WO2022123977A1 - 電圧制御型半導体素子の駆動装置 - Google Patents

電圧制御型半導体素子の駆動装置 Download PDF

Info

Publication number
WO2022123977A1
WO2022123977A1 PCT/JP2021/040994 JP2021040994W WO2022123977A1 WO 2022123977 A1 WO2022123977 A1 WO 2022123977A1 JP 2021040994 W JP2021040994 W JP 2021040994W WO 2022123977 A1 WO2022123977 A1 WO 2022123977A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
short
power supply
supply voltage
Prior art date
Application number
PCT/JP2021/040994
Other languages
English (en)
French (fr)
Inventor
正裕 田岡
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2022568114A priority Critical patent/JPWO2022123977A1/ja
Publication of WO2022123977A1 publication Critical patent/WO2022123977A1/ja
Priority to US18/080,374 priority patent/US20230112315A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means

Definitions

  • the present invention relates to a drive device for a voltage-controlled semiconductor element.
  • an inverter device applied to a variable speed device of a motor is provided with a power element that performs power conversion, a drive circuit that controls and drives this power element, a protection circuit, and a control circuit that controls these in an integrated manner.
  • a semiconductor device called an intelligent power module (hereinafter referred to as IPM) in which a power element excluding a control circuit, a drive circuit, and a protection circuit are integrated into one package has been commercialized.
  • a voltage control type semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IPM generally has a short-circuit protection circuit that monitors the current flowing through the power element and can protect the power element so that the power element is not destroyed when a short-circuit current flows through the power element.
  • Patent Document 1 As such a short-circuit protection circuit, there is known a technique of limiting the short-circuit current by lowering the gate voltage when the short-circuit current flowing through the power element is detected (see, for example, Patent Document 1).
  • Patent Document 1 when a short-circuit current is detected, the short-circuit detection is canceled only for a predetermined period immediately after the operation start command is input to prevent the occurrence of short-circuit erroneous detection.
  • the short circuit protection circuit In the short circuit protection circuit, the short circuit is detected and the protection circuit operates, and when the gate voltage of the power element is lowered to cut off the current, the gate voltage is gradually lowered. At this time, if noise enters before the gate cutoff is completed, the gate voltage may be temporarily increased and the power element may be turned on again. On the contrary, when the gate cutoff ability is high and the current is cut off from a large current, the gate voltage is lowered below the specified gate voltage at which the protection circuit operates, and after the erroneous cutoff due to this, the power element is turned on again. It may end up. In this case, the power element repeats erroneous interruption at high speed, which causes an excessive surge voltage to continue.
  • the present invention has been made in view of such a point, and provides a drive device for a voltage-controlled semiconductor element capable of suppressing a continuous short circuit caused by a malfunction and suppressing a short circuit peak current flowing at that time.
  • the purpose is to do.
  • one proposal provides a drive device for a voltage-controlled semiconductor element.
  • the drive device of this voltage-controlled semiconductor element has a short-circuit current detection circuit that detects the short-circuit current of the voltage-controlled semiconductor element and a time setting that represents a predetermined length of time when the short-circuit current detection circuit detects the short-circuit current.
  • a timer circuit that outputs a signal and a control that outputs a step-down voltage that is lowered to a voltage lower than the power supply voltage only during the period when the power supply voltage applied to the power supply terminal is received from the timer circuit and the time setting signal is received, as the control power supply voltage. It is equipped with a variable power supply voltage circuit.
  • the drive device for the voltage-controlled semiconductor element having the above configuration has an advantage that a continuous short circuit due to a malfunction is suppressed and a short circuit peak current flowing at that time is suppressed.
  • FIG. 1 is a diagram showing an example of a drive device for a voltage-controlled semiconductor element according to an embodiment of the present invention
  • FIG. 2 is a waveform diagram of a main part showing the operation of the drive device for a voltage-controlled semiconductor element.
  • FIG. 1 shows an IGBT 10 as a voltage-controlled semiconductor element and a control IC (Integrated Circuit) 20 as a drive device for driving the IGBT, and the IGBT 10 and the control IC 20 constitute an IPM. ..
  • the IGBT 10 is configured by combining a main IGBT through which a main current flows and a sense IGBT that divides the current of this main IGBT into a current of about 1 / 10,000 and outputs the current.
  • the sense IGBT has the same structure as the main IGBT and has a smaller size than the main IGBT, the gate and collector are shared with the gate and collector of the main IGBT, and the sense emitter is independent of the emitter of the main IGBT. ing.
  • the IGBT 10 also has an FWD (Free Wheeling Diode) 12 connected in antiparallel to a collector and an emitter. That is, the anode of the FWD 12 is connected to the emitter of the IGBT 10, and the cathode of the FWD 12 is connected to the collector of the IGBT 10.
  • FWD Free Wheeling Diode
  • the control IC 20 has an IN terminal that receives an input signal that turns the IGBT 10 on or off, an AE terminal that outputs an alarm signal, a VCS terminal that receives a power supply voltage VCS, an OUT terminal that outputs a gate voltage Vg that drives the IGBT 10, and a sense current. Has an OC terminal for inputting.
  • the control IC 20 also has a ground potential GND terminal to which the emitter of the IGBT 10 is connected.
  • the control IC 20 has an input signal detection circuit 22 that detects and outputs an input signal, the input of the input signal detection circuit 22 is connected to the IN terminal, and the output of the input signal detection circuit 22 is the first of the predriver 24. It is connected to one input.
  • the output of the predriver 24 is connected to the input of the IGBT drive circuit 26, the soft cutoff circuit 28 and the non-latch-up (hereinafter referred to as NLU) circuit 30, and the output of the IGBT drive circuit 26, the soft cutoff circuit 28 and the NLU circuit 30 is , Is connected to the OUT terminal.
  • the OUT terminal is connected to the gate of the IGBT 10.
  • the IGBT drive circuit 26 outputs a gate voltage Vg that drives the IGBT 10 on or off based on the signal received from the input signal detection circuit 22. That is, when the IGBT drive circuit 26 is driven on, the source current for charging the gate capacitance of the IGBT 10 is output, and when the IGBT 10 is off-driven (cut off), the charge charged in the gate capacitance of the IGBT 10 is extracted.
  • the gate voltage Vg is output.
