WO2022120980A1 - 空调室内机和空调器 - Google Patents

空调室内机和空调器 Download PDF

Info

Publication number
WO2022120980A1
WO2022120980A1 PCT/CN2020/139272 CN2020139272W WO2022120980A1 WO 2022120980 A1 WO2022120980 A1 WO 2022120980A1 CN 2020139272 W CN2020139272 W CN 2020139272W WO 2022120980 A1 WO2022120980 A1 WO 2022120980A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
air
indoor unit
air conditioner
casing
Prior art date
Application number
PCT/CN2020/139272
Other languages
English (en)
French (fr)
Inventor
江晨钟
林晨
业明坤
何家基
江宇
Original Assignee
广东美的白色家电技术创新中心有限公司
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2022120980A1 publication Critical patent/WO2022120980A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to an air conditioner indoor unit and an air conditioner.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application provides an air conditioner indoor unit.
  • a second aspect of the present application also provides an air conditioner.
  • a first aspect of the present application proposes an indoor unit of an air conditioner, comprising: a casing; a heat exchanger disposed in the casing, and the heat exchanger includes a plurality of first heat exchangers arranged in a wave shape along a first direction In the heat section, a heat exchange area is formed between two adjacent first heat exchange sections, and along the first direction, the heat exchanger is sequentially provided with a first heat exchange area and a second heat exchange area; from the top of the shell to the shell In the direction of the bottom of the body, the width of the first heat exchange area along the first direction gradually increases, and the width of the second heat exchange area along the first direction gradually decreases; A first air inlet is opened on the side wall, and a second air inlet corresponding to the second heat exchange area is opened on the top wall of the casing along the second direction and/or on the two second side walls spaced apart from the casing along the third direction.
  • the bottom wall of the casing along the second direction is provided with a first air outlet corresponding to the first heat exchange area; the first direction, the second direction and the third direction are perpendicular to each other, and the second direction is the direction of gravity.
  • the air conditioner indoor unit provided by the present application includes a casing and a heat exchanger arranged in the casing, wherein, along the second direction, the first air outlet is arranged on the bottom wall of the casing.
  • the air conditioner indoor unit When the air conditioner indoor unit is performing natural convection cooling , after the airflow passes through the heat exchanger, it becomes cold air for cooling. The density of cold air is greater than that of air. Under the action of gravity, the cold air flows to the first air outlet below after heat exchange, and finally enters from the first air outlet.
  • the room is refrigerated, and after the cold air flows out, a negative pressure is formed in the casing, and then the air is continuously drawn into the casing from the first air inlet and the second air inlet to form a natural convection air circulation.
  • the indoor air is heated by natural convection, and the entire heat exchange process does not require the fan to work, thereby avoiding the noise generated by the fan operation while ensuring a good heat exchange capacity.
  • the second air inlet is arranged on the two second side walls; the projection is performed to the reference plane perpendicular to the third direction, and the projection of the second air inlet is located between the projections of the second heat exchange area and/or the second air inlet is arranged on the top wall of the casing, and is projected to the reference plane perpendicular to the second direction, and the projection of the second air inlet is located at the two first heat exchange areas forming the first heat exchange area. between the projections of the lower ends of the segments.
  • the air conditioner indoor unit further includes a second air outlet, and the second air outlet is arranged on the bottom wall of the casing along the second direction; wherein, two adjacent second air outlets forming the second heat exchange area There is a gap between the lower ends of a heat exchange section, and the second air outlet communicates with the second heat exchange area through the gap.
  • the air-conditioning indoor unit further includes a fan, the fan includes an inlet and an outlet, and the fan is located in the second heat exchange area; the air door, the air door can be opened and closed to be connected with the second air inlet; wherein, in the fan In the open state, the damper closes the second air inlet, and the air flowing into the housing from the first air inlet and the first air outlet flows into the inlet, and then flows from the outlet to the second air outlet.
  • the air conditioner indoor unit further includes a hollow bracket, the hollow bracket is located in the second heat exchange zone, and the fan is arranged on the hollow bracket.
  • the fan includes a cross-flow fan.
  • the first heat exchange sections located on both sides of the first heat exchange area are arranged in axisymmetrical arrangement, and the axis of symmetry arranged axially extends along the second direction.
  • the number of the first heat exchange areas is two groups, and along the first direction, the two groups of first heat exchange areas are arranged at intervals, and the first heat exchange areas and the second heat exchange areas are alternately distributed;
  • the number of the first air outlet is two groups, the first air outlet and the first heat exchange area are arranged in a one-to-one correspondence, and the second air outlet of the air conditioner indoor unit is located between the two groups of the first air outlet.
  • the cross section of the first heat exchange zone is an inverted V-shape, and the cross-section of the second heat exchange zone is V-shaped.
  • the connecting line between the upper end portion and the lower end portion of the outermost first heat exchange segment is inclined with respect to the second direction.
  • the connecting line between the upper end and the lower end of the outermost first heat exchange segment is arranged in parallel with respect to the second direction.
  • the heat exchanger further comprises: a second heat exchange section and a third heat exchange section, and the second heat exchange section and the third heat exchange section are arranged in the second heat exchange zone; A third heat exchange area is formed between the second heat exchange section and the third heat exchange section, and the width of the third heat exchange area along the second direction gradually increases from the top of the casing to the bottom of the casing.
  • the connection line between the upper end and the lower end of one first heat exchange section is the first included angle
  • the included angle formed by the connection line between the upper end and the lower end of the other first heat exchange segment with respect to the second direction is the second included angle
  • the second included angle The angle is greater than or equal to the difference between half of the first included angle and 10°, and less than or equal to the sum of half of the first included angle and 10°.
  • the distance between the upper edge of the first heat exchange section forming the second heat exchange zone and the fan of the indoor unit of the air conditioner is greater than or equal to 0.22 of the height of the casing in the second direction times, and less than or equal to 0.64 times the height of the shell.
  • the first heat exchange section includes a plurality of fins and a plurality of heat exchange tubes, the plurality of heat exchange tubes are arranged in a single row, and the plurality of fins are sleeved on the heat exchange tubes.
  • the ratio of the distance between two adjacent fins along the third direction to the width of a single fin is greater than or equal to 0.1 and less than or equal to 0.45.
  • the housing includes: an air inlet cover, the first air inlet and the second air inlet are arranged on the air inlet cover; the bottom plate, the air inlet cover is arranged on the bottom plate, and the first air outlet
  • the end plate is connected to the bottom plate and is located in the shell, and the end plate is provided with an installation hole, and the end of the heat exchange tube is installed in the installation hole.
  • an air conditioner comprising: an air conditioner indoor unit as proposed in any of the above technical solutions.
  • the air conditioner provided by the second aspect of the present application includes the air conditioner indoor unit proposed by any of the above technical solutions, it has all the beneficial effects of the air conditioner indoor unit.
  • FIG. 1 shows a schematic structural diagram of an air conditioner indoor unit according to an embodiment of the present application
  • FIG. 2 shows another schematic structural diagram of an air conditioner indoor unit according to an embodiment of the present application
  • Fig. 3 shows another structural schematic diagram of an air conditioner indoor unit according to an embodiment of the present application
  • FIG. 4 shows yet another schematic structural diagram of an air conditioner indoor unit according to an embodiment of the present application
  • FIG. 5 shows another schematic structural diagram of an air conditioner indoor unit according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of an air conditioner indoor unit according to another embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of an air conditioner indoor unit according to another embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of an indoor unit of an air conditioner according to another embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of an air conditioner indoor unit according to another embodiment of the present application.
  • FIG. 10 shows another schematic structural diagram of an air conditioner indoor unit according to an embodiment of the present application.
  • FIG. 11 shows another schematic structural diagram of an air conditioner indoor unit according to an embodiment of the present application.
  • Air conditioner indoor unit 10 shell, 102 first side wall, 104 second side wall, 105 air inlet cover, 106 bottom plate, 107 end plate, 108 mounting holes, 12 heat exchanger, 120 first heat exchange section, 1200 fins, 1202 heat exchange tubes, 122 first heat exchange area, 124 second heat exchange area, 14 first air inlet, 16 second air inlet, 160 first sub-tuyere, 162 second sub-tuyere, 18 first Air outlet, 20 fan, 202 inlet, 204 outlet, 22 damper, 24 second air outlet, 26 hollow bracket, 28 second heat exchange section, 30 third heat exchange section, 32 third heat exchange area, 34 water tank.
  • the air conditioner indoor unit 1 and the air conditioner according to some embodiments of the present application will be described below with reference to FIGS. 1 to 11 .
  • the first aspect of the present application provides an air conditioner indoor unit 1 , comprising: a casing 10 and a heat exchanger 12 disposed in the casing 10 .
  • the heat exchanger 12 includes a plurality of first heat exchange segments 120 arranged in a wave shape along the first direction, a heat exchange area is formed between two adjacent first heat exchange segments 120, and along the first direction, the heat exchange area is
  • the heat exchanger 12 is sequentially provided with a first heat exchange area 122 and a second heat exchange area 124; from the top of the casing 10 to the bottom of the casing 10, the width of the first heat exchange area 122 along the first direction gradually increases , the width of the second heat exchange area 124 along the first direction gradually decreases; wherein, the two first side walls 102 of the casing 10 spaced along the first direction are provided with first air inlets 14, and the casing 10 along the second
  • a second air inlet 16 corresponding to the second heat exchange area 124 is opened on the top wall of the housing 10 in the third direction and/or on the two second side walls 104 of the housing 10 along the third direction.
