和所述角度维频谱,确定所述频谱图中的目标距离维频谱。
可选的,所述处理器实现根据所述目标扫描角度和所述角度维频谱,确定所述频谱图中的目标距离维频谱时,用于实现:
获取所述频谱图中的每个角度维频谱对应的扫描角度和所述频谱图的角度维范围;
根据所述目标扫描角度和每个角度维频谱对应的扫描角度,从所述角度维范围中选择一个角度维作为目标角度维;
根据所述目标角度维,确定所述频谱图中的目标距离维频谱。
可选的,所述目标距离维频谱包括一个或多个距离维频谱,所述一个或多个距离维频谱对应的角度维大于或等于所述目标角度维。
可选的,所述处理器实现根据所述目标扫描角度和每个角度维频谱对应的扫描角度,从所述角度维范围中选择一个角度维作为目标角度维时,用于实现:
确定所述目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度;
根据所述目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度,从所述角度维范围中选择一个匹配度最高的角度维作为目标角度维。
可选的,所述处理器还用于实现以下步骤:
确定所述测距传感器的扫描范围;
控制所述测距传感器在所述扫描范围内发射探测信号,并获取所述测距传 感器基于所述探测信号采集到的回波信号;
对所述回波信号进行处理,得到所述频谱图。
可选的,所述处理器实现确定所述测距传感器的扫描范围时,用于实现:
获取所述可移动平台的移动方向,并确定所述测距传感器的扫描方向与所述移动方向匹配的扫描范围。
可选的,所述处理器实现获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
获取所述可移动平台所处环境的地面的坡度;
若所述坡度大于预设坡度,则获取所述可移动平台所处环境的地形信息和所述测距传感器的水平方位角;
根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
可选的,所述处理器实现获取所述可移动平台所处环境的地面的坡度之后,还用于实现:
若所述坡度小于或等于预设坡度,则获取所述可移动平台的姿态信息;
根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的目标检测装置的具体工作过程,可以参考前述目标检测方法实施例中的对应过程,在此不再赘述。
请参阅图7,图7是本申请实施例提供的一种可移动平台的结构示意性框图。
如图7所示,可移动平台300包括平台本体310、动力***320、测距传感器330和目标检测装置340,动力***320、测距传感器330和目标检测装置340设于平台本体310上,且动力***320用于为可移动平台提供移动动力,测距传感器330采集的回波信号能够被处理为包括距离维频谱的频谱图,目标检测装置340用于确定可移动平台300所处环境的目标对象与可移动平台300之间的距离以及用于控制可移动平台300移动。其中,可移动平台300包括无人机和云台车、无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便 和简洁,上述描述的可移动平台的具体工作过程,可以参考前述目标检测方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的目标检测方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动平台的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (52)

  1. 一种目标检测方法,其特征在于,应用于可移动平台,所述可移动平台设有测距传感器,所述测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图,所述方法包括:
    获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;
    根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
    根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离。
  2. 根据权利要求1所述的目标检测方法,其特征在于,所述获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,包括:
    获取所述可移动平台所处环境的地形信息和所述测距传感器的水平方位角;
    根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  3. 根据权利要求2所述的目标检测方法,其特征在于,所述获取所述可移动平台所处环境的地形信息,包括:
    获取所述测距传感器在上一时刻采集到的N个目标点相对于所述测距传感器的直线距离,其中,所述N为大于零的正整数;
    根据所述N个目标点相对于所述测距传感器的直线距离,确定所述N个目标点在所述可移动平台的坐标系下的位置信息;
    根据所述N个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息。
  4. 根据权利要求3所述的目标检测方法,其特征在于,所述根据所述N个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息,包括:
    获取所述测距传感器在上一时刻采集到的N个目标点的扫描角度;
    根据所述N个目标点的所述位置信息和所述扫描角度,从所述N个目标点中确定M个目标点,其中,所述M为大于零的正整数;
    根据所述M个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息。
  5. 根据权利要求4所述的目标检测方法,其特征在于,所述M为小于或 等于N的正整数,所述M个目标点的所述位置信息和所述扫描角度满足预设条件。
  6. 根据权利要求3所述的目标检测方法,其特征在于,所述测距传感器的旋转轴平行于所述可移动平台的航向轴。
  7. 根据权利要求2所述的目标检测方法,其特征在于,所述获取所述可移动平台所处环境的地形信息,包括:
    获取所述可移动平台的定位信息,并根据所述定位信息从预设地形高程图中提取地形高程图区域;
    根据提取到的所述地形高程图区域,确定所述可移动平台所处环境的地形信息。
  8. 根据权利要求7所述的目标检测方法,其特征在于,所述根据提取到的所述地形高程图区域,确定所述可移动平台所处环境的地形信息,包括:
    从所述地形高程图区域中提取P个目标点的高度,其中,所述P为大于零的正整数;
    根据所述P个目标点的高度,确定所述可移动平台所处环境的地形信息。
  9. 根据权利要求2-8中任一项所述的目标检测方法,其特征在于,所述根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,包括:
    根据所述地形信息确定地面法向量,并根据所述水平方位角确定水平方位角矢量;
    根据所述地面法向量和所述水平方位角矢量,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  10. 根据权利要求9所述的目标检测方法,其特征在于,所述地面法向量与所述水平方位角矢量之间的夹角与所述目标扫描角度之间的差值为90°。
  11. 根据权利要求9所述的目标检测方法,其特征在于,所述根据所述地面法向量和所述水平方位角矢量,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,包括:
    确定所述地面法向量与所述水平方位角矢量的向量内积,并确定所述地面法向量的长度和所述水平方位角矢量的长度;
    根据所述向量内积、所述地面法向量的长度和所述水平方位角矢量的长度,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  12. 根据权利要求11所述的目标检测方法,其特征在于,所述目标扫描角 度的大小与所述向量内积、所述地面法向量的长度和所述水平方位角矢量的长度为反三角函数关系。
  13. 根据权利要求9所述的目标检测方法,其特征在于,所述地形信息包括地面方程,所述根据所述地形信息确定地面法向量,包括:
    获取所述地面方程在X轴上的第一系数、在Y轴上的第二系数和在Z轴上的第三系数;
    根据所述第一系数、所述第二系数和所述第三系数,确定地面法向量。
  14. 根据权利要求13所述的目标检测方法,其特征在于,所述地面法向量的各项系数与所述地面方程对应各轴的系数一一对应,且分别呈线性关系。
  15. 根据权利要求1-8中任一项所述的目标检测方法,其特征在于,所述获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,包括:
    获取所述可移动平台的姿态信息;
    根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  16. 根据权利要求15所述的目标检测方法,其特征在于,所述姿态信息包括所述可移动平台的俯仰角和/或横滚角,所述根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,包括:
    获取所述测距传感器的当前俯仰角和/或当前横滚角;
    根据所述当前俯仰角和所述可移动平台的俯仰角,和/或所述当前横滚角和所述可移动平台的横滚角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  17. 根据权利要求1-8中任一项所述的目标检测方法,其特征在于,所述根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,包括:
    根据所述目标扫描角度调整所述测距传感器的扫描角度,直至所述测距传感器的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
    控制所述测距传感器以所述扫描方向发射探测信号,并获取所述测距传感器基于所述探测信号采集到的回波信号;
    对基于所述探测信号采集到的回波信号进行处理,得到目标频谱图,并将所述目标频谱图中的距离维频谱确定为所述目标距离维频谱。
  18. 根据权利要求1-8中任一项所述的目标检测方法,其特征在于,所述频谱图还包括角度维频谱,所述根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,包括:
    根据所述目标扫描角度和所述角度维频谱,确定所述频谱图中的目标距离维频谱。
  19. 根据权利要求18所述的目标检测方法,其特征在于,所述根据所述目标扫描角度和所述角度维频谱,确定所述频谱图中的目标距离维频谱,包括:
    获取所述频谱图中的每个角度维频谱对应的扫描角度和所述频谱图的角度维范围;
    根据所述目标扫描角度和每个角度维频谱对应的扫描角度,从所述角度维范围中选择一个角度维作为目标角度维;
    根据所述目标角度维,确定所述频谱图中的目标距离维频谱。
  20. 根据权利要求19所述的目标检测方法,其特征在于,所述目标距离维频谱包括一个或多个距离维频谱,所述一个或多个距离维频谱对应的角度维大于或等于所述目标角度维。
  21. 根据权利要求19所述的目标检测方法,其特征在于,所述根据所述目标扫描角度和每个角度维频谱对应的扫描角度,从所述角度维范围中选择一个角度维作为目标角度维,包括:
    确定所述目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度;
    根据所述目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度,从所述角度维范围中选择一个匹配度最高的角度维作为目标角度维。
  22. 根据权利要求1-8中任一项所述的目标检测方法,其特征在于,所述方法还包括:
    确定所述测距传感器的扫描范围;
    控制所述测距传感器在所述扫描范围内发射探测信号,并获取所述测距传感器基于所述探测信号采集到的回波信号;
    对所述回波信号进行处理,得到所述频谱图。
  23. 根据权利要求22所述的目标检测方法,其特征在于,所述确定所述测距传感器的扫描范围,包括:
    获取所述可移动平台的移动方向,并确定所述测距传感器的扫描方向与所述移动方向匹配的扫描范围。
  24. 根据权利要求1-8中任一项所述的目标检测方法,其特征在于,所述获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度,包括:
    获取所述可移动平台所处环境的地面的坡度;
    若所述坡度大于预设坡度,则获取所述可移动平台所处环境的地形信息和 所述测距传感器的水平方位角;
    根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  25. 根据权利要求24所述的目标检测方法,其特征在于,所述获取所述可移动平台所处环境的地面的坡度之后,还包括:
    若所述坡度小于或等于预设坡度,则获取所述可移动平台的姿态信息;
    根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  26. 一种目标检测装置,其特征在于,应用于可移动平台,所述可移动平台设有测距传感器,所述测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图,所述目标检测装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度;
    根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱,所述目标距离维频谱对应的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
    根据所述目标距离维频谱,确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离。
  27. 根据权利要求26所述的目标检测装置,其特征在于,所述处理器实现获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
    获取所述可移动平台所处环境的地形信息和所述测距传感器的水平方位角;
    根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  28. 根据权利要求27所述的目标检测装置,其特征在于,所述处理器实现获取所述可移动平台所处环境的地形信息时,用于实现:
    获取所述测距传感器在上一时刻采集到的N个目标点相对于所述测距传感器的直线距离,其中,所述N为大于零的正整数;
    根据所述N个目标点相对于所述测距传感器的直线距离,确定所述N个目标点在所述可移动平台的坐标系下的位置信息;
    根据所述N个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息。
  29. 根据权利要求28所述的目标检测装置,其特征在于,所述处理器实现根据所述N个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息时,用于实现:
    获取所述测距传感器在上一时刻采集到的N个目标点的扫描角度;
    根据所述N个目标点的所述位置信息和所述扫描角度,从所述N个目标点中确定M个目标点,其中,所述M为大于零的正整数;
    根据所述M个目标点的所述位置信息,确定所述可移动平台所处环境的地形信息。
  30. 根据权利要求29所述的目标检测装置,其特征在于,所述M为小于或等于N的正整数,所述M个目标点的所述位置信息和所述扫描角度满足预设条件。
  31. 根据权利要求28所述的目标检测装置,其特征在于,所述测距传感器的旋转轴平行于所述可移动平台的航向轴。
  32. 根据权利要求27所述的目标检测装置,其特征在于,所述处理器实现获取所述可移动平台所处环境的地形信息时,用于实现:
    获取所述可移动平台的定位信息,并根据所述定位信息从预设地形高程图中提取地形高程图区域;
    根据提取到的所述地形高程图区域,确定所述可移动平台所处环境的地形信息。
  33. 根据权利要求32所述的目标检测装置,其特征在于,所述处理器实现根据提取到的所述地形高程图区域,确定所述可移动平台所处环境的地形信息时,用于实现:
    从所述地形高程图区域中提取P个目标点的高度,其中,所述P为大于零的正整数;
    根据所述P个目标点的高度,确定所述可移动平台所处环境的地形信息。
  34. 根据权利要求27-33中任一项所述的目标检测装置,其特征在于,所述处理器实现根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
    根据所述地形信息确定地面法向量,并根据所述水平方位角确定水平方位角矢量;
    根据所述地面法向量和所述水平方位角矢量,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  35. 根据权利要求34所述的目标检测装置,其特征在于,所述地面法向量与所述水平方位角矢量之间的夹角与所述目标扫描角度之间的差值为90°。
  36. 根据权利要求34所述的目标检测装置,其特征在于,所述处理器实现根据所述地面法向量和所述水平方位角矢量,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
    确定所述地面法向量与所述水平方位角矢量的向量内积,并确定所述地面法向量的长度和所述水平方位角矢量的长度;
    根据所述向量内积、所述地面法向量的长度和所述水平方位角矢量的长度,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  37. 根据权利要求36所述的目标检测装置,其特征在于,所述目标扫描角度的大小与所述向量内积、所述地面法向量的长度和所述水平方位角矢量的长度为反三角函数关系。
  38. 根据权利要求34所述的目标检测装置,其特征在于,所述地形信息包括地面方程,所述处理器实现根据所述地形信息确定地面法向量时,用于实现:
    获取所述地面方程在X轴上的第一系数、在Y轴上的第二系数和在Z轴上的第三系数;
    根据所述第一系数、所述第二系数和所述第三系数,确定地面法向量。