  • the withdrawal of charge from the gate capacitance is carried out by dividing the withdrawal capacity into two stages. Immediately after receiving the off-drive signal, charge extraction is performed with a low extraction capacity, and charge extraction after a predetermined time is performed with 100% extraction capacity.
  • the soft cutoff circuit 28 outputs a gate voltage Vg that gradually cuts off the IGBT 10 with a pull-out capacity smaller than the pull-out capacity immediately after the cutoff by the IGBT drive circuit 26 when the overcurrent state of the IGBT continues for more than a predetermined time. do.
  • the NLU circuit 30 outputs a gate voltage Vg that suppresses the short-circuit current when a short circuit of the IGBT 10 is detected, and outputs a gate voltage Vg that cuts off the IGBT 10 when the suppression current continues for more than a predetermined time. do.
  • the OC terminal of the control IC 20 is connected to the sense emitter of the IGBT 10.
  • the OC terminal is also connected to one terminal of the sense resistor 32, the other terminal of the sense resistor 32 is connected to one terminal of the sense resistor 34, and the other terminal of the sense resistor 34 is connected to ground. ing.
  • the OC terminal is further connected to the cathode of the Zener diode 36, and the anode of the Zener diode 36 is connected to the ground.
  • the sense resistors 32 and 34 constitute a voltage dividing circuit that converts the sense voltage Vs into a sense voltage Vs by passing a sense current input to the OC terminal and divides the sense voltage Vs.
  • the Zener diode 36 is for protecting the sense voltage Vs from becoming abnormally high due to noise or the like.
  • One terminal of the sense resistor 32 is connected to the non-inverting input terminal of the overcurrent detecting comparator 38, and the inverting input terminal of the overcurrent detecting comparator 38 is connected to the positive electrode terminal of the reference voltage source 40 to be a reference.
  • the negative electrode terminal of the voltage source 40 is connected to the ground.
  • the output terminal of the overcurrent detection comparator 38 is connected to the delay circuit 42.
  • the overcurrent detection comparator 38 compares the sense voltage Vs with the voltage of the reference voltage source 40 corresponding to the overcurrent detection threshold value. When the sense voltage Vs exceeds the overcurrent detection threshold value, the overcurrent detection comparator 38 determines that the overcurrent has been detected, and outputs a high (H) level overcurrent detection signal. This overcurrent detection signal is input to the delay circuit 42 and is delayed for a predetermined time.
  • the output of the delay circuit 42 is connected to the first input of the or circuit 44, and the output of the or circuit 44 is connected to the second input of the predriver 24 and the input of the alarm output circuit 46.
  • the output of the alarm output circuit 46 is connected to the AE terminal.
  • the common connection portion of the sense resistors 32 and 34 is connected to the non-inverting input terminal of the short-circuit detecting comparator 48, and the inverting input terminal of the short-circuit detecting comparator 48 is connected to the positive electrode terminal of the reference voltage source 50.
  • the negative electrode terminal of the reference voltage source 50 is connected to the ground.
  • the output terminal of the short-circuit detection comparator 48 is connected to the delay circuit 52 and the third input of the pre-driver 24.
  • the short circuit detection comparator 48 compares the voltage dividing voltage Vsc of the sense voltage Vs with the voltage of the reference voltage source 50 corresponding to the short circuit detection threshold value Vscth. When the voltage dividing voltage Vsc of the sense voltage Vs exceeds the short-circuit detection threshold Vscth, the short-circuit detection comparator 48 determines that the short-circuit current has been detected, and outputs a high (H) level short-circuit current detection signal.
  • This short-circuit current detection signal is input to the third input of the predriver 24, and is also input to the delay circuit 52 to be delayed by a predetermined delay time tdASC. The output of the delay circuit 52 is connected to the second input of the or circuit 44.
  • the voltage divider circuit shared with the sense resistors 32 and 34 for overcurrent detection, the short-circuit detection comparator 48, and the reference voltage source 50 constitute the short-circuit current detection circuit 51.
  • the control IC 20 also has a control power supply voltage variable circuit 54 capable of varying the control power supply voltage inside the control IC 20.
  • the control power supply voltage variable circuit 54 includes MOSFETs 56 and 58 constituting switch elements, inverter circuits 60 and 62, and a buck converter circuit 64.
  • the source of the MOSFETs 56 and 58 is connected to the VCS terminal, the drain of the MOSFET 56 is connected to the output of the control power supply voltage variable circuit 54, and the drain of the MOSFET 58 is connected to the input of the buck converter circuit 64.
  • the output of the buck converter circuit 64 is connected to the output of the control power supply voltage variable circuit 54.
  • the input of the inverter circuit 60 is connected to the output of the timer circuit 66, and the input of the timer circuit 66 is connected to the output of the short circuit detection comparator 48.
  • the output of the inverter circuit 60 is connected to the gate of the MOSFET 56 and the input of the inverter circuit 62, and the output of the inverter circuit 62 is connected to the gate of the MOSFET 58.
  • the step-down converter circuit 64 has a function of stepping down the power supply voltage VCS of the VCS terminal.
  • the control power supply voltage variable circuit 54 lowers the control power supply voltage Vcc from a voltage substantially equal to the power supply voltage VCS to the voltage output by the step-down converter circuit 64.
  • Set the time Output the time setting signal is the period from when the short-circuit current detection circuit 51 detects the short-circuit current and starts to decrease the gate voltage Vg until the gate voltage Vg or the sense voltage Vs becomes 0 when the short-circuit current is detected again.
  • a pulse width time tPW of a predetermined length longer than that is set.
  • the timer circuit 66 When the short-circuit current detection circuit 51 does not detect a short circuit, the timer circuit 66 outputs an H level signal, and after the short-circuit current detection circuit 51 detects the short circuit, the pulse width time tPW is low (L). Outputs the level time setting signal.
  • the control power supply voltage variable circuit 54 When the short-circuit current detection circuit 51 does not detect a short circuit, the control power supply voltage variable circuit 54 outputs the power supply voltage VCS of the VCS terminal as the control power supply voltage Vcc by turning on the MOSFET 56 and turning off the MOSFET 58.
  • the MOSFET 56 When the short-circuit current detection circuit 51 detects a short circuit, the MOSFET 56 is turned off and the MOSFET 58 is turned on during the period of the pulse width time tPW set by the timer circuit 66.
  • the control power supply voltage variable circuit 54 outputs the voltage stepped down from the power supply voltage VCS by the step-down converter circuit 64 as the control power supply voltage Vcc during the period of the pulse width time tPW.