  • a first air outlet 18 corresponding to the first heat exchange area 122 is opened on the bottom wall; the first direction,
  • the air conditioner indoor unit 1 provided by the present application includes a casing 10 and a heat exchanger 12 disposed in the casing 10, wherein, along the second direction, the first air outlet 18 is disposed on the bottom wall of the casing 10, and when the air conditioner indoors When the machine 1 performs natural convection cooling, the airflow passes through the heat exchanger 12 and becomes cold air for cooling. The density of cold air is greater than that of air. Under the action of gravity, the cold air flows to the first outlet below after heat exchange. The air outlet 18 finally enters the room through the first air outlet 18 for cooling.
  • the first direction is the width direction of the casing 10
  • the second direction is the gravity direction, that is, the height direction of the casing 10
  • the third direction is the length direction of the casing 10 .
  • the first air outlet 18 is disposed on the bottom wall of the casing 10 , that is, along the direction of gravity, the first air outlet 18 is disposed on the bottom plate 106 of the casing 10 .
  • the lower wall of the casing 10 is the bottom wall of the casing 10 , that is, the wall of the bottom plate 106 ; in the direction of gravity, the upper wall of the casing 10 is the top wall of the casing 10 .
  • the heat exchanger 12 includes a plurality of first heat exchange sections 120 arranged along the first direction, and the plurality of first heat exchange sections 120 are wavy. Such an arrangement can improve the The heat exchange efficiency is improved, thereby improving the heat exchange capacity of the air conditioner indoor unit 1 .
  • a heat exchange area is formed between two adjacent first heat exchange sections 120, and along the first direction, the heat exchanger 12 is sequentially provided with a first heat exchange area 122 and a second heat exchange area 124.
  • the first heat exchange area The width of 122 gradually increases from the top to the bottom of the shell 10, and the width of the second heat exchange zone 124 gradually decreases from the top to the bottom of the shell 10, that is, the first heat exchange zone 122 gradually decreases from bottom to top Therefore, the condensed water on the first heat exchange section 120 will flow down along the fins 1200 to avoid direct dripping of the condensed water and facilitate the collection of the condensed water.
  • the upper ends of the two adjacent first heat exchange sections 120 forming the first heat exchange area 122 are arranged in a staggered manner, so that the tops of the two adjacent first heat exchange sections 120 are overlapped, thereby preventing the air After heat exchange in the heat exchanger 12 , it enters the first heat exchange zone 122 .
  • the first air outlet 18 is disposed corresponding to the first heat exchange zone 122 , that is, after the air enters the casing 10 through the first air inlet 14 and the second air inlet 16 , it exchanges heat with the first heat exchange zone 120 . Then, it enters the first heat exchange zone 122 , and then flows out from the first air outlet 18 .
  • the second air inlet 16 is arranged corresponding to the second heat exchange area 124 , that is, the air enters the second heat exchange area 124 from the second air inlet 16 , and then exchanges heat with the first heat exchange section 120 forming the second heat exchange area 124 Then, it enters the first heat exchange zone 122 , and then flows out from the first air outlet 18 .
  • the second air inlets 16 are arranged on the two second side walls 104 ; the projection to the reference plane perpendicular to the third direction is performed, and the projection of the second air inlets 16 is located in the second heat exchange area 124; and/or as shown in FIG. 6, the second air inlet 16 is provided on the top wall of the housing 10, and is projected to the reference plane perpendicular to the second direction, and the projection of the second air inlet 16 is located at Between the projections of the lower ends of the two first heat exchange sections 120 forming the first heat exchange zone 122 .
  • the projection is performed on the reference plane perpendicular to the third direction, and the projection of the second air inlets 16 is located in the second heat exchange area Within the projection of 124, the first heat exchange section 120 forming the second heat exchange area 124 can exchange heat with the air flowing into the housing 10 through the second air inlet 16, thereby improving the cooling efficiency of the air conditioner.
  • the projection to the reference plane perpendicular to the second direction is performed, and the projection of the second air inlet 16 is located within the projection of the second heat exchange area 124, so that The air entering the casing 10 through the second air inlet 16 at the top of the casing 10 can flow out from the first air outlet 18 after heat exchange with the first heat exchange section 120 forming the second heat exchange area 124, that is, through the first air outlet 18.
  • the arrangement of the second air inlets 16 ensures that the first heat exchange section 120 located inside along the first direction can also realize heat exchange, thereby improving the heat exchange capability of the air conditioner.
  • the air inlet area is increased, thereby increasing the air outlet volume of the air conditioner indoor unit 1 .
  • the included angle ⁇ is less than 180°.
  • the included angle ⁇ is less than 90°, which facilitates the collection of condensed water, and increases the heat exchange area between the air and the heat exchanger 12 in a limited space, thereby improving the output capacity of the air-conditioning indoor unit 1 and improving the air-conditioning indoor unit 1.
  • the heat exchange efficiency can reach the user's set temperature as soon as possible, thereby improving the user's comfort.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the air conditioner indoor unit 1 further includes a second air outlet 24, along the second direction, the second The air outlet 24 is arranged on the bottom wall of the casing 10; wherein, there is a gap between the lower ends of the two adjacent first heat exchange sections 120 forming the second heat exchange area 124, and the second air outlet 24 passes through the gap and the second heat exchange area 124.
  • the heat exchange zones 124 are in communication.
  • the air conditioner indoor unit 1 further includes a second air outlet 24, the second air outlet 24 is arranged on the bottom wall of the housing 10, and the second air outlet 24 communicates with the second heat exchange area 124 through a gap,
  • the air entering the casing 10 through the first air inlet 14 and the second air inlet 16 exchanges heat with the heat exchanger 12 and flows out through the first air outlet 18, so that the inside of the casing 10 A negative pressure is formed, so that the second air inlet 16 acts as an air inlet, so that the indoor return air can enter the second heat exchange area 124 from the second air inlet 16 through the gap between the adjacent first heat exchange sections 120, and then communicate with the first heat exchange section 124.
  • the heat exchange section 120 flows out from the first air outlet 18 after heat exchange, that is, the setting of the second air outlet 24 can increase the air intake volume of the air conditioner indoor unit 1 during natural convection heat exchange, thereby improving the air conditioning indoor unit 1. Thermal efficiency.
  • the air conditioner indoor unit 1 further includes a fan 20, and the fan 20 includes an inlet 202 and an outlet 204, and the fan 20 is set in the second heat exchange area 124; the damper 22, the damper 22 can be opened and closed with the second air inlet 16; wherein, when the fan 20 is turned on, the damper 22 closes the second air inlet 16, from the first air inlet 16.
  • the air flowing into the housing 10 from the air inlet 14 and the first air outlet 18 flows into the inlet 202 , and then flows from the outlet 204 to the second air outlet 24 .
  • the air conditioner indoor unit 1 further includes a fan 20 and a damper 22 , the fan 20 is arranged in the second heat exchange area 124 , and the damper 22 is openably and closably connected to the second air inlet 16 , that is, through the The setting enables the second air inlet 16 to be switched on and off, and through the setting of the fan 20 , active air supply can be achieved, thereby increasing the cooling capacity of the air conditioner indoor unit 1 .
  • the first air inlet 14 and the two first air outlets 18 are used as air inlets to communicate with the inlet 202 of the fan 20, which greatly increases the air intake volume
  • the second air outlet 24 is used as the air outlet It is communicated with the outlet 204 of the fan 20, and the air after heat exchange is discharged into the room through the second air outlet 24, so as to cool or heat the indoor environment.
  • the second air inlet 16 can be closed through the damper 22 to prevent the airflow entering from the second air inlet 16 from being discharged without heat exchange by the heat exchanger 12 and reducing the heat exchange efficiency.
  • a part of the air flow is driven by the first air inlet 14 on the first side wall 102 close to the inlet 202 of the fan 20 and the first air outlet 18 on the bottom wall of the housing 10 by the fan 20 It is sucked into the fan 20, and then discharged to the second air outlet 24 from the outlet 204; at the same time, a part of the air flow is drawn from the first air inlet 14 corresponding to the first side wall 102 away from the inlet 202 of the fan 20, and the other side of the bottom wall of the housing 10.
  • a first air outlet 18 is entrained into the casing 10, and then discharged from the casing 10 through the second air outlet 24, thereby providing a larger air volume through the active air supply of the fan 20, achieving the effect of a larger cooling capacity.
  • the first air inlet 14 and the second air inlet 16 are used as air inlets, and the air flows from the first air inlet 14 and the second air inlet 16 through the heat exchanger 12 flows out from the first air outlet 18 after heat exchange, so that a negative pressure is formed in the cavity, so that the second air outlet 24 acts as an air inlet, that is, the air flow can also flow into the housing 10 through the second air outlet 24 at this time, and pass through the
  • the two first heat exchange sections 120 forming the second heat exchange area 124 flow out from the first air outlet 18 after heat exchange, thereby increasing the air intake and cooling capacity, and improving the cooling effect.
  • the second air inlet 16 can be opened, so that the air flow can enter the casing 10 through the second air inlet 16 to exchange heat with the first heat exchange section 120 forming the second heat exchange area 124, which increases the natural environment. Convective cooling capacity.
  • the second air inlet 16 when the fan 20 is turned on, the second air inlet 16 may not be closed.
  • the air outlet 18 enters the casing 10 and mixes with the air flow after heat exchange from the heat exchanger 12 and flows out from the second air outlet 24, thereby increasing the air output of the air conditioner and reducing the wind resistance.
  • any second air inlet 16 on the same side of the housing 10 includes a first sub-air port 160 and a second sub-air port 162 , which are perpendicular to the third direction.
  • the first sub-tuyere 160 and the second sub-tuyere 162 on the same side of the housing 10 are located on both sides of the fan 20 respectively. As shown in FIG.
  • the number of fans 20 is two, and the two fans 20 are distributed along the third direction.
