WO2022120948A1 - 空调室内机和空调器 - Google Patents

空调室内机和空调器 Download PDF

Info

Publication number
WO2022120948A1
WO2022120948A1 PCT/CN2020/138386 CN2020138386W WO2022120948A1 WO 2022120948 A1 WO2022120948 A1 WO 2022120948A1 CN 2020138386 W CN2020138386 W CN 2020138386W WO 2022120948 A1 WO2022120948 A1 WO 2022120948A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
heat
heat exchange
group
Prior art date
Application number
PCT/CN2020/138386
Other languages
English (en)
French (fr)
Inventor
何家基
林晨
江晨钟
大森宏
江宇
Original Assignee
广东美的白色家电技术创新中心有限公司
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2022120948A1 publication Critical patent/WO2022120948A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to an air conditioner indoor unit and an air conditioner.
  • the operation of the air conditioner is always accompanied by the operation of the fan, and the problem of fan noise needs to be improved.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application proposes an air conditioner indoor unit.
  • a second aspect of the present application proposes an air conditioner indoor unit.
  • a third aspect of the present application proposes an air conditioner.
  • a first aspect of the present application proposes an indoor unit for an air conditioner, comprising: a casing, the casing includes an air inlet and an air outlet, and along a first direction, the air outlet is located at the bottom of the casing; a first group of heat exchange The heat exchanger and the second group of heat exchangers are both arranged in the shell, and the air flows through the air inlet to the first group of heat exchangers and the second group of heat exchangers for heat exchange, and then flows out from the air outlet; the first group of heat exchangers Including: a first heat exchanger and a second heat exchanger; the second group of heat exchangers includes: a third heat exchanger and a fourth heat exchanger, the connection between the upper end and the lower end of the third heat exchanger The connection line between the upper end and the lower end of the fourth heat exchanger is inclined with respect to the first direction, and the lower end of the third heat exchanger is in phase with the lower end of the fourth heat exchanger.
  • the upper end of the third heat exchanger is away from the upper end of the fourth heat exchanger; wherein, along the second direction, the first heat exchanger, the third heat exchanger, the fourth heat exchanger and the second heat exchanger Arranged in sequence, the upper end of the first heat exchanger is connected with the upper end of the third heat exchanger, the upper end of the second heat exchanger is connected with the upper end of the fourth heat exchanger, and the lower end of the second heat exchanger is connected
  • the first direction is perpendicular to the second direction, and the first direction is the direction of gravity.
  • the air conditioner indoor unit provided by the present application is provided with a first set of heat exchangers and a second set of heat exchangers in the casing, wherein the second set of heat exchangers is provided on the first heat exchanger and the second set of heat exchangers in the first set of heat exchangers. Between the two heat exchangers, two groups of heat exchangers are enclosed into a heat exchange chamber.
  • the indoor air When the indoor unit of the air conditioner is performing natural convection cooling, the indoor air enters the casing from the air inlet of the casing, and exchanges heat with the first set of heat exchangers and the second set of heat exchangers.
  • the temperature of the air decreases after heat exchange and becomes cold air for cooling.
  • the density of cold air is greater than that of air.
  • the cold air flows from the heat exchange chamber to the air outlet below, and finally enters the room from the air outlet.
  • a negative pressure is formed in the shell after the cold air flows out, and then the air continues to be drawn into the shell from the air inlet, so far, a complete air cycle is completed.
  • the indoor air is heated by natural convection, and the entire heat exchange process does not require the fan to work, thereby avoiding the noise generated by the fan operation while ensuring a good heat exchange capacity.
  • a coordinate system with a first direction and a second direction perpendicular to each other is set in the space where the casing is located, wherein the first direction is the direction of gravity, and the second direction is the width direction of the casing.
  • the connecting line between the upper end and the lower end of the third heat exchanger is inclined relative to the first direction, and the connecting line between the upper end and the lower end of the fourth heat exchanger is inclined relative to the first direction, The lower end of the third heat exchanger overlaps with the lower end of the fourth heat exchanger.
  • the first heat exchanger, the third heat exchanger, the fourth heat exchanger and the second heat exchanger are arranged in sequence, and the upper end of the first heat exchanger and the upper end of the third heat exchanger
  • the upper end of the second heat exchanger is connected with the upper end of the fourth heat exchanger, so that the first heat exchanger and the third heat exchanger enclose a heat exchange chamber, and the fourth heat exchanger and The second heat exchanger encloses a heat exchange chamber, and by arranging the third heat exchanger and the fourth heat exchanger in the shell inclined relative to the first direction, compared with the horizontal or vertical arrangement of the heat exchanger,
  • the heat exchange area between the air and the heat exchanger is increased, thereby improving the output capacity of the air conditioner indoor unit and the heat exchange efficiency of the air conditioner indoor unit, so as to reach the user's set temperature as soon as possible, thereby improving the User comfort.
  • the air conditioner indoor unit in the above technical solution provided by the present application may also have the following additional technical features:
  • the number of the second group of heat exchangers is at least two groups, the upper ends of the adjacent two groups of the second group of heat exchangers are connected, and the adjacent two groups of the second group of heat exchangers are connected. The lower ends of the are arranged away from each other.
  • the number of the second group of heat exchangers is one group, and in the section perpendicular to the third direction, the cross-sectional shape of the second group of heat exchangers is V-shaped, and the first group of heat exchangers The cross-sectional shape formed by the heat exchanger and the second group of heat exchangers is M-shaped; wherein, the third direction is perpendicular to both the first direction and the second direction.
  • the lower ends of the second group of heat exchangers are flush with or higher than the lower ends of the first group of heat exchangers.
  • the first heat exchanger is inclined relative to the first direction
  • the second heat exchanger is inclined relative to the first direction
  • first heat exchanger and the second heat exchanger are arranged in parallel with respect to the first direction.
  • it further includes: a fifth heat exchanger, the fifth heat exchanger is arranged below the first heat exchanger, and the upper end of the fifth heat exchanger is connected to the upper end of the first heat exchanger.
  • the lower ends are connected and arranged;
  • the sixth heat exchanger is arranged below the second heat exchanger, and the upper end of the sixth heat exchanger is connected with the lower end of the second heat exchanger.
  • a jet nozzle which is arranged between two adjacent heat exchangers in the first group of heat exchangers and the second group of heat exchangers, and the jet nozzle is connected to the adjacent two heat exchangers.
  • the two heat exchangers are enclosed into a heat exchange chamber, and the heat exchange chamber is communicated with the air outlet.
  • it further includes: a jet air duct, which is communicated with the jet nozzle; wherein, along the flow direction of the air duct, the cross-sectional area of the jet air duct gradually decreases.
  • the housing includes: an air inlet cover, the air inlet is opened on the air inlet cover; a base, the air inlet cover is arranged on the base, and the air outlet is opened on the base.
  • the housing further includes: a support plate, the support plate is arranged between the base and the air inlet cover, and along the third direction, the support plates are located at both ends of the air inlet cover; wherein, The two ends of the second group of heat exchangers are respectively connected with the support plates on both sides, and some of the first group of heat exchangers are in contact with the support plates and the air inlet hood.
  • the air inlet hood includes: an installation groove, which is arranged on the top wall of the air inlet hood, the bottom of the installation groove is provided with an opening, and the jet nozzle is arranged at the opening; The upper ends of the two heat exchangers on both sides are in contact with the groove walls on both sides of the opening.
  • the air inlet includes a jet air inlet and a main air inlet; the jet air inlet is communicated with the jet nozzle, and the main air inlet passes through the first group of heat exchangers and the second group of heat exchangers.
  • the hot chambers are connected; the jet air inlet is opened on the side wall of the air inlet cover; the main air inlet is opened on the opposite side walls of the air inlet cover along the second direction; and the main air inlet is opened on the air inlet cover along the second direction.
  • the side walls in three directions, and/or the top wall of the air inlet hood.
  • it further includes: a flow guide structure, the flow guide structure is arranged at the lower end of the second group of heat exchangers; the flow guide structure includes a first flow guide surface and a second flow guide surface, the first The first flow guide surface and the second flow guide surface are symmetrical about the center line of the lower end of the second group of heat exchangers.
  • the number of air outlets is one
  • the projection of the air guide structure along the first direction is located in the air outlet
  • the first air guide surface is disposed facing the first heat exchanger and facing the first heat exchanger.
  • One side of the heat exchanger is convex
  • the second flow guiding surface is arranged facing the second heat exchanger and is convex toward the side of the second heat exchanger.
  • the number of air outlets is multiple, the projection of the air guide structure along the first direction is located between two adjacent air outlets, and the first air guide surface is disposed facing the first heat exchanger , and is recessed toward the side of the second heat exchanger, and the second guide surface is arranged facing the second heat exchanger and recessed toward the side of the first heat exchanger.
  • the first heat exchanger includes a plurality of first fins and a plurality of first heat exchange tubes, the plurality of first heat exchange tubes are arranged in a single row, and the plurality of first heat exchange tubes are arranged in a single row.
  • the fins are sleeved on the first heat exchange tube;
  • the second heat exchanger includes a plurality of second fins and a plurality of second heat exchange tubes, the plurality of second heat exchange tubes are arranged in a single row, and the plurality of second heat exchange tubes are arranged in a single row.
  • the third heat exchanger includes a plurality of third fins and a plurality of third heat exchange tubes, and the plurality of third heat exchange tubes are arranged in a single row.
  • the third fins are sleeved on the third heat exchange tubes;
  • the fourth heat exchanger includes multiple fourth fins and multiple fourth heat exchange tubes, the multiple fourth heat exchange tubes are arranged in a single row, and the multiple fourth heat exchange tubes are arranged in a single row.
  • the four fins are sleeved on the fourth heat exchange tube.
  • the first group of heat exchangers and the second group of heat exchangers are both arranged axisymmetrically, and the axis of symmetry of the axisymmetric arrangement is along the first direction extend.
  • the value range of the inclination angle of the third fin relative to the first direction is 0° to 45°; the value range of the inclination angle of the fourth fin relative to the first direction 0° to 45°.
  • the air inlet is higher than the lower end of the first group of heat exchangers.
  • the number of air outlets is 1; the ratio of the width of the air outlet along the second direction to the distance between the end face of the jet nozzle and the plane where the air outlet is located is in the range of 0.1 to 0.7.
  • the ratio of the distance between the center points of two adjacent jet nozzles to the width of the air outlet ranges from 0.5 to 2.
  • the angle between the central axis of the jet nozzle and the second direction of the casing is the first angle
  • the inclination angle of the third heat exchanger with respect to the first direction is the second angle
  • the value range of the first included angle is greater than or equal to 90° minus the difference between the second included angle and less than or equal to 90°.
  • it further includes: a Coanda effect element, and the Coanda effect element is arranged below the jet nozzle along the first direction; wherein, the cross section is carried out along the first direction, and on the obtained cross section, The Coanda effect element is symmetrical about the midline of the jet nozzle.
  • an indoor unit for an air conditioner comprising: a casing, the casing includes an air inlet and an air outlet, and along the first direction, the air outlet is located at the bottom of the casing; and a heat exchanger is provided at the In the shell, the air flows through the air inlet to the heat exchanger for heat exchange, and then flows out from the air outlet; the heat exchanger includes a plurality of heat exchange sections arranged along the second direction, and a heat exchange section is formed between two adjacent heat exchange sections.
  • the heat exchanger is provided with a first heat exchange area and a second heat exchange area in sequence along the second direction; wherein, in the direction from the top of the shell to the bottom of the shell, the first heat exchange area is along the second direction.
  • the width gradually increases, and the width of the second heat exchange zone gradually decreases along the second direction; the first direction and the second direction are perpendicular, and the first direction is the direction of gravity.
  • a plurality of first heat exchange areas and a plurality of second heat exchange areas are formed between the plurality of heat exchange sections, and along the second direction, the first heat exchange areas and the second heat exchange areas are formed.
  • the hot spots are staggered.
  • the cross-sectional shapes of two adjacent heat exchange sections are V-shaped or inverted V-shaped; the cross-sections of the four heat exchange sections arranged in sequence The shape is M-shaped; wherein, the third direction is perpendicular to both the first direction and the second direction.
  • an air conditioner including the air conditioner indoor unit of any of the above technical solutions.
  • the air conditioner provided by the present application includes the air conditioner indoor unit of any one of the above technical solutions, it has all the beneficial effects of the air conditioner indoor unit, which will not be repeated here.
  • FIG. 1 shows a partial structural schematic diagram of an air conditioner indoor unit according to a first embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of the indoor unit of the air conditioner including the embodiment shown in FIG. 1;
  • Fig. 3 shows a schematic diagram of airflow flow in the active jet mode of the air conditioner indoor unit of the embodiment shown in Fig. 2;
  • Fig. 4 shows the structural schematic diagram of the jet air duct and the jet nozzle in the air conditioner indoor unit of the embodiment shown in Fig. 2;
  • Fig. 5 shows the front view of the jet air duct and the jet nozzle in the air conditioner indoor unit of the embodiment shown in Fig. 4;
  • Fig. 6 shows the bottom view of the jet air duct and the jet nozzle in the air conditioner indoor unit of the embodiment shown in Fig. 4;
  • FIG. 7 is a schematic structural diagram of another angle of the indoor unit of the air conditioner of the embodiment shown in FIG. 1;
  • FIG. 8 shows a schematic structural diagram of an indoor unit of an air conditioner according to a second embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of an indoor unit of an air conditioner according to a third embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of an indoor unit of an air conditioner according to a fourth embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of an air conditioner indoor unit according to a fifth embodiment of the present application.
  • Fig. 12 shows a schematic structural diagram of the indoor unit of the air conditioner of the embodiment shown in Fig. 11 from another perspective;
  • Fig. 13 shows an exploded schematic diagram of the indoor unit of the air conditioner according to the sixth embodiment of the present application.
  • Fig. 14 shows a schematic structural diagram of another angle of the indoor unit of the air conditioner of the embodiment shown in Fig. 13;
  • Fig. 15 shows a schematic structural diagram of adding the third group of heat exchangers to the indoor unit of the air conditioner of the embodiment shown in Fig. 13;
  • Fig. 16 shows the effect diagram of heat exchange capacity under the condition of full passive natural convection and active air supply jet provided by the embodiment shown in Fig. 1;
  • FIG. 17 shows the effect diagram of the heat exchange capacity of the third group of heat exchangers using two straight pipes in an embodiment of the present application
  • Fig. 18 shows the effect diagram of the heat exchange capacity of the third group of heat exchangers using four straight pipes in an embodiment of the present application
  • Figure 19 shows a schematic diagram of the jet angle ⁇ in the embodiment shown in Figure 1;
  • FIG. 20 shows a schematic diagram of jet airflow distribution in an embodiment of the present application
  • Fig. 21 shows a schematic diagram of jet airflow distribution in still another embodiment of the present application.
  • Fig. 22 shows a speed effect diagram along the air supply direction of the jet air duct in an embodiment of the present application
  • Fig. 23 shows the effect diagram of the time-division speed of air supply along the jet nozzle in an embodiment of the present application
  • Figure 24 shows the effect diagram of the velocity corresponding to the jet nozzle using the elongated slit structure
  • Figure 25 shows the effect diagram of the sub-velocity corresponding to the use of the elongated slit structure for the jet nozzle
  • FIG. 26 shows a schematic diagram of the airflow direction of the jet of the jet nozzle in an embodiment of the present application
  • Figure 27 shows a schematic diagram of the airflow direction of the jet corresponding to the jet nozzle using the elongated slit structure
  • FIG. 28 shows the effect diagram of the heat exchange capacity using the Coanda effect element in an embodiment of the present application
  • FIG. 29 shows a schematic structural diagram of an air conditioner indoor unit according to still another embodiment of the present application.
  • FIG. 30 shows a schematic structural diagram of an air conditioner indoor unit according to still another embodiment of the present application.
  • FIG. 31 shows a schematic structural diagram of an air conditioner indoor unit according to another embodiment of the present application.
  • Fig. 32 shows a partial structural schematic diagram of the air conditioner indoor unit of the embodiment shown in Fig. 31;
  • Fig. 33 shows a partial structural schematic diagram of the air conditioner indoor unit of the embodiment shown in Fig. 31;
  • Fig. 34 shows a schematic structural diagram of the air inlet hood of the air conditioner indoor unit of the embodiment shown in Fig. 31;
  • Fig. 35 shows a schematic structural diagram of the jet nozzle and the jet air duct of the air conditioner indoor unit of the embodiment shown in Fig. 31;
  • Fig. 36 shows a schematic diagram of the base structure of the air conditioner indoor unit of the embodiment shown in Fig. 31;
  • Fig. 37 shows a schematic structural diagram of the water receiving tray of the indoor unit of the air conditioner according to the embodiment shown in Fig. 31;
  • FIG. 38 shows a partial structural schematic diagram of an air conditioner indoor unit according to still another embodiment of the present application.
  • FIG. 40 shows a schematic structural diagram of an air conditioner indoor unit according to still another embodiment of the present application.
  • FIG. 41 shows a schematic structural diagram of an air conditioner indoor unit according to another embodiment of the present application.
  • FIG. 42 shows a schematic structural diagram of an air conditioner indoor unit according to another embodiment of the present application.
  • 1 air conditioner indoor unit 10 shell, 110 air inlet cover, 1102 installation slot, 1104 opening, 120 base, 130 support plate, 101 air inlet, 1011 jet air inlet, 1012 main air inlet, 102 air outlet, 11 first Group heat exchanger, 111 first heat exchanger, 1110 first heat exchange tube, 1112 first fin, 112 second heat exchanger, 1122 second heat exchange tube, 1124 second fin, 12 second group heat exchanger Heater, 121 third heat exchanger, 1212 third heat exchange tube, 1214 third fin, 122 fourth heat exchanger, 1222 fourth heat exchange tube, 1224 fourth fin, 13 third group heat exchanger , 131 fifth heat exchanger, 1312 fifth heat exchange tube, 1314 fifth fin, 132 sixth heat exchanger, 1322 sixth heat exchange tube, 1324 sixth fin, 142 jet nozzle, 144 jet air duct, 15 fan, 16 heat exchange chamber, 18 first cavity, 20 second cavity, 22 diversion structure, 222 first diversion surface, 224 second diversion surface, 24 first water tray, 26 second Water receiving tray, 28 third water
  • 40 heat exchanger 402 heat exchange section, 404 first heat exchange area, 406 second heat exchange area.
  • the air conditioner indoor unit 1 and the air conditioner according to some embodiments provided by the present application will be described below with reference to FIGS. 1 to 42 .
  • an embodiment of the present application provides an air conditioner indoor unit 1, including: a casing 10, a first group of heat exchangers 11 and a second group of heat exchangers 12, the first group of heat exchangers
  • the heat exchanger 11 and the second set of heat exchangers 12 are arranged in the casing 10, and the casing 10 includes an air inlet 101 and an air outlet 102.
  • the air outlet 102 is located at the bottom of the casing 10; the air passes through the air inlet 101. After flowing to the first group of heat exchangers 11 and the second group of heat exchangers 12 for heat exchange, it flows out from the air outlet 102 .
  • the first group of heat exchangers 11 includes: a first heat exchanger 111 and a second heat exchanger 112;
  • the second group of heat exchangers 12 includes: a third heat exchanger 121 and a fourth heat exchanger 122, the third heat exchanger
  • the connecting line between the upper end and the lower end of the heat exchanger 121 is inclined with respect to the first direction, the connecting line between the upper end and the lower end of the fourth heat exchanger 122 is inclined with respect to the first direction, and the third heat exchange
  • the lower end of the heat exchanger 121 is connected to the lower end of the fourth heat exchanger 122, and the upper end of the third heat exchanger 121 is far away from the upper end of the fourth heat exchanger 122; wherein, along the second direction, the first heat exchanger 111, the third heat exchanger 121, the fourth heat exchanger 122 and the second heat exchanger 112 are arranged in sequence, the upper end of the first heat exchanger 111 is connected to the upper end of the third heat exchanger 121, and
  • the air conditioner indoor unit 1 provided by the present application is provided with a first group of heat exchangers 11 and a second group of heat exchangers 12 in the casing 10 , wherein the second group of heat exchangers 12 is arranged on the side of the first group of heat exchangers 11 . Between the first heat exchanger 111 and the second heat exchanger 112 , two sets of heat exchangers are enclosed into a heat exchange chamber 16 .
  • the arrow shown in FIG. 1 is the flow direction of the air flow when the air conditioner indoor unit 1 is running natural convection cooling.
  • the indoor air enters the casing from the air inlet 101 of the casing 10 10, and exchange heat with the first group of heat exchangers 11 and the second group of heat exchangers 12.
  • the temperature of the air decreases after heat exchange and becomes cold air for cooling.
  • the density of cold air is greater than that of air.
  • the cold air flows from the heat exchange chamber 16 to the air outlet 102 below, and finally from the air outlet 102 enters the room for cooling, and after the cold air flows out, a negative pressure is formed in the casing 10, and then the air continues to be drawn into the casing 10 from the air inlet 101, so far, a complete air cycle is completed.
  • the entire heat exchange process does not require the fan 15 to work, thereby avoiding the noise generated by the fan 15 under the condition of ensuring good heat exchange capacity.
  • a coordinate system with a first direction Z and a second direction Y perpendicular to each other is set in the space where the casing 10 is located, wherein the first direction is the direction of gravity, and the second direction is the direction of the casing 10 . width direction.
  • the connecting line between the upper end and the lower end of the third heat exchanger 121 is inclined relative to the first direction, which can be understood as the third fins 1214 of the third heat exchanger 121 are inclined relative to the first direction.
  • the connecting line between the upper end and the lower end of the fourth heat exchanger 122 is inclined relative to the first direction, which can be understood as the fourth fins 1224 are inclined relative to the first direction.
  • the first heat exchanger 111 , the third heat exchanger 121 , the fourth heat exchanger 122 and the second heat exchanger 112 are sequentially arranged in the casing 10 .
  • the upper end and the upper end of the third heat exchanger 121 are connected through the shell 10, and the upper end of the second heat exchanger 112 and the upper end of the fourth heat exchanger 122 are connected through the shell 10, so that the first heat exchanger
  • the heat exchanger 111 and the third heat exchanger 121 enclose the heat exchange chamber 16
  • the fourth heat exchanger 122 and the second heat exchanger 112 enclose the heat exchange chamber 16 .
  • the heat exchanger 122 is disposed in the casing 10 obliquely with respect to the first direction.
  • the heat exchange area between the air and the heat exchanger is increased in a limited space, thereby increasing the heat exchange area between the air and the heat exchanger.
  • the output capacity of the air-conditioning indoor unit 1 is improved, and the heat exchange efficiency of the air-conditioning indoor unit 1 is improved, so as to reach the user's set temperature as soon as possible, thereby improving the user's comfort.
  • air inlets 101 are provided on at least two surfaces of the casing 10 of the air conditioner indoor unit 1 , and air enters the casing 10 from multiple directions at the same time, thereby effectively improving the air conditioner indoor unit 1 . Cooling efficiency when using natural convection cooling.
  • the number of the second group of heat exchangers 12 is at least two groups, and the upper ends of the adjacent two groups of the second group of heat exchangers 12 are connected to each other. , the lower ends of the adjacent two groups of the second group of heat exchangers 12 are arranged away from each other.
  • At least two sets of second heat exchangers 12 are arranged between the first heat exchanger 111 and the second heat exchanger 112 , which is further increased by arranging multiple sets of heat exchangers.
  • the heat exchange area is increased, and the cooling capacity is increased, and the cooling demand can be satisfied, the noise can be reduced, and the user experience can be improved without turning on the fan 15 .
  • the number of the second group of heat exchangers 12 is one group, and in the section perpendicular to the third direction, the second group of heat exchangers
  • the cross-sectional shape of the heat exchanger 12 is V-shaped, and the cross-sectional shape composed of the first group of heat exchangers 11 and the second group of heat exchangers 12 is M-shaped; wherein, the third direction is perpendicular to the first direction and the second direction.
  • a third direction X perpendicular to the first direction and the second direction is set in the space where the casing 10 is located, and the third direction is the length direction of the casing 10 .
  • the cross-sectional shape of the second group of heat exchangers 12 is V-shaped
  • the cross-sectional shape of the first group of heat exchangers 11 and the second group of heat exchangers 12 is M-shaped
  • the M-shaped cross-sectional shape is The downward opening faces the air outlet 102, and the air entering from at least two directions can directly exchange heat with the first set of heat exchangers 11 and the second set of heat exchangers 12, compared to using a single heat exchange plane and a single direction
  • the way of air intake heat exchange greatly improves the heat exchange efficiency.
  • the distance from the lower end of the second group of heat exchangers 12 to the plane where the air outlet 102 is located is equal to the distance between the lower end of the first group of heat exchangers 11 and the plane where the air outlet 102 is located ; or the distance from the lower end of the second group of heat exchangers 12 to the plane where the air outlet 102 is located is greater than the distance between the lower end of the first group of heat exchangers 11 and the plane where the air outlet 102 is located.
  • the heat exchange area is increased, and on the other hand, the lower end of the first group of heat exchangers 11 and the lower end of the second group of heat exchangers 12 are at the same height or closer to the air outlet 102, which plays a role in guiding the flow.
  • the first heat exchanger 111 is inclined relative to the first direction
  • the second heat exchanger 112 is inclined relative to the first direction set up.
  • first heat exchanger 111 and the second heat exchanger 112 are disposed obliquely with respect to the first direction, that is, in a section perpendicular to the third direction, the first heat exchanger 111 and the third heat exchanger
  • the cross-sectional shape of 121 is combined into an inverted V shape
  • the cross-sectional shapes of the fourth heat exchanger 122 and the second heat exchanger 112 are combined into an inverted V shape.
  • the heat exchange area is further increased, thereby increasing the The air volume of natural convection is increased, and the heat exchange capacity and heat exchange efficiency of natural convection are improved.
  • the distance between the first heat exchanger 111 and the second heat exchanger 112 gradually increases.
  • the four heat exchangers together form an M-shaped arrangement, so that there are four heat exchangers that can be used for cooling in the housing 10 of the air conditioner indoor unit 1 , and all the four heat exchangers are It is installed in the housing 10 obliquely.
  • Air inlets 101 are provided on at least two walls of the housing 10 of the air conditioner indoor unit 1. Air enters the housing 10 from multiple directions at the same time, and the air entering from at least two directions can directly interact with the first set of heat exchangers. 11 and the second set of heat exchangers 12 perform heat exchange, thereby effectively improving the cooling efficiency of the air conditioner indoor unit 1 when using natural convection for cooling, and using natural convection to achieve cooling effect during operation with less noise.
  • the first heat exchanger 111 and the second heat exchanger 112 are arranged in parallel with respect to the first direction.
  • the first heat exchanger 111 and the second heat exchanger 112 are vertically arranged in the casing 10, and the heat exchange chamber 16 is enclosed with the second group of heat exchangers 12, within a limited space
  • the heat exchange area between the air and the heat exchanger is increased, thereby improving the output capacity of the air conditioner indoor unit 1, and improving the heat exchange efficiency of the air conditioner indoor unit 1, so as to reach the user's set temperature as soon as possible, thereby improving the user's use. comfort.
  • the air conditioner indoor unit 1 further includes: a fifth heat exchanger 131;
  • the fifth heat exchanger 131 is arranged below the first heat exchanger 111, and the upper end of the fifth heat exchanger 131 is connected to the lower end of the first heat exchanger 111; the sixth heat exchanger 132, the sixth heat exchanger
  • the heat exchanger 132 is arranged below the second heat exchanger 112 , and the upper end of the sixth heat exchanger 132 is connected to the lower end of the second heat exchanger 112 .
  • the fifth heat exchanger 131 and the sixth heat exchanger 132 are respectively arranged below the end of the first heat exchanger 111 facing the air outlet 102 and below the end of the second heat exchanger 112 facing the air outlet 102 .
  • the indoor unit provided by the present application can effectively utilize the internal space of the casing 10 by arranging the second set of heat exchangers 12 in the casing 10 obliquely, thereby reducing the size of the first set of heat exchangers 11 and the second set of heat exchangers.
  • the space occupied by the heat exchanger 12 in the vertical direction can be further provided with a fifth heat exchanger 131 and a sixth heat exchanger 132, thereby increasing the heat exchange area of the heat exchanger of the indoor unit, thereby increasing the The air intake air volume after heat exchange can meet the demand for cooling capacity during natural convection air intake.
  • the included angle between the line connecting the geometric centers of the plurality of heat exchange tubes of the fifth heat exchanger 131 and the first direction is the third included angle ⁇ 3.
  • the angle between the connection line defining the geometric centers of the plurality of heat exchange tubes of the sixth heat exchanger 132 and the first direction is the fourth angle ⁇ 4 , and the third angle is reasonably set according to the space in the shell 10 .
  • the value range of ⁇ 3 and the fourth included angle ⁇ 4 realizes the reasonable setting of the installation positions of the fifth heat exchanger 131 and the sixth heat exchanger 132, thereby improving the utilization rate of the inner space of the shell 10, so that the Under the condition that the body 10 is compact, it can provide a large heat exchange capacity and improve the energy efficiency of the air conditioner.
  • the first heat exchanger 111 includes a plurality of first fins 1112 and a plurality of first heat exchange tubes 1110 , and the plurality of first heat exchange tubes 1110 are Single row arrangement, a plurality of first fins 1112 are sleeved on the first heat exchange tube 1110;
  • the second heat exchanger 112 includes a plurality of second fins 1124 and a plurality of second heat exchange tubes 1122, a plurality of The second heat exchange tubes 1122 are arranged in a single row, and a plurality of second fins 1124 are sleeved on the second heat exchange tubes 1122;
  • the third heat exchanger 121 includes a plurality of third fins 1214 and a plurality of third heat exchangers The heat pipes 1212 and the plurality of third heat exchange pipes 1212 are arranged in a single row, and the plurality of third fins 1214 are sleeved on the third heat exchange pipes 1212; the fourth heat
  • the first heat exchanger 111, the second heat exchanger 112, the third heat exchanger 121 and the fourth heat exchanger 122, the fifth heat exchanger 131 and the sixth heat exchanger 132 all include multiple a plurality of heat exchange tubes, and a plurality of fins are sleeved on the plurality of heat exchange tubes; further, any of the plurality of heat exchange tubes are arranged in a single row, and by arranging in a single row, the volume, which can improve space utilization while ensuring heat exchange.
  • the sum of the number of heat exchange tubes in the first group of heat exchangers 11 and the number of heat exchange tubes in the fifth heat exchanger 131 and the sixth heat exchanger 132 is greater than that of the second group of heat exchangers 12 Number of heat exchange tubes. It can prevent that the distance between the two adjacent jet nozzles 142 is too large to cause the jet to impact the two side walls of the air outlet 102 , thereby affecting the performance of the air conditioner indoor unit 1 .
  • the specific experimental effect comparison is shown in Fig. 17 and Fig. 18, wherein, as shown in Fig. 17, the fifth heat exchanger 131 and the sixth heat exchanger 132 each have two vertical tubes, and the unit in the natural convection mode is The volume cooling capacity is 11168W/m 3 , as shown in FIG. 18 , there are four vertical tubes on each side of the fifth heat exchanger 131 and the sixth heat exchanger 132 , and the unit volume cooling capacity in natural convection mode is 12782W /m 3 .
  • the number of heat exchange tubes of the fifth heat exchanger 131 and the sixth heat exchanger 132 is greater than or equal to two.
  • the ratio of the fin pitch of two adjacent fins in the first group of heat exchangers 11 to the fin width of a single fin ranges from 0.1 to 0.45;
  • the ratio of the fin pitch of two adjacent fins to the fin width of a single fin ranges from 0.1 to 0.45;
  • the value of the ratio to the fin width of a single fin ranges from 0.1 to 0.45.
  • the air conditioner indoor unit 1 further includes: a jet nozzle 142 arranged on the Between two adjacent heat exchangers in the first group of heat exchangers 11 and the second group of heat exchangers 12, the jet nozzle 142 and the adjacent two heat exchangers are enclosed into a heat exchange chamber 16, and the heat exchange chamber The chamber 16 communicates with the air outlet 102 .
  • the air conditioner indoor unit 1 uses a combination of natural convection and active jet flow for cooling.
  • the jet nozzle 142 is located between the upper ends of two adjacent heat exchangers, the two adjacent heat exchangers are installed in the shell, and the upper ends of the two adjacent heat exchangers pass through the shell After the body is fixed, the two adjacent heat exchangers and the jet nozzles 142 together form a heat exchange chamber 16 .
  • the air enters the casing 10 from the air inlet 101 , passes through the first group of heat exchangers 11 and the second group of heat exchangers 12 for heat exchange, enters the heat exchange chamber 16 , and then enters the room through the air outlet 102 .
  • the air flow is introduced through the jet nozzle 142 to induce more air to pass through the first group of heat exchangers 11 and the second group of heat exchangers 12 into the heat exchange chamber 16, and perform heat exchange to achieve active cooling. wind.
  • the arrow shown in FIG. 3 is the flow direction of the air flow when the air conditioner indoor unit 1 is running fast cooling, the jet nozzle 142 ejects the air into the heat exchange chamber 16, and then flows out from the air outlet 102, at this time
  • the cool air flowing out of the air outlet 102 is a mixed airflow of the air provided by the jet nozzle 142 and the cool air provided by natural convection.
  • the jet nozzle 142 ejects air, the negative pressure in the area enclosed between two adjacent heat exchangers is also increased, so that more airflow can flow into the air inlet 101 .
  • the arrangement of the jet nozzles 142 further increases the air volume of natural convection, so that the air flow into the room through the air outlet 102 includes two parts of air flow: self-heating convection by the air inlet 101 and jet flow by the jet nozzle 142, which greatly improves the air flow of the indoor unit. Heat transfer capacity and cooling efficiency.
  • the shape of the jet nozzle 142 can be a circular hole, a strip hole or a polygonal hole. Specifically, the shape of the jet nozzle 142 is not limited to this, and also includes other unlisted through holes of different shapes. And the number of the jet nozzles 142 is plural. Alternatively, the jet nozzle 142 has a structure of an elongated opening 1104 that is consistent along the extending direction of the jet air channel 144 . By arranging the jet nozzles 142, the jet velocity of the incoming airflow can be further adjusted, and then injected into the heat exchange chamber 16 through the jet nozzles 142, so as to achieve the effect of guiding the natural convection incoming airflow and accelerate the heat exchange. efficiency.
  • the airflow of the jet in the active jet drainage mode, can be pre-cooled, and then the cooling capacity of 784W can be provided by the jet, which is The drained return air can provide a cooling capacity of 1144W.
  • the air sent out from the air outlet 102 is composed of two parts, one part is the jet air, and the other part is the diverted air.
  • the effect of providing greater air volume and greater cooling capacity with a small amount of active air supply is achieved. Therefore, when the active air volume maintains the air volume of the traditional air conditioner, the energy efficiency of the air conditioner can be improved.
  • the air conditioner indoor unit 1 further includes: a jet air duct 144 , and the jet air duct 144 communicates with the jet nozzle 142 ; In the flow direction of the air duct, the cross-sectional area of the jet air duct 144 gradually decreases.
  • the injection speed of the incoming air flow can be adjusted, and then injected into the heat exchange chamber 16 through the jet nozzle 142, so as to realize the natural resistance to the air flow.
  • the airflow that flows into the wind acts as a diversion to improve the heat exchange efficiency.
  • the cross-sectional area of the jet air duct 144 gradually decreases, so that the air flow can maintain a relatively stable wind pressure during the conveying process, thereby making the air flow from the jet flow.
  • the air flow out of the nozzle 142 is more uniform.
  • a fan 15 is also included, and the air supply port of the fan 15 is communicated with the jet air duct 144 to realize active air supply through the jet nozzle 142 .
  • the air sent out from the air outlet 102 is composed of two parts, one part is the jet air, and the other part is the diverted air.
  • the cross-sectional area of the air inlet end of the jet air duct 144 is taken as the first area
  • the cross-sectional area of the end of the jet air duct 144 is taken as the second area, wherein, the value of the second area is the first area.
  • 10% to 80% of the area by adjusting the tapering amplitude of the jet air duct 144, a reasonable structure can be set in combination with the overall structure of the air conditioner indoor unit 1, the heat exchange area of the heat exchanger, and the size of the heat exchange chamber 16. , in order to achieve the best air outlet speed and air volume, and improve the output capacity and comfort of the whole machine.
  • the port area of the air inlet end of the overall jet nozzle 142 is the third area
  • the flow area of the outlet end of all the jet nozzles 142 is the fourth area
  • the value of the fourth area is 50% to 95% of the third area
  • FIGS. 22 and 23 are the experimental effect diagrams of the jet air duct 144 and the jet nozzle 142 using the above structure, wherein, FIG. 22 shows the effect diagram of the jet flow along the length direction of the jet air duct 144, The spray speed is relatively uniform.
  • FIG. 23 shows the effect diagram of the sub-velocity of the jet along the length of the jet air channel 144, and the sub-velocity is small and uniform.
  • the jet nozzles 142 adopt elongated slits arranged along the length of the air duct instead of the structure of multiple jet nozzles 142 set in the present application.
  • Fig. 24 shows the effect diagram of the jet velocity along the length of the air duct, and the jet velocity is not uniform.
  • Figure 25 shows the effect of the partial velocity of the jet along the length of the air duct. The partial velocity is large and uneven.
  • the present application adopts the jet air duct 144 and the jet nozzle 142 , and the jetted air flows in a substantially vertical downward direction into the heat exchange chamber 16 , which corresponds to the air outlet 102 .
  • the jet nozzle 142 adopts a slit structure, and the flow direction of the air jetted through the entire slit is affected by the sub-velocity, and the overall flow direction is inclined forward, which further affects the flow direction of the air flow to the diversion direction. Influence, the air outlet area deviates from the air outlet 102 to affect the air outlet effect.
  • the structure adopted in the present application can realize the uniformity of the air outlet volume of the jet nozzle 142 and eliminate the partial velocity of the outlet air along the length direction of the jet air duct 144 .
  • the housing 10 includes: an air inlet cover 110 , and the air inlet 101 is opened in the air inlet cover 110
  • the base 120, the air inlet cover 110 is arranged on the base 120, and the air outlet 102 is opened on the base 120.
  • the housing 10 includes an air inlet cover 110 and a base 120 , the air inlet 101 is opened on the air inlet cover 110 , and the air outlet 102 is located on the base 120 .
  • the first group of heat exchangers 11 and the second group of heat exchangers 12 are arranged in the installation cavity enclosed by the air inlet cover 110 and the base 120, and the air flows from the air inlet 101 into the first group of heat exchangers 11 and the second group of heat exchangers.
  • the heat exchanger 12 enters the room through the air outlet 102 after heat exchange.
  • the housing 10 further includes: a support plate 130 , the support plate 130 is arranged between the base 120 and the air inlet cover 110 , and along the third direction, the support plate 130 is located in the air inlet cover
  • the two ends of the second group of heat exchangers 12 are respectively connected with the support plates 130 on both sides, and some of the first group of heat exchangers 11 are in contact with the support plates 130 and the air inlet cover 110 .
  • a support plate 130 is provided between the air inlet cover 110 and the base 120, wherein the two ends of the second group of heat exchangers 12 are fixed by the support plates 130; the first The two ends of the heat exchangers 11 are clamped and fixed by the support plates 130 and the air inlet cover 110, thereby realizing the installation and fixation of the heat exchangers. fixed installation of the device.
  • the heat exchange chamber 16 in the casing 10 can also be divided by the support plate 130 , and the heat exchange chamber 16 can be divided into the first cavity 18 and the second cavity 20 by the support plate 130 , and the first cavity 18 is provided with a first cavity 18 .
  • the second group of heat exchangers 12 and part of the first group of heat exchangers 11, part of the first group of heat exchangers 11 are located in the second cavity 20, the pre-cooling jets enter the air, and the air flow of the jets enters the air through the air inlet 101.
  • the first group of heat exchangers 11 enter the first cavity 18 after heat exchange and precooling, enter the first cavity 18 through the jet air duct 144 and the jet nozzle 142 , and then enter the indoor environment through the air outlet 102 .
  • the arrangement of the support plate 130 realizes the separation of the jet air inlet and the active air inlet flow channel, thereby realizing the improvement of heat exchange efficiency and heat exchange.
  • the air inlet hood 110 includes: an installation groove 1102 , which is arranged on the top wall of the air inlet hood 110 , an opening 1104 is provided at the bottom of the installation groove 1102 , and the jet nozzle 142 is arranged at the opening 1104 ; The upper ends of the two heat exchangers located on both sides of the jet nozzle 142 are in contact with the groove walls on both sides of the opening 1104 .
  • the top of the air inlet cover 110 is provided with an installation groove 1102, and the bottom of the installation groove 1102 has an opening 1104;
  • the installation of the jet air duct 144 is realized by setting the installation groove 1102, and the jet air duct 144 is installed in the installation In the groove 1102, the jet nozzle 142 corresponds to the opening 1104, and the jet nozzle 142 can extend out of the opening 1104 and enter the heat exchange chamber 16; the groove walls of the heat exchanger openings 1104 located on both sides of the jet nozzle 142 are in contact with The jet nozzles 142 are enclosed into a closed heat exchange chamber 16, thereby increasing the heat exchange heat and heat exchange efficiency of the airflow and avoiding the backflow of the airflow.
  • the air inlet 101 includes a jet air inlet 1011 and a main air inlet 1012 .
  • the jet air inlet 1011 is communicated with the jet nozzle 142, and the main air inlet 1012 is communicated with the heat exchange chamber 16 through the first group of heat exchangers 11 and the second group of heat exchangers 12; the jet air inlet 1011 is opened in the air inlet hood 110 sidewalls.
  • the main air inlet 1012 can be opened on the opposite side walls of the air inlet cover 110 along the second direction, the main air inlet 1012 can also be opened on the side wall of the air inlet cover 110 along the third direction, or opened in the air inlet cover.
  • a main air inlet 1012 is provided on the top wall of 110, or on the above-mentioned side walls and top walls at the same time.
  • the support plate 130 divides the air inlet 101 into a jet air inlet 1011 and a main air inlet 1012, the jet air inlet 1011 is communicated with the jet air duct 144, the air enters through the jet air inlet 1011, and passes through the first group of air inlets.
  • the heat exchanger 11 enters the jet air duct 144, enters the heat exchange chamber 16 from the jet nozzle 142, and then enters the room from the air outlet 102; part of the air main air inlet 1012 passes through part of the first group of heat exchangers 11 and the second group of heat exchangers 11.
  • the heat exchanger 12 enters the heat exchange chamber 16 after exchanging heat, and then enters the room through the air outlet 102 .
  • the jet air inlets 1011 are arranged on both sides of the air inlet cover 110 so that the airflow passes through the first group of heat exchangers 11 for heat exchange and then enters the jet air duct 144 ; the main air inlet 1012 is arranged on the air inlet cover 110 At least one of the side walls of the air inlet cover body 110 along the third direction and the top wall of the air inlet cover body 110 is also provided with a main air inlet 1012, thereby realizing multi-sided air intake,
  • the second group of heat exchangers 12 located in the middle part can also be fully utilized for heat exchange, thereby greatly improving the heat exchange and heat exchange efficiency. When users choose active air intake, they can quickly realize the cooling demand.
  • a flow guide structure 22 the flow guide structure 22 is arranged at the lower end of the second group of heat exchangers 12 ; the flow guide structure 22 includes a first The flow guide surface 222 and the second flow guide surface 224 , the first flow guide surface 222 and the second flow guide surface 224 are symmetrical with respect to the center line of the lower end of the second group of heat exchangers 12 .
  • the air conditioner indoor unit 1 is further provided with a flow guide structure 22, and the flow guide structure 22 is arranged on the side of the second group of heat exchangers 12 facing the air outlet 102.
  • the flow guide structure 22 has a symmetrical arrangement.
  • the first air guide surface 222 and the second air guide surface 224 are arranged so that the air guide structure 22 can divert the jets on both sides of the air guide structure 22, so that the air flow can flow out from the air outlet 102 smoothly, which further improves the cooling of the air conditioner indoor unit 1. performance and operational stability.
  • both the first guide surface 222 and the second guide surface 224 may be configured as curved surfaces or planes.
  • the number of the air outlet 102 is one
  • the projection of the air guide structure 22 along the first direction is located in the air outlet 102
  • the first air guide surface 222 is disposed facing the first heat exchanger 111 , and protrudes toward the side of the first heat exchanger 111
  • the second guide surface 224 is disposed facing the second heat exchanger 112 and protrudes toward the side of the second heat exchanger 112 .
  • an air outlet 102 is provided on the base 120, and an air outlet 102 is communicated with the heat exchange chamber 16 enclosed by the first group of heat exchangers 11 and the second group of heat exchangers 12, and conducts flow.
  • the structure 22 is arranged in a fluid shape.
  • the first guide surface 222 and the second guide surface 224 are arc-shaped and both protrude to the outside, thereby realizing that when the jet nozzle 142 is ejected During the jet flow, the air flow flows to the air outlet 102 along the outer wall of the guide structure 22, and under the influence of the Condall effect, the jet flow can smoothly flow out from the air outlet 102 without touching the walls on both sides of the air outlet 102, which further improves the air conditioning. Refrigeration performance and operation stability of the indoor unit 1.
  • the number of air outlets 102 is multiple, the projection of the air guide structure 22 along the first direction is located between two adjacent air outlets 102 , and the first air guide surface 222 faces the first heat exchange
  • the heat exchanger 111 is arranged and recessed toward the side of the second heat exchanger 112
  • the second flow guide surface 224 is arranged toward the side of the second heat exchanger 112 and recessed toward the side of the first heat exchanger 111 .
  • a plurality of air outlets 102 are provided, and the heat exchange chamber 16 enclosed by two adjacent heat exchangers and the jet nozzles 142 has one air outlet 102 correspondingly.
  • the second guide surfaces 224 are set in a concave shape, which can further realize the guide effect on the airflow, so that the airflow of each heat exchange chamber 16 can smoothly enter the room from the air outlet 102 .
  • the first group of heat exchangers 11 and The second group of heat exchangers 12 are all arranged axially symmetrically, and the axis of symmetry of the axially symmetrical arrangement extends along the first direction.
  • the first group of heat exchangers 11 and the second group of heat exchangers 12 are symmetrically arranged along the first direction, so that the first group of heat exchangers 11 and the second group of heat exchangers 12 can be used in a limited space
  • the heat exchange area is increased inside, so that the air completely passes through the heat exchanger for heat exchange and then flows out from the air outlet 102 .
  • the value range of the inclination angle ⁇ 2 of the third fins 1214 relative to the first direction is 0° to 45°; the inclination angle ⁇ 5 of the fourth fins 1224 relative to the first direction Values range from 0° to 45°.
  • the first group of heat exchangers 11 and the second group of heat exchangers 12 can be reasonably arranged according to the volume in the casing 10 to maximize the heat exchange area of the indoor unit, and it is beneficial to ensure that the air flow is arranged obliquely.
  • the third heat exchanger 121 and the fourth heat exchanger 122 have a good sinking effect, and at the same time, the condensed water on the third heat exchanger 121 and the fourth heat exchanger 122 can flow to the bottom along the inclined fins In the water receiving tray corresponding to the end of the air conditioner, the condensed water is prevented from dripping into the room from the air outlet 102 and causing environmental pollution, thereby improving the reliability and cleanliness of the product in the case of improving the heat exchange capacity of the air conditioner indoor unit 1 .
  • the air inlet 101 is higher than the lower end of the first group of heat exchangers 11 .
  • the airflow entering the interior of the shell 10 through the air inlet 101 passes through the first group of heat exchangers 11 and the second group of heat exchangers 11 .
  • the heat exchanger 12 can enter the heat exchange chamber 16 only after the heat exchanger 12 can enter the heat exchange chamber 16 without passing through the first set of heat exchangers 11 to cause return air and reduce the heat exchange capacity, thereby ensuring good heat exchange capacity.
  • the height of the air inlet located on the side wall of the casing 10 is Hin
  • the overall height of the heat exchanger group is H13
  • H13 is greater than Hin
  • the height of the heat exchanger group is H13.
  • the upper end is higher than the upper end of the air inlet
  • the lower end of the air inlet is higher than the lower end of the heat exchanger group.
  • the number of air outlets 102 is 1 ;
  • the value of the ratio ranges from 0.1 to 0.7.
  • the range of the ratio is 0.1 to 0.7, which is beneficial to The strength of natural convection is maintained, so that the jet angle of the jet nozzle 142 can better match the size of the air outlet 102, so that the jet area can match the size of the air outlet 102, which is beneficial to improve the jet performance and ensure good heat transfer capacity.
  • the space in the casing 10 is maximized, and the area other than the jet nozzle 142 in the width direction of the air-conditioning indoor unit 1 is Heat exchangers are installed.
  • the space occupancy rate of the heat exchanger inside the shell 10 is greatly improved, and the contact area between the air and the heat exchanger is increased in a limited space, thereby effectively improving the heat exchange efficiency of the air conditioner indoor unit 1 when using natural convection. .
  • this arrangement is beneficial to reduce the gaps between the first group of heat exchangers 11, the second group of heat exchangers 12 and the jet nozzles 142, so that the airflow flowing into the interior of the casing 10 through the first air inlet 101 is almost All heat exchanged through the first set of heat exchangers 11 and the second set of heat exchangers 12 flows out through the air outlet 102, which is beneficial to improve the heat exchange effect of the air conditioner indoor unit 1, reduce energy loss, and improve the energy efficiency of the air conditioner.
  • this arrangement is beneficial to reduce the gaps between the first group of heat exchangers 11, the second group of heat exchangers 12 and the jet nozzles 142, so that almost all the air flowing into the interior of the casing 10 through the air inlet 101 passes through the air inlet 101.
  • the first group of heat exchangers 11 and the second group of heat exchangers 12 flow out through the air outlet 102 after heat exchange, which is beneficial to improve the heat exchange effect of the air conditioner indoor unit 1, reduce energy loss, and improve the energy efficiency of the air conditioner.
  • the angle formed by the central axis of the jet nozzle 142 relative to the second direction extending from the third heat exchanger 121 to the first heat exchanger 111 is the first included angle ⁇ 1
  • the inclination angle of the third fin 1214 with respect to the first direction extending from the top to the bottom of the housing 10 is the second included angle ⁇ 2
  • the value range of the first included angle ⁇ 1 is : greater than or equal to 90° minus the second angle, and less than or equal to 90°.
  • the relationship between the first included angle ⁇ 1 and the second included angle ⁇ 2 satisfies: 90°- ⁇ 2 ⁇ 1 ⁇ 90°.
  • the first included angle is too small, that is, the first included angle ⁇ 90°-the second included angle
  • the ejected jet will impact the wall surface of the air outlet 102 close to the first heat exchanger 111, so that the ejected jet cannot be smoothly
  • the air-conditioning indoor unit 1 is discharged, which reduces the operation effect of the air-conditioning indoor unit 1 , and the long-term impact will also cause structural damage and noise problems to the air-conditioning indoor unit 1 . Therefore, setting the size of the first included angle within a reasonable range is beneficial to improve the performance of the air-conditioning indoor unit 1 and its stability during operation.
  • the size of the jet angle ⁇ can be reasonably limited, so that the jet angle ⁇ matches the air outlet 102, which is beneficial to improve the jet performance. And ensure good heat exchange capacity.
  • the jet angle ⁇ refers to the angle between the boundary of the jet and the centerline of the jet.
  • the width of the casing 10 is defined as the first width W 1
  • the width of the air outlet 102 is the second width W 2
  • two adjacent jets The distance between the center points of the nozzles 142 is the third width W 3 ; along the first direction, the distance between the outlet end face of the jet nozzle 142 and the plane where the air outlet 102 is located is the first height H, and the jet angle ⁇ of the jet nozzle 142 tan( ⁇ /2)>0.5 ⁇ (W 2 -W 3 )/H is satisfied with the size of the shell, so as to achieve the best jet effect.
  • the ratio of the distance between the center points of two adjacent jet nozzles 142 to the width of the air outlet 102 ranges from 0.5 to 2.
  • the condensed water can be effectively prevented from backflow at the air outlet 102 .
  • the airflow ejected by the jet nozzle 142 is effectively prevented from hitting the walls on both sides of the air outlet 102, which reduces the noise of equipment operation, improves the user's comfort, and enhances the operation stability and use of the air conditioner indoor unit 1. longevity and reduced maintenance costs.
  • the jet angle ⁇ of the jet nozzle 142 is within a reasonable range.
  • Figures 19 to 21 show the effects of different jet angles ⁇ on the airflow direction. Among them, as shown in FIG. 20, the jet angle ⁇ is too small, so that the jet area cannot cover the air outlet 102, and the wall surface of the casing 10 around the air outlet 102 will produce condensed water due to the backflow of the air outside the casing 10, which affects normal use. (The position indicated by the circle in Figure 20). As shown in FIG. 21 , if the jet angle ⁇ is too large, and the jet coverage area is too large to cover the air outlet 102 , more jets will impact the walls on both sides of the air outlet 102 to cause performance degradation (the circle in FIG. 21 ). location). As shown in Figure 19, the jet angle ⁇ is within a reasonable range, and the jet area matches the width of the air outlet 102, thereby improving the reliability of product use while ensuring that the jet has good heat exchange performance.
  • 0.1 ⁇ W 2 /H ⁇ 0.7 through the above parameter setting, it is beneficial to maintain the strength of natural convection, so that the jet angle ⁇ can better match the size of the air outlet 102, so that the jet area can be matched with the outlet.
  • the size of the tuyere 102 is consistent, which is beneficial to improve the jet performance and ensure a good heat exchange capacity.
  • the air conditioner indoor unit 1 further includes: a Coanda effect element 32 , and the Coanda effect element 32 is arranged below the jet nozzle 142 along the first direction. Wherein, the cross section is taken along the first direction, and on the obtained cross section, the Coanda effect element 32 is symmetrical about the center line of the jet nozzle 142 .
  • the Coanda effect element 32 is provided at the position where the jet nozzle 142 ejects air.
  • the Coanda effect element 32 is symmetrical about the center line of the jet nozzle 142.
  • the heat exchange effect of the air conditioner indoor unit 1 is further improved, and in the process of increasing the wind speed, no electrical components for active speed increase are used, which reduces the energy consumption of the air conditioner indoor unit 1 .
  • the Coanda effect element 32 is a cylinder.
  • the cross section is carried out perpendicular to the third direction, and on the obtained cross section, the center of the cylinder is located on the center line of the jet nozzle 142; the width of the jet nozzle 142 is the fourth width W 4 ; the center of the cylinder reaches the jet nozzle 142 The distance is the first distance D1.
  • the radius R of the cross-sectional circle of the Coanda effect element 32 is 0.2 ⁇ W 4 ⁇ R ⁇ 3 ⁇ W 4 .
  • the Coanda effect element 32 is an elliptical cylinder.
  • the cross section is taken along the first direction.
  • the focus of the ellipse body is located on the center line of the jet nozzle 142
  • the width of the jet nozzle 142 is the fourth width W 4
  • the ellipse center of the elliptical cylinder reaches the jet nozzle 142
  • the distance is the second distance D2.
  • the center of the ellipse refers to the midpoint of the line connecting the two foci of the ellipse.
  • the long-axis radius of the cross-sectional ellipse of the elliptical cylinder is A 1
  • the short-axis radius is B 1
  • the value range of A 1 is 0.2 ⁇ D2 ⁇ A 1 ⁇ 0.95 ⁇ D2
  • Fig. 19 is an effect diagram of the airflow flow rate without the Coanda effect element 32
  • Fig. 28 is an effect diagram of the flow rate after the Coanda effect element 32 is added. Comparing the two, it can be seen that the total cooling The cooling capacity increased from 1928.5W to 2015.6W, and the cooling capacity of the ejected air increased from 1144.4W to 1232.3W. Therefore, by adding the Coanda effect element 32, the technical effect of increasing the intake air volume and the intake air speed and improving the heat exchange efficiency can be better achieved.
  • the air conditioner indoor unit 1 further includes: a first water receiving tray 24 , a second water receiving tray 26 , a third water receiving tray
  • the water tray 28 , the first water tray 24 , the second water tray 26 , and the third water tray 28 are all disposed in the housing 10 .
  • the first water receiving pan 24 is located below the end of the fifth heat exchanger 131 facing the air outlet 102 , and is used for receiving or accommodating the condensed water generated by the first heat exchanger 111 and the fifth heat exchanger 131 .
  • the second water receiving pan 26 is located below the end of the sixth heat exchanger 132 facing the air outlet 102 , and is used for receiving or accommodating the condensed water of the second heat exchanger 112 and the sixth heat exchanger 132 .
  • the third water receiving pan 28 is located below the end of the second group of heat exchangers 12 facing the air outlet 102 , and is used for receiving condensed water generated by the second group of heat exchangers 12 .
  • the condensed water generated by the first heat exchanger 111, the second heat exchanger 112, the third heat exchanger 121, the fourth heat exchanger 122, the fifth heat exchanger 131 and the sixth heat exchanger 132 is prevented from flowing into the room It affects the normal use of users and improves the reliability of product use.
  • first water receiving tray 24, the second water receiving tray 26, and the third water receiving tray 28 are all inclined relative to the length direction of the casing 10, and the angle between the water receiving surface and the length direction of the casing 10 is greater than or equal to 3 ° According to the space in the housing 10, by reasonably setting the range of the angle between the water-receiving surface of the water-receiving pan and the length direction of the housing 10, the condensed water can be smoothly discharged along the water-receiving pan, so that the condensed water in the water-receiving pan can be timely discharge, and further improve the reliability of product use.
  • the air conditioner indoor unit 1 further includes a fourth water receiving tray 30, the fourth water receiving tray 30 extends along the second direction, and two ends of the fourth water receiving tray 30 are connected to the first water receiving tray 24 and the second water receiving tray 26 is connected, the third water receiving tray 28 is connected with the fourth water receiving tray 30, and the fourth water receiving tray 30 is used to collect the water in the first water receiving tray 24, the second water receiving tray 26 and the third water receiving tray 28. Condensed water.
  • the number of the fourth water receiving trays 30 is two, which are located at two ends of the base 120 respectively.
  • the top of the housing 10 is also provided with an air inlet 101 ; the air inlet 101 located at the top exchanges heat with the second group
  • the heat exchangers 12 are arranged opposite to each other, and the air can enter the housing 10 through the air inlet 101 at the top of the housing 10, and then enter the heat exchange chamber 16 through the second set of heat exchangers 12 after heat exchange, and enter the room near the air outlet 102.
  • a groove structure 34 is provided on the top of the housing 10 , and the air inlet 101 at the top is opened on the groove wall of the groove structure 34 , so that the side wall of the groove structure 34 exchanges heat with the third
  • the inclination angles of the heat exchanger 121 and the fourth heat exchanger 122 are consistent, thereby reducing the distance between the shell 10 and the third heat exchanger 121 and the fourth heat exchanger 122, reducing the resistance loss of the intake air flow, and further The amount of heat exchanged air entering the heat exchange chamber 16 is increased, so that the air conditioner indoor unit 1 can meet higher heat exchange requirements.
  • the groove structure 34 on the top of the casing 10, and the air inlet 101 at the top is opened on the groove wall of the groove structure 34, the air intake from both sides can be realized, so that when the whole machine is installed, it can be close to the roof. installation, reducing the footprint.
  • one end of the casing 10 is provided with a fan 15, and the air supply port of the fan 15 is communicated with the jet air duct 144, the structure is simple, and the production cost is reduced.
  • the number of fans 15 is two, and the two fans 15 are located at two ends of the housing 10 respectively;
  • the air supply port of one of the fans 15 is communicated with the jet air duct 144 on one side, and the air supply port of the other fan 15 of the two fans 15 is communicated with the jet air duct 144 on the other side.
  • One of the fans 15 provides airflow to the jet air duct 144 on the same side, and the other fan 15 provides airflow to the jet air duct 144 on the same side.
  • two fans 15 are used to participate in the active jet flow, which further increases the total air volume provided by the jet nozzle 142, improves the cooling effect of the air conditioner indoor unit 1, and can realize independent control, which is beneficial to meet various cooling needs.
  • the air conditioner indoor unit 1 provided in this embodiment further includes: a casing 10 , a first group of heat exchangers 11 and a second group of heat exchangers
  • the heat exchanger 12 , the first group of heat exchangers 11 and the second group of heat exchangers 12 are disposed in the casing 10 obliquely.
  • the housing 10 includes an air inlet 101 and two air outlets 102, the first group of heat exchangers 11 includes a first heat exchanger 111 and a second heat exchanger 112, and the second group of heat exchangers 12 includes a third heat exchanger heat exchanger 121 and fourth heat exchanger 122.
  • the first heat exchanger 111 , the third heat exchanger 121 , the fourth heat exchanger 122 and the second heat exchanger 112 are disposed in the casing 10 in an inclined manner relative to the first direction of the casing 10 in sequence.
  • the cross-sectional shapes of the first heat exchanger 111 and the third heat exchanger 121 are combined into an inverted V-shape, and the opening 1104 of the inverted V-shape faces one air outlet 102; the fourth The cross-sectional shapes of the heat exchanger 122 and the second heat exchanger 112 are combined into an inverted V-shaped opening 1104 facing the other air outlet 102 .
  • the cross-sectional shape of the first group of heat exchangers 11 and the cross-sectional shape of the second group of heat exchangers 12 are integrally combined into an M-shape.
  • the air conditioner indoor unit 1 also includes: two fans 15 and two sets of jet structures, one fan 15 communicates with the jet air duct 144 on one side, and the other fan 15 communicates with the jet air duct 144 on the other side.
  • each air outlet 102 corresponds to a set of obliquely arranged heat exchangers and a jet, so that the air inlet can be controlled separately, or the two jet structures can be controlled simultaneously.
  • the purpose of the air conditioner is to expand the use mode of the air conditioner to meet the different needs of users, and to turn on a fan 15 alone can also achieve the purpose of reducing energy consumption.
  • the air conditioner indoor unit 1 further includes: a third group of heat exchangers 13 , wherein the third group of heat exchangers 13 includes a fifth heat exchanger 131 and a sixth heat exchanger 132 .
  • the third set of heat exchangers 13 is disposed in the casing 10
  • the fifth heat exchanger 131 is disposed below the end of the first heat exchanger 111 facing the air outlet 102
  • the sixth heat exchanger 132 is disposed in the second heat exchanger 112 toward the bottom of one end of the air outlet 102 .
  • the internal space of the casing 10 can be effectively utilized, and the first set of heat exchangers 11 and the second set of heat exchangers 12 can be reduced in size.
  • the space occupied by the set of heat exchangers 12 in the vertical direction can be further provided with a third set of heat exchangers 13, thereby increasing the heat exchange area of the heat exchanger of the air conditioner indoor unit 1, and further improving the heat exchange
  • the hot air intake air volume can meet the demand for cooling capacity during natural convection air intake.
  • an embodiment of the present application provides an air conditioner indoor unit 1 including: a casing 10 and a heat exchanger 40 .
  • the housing 10 includes an air inlet 101 and an air outlet 102.
  • the air outlet 102 is located at the bottom of the housing 10
  • the heat exchanger 40 is arranged in the housing, and the air flows to the heat exchanger 40 through the air inlet 101. After heat exchange, it flows out from the air outlet 102;
  • the heat exchanger 40 includes a plurality of heat exchange sections 402 arranged in a wave shape along the second direction, and a heat exchange area is formed between two adjacent heat exchange sections 402, along the second direction.
  • the directional heat exchanger 40 is sequentially provided with a first heat exchange area 404 and a second heat exchange area 406; wherein, from the top of the casing 10 to the bottom of the casing 10, the first heat exchange area 404 is along the second direction.
  • the width gradually increases, and the width of the second heat exchange zone 406 along the second direction gradually decreases; the first direction and the second direction are perpendicular, and the first direction is the direction of gravity.
  • the air conditioner indoor unit 1 is provided with a heat exchanger 40 in the casing 10 , and the heat exchanger 40 includes a plurality of heat exchange sections 402 arranged in a wave shape along the second direction. A heat exchange area is formed between the segments 402, and the first heat exchange area 404 and the second heat exchange area 406 are arranged adjacent to each other in sequence.
  • the air conditioner indoor unit 1 is performing natural convection cooling, the indoor air enters the casing 10 from the air inlet 101 of the casing 10, and exchanges heat with the heat exchange section 402, and the heat-exchanged air flows from the heat exchange area to the lower
  • the air outlet 102 finally enters the room from the air outlet 102 for cooling.
  • the first direction is the direction of gravity
  • the second direction is the width direction of the casing 10 .
  • the width of the first heat exchange area 404 in the second direction gradually increases, and the width of the second heat exchange area 406 in the second direction gradually decreases. That is, at least a part of the heat exchange section 402 is inclined with respect to the first direction.
  • the heat exchange area between the air and the heat exchanger 40 is increased in a limited space.
  • the output capacity of the air-conditioning indoor unit 1 is improved, and the heat exchange efficiency of the air-conditioning indoor unit 1 is improved, so as to reach the user's set temperature as soon as possible, thereby improving the user's comfort.
  • first heat exchange areas 404 and a plurality of second heat exchange areas 406 are formed between the plurality of heat exchange sections 402, and along the second direction, the first heat exchange areas 404 and the second heat exchange areas 406 are staggered distributed.
  • the utilization rate of the space in the casing is further improved, so that the volume of the casing 10 is improved.
  • it provides a large heat exchange capacity and improves the energy efficiency of the air conditioner.
  • the third direction is perpendicular to both the first direction and the second direction, and in the section perpendicular to the third direction, the cross-sectional shapes of the two adjacent heat exchange sections 402 are V-shaped or inverted.
  • the cross-sectional shape of the four heat exchange sections 402 arranged in sequence is M type.
  • the heat exchange section 402 disposed on the outermost side can be segmented.
  • the side close to the top of the casing 10 is inclined and disposed close to the outlet.
  • One side of the tuyere is arranged vertically, and the space in the casing 10 is further utilized to achieve the best heat exchange efficiency.
  • the implementation of the heat exchange section 402 is not limited to the above two ways, and can also take a bending shape as shown in FIG. 41 , thereby increasing the heat exchange area in a limited space, Then increase the heat exchange and improve the heat exchange efficiency.
  • the heat exchange section 402 adopts a trapezoidal structure, which further increases the heat exchange area of the heat exchanger, so as to increase the heat exchange area in a limited space and improve the heat exchange efficiency.
  • an air conditioner which includes the air conditioner indoor unit 1 in any of the above-mentioned embodiments, and therefore has all the beneficial effects of the air conditioner indoor unit 1, which will not be repeated here.
  • the air conditioner further includes a control system, the control system can obtain the working mode instruction of the air conditioner, and control the air conditioner indoor unit 1 to perform natural convection heat exchange, jet heat exchange (starting the fan), or self-heating convection heat exchange according to the working mode instruction. Heat and jet heat transfer work together to meet the different needs of users and maximize user comfort.
  • the air conditioner indoor unit 1 provided by the present application can be applied to multiple products such as household air conditioners, central air conditioners, commercial air curtains, and indoor terminals of commercial air conditioners.
  • the term “plurality” refers to two or more than two. Unless otherwise expressly defined, the orientation or positional relationship indicated by the terms “upper” and “lower” is based on the orientation described in the drawings. Or the positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the application; term “Connected”, “connected”, “installed”, “fixed”, etc. should be understood in a broad sense.
  • connection and “connected” can be fixed connections, detachable connections, or integral connections; It can be directly connected or indirectly connected through an intermediary.
  • connection can be fixed connections, detachable connections, or integral connections; It can be directly connected or indirectly connected through an intermediary.
  • description of the terms “one embodiment,” “some embodiments,” “a specific embodiment,” etc. means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in this application at least one embodiment or example of .
  • schematic representations of the above terms do not necessarily refer to the same embodiment or instance.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种空调室内机和空调器,其中,空调室内机(1)包括:壳体(10),壳体(10)包括第一进风口(101)和出风口(102);第一组换热器(11),第一组换热器(11)相对于壳体(10)的侧壁倾斜地设置于壳体(10)内;第二组换热器(12),第二组换热器(12)相对于壳体(10)的侧壁倾斜地设置于壳体(10)内;其中,第一组换热器(11)和第二组换热器(12)围合成换热腔室,换热腔室与出风口(102)相连通,第一组换热器(11)和第二组换热器(12)均与第一进风口(101)相连通。

Description

空调室内机和空调器
本申请要求于2020年12月11日提交中国专利局、申请号为“202011443255.7”、发明名称为“空调室内机和空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调设备技术领域,具体而言,涉及到一种空调室内机和一种空调器。
背景技术
相关技术中,空调运行过程中始终伴随风机运行,风机噪音的问题有待改善。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种空调室内机。
本申请的第二方面提出了一种空调室内机。
本申请的第三方面提出了一种空调器。
有鉴于此,本申请的第一方面提出了一种空调室内机,包括:壳体,壳体包括进风口和出风口,沿第一方向,出风口位于壳体的底部;第一组换热器和第二组换热器,均设置于壳体内,空气经进风口流动至第一组换热器和第二组换热器进行热交换后,从出风口流出;第一组换热器包括:第一换热器和第二换热器;第二组换热器包括:第三换热器和第四换热器,第三换热器的上端部与下端部之间的连线相对于第一方向倾斜设置,第四换热器的上端部与下端部之间的连线相对于第一方向倾斜设置,第三换热器的下端部和第四换热器的下端部相连接,第三换热器的上端部远离第四换热器的上端部;其中,沿第二方向,第一换热器、第三换热器、第四换热器和第二换热器依次设置,第一换热器的上端部和第三换热器的上端部 相连接,第二换热器的上端部和第四换热器的上端部相连接,第二换热器的下端部远离第四换热器的下端部;第一方向和第二方向相垂直,第一方向为重力方向。
本申请提供的空调室内机在壳体内设置有第一组换热器及第二组换热器,其中,第二组换热器设置于第一组换热器的第一换热器和第二换热器之间,两组换热器围合成换热腔室。
当空调室内机在进行自然对流制冷时,室内的空气从壳体的进风口进入壳体,并与第一组换热器和第二组换热器进行换热。空气经过换热后温度降低,变为用于制冷的冷空气,同时冷空气密度比空气更大,在重力的作用下冷空气由换热腔室流向下方的出风口,最终从出风口进入室内进行制冷,冷空气流出后壳体内形成负压,进而继续吸引空气从进风口流入壳体,至此,完成一个完整的空气循环。通过自然对流的形式为室内的空气进行换热,整个换热过程无需风机工作,进而在保证良好的换热能力的情况下,避免了风机工作产生的噪音。
进一步地,在壳体所在的空间设置相互垂直的第一方向和第二方向的坐标系,其中,第一方向为重力方向,第二方向为壳体的宽度方向。将第三换热器的上端部与下端部之间的连线相对于第一方向倾斜设置,以及第四换热器的上端部与下端部之间的连线相对于第一方向倾斜设置,第三换热器的下端部和第四换热器的下端部相搭接。进一步地,沿第二方向,第一换热器、第三换热器、第四换热器和第二换热器依次设置,第一换热器的上端部和第三换热器的上端部相连接,第二换热器的上端部和第四换热器的上端部相连接,进而使得第一换热器和第三换热器围成换热腔室,第四换热器和第二换热器围成换热腔室,通过将第三换热器和第四换热器相对于第一方向倾斜地设置于壳体内,相比于水平或垂直设置换热器的方式,在有限的空间内增大了空气与换热器的换热面积,进而提升了空调室内机的输出能力,提高了空调室内机的换热效率,以尽快的到达用户的设定温度,进而提升用户使用的舒适性。
另外,本申请提供的上述技术方案中的空调室内机还可以具有如下附加技术特征:
在上述技术方案中,进一步地,第二组换热器的数量为至少两组,相邻两组第二组换热器的上端部之间相连接,相邻两组第二组换热器的下端部之间相互远离设置。
在上述任一技术方案中,进一步地,第二组换热器的数量为一组,沿垂直于第三方向的截面中,第二组换热器的截面形状为V型,第一组换热器和第二组换热器组成的截面形状为M型;其中,第三方向与第一方向和第二方向均相垂直。
在上述任一技术方案中,进一步地,沿壳体的第一方向,第二组换热器的下端部平齐于或高于第一组换热器的下端部。
在上述任一技术方案中,进一步地,第一换热器相对于第一方向倾斜设置,第二换热器相对于第一方向倾斜设置。
在上述任一技术方案中,进一步地,第一换热器和第二换热器相对第一方向平行设置。
在上述任一技术方案中,进一步地,还包括:第五换热器,第五换热器设置于第一换热器的下方,第五换热器的上端部与第一换热器的下端部相连接设置;第六换热器,第六换热器设置于第二换热器的下方,第六换热器的上端部与第二换热器的下端部相连接设置。
在上述任一技术方案中,进一步地,还包括:射流喷嘴,设置于第一组换热器和第二组换热器中相邻的两个换热器之间,射流喷嘴与相邻的两个换热器围合成换热腔室,换热腔室与出风口相连通。
在上述任一技术方案中,进一步地,还包括:射流风道,射流风道与射流喷嘴相连通;其中,沿风道的流动方向,射流风道的截面积逐渐减小。
在上述任一技术方案中,进一步地,壳体包括:进风罩体,进风口开设于进风罩体上;底座,进风罩体设置于底座上,出风口开设于底座上。
在上述任一技术方案中,进一步地,壳体还包括:支撑板,支撑板设置于底座和进风罩体之间,沿第三方向,支撑板位于进风罩体的两端;其中,第二组换热器的两端与两侧的支撑板分别连接,部分第一组换热器与支撑板和进风罩体相抵接。
在上述任一技术方案中,进一步地,进风罩体包括:安装槽,设置于进 风罩体的顶壁,安装槽的底部设置有开口,射流喷嘴设置于开口处;其中,位于射流喷嘴两侧的两个换热器的上端部与开口两侧的槽壁相抵接。
在上述任一技术方案中,进一步地,进风口包括射流进风口和主进风口;射流进风口与射流喷嘴相连通,主进风口经第一组换热器和第二组换热器与换热腔室相连通;射流进风口开设于进风罩体的侧壁;主进风口开设于进风罩体沿第二方向相对的两侧壁;以及主进风口开设于进风罩体沿第三方向的侧壁,和/或进风罩体的顶壁。
在上述任一技术方案中,进一步地,还包括:导流结构,导流结构设置于第二组换热器的下端部;导流结构包括第一导流面和第二导流面,第一导流面和第二导流面关于第二组换热器的下端部的中线对称。
在上述任一技术方案中,进一步地,出风口的数量为一个,导流结构沿第一方向的投影位于出风口内,第一导流面面向第一换热器设置,且朝向第一换热器一侧凸起,第二导流面面向第二换热器设置,且朝向第二换热器一侧凸起。
在上述任一技术方案中,进一步地,出风口的数量为多个,导流结构沿第一方向的投影位于相邻两个出风口之间,第一导流面面向第一换热器设置,且朝向第二换热器一侧凹陷,第二导流面面向第二换热器设置,且朝向第一换热器一侧凹陷。
在上述任一技术方案中,进一步地,第一换热器,包括多个第一翅片和多个第一换热管,多个第一换热管均呈单排设置,多个第一翅片套设于第一换热管上;第二换热器,包括多个第二翅片和多个第二换热管,多个第二换热管均呈单排设置,多个第二翅片套设于第二换热管上;第三换热器,包括多个第三翅片和多个第三换热管,多个第三换热管均呈单排设置,多个第三翅片套设于第三换热管上;第四换热器包括多个第四翅片和多个第四换热管,多个第四换热管呈单排设置,多个第四翅片套设于第四换热管上。
在上述任一技术方案中,进一步地,在垂直于第三方向的截面中,第一组换热器和第二组换热器均为轴对称设置,轴对称设置的对称轴沿第一方向延伸。
在上述任一技术方案中,进一步地,第三翅片相对于第一方向的倾斜角度的取值范围为0°至45°;第四翅片相对于第一方向的倾斜角度的取值范围为0°至45°。
在上述任一技术方案中,进一步地,沿壳体的第一方向,进风口高于第一组换热器的下端部。
在上述任一技术方案中,进一步地,出风口的数量为1个;出风口沿第二方向的宽度与射流喷嘴的端面至出风口所在平面之间的距离的比值的取值范围为0.1至0.7。
在上述任一技术方案中,进一步地,沿第二方向,相邻两个射流喷嘴的中心点之间的距离与出风口的宽度的比值的取值范围为0.5至2。
在上述任一技术方案中,进一步地,沿第一方向,向垂直于第一方向的平面进行投影,在得到投影面内,第一组换热器和第二组换热器的宽度之和等于壳体的宽度与射流喷嘴的宽度的差值。
在上述任一技术方案中,进一步地,射流喷嘴的中心轴线与壳体的第二方向的夹角为第一夹角,第三换热器相对于第一方向的倾斜角度为第二夹角,第一夹角的取值范围为大于或等于90°减去第二夹角的差值,且小于或等于90°。
在上述任一技术方案中,进一步地,还包括:康达效应元件,沿第一方向,康达效应元件设置于射流喷嘴的下方;其中,沿第一方向进行截面,在得到的截面上,康达效应元件关于射流喷嘴的中线对称。
根据本申请的第二方面,还提出了一种空调室内机,包括:壳体,壳体包括进风口和出风口,沿第一方向,出风口位于壳体的底部;换热器,设置于壳体内,空气经进风口流动至换热器进行热交换后,从出风口流出;换热器包括沿第二方向设置的多个换热段,相邻两个换热段之间形成有换热区,沿第二方向换热器依次设置有第一换热区和第二换热区;其中,从壳体的顶部至壳体的底部的方向,第一换热区沿第二方向的宽度逐渐增大,第二换热区沿第二方向的宽度逐渐减小;第一方向和第二方向相垂直,第一方向为重力方向。
在上述任一技术方案中,进一步地,多个换热段之间形成有多个第一 换热区和多个第二换热区,沿第二方向,第一换热区和第二换热区交错分布。
在上述任一技术方案中,进一步地,沿垂直于第三方向的截面中,相邻两个换热段的截面形状为V型或倒置的V型;依次设置的四个换热段的截面形状为M型;其中,第三方向与第一方向和第二方向均相垂直。
根据本申请的第三方面,还提出了一种空调器,包括上述任一技术方案的空调室内机。
本申请提供的空调器,因包括上述任一技术方案的空调室内机,因此具有该空调室内机的全部有益效果,在此不再赘述。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的第一个实施例的空调室内机的部分结构示意图;
图2示出了包括图1所示实施例的空调室内机的结构示意图;
图3示出了图2所示实施例的空调室内机的主动射流模式下的气流流动示意图;
图4示出了图2所示实施例的空调室内机中射流风道与射流喷嘴的结构示意图;
图5示出了图4所示实施例的空调室内机中射流风道与射流喷嘴的主视图;
图6示出了图4所示实施例的空调室内机中射流风道与射流喷嘴的仰视图;
图7示出了图1所示实施例的空调室内机另一角度的结构示意图;
图8示出了本申请的第二个实施例的空调室内机的结构示意图;
图9示出了本申请的第三个实施例的空调室内机的结构示意图;
图10示出了本申请的第四个实施例的空调室内机的结构示意图;
图11示出了本申请第五个实施例的空调室内机的结构示意图;
图12示出了图11所示实施例的空调室内机中另一个视角的结构示意 图;
图13示出了本申请第六个实施例的空调室内机的***示意图;
图14示出了图13所示实施例的空调室内机另一角度的结构示意图;
图15示出了图13所示实施例的空调室内机加入第三组换热器的结构示意图;
图16示出了图1所示实施例提供的全被动自然对流和主动送风射流情况下的换热能力效果图;
图17示出了本申请的一个实施例中第三组换热器采用两根直管的换热能力效果图;
图18示出了本申请的一个实施例中第三组换热器采用四根直管的换热能力效果图;
图19示出了图1所示实施例中射流角度θ的示意图;
图20示出了本申请的一个实施例中的射流气流分布示意图;
图21示出了本申请的再一个实施例中的射流气流分布示意图;
图22示出了本申请的一个实施例中沿射流风道送风方向上的速度效果图;
图23示出了本申请的一个实施例中沿射流喷嘴送风时分速度的效果图;
图24示出了射流喷嘴采用细长狭缝结构对应的速度的效果图;
图25示出了射流喷嘴采用细长狭缝结构对应的分速度的效果图;
图26示出了本申请的一个实施例中射流喷嘴喷气的气流流向示意图;
图27示出了射流喷嘴采用细长狭缝结构对应的喷气的气流流向示意图;
图28示出了本申请的一个实施例中使用康达效应元件的换热能力效果图;
图29示出了本申请又一个实施例的空调室内机的结构示意图;
图30示出了本申请又一个实施例的空调室内机的结构示意图;
图31示出了本申请又一个实施例的空调室内机的结构示意图;
图32示出了图31所示实施例的空调室内机的部分结构示意图;
图33示出了图31所示实施例的空调室内机的部分结构示意图;
图34示出了图31所示实施例的空调室内机的进风罩体结构示意图;
图35示出了图31所示实施例的空调室内机的射流喷嘴和射流风道的结构示意图;
图36示出了图31所示实施例的空调室内机的底座结构示意图;
图37示出了图31所示实施例的空调室内机的接水盘结构示意图;
图38示出了本申请又一个实施例的空调室内机的部分结构示意图;
图39示出了本申请又一个实施例的空调室内机的结构示意图;
图40示出了本申请又一个实施例的空调室内机的结构示意图;
图41示出了本申请又一个实施例的空调室内机的结构示意图;
图42示出了本申请又一个实施例的空调室内机的结构示意图。
其中,图1至图42中的附图标记与部件名称之间的对应关系为:
1空调室内机,10壳体,110进风罩体,1102安装槽,1104开口,120底座,130支撑板,101进风口,1011射流进风口,1012主进风口,102出风口,11第一组换热器,111第一换热器,1110第一换热管,1112第一翅片,112第二换热器,1122第二换热管,1124第二翅片,12第二组换热器,121第三换热器,1212第三换热管,1214第三翅片,122第四换热器,1222第四换热管,1224第四翅片,13第三组换热器,131第五换热器,1312第五换热管,1314第五翅片,132第六换热器,1322第六换热管,1324第六翅片,142射流喷嘴,144射流风道,15风机,16换热腔室,18第一腔体,20第二腔体,22导流结构,222第一导流面,224第二导流面,24第一接水盘,26第二接水盘,28第三接水盘,30第四接水盘,32康达效应元件,34凹槽结构;
40换热器,402换热段,404第一换热区,406第二换热区。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图42描述本申请提供的一些实施例的空调室内机1和空调器。
实施例一
如图1和图2所示,本申请的一个实施例提供了一种空调室内机1,包括:壳体10、第一组换热器11和第二组换热器12,第一组换热器11和第二组换热器12设置于壳体10内,壳体10包括进风口101和出风口102,沿第一方向,出风口102位于壳体10的底部;空气经进风口101流动至第一组换热器11和第二组换热器12进行热交换后,从出风口102流出。
第一组换热器11包括:第一换热器111和第二换热器112;第二组换热器12包括:第三换热器121和第四换热器122,第三换热器121的上端部与下端部之间的连线相对于第一方向倾斜设置,第四换热器122的上端部与下端部之间的连线相对于第一方向倾斜设置,第三换热器121的下端部和第四换热器122的下端部相连接,第三换热器121的上端部远离第四换热器122的上端部;其中,沿第二方向,第一换热器111、第三换热器121、第四换热器122和第二换热器112依次设置,第一换热器111的上端部和第三换热器121的上端部相连接,第二换热器112的上端部和第四换热器122的上端部相连接,第二换热器112的下端部远离第四换热器122的下端部;第一方向和第二方向相垂直,第一方向为重力方向。
本申请提供的空调室内机1在壳体10内设置有第一组换热器11及第二组换热器12,其中,第二组换热器12设置于第一组换热器11的第一换热器111和第二换热器112之间,两组换热器围合成换热腔室16。
如图1所示的箭头为空调室内机1在运行自然对流制冷时的气流的流动方向,当空调室内机1在进行自然对流制冷时,室内的空气从壳体10的进风口101进入壳体10,并与第一组换热器11和第二组换热器12进行换热。空气经过换热后温度降低,变为用于制冷的冷空气,同时冷空气密度比空气更大,在重力的作用下冷空气由换热腔室16流向下方的出风口102, 最终从出风口102进入室内进行制冷,冷空气流出后壳体10内形成负压,进而继续吸引空气从进风口101流入壳体10,至此,完成一个完整的空气循环。通过自然对流的形式为室内的空气进行换热,整个换热过程无需风机15工作,进而在保证良好的换热能力的情况下,避免了风机15工作产生的噪音。
进一步地,如图1所示,在壳体10所在的空间设置相互垂直的第一方向Z和第二方向Y的坐标系,其中,第一方向为重力方向,第二方向为壳体10的宽度方向。
具体地,基于第三换热器121包括第三翅片1214,第四换热器122包括第四翅片1224,则第三换热器121的下端部和第四换热器122的下端部通过翅片相搭接。
进一步地,第三换热器121的上端部与下端部之间的连线相对于第一方向倾斜设置,可以理解为第三换热器121的第三翅片1214相对于第一方向倾斜设置;第四换热器122的上端部与下端部之间的连线相对于第一方向倾斜设置,可以理解为第四翅片1224相对于第一方向倾斜设置。
进一步地,沿第二方向,第一换热器111、第三换热器121、第四换热器122和第二换热器112依次设置于壳体10内,第一换热器111的上端部和第三换热器121的上端部通过壳体10相连接,第二换热器112的上端部和第四换热器122的上端部通过壳体10相连接,进而使得第一换热器111和第三换热器121围成换热腔室16,第四换热器122和第二换热器112围成换热腔室16,通过将第三换热器121和第四换热器122相对于第一方向倾斜地设置于壳体10内,相比于水平或垂直设置换热器的方式,在有限的空间内增大了空气与换热器的换热面积,进而提升了空调室内机1的输出能力,提高了空调室内机1的换热效率,以尽快的到达用户的设定温度,进而提升用户使用的舒适性。
进一步地,如图1所示,空调室内机1的壳体10的至少两个面上均设有进风口101,空气同时从多个方向进入壳体10内部,进而有效提升了空调室内机1在利用自然对流制冷时的制冷效率。
实施例二
在上述实施例中,进一步地,如图29和图30所示,第二组换热器12的数量为至少两组,相邻两组第二组换热器12的上端部之间相连接,相邻两组第二组换热器12的下端部之间相互远离设置。
在该实施例中,沿第二方向,在第一换热器111和第二换热器112之间设置有至少两组第二组换热器12,通过设置多组换热器进一步增大了换热面积,进而增大了制冷量,在不开启风机15的情况下,也能满足制冷需求,降低噪音,提升用户的使用体验。
实施例三
在上述实施例中,进一步地,如图1至图3,图7至图21所示,第二组换热器12的数量为一组,沿垂直于第三方向的截面中,第二组换热器12的截面形状为V型,第一组换热器11和第二组换热器12组成的截面形状为M型;其中,第三方向与第一方向和第二方向均相垂直。
在该实施例中,在壳体10所在的空间设置与第一方向和第二方向相互垂直的第三方向X,第三方向为壳体10的长度方向。在垂直于第三方向的截面中,第二组换热器12的截面形状为V型,第一组换热器11和第二组换热器12组成的截面形状为M型,M型的向下的开口朝向出风口102,从至少两个方向进入的空气可直接与第一组换热器11和第二组换热器12进行换热,相比于采用单一换热平面和单一方向进风换热的方式,大大提升了换热效率。
实施例四
在上述任一实施例中,进一步地,如图1至图3、图7至图21、图29和图30所示,沿壳体10的第一方向,第二组换热器12的下端部平齐于或高于第一组换热器11的下端部。
在该实施例中,沿第一方向,第二组换热器12的下端部至出风口102所在平面的距离与第一组换热器11的下端部与出风口102所在的平面的距离相等;或者第二组换热器12的下端部至出风口102所在平面的距离大于第一组换热器11的下端部与出风口102所在的平面的距离。一方面增大了换热面积,一方面第一组换热器11的下端部与第二组换热器12的下端部等高或更接近出风口102,起到导流作用。
进一步地,如图1至图3、图7至图21和图29、图30所示,第一换热器111相对于第一方向倾斜设置,第二换热器112相对于第一方向倾斜设置。
在该实施例中,第一换热器111和第二换热器112相对于第一方向倾斜设置,即在垂直于第三方向的截面中,第一换热器111和第三换热器121的截面形状组合成倒置的V型,第四换热器122和第二换热器112的截面形状组合成倒置的V型。通过将第一换热器111、第二换热器112、第三换热器121和第四换热器122均倾斜地设置于壳体10内,进一步地增大了换热面积,进而增大了自然对流的风量,提高了自然对流的换热能力和换热效率。
具体地,由壳体的顶部至壳体的底部方向,第一换热器111与第二换热器112的之间的距离逐渐增大。
具体地,如图1所示,四个换热器共同形成M型的布置形式,使空调室内机1的壳体10内存在四个可用于降温的换热器,且四个换热器均为倾斜地设置于壳体10内。空调室内机1的壳体10的至少两个壁面上均设有进风口101,空气同时从多个方向进入壳体10内部,从至少两个方向进入的空气可直接与第一组换热器11和第二组换热器12进行换热,进而有效提升了空调室内机1在利用自然对流制冷时的制冷效率,运行时利用自然对流达到制冷效果,噪音较小。
进一步地,如图29所示,第一换热器111和第二换热器112相对第一方向平行设置。
在该技术方案中,第一换热器111和第二换热器112竖直地设置于壳体10内,与第二组换热器12围成换热腔室16,在有限的空间内增大了空气与换热器的换热面积,进而提升了空调室内机1的输出能力,提高了空调室内机1的换热效率,以尽快的到达用户的设定温度,进而提升用户使用的舒适性。
实施例五
在上述任一实施例中,进一步地,如图8、图9、图15、图17、图18、图30和图38所示,空调室内机1还包括:第五换热器131,第五换热器131 设置于第一换热器111的下方,第五换热器131的上端部与第一换热器111的下端部相连接设置;第六换热器132,第六换热器132设置于第二换热器112的下方,第六换热器132的上端部与第二换热器112的下端部相连接设置。
在该实施例中,第五换热器131和第六换热器132分别布置于第一换热器111朝向出风口102一端的下方和第二换热器112朝向出风口102一端的下方。本申请提供的室内机通过将第二组换热器12倾斜地设置于壳体10内,可以有效地利用壳体10的内部空间,减小了第一组换热器11和第二组换热器12在竖直方向上的占用空间,进而可以进一步地设置有第五换热器131和第六换热器132,进而增大了室内机的换热器的换热面积,进而可以提高经过换热后的进风风量,以满足自然对流进风时对冷量的需求。
进一步地,如图8所示,沿垂直于第三方向的截面内,第五换热器131的多个换热管的几何中心的连线与第一方向的夹角为第三夹角α 3,定义第六换热器132的多个换热管的几何中心的连线与第一方向的夹角为第四夹角α 4,根据壳体10内的空间通过合理设置第三夹角α 3和第四夹角α 4的取值范围,实现对第五换热器131和第六换热器132的安装位置的合理设置,进而提高壳体10内部空间的利用率,使得在壳体10体积紧凑的情况下,提供较大的换热能力,提高空调能效。
进一步地,如图9、图10和图11所示,第一换热器111,包括多个第一翅片1112和多个第一换热管1110,多个第一换热管1110均呈单排设置,多个第一翅片1112套设于第一换热管1110上;第二换热器112,包括多个第二翅片1124和多个第二换热管1122,多个第二换热管1122均呈单排设置,多个第二翅片1124套设于第二换热管1122上;第三换热器121,包括多个第三翅片1214和多个第三换热管1212,多个第三换热管1212均呈单排设置,多个第三翅片1214套设于第三换热管1212上;第四换热器122包括多个第四翅片1224和多个第四换热管1222,多个第四换热管1222呈单排设置,多个第四翅片1224套设于第四换热管1222上;第五换热器131,包括多个第五翅片1314和多个第五换热管1312,多个第五换热管1312均呈单排设置,多个第五翅片1314套设于第五换热管1312上;第六换热 器132,包括多个第六翅片1324和多个第六换热管1322,多个第六换热管1322均呈单排设置,多个第六翅片1324套设于第六换热管1322上。
在该实施例中,第一换热器111、第二换热器112、第三换热器121和第四换热器122、第五换热器131和第六换热器132均包括多个换热管,且对于多个换热管上均套设有多个翅片;进一步地,任一的多个换热管均呈单排设置,通过设置成单排减小换热器的体积,在保证换热量的同时可以提升空间利用率。
进一步地,第一组换热器11的中的换热管数量与第五换热器131及第六换热器132中的换热管数量的和值,大于第二组换热器12的换热管数量。可防止相邻两个射流喷嘴142之间的距离过大造成射流对出风口102两侧壁面造成冲击,进而影响空调室内机1性能。
具体地,在相同的换热器管数相同的总换热面积下,第五换热器131的换热管的管数越多,自然风模式下的单位体积内机的制冷能力越大。具体地实验效果对比如图17和图18所示,其中,如图17所示,第五换热器131和第六换热器132各有两根竖直管,其自然对流模式下的单位体积的制冷能力为11168W/m 3,如图18所示,第五换热器131和第六换热器132两侧各有四根竖直管,自然对流模式下的单位体积制冷能力为12782W/m 3
具体地,第五换热器131和第六换热器132的换热管的管数大于或等于2根。
进一步地,第一组换热器11中的相邻两个翅片的片距,与单个翅片的片宽的比值的取值范围为0.1至0.45;第二组换热器12中的相邻两个翅片的片距,与单个翅片的片宽的比值的取值范围为0.1至0.45;第五换热器131和第六换热器132中的相邻两个翅片的片距,与单个翅片的片宽的比值的取值范围为0.1至0.45。通过上述设置,有利于增大经换热器换热前后的温度差,可以有效提升自然对流效果,提升空调室内机1的性能。
实施例六
在上述任一实施例中,进一步地,如图2和图3所示、图10至图21所示,以及图29和图30所示,空调室内机1还包括:射流喷嘴142,设置于第一组换热器11和第二组换热器12中相邻的两个换热器之间,射流喷 嘴142与相邻的两个换热器围合成换热腔室16,换热腔室16与出风口102相连通。该空调室内机1采用自然对流与主动射流相结合的方式进行制冷。
在该实施例中,射流喷嘴142位于相邻的两个换热器的上端部之间,相邻的两个换热器安装于壳体内,相邻的两个换热器的上端部通过壳体固定后,使得相邻两个换热器和射流喷嘴142共同围合成换热腔室16。空气从进风口101进入壳体10经过第一组换热器11和第二组换热器12进行换热进入到换热腔室16内,再从出风口102进入室内。需要快速制冷时,通过射流喷嘴142通入空气气流,以诱导更多的空气经过第一组换热器11和第二组换热器12进入换热腔室16内,进行换热实现主动进风。
具体地,如图3所示的箭头为空调室内机1在运行快速制冷时的气流的流动方向,射流喷嘴142将空气喷出至换热腔室16内,随后从出风口102流出,此时流出出风口102的冷空气为射流喷嘴142提供的空气与自然对流提供的冷空气的混合气流。同时,当射流喷嘴142喷出空气时还加大了相邻两个换热器之间所围成区域的负压,使进风口101可以流入更多气流。通过射流喷嘴142的设置进一步加大了自然对流的风量,使得经出风口102流入室内的气流包括由进风口101进行自热对流和由射流喷嘴142进行射流两部分气流,大大提高了室内机的换热能力和制冷效率。
其中,射流喷嘴142的形状可以为圆形孔、条形孔或者多边形孔,具体的,射流喷嘴142的形状并不局限于此,还包括其他未列出的不同形状的通孔。并且射流喷嘴142的数量为多个。或者,射流喷嘴142为一条沿射流风道144延伸方向一致的长条形开口1104结构。通过设置射流喷嘴142,可以进一步地调整进入的气流的喷射速度,再通过射流喷嘴142射入到换热腔室16内,实现对自然对流进风的气流进行导流的作用,加速换热效率。
具体地,如图16所示的气流进入换热腔室16内的技术效果图中,在主动射流引流模式下,射流的气流经预冷后,进而能够通过射流提供784W的制冷量,而被引流的回风能够提供1144W的制冷量。这样,从出风口102送出的风由两部分组成,一部分为射流风,另一部分为被引流的风。从而实现了以少量的主动送风提供更大风量,更大制冷量的效果。从而进一步 地,在主动风量维持传统空调风量的水平时,能够提高空调能效。
进一步地,如图4至图6、图31、图32及图35、图38所示,空调室内机1还包括:射流风道144,射流风道144与射流喷嘴142相连通;其中,沿风道的流动方向,射流风道144的截面积逐渐减小。
在该实施例中,通过沿气流流入方向将射流风道144设置成渐缩结构,可以调整进入的气流的喷射速度,再通过射流喷嘴142射入到换热腔室16内,实现对自然对流进风的气流进行导流的作用,提高换热效率。
进一步地,如图36所示,从射流风道144的进风端至末端,射流风道144的截面面积逐渐减小,使得气流在输送过程中可以维持较为稳定的风压,进而使得从射流喷嘴142流出的气流更加均匀。
具体地,如图13和图32所示,还包括风机15,风机15的送风口与射流风道144相连通,实现通过射流喷嘴142的主动送风。这样,从出风口102送出的风由两部分组成,一部分为射流风,另一部分为被引流的风。从而实现了以少量的主动送风提供更大风量,更大制冷量的效果,进而在主动送风量维持传统空调风量的水平时,能够大大提高空调能效,有利于降低使用成本。
进一步地,沿气流进入方向,将射流风道144的进风端的截面面积作为第一面积,将射流风道144的末端的截面面积作为第二面积,其中,第二面积的取值为第一面积的10%至80%,通过调整射流风道144的渐缩幅度,进而可以结合空调室内机1的整机结构和换热器的换热面积、换热腔室16的大小设置合理的结构,以达到较佳的出风速度和出风量,提升整机的输出能力和舒适性。
进一步地,整体射流喷嘴142的进风端的端口面积为第三面积,全部射流喷嘴142的出口端的过流面积为第四面积,第四面积的取值为第三面积的50%至95%,通过将射流喷嘴142的过流面积由进风端至出风端设置为渐缩结构,进而可以提升通过射流喷嘴142喷射出的气流的流速,进而实现对自然对流的气流的导流作用,提升换热效率。
具体地,如图22和图23所示为采用上述结构的射流风道144和射流喷嘴142的试验效果图,其中,图22示出了射流沿射流风道144长度方向 的喷射速度效果图,喷射速度比较均匀。图23示出了射流沿射流风道144长度方向的分速度效果图,分速度较小,且均匀。
作为比较,如图24和图25所示,射流喷嘴142采用沿风道长度方向上设置地细长狭缝,而非本申请中设置地多个射流喷嘴142的结构,进行的试验效果图。其中,图24示出了射流沿风道长度方向的喷射速度效果图,喷射速度不均匀。图25示出了射流沿风道长度方向的分速度效果图,分速度较大,且不均匀。
进一步地,如图26所示,本申请采用射流风道144和射流喷嘴142,喷射出的气流流向是大致竖直向下的进入到换热腔室16内,与出风口102是相对应的。而如图27所示,射流喷嘴142采用狭缝结构,则通过整条狭缝喷出的气流流向由于受到分速度的影响,其整体流向是向前倾斜地,进而对气流到导流方向产生影响,出风区域偏离出风口102进而影响出风效果。
通过对比可以,本申请采用的结构,能够实现射流喷嘴142的出风量的均匀性并且消除出风沿射流风道144长度方向的分速度。
实施例七
在上述任一实施例中,进一步地,如图31、图32、图33、图34和图36所示,壳体10包括:进风罩体110,进风口101开设于进风罩体110上;底座120,进风罩体110设置于底座120上,出风口102开设于底座120上。
在该实施例中,壳体10包括进风罩体110和底座120,进风口101开设于进风罩体110上,出风口102位于底座120上。第一组换热器11和第二组换热器12设置于进风罩体110和底座120围成的安装腔内,气流从进风口101进入经第一组换热器11和第二组换热器12换热后从出风口102进入室内。
进一步地,如图13、图33所示,壳体10还包括:支撑板130,支撑板130设置于底座120和进风罩体110之间,沿第三方向,支撑板130位于进风罩体110的两端;其中,第二组换热器12的两端与两侧的支撑板130分别连接,部分第一组换热器11与支撑板130和进风罩体110相抵接。
在该实施例中,如图13所示,在进风罩体110和底座120之间设置有支撑板130,其中,第二组换热器12的两端通过支撑板130进行固定;第一组换热器11的两端通过支撑板130和进风罩体110进行夹持固定,进而实现了对换热器的安装固定,通过设置支撑板130可以实现对壳体10内多组换热器的固定安装。还可以通过支撑板130对壳体10内换热腔室16的分割,通过支撑板130将换热腔室16分成第一腔体18和第二腔体20,第一腔体18内设置第二组换热器12和部分第一组换热器11,部分第一组换热器11位于第二腔体20内,预冷射流进风,射流进风的气流通过进风口101进入经部分第一组换热器11进行换热预冷后进入第一腔体18,经射流风道144和射流喷嘴142进入到第一腔体18内,再通过出风口102进入室内环境。通过支撑板130的设置实现了对射流进风和主动进风流道的分割,实现了换热效率和换热量的提升。
进一步地,如图34所示,进风罩体110包括:安装槽1102,设置于进风罩体110的顶壁,安装槽1102的底部设置有开口1104,射流喷嘴142设置于开口1104处;其中,位于射流喷嘴142两侧的两个换热器的上端部与开口1104两侧的槽壁相抵接。
在该实施例中,进风罩体110的顶部设置有安装槽1102,安装槽1102的槽底具有开口1104;通过设置安装槽1102实现对射流风道144的安装,射流风道144安装于安装槽1102内,射流喷嘴142与开口1104对应,射流喷嘴142可以伸出开口1104进入到换热腔室16内;位于射流喷嘴142两侧的换热器开口1104的槽壁相抵接,以实现与射流喷嘴142围合成封闭的换热腔室16,进而实现增大气流换热量和换热效率,避免气流的回流。
进一步地,进风口101包括射流进风口1011和主进风口1012。射流进风口1011与射流喷嘴142相连通,主进风口1012经第一组换热器11和第二组换热器12与换热腔室16相连通;射流进风口1011开设于进风罩体110的侧壁。主进风口1012可开设于进风罩体110沿第二方向相对的两侧壁,主进风口1012也可开设于进风罩体110沿第三方向的侧壁,或者开设于进风罩体110的顶壁,或者在上述侧壁、顶壁同时设有主进风口1012。
在该实施例中,支撑板130将进风口101分割成射流进风口1011和主 进风口1012,射流进风口1011与射流风道144相连通,气流经射流进风口1011进入,经第一组换热器11换热后进入射流风道144从射流喷嘴142进入到换热腔室16,再从出风口102进入室内;部分气流主进风口1012经部分第一组换热器11和第二组换热器12换热后进入换热腔室16,再从出风口102进入室内。其中射流进风口1011设置于进风罩体110的两侧,以实现气流经过第一组换热器11的进行换热后再进入射流风道144;主进风口1012设置于进风罩体110的两侧侧壁,并且在进风罩体110沿第三方向的侧壁和进风罩体110的顶壁中的至少一个上也设置有主进风口1012,进而实现多侧的进风,使得位于中间部分的第二组换热器12也能够被充分利用进行换热,进而极大地提高了换热量和换热效率,用户在选择主动进风的时候,可以快速的实现制冷需求。
进一步地,如图1和图3、图12、图38所示,还包括:导流结构22,导流结构22设置于第二组换热器12的下端部;导流结构22包括第一导流面222和第二导流面224,第一导流面222和第二导流面224关于第二组换热器12的下端部的中线对称。
在该实施例中,空调室内机1还设有导流结构22,导流结构22布置于第二组换热器12朝向出风口102的一侧,具体地,导流结构22设有对称布置的第一导流面222和第二导流面224,使导流结构22能够对其两侧的射流进行引流,使气流能够顺利地从出风口102流出,进一步地提升了空调室内机1制冷性能及运行的稳定性。
具体地,第一导流面222和第二导流面224均可以被构造成曲面或平面。
进一步地,如图1和图8所示,出风口102的数量为一个,导流结构22沿第一方向的投影位于出风口102内,第一导流面222面向第一换热器111设置,且朝向第一换热器111一侧凸起,第二导流面224面向第二换热器112设置,且朝向第二换热器112一侧凸起。
在该实施例中,在底座120上设置有一个出风口102,一个出风口102与第一组换热器11和第二组换热器12围成的换热腔室16相连通,导流结构22设置成流体状,沿垂直于第三方向的截面中,第一导流面222和第二 导流面224呈弧形,且均向外侧凸起,进而实现了当射流喷嘴142喷出射流时,气流沿导流结构22的外壁流向出风口102,在康达尔效应的影响下使射流能够顺利地从出风口102流出而不接触到出风口102两侧的壁面,进一步地提升了空调室内机1制冷性能及运行的稳定性。
进一步地,如图38所示,出风口102的数量为多个,导流结构22沿第一方向的投影位于相邻两个出风口102之间,第一导流面222面向第一换热器111设置,且朝向第二换热器112一侧凹陷,第二导流面224面向第二换热器112设置,且朝向第一换热器111一侧凹陷。
在该实施例中,出风口102设置多个,相邻两个换热器和射流喷嘴142围成的换热腔室16均对应有一个出风口102,通过将第一导流面222和第二导流面224设置成凹陷形状,可以进一步地实现对气流的导流作用,使得每个换热腔室16的气流能够顺畅的从出风口102进入到室内。
实施例八
在上述任一实施例中,进一步地,如图7至图9、图11、图12、图14至图25所示,在垂直于第三方向的截面中,第一组换热器11和第二组换热器12均为轴对称设置,轴对称设置的对称轴沿第一方向延伸。
在该实施例中,第一组换热器11和第二组换热器12沿第一方向对称设置,从而使得第一组换热器11和第二组换热器12能够在有限的空间内增大了换热面积,进而使得空气完全经过换热器换热后再由出风口102流出。
进一步地,如图8所示,第三翅片1214相对于第一方向的倾斜角度α2的取值范围为0°至45°;第四翅片1224相对于第一方向的倾斜角度α5的取值范围为0°至45°。
在该实施例中,通过将第三换热器121的第三翅片1214和第四换热器122的第四翅片1224相对于第一方向的倾角设置在0°至45°之间,一方面可以根据壳体10内的容积合理的布置第一组换热器11和第二组换热器12,以实现室内机的换热面积的最大化,并且有利于保证气流经倾斜设置的第三换热器121和第四换热器122后具有良好的下沉效果,同时,可以使得第三换热器121和第四换热器122上的冷凝水沿着倾斜地翅片流动到底端 对应的接水盘内,避免了冷凝水从出风口102滴落到室内而造成环境污染,进而在提高空调室内机1的换热能力的情况下,提高了产品使用的可靠性和清洁性。
进一步地,如图8所示,沿壳体10的第一方向,进风口101高于第一组换热器11的下端部。通过设置进风口101朝向出风口102一侧的高度高于第一组换热器11的下端部,使得经进风口101进入壳体10内部的气流经第一组换热器11和第二组换热器12后才能进入换热腔室16,避免气流未经过第一组换热器11进入换热腔室16而造成回风并降低换热能力,进而保证良好的换热能力。
具体地,如图8所示,沿第一方向上,位于壳体10侧壁上的进风口的高度为Hin,换热器组的整体高度为H13,H13大于Hin,且换热器组的上端部高于进风口的上端部,进风口的下端部高于换热器组的下端部。
进一步地,如图7和图8所示,出风口102的数量为1个;出风口102沿第二方向的宽度W 2与射流喷嘴142的端面至出风口102所在平面之间的距离H的比值的取值范围为0.1至0.7。
在该实施例中,通过合理设置出风口102的宽度与射流喷嘴142的端面至出风口102所在平面之间的距离的比值取值范围,具体地,比值取值范围为0.1至0.7,有利于保持自然对流的强度,以使得射流喷嘴142的射流角度能够较好地与出风口102的尺寸相匹配,以使射流区域能够与出风口102的尺寸相吻合,有利于提高射流性能并保证良好的换热能力。
进一步地,如图8所示,沿第一方向,向垂直于第一方向的平面进行投影,在得到投影面内,第一组换热器11和第二组换热器12的宽度之和等于壳体10的宽度与射流喷嘴142的宽度的差值。
在该实施例中,在安装第一组换热器11、第二组换热器12时最大化利用壳体10内的空间,在空调室内机1的宽度方向上除射流喷嘴142以外的区域均布置上换热器。大大提升了换热器在壳体10内部的空间占有率,在有限的空间内增大了空气与换热器的接触面积,进而有效提升了空调室内机1在利用自然对流时的换热效率。同时,这样地设置,有利于减小第一组换热器11、第二组换热器12与射流喷嘴142之间的缝隙,进而使得 经第一进风口101流入壳体10内部的气流几乎全部经第一组换热器11、第二组换热器12进行换热后经出风口102流出,有利于提高空调室内机1的换热效果,减少能量损失,提高空调能效。
同时,这样地设置,有利于减小第一组换热器11、第二组换热器12与射流喷嘴142之间的缝隙,进而使得经进风口101流入壳体10内部的气流几乎全部经第一组换热器11、第二组换热器12进行换热后经出风口102流出,有利于提高空调室内机1的换热效果,减少能量损失,提高空调能效。
进一步地,如图7所示,在垂直于第三方向的截面内,射流喷嘴142的中心轴线相对于由第三换热器121至第一换热器111延伸的第二方向构成的夹角为第一夹角α 1,第三翅片1214相对于由壳体10的顶部至底部延伸的第一方向的倾斜角度为第二夹角α 2,第一夹角α 1的取值范围为:大于或等于90°减去第二夹角的差值,且小于或等于90°。
在该实施例中,第一夹角α 1和第二夹角α 2的关系满足:90°-α 2≤α 1≤90°。通过设置第一夹角α 1的范围,使得射流喷嘴142的射流方向处于合理范围内。
具体地,如果第一夹角过小,即第一夹角<90°-第二夹角,则出风口102靠近第一换热器111的一侧会存在喷出的射流无法覆盖的区域,该区域因压力差会出现回流,热空气与冷空气接触会在出风口102靠近第一换热器111的壁面上形成冷凝水,影响空调室内机1的运行。
而如果第一夹角过大,即第一夹角>90°,则会使喷出的射流冲击到出风口102靠近第一换热器111一侧的壁面上,使喷出的射流无法顺利排出,降低了空调室内机1的运行效果,长期的冲击还会使空调室内机1出现结构性的损伤及噪音问题。因此,设置第一夹角的大小在合理范围内,有利于提升空调室内机1的性能及其运转时的稳定性。
进一步地,如图19所示,射流喷嘴142的射流角度θ均满足tan(θ/2)=a/0.29,其中,a为湍流系数,a的取值范围为0.05至0.08。通过合理限定湍流系数a的取值范围,并限定射流器的射流角度θ与湍流系数a,进而能够合理限定射流角度θ的大小,使得射流角度θ与出风口102相匹 配,有利于提高射流性能并保证良好的换热能力。其中,如图22所示,射流角度θ指的是射流的边界与射流的中心线之间的夹角。
进一步地,如图7、图8和图19所示,沿第二方向,定义壳体10的宽度为第一宽度W 1,出风口102的宽度为第二宽度W 2,相邻两个射流喷嘴142的中心点之间的距离为第三宽度W 3;沿第一方向,射流喷嘴142的出口端面与出风口102所在平面之间的距离为第一高度H,射流喷嘴142的射流角度θ与壳体的尺寸之间满足tan(θ/2)>0.5×(W 2-W 3)/H,以达到最佳的射流效果。
进一步地,W 2与W 1之间的关系满足0.2≤W 2/W 1≤0.9。通过上述设置,一方面,防止出风口102的宽度W 2所占比值过小造成的自然对流能力衰减,另一方面,防止出风口102的宽度W 2所占比值过大而造成的出风口102两侧回流。通过比值的合理设定,有利于提升空调室内机1的工作性能。
进一步地,如图7所示,沿第二方向,相邻两个射流喷嘴142的中心点之间的距离与出风口102的宽度的比值的取值范围为0.5至2。
在该实施例中,通过合理设置相邻两个射流喷嘴142的中心点之间的距离和出风口102宽度比值的取值范围,一方面,能有效防止出风口102处出现回流产生冷凝水。另一方面,有效防止射流喷嘴142喷出的气流打到出风口102两侧的壁面上,降低了设备运行的噪音,提升了用户的舒适度,增强了空调室内机1运行的稳定性和使用寿命,降低了维护成本。
通过满足上述关系式,使得射流喷嘴142的射流角度θ处于合理范围内。如图19至图21示出了不同的射流角θ对气流流向的影响。其中,如图20所示,射流角度θ过小,使得射流区域无法覆盖出风口102,出风口102周围的壳体10壁面会因壳体10外部的气流回流而产生冷凝水影响正常使用的情况(如图20中的圆圈示位置)。如图21所示,射流角度θ过大,射流覆盖区域过多的覆盖出风口102,会有较多的射流冲击到出风口102两侧的壁面上造成性能的衰减(如图21中的圆圈示位置)。如图19所示,射流角度θ处于合理范围内,射流区域与出风口102的宽度相匹配,进而能够在保证射流具有良好的换热性能的情况下,提高产品使用的可靠 性。
进一步地,0.1≤W 2/H≤0.7,通过上述参数设置,有利于保持自然对流的强度,以使得射流角度θ能够较好地与出风口102的尺寸相匹配,以使射流区域能够与出风口102的尺寸相吻合,有利于提高射流性能并保证良好的换热能力。
实施例九
在上述任一实施例中,进一步地,如图11和图12所示,空调室内机1还包括:康达效应元件32,康达效应元件32沿第一方向设置于射流喷嘴142的下方。其中,沿第一方向进行截面,在得到的截面上,康达效应元件32关于射流喷嘴142的中线对称。
在该实施例中,射流喷嘴142喷出空气的位置设有康达效应元件32。康达效应元件32关于射流喷嘴142的中线对称,当喷出的空气接触到康达效应元件32时,其运动速度会进一步加快,进而进一步增大射流附近的负压,加强自然对流的引流效果,进一步提升空调室内机1的换热效果,且在提升风速的过程中,没有用到任何用于主动提速的电器元件,降低了空调室内机1的能耗。
在本申请的一实施例中,如图11所示,康达效应元件32为圆柱体。
进一步地,沿垂直于第三方向进行截面,在得到的截面上,圆柱体的圆心位于射流喷嘴142的中线上;射流喷嘴142的宽度为第四宽度W 4;圆柱体的圆心至射流喷嘴142的距离为第一距离D1。其中,0.1×W 4≤D1≤5×W 4
进一步地,康达效应元件32的截面圆的半径R,R的取值范围为0.2×W 4≤R≤3×W 4
通过合理地设置射流喷嘴142和与其对应的康达效应元件32的尺寸参数之间的取值关系,可以有效地改善导流的效果。
在本申请的一实施例中,如图12所示,康达效应元件32为椭圆柱体。
具体地,沿第一方向进行截面,在得到的截面上,椭圆主体的焦点位于射流喷嘴142的中线上,射流喷嘴142的宽度为第四宽度W 4,椭圆柱体 的椭圆心至射流喷嘴142的距离为第二距离D2。其中,0.1×W 4≤D2≤5×W 4。其中椭圆心指的使得椭圆的两个焦点连线的中点。
进一步地,椭圆柱体的截面椭圆的长轴半径为A 1,短轴半径为B 1,其中,A 1的取值范围为0.2×D2≤A 1≤0.95×D2,B 1的取值范围为0.2×W 4≤B 1≤3×W 4
通过合理地设置射流喷嘴142和与其对应的康达效应元件32的尺寸参数之间的取值关系,可以有效地改善导流的效果。
具体地,如图19和图28所示,图19为未设置康达效应元件32的气流流速的效果图,图28是增加康达效应元件32后的流速效果图,二者比较可见总制冷量从1928.5W上升到了2015.6W,且被引射空气的制冷量从1144.4W上升到了1232.3W。因此,通过增加康达效应元件32可以更好的起到提升进气量和进气速度并提升换热效率的技术效果。
实施例十
在上述任一实施例中,如图8、图12、图36和图37所示,进一步地,空调室内机1还包括:第一接水盘24、第二接水盘26、第三接水盘28,第一接水盘24、第二接水盘26、第三接水盘28均设置于壳体10内。
具体地,第一接水盘24位于第五换热器131朝向出风口102一端的下方,用于接收或容纳第一换热器111和第五换热器131产生的冷凝水。第二接水盘26位于第六换热器132朝向出风口102一端的下方,用于接收或容纳第二换热器112和第六换热器132的冷凝水。第三接水盘28,位于第二组换热器12朝向出风口102一端下方,用于接收第二组换热器12产生的冷凝水。从而避免了第一换热器111、第二换热器112、第三换热器121、第四换热器122、第五换热器131和第六换热器132产生的冷凝水流入室内而影响用户正常使用,提高产品使用的可靠性。
进一步地,第一接水盘24、第二接水盘26、第三接水盘28均相对于壳体10的长度方向倾斜设置,接水面与壳体10的长度方向的夹角大于等于3°,根据壳体10内的空间通过合理设置接水盘的接水面与壳体10长度方向的夹角的范围,有利于冷凝水沿接水盘顺利排出,使得接水盘的冷凝 水能够及时排出,进一步提高产品使用的可靠性。
进一步地,空调室内机1还包括第四接水盘30,第四接水盘30沿第二方向延伸,第四接水盘30的两端与第一接水盘24和第二接水盘26相连通,第三接水盘28与第四接水盘30连通,第四接水盘30用于收集第一接水盘24和第二接水盘26、第三接水盘28内的冷凝水。
进一步地,第四接水盘30的数量为2个,分别位于底座120的两端。
实施例十一
在上述任一实施例中,进一步地,如图9、图31、图32和图34所示,壳体10的顶部也设置有进风口101;位于顶部的进风口101与第二组换热器12相对设置,空气能够经过壳体10顶部的进风口101进入壳体10内,再通过第二组换热器12进行换热后进入换热腔室16,近出风口102进入室内。
进一步地,如图9所示,在壳体10的顶部设置凹槽结构34,顶部的进风口101开设于凹槽结构34的槽壁上,使得凹槽结构34的侧壁与第三换热器121和第四换热器122倾斜角度相一致,进而减小了壳体10与第三换热器121和第四换热器122之间的距离,减少了进气气流的阻力损耗,进一步增大了进去到换热腔室16内的换热气量,使空调室内机1能满足更高的换热需求。
进一步地,通过在壳体10的顶部设置凹槽结构34,顶部的进风口101开设于凹槽结构34的槽壁上,可以实现两侧进风,使得整机安装时,可以紧贴着屋顶安装,降低了占用空间。
实施例十二
在本申请的一个实施例中,壳体10的一端设有一个风机15,风机15的送风口与射流风道144相连通,结构简单,降低了生产成本。
实施例十三
在本申请的一个实施例中,如图2和图13、图31和图32所示,风机15的数量为两个,两个风机15分别位于壳体10的两端;其中,两个风机15中的一个风机15的送风口与一侧的射流风道144相连通,两个风机15中的另一个风机15的送风口与另一侧的射流风道144相连通。其中一个风 机15向与其同侧的射流风道144提供气流,另一个风机15向与其同侧的射流风道144提供气流。同时使用两个风机15参与主动射流,进一步加大了射流喷嘴142所能提供的风量总和,提升了空调室内机1的制冷效果,可实现独立控制,有利于满足多种制冷需求。
实施例十四
如图13和图14所示,在上述任一实施例的基础上,进一步地,该实施例提供的空调室内机1包括:壳体10、第一组换热器11和第二组换热器12,第一组换热器11和第二组换热器12倾斜地设置于壳体10内。
其中,壳体10包括进风口101和两个出风口102,第一组换热器11包括第一换热器111和第二换热器112,第二组换热器12包括第三换热器121和第四换热器122。其中,第一换热器111、第三换热器121、第四换热器122和第二换热器112依次相对于壳体10的第一方向倾斜地设置于壳体10内。
进一步地,沿垂直于第三方向进行截面,第一换热器111和第三换热器121的截面形状组合成倒置的V型,倒置的V型的开口1104朝向一个出风口102;第四换热器122和第二换热器112的截面形状组合成倒置的V型的开口1104朝向另一个出风口102。
第一组换热器11的截面形状和第二组换热器12的截面形状整体组合成M型。
进一步地,空调室内机1还包括:两个风机15和两组射流结构,一个风机15与一侧的射流风道144相连通,另一个风机15与另一侧的射流风道144相连通。
该实施例中,通过设置两个出风口102,每个出风口102对应一组倾斜设置地换热器和一个射流器,进而达到可以实现分别控制进风,或者同时控制两个射流结构同步进风的目的,扩大了空调的使用模式,满足用户的不同需求,单独开启一个风机15,还可以达到降低能耗的目的。
进一步地,如图15和图38所示,空调室内机1还包括:第三组换热器13,其中,第三组换热器13包括第五换热器131和第六换热器132。第三组换热器13设置于壳体10内,第五换热器131设置于第一换热器111 朝向出风口102一端的下方;第六换热器132设置于第二换热器112朝向出风口102一端的下方。通过将第一组换热器11和第二组换热器12倾斜地设置于壳体10内,可以有效地利用壳体10的内部空间,减小了第一组换热器11和第二组换热器12在竖直方向上的占用空间,进而可以进一步地设置有第三组换热器13,进而增大了空调室内机1的换热器的换热面积,进而可以提高经过换热后的进风风量,以满足自然对流进风时对冷量的需求。
实施例十五
如图39至图42所示,本申请的一个实施例提供了一种空调室内机1包括:壳体10、换热器40。
其中,壳体10包括进风口101和出风口102,沿第一方向,出风口102位于壳体10的底部,换热器40设置于壳体内,空气经进风口101流动至换热器40进行热交换后,从出风口102流出;换热器40包括沿第二方向呈波浪形设置的多个换热段402,相邻两个换热段402之间形成有换热区,沿第二方向换热器40依次设置有第一换热区404和第二换热区406;其中,从壳体10的顶部至壳体10的底部的方向,第一换热区404沿第二方向的宽度逐渐增大,第二换热区406沿第二方向的宽度逐渐减小;第一方向和第二方向相垂直,第一方向为重力方向。
在该实施例中,空调室内机1在壳体10内设置有换热器40,换热器40包括沿第二方向呈波浪形设置的多个换热段402,相邻的两个换热段402之间形成有换热区,第一换热区404和第二换热区406依次相邻设置。当空调室内机1在进行自然对流制冷时,室内的空气从壳体10的进风口101进入壳体10,并与换热段402进行换热,换热后的空气由换热区流向下方的出风口102,最终从出风口102进入室内进行制冷,冷空气流出后壳体10内形成负压,进而继续吸引空气从进风口101流入壳体10,至此,完成一个完整的空气循环。通过自然对流的形式为室内的空气进行换热,整个换热过程无需风机15工作,进而在保证良好的换热能力的情况下,避免了风机15工作产生的噪音。
进一步地,第一方向为重力方向,第二方向为壳体10的宽度方向。从 壳体10的顶部至壳体10的底部的方向,第一换热区404沿第二方向的宽度逐渐增大,第二换热区406沿第二方向的宽度逐渐减小。也即,至少部分换热段402相对于第一方向倾斜设置,相比于水平或垂直设置换热段402的方式,在有限的空间内增大了空气与换热器40的换热面积,进而提升了空调室内机1的输出能力,提高了空调室内机1的换热效率,以尽快的到达用户的设定温度,进而提升用户使用的舒适性。
进一步地,多个换热段402之间形成有多个第一换热区404和多个第二换热区406,沿第二方向,第一换热区404和第二换热区406交错分布。
具体地,通过在壳体内形成沿第二方向,交错分布的多个第一换热区404和多个第二换热区406,进一步提升了壳体内空间的利用率,使得在壳体10体积紧凑的情况下,提供较大的换热能力,提高空调能效。
进一步地,如图39所示,第三方向与第一方向和第二方向均相垂直,沿垂直于第三方向的截面中,相邻两个换热段402的截面形状为V型或倒置的V型;依次设置的四个换热段402的截面形状为M型,通过将任两个相邻的换热段402相对倾斜设置,进一步地增大了换热面积,进而增大了自然对流的风量,提高了自然对流的换热能力和换热效率。
进一步地,如图40所示,沿第二方向,设置于最外侧的换热段402可以为分段式,如图40所示,靠近壳体10顶部一侧采取倾斜设置的方式,靠近出风口一侧采取竖直设置的方式,进而分利用壳体10内的空间以达到最佳的换热效率。
进一步地,如图41所示,换热段402的实施方式并不局限于上述两种方式,还可以采取如图41所示的折弯状,进而实现在有限的空间内增加换热面积,进而增大换热量,提高换热效率。
进一步地,如图42所示,换热段402采取梯形结构设置,进一步地增大了换热器的换热面积,以达到在有限空间内增大换热面积,提升换热效率。
实施例十六
根据本申请的第三方面,还提出了一种空调器,包括上述任一实施例中的空调室内机1,因此具有该空调室内机1的全部有益效果,在此不再 赘述。
进一步地,空调器还包括控制***,控制***能够获取空调器的工作模式指令,并根据工作模式指令控制空调室内机1进行自然对流换热,射流换热(启动风机),或自热对流换热和射流换热共同进行,以满足用户的不同需求,并最大程度地提高用户的舒适度。
具体地,本申请提供的空调室内机1可以应用于家用空调、中央空调多联机、商用风幕机、商用空调室内末端等多个产品。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“相连接”、“安装”、“固定”等均应做广义理解,例如,“连接”、“相连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种空调室内机,其中,包括:
    壳体,所述壳体包括进风口和出风口,沿第一方向,所述出风口位于所述壳体的底部;
    第一组换热器和第二组换热器,均设置于所述壳体内,空气经所述进风口流动至所述第一组换热器和所述第二组换热器进行热交换后,从所述出风口流出;
    所述第一组换热器包括:第一换热器和第二换热器;
    所述第二组换热器包括:第三换热器和第四换热器,所述第三换热器的上端部与下端部之间的连线相对于所述第一方向倾斜设置,所述第四换热器的上端部与下端部之间的连线相对于所述第一方向倾斜设置,所述第三换热器的下端部和所述第四换热器的下端部相连接,所述第三换热器的上端部远离所述第四换热器的上端部;
    其中,沿第二方向,所述第一换热器、所述第三换热器、所述第四换热器和所述第二换热器依次设置,所述第一换热器的上端部和所述第三换热器的上端部相连接,所述第二换热器的上端部和所述第四换热器的上端部相连接,所述第二换热器的下端部远离所述第四换热器的下端部;
    所述第一方向和所述第二方向相垂直,所述第一方向为重力方向。
  2. 根据权利要求1所述的空调室内机,其中,
    所述第二组换热器的数量为至少两组,相邻两组所述第二组换热器的上端部之间相连接,相邻两组所述第二组换热器的下端部之间相互远离设置。
  3. 根据权利要求1所述的空调室内机,其中,
    所述第二组换热器的数量为一组,沿垂直于第三方向的截面中,所述第二组换热器的截面形状为V型,所述第一组换热器和所述第二组换热器组成的截面形状为M型;
    其中,所述第三方向与所述第一方向和所述第二方向均相垂直。
  4. 根据权利要求1所述的空调室内机,其中,
    沿所述壳体的第一方向,所述第二组换热器的下端部平齐于或高于所述第一组换热器的下端部。
  5. 根据权利要求1所述的空调室内机,其中,
    所述第一换热器相对于所述第一方向倾斜设置,所述第二换热器相对于所述第一方向倾斜设置;或
    所述第一换热器和所述第二换热器相对所述第一方向平行设置。
  6. 根据权利要求1所述的空调室内机,其中,还包括:
    第五换热器,所述第五换热器设置于所述第一换热器的下方,所述第五换热器的上端部与所述第一换热器的下端部相连接设置;
    第六换热器,所述第六换热器设置于所述第二换热器的下方,所述第六换热器的上端部与所述第二换热器的下端部相连接设置。
  7. 根据权利要求1至6中任一项所述的空调室内机,其中,还包括:
    射流喷嘴,设置于所述第一组换热器和所述第二组换热器中相邻的两个换热器之间,所述射流喷嘴与所述相邻的两个换热器围合成换热腔室,所述换热腔室与所述出风口相连通。
  8. 根据权利要求7所述的空调室内机,其中,还包括:
    射流风道,所述射流风道与所述射流喷嘴相连通;其中,沿风道的流动方向,所述射流风道的截面积逐渐减小。
  9. 根据权利要求7所述的空调室内机,其中,所述壳体包括:
    进风罩体,所述进风口开设于所述进风罩体上;
    底座,所述进风罩体设置于所述底座上,所述出风口开设于所述底座上。
  10. 根据权利要求9所述的空调室内机,其中,所述壳体还包括:
    支撑板,所述支撑板设置于所述底座和所述进风罩体之间,沿第三方向,所述支撑板位于所述进风罩体的两端;
    其中,所述第二组换热器的两端与两侧的所述支撑板分别连接,部分所述第一组换热器与所述支撑板和所述进风罩体相抵接。
  11. 根据权利要求9所述的空调室内机,其中,所述进风罩体包括:
    安装槽,设置于所述进风罩体的顶壁,所述安装槽的底部设置有开口, 所述射流喷嘴设置于所述开口处;
    其中,位于所述射流喷嘴两侧的所述两个换热器的上端部与所述开口两侧的槽壁相抵接。
  12. 根据权利要求9所述的空调室内机,其中,
    所述进风口包括射流进风口和主进风口,所述射流进风口与所述射流喷嘴相连通,所述主进风口经所述第一组换热器和所述第二组换热器与所述换热腔室相连通;
    所述射流进风口开设于所述进风罩体的侧壁;
    所述主进风口开设于所述进风罩体沿所述第二方向相对的两侧壁;以及
    所述主进风口开设于所述进风罩体沿第三方向的侧壁,和/或所述进风罩体的顶壁。
  13. 根据权利要求7所述的空调室内机,其中,还包括:
    导流结构,所述导流结构设置于所述第二组换热器的下端部;
    所述导流结构包括第一导流面和第二导流面,所述第一导流面和所述第二导流面关于所述第二组换热器的下端部的中线对称。
  14. 根据权利要求13所述的空调室内机,其中,
    所述出风口的数量为一个,所述导流结构沿所述第一方向的投影位于所述出风口内,所述第一导流面面向所述第一换热器设置,且朝向所述第一换热器一侧凸起,所述第二导流面面向所述第二换热器设置,且朝向所述第二换热器一侧凸起;或
    所述出风口的数量为多个,所述导流结构沿所述第一方向的投影位于相邻两个出风口之间,所述第一导流面面向所述第一换热器设置,且朝向所述第二换热器一侧凹陷,所述第二导流面面向所述第二换热器设置,且朝向所述第一换热器一侧凹陷。
  15. 根据权利要求1至6中任一项所述的空调室内机,其中,
    所述第一换热器包括多个第一翅片和多个第一换热管,多个第一所述换热管均呈单排设置,多个所述第一翅片套设于所述第一换热管上;
    所述第二换热器包括多个第二翅片和多个第二换热管,多个第二所述 换热管均呈单排设置,多个所述第二翅片套设于所述第二换热管上;
    所述第三换热器包括多个第三翅片和多个第三换热管,多个第三所述换热管均呈单排设置,多个所述第三翅片套设于所述第三换热管上;
    所述第四换热器包括多个第四翅片和多个第四换热管,多个所述第四换热管呈单排设置,多个所述第四翅片套设于所述第四换热管上。
  16. 根据权利要求1至6中任一项所述的空调室内机,其中,
    在垂直于第三方向的截面中,所述第一组换热器和所述第二组换热器均为轴对称设置,所述轴对称设置的对称轴沿所述第一方向延伸。
  17. 根据权利要求1至6中任一项所述的空调室内机,其中,
    沿所述壳体的第一方向,所述进风口高于所述第一组换热器的下端部。
  18. 根据权利要求7所述的空调室内机,其中,
    所述出风口的数量为1个;
    所述出风口沿所述第二方向的宽度与所述射流喷嘴的端面至所述出风口所在平面之间的距离的比值的取值范围为0.1至0.7;和/或
    沿所述第二方向,相邻两个所述射流喷嘴的中心点之间的距离与所述出风口的宽度的比值的取值范围为0.5至2。
  19. 根据权利要求7所述的空调室内机,其中,
    沿所述第一方向,向垂直于所述第一方向的平面进行投影,在得到投影面内,所述第一组换热器和所述第二组换热器的宽度之和等于所述壳体的宽度与所述射流喷嘴的宽度的差值;和/或
    所述射流喷嘴的中心轴线与所述壳体的第二方向的夹角为第一夹角,所述第三换热器相对于所述第一方向的倾斜角度为第二夹角,所述第一夹角的取值范围为大于或等于90°减去所述第二夹角的差值,且小于或等于90°。
  20. 根据权利要求7所述的空调室内机,其中,还包括:
    康达效应元件,沿所述第一方向,所述康达效应元件设置于所述射流喷嘴的下方;
    其中,沿所述第一方向进行截面,在得到的截面上,所述康达效应元件关于所述射流喷嘴的中线对称。
  21. 一种空调室内机,其中,包括:
    壳体,所述壳体包括进风口和出风口,沿第一方向,所述出风口位于所述壳体的底部;
    换热器,设置于所述壳体内,空气经所述进风口流动至所述换热器进行热交换后,从所述出风口流出;
    所述换热器包括沿第二方向设置的多个换热段,相邻两个所述换热段之间形成有换热区,沿所述第二方向所述换热器依次设置有第一换热区和第二换热区;
    其中,从所述壳体的顶部至所述壳体的底部的方向,所述第一换热区沿所述第二方向的宽度逐渐增大,所述第二换热区沿所述第二方向的宽度逐渐减小;
    所述第一方向和所述第二方向相垂直,所述第一方向为重力方向。
  22. 根据权利要求21所述的空调室内机,其中,
    所述多个换热段之间形成有多个所述第一换热区和多个所述第二换热区,沿所述第二方向,所述第一换热区和所述第二换热区交错分布。
  23. 根据权利要求21或22所述的空调室内机,其中,
    沿垂直于第三方向的截面中,相邻两个所述换热段的截面形状为V型或倒置的V型;依次设置的四个所述换热段的截面形状为M型;
    其中,所述第三方向与所述第一方向和所述第二方向均相垂直。
  24. 一种空调器,其中,包括:
    如权利要求1至23中任一项所述的空调室内机。
PCT/CN2020/138386 2020-12-11 2020-12-22 空调室内机和空调器 WO2022120948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011443255.7 2020-12-11
CN202011443255.7A CN114623498B (zh) 2020-12-11 2020-12-11 空调室内机和空调器

Publications (1)

Publication Number Publication Date
WO2022120948A1 true WO2022120948A1 (zh) 2022-06-16

Family

ID=81895314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138386 WO2022120948A1 (zh) 2020-12-11 2020-12-22 空调室内机和空调器

Country Status (2)

Country Link
CN (1) CN114623498B (zh)
WO (1) WO2022120948A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306429A (ja) * 1991-04-03 1992-10-29 Kubota Corp 空調用熱交換装置
JPH10259953A (ja) * 1997-03-19 1998-09-29 Fujitsu General Ltd 空気調和機
JP2003185168A (ja) * 2001-12-20 2003-07-03 Fujitsu General Ltd 空気調和機
CN1746575A (zh) * 2004-09-06 2006-03-15 富士通将军股份有限公司 空调器
JP3846315B2 (ja) * 2002-01-18 2006-11-15 株式会社富士通ゼネラル 空気調和機
CN1967061A (zh) * 2005-11-14 2007-05-23 三洋电机株式会社 空气调和机
CN205991565U (zh) * 2016-08-25 2017-03-01 深圳沃海森科技有限公司 壁挂式室内机换热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204693612U (zh) * 2015-03-31 2015-10-07 四川长虹电器股份有限公司 一种空调室内主机
CN105402821B (zh) * 2015-12-30 2018-06-12 海信(山东)空调有限公司 一种空调室内机
CN205919423U (zh) * 2016-07-26 2017-02-01 青岛海尔中央空调有限公司 一种室内机及空调
CN107860060A (zh) * 2017-10-31 2018-03-30 青岛海尔空调器有限总公司 壁挂式空调器室内机
CN107940579B (zh) * 2017-12-21 2024-04-26 广东美的制冷设备有限公司 空调器室内机和具有其的空调器
CN110056972A (zh) * 2019-05-10 2019-07-26 青岛海尔空调器有限总公司 壁挂式空调器室内机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306429A (ja) * 1991-04-03 1992-10-29 Kubota Corp 空調用熱交換装置
JPH10259953A (ja) * 1997-03-19 1998-09-29 Fujitsu General Ltd 空気調和機
JP2003185168A (ja) * 2001-12-20 2003-07-03 Fujitsu General Ltd 空気調和機
JP3846315B2 (ja) * 2002-01-18 2006-11-15 株式会社富士通ゼネラル 空気調和機
CN1746575A (zh) * 2004-09-06 2006-03-15 富士通将军股份有限公司 空调器
CN1967061A (zh) * 2005-11-14 2007-05-23 三洋电机株式会社 空气调和机
CN205991565U (zh) * 2016-08-25 2017-03-01 深圳沃海森科技有限公司 壁挂式室内机换热器

Also Published As

Publication number Publication date
CN114623498B (zh) 2024-01-30
CN114623498A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN211695347U (zh) 换热装置和冷媒循环***
WO2022120948A1 (zh) 空调室内机和空调器
WO2024060347A1 (zh) 板式换热器
CN210165622U (zh) 换热器及空调设备
CN216204483U (zh) 一种相变式冷却换热器
CN112747469A (zh) 燃烧室和燃气设备
CN211290302U (zh) 室内机和空调器
AU2020394759B2 (en) Heat exchange device and refrigerant circulation system
CN110762636B (zh) 室内机和空调器
WO2022120947A1 (zh) 空调室内机和空调器
CN208296374U (zh) 一种空调制冷***用风向回转式表冷器结构
CN212870820U (zh) 一种冷却塔
WO2022120814A1 (zh) 空调室内机和空调器
WO2022120962A1 (zh) 空调室内机和空调器
WO2022120980A1 (zh) 空调室内机和空调器
CN221030831U (zh) 一种建筑隔热性铝合金幕墙
WO2022120977A1 (zh) 空调室内机和空调器
CN209768101U (zh) 带自循环冷却的整流装置
CN216282324U (zh) 一种铸件散热装置
KR102600005B1 (ko) 열교환볼을 구비한 전열교환기
CN213747044U (zh) 空调室内机和空调器
CN220912080U (zh) 一种带有风扇组的散热器
CN215378189U (zh) 一种散热性能良好的plc配电柜
CN212081529U (zh) 半导体空调
CN212411991U (zh) 磁控管的散热结构和具有其的磁控管、微波加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2023)