  • the control IC 20 also has a power supply voltage drop detection protection circuit 68.
  • the power supply voltage drop detection protection circuit 68 includes resistors 70, 72, 74, switches 76, 78, a comparator 80, a reference voltage source 82, and a delay circuit 84.
  • One terminal of the resistor 70 is connected to the VCS terminal, the other terminal of the resistor 70 is connected to one terminal of the resistor 72, and the other terminal of the resistor 72 is connected to one terminal of the resistor 74.
  • the other terminal of the resistor 74 is connected to ground.
  • the common connection of the resistors 70 and 72 is connected to the inverting input terminal of the comparator 80 via the switch 76, and the common connection of the resistors 72 and 74 is the inverting input terminal of the comparator 80 via the switch 78. It is connected to the.
  • the non-inverting input terminal of the comparator 80 is connected to the positive electrode terminal of the reference voltage source 82, and the negative electrode terminal of the reference voltage source 82 is connected to the ground.
  • the output terminal of the comparator 80 is connected to the input of the delay circuit 84, and the output of the delay circuit 84 is connected to the control terminal of the switches 76 and 78 and the third input of the or circuit 44.
  • the voltage of the reference voltage source 82 is set to a voltage at which the circuit inside the control IC 20 does not operate normally due to a decrease in the power supply voltage VCS of the VCS terminal.
  • the power supply voltage drop detection protection circuit 68 when the voltage obtained by dividing the power supply voltage VCS supplied from the outside by the resistors 70, 72, 74 becomes lower than the voltage of the reference voltage source 82, the comparator 80 outputs an H level signal. Output. When the time for outputting the H level signal exceeds the time set by the delay circuit 84, the delay circuit 84 outputs the H level signal. This H level signal switches the switches 76 and 78, and switches the voltage input to the comparator 80 to a voltage further divided. As a result, the power supply voltage drop detection protection circuit 68 has a hysteresis characteristic that detects a drop in the power supply voltage VCS and maintains the state when the state continues for a predetermined time.
  • this control IC 20 In normal operation, when an input signal for turning on / off the IGBT 10 is input to the IN terminal, the input signal is input to the IGBT drive circuit 26 via the input signal detection circuit 22 and the predriver 24.
  • the IGBT drive circuit 26 When the IGBT drive circuit 26 is turned on, the source current for charging the gate capacitance of the IGBT is output, and when the IGBT 10 is turned off (cut off), the gate is such that the charge charged in the gate capacitance of the IGBT 10 is extracted.
  • the voltage Vg is output.
  • the overcurrent detection comparator 38 When the sense voltage Vs corresponding to the sense current exceeds the overcurrent detection threshold value of the reference voltage source 40, the overcurrent detection comparator 38 outputs an H level overcurrent detection signal. If the overcurrent detection continues beyond the delay time set by the delay circuit 42, the delay circuit 42 outputs an H-level signal. This signal is input to the predriver 24 and the alarm output circuit 46 via the or circuit 44.
  • the pre-driver 24 instructs the soft cutoff circuit 28 to pull out the charge charged in the gate capacitance of the IGBT 10 with a pull-out capacity lower than the pull-out capacity of the IGBT drive circuit 26, and gradually shuts off the IGBT 10.
  • the alarm output circuit 46 receives the notification of the occurrence of an abnormality from the or circuit 44, the alarm output circuit 46 notifies the outside of the occurrence of the abnormality via the AE terminal.
  • FIG. 2 shows, from the top, the voltage divider voltage Vsc of the sense voltage Vs, the control power supply voltage Vcc output by the control power supply voltage variable circuit 54, the gate voltage Vg, and the collector current Ic.
  • the gate voltage Vg rises.
  • the collector current Ic starts to flow, and the voltage dividing voltage Vsc of the sense voltage Vs rises.
  • the short-circuit detection comparator 48 when the voltage dividing voltage Vsc exceeds the short-circuit detection threshold Vscth, the short-circuit detection comparator 48 outputs an H-level short-circuit current detection signal.
  • This short-circuit current detection signal is first notified to the pre-driver 24, and the NLU circuit 30 is operated to output a gate voltage Vg that suppresses the short-circuit current.
  • the timer circuit 66 outputs an H level time setting signal during normal operation of the control IC 20.
  • the control power supply voltage variable circuit 54 since the inverter circuit 60 outputs the L level signal and the inverter circuit 62 outputs the H level signal, the MOSFET 56 is on and the MOSFET 58 is off. As a result, the control power supply voltage variable circuit 54 outputs the input power supply voltage VCS as the control power supply voltage Vcc.
  • the timer circuit 66 when the timer circuit 66 receives the short-circuit current detection signal from the short-circuit detection comparator 48, it outputs the L-level time setting signal for the period of the pulse width time tPW.
  • the control power supply voltage variable circuit 54 since the inverter circuit 60 outputs the H level signal and the inverter circuit 62 outputs the L level signal, the MOSFET 56 is turned off and the MOSFET 58 is turned on.
  • the control power supply voltage variable circuit 54 outputs the voltage stepped down from the power supply voltage VCS to the step-down level by the step-down converter circuit 64 as the control power supply voltage Vcc.
  • the gate voltage Vg is lowered from the charging voltage Vgch1 at the time of ON to the charging voltage Vgch2.
  • the gate voltage Vg can be lowered from the low charge voltage Vgch2 in a short time, so that stable protection operation becomes possible.
  • the peak current IcP1 of the collector current Ic can also be reduced to the peak current IcP2.
  • the delay circuit 52 outputs an H level signal. This signal is input to the predriver 24 and the alarm output circuit 46 via the or circuit 44.
  • the predriver 24 instructs the soft cutoff circuit 28 to cut off the soft, and the alarm output circuit 46 notifies the outside of the occurrence of an abnormality via the AE terminal.
  • the gate voltage Vg gradually decreases from the gate voltage VgNLU held by the NLU circuit 30, and the IGBT 10 is gradually cut off.
  • the step-down level of the control power supply voltage Vcc by the buck converter circuit 64 is set higher than the protection threshold by the reference voltage source 82 of the power supply voltage drop detection protection circuit 68.
  • the step-down level by the step-down converter circuit 64 can be set to be equal to or lower than the protection threshold value by the reference voltage source 82. In this case, when the gate voltage Vg drops to the charging voltage Vgch2 due to the stepping down of the control power supply voltage Vcc, the short circuit cannot be prevented again, the short circuit protection is surely performed by the power supply voltage drop detection protection circuit 68. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Inverter Devices (AREA)