  39. 根据权利要求38所述的目标检测装置,其特征在于,所述地面法向量的各项系数与所述地面方程对应各轴的系数一一对应,且分别呈线性关系。
  40. 根据权利要求26-33中任一项所述的目标检测装置,其特征在于,所述处理器实现获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
    获取所述可移动平台的姿态信息;
    根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  41. 根据权利要求40所述的目标检测装置,其特征在于,所述姿态信息包括所述可移动平台的俯仰角和/或横滚角,所述处理器实现根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
    获取所述测距传感器的当前俯仰角和/或当前横滚角;
    根据所述当前俯仰角和所述可移动平台的俯仰角,和/或所述当前横滚角和所述可移动平台的横滚角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  42. 根据权利要求26-33中任一项所述的目标检测装置,其特征在于,所述处理器实现根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱时,用于实现:
    根据所述目标扫描角度调整所述测距传感器的扫描角度,直至所述测距传感器的扫描方向与所述地面大致平行,或远离所述地面且与所述地面形成夹角;
    控制所述测距传感器以所述扫描方向发射探测信号,并获取所述测距传感器基于所述探测信号采集到的回波信号;
    对基于所述探测信号采集到的回波信号进行处理,得到目标频谱图,并将所述目标频谱图中的距离维频谱确定为所述目标距离维频谱。
  43. 根据权利要求26-33中任一项所述的目标检测装置,其特征在于,所述频谱图还包括角度维频谱,所述处理器实现根据所述目标扫描角度,确定所述频谱图中的目标距离维频谱时,用于实现:
    根据所述目标扫描角度和所述角度维频谱,确定所述频谱图中的目标距离维频谱。
  44. 根据权利要求43所述的目标检测装置,其特征在于,所述处理器实现根据所述目标扫描角度和所述角度维频谱,确定所述频谱图中的目标距离维频谱时,用于实现:
    获取所述频谱图中的每个角度维频谱对应的扫描角度和所述频谱图的角度维范围;
    根据所述目标扫描角度和每个角度维频谱对应的扫描角度,从所述角度维范围中选择一个角度维作为目标角度维;
    根据所述目标角度维,确定所述频谱图中的目标距离维频谱。
  45. 根据权利要求44所述的目标检测装置,其特征在于,所述目标距离维频谱包括一个或多个距离维频谱,所述一个或多个距离维频谱对应的角度维大于或等于所述目标角度维。
  46. 根据权利要求44所述的目标检测装置,其特征在于,所述处理器实现根据所述目标扫描角度和每个角度维频谱对应的扫描角度,从所述角度维范围中选择一个角度维作为目标角度维时,用于实现:
    确定所述目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度;
    根据所述目标扫描角度与每个角度维频谱对应的扫描角度之间的匹配度,从所述角度维范围中选择一个匹配度最高的角度维作为目标角度维。
  47. 根据权利要求26-33中任一项所述的目标检测装置,其特征在于,所述处理器还用于实现以下步骤:
    确定所述测距传感器的扫描范围;
    控制所述测距传感器在所述扫描范围内发射探测信号,并获取所述测距传感器基于所述探测信号采集到的回波信号;
    对所述回波信号进行处理,得到所述频谱图。
  48. 根据权利要求47所述的目标检测装置,其特征在于,所述处理器实现确定所述测距传感器的扫描范围时,用于实现:
    获取所述可移动平台的移动方向,并确定所述测距传感器的扫描方向与所述移动方向匹配的扫描范围。
  49. 根据权利要求26-33中任一项所述的目标检测装置,其特征在于,所述处理器实现获取所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度时,用于实现:
    获取所述可移动平台所处环境的地面的坡度;
    若所述坡度大于预设坡度,则获取所述可移动平台所处环境的地形信息和所述测距传感器的水平方位角;
    根据所述地形信息和所述水平方位角,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  50. 根据权利要求49所述的目标检测装置,其特征在于,所述处理器实现获取所述可移动平台所处环境的地面的坡度之后,还用于实现:
    若所述坡度小于或等于预设坡度,则获取所述可移动平台的姿态信息;
    根据所述姿态信息,确定所述测距传感器的扫描方向与地面大致平行时形成的目标扫描角度。
  51. 一种可移动平台,其特征在于,所述可移动平台包括:
    平台本体;
    动力***,用于为所述可移动平台提供移动动力;
    测距传感器,设于所述平台本体,所述测距传感器采集的回波信号能够被处理为包括距离维频谱的频谱图;
    权利要求26-50中任一项所述的目标检测装置,设于所述平台本体,用于确定所述可移动平台所处环境的目标对象与所述可移动平台之间的距离以及用 于控制所述可移动平台移动。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现权利要求1-25中任一项所述的目标检测方法的步骤。
PCT/CN2020/137402 2020-12-17 2020-12-17 目标检测方法、装置、平台及计算机可读存储介质 WO2022126559A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137402 WO2022126559A1 (zh) 2020-12-17 2020-12-17 目标检测方法、装置、平台及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137402 WO2022126559A1 (zh) 2020-12-17 2020-12-17 目标检测方法、装置、平台及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022126559A1 true WO2022126559A1 (zh) 2022-06-23

