WO2022120654A1 - 聚合物粘结剂、叠层多孔膜、电池及电子装置 - Google Patents

聚合物粘结剂、叠层多孔膜、电池及电子装置 Download PDF

Info

Publication number
WO2022120654A1
WO2022120654A1 PCT/CN2020/135004 CN2020135004W WO2022120654A1 WO 2022120654 A1 WO2022120654 A1 WO 2022120654A1 CN 2020135004 W CN2020135004 W CN 2020135004W WO 2022120654 A1 WO2022120654 A1 WO 2022120654A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer binder
monomer
porous
structural formula
present application
Prior art date
Application number
PCT/CN2020/135004
Other languages
English (en)
French (fr)
Inventor
仇镔
樊晓贺
魏增斌
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080028645.XA priority Critical patent/CN113728504B/zh
Priority to PCT/CN2020/135004 priority patent/WO2022120654A1/zh
Priority to EP20964596.9A priority patent/EP4207467A1/en
Publication of WO2022120654A1 publication Critical patent/WO2022120654A1/zh
Priority to US18/129,410 priority patent/US20230344077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a polymer binder, a laminated porous membrane using the polymer binder, a battery including the laminated porous membrane, and an electronic device including the battery.
  • Lithium-ion batteries have the advantages of large specific energy, high operating voltage, low self-discharge rate, small size, and light weight, and are widely used in the field of consumer electronics.
  • people have higher and higher requirements for battery performance (especially energy density and cycle performance).
  • the present application provides a polymer binder, comprising a copolymer formed by polymerizing a first monomer, a second monomer and a third monomer, and the softening point of the polymer binder is 60°C to 100°C; wherein, the first monomer comprises at least one of the compounds represented by the structural formula (I) or the structural formula (II), the second monomer comprises at least one of the compounds represented by the structural formula (III) or the structural formula (IV), the third The monomer includes at least one of the compounds represented by structural formula (V):
  • R 11 is selected from alkyl groups with 0 to 3 carbon atoms; in structural formula (II), n1 is an integer of 2 to 5; in structural formula (III), R 21 is selected from hydrogen or an alkyl group with 1 to 5 carbon atoms, M is hydrogen or an alkali metal cation; in structural formula (IV), R 22 is selected from hydrogen or an alkyl group with 1 to 5 carbon atoms; in structural formula (V) wherein, R 31 is selected from an alkyl group having 1 to 5 carbon atoms.
  • the first monomer includes at least one of ethylene, propylene, butene, pentene, pentadiene or butadiene
  • the second monomer includes methyl acrylate, ethyl acrylate, acrylic acid At least one of butyl ester, methyl methacrylate, ethyl methacrylate, methacrylic acid, methacrylonitrile or butadiene-acrylonitrile
  • the third monomer includes styrene, chlorostyrene, fluorobenzene At least one of ethylene or methylstyrene.
  • the weight ratio of the first monomer, the second monomer and the third monomer is (15%-50%): (25%-75% ): (10% ⁇ 50%).
  • the melting point of the polymer binder is less than or equal to 120°C.
  • the D50 particle size of the polymer binder ranges from 200 nm to 3000 nm.
  • the polymer binder is a core-shell structure
  • the core-shell structure includes a shell layer and a core coated by the shell layer.
  • the material of the core is an inorganic heat-resistant filler.
  • the inorganic heat-resistant filler includes at least one of aluminum oxide, magnesium hydroxide, calcium sulfate and barium sulfate.
  • the thickness of the shell layer in the core-shell structure is 20 nm to 1600 nm.
  • the present application also provides a laminated porous membrane, which includes a porous substrate and a porous coating, the porous coating is disposed on at least one surface of the porous substrate, and the porous coating includes the above-mentioned polymer binder.
  • the porous coating further includes a thickening agent and a wetting agent, and the mass percentages of the polymer binder, the thickening agent and the wetting agent are (98%-70%): (15%- 1%): (15%-1%).
  • the porous coating further includes inorganic particles.
  • the porous coating further includes a thickening agent and a wetting agent, and the mass percentages of the inorganic particles, the polymer binder, the thickening agent and the wetting agent are (97%-70%): ( 10%-1%): (10%-1%): (10%-1%).
  • the forward projected area of the porous coating layer accounts for 20%-100% of the forward projected area of the porous substrate.
  • the present application also provides a battery including the above laminated porous membrane.
  • the present application also provides an electronic device including the above battery.
  • the polymer binder prepared by the present application has a lower softening point, and at high temperature (>120°C), the polymer binder will soften to melt.
  • high temperature >120°C
  • the porous coating undergoes adhesive failure at high temperatures due to softening and melting of the polymer binder.
  • a laminated porous film containing a porous coating is applied to a battery, and a short circuit occurs inside the battery and the temperature rises, due to the failure of the above-mentioned porous coating adhesion, the porous coating and the positive and negative electrode sheets and/or the porous substrate are caused.
  • the material produces interface separation, thereby blocking the current in time and preventing the occurrence of thermal runaway.
  • FIG. 1 is a cross-sectional view of a laminated porous membrane provided in the first embodiment of the present application.
  • FIG. 2 is a cross-sectional view of a laminated porous membrane provided in a second embodiment of the present application.
  • FIG. 3 is a cross-sectional view of a laminated porous membrane provided by a third embodiment of the present application.
  • FIG. 4 is a cross-sectional view of a laminated porous membrane provided in a fourth embodiment of the present application.
  • FIG. 5 is a cross-sectional view of a laminated porous membrane provided in a fifth embodiment of the present application.
  • FIG. 6 is a cross-sectional view of a laminated porous membrane provided in a sixth embodiment of the present application.
  • FIG. 7 is a cross-sectional view of a laminated porous membrane provided in a seventh embodiment of the present application.
  • FIG. 8 is a cross-sectional view of a laminated porous membrane provided in an eighth embodiment of the present application.
  • the present application provides a polymer binder.
  • the polymer binder includes a copolymer formed by polymerizing a first monomer, a second monomer and a third monomer.
  • the softening point of the polymer binder is 60°C to 100°C; wherein the first monomer comprises at least one compound represented by the structural formula (I) or the structural formula (II), and the second monomer comprises the structural formula (III) Or at least one of the compounds represented by structural formula (IV), the third monomer includes at least one of the compounds represented by structural formula (V):
  • R 11 is selected from alkyl groups with 0 to 3 carbon atoms; in structural formula (II), n1 is an integer of 2 to 5; in structural formula (III), R 21 is selected from hydrogen or an alkyl group with 1 to 5 carbon atoms, M is hydrogen or an alkali metal cation; in structural formula (IV), R 22 is selected from hydrogen or an alkyl group with 1 to 5 carbon atoms; in structural formula (V) wherein, R 31 is selected from an alkyl group having 1 to 5 carbon atoms.
  • the polymer binder Since the comonomer of the polymer binder provided by this application includes the above-mentioned structural formula (I) or (II), (III) or (IV), (V), the polymer binder has a lower softening point, At high temperatures (>120°C), the polymeric binder can soften or even melt, so that when applied to the porous coating of the laminated porous membrane, the porous coating Softening and melting resulting in adhesive failure.
  • the porous coating and the positive and negative electrode sheets and/or the porous substrate are caused. The material produces interface separation, thereby blocking the current in time and preventing the occurrence of thermal runaway.
  • the weight ratio of the first monomer, the second monomer and the third monomer is (15%-50%): (25%-75%): (10%-50%).
  • the melting point of the polymer binder is less than or equal to 120°C.
  • the softening point of the polymer binder will be greater than or equal to 120°C, and at high temperatures, the bond between the laminated porous film and the positive and negative electrode sheets will still be greater than or equal to 4N/m
  • the accumulated heat exceeds the critical point, it is easy to cause the battery to catch fire and fail.
  • the weight percentage of the second monomer is less than 20%, at room temperature, the bonding force between the laminated porous film and the positive and negative electrode sheets is less than or equal to 4N/m, and when the battery is subjected to external mechanical shock, the laminated porous film and the positive electrode
  • the adhesive force of the negative electrode sheet is not enough to resist the mechanical impact, and the laminated porous film is easy to slide on the positive and negative electrode sheet, which leads to the direct contact of the positive and negative electrode sheets and creates a short circuit point, which causes the battery to catch fire and explode.
  • the first monomer includes at least one of ethylene, propylene, butene, pentene, pentadiene or butadiene.
  • the molecule of the first monomer has no side chain group, the interaction between molecular chains is small, and the molecular chain is flexible, which can appropriately reduce the glass transition temperature of the polymer and increase the cohesive force of the polymer.
  • the second monomer includes at least one of methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid, methacrylonitrile, or butadiene-acrylonitrile A sort of. Because the side chain of the second monomer contains polar functional groups such as carboxylic acid and nitrile, the polymer is easy to interact with the polar functional groups on the surface of the adhered material, thereby increasing the adhesive force between the polymer and the adhered material.
  • polar functional groups such as carboxylic acid and nitrile
  • the third monomer includes at least one of styrene, chlorostyrene, fluorostyrene or methylstyrene.
  • the side chain of the third monomer contains a benzene ring.
  • the ⁇ bond of the benzene ring makes the ⁇ - ⁇ interaction between the polymer molecular chains, which increases the intermolecular force.
  • the steric hindrance of the molecular chain movement increases, making the The temperature of the overall molecular chain movement of the polymer is relatively high, thereby increasing the melting point of the polymer.
  • the diameter of the polymer binder D50 ranges from 200 nm to 3000 nm.
  • the laminated porous film have a suitable thickness, so that the battery has a suitable volumetric energy density, but also facilitate the transport of lithium ions, thereby improving the kinetic performance of the lithium ion battery.
  • the particle size of the polymer binder is >3000 nm
  • the thickness of the laminated porous film will increase, and the increase in the thickness of the laminated porous film will lead to the same battery The cell thickness of the capacity increases, resulting in a decrease in the volumetric energy density of the battery.
  • the particle size of the polymer binder is less than 200 nm, when the polymer binder is used in the porous coating, the polymer binder tends to block the pores of the porous substrate of the laminated porous film, which affects the lithium ion transport. , thereby reducing the kinetic performance of Li-ion batteries.