  • the number of fans 20 is two, and the two fans 20 are distributed along the third direction, thereby increasing the air output in the third direction.
  • the air conditioner indoor unit 1 further includes a hollow bracket 26 , the hollow bracket 26 is located in the second heat exchange area 124 , and the fan 20 is arranged on the hollow bracket 26 .
  • the air conditioner indoor unit 1 further includes a hollow bracket 26, and the fan 20 is arranged on the hollow bracket 26 to support the fan 20.
  • the hollow bracket 26 can supply airflow to pass through, reducing the flow resistance of the airflow. , which increases the air outlet speed and air volume.
  • part of the airflow can also flow from the second air outlet 24 through the hollow bracket 26 to the first heat exchange section 120 forming the second heat exchange area 124 , and pass heat exchange with the first heat exchange section 120 Then flow to the first air outlet 18 .
  • top of the fan 20 is connected with the top wall of the housing 10 , which improves the reliability of the fan 20 .
  • the fan 20 includes a cross-flow fan.
  • the fan 20 includes a cross-flow fan.
  • the cross-flow fan has the advantages of large air volume, low noise, and stable outlet air flow. Therefore, the use of the cross-flow fan can increase the air outlet volume of the air-conditioning indoor unit 1 and reduce the air-conditioning indoor unit. 1 Noise during operation.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the first heat exchange sections 120 located on both sides of the first heat exchange area 122 are axial Symmetrically arranged, and the axis of symmetry of the axis-symmetric arrangement extends along the second direction.
  • the two first heat exchange sections 120 forming the first heat exchange area 122 are symmetrically arranged, so that the two first heat exchange sections 120 can increase the heat exchange area in a limited space and improve the exchange rate.
  • the larger first heat exchange area 122 is formed, so that the air completely passes through the heat exchanger 12 for heat exchange and then flows out from the first air outlet 18 .
  • the two adjacent first heat exchange sections 120 may not be completely symmetrical, that is, a certain deviation is allowed.
  • the inclination angle of one first heat exchange section 120 relative to the second direction in the two adjacent first heat exchange sections 120 differs from the inclination angle of the other first heat exchange section 120 relative to the second direction by no more than 5°.
  • the two adjacent first heat exchange sections 120 are symmetrically arranged along the symmetry axis of the second direction, so that the heat exchange area can be increased in a limited space.
  • the fan 20 When the fan 20 is turned on, one side actively cools the other side. It is ejected and cooled, which improves the heat exchange capacity and the utilization efficiency of the heat exchanger 12 .
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the number of the first heat exchange areas 122 is two groups, and along the first direction, two groups of first heat exchange areas The hot areas 122 are arranged at intervals, and the first heat exchange areas 122 and the second heat exchange areas 124 are alternately distributed; wherein, the number of the first air outlets 18 is two groups, and the first air outlets 18 are in one-to-one correspondence with the first heat exchange areas 122 It is arranged that the second air outlet 24 of the air conditioner indoor unit 1 is located between the two groups of the first air outlet 18 .
  • the number of the second heat exchange areas 124 is two groups, the two groups of the second heat exchange areas 124 are arranged at intervals, and the first heat exchange areas 122 and the second heat exchange areas 124 are arranged alternately, and the first air outlet 18 and the first heat exchange area 122 are arranged in a one-to-one correspondence, and the second air outlet 24 is arranged between the two groups of the first air outlet 18.
  • This arrangement ensures the heat exchange effect of the air conditioner and reduces the The dimension of the air conditioner indoor unit 1 along the first direction is determined.
  • the cross section of the first heat exchange area 122 is an inverted V-shape
  • the cross-section of the second heat exchange area 124 is V-shaped.
  • inverted V-shape and V-shape refer to a general V-shape, or a V-like shape.
  • the inverted V-shaped structure makes at least one of the two first heat exchange sections 120 forming the first heat exchange area 122 inclined relative to the second direction, which increases the exchange rate in the limited space of the shell 10 .
  • the inverted V-shaped structure facilitates the collection of condensed water and prevents the condensed water from dripping on the bottom wall of the housing 10 or directly on the indoor floor.
  • the cross section of the second heat exchange zone 124 is V-shaped, which facilitates placement of the fan 20 and collection of condensed water on the two first heat exchange sections 120 forming the second heat exchange zone 124 .
  • the connecting line between the upper end and the lower end of the outermost first heat exchange segment 120 is inclined with respect to the second direction.
  • the connecting line between the upper end and the lower end of the outermost first heat exchange section 120 is inclined relative to the second direction, that is, the first heat exchange section 120 is inclined, and further increases In addition to the heat exchange area, the collection of condensed water on the first heat exchange section 120 is also facilitated.
  • the connecting line between the upper end and the lower end of the outermost first heat exchange segment 120 is arranged parallel to the second direction.
  • the connecting line between the upper end and the lower end of the outermost first heat exchange section 120 is arranged in parallel with respect to the second direction, so that the air intake in the first direction is connected to the first heat exchange section. 120 is discharged after complete heat exchange, which improves the heat exchange effect and also shortens the width of the casing 10 in the first direction.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the heat exchanger 12 further includes: a second heat exchange section 28 and a third heat exchange section 30.
  • the second heat exchange section 28 and the third heat exchange section 30 are arranged in the second heat exchange zone 124; wherein, a third heat exchange zone 32 is formed between the second heat exchange section 28 and the third heat exchange section 30, From the top of the casing 10 to the bottom of the casing 10 , the width of the third heat exchange region 32 in the second direction gradually increases.
  • the heat exchanger 12 further includes a second heat exchange section 28 and a third heat exchange section 30, and both the second heat exchange section 28 and the third heat exchange section 30 are arranged in the second heat exchange zone 124,
  • the third heat exchange area 32 is formed, and the heat exchange area in the second heat exchange area 124 is increased, thereby improving the cooling or heating capacity.
  • the width of the third heat exchange area 32 gradually increases from the top wall of the casing 10 to the bottom wall of the casing 10, so that the third heat exchange area 32 formed by the second heat exchange section 28 and the third heat exchange section 30 has a negative impact on the airflow. It plays the role of downward guidance, which facilitates the outflow of airflow during natural convection and improves the natural convection capability.
  • the third heat exchange zone 32 is in an inverted V shape.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the features defined in any of the above embodiments are included, and further: in a section perpendicular to the third direction, two first heat exchange zones 122 are formed.
  • the connecting line between the upper end and the lower end of one first heat exchange section 120 forms an included angle with respect to the second direction is the first included angle ⁇ 1
  • the upper end of the other first heat exchange section 120 forms a first included angle ⁇ 1.
  • the angle formed by the connecting line with the lower end relative to the second direction is the second included angle ⁇ 1; the second included angle ⁇ 1 is greater than or equal to the difference between half of the first included angle ⁇ 1 and 10°, and less than or equal to the first included angle The sum of half the angle ⁇ 1 and 10°.
  • one first heat exchange section 120 is disposed close to the fan 20, and the other first heat exchange section 120 is disposed away from the fan 20, Therefore, the larger the second included angle ⁇ 1, the farther the first heat exchange section 120 close to the fan 20 is from the fan 20, and accordingly, the larger the area of the second air inlet 16 is.
  • the fan 20 sucks more indoor return air without heat exchange, and the air flow after heat exchange by the heat exchanger 12 is less, which leads to the active strong wind when the fan 20 is turned on when the second air inlet 16 is not closed.
  • the second included angle ⁇ 1 is designed to be greater than or equal to the difference between half of the first included angle ⁇ 1 and 10°, and less than or equal to the sum of half of the first included angle ⁇ 1 and 10°, which not only takes into account the performance of natural convection , and does not affect the active air suction effect when the fan 20 is turned on.
  • the distance s1 between the upper edge of the first heat exchange section 120 forming the second heat exchange area 124 and the fan 20 of the air conditioner indoor unit 1 is greater than or equal to
  • the height H in the direction is 0.22 times and less than or equal to 0.64 times the height H of the housing 10 .
  • the first heat exchange section 120 forming the second heat exchange area 124 is disposed close to the fan 20 , so the distance between the first heat exchange section 120 forming the second heat exchange area 124 and the fan 20 affects the active operation of the fan 20 Air suction capacity, specifically, the farther the upper edge of the first heat exchange section 120 forming the second heat exchange area 124 is from the fan 20, the more air is sucked by the fan 20 when the second air inlet 16 is not closed. The more indoor return air after heat exchange, the cooling effect of the air conditioner indoor unit 1 is affected. The shorter the length of the first heat exchange section 120 in the zone 124 is, the heat exchange effect during natural air intake will be affected. Therefore, according to the above setting, both the performance of natural convection is taken into account, and the active air suction effect when the fan 20 is turned on is not affected.
  • the first heat exchange section 120 includes a plurality of fins 1200 and a plurality of heat exchange tubes 1202 , the plurality of heat exchange tubes 1202 are arranged in a single row, and the plurality of fins 1200 are sleeved on the heat exchange tubes 1202 .
  • the first heat exchange section 120 includes a plurality of fins 1200 and a plurality of heat exchange tubes 1202, wherein the plurality of heat exchange tubes 1202 of any first heat exchange section 120 are arranged in a single row (as shown in FIG. 2, the directions indicated by the dotted lines a, b, c, and d are arranged in a row), in this way, it is beneficial to reduce the wind resistance of the air conditioner in the state of natural convection, and at the same time, it is also beneficial to improve the heat exchange efficiency.
  • the ratio of the distance between two adjacent fins 1200 along the third direction to the width of a single fin 1200 is greater than or equal to 0.1 and less than or equal to 0.45.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the housing 10 includes: an air inlet cover 105 , a bottom plate 106 and an end plate 107 .