Family

ID=82059954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137402 WO2022126559A1 (zh) 2020-12-17 2020-12-17 目标检测方法、装置、平台及计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2022126559A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066586A1 (en) * 2008-09-18 2010-03-18 Bae Systems Controls Inc. Range and azimuth resolution enhancement for real-beam radar
CN106774384A (zh) * 2016-12-05 2017-05-31 王源浩 一种桥梁检测智能避障机器人
CN110770597A (zh) * 2018-11-21 2020-02-07 深圳市大疆创新科技有限公司 旋转微波雷达的地形预测方法、装置、***和无人机
CN111366950A (zh) * 2020-05-31 2020-07-03 湖南跨线桥航天科技有限公司 卫星导航压制式干扰与欺骗干扰的综合检测方法及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066586A1 (en) * 2008-09-18 2010-03-18 Bae Systems Controls Inc. Range and azimuth resolution enhancement for real-beam radar
CN106774384A (zh) * 2016-12-05 2017-05-31 王源浩 一种桥梁检测智能避障机器人
CN110770597A (zh) * 2018-11-21 2020-02-07 深圳市大疆创新科技有限公司 旋转微波雷达的地形预测方法、装置、***和无人机
CN111366950A (zh) * 2020-05-31 2020-07-03 湖南跨线桥航天科技有限公司 卫星导航压制式干扰与欺骗干扰的综合检测方法及***

Similar Documents

Publication Publication Date Title
US10527720B2 (en) Millimeter-wave terrain aided navigation system
US11380995B2 (en) Two-dimensional antenna system and method and device for positioning a target
JP6235213B2 (ja) 自律飛行ロボット
WO2020103049A1 (zh) 旋转微波雷达的地形预测方法、装置、***和无人机
CN110192122B (zh) 用于无人可移动平台上的雷达控制的***和方法
CN117369489A (zh) 碰撞规避***、深度成像***、交通工具、地图生成器及其方法
CN109716157B (zh) 轴偏移估计装置
WO2021087701A1 (zh) 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
US20180350086A1 (en) System And Method Of Dynamically Filtering Depth Estimates To Generate A Volumetric Map Of A Three-Dimensional Environment Having An Adjustable Maximum Depth
WO2019119184A1 (zh) 地形预测方法、设备、***和无人机
US10885353B2 (en) Information processing apparatus, moving object, information processing method, and computer program product
WO2021087702A1 (zh) 坡地的地形预测方法、装置、雷达、无人机和作业控制方法
WO2019127029A1 (zh) 一种闪避障碍物的方法、装置及飞行器
CN109073747A (zh) 一种无人飞行器及无人飞行器的避障控制方法
Scannapieco et al. Ultralight radar for small and micro-UAV navigation
JP2016173709A (ja) 自律移動ロボット
WO2021081958A1 (zh) 地形检测方法、可移动平台、控制设备、***及存储介质
JP2021117502A (ja) 着陸制御装置、着陸制御方法およびプログラム。
JP6469492B2 (ja) 自律移動ロボット
WO2022126559A1 (zh) 目标检测方法、装置、平台及计算机可读存储介质
WO2022094962A1 (zh) 飞行器的悬停方法、飞行器及存储介质
WO2020056598A1 (zh) 连续波雷达的地形预测方法、装置、***和无人机
US20210199798A1 (en) Continuous wave radar terrain prediction method, device, system, and unmanned aerial vehicle
WO2022141048A1 (zh) 获取点云聚类波门的方法、雷达、可移动平台和存储介质
WO2021087785A1 (zh) 地形检测方法、可移动平台、控制设备、***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965575

Country of ref document: EP

Kind code of ref document: A1