  • the polymer binder includes a spherical or spherical-like copolymer formed by suspension polymerization or emulsion polymerization of the first monomer, the second monomer and the third monomer.
  • the polymer binder has a non-core-shell structure
  • the non-core-shell structure is a solid spherical or spherical-like structure.
  • the polymer binder has a core-shell structure
  • the core-shell structure is a hollow spherical or spherical-like structure.
  • the core-shell structure includes a shell and a core covered by the shell.
  • the thickness of the shell layer in the core-shell structure is 20 nm to 1600 nm.
  • the material of the core in the core-shell structure is an inorganic heat-resistant filler.
  • the inorganic heat-resistant filler as the core has the ability to improve the heat resistance of the laminated porous film and to resist the penetration of foreign particles.
  • the inorganic heat-resistant filler is at least one of aluminum oxide, magnesium hydroxide, calcium sulfate and barium sulfate.
  • the present application also provides a laminated porous membrane, which includes a porous substrate 10 and a porous coating 12 and/or 13 . At least one surface of the porous substrate is coated with a porous coating 12 and/or 13 comprising a polymeric binder as described above.
  • a porous coating 12 and/or 13 comprising a polymeric binder as described above.
  • the laminated porous membrane 110 includes a porous substrate 10 and a porous coating 12 .
  • the porous coating 12 is formed on at least one surface of the porous substrate 10 .
  • the material of the porous substrate 10 includes polyethylene (polyethylene, PE for short), polypropylene (PP), polyethylene terephthalate (PET), One or more of cellulose, polyimide, polyvinylidene fluoride and polytetrafluoroethylene.
  • the porous substrate 10 may be a single-layer structure or a multi-layer composite structure that is mixed.
  • the thickness of the porous substrate 10 is 3um to 20um.
  • the porous coating 12 includes a polymer binder, a thickening agent and a wetting agent; the weight ratio of the polymer binder, the thickening agent and the wetting agent is (98%-70%) ): (15%-1%): (15%-1%).
  • the setting of the mass percentages of the polymer binder, thickener and wetting agent in the porous coating 12 can not only make the porous coating evenly coated, which is conducive to the transport of lithium ions, but also can make the positive and negative electrode sheets and the separator separate. Adhesion together, thereby preventing the battery from expanding and deforming during cycling.
  • the weight percentage of the polymer binder in the porous coating layer 12 is greater than 98%, in the process of preparing the slurry, due to the low content of the dispersant, the polymer binder is not uniformly dispersed, and it is easy to agglomerate into large particles, so that the porous coating 12 is unevenly coated, affecting lithium ion transport, thereby reducing the kinetic performance; when the weight percentage of the polymer binder in the porous coating 12 is less than 70%, the porous coating 12 and the positive and negative The bonding force between the pole pieces is less than or equal to 4N/m.
  • the bonding force between the laminated porous film 110 and the positive and negative electrode pieces is not enough to resist the mechanical impact force.
  • the pole piece is prone to sliding, causing the positive and negative pole pieces to directly contact, resulting in a short circuit point, which will cause the cell to catch fire and explode.
  • the thickener in the porous coating 12 is mainly used to increase the viscosity of the porous coating slurry, so that the porous coating slurry has better stability and prevents particle agglomeration and sedimentation.
  • the role of the wetting agent is to make the polymer binder and the thickening agent more fully contacted with water, which is beneficial to the dispersion of the polymer binder.
  • the components of the thickener in the porous coating 12 are sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, methyl hydroxyethyl cellulose, methyl hydroxyethyl cellulose, and methyl hydroxyethyl cellulose. At least one of hydroxypropyl cellulose or polyurethane.
  • the components of the wetting agent in the porous coating 12 are sodium dodecylbenzenesulfonate, propylene glycol block polyether, octylphenol polyoxyethylene ether, sodium lauryl sulfate, One or more mixtures of sodium dodecyl sulfonate.
  • the forward projected area of the porous coating 12 accounts for 20%-100% of the forward projected area of the porous substrate 10 .
  • the forward projected area of the porous coating 12 accounts for 70%-90% of the forward projected area of the porous substrate 10 . In this way, the risk of short-circuiting of the cells caused by insufficient adhesion between the laminated porous film and the positive and negative electrode sheets can be avoided.
  • the ratio of the forward projected area of the porous coating 12 to the forward projected area of the porous substrate 10 is less than or equal to 20%
  • the bonding force between the porous coating 12 and the positive and negative electrode sheets is less than or equal to 4 N/m, and the battery is exposed to external
  • the adhesive force between the laminated porous film 110 and the positive and negative electrode sheets is not enough to resist the mechanical impact force, and the laminated porous film 110 is prone to sliding on the positive and negative electrode sheets, resulting in direct contact between the positive and negative electrode sheets, resulting in short-circuit point, which will cause the cell to catch fire and explode.
  • the coating method of the porous coating 12 on the porous substrate 10 is at least one of roller coating or spraying.
  • the thickness of the porous coating 12 is 200 nm ⁇ 4000 nm.
  • a laminated porous membrane 111 is also provided.
  • the structure of the laminated porous membrane 111 is similar to that of the above-mentioned laminated porous membrane 110 , and the difference between the two is that :
  • the laminated porous membrane 111 includes two porous coating layers 12 respectively formed on opposite surfaces of the porous substrate 10 .
  • a laminated porous membrane 112 is also provided.
  • the structure of the laminated porous membrane 112 is similar to the structure of the above-mentioned laminated porous membrane 110, and the difference between the two is The point is that the laminated porous membrane 112 includes a porous substrate 10 and a porous coating layer 13 formed on a surface of the substrate 10 .
  • the porous coating 13 includes inorganic particles, a polymer binder, a thickener and a wetting agent.
  • the weight ratio of inorganic particles, polymer binder, thickener and wetting agent is (97%-70%): (10%-1%): (10%-1%): (10%-1%) ).
  • the setting of the mass percentages of inorganic particles, polymer binders, thickeners and wetting agents in the porous coating 13 can not only make the porous coating 13 evenly coated, but also improve the heat resistance of the laminated porous film 112 And the ability to resist the puncture of foreign particles can also avoid the risk of short circuit of the cells caused by insufficient adhesion between the laminated porous film 112 and the positive and negative electrode sheets.
  • the role of the inorganic particles in the porous coating layer 13 is to enhance the heat resistance of the laminated porous film 112 and to resist penetration by foreign particles.
  • the thickener in the porous coating layer 13 can increase the viscosity of the slurry of the porous coating layer, so that the slurry of the porous coating layer has better stability and prevents particle agglomeration and sedimentation.
  • the wetting agent in the porous coating 13 can make the contact between the inorganic particles and the polymer binder in the porous coating 13 more sufficient with water, which is beneficial to the dispersion of the polymer binder.
  • the porous coating 13 when the weight percentage of the polymer binder is greater than 10%, the porosity of the porous coating 13 will be reduced, the lithium ion transport will be affected, and the kinetic performance will be reduced;
  • the weight percentage of the agent is less than 1%, the adhesive force between the porous coating 13 and the porous substrate 10 is ⁇ 10 N/m, the porous coating 13 is more likely to peel off from the porous substrate 10, and there is no stack protected by the porous coating 13.
  • the layered porous membrane 112 is more likely to be pierced by particles, resulting in short-circuit fire and explosion in the cell.
  • the inorganic particles in the porous coating 13 include at least one of aluminum oxide, boehmite, barium sulfate, titanium dioxide, magnesium hydroxide, and the like.
  • the components of the thickener in the porous coating 13 include sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, methyl hydroxyethyl cellulose, At least one of hydroxypropyl cellulose and polyurethane.
  • the components of the wetting agent in the porous coating 13 include sodium dodecylbenzenesulfonate, propylene glycol block polyether, octylphenol polyoxyethylene ether, sodium lauryl sulfate, One or more mixtures of sodium dodecyl sulfonate.
  • the forward projected area of the porous coating 13 accounts for 65% to 100% of the forward projected area of the porous substrate 10 .
  • the ratio of the forward projected area of the porous coating 13 to the forward projected area of the porous substrate 10 is less than 65%, the adhesive force between the porous coating 13 and the porous substrate 10 is small, and the porous coating 13 is more likely to be peeled off from the porous substrate 10, and the area on the laminated porous film 110 that is not protected by the porous coating 13 is large, which is more likely to be pierced by particles, and the risk of short circuit fire and explosion in the cell increases.
  • the thickness of the porous coating layer 13 is 200 nm ⁇ 5000 nm.
  • the coating method of the porous coating 13 on the porous substrate 10 is preferably roller coating.
  • a laminated porous film 113 is also provided.
  • the structure of the laminated porous film 113 is similar to the above-mentioned laminated porous film 112 , and the differences between the two are:
  • the laminated porous membrane 113 includes two porous coating layers 13 formed on opposite surfaces of the porous substrate 10, respectively.
  • a laminated porous film 114 is also provided.
  • the structure of the laminated porous film 114 is similar to the above-mentioned laminated porous film 113 , and the difference between the two lies in:
  • the laminated porous membrane 114 includes a porous substrate 10 , a porous coating layer 13 formed on a surface of the porous substrate 10 , and a porous coating layer 12 formed on the porous coating layer 13 .
  • the coating method of the porous coating layer 12 on the porous coating layer 13 is at least one of roller coating or spray coating.
  • the forward projected area of the porous coating 12 accounts for 20%-100% of the forward projected area of the porous coating 13 .
  • the forward projected area of the porous coating 12 accounts for 70%-90% of the forward projected area of the porous coating 13 .
  • a laminated porous film 115 is also provided.
  • the structure of the laminated porous film 115 is similar to the above-mentioned laminated porous film 114 , and the difference between the two is:
  • the laminated porous membrane 115 includes a porous substrate 10 , two porous coating layers 13 formed on opposite surfaces of the porous substrate 10 , and two porous coating layers 12 formed on the porous coating layers 13 respectively.
  • a laminated porous membrane 116 is also provided.