Abstract

誤動作を起因とする連続短絡を抑制し、そのときに流れる短絡ピーク電流を抑制する。 IGBT(10)の短絡電流を検出する短絡検出用比較器(48)と、短絡検出用比較器(48)が短絡電流を検出したとき、所定のパルス幅時間tPWを設定するタイマ回路(66)と、制御電源電圧Vccを可変することができる制御電源電圧可変回路(54)とを備えている。制御電源電圧可変回路(54)は、正常動作時は電源電圧VCCを制御電源電圧Vccとして出力し、短絡電流が検出されたときは、パルス幅時間tPWの期間だけ降圧コンバータ回路(64)によって降圧された電圧を制御電源電圧Vccとして出力する。これにより、最初の短絡の検出の後に再度短絡が発生しても、制御電源電圧Vccの降圧によりIGBT(10)のゲート電圧Vgが低減されているので、短絡の要因となるノイズ等の発生を防止することができる。

Description

電圧制御型半導体素子の駆動装置
 本発明は、電圧制御型半導体素子の駆動装置に関する。
 一般に、モータの可変速装置などに適用されるインバータ装置は、電力変換を行うパワー素子、このパワー素子を制御駆動する駆動回路、保護回路、およびこれらを統括制御する制御回路を備えている。これらの構成のうち、制御回路を除くパワー素子、駆動回路および保護回路を一つのパッケージに集約したインテリジェント・パワー・モジュール(以下、IPMという)と呼ばれる半導体装置が製品化されている。
 パワー素子には、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のような電圧制御型半導体素子が用いられている。
 IPMは、一般に、パワー素子に流れる電流を監視し、パワー素子に短絡電流が流れたときに、パワー素子が破壊されないようにパワー素子を保護することができる短絡保護回路を備えている。
 このような短絡保護回路として、パワー素子に流れる短絡電流を検出したときに、ゲート電圧を低下させることによって短絡電流を制限する技術が知られている(たとえば、特許文献1参照)。この特許文献1では、短絡電流を検出したときに、運転開始指令入力直後の所定の期間のみ、短絡検出をキャンセルして短絡誤検出の発生を防止している。
 また、パワー素子に流れる短絡電流を検出したときにゲート電圧を低下させ、ゲート電圧の低下によりゲート配線を流れる電流を検出して短絡電流を検出する回路が動作状態にあることを確認してから、パワー素子をオフにするように駆動電圧を変化させる短絡保護回路も知られている(たとえば、特許文献2参照)。この短絡保護回路によれば、駆動回路からパワー素子のゲートまでのゲート配線が長くなるほど配線の高周波インピーダンスが大きくなることで高周波ノイズの電流が流れ難くなって、短絡検出時の駆動回路でのノイズによる誤動作を防止している。
特開2005-20843号公報 国際公開第2016/038717号
 短絡保護回路には、短絡を検出して保護回路が動作し、パワー素子のゲート電圧を下げて電流遮断を行うとき、ゲート電圧を徐々に低下させる。このとき、ゲート遮断が完了する前にノイズが入るとゲート電圧を一時的に上げてしまい、再度パワー素子をオンしてしまうことがある。逆に、ゲート遮断能力が高く大電流から遮断する場合には、ゲート電圧を保護回路が動作する規定のゲート電圧よりも下げてしまい、これによる誤遮断の後に、再度、パワー素子をオンしてしまうことがある。この場合、パワー素子は、高速で誤遮断を繰り返すことになり、過大なサージ電圧が続く要因ともなる。
 本発明はこのような点に鑑みてなされたものであり、誤動作を起因とする連続短絡を抑制し、そのときに流れる短絡ピーク電流を抑制することができる電圧制御型半導体素子の駆動装置を提供することを目的とする。
 本発明では、上記の課題を解決するために、1つの案では、電圧制御型半導体素子の駆動装置が提供される。この電圧制御型半導体素子の駆動装置は、電圧制御型半導体素子の短絡電流を検出する短絡電流検出回路と、短絡電流検出回路が短絡電流を検出したときに所定の長さの時間を表す時間設定信号を出力するタイマ回路と、電源端子に印加された電源電圧を受けてタイマ回路から時間設定信号を受けている期間だけ電源電圧より低い電圧に低下させた降圧電圧を制御電源電圧として出力する制御電源電圧可変回路と、を備えている。
 上記構成の電圧制御型半導体素子の駆動装置は、誤動作を起因とする連続短絡が抑制され、そのときに流れる短絡ピーク電流が抑制されるという利点がある。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の実施の形態に係る電圧制御型半導体素子の駆動装置の一例を示す図である。 電圧制御型半導体素子の駆動装置の動作を示す要部波形図である。
 以下、本発明の実施の形態について、電圧制御型半導体素子をIGBTとしたIPMの場合を例に図面を参照して詳細に説明する。なお、以下の説明において、端子名とその端子における電圧、信号などは、同じ符号を用いることがある。
 図1は本発明の実施の形態に係る電圧制御型半導体素子の駆動装置の一例を示す図、図2は電圧制御型半導体素子の駆動装置の動作を示す要部波形図である。
 図1には、電圧制御型半導体素子とするIGBT10と、このIGBTを駆動する駆動装置である制御IC(Integrated Circuit)20とが示されており、IGBT10および制御IC20は、IPMを構成している。