  • An air inlet 14 and a second air inlet 16 are arranged on the air inlet cover 105; the air inlet cover 105 is arranged on the bottom plate 106, and the first air outlet 18 is arranged on the bottom plate 106; the end plate 107 is connected with the bottom plate 106, Located in the casing 10 , the end plate 107 is provided with a mounting hole 108 , and the end of the heat exchange tube 1202 is mounted in the mounting hole 108 .
  • the housing 10 is composed of a cover body, a bottom plate 106 and an end plate 107 , the cover body is provided on the heat exchanger 12 and the fan 20 , and the first air inlet 14 and the second air inlet 16 are provided on the air inlet cover.
  • the first air outlet 18 and the second air outlet 24 are formed on the bottom plate 106 , and the ends of the heat exchange tubes 1202 are mounted on the bottom plate 106 through the end plates 107 to improve the stability of the heat exchanger 12 .
  • the end plate 107 is provided with a first installation hole 108 and a second installation hole 108 , wherein the ends of the two groups of heat exchange tubes 1202 of the two adjacent groups of the first heat exchange sections 120 are respectively installed in the first installation holes 108 and the second mounting hole 108.
  • first installation hole 108 includes a plurality of first holes
  • second installation hole 108 includes a plurality of second holes.
  • the air conditioner indoor unit 1 further includes: a plurality of water receiving grooves, which are arranged in the casing 10 , and the bottom of any first heat exchange section 120 is provided with water receiving grooves.
  • the air conditioner indoor unit 1 further includes a plurality of water receiving grooves 34, and the plurality of water receiving grooves 34 are respectively disposed at the bottom of the plurality of first heat exchange sections 120, which not only ensures the circulation effect of air flow, but also can collect condensation water to avoid direct dripping of condensed water.
  • the projection of one end of the fin 1200 on the first heat exchange section 120 close to the corresponding water receiving groove 34 is located in the corresponding within the projection area of the sink 34.
  • the fins 1200 are close to one end of the bottom wall of the housing 10, and along the width direction of the fins 1200, the projections of the fins 1200 are located in the corresponding water receiving grooves 34, that is, along the first direction, the width of the water receiving grooves 34 can be The projection of the sheet width covering the ends of the fins 1200 in the second direction, so that the water receiving groove 34 can completely catch the condensed water flowing down the fins 1200 and prevent the condensed water from directly dripping on the bottom of the casing 10 from the fins 1200 The wall or directly drips onto the outside of the air conditioner indoor unit 1 .
  • the bottom wall of the water receiving groove 34 is provided with drainage holes.
  • the bottom wall of the water receiving groove 34 is provided with a drain hole, so that the condensed water can be drained to the outside of the housing 10 through the drain hole.
  • the bottom wall of the water receiving groove 34 is inclined toward the middle of the water receiving groove 34 .
  • the bottom wall of the water receiving groove 34 is inclined to the middle of the water receiving groove 34, that is, the water receiving groove 34 is inclined to the bottom wall of the housing 10 from both ends to the middle, so that in the third direction,
  • the water receiving tank 34 includes a first bottom wall inclined toward the middle from one end, and a second bottom wall inclined toward the middle of the water receiving tank 34 from the other end, so that the condensed water can be drained smoothly.
  • the included angle between the first bottom wall of the water receiving tank 34 and the third direction is greater than or equal to 3°, and the included angle between the second bottom wall and the third direction is greater than or equal to 3°.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • an air conditioner including: the air conditioner indoor unit 1 as proposed in any of the above embodiments.
  • the air conditioner provided in the second aspect of the present application includes the air conditioner indoor unit 1 proposed in any of the above embodiments, it has all the beneficial effects of the air conditioner indoor unit 1 .
  • the air conditioner also includes a control system, the control system can obtain the working mode instruction of the air conditioner, and control the air conditioner indoor unit 1 to perform natural convection heat exchange according to the working mode instruction, or the fan 20 actively exchanges heat, or natural convection heat exchange and The fan 20 performs active heat exchange at the same time to meet the different needs of users and maximize the comfort of users.
  • the air conditioner indoor unit 1 provided by the present application can be applied to multiple products such as household air conditioners, central air conditioners, commercial air curtains, and indoor terminals of commercial air conditioners.
  • an air conditioner indoor unit 1 which includes at least two working modes, including a natural wind mode, which can be applied to sleep mode cooling, etc.; and an active strong air mode, which can be applied to rapid cooling or fast heating.
  • the airflow direction is shown by the dashed arrow in FIG. 3
  • the fan 20 is turned off, and the indoor return air enters the housing 10 through the first air inlet 14 and the second air inlet 16 .
  • the cold air after cooling will flow out from the first air outlet 18 to the room under the action of gravity due to the increase in density, and the hot air in the room will enter the shell in the form of return air. 10.
  • the second air outlet 24 acts as an air inlet to a certain extent, and a small amount of indoor return air will be cooled through the second air outlet 24 through the hollow bracket 26 and through the first heat exchange section 120 near the fan 20 .
  • the second air inlet 16 is closed by the damper 22, and the airflow direction is shown by the dashed arrow in FIG. 7.
  • the airflow is divided into two routes corresponding to the first air flow.
  • the first air inlet 14 and the first air outlet 18 of the hot zone 122 are sucked into the fan 20 , wherein one air flow flows into the fan 20 from the first air inlet 14 near the inlet 202 of the fan 20 through the first heat exchange section 120 after heat exchange.
  • a flow of air flows from the first air outlet 18 to the fan 20 after being cooled by the first heat exchange section 120, and the fan 20 discharges the wind vertically downward to form a certain negative pressure area.
  • the return air on the side is also sucked into the air duct through the air inlet method similar to the above-mentioned two air outlets, that is, a part of the air flow enters the air duct through the first air inlet 14 away from the fan 20 after heat exchange through the first heat exchange section 120.
  • the fan 20 and a part of the air flow enter the fan 20 after heat exchange through the first heat exchange section 120 from the first air outlet 18 .
  • an air conditioner indoor unit 1 including a mode in which natural convection and active strong wind heat exchange are performed simultaneously.
  • the mode is turned on, as shown in FIGS. 1 to 11 , the fan 20 is turned on, Under the suction of the fan 20, one air flow flows into the fan 20 from the first air inlet 14 near the inlet 202 of the fan 20 through the first heat exchange section 120 and then flows into the fan 20, and one air flow passes through the first heat exchange section from the first air outlet 18.
  • the 120 flows into the fan 20, and the fan 20 discharges the wind vertically downward to form an active air outlet, and a certain negative pressure area is formed.
  • one air flow enters the casing 10 from the first air inlet 14 far away from the inlet 202 of the fan 20, and flows out from the first air inlet 14 after exchanging heat with the first heat exchange section 120 to form natural convection heat exchange.
  • the fan 20 Since the fan 20 is turned on, on the one hand, the active air supply is realized and the cooling capacity is increased; The air volume of the indoor unit 1 further increases the cooling capacity of natural convection.
  • the term “plurality” refers to two or more, unless expressly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense.