  • the laminated porous membrane 116 is similar in structure to the above-mentioned laminated porous membrane 114, and the difference between the two is:
  • the laminated porous membrane 116 includes a porous substrate 10 , a porous coating layer 12 formed on opposite surfaces of the porous substrate 10 , a porous coating layer 13 and another porous coating layer 12 formed on the porous coating layer 13 .
  • a laminated porous film 117 is also provided.
  • the structure of the laminated porous film 117 is similar to the above-mentioned laminated porous film 114 , and the difference between the two is:
  • the laminated porous membrane 117 includes two porous coating layers 13 formed respectively on opposite surfaces of the porous substrate 10 and one porous coating layer 12 formed on one of the porous coating layers 13 .
  • the porous coating layer 13 located between the porous substrate 10 and the porous coating layer 12 or located on the surface of the porous substrate 10 may not include the above
  • the polymer binder is the binder commonly used in the industry.
  • the porous coating layer 12 on the surface of the porous substrate 10 and/or the porous coating layer may not include the above-mentioned polymer binder, but Use the adhesives commonly used in the industry.
  • the present application also provides a battery, the battery includes a positive electrode sheet (not shown in the figure), a laminated porous membrane 110, a negative electrode sheet (not shown in the figure), an electrolyte (not shown in the figure) and a casing (not shown in the figure) , the positive electrode sheet, the laminated porous film 110, the negative electrode sheet and the electrolyte are located in the casing, the laminated porous film 110 is located between the positive electrode sheet and the negative electrode sheet and is bonded to the positive electrode sheet and the negative electrode sheet, the positive electrode sheet, the laminated porous film 110 And the negative electrode is immersed in the electrolyte.
  • the battery provided by the present application uses the above-mentioned laminated porous film as a separator, and the laminated porous film includes a porous coating layer using the above-mentioned polymer binder.
  • the laminated porous film includes a porous coating layer using the above-mentioned polymer binder.
  • the battery is a lithium-ion battery.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material supported on the positive electrode current collector.
  • the positive electrode active material includes at least one of lithium iron phosphate, lithium manganate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, and the like.
  • the positive electrode active material further includes a first binder and a conductive agent.
  • the first binder may include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethylcellulose, polyethylene At least one of pyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • the conductive agent may include at least one of conductive carbon black, graphene, carbon nanotube, carbon fiber, or Ketjen black.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material supported on the negative electrode current collector.
  • the negative electrode active material comprises artificial graphite, natural graphite, soft carbon, hard carbon, mesocarbon microspheres, silicon, silicon alloy, silicon carbon composite, silicon oxide compound, lithium titanate or titanic acid at least one of niobium.
  • the negative electrode active material layer further includes a second binder, and the second binder is mixed with the negative electrode active material.
  • the second binder may include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethylcellulose, polyethylene At least one of pyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • the electrolyte includes a solvent and a lithium salt
  • the solvent includes dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, ethylene carbonate At least one of ester, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, vinylene carbonate or propylene sulfite.
  • the electrolyte further includes other non-aqueous solvents in addition to the above, and the non-aqueous solvents may be carbonate compounds, carboxylate compounds, ether compounds, other organic solvents, or combinations thereof.
  • the carbonate compound may be a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • Examples of cyclic carbonate compounds are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylethylene carbonate (VEC), or combinations thereof.
  • Examples of fluorocarbonate compounds are fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate Ethyl carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-dicarbonate Fluoro-1-methylethylene carbonate, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, or a combination thereof.
  • carboxylate compounds are methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, decanolide, valerolactone, valerolactone Dragon lactone, caprolactone, methyl formate, or a combination thereof.
  • ether compounds are dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxy Ethane, 2-methyltetrahydrofuran, tetrahydrofuran, or a combination thereof.
  • organic solvents examples include dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, methyl amide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, phosphate ester, or combinations thereof.
  • the lithium salt includes at least one of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, or lithium trifluoromethanesulfonate.
  • methyl acrylate, butadiene and styrene are used as the raw materials of the polymer binder.
  • the raw materials for making the polymer binder are not limited to methyl acrylate, butadiene and styrene.
  • the proportion of monomers is 15 parts of styrene, 30 parts of butadiene, 55 parts of methyl acrylate, and 2.1 parts of emulsifier sodium dodecylbenzenesulfonate; emulsifier octylphenol polyoxyethylene 1.1 part of ether; 0.55 part of initiator ammonium persulfate; 0.015 part of chelating agent EDTA tetrasodium salt, 0.4 part of reducing agent sodium sulfite; 0.2 part of regulator dodecyl mercaptan; 0.25 part of chain terminator hydroquinone as a polymerization reaction auxiliaries.
  • the aggregation process is as follows:
  • Distilled water and emulsifier were sent into the reaction kettle replaced by argon, then reducing agent, chelating agent, regulator, styrene, and methyl acrylate were added to the reaction kettle, and argon was passed for 20min to replace the reaction kettle.
  • Oxygen, refluxed, stirred and pre-emulsified for 1h (40-50°C)
  • the temperature of the reaction kettle was quickly raised to 78°C
  • 30% of the initiator was added first, and the reaction temperature was kept stable at 80-84°C;
  • the butadiene in the reactor is added to the reaction kettle, and the remaining initiator is added at the same time and controlled to be added within 30min.
  • the revolution of the mixer is controlled at 150r/min; the polymerization time is 8-12h, and the monomer conversion rate is controlled at 75%; adding chain The terminator stops the reaction. After the reaction, the monomer is removed from the emulsion to obtain the desired binder emulsion.
  • the ceramic coating uses acrylic binder as the binder, the coverage rate of the bonding coating on the ceramic coating is 80%, and the particle size of the polymer binder is 1000 nm.
  • the bond coat corresponds to the above-mentioned porous coating 12, and the ceramic coating corresponds to the ordinary porous coating 13 using a binder commonly used in the industry.
  • Lithium cobalt oxide (LiCoO2), conductive carbon (Super-P) and polyvinylidene fluoride (PVDF) were mixed in solvent deionized water in a mass ratio of 95:2:3, and stirred evenly to obtain a positive electrode slurry material.
  • the slurry was coated on 12 ⁇ m aluminum foil, dried, cold pressed, and then cut into pieces and welded with tabs to obtain a positive electrode sheet.
  • Preparation of negative electrode sheet Mix natural graphite, conductive carbon (Super-P) and sodium carboxymethyl cellulose (CMC) in a solvent N-methylpyrrolidone in a mass ratio of 95:2:3, and stir evenly to obtain a negative electrode slurry.
  • the slurry was coated on 12 ⁇ m copper foil, dried, cold pressed, and then cut into pieces and welded with tabs to obtain a negative electrode piece.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • LiPF6 lithium salt lithium hexafluorophosphate
  • Preparation of battery The above-prepared positive electrode sheet, negative electrode sheet and laminated porous film are wound into a battery in order, and the top and side sealing of the battery are made of aluminum-plastic film, leaving a liquid injection port. Fill the electrolyte from the injection port and seal it. Then, a bonding effect is formed between the electrode and the separator by means of hot pressing, and then a lithium ion battery is prepared through processes such as chemical formation and capacity.
  • Example 10 The difference between Example 10 and Example 1 is that the coverage of the bond coat on the ceramic coating is 50%.
  • Example 11 The difference between Example 11 and Example 1 is that the coverage of the bond coat on the ceramic coating is 60%.
  • Example 12 differs from that of Example 1 in that the coverage of the bond coat on the ceramic coating is 70%.
  • Example 13 differs from Example 1 in that the coverage of the bond coat on the ceramic coating is 90%.
  • Example 14 differs from Example 1 in that the coverage of the bond coat on the ceramic coating is 100%.
  • Example 15 The difference between Example 15 and Example 1 is that the content of polymeric binder in the bond coat is 60%.
  • Example 16 The difference between Example 16 and Example 1 is that the content of polymeric binder in the bond coat is 70%.
  • Example 17 differs from Example 1 in that the content of polymeric binder in the bond coat is 75%.
  • Example 18 The difference between Example 18 and Example 1 is that the content of polymeric binder in the bond coat is 98%.
  • Example 19 The difference between Example 19 and Example 1 is that the content of polymeric binder in the bond coat is 100%.
  • Example 20 The difference between Example 20 and Example 1 is that the particle size of the polymer binder is 50 nm.
  • Example 21 The difference between Example 21 and Example 1 is that the particle size of the polymer binder is 200 nm.
  • Example 22 The difference between Example 22 and Example 1 is that the particle size of the polymer binder is 2000 nm.
  • Example 23 The difference between Example 23 and Example 1 is that the particle size of the polymer binder is 3000 nm.
  • Example 24 The difference between Example 24 and Example 1 is that the particle size of the polymer binder is 4000 nm.
  • Example 25 The difference between Example 25 and Example 1 is:
  • the ceramic coating slurry is coated on the substrate layer, dried in an oven, and the bonding coating is coated on the ceramic coating and dried in the oven to form a ceramic coating and a bonding coating.
  • the adhesive coating is an oily polyvinylidene fluoride (PVDF for short) coating, and the particle size of the polymer adhesive is 1000 nm.
  • the bonding coating is the porous coating 12 in Example 1, and the ceramic coating is the porous coating 13 containing a polymer binder.
  • Example 26 differs from Example 25 in that the content of polymer binder in the ceramic coating is 0.5%.
  • Example 27 The difference between Example 27 and Example 25 is that the content of the polymer binder in the ceramic coating is 1.0%.
  • Example 28 The difference between Example 28 and Example 25 is that the content of the polymer binder in the ceramic coating is 8.0%.
  • Example 29 The difference between Example 29 and Example 25 is that the content of the polymer binder in the ceramic coating is 10.0%.
  • Example 30 The difference between Example 30 and Example 25 is that the content of the polymer binder in the ceramic coating is 15.0%.
  • Example 31 The difference between Example 31 and Example 25 is that the particle size of the polymer binder is 50 nm.
  • Example 32 The difference between Example 32 and Example 25 is that the particle size of the polymer binder is 200 nm.
  • Example 33 The difference between Example 33 and Example 25 is that the particle size of the polymer binder is 2000 nm.
  • Example 34 The difference between Example 34 and Example 25 is that the particle size of the polymer binder is 3000 nm.