 IGBT10は、主電流が流れるメインIGBTとこのメインIGBTの電流を1万分の1程度の電流に分流して出力するセンスIGBTとを組み合わせて構成したものが用いられている。センスIGBTは、メインIGBTと同一構造を有し、メインIGBTよりも小さなサイズを有していて、ゲートおよびコレクタがメインIGBTのゲートおよびコレクタと共有され、センスエミッタは、メインIGBTのエミッタと独立している。IGBT10は、また、コレクタおよびエミッタにFWD(Free Wheeling Diode)12が逆並列に接続されている。すなわち、FWD12のアノードは、IGBT10のエミッタに接続され、FWD12のカソードは、IGBT10のコレクタに接続されている。
 制御IC20は、IGBT10をオンまたはオフさせる入力信号を受けるIN端子、アラーム信号を出力するAE端子、電源電圧VCCを受けるVCC端子、IGBT10を駆動するゲート電圧Vgを出力するOUT端子、および、センス電流を入力するOC端子とを有している。制御IC20は、また、グランド電位のGND端子を有し、IGBT10のエミッタが接続されている。
 制御IC20は、入力信号を検出して出力する入力信号検出回路22を有し、入力信号検出回路22の入力は、IN端子に接続され、入力信号検出回路22の出力は、プリドライバ24の第1入力に接続されている。
 プリドライバ24の出力は、IGBT駆動回路26、ソフト遮断回路28およびノンラッチアップ(以下、NLUという)回路30の入力に接続され、IGBT駆動回路26、ソフト遮断回路28およびNLU回路30の出力は、OUT端子に接続されている。OUT端子は、IGBT10のゲートに接続されている。
 IGBT駆動回路26は、入力信号検出回路22から受けた信号に基づいてIGBT10をオンまたはオフ駆動するゲート電圧Vgを出力する。すなわち、IGBT駆動回路26は、IGBT10をオン駆動するとき、IGBT10のゲート容量を充電するソース電流を出力し、IGBT10をオフ駆動(遮断)するときは、IGBT10のゲート容量に充電された電荷を引き抜くようなゲート電圧Vgを出力する。ゲート容量からの電荷の引き抜きは、引き抜き能力を2段階に分けて実施される。オフ駆動の信号を受信した直後の電荷の引き抜きは、低い引き抜き能力で実施され、所定時間後の電荷の引き抜きは、100%の引き抜き能力で実施される。
 ソフト遮断回路28は、IGBT10の過電流状態が所定時間を超えて継続したとき、IGBT駆動回路26による遮断直後の引き抜き能力よりも小さな引き抜き能力でIGBT10を徐々に遮断するようなゲート電圧Vgを出力する。
 NLU回路30は、IGBT10の短絡が検出されたとき、短絡電流を抑え込むようなゲート電圧Vgを出力し、抑制電流が所定時間を超えて継続したときには、IGBT10を遮断するようなゲート電圧Vgを出力する。
 制御IC20のOC端子は、IGBT10のセンスエミッタに接続されている。OC端子は、また、センス抵抗32の一方の端子に接続され、センス抵抗32の他方の端子は、センス抵抗34の一方の端子に接続され、センス抵抗34の他方の端子は、グランドに接続されている。OC端子は、さらに、ツェナーダイオード36のカソードに接続され、ツェナーダイオード36のアノードは、グランドに接続されている。
 センス抵抗32,34は、OC端子に入力されたセンス電流を流すことによりセンス電圧Vsに変換すると共にそのセンス電圧Vsを分圧する分圧回路を構成する。ツェナーダイオード36は、センス電圧Vsがノイズの混入等により異常に高くならないよう保護するためのものである。
 センス抵抗32の一方の端子は、過電流検出用比較器38の非反転入力端子に接続され、過電流検出用比較器38の反転入力端子は、基準電圧源40の正極端子に接続され、基準電圧源40の負極端子は、グランドに接続されている。過電流検出用比較器38の出力端子は、遅延回路42に接続されている。
 過電流検出用比較器38は、センス電圧Vsを過電流検出閾値に相当する基準電圧源40の電圧と比較する。センス電圧Vsが過電流検出閾値を超えると、過電流検出用比較器38は、過電流を検出したと判断し、ハイ(H)レベルの過電流検出信号を出力する。この過電流検出信号は、遅延回路42に入力され、所定時間遅延される。
 遅延回路42の出力は、オア回路44の第1入力に接続され、オア回路44の出力は、プリドライバ24の第2入力とアラーム出力回路46の入力とに接続されている。アラーム出力回路46の出力は、AE端子に接続されている。
 センス抵抗32,34の共通の接続部は、短絡検出用比較器48の非反転入力端子に接続され、短絡検出用比較器48の反転入力端子は、基準電圧源50の正極端子に接続され、基準電圧源50の負極端子は、グランドに接続されている。短絡検出用比較器48の出力端子は、遅延回路52とプリドライバ24の第3入力とに接続されている。
 短絡検出用比較器48は、センス電圧Vsの分圧電圧Vscを短絡検出閾値Vscthに相当する基準電圧源50の電圧と比較する。センス電圧Vsの分圧電圧Vscが短絡検出閾値Vscthを超えると、短絡検出用比較器48は、短絡電流を検出したと判断し、ハイ(H)レベルの短絡電流検出信号を出力する。この短絡電流検出信号は、プリドライバ24の第3入力に入力され、また、遅延回路52に入力されて所定の遅延時間tdASCだけ遅延される。遅延回路52の出力は、オア回路44の第2入力に接続されている。なお、過電流検出用のセンス抵抗32,34と共用される分圧回路、短絡検出用比較器48および基準電圧源50は、短絡電流検出回路51を構成している。