  • “connected”, “connected” and “connected” may be a fixed integral connection or a detachable connection. , which can be directly connected or indirectly connected through an intermediate medium.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种空调室内机(1)和空调器,空调室内机(1)包括:壳体(10);换热器(12),设置于壳体(10)内,换热器(12)包括沿第一方向呈波浪形设置的多个第一换热段(120),相邻两个第一换热段(120)之间形成有换热区,沿第一方向,换热器(12)依次设置有第一换热区(122)和第二换热区(124);壳体(10)沿第一方向间隔的两个第一侧壁(102)上开设有第一入风口(14),壳体(10)沿第二方向的顶壁上和/或壳体(10)沿第三方向间隔的两个第二侧壁(104)上开设有与第二换热区(124)对应的第二入风口(16),壳体(10)沿第二方向的底壁上开设有与第一换热区(122)对应的第一出风口(18)。

Description

空调室内机和空调器
本申请要求于2020年12月11日提交到中国国家知识产权局、申请号为“202011452897.3”、申请名称为“空调室内机和空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,具体而言,涉及一种空调室内机和一种空调器。
背景技术
传统空调制冷中始终伴随风机运行,即使风机转速降低,依然存在风机噪音的问题。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提供了一种空调室内机。
本申请的第二方面还提供了一种空调器。
有鉴于此,本申请的第一方面提出了一种空调室内机,包括:壳体;换热器,设置于壳体内,换热器包括沿第一方向呈波浪形设置的多个第一换热段,相邻两个第一换热段之间形成有换热区,沿第一方向,换热器依次设置有第一换热区和第二换热区;从壳体的顶部至壳体的底部的方向,第一换热区沿第一方向的宽度逐渐增大,第二换热区沿第一方向的宽度逐渐减小;其中,壳体沿第一方向间隔的两个第一侧壁上开设有第一入风口,壳体沿第二方向的顶壁上和/或壳体沿第三方向间隔的两个第二侧壁上开设有与第二换热区对应的第二入风口,壳体沿第二方向的底壁上开设有与第一换热区对应的第一出风口;第一方向、第二方向和第三方向互相垂直,第二方向为重力方向。
本申请提供的空调室内机,包括壳体和设置在壳体内的换热器,其中,沿第二方向,第一出风口设于壳体的底壁,当空调室内机在进行自然对流制冷 时,气流经过换热器后,变为用于制冷的冷空气,冷空气密度比空气更大,在重力的作用下冷空气换热后流向下方的第一出风口,最终由第一出风口进入室内进行制冷,冷空气流出后壳体内形成负压,进而继续吸引空气从第一入风口和第二入风口流入壳体,形成自然对流空气循环。通过自然对流的形式为室内的空气进行换热,整个换热过程无需风机工作,进而在保证良好的换热能力的情况下,避免了风机工作产生的噪音。
根据本申请提供的上述的空调室内机,还可以具有以下附加技术特征:
在上述技术方案中,进一步地,第二入风口设于两个第二侧壁上;向垂直于第三方向的参考面进行投影,第二入风口的投影位于第二换热区的投影之内;和/或第二入风口设于壳体的顶壁上,向垂直于第二方向的参考面进行投影,第二入风口的投影位于形成第一换热区的两个第一换热段的下端部的投影之间。
在上述技术方案中,进一步地,空调室内机还包括第二出风口,沿第二方向,第二出风口设于壳体的底壁;其中,形成第二换热区的相邻两个第一换热段的下端部之间具有间隙,第二出风口经过间隙与第二换热区连通。
在上述技术方案中,进一步地,空调室内机还包括风机,风机包括进口和出口,风机设于第二换热区内;风门,风门可开合地与第二入风口连接;其中,在风机开启的状态下,风门关闭第二入风口,由第一入风口和第一出风口流入壳体的空气流入进口,然后由出口流向第二出风口。
在上述技术方案中,进一步地,空调室内机还包括镂空支架,镂空支架位于第二换热区内,风机设于镂空支架上。
在上述技术方案中,进一步地,风机包括贯流风机。
在上述技术方案中,进一步地,在垂直于第三方向的截面中,位于第一换热区两侧的第一换热段呈轴对称设置,轴对称设置的对称轴沿第二方向延伸。
在上述技术方案中,进一步地,第一换热区的数量为两组,沿第一方向,两组第一换热区间隔设置,且第一换热区和第二换热区交错分布;其中,第一出风口的数量为两组,第一出风口与第一换热区一一对应设置,空调室内机的第二出风口位于两组第一出风口之间。
在上述技术方案中,进一步地,在垂直于第三方向的截面中,第一换热区的截面呈倒置的V形,第二换热区的截面呈V形。
在上述技术方案中,进一步地,沿第一方向,位于最外侧的第一换热段的上端部与下端部之间的连线相对于第二方向倾斜设置。
在上述技术方案中,进一步地,沿第一方向上,位于最外侧的第一换热段的上端部与下端部之间的连线相对于第二方向平行设置。
在上述技术方案中,进一步地,换热器还包括:第二换热段和第三换热段,第二换热段和第三换热段设于第二换热区内;其中,第二换热段与第三换热段之间形成第三换热区,从壳体的顶部至壳体的底部的方向,第三换热区沿第二方向的宽度逐渐增大。
在上述技术方案中,进一步地,在垂直于第三方向的截面中,形成第一换热区的两个第一换热段中,一个第一换热段的上端部与下端部的连线,相对于第二方向形成的夹角为第一夹角,另一个第一换热段的上端部与下端部的连线相对于第二方向形成的夹角为第二夹角;第二夹角大于或等于第一夹角的一半与10°之差,且小于或等于第一夹角的一半与10°之和。
在上述技术方案中,进一步地,形成第二换热区的第一换热段的上边缘,与空调室内机的风机之间的间距,大于或等于壳体在第二方向上的高度的0.22倍,且小于或等于壳体高度的0.64倍。
在上述技术方案中,进一步地,第一换热段包括多个翅片和多个换热管,多个换热管呈单排设置,多个翅片套设于换热管上。
在上述技术方案中,进一步地,相邻的两个翅片之间沿第三方向的间距与单个翅片的宽度之比大于或等于0.1,且小于或等于0.45。
在上述技术方案中,进一步地,壳体包括:进风罩体,第一入风口和第二入风口设于进风罩体上;底板,进风罩体设置于底板上,第一出风口设于底板上;端板,端板与底板相连接,位于壳体内,端板上设有安装孔,换热管的端部安装在安装孔内。
根据本申请的第二方面,还提出了一种空调器,包括:如上述任一技术方案提出的空调室内机。
本申请第二方面提供的空调器,因包括上述任一技术方案提出的空调室内机,因此具有空调室内机的全部有益效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请一个实施例的空调室内机的结构示意图;
图2示出了本申请一个实施例的空调室内机的另一结构示意图;
图3示出了本申请一个实施例的空调室内机的又一结构示意图;
图4示出了本申请一个实施例的空调室内机的再一结构示意图;
图5示出了本申请一个实施例的空调室内机的另一结构示意图;
图6示出了本申请另一个实施例的空调室内机的结构示意图;
图7示出了本申请又一个实施例的空调室内机的结构示意图;
图8示出了本申请另一个实施例的空调室内机的结构示意图;
图9示出了本申请又一个实施例的空调室内机的结构示意图;
图10示出了本申请一个实施例的空调室内机的另一结构示意图;
图11示出了本申请一个实施例的空调室内机的另一结构示意图。
其中,图1至图11中附图标记与部件名称之间的对应关系为:
1空调室内机,10壳体,102第一侧壁,104第二侧壁,105进风罩体,106底板,107端板,108安装孔,12换热器,120第一换热段,1200翅片,1202换热管,122第一换热区,124第二换热区,14第一入风口,16第二入风口,160第一子风口,162第二子风口,18第一出风口,20风机,202进口,204出口,22风门,24第二出风口,26镂空支架,28第二换热段,30第三换热段,32第三换热区,34接水槽。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图11描述根据本申请一些实施例所述的空调室内机1和空调器。
实施例一:
根据本申请的第一方面的一个实施例,本申请的第一方面提出了一种空调室内机1,包括:壳体10和设置在壳体10内的换热器12。
具体地,换热器12包括沿第一方向呈波浪形设置的多个第一换热段120,相邻两个第一换热段120之间形成有换热区,沿第一方向,换热器12依次设置有第一换热区122和第二换热区124;从壳体10的顶部至壳体10的底部的方向,第一换热区122沿第一方向的宽度逐渐增大,第二换热区124沿第一方向的宽度逐渐减小;其中,壳体10沿第一方向间隔的两个第一侧壁102上开设有第一入风口14,壳体10沿第二方向的顶壁上和/或壳体10沿第三方向间隔的两个第二侧壁104上开设有与第二换热区124对应的第二入风口16,壳体10沿第二方向的底壁上开设有与第一换热区122对应的第一出风口18;第一方向、第二方向和第三方向互相垂直,第二方向为重力方向。
本申请提供的空调室内机1,包括壳体10和设置在壳体10内的换热器12,其中,沿第二方向,第一出风口18设于壳体10的底壁,当空调室内机1在进行自然对流制冷时,气流经过换热器12后,变为用于制冷的冷空气,冷空气密度比空气更大,在重力的作用下冷空气换热后流向下方的第一出风口18,最终由第一出风口18进入室内进行制冷,冷空气流出后壳体10内形成负压,进而继续吸引空气从第一入风口14和第二入风口16流入壳体10,形成自然对流空气循环。通过自然对流的形式为室内的空气进行换热,整个换热过程无需风机20工作,进而在保证良好的换热能力的情况下,避免了风机20工作产生的噪音。
具体地,如图1和图2所示,第一方向为壳体10的宽度方向,第二方向为重力方向,也即壳体10的高度方向,第三方向为壳体10的长度方向。 第一出风口18设置在壳体10的底壁,也即沿重力方向,第一出风口18设置在壳体10的底板106上。沿重力方向,壳体10位于下方的壁面也即壳体10的底壁,也就是底板106的壁面;沿重力方向,壳体10位于上方的壁面也即壳体10的顶壁。
其中,换热器12包括沿第一方向设置的多个第一换热段120,多个第一换热段120呈波浪形,这样的设置方式在壳体10的体积确定的情况下,提高了换热效率,进而提升了空调室内机1的换热能力。相邻两个第一换热段120之间形成有换热区,且沿第一方向,换热器12依次设置有第一换热区122和第二换热区124,第一换热区122的宽度由壳体10的顶部至底部的逐渐增大,第二换热区124的宽度由壳体10的顶部至底部逐渐减小,也就是,第一换热区122由下至上逐渐缩小,因此第一换热段120上的冷凝水会沿翅片1200流下,避免冷凝水直接滴落,便于冷凝水的收集。
具体地,形成第一换热区122的相邻两个第一换热段120的上端部相互交错设置,使得相邻两个第一换热段120的顶部实现搭接,进而避免空气由未经过换热器12换热后进入第一换热区122。
可以理解的是,第一出风口18与第一换热区122对应设置,也就是空气由第一入风口14、第二入风口16进入壳体10后,与第一换热段120换热后进入第一换热区122,然后由第一出风口18流出。第二入风口16与第二换热区124对应设置,也就是空气由第二入风口16进入第二换热区124,然后与形成第二换热区124的第一换热段120换热后进入第一换热区122,然后由第一出风口18流出。
进一步地,如图2所示,第二入风口16设于两个第二侧壁104上;向垂直于第三方向的参考面进行投影,第二入风口16的投影位于第二换热区124的投影之内;和/或如图6所示,第二入风口16设于壳体10的顶壁上,向垂直于第二方向的参考面进行投影,第二入风口16的投影位于形成第一换热区122的两个第一换热段120的下端部的投影之间。
在该实施例中,对于第二入风口16设置在两个第二侧壁104上的情况,在垂直于第三方向的参考面进行投影,第二入风口16的投影位于第二换热区124的投影之内,使得形成第二换热区124的第一换热段120,能够与 由第二入风口16流入壳体10的空气换热,提高了空调器的制冷效率。对于第二入风口16设置在壳体10的顶壁上的情况,向垂直于第二方向的参考面进行投影,第二入风口16的投影位于第二换热区124的投影之内,使得由壳体10顶部的第二入风口16进入壳体10的空气,能够与形成第二换热区124的第一换热段120换热后由第一出风口18流出,也就是,通过第二入风口16的设置,保证了沿第一方向位于内部的第一换热段120也能实现换热,进而提升了空调器的换热能力。
其中,对于第二入风口16同时设置在壳体10的顶壁和两个第二侧壁104上时,增大了进风面积,进而提升了空调室内机1的出风量。
进一步地,如图2所示,形成第一换热区122的两个第一换热段120的上端部与下端部连线之间具有夹角β,夹角β小于180°,进一步地,夹角β小于90°,从而便于冷凝水的收集,在有限的空间内增大了空气与换热器12的换热面积,进而提升了空调室内机1的输出能力,提高了空调室内机1的换热效率,以尽快的达到用户的设定温度,进而提升用户使用的舒适性。
实施例二:
如图2和图3所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:空调室内机1还包括第二出风口24,沿第二方向,第二出风口24设于壳体10的底壁;其中,形成第二换热区124的相邻两个第一换热段120的下端部之间具有间隙,第二出风口24经过间隙与第二换热区124连通。
在该实施例中,空调室内机1还包括第二出风口24,第二出风口24设置在壳体10的底壁,并且第二出风口24经过间隙与第二换热区124连通,在空调室内机1实现自然对流出风时,由第一入风口14和第二入风口16进入壳体10的空气与换热器12换热后由第一出风口18流出,使得壳体10内形成负压,从而第二入风口16充当进风口,使得室内回风能够由第二入风口16经相邻第一换热段120之间的间隙进入第二换热区124,进而与第一换热段120换热后由第一出风口18流出,也就是,第二出风口24的设置,能够在自然对流换热时提高空调室内机1的进风量,进而提高 空调室内机1的换热效率。
实施例三:
如图6和图7所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:空调室内机1还包括风机20,风机20包括进口202和出口204,风机20设于第二换热区124内;风门22,风门22可开合地与第二入风口16连接;其中,在风机20开启的状态下,风门22关闭第二入风口16,由第一入风口14和第一出风口18流入壳体10的空气流入进口202,然后由出口204流向第二出风口24。
在该实施例中,空调室内机1还包括风机20和风门22,风机20设置在第二换热区124,风门22可开合地与第二入风口16连接,也就是,通过风门22的设置,使得第二入风口16能够实现开关,通过风机20的设置,能够实现主动送风,进而提升空调室内机1的制冷量。
如图7所示,当风机20开启时,第一入风口14、两个第一出风口18作为进风口与风机20的进口202连通,大大提升了进风量,第二出风口24作为出风口与风机20的出口204连通,将换热后的气流由第二出风口24排出至室内,以对室内环境制冷或者制热。风机20开启状态下,可通过风门22关闭第二入风口16,以避免从第二入风口16进入的气流未经换热器12换热排出而降低换热效率。
其中,风机20开启时,沿第一方向,一部分气流由靠近风机20进口202的第一侧壁102上的第一入风口14,和壳体10底壁上的第一出风口18被风机20抽吸至风机20内,进而由出口204排至第二出风口24;同时,一部分气流由远离风机20进口202的第一侧壁102对应的第一入风口14、壳体10底壁的另一个第一出风口18被卷吸至壳体10内,进而由第二出风口24排出壳体10,从而通过风机20的主动送风提供更大风量,实现了更大制冷量的效果。
进一步地,如图3和图6所示,当风机20关闭时,第一入风口14和第二入风口16作为进风口,气流由第一入风口14和第二入风口16经换热器12换热后由第一出风口18流出,使得腔体内形成负压,从而第二出风口24充当进风口,也即此时气流也能够通过第二出风口24流入壳体10, 并分别经形成第二换热区124的两个第一换热段120换热后由第一出风口18流出,增大了进风量和制冷量,提升了制冷效果。风机20关闭状态下,可开启第二入风口16,使得气流能够由第二入风口16进入的壳体10,与形成第二换热区124的第一换热段120换热,增加了自然对流的制冷量。
在另一个实施例中,如图4所示,风机20开启时,也可以不关闭第二入风口16,气流由第二入风口16进入风机20,然后与由第一入风口14、第一出风口18进入壳体10并与换热器12换热后的气流混合后由第二出风口24流出,提升了空调器的出风量,降低了风阻。
进一步地,在该实施例中,如图3和图4所示,壳体10同一侧的任一第二入风口16包括第一子风口160和第二子风口162,在垂直于第三方向的投影面上,壳体10同一侧的第一子风口160和第二子风口162分别位于风机20的两侧。如图4所示,当风机20开启时,一部分气流由第二子风口162经风机20抽吸后进入风机20,一部分气流在负压的作用下由第一子风口160进入壳体10,进而这两部分气流与由第一入风口14、第一出风口18进入壳体10并与换热器12换热后的气流共同由第二出风口24排出。
进一步地,如图1所示,风机20的数量为两个,两个风机20沿第三方向分布。
在该实施例中,风机20的数量为两个,两个风机20沿第三方向分布,从而在第三方向上提升了出风量。
进一步地,如图1所示,空调室内机1还包括镂空支架26,镂空支架26位于第二换热区124内,风机20设于镂空支架26上。
在该实施例中,空调室内机1还包括镂空支架26,风机20设置在镂空支架26上,对风机20起到支撑的作用,同时,镂空支架26能够供气流通过,降低了气流的流通阻力,提升了出风速度和出风量。
具体地,在关闭风机20时,部分气流还能够由第二出风口24经镂空支架26流向形成第二换热区124的第一换热段120,并经与第一换热段120换热后流向第一出风口18。
进一步地,风机20的顶端与壳体10的顶壁相连接,提升了风机20的可靠性。
进一步地,风机20包括贯流风机。
在该实施例中,风机20包括贯流风机,贯流风机具有风量大、噪声低、出风气流稳定等优点,从而使用贯流风机能够提升空调室内机1的出风量,且降低空调室内机1运行时的噪音。
实施例四:
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:在垂直于第三方向的截面中,位于第一换热区122两侧的第一换热段120呈轴对称设置,轴对称设置的对称轴沿第二方向延伸。
在该实施例中,形成第一换热区122的两个第一换热段120对称设置,从而使得两个第一换热段120能够在有限的空间内增大了换热面积,提升换热能力,也即形成较大的第一换热区122,进而使得空气完全经过换热器12换热后再由第一出风口18流出。
当然,相邻的两个第一换热段120可以不完全对称,也即允许具有一定的偏差。例如,相邻的两个第一换热段120中的一个第一换热段120相对第二方向的倾角,与另一个第一换热段120相对第二方向的倾角相差不超过5°。
进一步地,相邻的两个第一换热段120沿第二方向的对称轴对称设置,从而能够在有限的空间内增大了换热面积,在开启风机20时,一侧主动制冷一侧被引射制冷,提升了换热能力及换热器12利用效率。
实施例五:
如图2所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:第一换热区122的数量为两组,沿第一方向,两组第一换热区122间隔设置,第一换热区122和第二换热区124交错分布;其中,第一出风口18的数量为两组,第一出风口18与第一换热区122一一对应设置,空调室内机1的第二出风口24位于两组第一出风口18之间。
在该实施例中,第二换热区124的数量为两组,两组第二换热区124间隔设置,且第一换热区122和第二换热区124交错设置,第一出风口18与第一换热区122一一对应设置,且第二出风口24设置在两组第一出风口18之间,该种设置方式,在保证了空调器的换热效果的同时,减小了空调室内机1沿第 一方向的尺寸。
进一步地,在垂直于第三方向的截面中,第一换热区122的截面呈倒置的V形,第二换热区124的截面呈V形。
在该实施例中,倒置的V形和V形是指大致的V形,或类似V形。一方面,倒置的V形结构,使得形成第一换热区122的两个第一换热段120中的至少一者相对于第二方向倾斜设置,在有限的壳体10空间内增加了换热面积;另一方面,倒置的V形结构,便于冷凝水的收集,避免冷凝水滴落在壳体10的底壁上或直接滴落在室内的地面上。同样地,第二换热区124的截面呈V形,便于放置风机20,以及便于形成第二换热区124的两个第一换热段120上的冷凝水的收集。
其中,在一个实施例中,如图8所示,沿第一方向,位于最外侧的第一换热段120的上端部与下端部之间的连线相对于第二方向倾斜设置。
在该实施例中,位于最外侧的第一换热段120的上端部与下端部之间的连线相对于第二方向倾斜设置,也就是,第一换热段120倾斜设置,进而在增加换热面积的同时,还便于第一换热段120上冷凝水的收集。
其中,在另一个实施例中,如图9所示,沿第一方向上,位于最外侧的第一换热段120的上端部与下端部之间的连线相对于第二方向平行设置。
在该实施例中,位于最外侧的第一换热段120的上端部与下端部之间的连线,相对于第二方向平行设置,从而使得第一方向的进风与第一换热段120完全换热后排出,提升了换热效果,同时也缩短了壳体10在第一方向上的宽度。
实施例六:
如图8和图9所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:换热器12还包括:第二换热段28和第三换热段30,第二换热段28和第三换热段30设于第二换热区124内;其中,第二换热段28与第三换热段30之间形成第三换热区32,从壳体10的顶部至壳体10的底部的方向,第三换热区32沿第二方向的宽度逐渐增大。