  • Example 35 The difference between Example 35 and Example 25 is that the particle size of the polymer binder is 4000 nm.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is: first, 70% PVDF particles are added to the organic solvent in batches, and then stirred with a stirrer. After stirring evenly, 30% of ceramic powder and additives are added to the above slurry. Continue to stir and mix evenly to obtain a mixed slurry, smear the mixed slurry on the substrate layer, and complete drying in an oven to form a laminated porous film. The bond coat has 100% coverage on the ceramic coating.
  • Comparative Example 2 The difference between Comparative Example 2 and Example 25 is that: first, 1 wt% wetting agent was added to the mixer, and stirred evenly; 95% by weight of inorganic particles was added in two times, and the mixture was stirred evenly; 4% by weight of acrylic acid was added. Add the binder and thickener to the above slurry, continue to stir and mix evenly, and finally add deionized water to adjust the viscosity of the slurry to 30-500MPa.s.
  • Comparative Example 4 The difference between Comparative Example 4 and Example 1 is that the polymer binder does not contain the first monomer and the third monomer.
  • the polymeric binder is polymethyl acrylate.
  • the laminated porous films prepared in the above-mentioned Examples 1-35 and Comparative Examples 1-4 were respectively used to test the wet pressure adhesion between the laminated porous film and the positive and negative electrode sheets using the 180-degree peel test standard: the laminated porous film and the positive and negative electrode sheets Cut into 54.2mm*72.5mm samples, compound the laminated porous film and the positive and negative electrode sheets with aluminum-plastic film to encapsulate the liquid, and then use a hot press to press.
  • the hot pressing conditions are: the temperature is 85°C, and the pressure is 1MPa , the time is 60min; cut the hot-pressed sample into 15mm*54.2mm strips, and test the adhesion according to the 180°C peel test standard.
  • the batteries prepared in the above Examples 1-35 and Comparative Examples 1-4 were subjected to a hot-box test: 0.7C constant current charging to full charge voltage, and then constant voltage charging until the current reached 0.02C; record the open circuit voltage of the battery cell before the test , AC internal resistance, check the appearance and take pictures; the rate of 5°C/min ⁇ 2°C/min rises to a certain temperature, and keep it for 60min, record the temperature rise and voltage of the cell surface; after the test, record the OCV, IMP, and check the appearance and take pictures.
  • the batteries prepared by the above-mentioned Examples 1-35 and Comparative Examples 1-2 were measured by the discharge method to measure the cell discharge rate: 0.5C constant current charge to 4.45V, and then constant voltage charge until the current was up to 0.05C; set aside for 5min, use 0.2 C, 0.5C, 1C, 1.5C, 2C discharge, calculate the discharge rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

本申请公开了一种聚合物粘结剂,包括由第一、第二和第三单体聚合形成的共聚物,聚合物粘结剂的软化点为60℃至100℃;其中,第一单体包括结构式(I)或结构式(II)所表示的化合物中的至少一种,第二单体包括结构式(III)或结构式(IV)所表示的化合物中的至少一种,第三单体包括结构式(V)所表示的化合物中的至少一种: 本申请还提供一种叠层多孔膜、电池及电子装置。本申请的目的在于提供一种能够避免热失控且能够降低热箱测试失效风险的聚合物粘结剂,以保护叠层多孔膜、电池及电子装置。

Description

聚合物粘结剂、叠层多孔膜、电池及电子装置 技术领域
本申请涉及电池技术领域,尤其涉及一种聚合物粘结剂、应用聚合物粘结剂的叠层多孔膜、包括叠层多孔膜的电池及包括电池的电子装置。
背景技术
锂离子电池具有比能量大、工作电压高、自放电率低、体积小、重量轻等优势,在消费电子领域具有广泛的应用。然而随着电动汽车和可移动电子设备的高速发展,人们对电池的性能(尤其是能量密度以及循环性能)的要求越来越高。
现有技术中,通常需要设置高粘结隔膜以将正负极极片与隔膜紧密粘结在一起,保证隔膜与极片的界面粘结力,减少电池膨胀变形,提升电池硬度,并保证电池的循环能力。然而,高粘结隔膜与极片粘结紧密,电池内部发生短路时,热量难以扩散,容易导致热失控。
发明内容
为解决现有技术以上不足,有必要提供一种能避免上述热失控发生的聚合物粘结剂。
另,还有必要提供一种应用如上聚合物粘结剂的叠层多孔膜。
另,还有必要提供一种包括如上叠层多孔膜的电池。
另,还有必要提供一种包括如上电池的电子装置。
本申请提供一种聚合物粘结剂,包括由第一单体、第二单体及第 三单体聚合形成的共聚物,聚合物粘结剂的软化点为60℃至100℃;其中,第一单体包括结构式(I)或结构式(II)所表示的化合物中的至少一种,第二单体包括结构式(III)或结构式(IV)所表示的化合物中的至少一种,第三单体包括结构式(V)所表示的化合物中的至少一种:
Figure PCTCN2020135004-appb-000001
其中,在结构式(I)中,R 11选自碳原子数为0~3的烷基;在结构式(II)中,n1为2~5的整数;在结构式(III)中,R 21选自氢或碳原子数为1~5的烷基,M为氢或碱金属阳离子;在结构式(IV)中,R 22选自氢或碳原子数为1~5的烷基;在结构式(V)中,R 31选自碳原子数为1~5的烷基。
在本申请一些实施例中,第一单体包括乙烯、丙烯、丁烯、戊烯、 戊二烯或丁二烯中的至少一种,第二单体包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸、甲基丙烯腈或丁二烯-丙烯腈中的至少一种,第三单体包括苯乙烯、氯苯乙烯、氟苯乙烯或甲基苯乙烯中的至少一种。
在本申请一些实施例中,基于共聚物粘结剂的总重量,第一单体、第二单体和第三单体的重量比为(15%~50%):(25%~75%):(10%~50%)。
在本申请一些实施例中,聚合物粘结剂的熔点≤120℃。
在本申请一些实施例中,聚合物粘结剂的D50粒径范围为200nm~3000nm。
在本申请一些实施例中,聚合物粘结剂为核壳结构,核壳结构包括壳层和被壳层包覆的核心。
在本申请一些实施例中,核心的材质为无机耐热填料。
在本申请一些实施例中,无机耐热填料包括三氧化二铝、氢氧化镁、硫酸钙及硫酸钡中的至少一种。
在本申请一些实施例中,核壳结构中壳层的厚度为20nm~1600nm。
本申请还提供一种叠层多孔膜,其包括多孔基材及多孔涂层,多孔涂层设置在多孔基材的至少一个表面,多孔涂层包括如上所述的聚合物粘结剂。
在本申请一些实施例中,多孔涂层还包括增稠剂和润湿剂,聚合物粘结剂、增稠剂及润湿剂的质量百分比为(98%-70%):(15%-1%):(15%-1%)。
在本申请一些实施例中,多孔涂层还包括无机粒子。
在本申请一些实施例中,多孔涂层还包括增稠剂和润湿剂,无机粒子、聚合物粘结剂、增稠剂及润湿剂的质量百分比为(97%-70%): (10%-1%):(10%-1%):(10%-1%)。
在本申请一些实施例中,多孔涂层的正向投影面积占多孔基材的正向投影面积的20%-100%。
本申请还提供一种电池,包括如上的叠层多孔膜。