 制御IC20は、また、制御IC20の内部の制御電源電圧を可変することができる制御電源電圧可変回路54を有している。この制御電源電圧可変回路54は、スイッチ素子を構成するMOSFET56,58と、インバータ回路60,62と、降圧コンバータ回路64とを有している。
 MOSFET56,58のソースは、VCC端子に接続され、MOSFET56のドレインは、この制御電源電圧可変回路54の出力に接続され、MOSFET58のドレインは、降圧コンバータ回路64の入力に接続されている。降圧コンバータ回路64の出力は、この制御電源電圧可変回路54の出力に接続されている。インバータ回路60の入力は、タイマ回路66の出力に接続され、タイマ回路66の入力は、短絡検出用比較器48の出力に接続されている。インバータ回路60の出力は、MOSFET56のゲートとインバータ回路62の入力とに接続され、インバータ回路62の出力は、MOSFET58のゲートに接続されている。降圧コンバータ回路64は、VCC端子の電源電圧VCCを降圧する機能を有している。タイマ回路66は、短絡電流検出回路51が短絡電流を検出したときに、制御電源電圧可変回路54が制御電源電圧Vccを電源電圧VCCにほぼ等しい電圧から降圧コンバータ回路64が出力する電圧に降圧する時間を設定する時間設定信号を出力する。この時間設定信号は、短絡電流検出回路51が短絡電流を検出してゲート電圧Vgの低下を開始してから再度短絡電流を検出したときのゲート電圧Vgまたはセンス電圧Vsが0になるまでの期間よりも長い所定の長さのパルス幅時間tPWを設定している。タイマ回路66は、短絡電流検出回路51が短絡を検出していないとき、Hレベルの信号を出力し、短絡電流検出回路51が短絡を検出してからパルス幅時間tPWの期間、ロー(L)レベルの時間設定信号を出力する。
 この制御電源電圧可変回路54は、短絡電流検出回路51が短絡を検出していないとき、MOSFET56がオンし、MOSFET58がオフすることで、VCC端子の電源電圧VCCを制御電源電圧Vccとして出力する。短絡電流検出回路51が短絡を検出したときは、タイマ回路66によって設定されたパルス幅時間tPWの期間、MOSFET56がオフし、MOSFET58がオンする。これにより、制御電源電圧可変回路54は、パルス幅時間tPWの期間、降圧コンバータ回路64により電源電圧VCCから降圧された電圧を制御電源電圧Vccとして出力する。
 制御IC20は、また、電源電圧低下検出保護回路68を有している。電源電圧低下検出保護回路68は、抵抗70,72,74と、スイッチ76,78と、比較器80と、基準電圧源82と、遅延回路84とを有している。
 抵抗70の一方の端子は、VCC端子に接続され、抵抗70の他方の端子は、抵抗72の一方の端子に接続され、抵抗72の他方の端子は、抵抗74の一方の端子に接続され、抵抗74の他方の端子は、グランドに接続されている。抵抗70,72の共通の接続部は、スイッチ76を介して比較器80の反転入力端子に接続され、抵抗72,74の共通の接続部は、スイッチ78を介して比較器80の反転入力端子に接続されている。比較器80の非反転入力端子は、基準電圧源82の正極端子に接続され、基準電圧源82の負極端子はグランドに接続されている。比較器80の出力端子は、遅延回路84の入力に接続され、遅延回路84の出力は、スイッチ76,78の制御端子とオア回路44の第3入力とに接続されている。基準電圧源82の電圧は、VCC端子の電源電圧VCCが低下することによって制御IC20の内部の回路が正常に動作しなくなる電圧に設定されている。
 電源電圧低下検出保護回路68は、外部から供給された電源電圧VCCを抵抗70,72,74で分圧した電圧が基準電圧源82の電圧より低くなると、比較器80は、Hレベルの信号を出力する。このHレベルの信号を出力している時間が遅延回路84によって設定された時間を超えると、遅延回路84は、Hレベルの信号を出力する。このHレベルの信号は、スイッチ76,78を切り換え、比較器80に入力する電圧をさらに分圧した電圧に切り換える。これにより、電源電圧低下検出保護回路68は、電源電圧VCCの低下を検出し、その状態が所定時間継続したとき、その状態を維持するようなヒステリシス特性を有している。
 次に、この制御IC20の動作について説明する。正常動作時では、IGBT10をオン・オフする入力信号がIN端子に入力されると、その入力信号は、入力信号検出回路22およびプリドライバ24を介してIGBT駆動回路26に入力される。IGBT駆動回路26は、IGBT10をオンするときは、IGBT10のゲート容量を充電するソース電流を出力し、IGBT10をオフ(遮断)するときは、IGBT10のゲート容量に充電された電荷を引き抜くようなゲート電圧Vgを出力する。
 次に、IGBT10をオンしているときに、IGBT10に過電流が流れた場合について説明する。センス電流に相当するセンス電圧Vsが基準電圧源40の過電流検出閾値を超えると、過電流検出用比較器38は、Hレベルの過電流検出信号を出力する。過電流検出が遅延回路42によって設定された遅延時間を超えて継続すると、遅延回路42は、Hレベルの信号を出力する。この信号は、オア回路44を介してプリドライバ24およびアラーム出力回路46に入力される。プリドライバ24は、ソフト遮断回路28に指示し、IGBT10のゲート容量に充電された電荷を、IGBT駆動回路26の引き抜き能力よりも低い引き抜き能力で引き抜き、IGBT10を徐々に遮断する。アラーム出力回路46は、オア回路44から異常発生の通知を受けると、AE端子を介して外部へ異常発生を通知する。