在该实施例中,换热器12还包括第二换热段28和第三换热段30,第二换热段28和第三换热段30均设置在第二换热区124内,并形成第三换热区 32,增加了第二换热区124内的换热面积,进而提升了制冷或制热能力。其中,第三换热区32的宽度由壳体10顶壁至壳体10底壁逐渐增大,从而第二换热段28和第三换热段30形成的第三换热区32对气流起到向下引导的作用,便于自然对流时气流的流出,提升自然对流能力。
进一步地,在垂直于第三方向的截面中,第三换热区32呈倒置的V形。
实施例七:
如图5所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:在垂直于第三方向的截面中,形成第一换热区122的两个第一换热段120中,一个第一换热段120的上端部与下端部的连线,相对于第二方向形成的夹角为第一夹角α1,另一个第一换热段120的上端部与下端部的连线相对于第二方向形成的夹角为第二夹角θ1;第二夹角θ1大于或等于第一夹角α1的一半与10°之差,且小于或等于第一夹角α1的一半与10°之和。
在该实施例中,在形成第一换热区122的两个第一换热段120中,一个第一换热段120靠近风机20设置,另一个第一换热段120远离风机20设置,因此,第二夹角θ1越大,则靠近风机20的第一换热段120距离风机20越远,相应地,第二入风口16的面积也会越大,当第二入风口16未关闭时,风机20抽吸到的未经换热的室内回风就越多,经换热器12换热后的气流越少,进而导致第二入风口16未关闭时开启风机20时的主动强风效果下降;当第二夹角θ1为0°时,靠近风机20的第一换热段120竖直设置,在风机20开启时的制冷性能较好,但此种形态下自然对流效果较差,因此,将第二夹角θ1设计为大于或等于第一夹角α1的一半与10°之差,且小于或等于第一夹角α1的一半与10°之和,既兼顾了自然对流的性能,又不影响风机20开启时的主动吸风效果。
进一步地,如图5所示,形成第二换热区124的第一换热段120的上边缘,与空调室内机1的风机20之间的间距s1,大于或等于壳体10在第二方向上的高度H的0.22倍,且小于或等于壳体10高度H的0.64倍。
在该实施例中,形成第二换热区124的第一换热段120靠近风机20设置,因此形成第二换热区124的第一换热段120与风机20的距离影响风机20的 主动吸风能力,具体地,形成第二换热区124的第一换热段120的上边缘与风机20距离越远,当第二入风口16未关闭时,会导致风机20抽吸到的未经换热的室内回风越多,影响空调室内机1的制冷效果,形成第二换热区124的第一换热段120的上边缘与风机20距离越近,则使得形成第二换热区124的第一换热段120的长度越小,进而会影响自然进风时的换热效果。因此,按照上述设置既兼顾了自然对流的性能,又不影响风机20开启时的主动吸风效果。
进一步地,第一换热段120包括多个翅片1200和多个换热管1202,多个换热管1202呈单排设置,多个翅片1200套设于换热管1202上。
在该实施例中,第一换热段120包括多个翅片1200和多个换热管1202,其中,任一第一换热段120的多个换热管1202呈单排设置(如图2中虚线a、b、c、d所示方向排列成一排),这样,有利于降低空调器在自然对流状态下的风阻,同时也利于提升换热效率。
进一步地,相邻的两个翅片1200之间沿第三方向的间距与单个翅片1200的宽度之比大于或等于0.1,且小于或等于0.45。
在该实施例中,通过设置第一换热段120的翅片1200间距与翅片1200宽度的比值,有利于增大经换热器12换热前后的温度差,可以有效提升自然对流效果,提升空调室内机1的性能。
实施例八:
如图1和图10所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:壳体10包括:进风罩体105、底板106和端板107,第一入风口14和第二入风口16设于进风罩体105上;进风罩体105设置于底板106上,第一出风口18设于底板106上;端板107与底板106相连接,位于壳体10内,端板107上设有安装孔108,换热管1202的端部安装在安装孔108内。
在该实施例中,壳体10由罩体、底板106和端板107构成,罩体罩设于换热器12和风机20,第一入风口14和第二入风口16设于进风罩体105上,第一出风口18和第二出风口24形成在底板106上,换热管1202的端部通过端板107安装在底板106上,提高了换热器12的稳定性。
具体地,端板107上设有第一安装孔108和第二安装孔108,其中,相邻两组第一换热段120的两组换热管1202的端部分别安装在第一安装孔108和第二安装孔108内。
需要说明的是,第一安装孔108包括多个第一孔,第二安装孔108包括多个第二孔。
进一步地,如图1和图5所示,空调室内机1还包括:多个接水槽,设于壳体10内,任一第一换热段120的底部均设有接水槽。
在该实施例中,空调室内机1还包括多个接水槽34,将多个接水槽34分别设置在多个第一换热段120的底部,既保证了气流的流通效果,又能够收集冷凝水,避免冷凝水直接滴落。
进一步地,沿第二方向,向垂直于第二方向的平面内投影;在得到的投影面内,第一换热段120上的翅片1200靠近对应的接水槽34的一端的投影,位于对应的接水槽34的投影区域内。
在该实施例中,翅片1200靠近壳体10底壁的一端,沿翅片1200的宽度方向,其投影位于对应的接水槽34内,也即,沿第一方向,接水槽34的宽度能够覆盖翅片1200端部的片宽在第二方向上的投影,从而使得接水槽34能够完全接住翅片1200上流下的冷凝水,避免冷凝水由翅片1200直接滴落在壳体10底壁或者直接滴落在空调室内机1外部。
进一步地,沿第二方向,接水槽34的底壁设置设有排水孔。
在该实施例中,沿第二方向,接水槽34的底壁设有排水孔,从而可通过排水孔将冷凝水排出至壳体10外部。
进一步地,沿第三方向,接水槽34的底壁向接水槽34的中部倾斜。
在该实施例中,沿第三方向,接水槽34的底壁向接水槽34的中部倾斜设置,也即接水槽34由两端至中部向壳体10底壁倾斜,使得在第三方向上,接水槽34包括由一端向中部倾斜的第一底壁,和由另一端向接水槽34的中部倾斜的第二底壁,从而便于冷凝水顺利排出。
进一步地,接水槽34的第一底壁与第三方向的夹角大于或等于3°,第二底壁与第三方向的夹角大于或等于3°。
实施例九:
根据本申请的第二方面,还提出了一种空调器,包括:如上述任一实施例提出的空调室内机1。
本申请第二方面提供的空调器,因包括上述任一实施例提出的空调室内机1,因此具有空调室内机1的全部有益效果。
进一步地,空调器还包括控制***,控制***能够获取空调器的工作模式指令,并根据工作模式指令控制空调室内机1进行自然对流换热,或风机20主动换热,或者自然对流换热和风机20主动换热同时进行,以满足用户的不同需求,并最大程度地提高用户的舒适度。
具体地,本申请提供的空调室内机1可以应用于家用空调、中央空调多联机、商用风幕机、商用空调室内末端等多个产品。
实施例十:
根据本申请的一个具体实施例,提供了一种空调室内机1,包括至少两种工作模式,其中,包括自然风模式,可适用于睡眠模式制冷等;和主动强风模式,可适用于快速制冷或快速制热。
具体地,如图3所示,在自然风模式下,气流流向如图3中虚线箭头所示,风机20关闭,室内回风由第一入风口14和第二入风口16进入壳体10,与换热器12进行热交换,降温后的冷空气由于密度增大,在重力的作用下从第一出风口18流出至室内,而室内的热空气又会以回风的形式在进入壳体10,完成空气的循环。此时,第二出风口24在一定程度上充当进风口,少量的室内回风会通过第二出风口24经由镂空支架26在经过靠近风机20的第一换热段120被降温。
具体地,在主动强风模式下制冷或制热,通过风门22关闭第二入风口16,气流流向如图7中虚线箭头所示,在风机20的抽吸下,气流分两路由对应第一换热区122的第一入风口14、第一出风口18被吸入风机20内,其中,一路气流由靠近风机20进口202的第一入风口14经第一换热段120换热后流入风机20,一路气流由第一出风口18经第一换热段120降温后流入风机20,风机20竖直向下出风,形成一定的负压区域,在负压的驱动下,促使风机20另一侧的回风也通过类似上述的两个风口的进风方式被卷吸进入风道,也即,对一部分气流由远离风机20的第一入风口14经第 一换热段120换热后进入风机20、一部分气流由第一出风口18经第一换热段120换热后进入风机20,最终,风机20抽吸换热后的气流通过第二出风口24流出。
实施例十一:
根据本申请的一个具体实施例,提供了一种空调室内机1,包括自然对流和主动强风换热同时进行的模式,在该模式开启时,如图1至图11所示,风机20开启,在风机20的抽吸下,一路气流由靠近风机20进口202的第一入风口14经第一换热段120换热后流入风机20,一路气流由第一出风口18经第一换热段120降温后流入风机20,风机20竖直向下出风,形成主动出风,且形成一定的负压区域,在负压的驱动下,促使风机20另一侧的回风加快流动,也即,一路气流由远离风机20进口202的第一入风口14进入壳体10,与第一换热段120换热后由第一入风口14流出,形成自然对流换热,在该实施例中,由于风机20开启,一方面实现了主动送风,加大了制冷量,另一方面,由于风机20开启后形成负压,因此促进了风机20另一侧的气流的流动速度,加大了空调室内机1的空气量,进而增加了自然对流的制冷量。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等均应做广义理解,例如,“连接”、“相连”、“相连接”可以是固定的一体连接,也可以是可拆卸连接,可以是直接相连接,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于 本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种空调室内机,其中,包括:
    壳体;
    换热器,设置于所述壳体内,所述换热器包括沿第一方向呈波浪形设置的多个第一换热段,相邻两个所述第一换热段之间形成有换热区,沿所述第一方向,所述换热器依次设置有第一换热区和第二换热区;
    从所述壳体的顶部至所述壳体的底部的方向,所述第一换热区沿所述第一方向的宽度逐渐增大,所述第二换热区沿所述第一方向的宽度逐渐减小;
    其中,所述壳体沿第一方向间隔的两个第一侧壁上开设有第一入风口,所述壳体沿第二方向的顶壁上和/或所述壳体沿第三方向间隔的两个第二侧壁上开设有与所述第二换热区对应的第二入风口,所述壳体沿所述第二方向的底壁上开设有与所述第一换热区对应的第一出风口;
    所述第一方向、所述第二方向和所述第三方向互相垂直,所述第二方向为重力方向。
  2. 根据权利要求1所述的空调室内机,其中,
    所述第二入风口设于两个所述第二侧壁上;向垂直于所述第三方向的参考面进行投影,所述第二入风口的投影位于所述第二换热区的投影之内;和/或
    所述第二入风口设于所述壳体的顶壁上,向垂直于所述第二方向的参考面进行投影,所述第二入风口的投影位于形成所述第一换热区的两个所述第一换热段的下端部的投影之内。
  3. 根据权利要求1所述的空调室内机,其中,还包括:
    第二出风口,沿所述第二方向,所述第二出风口设于所述壳体的底壁;
    其中,形成所述第二换热区的相邻两个所述第一换热段的下端部之间具有间隙,所述第二出风口经过所述间隙与所述第二换热区连通。
  4. 根据权利要求3所述的空调室内机,其中,还包括:
    风机,所述风机包括进口和出口,所述风机设于所述第二换热区内;
    风门,所述风门可开合地与所述第二入风口连接;
    其中,在所述风机开启的状态下,所述风门关闭所述第二入风口,由所述第一入风口和所述第一出风口流入所述壳体的空气流入所述进口,然后由所述出口流向所述第二出风口。
  5. 根据权利要求4所述的空调室内机,其中,还包括:
    镂空支架,所述镂空支架位于所述第二换热区内,所述风机设于所述镂空支架上。
  6. 根据权利要求5所述的空调室内机,其中,所述风机包括贯流风机。
  7. 根据权利要求1至6中任一项所述的空调室内机,其中,
    在垂直于所述第三方向的截面中,位于所述第一换热区两侧的所述第一换热段呈轴对称设置,所述轴对称设置的对称轴沿所述第二方向延伸。
  8. 根据权利要求1至6中任一项所述的空调室内机,其中,
    所述第一换热区的数量为两组,沿所述第一方向,两组所述第一换热区间隔设置,且所述第一换热区和所述第二换热区交错分布;
    其中,所述第一出风口的数量为两组,所述第一出风口与所述第一换热区一一对应设置,所述空调室内机的第二出风口位于两组所述第一出风口之间。
  9. 根据权利要求1至6中任一项所述的空调室内机,其中,
    在垂直于所述第三方向的截面中,所述第一换热区的截面呈倒置的V形,所述第二换热区的截面呈V形。
  10. 根据权利要求1至6中任一项所述的空调室内机,其中,
    沿所述第一方向,位于最外侧的所述第一换热段的上端部与下端部之间的连线相对于所述第二方向倾斜设置;或
    沿所述第一方向上,位于最外侧的所述第一换热段的上端部与下端部之间的连线相对于所述第二方向平行设置。
  11. 根据权利要求1至6中任一项所述的空调室内机,其中,所述换热器还包括:
    第二换热段和第三换热段,所述第二换热段和所述第三换热段设于所述第二换热区内;
    其中,所述第二换热段与所述第三换热段之间形成第三换热区,从所述 壳体的顶部至所述壳体的底部的方向,所述第三换热区沿所述第二方向的宽度逐渐增大。
  12. 根据权利要求1至6中任一项所述的空调室内机,其中,
    在垂直于所述第三方向的截面中,形成所述第一换热区的两个所述第一换热段中,一个所述第一换热段的上端部与下端部的连线,相对于所述第二方向形成的夹角为第一夹角,另一个所述第一换热段的上端部与下端部的连线相对于所述第二方向形成的夹角为第二夹角;
    所述第二夹角大于或等于所述第一夹角的一半与10°之差,且小于或等于所述第一夹角的一半与10°之和。
  13. 根据权利要求1至6中任一项所述的空调室内机,其中,
    形成所述第二换热区的所述第一换热段的上边缘,与所述空调室内机的风机之间的间距,大于或等于所述壳体在所述第二方向上的高度的0.22倍,且小于或等于所述壳体高度的0.64倍。
  14. 根据权利要求1至6中任一项所述的空调室内机,其中,
    所述第一换热段包括多个翅片和多个换热管,多个所述换热管呈单排设置,多个所述翅片套设于所述换热管上。
  15. 根据权利要求14所述的空调室内机,其中,
    相邻的两个所述翅片之间沿所述第三方向的间距与单个所述翅片的宽度之比大于或等于0.1,且小于或等于0.45。
  16. 根据权利要求14所述的空调室内机,其中,所述壳体包括:
    进风罩体,所述第一入风口和所述第二入风口设于所述进风罩体上;
    底板,所述进风罩体设置于所述底板上,所述第一出风口设于所述底板上;
    端板,所述端板与所述底板相连接,位于所述壳体内,所述端板上设有安装孔,所述换热管的端部安装在所述安装孔内。
  17. 一种空调器,其中,包括:
    如权利要求1至16中任一项所述的空调室内机。
PCT/CN2020/139272 2020-12-11 2020-12-25 空调室内机和空调器 WO2022120980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011452897.3 2020-12-11
CN202011452897.3A CN114623504B (zh) 2020-12-11 2020-12-11 空调室内机和空调器

Publications (1)

Publication Number Publication Date
WO2022120980A1 true WO2022120980A1 (zh) 2022-06-16

Family

ID=81894807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139272 WO2022120980A1 (zh) 2020-12-11 2020-12-25 空调室内机和空调器

Country Status (2)

Country Link
CN (1) CN114623504B (zh)
WO (1) WO2022120980A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202235A (zh) * 1995-11-13 1998-12-16 邦迪国际有限公司 蛇形管热交换器
JP4864159B1 (ja) * 2010-11-30 2012-02-01 パナソニック株式会社 空気調和機
JPWO2012017478A1 (ja) * 2010-08-04 2013-09-19 三菱電機株式会社 空気調和機の室内機、及び空気調和機
CN104019498A (zh) * 2014-06-26 2014-09-03 广东美的暖通设备有限公司 风管机
WO2017068725A1 (ja) * 2015-10-23 2017-04-27 三菱電機株式会社 空気調和機の室内機
CN107036166A (zh) * 2017-04-18 2017-08-11 青岛海尔空调器有限总公司 空调室内机
CN108019819A (zh) * 2016-11-01 2018-05-11 青岛海尔空调器有限总公司 空调室内机
WO2019176117A1 (ja) * 2018-03-16 2019-09-19 三菱電機株式会社 空気調和機の室内機
WO2020140211A1 (zh) * 2019-01-02 2020-07-09 广东美的白色家电技术创新中心有限公司 换热器、换热组件及空调设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336910A (ja) * 2005-05-31 2006-12-14 Daikin Ind Ltd 空気調和機用室内ユニット
CN108692373A (zh) * 2018-07-27 2018-10-23 青岛海尔空调器有限总公司 壁挂式空调室内机
CN210463252U (zh) * 2019-08-26 2020-05-05 广东美的制冷设备有限公司 空调室内机及空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202235A (zh) * 1995-11-13 1998-12-16 邦迪国际有限公司 蛇形管热交换器
JPWO2012017478A1 (ja) * 2010-08-04 2013-09-19 三菱電機株式会社 空気調和機の室内機、及び空気調和機
JP4864159B1 (ja) * 2010-11-30 2012-02-01 パナソニック株式会社 空気調和機
CN104019498A (zh) * 2014-06-26 2014-09-03 广东美的暖通设备有限公司 风管机
WO2017068725A1 (ja) * 2015-10-23 2017-04-27 三菱電機株式会社 空気調和機の室内機
CN108019819A (zh) * 2016-11-01 2018-05-11 青岛海尔空调器有限总公司 空调室内机
CN107036166A (zh) * 2017-04-18 2017-08-11 青岛海尔空调器有限总公司 空调室内机
WO2019176117A1 (ja) * 2018-03-16 2019-09-19 三菱電機株式会社 空気調和機の室内機
WO2020140211A1 (zh) * 2019-01-02 2020-07-09 广东美的白色家电技术创新中心有限公司 换热器、换热组件及空调设备

Also Published As

Publication number Publication date
CN114623504A (zh) 2022-06-14
CN114623504B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN106352524B (zh) 一种空调器室内机及空调器
CN204853609U (zh) 一种油烟机
WO2023029596A1 (zh) 空调及其控制方法
CN211695347U (zh) 换热装置和冷媒循环***
CN207865536U (zh) 空调室内机及空调***
CN211650516U (zh) 窗式空调器
WO2022120980A1 (zh) 空调室内机和空调器
CN210463269U (zh) 壁挂式空调室内机
WO2023130769A1 (zh) 壁挂式空调室内机
US6659170B1 (en) Energy-efficient, finned-coil heat exchanger
CN212618771U (zh) 辐射式空调室内机和空调器
JPH10206058A (ja) 空気調和機の熱交換機
AU2020394759B2 (en) Heat exchange device and refrigerant circulation system
CN211316353U (zh) 一种带贯流风机的蓄能辐射末端及辐射换热设备
CN208186910U (zh) 一种具有侧进式冷却风***的蒸发冷却式换热器
CN212362208U (zh) 空调室内机
KR100534059B1 (ko) 냉풍기
CN114623501B (zh) 空调室内机和空调器
WO2021151267A1 (zh) 窗式空调器
CN204853608U (zh) 油烟机及其调温送风***
CN212081529U (zh) 半导体空调
CN112923437B (zh) 空调室内机
CN213931186U (zh) 送风组件、壁挂机和空调***
CN220506985U (zh) 换气装置、室内机及风管式空调
CN216159167U (zh) 空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2023)