本申请还提供一种电子装置,包括如上的电池。
由本申请制备的聚合物粘结剂,具有较低的软化点,在高温(>120℃)下,聚合物粘结剂会软化至熔融。当将其应用至叠层多孔膜的多孔涂层中时,该多孔涂层在高温下由于聚合物粘结剂软化熔融从而发生粘接失效。当将含有多孔涂层的叠层多孔膜应用至电池,在电池内部发生短路导致温度升高时,由于上述多孔涂层粘接失效,导致多孔涂层与正负极极片和/或多孔基材产生界面分离,从而及时阻断电流,防止热失控的发生。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的一种叠层多孔膜的剖视图。
图2是本申请第二实施例提供的一种叠层多孔膜的剖视图。
图3是本申请第三实施例提供的一种叠层多孔膜的剖视图。
图4是本申请第四实施例提供的一种叠层多孔膜的剖视图。
图5是本申请第五实施例提供的一种叠层多孔膜的剖视图。
图6是本申请第六实施例提供的一种叠层多孔膜的剖视图。
图7是本申请第七实施例提供的一种叠层多孔膜的剖视图。
图8是本申请第八实施例提供的一种叠层多孔膜的剖视图。
主要元件符号说明
叠层多孔膜            110,111,112,113,114,115,116,117
多孔基材              10
多孔涂层              12,13
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当一个元件被认为是“设置在”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中设置的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请提供一种聚合物粘结剂,聚合物粘结剂包括由第一单体、第二单体及第三单体聚合形成的共聚物。聚合物粘结剂的软化点为 60℃至100℃;其中,第一单体包括结构式(I)或结构式(II)所表示的化合物中的至少一种,第二单体包括结构式(III)或结构式(IV)所表示的化合物中的至少一种,第三单体包括结构式(V)所表示的化合物中的至少一种:
Figure PCTCN2020135004-appb-000002
其中,在结构式(I)中,R 11选自碳原子数为0~3的烷基;在结构式(II)中,n1为2~5的整数;在结构式(III)中,R 21选自氢或碳原子数为1~5的烷基,M为氢或碱金属阳离子;在结构式(IV)中,R 22选自氢或碳原子数为1~5的烷基;在结构式(V)中,R 31选自碳原子数为1~5的烷基。
由于本申请提供的聚合物粘结剂的共聚单体包括上述结构式(I)或 (II)、(III)或(IV)、(V),使得聚合物粘结剂具有较低的软化点,在高温(>120℃)下,聚合物粘结剂会软化甚至熔融,如此,当将其应用至叠层多孔膜的多孔涂层中时,该多孔涂层在高温下由于聚合物粘结剂软化熔融从而发生粘接失效。当将含有多孔涂层的叠层多孔膜应用至电池,在电池内部发生短路导致温度升高时,由于上述多孔涂层粘接失效,导致多孔涂层与正负极极片和/或多孔基材产生界面分离,从而及时阻断电流,防止热失控的发生。
其中,第一单体、第二单体和第三单体的重量比为(15%~50%):(25%~75%):(10%~50%)。聚合物粘结剂的熔点≤120℃。通过对第一单体、第二单体和第三单体的重量比控制,使聚合物粘结剂在保持一定粘结力的同时,具有较低的软化点(60℃-100℃)及较低的熔点(≤120℃)。当第二单体的重量百分比高于75%时,聚合物粘结剂的软化点会≥120℃,高温下,叠层多孔膜与正负极片之间仍保持≥4N/m的粘结力,使得电池散热困难,当积累的热量超过临界点时,容易引起电池起火失效。当第二单体的重量百分比低于20%时,在常温下,叠层多孔膜与正负极片界面的粘结力≤4N/m,电池受到外部机械冲击时,叠层多孔膜与正负极片的粘接力不足以抵抗机械冲击力,叠层多孔膜容易在正负极片上发生滑动,导致正负极片直接接触而产生短路点,从而引起电池起火***。
具体地,第一单体包括乙烯、丙烯、丁烯、戊烯、戊二烯或丁二烯中的至少一种。第一单体的分子无侧链基团,分子链间相互作用较小,分子链柔顺,可适当降低聚合物的玻璃化转变温度,增加聚合物粘结力。
具体地,第二单体包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、 甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸、甲基丙烯腈或丁二烯-丙烯腈中的至少一种。第二单体因侧链含有羧酸、腈类等极性官能团,使得聚合物易与被粘物质表面的极性官能团相互作用,从而增加聚合物与被粘物质之间的粘结力。
具体地,第三单体包括苯乙烯、氯苯乙烯、氟苯乙烯或甲基苯乙烯中的至少一种。第三单体侧链含有苯环,一方面苯环的π键使得聚合物分子链间存在π-π相互作用,增加了分子间作用力,另一方面分子链运动的空间位阻增加,使得聚合物整体分子链运动的温度相对较高,从而提升聚合物的熔点。
其中,聚合物粘结剂D50的径范围为200nm至3000nm。如此,不仅可以使得叠层多孔膜具有合适的厚度,从而使得电池具有合适的体积能量密度,还有利于锂离子的传输,从而提高锂离子电池的动力学性能。具体地,当聚合物粘结剂的粒径>3000nm时,将聚合物粘结剂用在多孔涂层中时,会导致叠层多孔膜厚度增加,叠层多孔膜厚度的增加会导致同样电池容量的电芯厚度增加,从而导致电池的体积能量密度减小。当聚合物粘结剂的粒径<200nm时,将聚合物粘结剂用在多孔涂层中时,聚合物粘结剂易堵住叠层多孔膜的多孔基材的孔,影响锂离子传输,从而降低锂离子电池的动力学性能。
具体地,聚合物粘结剂包括由第一单体、第二单体及第三单体经悬浮聚合或乳液聚合形成的球形或类球形的共聚物。
在本申请一些实施例中,聚合物粘结剂呈非核壳结构,非核壳结构为实心的球形或类球形结构。
在本申请一些实施例中,聚合物粘结剂呈核壳结构,核壳结构为中空的球形或类球形结构。核壳结构包括壳层和被壳层包覆的核心。
在本申请一些实施例中,核壳结构中的壳层的厚度为20nm~1600nm。
在本申请一些实施例中,核壳结构中的核心的材质为无机耐热填料。其中,作为核心的无机耐热填料具有提升叠层多孔膜耐热性以及抵抗外来颗粒刺穿的能力。
在本申请一些实施例中,无机耐热填料为三氧化二铝、氢氧化镁、硫酸钙及硫酸钡中的至少一种。
请参阅图1-8,本申请还提供一种叠层多孔膜,叠层多孔膜包括多孔基材10及多孔涂层12和/或13。多孔基材的至少一个表面被多孔涂层12和/或13涂覆,多孔涂层12和/或13包括如上所述的聚合物粘结剂。当将本申请的叠层多孔膜应用至电池,在电池内部发生短路导致温度升高时,由于上述多孔涂层12和/或13中粘结剂高温熔融,导致粘接失效,从而使得多孔涂层12和/或13与正负极极片和/或多孔基材10产生界面分离,从而及时阻断电流,防止热失控的发生。
具体地,请参阅图1,在本申请一些实施例中,叠层多孔膜110包括多孔基材10及多孔涂层12。多孔涂层12形成在所述多孔基材10的至少一个表面上。
在本申请一些实施例中,多孔基材10的材质包括聚乙烯(polyethylene,简称PE)、聚丙烯(Polypropylene,简称PP)以及聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称PET)、纤维素、聚酰亚胺、聚偏氟乙烯及聚四氟乙烯等材料中的一种或多种。多孔基材10可以是单层结构或者多种混合的多层复合结构。多孔基材10的厚度为3um至20um。
在本申请一些实施例中,多孔涂层12包括聚合物粘结剂、增稠剂及润湿剂;聚合物粘结剂、增稠剂及润湿剂的重量比为(98%-70%):(15%-1%):(15%-1%)。
其中,多孔涂层12中的聚合物粘结剂、增稠剂及润湿剂的质量百分比设置不仅可以使得多孔涂层涂布均匀,有利于锂离子传输,还可以将正负极片与隔膜粘接在一起,从而阻碍电池循环膨胀变形。
具体地,当多孔涂层12内的聚合物粘结剂的重量百分比>98%时,在制备浆料过程中,因分散剂含量较少,聚合物粘结剂分散不均匀,容易团聚成大颗粒,使得多孔涂层12涂布不均,影响锂离子传输,从而降低动力学性能;当多孔涂层12内的聚合物粘结剂的重量百分比<70%时,多孔涂层12与正负极片之间的粘结力≤4N/m,在电池受到外部机械冲击时,叠层多孔膜110与正负极片的粘接力不足以抵抗机械冲击力,叠层多孔膜110在正负极片上容易发生滑动,导致正负极片直接接触,产生短路点,从而导致电芯起火***。
具体地,多孔涂层12中的增稠剂主要用于提升多孔涂层浆料的粘度,使得多孔涂层浆料具有较好的稳定性,防止颗粒团聚沉降。润湿剂的作用是使得聚合物粘结剂及增稠剂与水的接触更充分,有利于聚合物粘结剂的分散。
在本申请一些实施例中,多孔涂层12中的增稠剂的成分为羧甲基纤维素钠、羟乙基纤维素,甲基羟乙基纤维素、乙基羟乙基纤维素、甲基羟丙基纤维素或聚氨酯中的至少一种。
在本申请一些实施例中,多孔涂层12中的润湿剂的成分为十二烷基苯磺酸钠、丙二醇嵌段聚醚、辛基酚聚氧乙烯醚、十二烷基硫酸钠、十二烷基磺酸钠中的一种或两种以上混合物。
在本申请一些实施例中,多孔涂层12的正向投影面积占多孔基材10的正向投影面积的20%-100%。优选地,多孔涂层12的正向投影面积占多孔基材10的正向投影面积的70%-90%。如此,能够避免因叠层多孔膜与 正负极片的粘结力不足导致的电芯短路风险。具体地,当多孔涂层12的正向投影面积占多孔基材10的正向投影面积的比值≤20%,多孔涂层12与正负极片的粘结力≤4N/m,电池受到外部机械冲击时,叠层多孔膜110与正负极片之间的粘接力不足以抵抗机械冲击力,叠层多孔膜110在正负极片上容易发生滑动,导致正负极片直接接触,产生短路点,从而导致电芯起火***。
在本申请一些实施例中,多孔涂层12在多孔基材10上的涂覆方式为辊涂或喷涂等方式中的至少一种。
在本申请一些实施例中,多孔涂层12的厚度为200nm~4000nm。
具体地,请参阅图2,在本申请一些实施例中,还提供一种叠层多孔膜111,叠层多孔膜111的结构与上述叠层多孔膜110的结构相似,二者不同之处在于:叠层多孔膜111包括两个分别形成在多孔基材10的相对两表面上的多孔涂层12。
具体地,请参阅图3,在本申请一些实施例中,还提供一种叠层多孔膜112,叠层多孔膜112的结构与上述的叠层多孔膜110的结构相似,二者不同之处在于:叠层多孔膜112包括多孔基材10及一个形成在基材10一表面上的多孔涂层13。
在本申请一些实施例中,多孔涂层13包括无机粒子、聚合物粘结剂、增稠剂及润湿剂。无机粒子、聚合物粘结剂、增稠剂及润湿剂的重量比为(97%-70%):(10%-1%):(10%-1%):(10%-1%)。
其中,多孔涂层13中的无机粒子、聚合物粘结剂、增稠剂及润湿剂的质量百分比设置,不仅可以使得多孔涂层13涂布均匀,提升叠层多孔膜112的耐热性和抵抗外来颗粒刺穿的能力,还可以避免因叠层多孔膜112与正负极片的粘结力不足导致的电芯短路风险。
具体地,多孔涂层13中的无机粒子的作用是提升叠层多孔膜112的耐热性和抵抗外来颗粒的刺穿。
具体地,多孔涂层13中的增稠剂可以提升多孔涂层的浆料的粘度,使得多孔涂层浆料具有较好的稳定性,防止颗粒团聚沉降。
具体地,多孔涂层13中的润湿剂可以使得多孔涂层13中的无机粒子及聚合物粘结剂与水的接触更充分,有利于聚合物粘结剂的分散。