 次に、IGBT10をオンしているときに、IGBT10に短絡電流が流れた場合について、図2を参照しながら説明する。なお、図2では、上から、センス電圧Vsの分圧電圧Vsc、制御電源電圧可変回路54が出力する制御電源電圧Vcc、ゲート電圧Vg、および、コレクタ電流Icを示している。
 まず、時刻t0にて、IGBT駆動回路26がIGBT10をオンする信号を出力すると、ゲート電圧Vgが上昇していく。ゲート電圧VgがIGBT10のオン閾値Vonthを超えると、コレクタ電流Icが流れ始め、センス電圧Vsの分圧電圧Vscが上昇するようになる。
 ここで、分圧電圧Vscが短絡検出閾値Vscthを超えると、短絡検出用比較器48は、Hレベルの短絡電流検出信号を出力する。この短絡電流検出信号は、まず、プリドライバ24に通知され、NLU回路30を動作させて、短絡電流を抑え込むようなゲート電圧Vgを出力する。
 一方、タイマ回路66は、制御IC20の正常動作時には、Hレベルの時間設定信号を出力している。このとき、制御電源電圧可変回路54では、インバータ回路60がLレベルの信号を出力し、インバータ回路62がHレベルの信号を出力しているので、MOSFET56がオン、MOSFET58がオフとなっている。これにより、制御電源電圧可変回路54は、入力された電源電圧VCCを制御電源電圧Vccとして出力している。
 ここで、タイマ回路66は、短絡検出用比較器48から短絡電流検出信号を受けると、パルス幅時間tPWの期間、Lレベルの時間設定信号を出力する。このとき、制御電源電圧可変回路54では、インバータ回路60がHレベルの信号を出力し、インバータ回路62がLレベルの信号を出力しているので、MOSFET56がオフ、MOSFET58がオンとなる。これにより、制御電源電圧可変回路54は、降圧コンバータ回路64によって電源電圧VCCから降圧レベルまで降圧された電圧を制御電源電圧Vccとして出力する。
 したがって、制御電源電圧Vccが降圧レベルまで低下した状態では、コレクタ電流Icのように、高い電流値からの急激な遮断または高レベルのノイズの混入があって、時刻t1にて高いゲート電圧Vgが入力されて再度短絡電流が流れる誤動作が発生することがある。このような場合でも、制御IC20は、時刻t0以降と同様の振る舞いをしようとする。
 このとき、制御電源電圧Vccが降圧レベルまで低下されていることによって、ゲート電圧Vgがオン時の充電電圧Vgch1から充電電圧Vgch2まで低下される。これにより、ゲート電圧Vgを低い充電電圧Vgch2から短い時間で低下することができるので、安定した保護動作が可能となる。また、コレクタ電流Icのピーク電流IcP1も、ピーク電流IcP2までの低減が可能となる。
 その後、短絡検出状態が遅延回路52によって設定された遅延時間tdASCを超えて継続すると、遅延回路52は、Hレベルの信号を出力する。この信号は、オア回路44を介してプリドライバ24およびアラーム出力回路46に入力される。プリドライバ24は、ソフト遮断回路28にソフト遮断を指示し、アラーム出力回路46は、AE端子を介して外部へ異常発生を通知する。
 ソフト遮断回路28によるソフト遮断において、ゲート電圧Vgは、NLU回路30で保持されていたゲート電圧VgNLUから徐々に低下していって、IGBT10を徐々に遮断する。
 なお、制御電源電圧可変回路54では、降圧コンバータ回路64による制御電源電圧Vccの降圧レベルを電源電圧低下検出保護回路68の基準電圧源82による保護閾値よりも高く設定している。しかし、降圧コンバータ回路64による降圧レベルを基準電圧源82による保護閾値以下に設定することもできる。この場合、制御電源電圧Vccを降圧したことによってゲート電圧Vgが充電電圧Vgch2まで低下する効果でも再短絡を防止することができないときに、電源電圧低下検出保護回路68によって確実に短絡保護をすることができる。
 以上、実施の形態に基づき、本発明の電圧制御型半導体素子の駆動装置の一観点について説明してきたが、これらは一例にすぎず、上記の記載に限定されるものではない。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 10 IGBT
 12 FWD
 20 制御IC
 22 入力信号検出回路
 24 プリドライバ
 26 IGBT駆動回路
 28 ソフト遮断回路
 30 NLU回路
 32,34 センス抵抗
 36 ツェナーダイオード
 38 過電流検出用比較器
 40 基準電圧源
 42 遅延回路
 44 オア回路
 46 アラーム出力回路
 48 短絡検出用比較器
 50 基準電圧源
 51 短絡電流検出回路
 52 遅延回路
 54 制御電源電圧可変回路
 56,58 MOSFET
 60,62 インバータ回路
 64 降圧コンバータ回路
 66 タイマ回路
 68 電源電圧低下検出保護回路
 70,72,74 抵抗
 76,78 スイッチ
 80 比較器
 82 基準電圧源
 84 遅延回路

Claims (6)

  1.  電圧制御型半導体素子の駆動装置において、
     前記電圧制御型半導体素子の短絡電流を検出する短絡電流検出回路と、
     前記短絡電流検出回路が短絡電流を検出したときに所定の長さの時間を表す時間設定信号を出力するタイマ回路と、
     電源端子に印加された電源電圧を受けて前記タイマ回路から前記時間設定信号を受けている期間だけ前記電源電圧より低い電圧に低下させた降圧電圧を制御電源電圧として出力する制御電源電圧可変回路と、
     を備えている、電圧制御型半導体素子の駆動装置。
  2.  前記制御電源電圧可変回路は、前記タイマ回路から前記時間設定信号を受けていないときオンされて前記電源電圧を前記制御電源電圧として出力し、前記時間設定信号を受けたときオフされる第1スイッチ素子と、前記時間設定信号を受けていないときオフされ、前記時間設定信号を受けたときオンされる第2スイッチ素子と、前記第2スイッチ素子がオンしたとき前記電源電圧を降圧し、降圧した電圧を前記制御電源電圧として出力する降圧コンバータ回路とを有する、請求項1記載の電圧制御型半導体素子の駆動装置。
  3.  前記タイマ回路が出力する前記時間設定信号は、前記短絡電流検出回路が短絡電流を検出して前記電圧制御型半導体素子のゲート電圧が低下を開始してから再度短絡電流を検出したときの前記電圧制御型半導体素子のゲート電圧が0になるまでの期間よりも長い時間に設定されている、請求項1記載の電圧制御型半導体素子の駆動装置。
  4.  前記短絡電流検出回路は、短絡電流を検出したときにノンラッチアップ回路により短絡電流を抑え込むように前記電圧制御型半導体素子のゲート電圧を制御し、短絡電流を検出してから所定時間後にソフト遮断回路により前記ゲート電圧を徐々に低下させる、請求項1記載の電圧制御型半導体素子の駆動装置。
  5.  前記電源電圧の低下を検出して前記電圧制御型半導体素子のゲート電圧を徐々に低下させる信号を出力する電源電圧低下検出保護回路を備えている、請求項1記載の電圧制御型半導体素子の駆動装置。
  6.  前記制御電源電圧可変回路は、前記降圧電圧の降圧レベルを前記電源電圧低下検出保護回路が前記電源電圧の低下を検出する閾値以下に設定した、請求項5記載の電圧制御型半導体素子の駆動装置。
PCT/JP2021/040994 2020-12-11 2021-11-08 電圧制御型半導体素子の駆動装置 WO2022123977A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022568114A JPWO2022123977A1 (ja) 2020-12-11 2021-11-08
US18/080,374 US20230112315A1 (en) 2020-12-11 2022-12-13 Drive device for voltage-controlled semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020206307 2020-12-11
JP2020-206307 2020-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/080,374 Continuation US20230112315A1 (en) 2020-12-11 2022-12-13 Drive device for voltage-controlled semiconductor element

Publications (1)

Publication Number Publication Date
WO2022123977A1 true WO2022123977A1 (ja) 2022-06-16

Family

ID=81973661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040994 WO2022123977A1 (ja) 2020-12-11 2021-11-08 電圧制御型半導体素子の駆動装置

Country Status (3)

Country Link
US (1) US20230112315A1 (ja)
JP (1) JPWO2022123977A1 (ja)
WO (1) WO2022123977A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196913A (ja) * 1988-01-31 1989-08-08 Nec Corp 出力過電流制限回路
WO2016117459A1 (ja) * 2015-01-22 2016-07-28 富士電機株式会社 半導体素子駆動装置
JP2017046570A (ja) * 2015-08-27 2017-03-02 ローム株式会社 過電流保護装置、電子機器、集積回路および信号伝達回路
JP2018057105A (ja) * 2016-09-27 2018-04-05 株式会社日立製作所 半導体駆動装置ならびにこれを用いた電力変換装置
US20180154787A1 (en) * 2016-12-01 2018-06-07 Ford Global Technologies, Llc Adaptive Boost Voltage For Hybrid Vehicle Operation
WO2020054202A1 (ja) * 2018-09-13 2020-03-19 パナソニックIpマネジメント株式会社 電源装置およびこの電源装置を備えたモータ制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196913A (ja) * 1988-01-31 1989-08-08 Nec Corp 出力過電流制限回路
WO2016117459A1 (ja) * 2015-01-22 2016-07-28 富士電機株式会社 半導体素子駆動装置
JP2017046570A (ja) * 2015-08-27 2017-03-02 ローム株式会社 過電流保護装置、電子機器、集積回路および信号伝達回路
JP2018057105A (ja) * 2016-09-27 2018-04-05 株式会社日立製作所 半導体駆動装置ならびにこれを用いた電力変換装置
US20180154787A1 (en) * 2016-12-01 2018-06-07 Ford Global Technologies, Llc Adaptive Boost Voltage For Hybrid Vehicle Operation
WO2020054202A1 (ja) * 2018-09-13 2020-03-19 パナソニックIpマネジメント株式会社 電源装置およびこの電源装置を備えたモータ制御装置

Also Published As

Publication number Publication date
JPWO2022123977A1 (ja) 2022-06-16
US20230112315A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
CN105577153B (zh) 半导体装置
US7242238B2 (en) Drive circuit for voltage driven type semiconductor element
US8466734B2 (en) Gate driving circuit for power semiconductor element
US9698654B2 (en) Soft shutdown for isolated drivers
JP5761215B2 (ja) ゲート駆動回路
US11070046B2 (en) Short-circuit protection circuit for self-arc-extinguishing type semiconductor element
US9467138B2 (en) Semiconductor apparatus
EP0467681A2 (en) Drive circuit for current sense IGBT
JP2009225506A (ja) 電力変換器
CN108809059B (zh) 半导体元件的驱动装置
JP2003284318A (ja) 電力用半導体素子の駆動回路
JPWO2013008452A1 (ja) 短絡保護回路
US9503073B2 (en) Power semiconductor device
JP4779549B2 (ja) 電圧駆動型半導体素子のゲート駆動回路。
US8503146B1 (en) Gate driver with short-circuit protection
JP2018011467A (ja) 半導体スイッチング素子のゲート駆動回路
EP3104527B1 (en) Semiconductor device
CN114667681A (zh) 栅极驱动电路
WO2022123977A1 (ja) 電圧制御型半導体素子の駆動装置
JP4413482B2 (ja) 電力用半導体素子の駆動回路
US11496041B2 (en) Gate drive device, gate drive method, power semiconductor module, and electric power conversion device
JP3598870B2 (ja) ドライブ回路
JP3661813B2 (ja) 電圧駆動形半導体素子の駆動回路
JP3337796B2 (ja) 電圧駆動形素子の駆動回路
JP2973997B2 (ja) 電圧駆動形半導体素子の駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903081

Country of ref document: EP

Kind code of ref document: A1