具体地,在多孔涂层13中,当聚合物粘结剂的重量百分比>10%时,会降低多孔涂层13的孔隙率,影响锂离子传输,从而降低动力学性能;当聚合物粘结剂的重量百分比<1%时,多孔涂层13与多孔基材10之间的粘接力≤10N/m,多孔涂层13更易从多孔基材10上剥落,无多孔涂层13保护的叠层多孔膜112更容易被颗粒刺穿,从而导致电芯内短路起火***。
在本申请一些实施例中,多孔涂层13中的无机粒子包括三氧化二铝、勃姆石、硫酸钡、二氧化钛、氢氧化镁等中的至少一种。
在本申请一些实施例中,多孔涂层13中的增稠剂的成分包括羧甲基纤维素钠、羟乙基纤维素,甲基羟乙基纤维素、乙基羟乙基纤维素、甲基羟丙基纤维素、聚氨酯中的至少一种。
在本申请一些实施例中,多孔涂层13中的润湿剂的成分包括十二烷基苯磺酸钠、丙二醇嵌段聚醚、辛基酚聚氧乙烯醚、十二烷基硫酸钠、十二烷基磺酸钠中的一种或两种以上混合物。
在本申请一些实施例中,多孔涂层13的正向投影面积占多孔基材10的正向投影面积的65%~100%。具体地,当多孔涂层13的正向投影面积占多孔基材10的正向投影面积的比值小于65%时,多孔涂层13与多孔基材10之间的粘接力小,多孔涂层13更易从多孔基材10上剥落,叠层多孔膜110上无多孔涂层13保护的区域大,更容易被颗粒刺穿,电芯内短路起 火***的风险增大。
在本申请一些实施例中,多孔涂层13的厚度为200nm~5000nm。
在本申请一些实施例中,多孔涂层13在多孔基材10上的涂覆方式优选为辊涂。
具体地,请参阅图4,在本申请一些实施例中,还提供一种叠层多孔膜113,叠层多孔膜113与上述叠层多孔膜112的结构相似,二者的不同之处在于:叠层多孔膜113包括两个分别形成在多孔基材10的相对两表面上的多孔涂层13。
具体地,请参阅图5,在本申请一些实施例中,还提供一种叠层多孔膜114,叠层多孔膜114与上述叠层多孔膜113的结构相似,二者的不同之处在于,叠层多孔膜114包括一个多孔基材10、一个形成在多孔基材10一表面上的多孔涂层13及一个形成在多孔涂层13上的多孔涂层12。
在本申请一些实施例中,多孔涂层12在多孔涂层13上的涂覆方式为辊涂或喷涂等方式中的至少一种。
在本申请一些实施例中,多孔涂层12的正向投影面积占多孔涂层13的正向投影面积的20%-100%。优选地,多孔涂层12的正向投影面积占多孔涂层13的正向投影面积的70%-90%。
具体地,请参阅图6,在本申请一些实施例中,还提供一种叠层多孔膜115,叠层多孔膜115与上述叠层多孔膜114的结构相似,二者的不同之处在于:叠层多孔膜115包括一个多孔基材10、两个分别形成在多孔基材10相背两表面上的多孔涂层13及两个分别形成在多孔涂层13上的多孔涂层12。
具体地,请参阅图7,在本申请一些实施例中,还提供一种叠层多孔膜116,叠层多孔膜116与上述叠层多孔膜114的结构相似,二者的不同之 处在于:叠层多孔膜116包括一个多孔基材10、形成在多孔基材10相背两表面上的一个多孔涂层12及一个多孔涂层13及另一个形成在多孔涂层13上的多孔涂层12。
具体地,请参阅图8,在本申请一些实施例中,还提供一种叠层多孔膜117,叠层多孔膜117与上述叠层多孔膜114的结构相似,二者的不同之处在于:叠层多孔膜117包括两个分别形成在多孔基材10相背两表面上的多孔涂层13及一个形成在其中一个多孔涂层13上的多孔涂层12。
在本申请一些实施例中,所述叠层多孔膜中包含多孔涂层12时,位于多孔基材10和多孔涂层12之间或位于多孔基材10表面的多孔涂层13还可以不包括如上所述的聚合物粘结剂,而是采用业界常用的粘结剂。同理,当所述叠层多孔膜中包含多孔涂层13时,位于多孔基材10和/或多孔涂层表面的多孔涂层12可以不包括如上所述的聚合物粘结剂,而是采用业界常用的粘结剂。
本申请还提供一种电池,电池包括一正极片(图未示)、一叠层多孔膜110、一负极片(图未示)、电解液(图未示)及壳体(图未示),正极片、叠层多孔膜110、负极片及电解液位于壳体内,叠层多孔膜110位于正极片与负极片之间且粘结在正极片与负极片上,正极片、叠层多孔膜110及负极片浸没在电解液内。本申请提供的电池应用了如上所述的叠层多孔膜作为隔膜,而叠层多孔膜包括应用如上所述的聚合物粘结剂的多孔涂层,在电池内部发生短路导致温度升高时,多孔涂层在高温下由于聚合物粘结剂软化熔融从而发生粘接失效,多孔涂层粘接失效会导致多孔涂层与正负极极片和/或多孔基材产生界面分离,从而及时阻断电流,防止热失控的发生。
在本申请的一些实施例中,电池为锂离子电池。
在本申请的一些实施例中,正极片包括正极集流体及负载在正极集流体上的正极活性物质。
正极活性物质包括磷酸铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂等中的至少一种。
正极活性物质还包括第一粘结剂及导电剂。第一粘结剂可以包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。导电剂可以包括导电炭黑、石墨烯、碳纳米管、碳纤维或科琴黑中的至少一种。
在本申请的一些实施例中,负极片包括负极集流体及负载在负极集流体上的负极活性物质。
在本申请一些实施例中,负极活性物质包含人造石墨、天然石墨、软碳、硬碳、中间相碳微球、硅、硅合金、硅碳复合物、硅氧化合物、钛酸锂或钛酸铌中的至少一种。
在本申请一些实施例中,负极活性物质层还包括第二粘结剂,第二粘结剂与负极活性物质混合。第二粘结剂可以包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。
在本申请一些实施例中,电解液包括溶剂和锂盐,溶剂包含碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸乙丙酯、碳酸乙丁酯、碳酸二丙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、γ-丁内酯、碳酸亚乙烯酯或亚硫酸丙烯酯中的至少一种。
在本申请一些实施例中,电解液还包括除上述以外的其他非水溶剂, 非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
碳酸酯化合物可为环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)或者其组合。氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯或者其组合。
羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯、甲酸甲酯或者其组合。
醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃或者其组合。
其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、磷酸酯或者其组合。
在本申请一些实施例中,锂盐包含六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂或三氟甲基磺酸锂中的至少一种。
以下通过具体实施例和对比例来对本申请进行说明。其中,以丙烯酸甲酯、丁二烯及苯乙烯作为聚合物粘结剂的原材料,当然,用于制作聚合物粘结剂的原材料并不局限于丙烯酸甲酯、丁二烯及苯乙烯。
实施例1
聚合物粘结剂的基本配方:
按重量份计,单体比例为苯乙烯15份,丁二烯30份,丙烯酸甲酯55份,此外还添加乳化剂十二烷基苯磺酸钠2.1份;乳化剂辛基酚聚氧乙烯醚1.1份;引发剂过硫酸铵0.55份;螯合剂EDTA四钠盐0.015份,还原剂亚硫酸钠0.4份;调节剂十二烷基硫醇0.2份;链终止剂对苯二酚0.25份作为聚合反应的助剂。
聚合过程具体如下:
将蒸馏水和乳化剂送入到氩气置换过的反应釜中,然后将还原剂,螯合剂,调节剂,苯乙烯,丙烯酸甲酯加入到反应釜中,通氩气20min来置换反应釜中的氧气,回流,搅拌预乳化1h(40-50℃),将反应釜温度迅速升至78℃,先加入30%的引发剂,保持反应温度稳定在80-84℃;然后利用氩气将计量罐内的丁二烯加入反应釜中,同时加入剩余的引发剂并控制在30min内加完,搅拌机转数控制在150r/min;聚合时间8-12h,单体转化率控制在75%;加入链终止剂停止反应。反应后乳液经脱出单体后得到所需粘结剂乳液。
叠层多孔膜的制备:首先将重量百分比为95%的具有熔点≤120℃的聚合物粘结剂(丙烯酸甲酯:丁二烯:苯乙烯=55%:30%:15%)加入搅拌器中,搅拌均匀,得到一浆料;将重量百分比为5%的辅助粘结剂、增稠剂及润湿剂加入上述浆料中,继续搅拌至混合均匀,最后加入去离子水,得到粘结涂层浆料,调整粘结涂层浆料的粘度至30-500MPa.s。将粘结涂层浆料涂覆于具有陶瓷涂层的叠层多孔膜上,在烘箱中完成干燥,形成具有陶瓷涂层及粘结涂层的叠层多孔膜。其中,陶瓷涂层使用丙烯酸粘结剂作为粘结剂,粘结涂层在陶瓷涂层上的覆盖率为80%,聚合物粘结剂的粒径为1000nm。在这里,粘结涂层相当于上述的多孔涂层12,陶瓷涂层相当于采用了业界常用的粘结剂的普通的多 孔涂层13。
正极片的制备:将钴酸锂(LiCoO2)、导电碳(Super-P)和聚偏氟乙烯(PVDF)按照95:2:3的质量比例混合在溶剂去离子水中,搅拌均匀,得到正极浆料。将浆料涂布在12μm的铝箔上,干燥,冷压,再经过裁片、焊接极耳,得到正极片。
负极片的制备:将天然石墨、导电碳(Super-P)和羧甲基纤维素钠(CMC)按照95:2:3的质量比例混合在溶剂N-甲基吡咯烷酮中,搅拌均匀,得到负极浆料。将浆料涂布在12μm的铜箔上,干燥,冷压,再经过裁片、焊接极耳,得到负极片。
电解液的制备:在干燥氩气气氛中,首先将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比EC:EMC:DEC=30:50:20混合,然后向有机溶剂中加入锂盐六氟磷酸锂(LiPF6)溶解并混合均匀,得到锂盐的浓度为1.15M的电解液。
电池的制备:将以上制备的正极片、负极片和叠层多孔膜按次序卷绕成电池,用铝塑薄膜将电池顶封和侧封,留下注液口。从注液口灌注电解液,封装。然后通过热压的方式使电极与隔膜之间形成粘结作用,再经过化成、容量等工序制得锂离子电池。
实施例2
实施例2与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=90%:5%:5%。
实施例3
实施例3与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=80%:10%:10%。
实施例4
实施例4与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=75%:15%:10%。
实施例5
实施例5与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=55%:15%:30%。
实施例6
实施例6与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=40%:50%:10%。
实施例7
实施例7与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=40%:10%:50%。
实施例8
实施例8与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=30%:60%:10%。
实施例9
实施例9与实施例1的区别在于,聚合物粘结剂中的丙烯酸甲酯:苯乙烯:丁二烯=30%:10%:60%。
实施例10
实施例10与实施例1的区别在于,粘结涂层在陶瓷涂层上的覆盖率为50%。
实施例11
实施例11与实施例1的区别在于,粘结涂层在陶瓷涂层上的覆盖率为60%。
实施例12
实施例12与实施例1的步骤区别在于,粘结涂层在陶瓷涂层上的覆盖率为70%。
实施例13
实施例13与实施例1的区别在于,粘结涂层在陶瓷涂层上的覆盖率为90%。
实施例14
实施例14与实施例1的区别在于,粘结涂层在陶瓷涂层上的覆盖率为100%。
实施例15
实施例15与实施例1的区别在于,粘结涂层中聚合物粘结剂的含量为60%。
实施例16
实施例16与实施例1的区别在于,粘结涂层中聚合物粘结剂的含量为70%。
实施例17
实施例17与实施例1的区别在于,粘结涂层中聚合物粘结剂的含量为75%。
实施例18
实施例18与实施例1的区别在于,粘结涂层中聚合物粘结剂的含量为98%。
实施例19
实施例19与实施例1的区别在于,粘结涂层中聚合物粘结剂的含量为100%。
实施例20
实施例20与实施例1的区别在于,聚合物粘结剂的粒径为50nm。
实施例21
实施例21与实施例1的区别在于,聚合物粘结剂的粒径为200nm。
实施例22
实施例22与实施例1的区别在于,聚合物粘结剂的粒径为2000nm。
实施例23
实施例23与实施例1的区别在于,聚合物粘结剂的粒径为3000nm。
实施例24
实施例24与实施例1的区别在于,聚合物粘结剂的粒径为4000nm。
实施例25
实施例25与实施例1的区别在于:
叠层多孔膜的制备:首先将重量百分比为1%润湿剂加入搅拌器中,搅拌均匀;分两次加入重量百分比为95%的无机粒子,搅拌均匀;将重量百分比为4%的聚合物粘结剂(丙烯酸甲酯:丁二烯:苯乙烯=55%:30%:15%)及增稠剂加入上述浆料中,继续搅拌混合均匀,最后加入去离子水,得到陶瓷涂层浆料,调整粘陶瓷涂层浆料的粘度至30-500MPa.s。将陶瓷涂层浆料涂覆于基材层上,在烘箱中完成干燥,并将粘结涂层涂在陶瓷涂层上并在烘箱中完成干燥,形成具有陶瓷涂层及粘结涂层的叠层多孔膜。其中,粘结涂层为油性聚偏二氟乙烯(Polyvinylidene Fluoride,简称PVDF)涂层,聚合物粘结剂的粒径为1000nm。在本实施例中,所述粘结涂层为实施例1中的多孔涂层12,所述陶瓷涂层为包含有聚合物粘结剂的多孔涂层13。
实施例26
实施例26与实施例25的区别在于:陶瓷涂层中聚合物粘结剂的 含量为0.5%。
实施例27
实施例27与实施例25的区别在于:陶瓷涂层中聚合物粘结剂的含量为1.0%。
实施例28
实施例28与实施例25的区别在于:陶瓷涂层中聚合物粘结剂的含量为8.0%。
实施例29
实施例29与实施例25的区别在于:陶瓷涂层中聚合物粘结剂的含量为10.0%。
实施例30
实施例30与实施例25的区别在于:陶瓷涂层中聚合物粘结剂的含量为15.0%。
实施例31
实施例31与实施例25的区别在于:聚合物粘结剂的粒径为50nm。
实施例32
实施例32与实施例25的区别在于:聚合物粘结剂的粒径为200nm。
实施例33
实施例33与实施例25的区别在于:聚合物粘结剂的粒径为2000nm。
实施例34
实施例34与实施例25的区别在于:聚合物粘结剂的粒径为3000nm。
实施例35
实施例35与实施例25的区别在于:聚合物粘结剂的粒径为4000nm。
比较例1
比较例1与实施例1的区别在于:首先将70%PVDF颗粒分批次加入有机溶剂中,然后利用搅拌器进行搅拌,搅拌均匀后加入30%的陶瓷粉及助剂加入上述浆料中,继续搅拌混合均匀,得到一混合浆料,将混合浆料涂抹在基材层上,在烘箱中完成干燥,形成叠层多孔膜。粘结涂层在陶瓷涂层上的覆盖率为100%。
比较例2
比较例2与实施例25的区别在于:首先将1WT%润湿剂加入搅拌器中,搅拌均匀;分两次加入重量百分比为95%的无机粒子,搅拌均匀;将重量百分比为4%的丙烯酸粘结剂及增稠剂加入上述浆料中,继续搅拌混合均匀,最后加入去离子水,调整浆料粘度至30-500MPa.s。
比较例3
比较例3与实施例1的区别在于:聚合物粘结剂不包含第三单体,聚合物粘结剂中的丙烯酸甲酯:丁二烯=90%:10%。
比较例4
比较例4与实施例1的区别在于:聚合物粘结剂不包含第一单体及第三单体。聚合物粘结剂为聚丙烯酸甲酯。
将上述实施例1-35及比较例1-4制备的叠层多孔膜分别采用180度剥离测试标准测试叠层多孔膜与正负极片湿压粘结力:将叠层多孔膜和正负极片裁切成54.2mm*72.5mm样品,将叠层多孔膜与正负极片复合利用铝塑膜封装注液,然后使用热压机热压,热压条件是:温度为85℃,压力为1MPa,时间为60min;将热压后的样品裁切成 15mm*54.2mm小条,分别按照180℃剥离测试标准测试粘结力。
将上述实施例1-35及比较例1-4制备的电池进行hot-box测试:0.7C恒流充电至满充电压,然后恒压充电至电流截至0.02C;记录测试前电芯的开路电压、交流内阻,检查外观并拍照;5℃/min±2℃/min的速率升至一定温度,并保持60min,记录电芯表面温升和电压;结束测试后,记录OCV、IMP,检查外观并拍照。
将上述实施例1-35及比较例1-2制备的电池通过放电法测量电芯放电倍率:0.5C恒流充电至4.45V,然后恒压充电至电流截至0.05C;搁置5min,依次使用0.2C,0.5C,1C,1.5C,2C放电,计算放电倍率。
将上述实施例1-35及比较例1-4中涉及的参数及测试结果记录在表1中。其中,实施例1-24中的多孔涂层对应的是多孔涂层12。实施例25-35中的多孔涂层对应的是多孔涂层13。
表1
Figure PCTCN2020135004-appb-000003
Figure PCTCN2020135004-appb-000004
Figure PCTCN2020135004-appb-000005
由表1可知,相较于比较例1-4,由于实施例1-35的叠层多孔膜中添加了聚合物粘结剂,因此,实施例1-35的叠层多孔膜和电池具有较好的粘结力与较高的热箱通过率。
通过实施例1-9可知,在粘结涂层覆盖率、粘结涂层中聚合物粘结剂的含量及粒径保持不变的情况下,聚丙烯酸甲酯(第二单体)组分含量太高,会影响hot-box通过率;聚丙烯酸甲酯(第二单体)组分含量太低,会减少叠层多孔膜与极片界面的粘接力。由实施例1-9可知,聚合物粘结剂中的丙烯酸甲酯(第二单体):丁二烯(第一单体):苯乙烯(第三单体)=55%:30%:15%为最佳比例。
通过实施例10-14可知,在聚合物粘结剂组成成分、粘结涂层中聚合物粘结剂含量及粒径保持不变的情况下,粘结涂层的覆盖率越高,粘结力越强,倍率越差;覆盖率越低,倍率性能越好,粘结力越差。
通过实施例15-19可知,在聚合物粘结剂组成成分、粘结涂层覆盖率及粒径保持不变的情况下,粘结涂层中的聚合物粘结剂的含量太大,影响电芯倍率性能;粘结涂层中的聚合物粘结剂含量太小,影响叠层多孔膜与极片的界面粘接力。
通过实施例20-24可知,在聚合物粘结剂组成成分、粘结涂层覆盖率及粘结涂层中聚合物粘结剂含量保持不变的情况下,聚合物粘结剂的粒径太大,影响电芯能量密度;颗粒粒径太小,影响电芯倍率性能。
通过实施例25-30可知,在聚合物粘结剂组成成分及粒径保持不变的情况下;陶瓷涂层中聚合物粘结剂含量太大,影响电芯倍率性能;陶瓷涂层中聚合物粘结剂含量太小,影响CCS涂层粘结力。
通过实施例31-35可知,在聚合物粘结剂组成成分、粘结涂层覆盖率及陶瓷涂层中聚合物粘结剂含量保持不变的情况下,聚合物粘结剂的粒径太大,影响电芯能量密度;颗粒粒径太小,影响电芯倍率性能。
以上,仅是本申请的较佳实施方式而已,并非对本申请任何形式 上的限制,虽然本申请已是较佳实施方式揭露如上,并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施方式,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施方式所做的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (16)

  1. 一种聚合物粘结剂,包括由第一单体、第二单体和第三单体聚合形成的共聚物,其特征在于,所述聚合物粘结剂的软化点为60℃至100℃;其中,所述第一单体包括结构式(I)或结构式(II)所表示的化合物中的至少一种,第二单体包括结构式(III)或结构式(IV)所表示的化合物中的至少一种,第三单体包括结构式(V)所表示的化合物中的至少一种:
    Figure PCTCN2020135004-appb-100001
    其中,在结构式(I)中,R 11选自碳原子数为0~3的烷基;在结构式(II)中,n1为2~5的整数;在结构式(III)中,R 21选自氢或碳原子数为1~5的烷基,M为氢或碱金属阳离子;在结构式(IV)中,R 22选自氢或碳原子数为1~5的烷基;在结构式(V)中,R 31选自碳原子数为1~5的烷基。
  2. 如权利要求1所述的聚合物粘结剂,其特征在于,所述第一单体包括乙烯、丙烯、丁烯、戊烯、戊二烯或丁二烯中的至少一种,所述第二单体包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸、甲基丙烯腈或丁二烯-丙烯腈中的至少一种,所述第三单体包括苯乙烯、氯苯乙烯、氟苯乙烯或甲基苯乙烯中的至少一种。
  3. 如权利要求1所述的聚合物粘结剂,其特征在于,基于所述共聚物的总重量,所述第一单体、所述第二单体和所述第三单体的重量比为(15%~50%):(25%~75%):(10%~50%)。
  4. 如权利要求1所述的聚合物粘结剂,其特征在于,所述聚合物粘结剂的熔点≤120℃。
  5. 如权利要求1所述的聚合物粘结剂,其特征在于,所述聚合物粘结剂的D50粒径范围为200nm至3000nm。
  6. 如权利要求1所述的聚合物粘结剂,其特征在于,所述聚合物粘结剂为核壳结构,所述核壳结构包括壳层和被所述壳层包覆的核心。
  7. 如权利要求6所述的聚合物粘结剂,其特征在于,所述核心的材质为无机耐热填料。
  8. 如权利要求7所述的聚合物粘结剂,其特征在于,所述无机耐热填料包括三氧化二铝、氢氧化镁、硫酸钙及硫酸钡中的至少一种。
  9. 如权利要求6所述的聚合物粘结剂,其特征在于,所述核壳结构中壳层的厚度为20nm~1600nm。
  10. 一种叠层多孔膜,其包括多孔基材及多孔涂层,所述多孔基材的至少一个表面被所述多孔涂层涂覆,其特征在于,所述多孔涂层包括如权利要求1-9任一项所述的聚合物粘结剂。
  11. 如权利要求10所述的叠层多孔膜,其特征在于,所述多孔涂层还包括增稠剂和润湿剂,所述聚合物粘结剂、增稠剂及润湿剂的质量百分比为(98%~70%):(15%~1%):(15%~1%)。
  12. 如权利要求10所述的叠层多孔膜,其特征在于,所述多孔涂层还包括无机粒子。
  13. 如权利要求12所述的叠层多孔膜,其特征在于,所述多孔涂层还包括增稠剂和润湿剂,所述无机粒子、所述聚合物粘结剂、所述增稠剂及所述润湿剂的质量百分比为(97%~70%):(10%~1%):(10%~1%):(10%~1%)。
  14. 如权利要求10或12所述的叠层多孔膜,其特征在于,所述多孔涂层的正向投影面积占所述多孔基材的正向投影面积的20%至100%。
  15. 一种电池,其特征在于,所述电池包括如权利要求10-14任一项所述的叠层多孔膜。
  16. 一种电子装置,其特征在于,所述电子装置包括如权利要求15所述的电池。
PCT/CN2020/135004 2020-12-09 2020-12-09 聚合物粘结剂、叠层多孔膜、电池及电子装置 WO2022120654A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080028645.XA CN113728504B (zh) 2020-12-09 2020-12-09 聚合物粘结剂、叠层多孔膜、电池及电子装置
PCT/CN2020/135004 WO2022120654A1 (zh) 2020-12-09 2020-12-09 聚合物粘结剂、叠层多孔膜、电池及电子装置
EP20964596.9A EP4207467A1 (en) 2020-12-09 2020-12-09 Polymer binder, laminated porous membrane, battery, and electronic apparatus
US18/129,410 US20230344077A1 (en) 2020-12-09 2023-03-31 Polymer binder, laminated porous film, battery, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135004 WO2022120654A1 (zh) 2020-12-09 2020-12-09 聚合物粘结剂、叠层多孔膜、电池及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/129,410 Continuation US20230344077A1 (en) 2020-12-09 2023-03-31 Polymer binder, laminated porous film, battery, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022120654A1 true WO2022120654A1 (zh) 2022-06-16

Family

ID=78672470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135004 WO2022120654A1 (zh) 2020-12-09 2020-12-09 聚合物粘结剂、叠层多孔膜、电池及电子装置

Country Status (4)

Country Link
US (1) US20230344077A1 (zh)
EP (1) EP4207467A1 (zh)
CN (1) CN113728504B (zh)
WO (1) WO2022120654A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101073169A (zh) * 2004-12-07 2007-11-14 株式会社Lg化学 经表面处理的微孔膜及由其制备的电化学装置
CN103441230A (zh) * 2013-08-21 2013-12-11 东莞新能源科技有限公司 有机/无机复合多孔隔离膜及其制备方法及电化学装置
CN103928650A (zh) * 2008-01-30 2014-07-16 株式会社Lg化学 用于改进与电极的结合力的隔膜以及含有所述隔膜的电化学装置
CN104868084A (zh) * 2015-05-06 2015-08-26 东莞市魔方新能源科技有限公司 一种锂离子二次电池用隔离膜
CN105680086A (zh) * 2014-12-03 2016-06-15 纳米及先进材料研发院有限公司 具有热敏层的锂离子电池
CN106374112A (zh) * 2015-07-23 2017-02-01 长泓能源科技股份有限公司 锂电池及其正极涂层的共聚物
US20190288257A1 (en) * 2016-05-25 2019-09-19 Grst International Limited Separator for secondary battery
CN111293262A (zh) * 2020-03-18 2020-06-16 溧阳天目先导电池材料科技有限公司 降低锂电池热失控风险的复合隔膜、制备方法和锂电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480190B2 (ja) * 1996-08-23 2003-12-15 松下電器産業株式会社 非水電解液二次電池
CN101276895B (zh) * 2007-03-27 2013-05-29 比亚迪股份有限公司 锂离子二次电池多孔隔膜层用组合物及锂离子二次电池
KR101535198B1 (ko) * 2012-06-04 2015-07-08 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 그의 제조방법
CN108539095B (zh) * 2018-04-03 2021-06-15 上海恩捷新材料科技有限公司 电池涂布膜浆料、电池隔膜、二次电池及其制备方法
JP7327044B2 (ja) * 2018-09-26 2023-08-16 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
CN110010831A (zh) * 2019-04-25 2019-07-12 东莞市魔方新能源科技有限公司 一种锂离子电池用隔膜及含该隔膜的锂离子电池
CN111916624B (zh) * 2019-05-08 2022-02-01 宁德新能源科技有限公司 隔离膜和电化学装置
CN111048786B (zh) * 2019-12-30 2021-05-25 珠海冠宇电池股份有限公司 一种含有无机/有机核壳结构的乳液型粘结剂及锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101073169A (zh) * 2004-12-07 2007-11-14 株式会社Lg化学 经表面处理的微孔膜及由其制备的电化学装置
CN103928650A (zh) * 2008-01-30 2014-07-16 株式会社Lg化学 用于改进与电极的结合力的隔膜以及含有所述隔膜的电化学装置
CN103441230A (zh) * 2013-08-21 2013-12-11 东莞新能源科技有限公司 有机/无机复合多孔隔离膜及其制备方法及电化学装置
CN105680086A (zh) * 2014-12-03 2016-06-15 纳米及先进材料研发院有限公司 具有热敏层的锂离子电池
CN104868084A (zh) * 2015-05-06 2015-08-26 东莞市魔方新能源科技有限公司 一种锂离子二次电池用隔离膜
CN106374112A (zh) * 2015-07-23 2017-02-01 长泓能源科技股份有限公司 锂电池及其正极涂层的共聚物
US20190288257A1 (en) * 2016-05-25 2019-09-19 Grst International Limited Separator for secondary battery
CN111293262A (zh) * 2020-03-18 2020-06-16 溧阳天目先导电池材料科技有限公司 降低锂电池热失控风险的复合隔膜、制备方法和锂电池

Also Published As

Publication number Publication date
CN113728504A (zh) 2021-11-30
US20230344077A1 (en) 2023-10-26
CN113728504B (zh) 2024-02-27
EP4207467A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
KR102551090B1 (ko) 비수계 2차 전지 접착층용 조성물, 비수계 2차 전지용 접착층, 적층체 및 비수계 2차 전지
JP6155967B2 (ja) リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP5701519B2 (ja) リチウムイオン二次電池電極用バインダー、これら電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池
TWI376828B (en) Electrolytic solution and lithium battery employing the same
CN111916747B (zh) 高安全聚合物电池正极片及聚合物电池和电池制备方法
WO2022141448A1 (zh) 电化学装置、电子装置及电化学装置的制备方法
WO2022205156A1 (zh) 一种隔离膜及包含该隔离膜的电化学装置和电子装置
JP2004047439A (ja) 接着剤組成物担持電池用セパレータとそれを用いて得られる電極/セパレータ積層体
WO2021108984A1 (zh) 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
WO2022141508A1 (zh) 一种电化学装置和电子装置
JPWO2019021891A1 (ja) 電気化学素子用電極および電気化学素子、並びに電気化学素子用電極の製造方法
WO2022205163A1 (zh) 隔离膜及包含该隔离膜的电化学装置和电子装置
WO2023155604A1 (zh) 复合隔膜及电化学装置
WO2022205165A1 (zh) 一种隔离膜及包含所述隔离膜的电化学装置和电子装置
WO2023123205A1 (zh) 隔离膜及其制备方法以及包含该隔离膜的二次电池和用电装置
JP2019192339A (ja) 二次電池用セパレータ、これを含む二次電池用積層体および捲回体、ならびに非水二次電池
WO2022016378A1 (zh) 电池及电子装置
WO2023184416A1 (zh) 一种隔膜、包含该隔膜的电化学装置及电子装置
CN110741495B (zh) 电化学元件用粘结剂组合物、功能层用浆料组合物、粘接层用浆料组合物以及复合膜
JP6414202B2 (ja) 二次電池用バインダー組成物
WO2022120654A1 (zh) 聚合物粘结剂、叠层多孔膜、电池及电子装置
JP2005019157A (ja) 電子部品用セパレータおよび電子部品
CN114142039B (zh) 一种粘结剂及包括该粘结剂的锂离子电池
JP2012150900A (ja) 双極型二次電池用シール材および双極型二次電池
WO2019004460A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020964596

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE