WO2022119059A1 - Carbon nanofiber composite for energy storage device, electrode comprising same, and method for preparing same - Google Patents

Carbon nanofiber composite for energy storage device, electrode comprising same, and method for preparing same Download PDF

Info

Publication number
WO2022119059A1
WO2022119059A1 PCT/KR2021/004531 KR2021004531W WO2022119059A1 WO 2022119059 A1 WO2022119059 A1 WO 2022119059A1 KR 2021004531 W KR2021004531 W KR 2021004531W WO 2022119059 A1 WO2022119059 A1 WO 2022119059A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanofiber
energy storage
nanofiber composite
storage device
nanofibers
Prior art date
Application number
PCT/KR2021/004531
Other languages
French (fr)
Korean (ko)
Inventor
양오봉
손유현
아크탈모드샤히르
이하련
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210009966A external-priority patent/KR102481903B1/en
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2022119059A1 publication Critical patent/WO2022119059A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the present invention relates to a carbon nanofiber composite for an energy storage device, and more particularly, to a carbon nanofiber composite for an energy storage device having an energy storage ability by electrospinning with a polymer spinning solution, an electrode comprising the same, and a method for manufacturing the same is about
  • the energy storage system is an electrochemical energy storage system, and includes supercapacitors, lithium ion batteries, fuel cells, and the like.
  • Supercapacitors may be classified into electrochemical double-layer supercapacitors, pseudo capacitors, and hybrid capacitors according to electrode materials.
  • Graphene and carbon nanotube (CNT)-based nanofiber composites which are generally used as electrodes of supercapacitors, are very flexible and have high electrical conductivity and specific surface area, so many studies are being conducted.
  • the previously developed graphene and carbon nanotube-based nanofiber composites add a polymer binder to improve the mechanical strength of the fibers.
  • the added polymer binder causes an increase in equivalent series resistance (ESR), thereby reducing the energy density and power density of the graphene and carbon nanotube-based nanofiber composite.
  • the present invention is to solve the problems of the prior art, and while having the advantages of toughness and mechanical strength, which are important elements of the fiber, the performance of energy density and power density, which are important elements of an energy storage device, is improved.
  • Carbon nanofiber composite for energy storage device is stabilized (stabilization) by heat-treating nanofibers prepared by electrospinning a polymer spinning solution containing a transition metal in air, and then heat-treating in an inert gas for carbonization.
  • the transition metal is uniformly distributed in the formed carbon nanofibers.
  • the transition metal may include at least one of Cu, Co, Ni, Mn, Fe, Zr, Pd, and Mo.
  • the polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
  • the transition metal may include Cu and Ni.
  • the at least two transition metals distributed inside the carbon nanofiber may include a synthesized form.
  • At least two transition metals distributed inside the carbon nanofiber may include an oxide form.
  • the carbon nanofiber composite may have a diameter of 50 to 500 nm, a pore size of 25 to 30 nm, and a specific surface area of 100 to 500 m 2 /g.
  • the manufacturing method of the carbon nanofiber composite for an energy storage device includes the steps of preparing a polymer spinning solution containing a transition metal, electrospinning with the polymer spinning solution to prepare nanofibers, and airing the nanofibers. and stabilizing by heat treatment in an inert gas to prepare a carbon nanofiber composite in which the transition metal is uniformly distributed in carbon nanofibers formed by heat-treating and carbonizing the stabilized nanofibers in an inert gas.
  • the preparing of the polymer spinning solution may include preparing a polymer solution by mixing a polymer material with an organic solvent, and mixing the transition metal with the polymer solution.
  • the polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
  • the polymer material is polyacrylonitrile (PAN, polyacrylonitrile), polyimide (PI, polyimide), polyvinyl alcohol (PVA, polyvinyl alcohol), phenol resin, polypropylene (PP, polypropylene), polystyrene (PS, polystyrene), polyaniline (PA, polyaniline), and polymethyl methacrylate (PMMA, polymethylmethacrylate) may include at least one.
  • PAN polyacrylonitrile
  • PI polyimide
  • PVA polyvinyl alcohol
  • phenol resin polypropylene
  • PS polystyrene
  • PA polyaniline
  • PMMA polymethyl methacrylate
  • the organic solvent may include at least one of dimethylformamide (DMF), dimethylsulfoxide (DMSO), and dimethylacetamide (DMA).
  • DMF dimethylformamide
  • DMSO dimethylsulfoxide
  • DMA dimethylacetamide
  • transition metal In the step of mixing the transition metal, 0.6 to 2% by weight of the transition metal may be mixed with the polymer solution.
  • the polymer solution may be stirred at 50 to 100° C. for 3 to 7 hours.
  • the manufacturing of the nanofiber is 0.5 ml / while maintaining a high voltage of 5 to 50 kV, a humidity of 30 to 40%, and a spinning distance of 5 to 50 cm using the polymer spinning solution using a single nozzle. Electrospinning can be performed at a flow rate of h to 25 ml/h.
  • the nanofiber may be heat-treated at 150 to 250° C. in air for 2 to 4 hours.
  • the stabilized nanofiber may be heat-treated in an inert gas at 700 to 1000° C. for 3 to 6 hours.
  • the electrode for an energy storage device comprising a carbon nanofiber composite according to the present invention is formed by heat-treating and stabilizing nanofibers prepared by electrospinning a polymer spinning solution containing a transition metal in air, and then heat-treating them in an inert gas to carbonize them.
  • the transition metal is uniformly distributed in the carbon nanofibers.
  • the polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
  • the method of manufacturing an electrode for an energy storage device including a carbon nanofiber composite comprises the steps of preparing a carbon nanofiber composite in which a transition metal is uniformly distributed in carbon nanofibers, the carbon nanofiber composite and a conductive material mixing and pulverizing; preparing a mixed solution by mixing the pulverized carbon nanofiber composite, a conductive material, and distilled water; preparing an electrode slurry by mixing a binder with the mixed solution; applying the electrode slurry on a current collector and manufacturing an electrode by drying the electrode slurry, wherein the manufacturing of the carbon nanofiber composite includes preparing a polymer spinning solution containing the transition metal, and electrospinning with the polymer spinning solution to nano It includes the steps of preparing a fiber, stabilizing the nanofiber by heat treatment in air, and carbonizing the stabilized nanofiber by heat treatment in an inert gas.
  • the polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
  • the carbon nanofiber composite, the conductive material and the binder may be mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2: 0.8 to 1.2.
  • a transition metal having thermal and chemical stability, high specific surface area, and redox reactivity is uniformly distributed throughout the carbon nanofiber to have high electrical conductivity.
  • two or more transition metals are not doped on the surface of the carbon nanofiber and are uniformly distributed throughout the inside of the carbon nanofiber, so that it can be used as a high-density energy storage device. .
  • the manufacturing method of the carbon nanofiber composite for an energy storage device according to the present invention is a simple and convenient method of electrospinning by controlling the voltage, flow rate, spinning distance, etc. to easily control the size of the nanofiber pores and to synthesize transition metals.
  • the method for manufacturing an electrode for an energy storage device including a carbon nanofiber composite according to the present invention uses a carbon nanofiber composite in which a transition metal is uniformly distributed throughout the carbon nanofiber as an electrode for an energy storage device, thereby providing high energy It is possible to manufacture an energy storage device having a density and a power density and having an improved lifespan.
  • FIG. 1 is a flowchart according to a method for manufacturing a carbon nanofiber composite according to the present invention.
  • Figure 2 is a detailed flow chart for the step of preparing the polymer spinning solution according to the present invention.
  • FIG. 3 is a view schematically showing nanofibers, stabilized nanofibers, and carbon nanofiber composites manufactured according to the manufacturing method of FIG. 1 .
  • FIG. 4 is a view showing before and after carbonization treatment of nanofibers according to the present invention.
  • FIG. 5 is a view showing a transition metal synthesized inside the carbon nanofiber composite according to the present invention.
  • FIG. 6 is a photograph of an electrode for an energy storage device including a carbon nanofiber composite according to the present invention.
  • FIG. 7 is a flowchart according to a method of manufacturing an electrode for an energy storage device according to the present invention.
  • FIG 8 to 10 are views taken by SEM of the carbon nanofiber composites according to the first to third embodiments of the present invention, respectively.
  • 11 to 13 are views each showing the TEM measurement results of the carbon nanofiber composites according to the first to third examples of the present invention.
  • 14 to 16 are views each showing the BET measurement results of the carbon nanofiber composites according to the first to third embodiments of the present invention.
  • 17 to 19 are graphs respectively showing CV measurement results of electrodes for energy storage devices according to first to third embodiments of the present invention.
  • 20 to 22 are graphs each showing specific capacitance measurement results of electrodes for an energy storage device according to first to third examples and comparative examples of the present invention.
  • FIG. 23 is a graph showing a measurement result of a charge/discharge test of an electrode for an energy storage device according to a third embodiment of the present invention.
  • the present invention relates to a carbon nanofiber composite for an energy storage device, an electrode including the same, and a method for manufacturing the same.
  • Carbon nanofiber composite for energy storage device is stabilized (stabilization) by heat-treating nanofibers prepared by electrospinning a polymer spinning solution containing a transition metal in air, and then heat-treating in an inert gas for carbonization.
  • the transition metal is uniformly distributed in the formed carbon nanofibers.
  • the polymer spinning solution used in electrospinning may include at least one transition metal among Cu, Co, Ni, Mn, Fe, Zr, Pd, and Mo.
  • the polymer spinning solution includes at least two transition metals, and in the formed carbon nanofiber, at least two transition metals are not doped on the surface of the carbon nanofiber and may be uniformly distributed throughout the inside of the carbon nanofiber. More specifically, in this case, the transition metal may include Cu and Ni.
  • the carbon nanofibers may exist in a synthesized form of the transition metal or may include an oxide form of the transition metal.
  • the carbon nanofiber composite may have a diameter of 50 to 500 nm, a pore size of 25 to 30 nm, and a specific surface area of 100 to 500 m 2 /g.
  • the carbon nanofiber composite for an energy storage device according to the present invention as described above may be manufactured by the manufacturing method shown in FIGS. 1 and 2 .
  • Figure 1 is a flow chart according to the manufacturing method of the carbon nanofiber composite according to the present invention.
  • Figure 2 is a detailed flowchart for the step of preparing the polymer spinning solution according to the present invention.
  • the manufacturing method of the carbon nanofiber composite for an energy storage device comprises the steps of preparing a polymer spinning solution containing a transition metal (S10), a polymer spinning solution. Transition metal is uniformly distributed in carbon nanofibers formed by electrospinning to produce nanofibers (S20), stabilizing the nanofibers by heat treatment in air (S30), and heat-treating the stabilized nanofibers in an inert gas to carbonize them. It includes a step (S40) of preparing the carbon nanofiber composite.
  • a polymer spinning solution may be prepared by the manufacturing method shown in FIG. 2, and a polymer solution is prepared by mixing a polymer material in an organic solvent containing a transition metal (S11) and a transition metal in the polymer solution It may include a step (S12) of mixing.
  • a polymer solution is prepared by mixing a polymer material with an organic solvent in step S11.
  • the polymer solution may be prepared by stirring at 50 to 90° C. for 20 to 25 hours.
  • the polymer material is polyacrylonitrile (PAN, polyacrylonitrile), polyimide (PI, polyimide), polyvinyl alcohol (PVA, polyvinyl alcohol), phenol resin, polypropylene (PP, polypropylene), polystyrene (PS, polystyrene), polyaniline (PA, polyaniline), and polymethyl methacrylate (PMMA, polymethylmethacrylate) may include at least one.
  • PAN polyacrylonitrile
  • PI polyimide
  • PVA polyvinyl alcohol
  • phenol resin polypropylene
  • PS polystyrene
  • PA polyaniline
  • PMMA polymethyl methacrylate
  • the organic solvent may include at least one of dimethylformamide (DMF), dimethylsulfoxide (DMSO), and dimethylacetamide (DMA).
  • DMF dimethylformamide
  • DMSO dimethylsulfoxide
  • DMA dimethylacetamide
  • step S12 a transition metal is mixed with the polymer solution to prepare a polymer spinning solution.
  • the polymer spinning solution may contain at least two transition metals.
  • the polymer solution mixed with the transition metal may be stirred at 50 to 100° C. for 3 to 7 hours.
  • FIG. 3 is a view schematically showing nanofibers, stabilized nanofibers and carbon nanofiber composites manufactured according to the manufacturing method of FIG. 1 .
  • step S20 electrospinning the polymer spinning solution prepared in step S20 (electrospinning) to prepare nanofibers.
  • Electrospinning used in the present invention is a technology capable of manufacturing ultrafine fibers and porous webs, that is, non-woven fabrics, with a diameter of nanometers using electrostatic spraying of a high-viscosity fluid such as a polymer, and the spinning solution is attracted by the electrostatic force of the electrode As a result, an electrospinning device capable of spinning ultra-fine fibers is used.
  • nanofibers are formed on the current collector of the electrospinning device as an electric field is applied to the viscous polymer spinning solution.
  • the polymer spinning solution is preferably performed using a single nozzle at a temperature of 30° C., a voltage of 5 to 50 kV, a spinning distance of 5 to 50 cm, and a flow rate of 0.5 to 25 ml/h.
  • the diameter of the nanofiber and an appropriate thickness of the nanofiber can be adjusted.
  • the manufacturing method of the carbon nanofiber composite for energy storage device according to the present invention can easily control the size of the nanofiber pores by controlling the voltage, flow rate, spinning distance, etc. by electrospinning, which is a simple and convenient method, and can synthesize transition metals. have.
  • the spun nanofibers can be prepared in the form of a structure in which a plurality of nanofibers are crossed.
  • nanofibers spun in step S30 are heat-treated in air to be stabilized.
  • oxidized nanofibers can be obtained by heat-treating the nanofibers in air at 150 to 250° C. for 2 to 4 hours.
  • nanofibers stabilized in step S40 are heat-treated in an inert gas to carbonize them.
  • carbon nanofibers can be obtained by heat-treating the stabilized nanofibers in an inert gas at 700 to 1000° C. for 1 to 6 hours.
  • the inert gas may be a gas containing at least one of carbon dioxide (CO 2 ), argon (Ar), and nitrogen (N 2 ).
  • a carbon nanofiber composite in which a transition metal is uniformly distributed in carbon nanofibers is manufactured through heat treatment.
  • the carbon nanofiber composite prepared using a polymer spinning solution containing at least two transition metals has a specific surface area of 100 m 2 /g or more, and two or more transition metals can be uniformly distributed inside the carbon nanofibers. .
  • FIGS. 4 and 5 At least two transition metals are distributed inside the carbon nanofiber, and it can be confirmed that the transition metal is synthesized.
  • Figure 4 is a view showing before and after carbonization treatment of the nanofiber according to the first embodiment of the present invention.
  • Figure 5 is a view showing a transition metal synthesized inside the carbon nanofiber composite according to the first embodiment of the present invention.
  • Figure 4 (a) is a view showing a state in which the nanofibers are heat-treated and stabilized in air
  • Figure 4 (b) is a view showing the state in which the stabilized nano-fibers are heat-treated in an inert gas and carbonized.
  • the transition metal is present in an oxidized form inside the nanofiber.
  • the stabilized nanofibers are heat-treated in an inert gas, carbon nanofibers with an increased specific surface area can be manufactured while the nanofibers are carbonized and the color changes to black.
  • FIG. 5(a) is an enlarged view of carbon nanofibers
  • FIG. 5(b) is a view of the synthesized transition metal.
  • the inside of the carbon nanofiber includes a form in which the transition metal is uniformly embedded in an oxidized form or a synthetic form.
  • carbon nanofibers have two transition metals distributed therein and exist in a synthesized form of transition metals.
  • an electrode for an energy storage device including the carbon nanofiber composite according to the present invention may be manufactured.
  • 6 is a photograph of an electrode for an energy storage device including the carbon nanofiber composite according to the present invention.
  • the electrode for an energy storage device includes a carbon nanofiber composite.
  • At least two transition metals may be uniformly distributed in the carbon nanofiber.
  • the electrode for an energy storage device including the carbon nanofiber composite according to the present invention as described above may be manufactured by the manufacturing method shown in FIG. 7 .
  • 7 is a flowchart according to a method of manufacturing an electrode including a carbon nanofiber composite according to the present invention.
  • the method for manufacturing an electrode for an energy storage device including a carbon nanofiber composite includes the steps of preparing a carbon nanofiber composite in which a transition metal is uniformly distributed inside the carbon nanofiber (S100) , mixing and pulverizing the carbon nanofiber composite and the conductive material (S200), mixing the pulverized carbon nanofiber composite and the conductive material with distilled water to prepare a mixed solution (S300), mixing the binder with the mixed solution to form an electrode slurry It includes a manufacturing step (S400), applying the electrode slurry on the current collector (S500), and drying the electrode slurry to prepare an electrode (S600).
  • a carbon nanofiber composite is prepared in step S100.
  • the manufacturing method of the carbon nanofiber composite may be performed by the manufacturing method of steps S10 to S40, as shown in FIG. 1 .
  • step S200 the carbon nanofiber composite and the conductive material are mixed and pulverized in a dry state in a powder form.
  • the carbon nanofiber composite and the conductive material may be mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2.
  • the conductive material may include at least one of carbon black (CB), acetylene black, ketjen black, graphite, and super-p.
  • CB carbon black
  • acetylene black ketjen black
  • graphite graphite
  • super-p super-p
  • a mixed solution is prepared by mixing the carbon nanofiber composite pulverized in step S300, a conductive material, and distilled water.
  • an appropriate amount of distilled water may be added to the pulverized carbon nanofiber composite and the conductive material and mixed.
  • step S400 a binder is mixed with the mixed solution to prepare an electrode slurry.
  • the carbon nanofiber composite, the conductive material and the binder may be mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2: 0.8 to 1.2.
  • the binder is CMC (carboxy methyl cellulose), polyvinylpyrrolidone (PVP; polyvinylpyrrolidone), fluorine-based polytetrafluoroethylene (PTFE; poly tetra fluoroethylene) powder or emulsion, and rubber-based styrene butadiene rubber (SBR; styrene butadiene rubber) , polyvinylidene fluoride, carboxymethyl cellulose, hydropropylmethyl cellulose, polyvinyl alcohol, and may include at least one of polyaniline.
  • CMC carboxy methyl cellulose
  • PVP polyvinylpyrrolidone
  • PTFE poly tetra fluoroethylene
  • SBR styrene butadiene rubber
  • step S500 the electrode slurry prepared in step S500 is applied on the current collector.
  • the method for applying the electrode slurry is not particularly limited.
  • methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush application method may be used.
  • the electrode is prepared by drying the electrode slurry in step S600.
  • the electrode slurry may be dried by heat treatment at 70 to 90° C. for 30 to 90 minutes.
  • the drying method is also not particularly limited, and for example, drying by hot air, hot air, low humidity wind, vacuum drying, and drying method by irradiation with infrared rays and electron beams, etc. Adjust to be removed.
  • PAN polyacrylonitrile
  • DMF dimethylformamide
  • nickel acetate was added to the polymer solution to prepare a polymer spinning solution.
  • the polymer spinning solution is mixed by stirring at 50 to 100 °C for 5 hours.
  • Nanofibers were prepared by electrospinning at a flow rate of 25 ml/h.
  • the nanofiber is stabilized by heat treatment in air at a temperature of 250° C. for 3 hours.
  • the stabilized nanofiber is carbonized in an inert gas such as N 2 , Ar, CO 2 at a temperature of 800 ° C. for 5 hours to prepare a carbon nanofiber composite (Ni-CNFs) according to the first embodiment of the present invention did.
  • an inert gas such as N 2 , Ar, CO 2 at a temperature of 800 ° C. for 5 hours to prepare a carbon nanofiber composite (Ni-CNFs) according to the first embodiment of the present invention did.
  • Example 2 a polymer spinning solution was prepared by adding copper acetate instead of nickel acetate to the polymer solution, and then manufacturing a carbon nanofiber composite (Cu-CNFs) according to Example 2 in the same manner as in Example 1 was prepared.
  • Cu-CNFs carbon nanofiber composite
  • Example 3 a carbon nanofiber composite according to Example 3 in the same manner as in Example 1 (NiCu-CNFs) was prepared.
  • FIGS. 8 to 10 are views taken by SEM of the carbon nanofiber composites according to the first to third embodiments of the present invention, respectively.
  • the carbon nanofiber composites according to the first to third Examples had a diameter of 200 to 300 nm, and it was confirmed that a plurality of nanofibers had a cross-porous structure. .
  • FIGS. 11 to 13 are views each showing the TEM measurement results of the carbon nanofiber composites according to the first to third embodiments of the present invention.
  • the Ni transition metal is uniformly distributed in the carbon nanofibers in the image mapping result of the carbon nanofiber composite according to the first embodiment.
  • two or more transition metals are not doped on the surface of the carbon nanofiber and are uniformly distributed throughout the inside of the carbon nanofiber, so that it can be used as a high-density energy storage device.
  • FIGS. 14 to 16 are views each showing the BET measurement results of the carbon nanofiber composites according to the first to third embodiments of the present invention.
  • Tables 1 to 3 are measurement values of the specific surface area of each of the carbon nanofiber composites according to the first to third embodiments of the present invention.
  • the composite according to Example 1 had a specific surface area of 367 m 2 /g, a pore volume of 0.368 cm 3 /g, and a pore size of 40.9 nm.
  • the carbon nanofiber composite according to Example 2 had a specific surface area of 78 m 2 /g, a pore volume of 0.054 cm 3 /g, and a pore size of 27.7 nm. .
  • the carbon nanofiber composite according to Example 3 had a specific surface area of 244 m 2 /g, a pore volume of 0.169 cm 3 /g, and a pore size of 27.7 nm. .
  • the carbon nanofiber composites according to the first to third embodiments of the present invention may have a high specific surface area.
  • the carbon nanofiber composite for an energy storage device has thermal and chemical stability, a high specific surface area, and a transition metal having redox reactivity is uniformly distributed throughout the carbon nanofiber to have high electrical conductivity.
  • an electrode for an energy storage device including a carbon nanofiber composite according to a first embodiment of the present invention was prepared, and then electrochemical properties were analyzed through CV.
  • the carbon nanofiber composite (Ni-CNFs) and super P according to Example 1 were mixed in a weight ratio of 8: 1, and then the grind was pulverized in a dry state through operation.
  • the electrode slurry was applied on the Nickel Foam, which is a current collector, and dried in an oven at 80° C. for 1 hour to prepare an electrode for an energy storage device according to Example 1.
  • carbon nanofiber composites (Cu-CNFs) according to the second embodiment are used instead of carbon nanofiber composites (Ni-CNFs) and mixed with super P.
  • the electrode slurry was applied on the aluminum foil, which is a current collector, and dried in an oven at 80° C. for 1 hour to prepare an electrode for an energy storage device according to the second embodiment.
  • carbon nanofiber composites (NiCu-CNFs) according to the third embodiment were used instead of carbon nanofiber composites (Ni-CNFs) and mixed with super P according to the third embodiment in the same manner as in the first embodiment.
  • An electrode for an energy storage device was manufactured.
  • Cyclic voltammetry was performed in the electrode system in a voltage range of -1 V to 1 V and 1M Na 2 SO 4 electrolyte.
  • cyclic voltammetry was measured in an electrode system in a voltage range of -1 V to 1 V and a 6M KOH electrolyte to confirm electrochemical performance.
  • FIGS. 17 to 19 are graphs each showing CV measurement results of the electrodes for an energy storage device according to the first to third embodiments of the present invention.
  • the electrode including the carbon nanofiber composite according to the first embodiment showed a stable value of the capacitance change according to the changed scan rate of 0.01 to 0.8.
  • the electrode including the carbon nanofiber composite according to the second embodiment showed a stable value of the capacitance change according to the changed scan rate of 0.01 to 0.6.
  • the electrode including the carbon nanofiber composite according to the second embodiment slightly increased the current when the CV measurement was carried out in 25 or more cycles at a scan rate of 0.1 V / s. Able to know.
  • the electrode including the carbon nanofiber composite according to the third embodiment showed a stable value of the capacitance change according to the changed scan rate of 0.01 to 0.6.
  • the electrode including the carbon nanofiber composite according to the third embodiment showed a slight increase in current when the CV measurement was performed 25 or more cycles at a scan rate of 0.1 V / s, and 1.0 It can be seen that V represents the highest current value.
  • FIGS. 20 to 22 are graphs showing specific capacitance measurement results of electrodes for an energy storage device according to the first to third examples and comparative examples of the present invention, respectively.
  • the specific capacitance of the electrode including the carbon nanofiber composite according to the first embodiment of the present invention was measured to be 347 F/g.
  • the specific capacitance of the electrode including the carbon nanofiber composite according to the second embodiment of the present invention was measured to be 84 F/g.
  • the electrode including the carbon nanofiber composite according to the third embodiment of the present invention the measured value of the specific capacitance was measured to be 337 F / g, the carbon nanofiber composite according to the third embodiment For the included electrode, the specific capacitance was measured to be about 130 F/g.
  • the electrode including the carbon nanofiber composite according to the third embodiment of the present invention has a specific capacitance more than twice as high as that of the comparative example.
  • the electrode for an energy storage device has a higher energy density than the comparative example due to the transition metal distributed inside the carbon nanofibers.
  • carbon nanofiber composites according to the first to third embodiments of the present invention can be used as electrode materials for supercapacitors having high energy density due to their large specific surface area and pore size.
  • FIG. 23 is a graph showing a measurement result of a charge/discharge test of an electrode for an energy storage device according to a third embodiment of the present invention.
  • the electrode for an energy storage device according to the third embodiment of the present invention has sufficient lifetime stability as an electrode material of a supercapacitor through charging and discharging for 5000 cycles.
  • the method for manufacturing an electrode for an energy storage device uses a carbon nanofiber composite in which a transition metal is uniformly distributed throughout the carbon nanofiber as an electrode for an energy storage device, so that it has high energy density and output density and has a long lifespan. Improved energy storage can be manufactured
  • the electrode for an energy storage device including the carbon nanofiber composite in which at least two transition metals are uniformly distributed inside the carbon nanofiber according to the present invention exhibited a higher specific capacitance than the conventional electrode for an energy storage device.
  • the electrode for an energy storage device has a lifespan characteristic in which performance is continuously maintained even in a charge/discharge test of more than 5000 times, industrial applicability is very high.

Abstract

The present invention relates to a carbon nanofiber composite for energy storage devices, an electrode including same, and a method for preparing same. The aim of the present invention is to improve the performance of energy density and output density that are important factors of energy storage devices while having advantages of toughness and mechanical strength that are important factors of fibers. The carbon nanofiber composite for an energy storage device according to the present invention comprises transition metals uniformly distributed in a carbon nanofiber formed by stabilizing a nanofiber by heat treatment in air and then carbonizing by heat treatment in an inert gas, wherein the nanofiber is prepared by electrospinning using a polymer spinning solution including transition metals.

Description

에너지 저장장치용 탄소나노섬유 복합체, 이를 포함하는 전극, 그리고 이의 제조방법Carbon nanofiber composite for energy storage device, electrode including same, and manufacturing method thereof
본 발명은 에너지 저장장치용 탄소나노섬유 복합체에 관한 것으로서, 더욱 상세하게는, 고분자 방사용액으로 전기 방사하여 에너지 저장능력을 가지는 에너지 저장장치용 탄소나노섬유 복합체, 이를 포함하는 전극, 그리고 이의 제조방법에 관한 것이다.The present invention relates to a carbon nanofiber composite for an energy storage device, and more particularly, to a carbon nanofiber composite for an energy storage device having an energy storage ability by electrospinning with a polymer spinning solution, an electrode comprising the same, and a method for manufacturing the same is about
에너지 저장장치는 전기화학적 에너지 저장장치 시스템으로 슈퍼커패시터(supercapacitors), 리튬이온배터리(Li-ion batteries) 및 연료전지(Fuel cells) 등이 있다.The energy storage system is an electrochemical energy storage system, and includes supercapacitors, lithium ion batteries, fuel cells, and the like.
슈퍼커패시터는 전극 물질에 따라 전기이중층커퍼시터(Electrochemical double-layer supercapacitors), 슈도커패시터(pseudo capacitors) 및 하이브리드커패시터(hybrid capacitors)로 나뉠 수 있다. Supercapacitors may be classified into electrochemical double-layer supercapacitors, pseudo capacitors, and hybrid capacitors according to electrode materials.
일반적으로 슈퍼캐패시터의 전극으로 사용되는 그래핀(Graphene) 및 탄소나노튜브(CNT) 기반의 나노섬유 복합체는 매우 유연하고, 높은 전기전도성 및 비표면적을 가지므로 많은 연구가 진행되고 있다.Graphene and carbon nanotube (CNT)-based nanofiber composites, which are generally used as electrodes of supercapacitors, are very flexible and have high electrical conductivity and specific surface area, so many studies are being conducted.
하지만 기존에 개발된 그래핀 및 탄소나노튜브 기반의 나노섬유 복합체는 섬유의 기계적 강도(mechanical strength)를 개선하기 위해 고분자 바인더를 첨가하게 된다. 첨가된 고분자 바인더는 등가직렬저항(ESR;equivalent series resistance)의 증가를 유발하여 그래핀 및 탄소나노튜브 기반의 나노섬유 복합체의 에너지 밀도 및 출력 밀도를 감소시킨다.However, the previously developed graphene and carbon nanotube-based nanofiber composites add a polymer binder to improve the mechanical strength of the fibers. The added polymer binder causes an increase in equivalent series resistance (ESR), thereby reducing the energy density and power density of the graphene and carbon nanotube-based nanofiber composite.
따라서, 그래핀 및 탄소나노튜브 기반의 나노섬유 복합체는 섬유의 중요요소인 인성(toughness) 및 기계적 강도와, 에너지 저장장치의 중요요소인 에너지 밀도 및 출력 밀도를 모두 만족시키기 어려워 에너지 저장장치의 특성을 낮추는 문제점이 있다.Therefore, it is difficult for graphene and carbon nanotube-based nanofiber composites to satisfy both toughness and mechanical strength, which are important factors of fibers, and energy density and power density, which are important factors of energy storage devices, so the characteristics of energy storage devices. There is a problem of lowering
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
대한민국 공개특허공보 제10-2016-0079333호 (2016.07.06. 공개)Republic of Korea Patent Publication No. 10-2016-0079333 (published on July 6, 2016)
그러므로, 본 발명은 종래 문제점을 해소하기 위한 것으로, 섬유의 중요요소인 인성 및 기계적 강도의 이점을 가지면서 에너지 저장장치의 중요요소인 에너지 밀도 및 출력 밀도의 성능이 향상된 에너지 저장장치용 탄소나노섬유 복합체, 이를 포함하는 전극, 그리고 이의 제조방법을 제공하기 위한 것이다.Therefore, the present invention is to solve the problems of the prior art, and while having the advantages of toughness and mechanical strength, which are important elements of the fiber, the performance of energy density and power density, which are important elements of an energy storage device, is improved. To provide a composite, an electrode including the same, and a method for manufacturing the same.
본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체는 전이금속을 포함하는 고분자 방사용액을 전기 방사하여 제조된 나노섬유를 공기 중에서 열처리하여 안정화(stabilization)한 후 비활성기체 중에 열처리하여 탄화(carbonization)시켜 형성된 탄소나노섬유에 상기 전이금속이 균일하게 분포된다.Carbon nanofiber composite for energy storage device according to the present invention is stabilized (stabilization) by heat-treating nanofibers prepared by electrospinning a polymer spinning solution containing a transition metal in air, and then heat-treating in an inert gas for carbonization. The transition metal is uniformly distributed in the formed carbon nanofibers.
상기 전이금속은 Cu, Co, Ni, Mn, Fe, Zr, Pd 및 Mo 중 적어도 하나를 포함할 수 있다.The transition metal may include at least one of Cu, Co, Ni, Mn, Fe, Zr, Pd, and Mo.
상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포될 수 있다.The polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
상기 전이금속은 Cu 및 Ni을 포함할 수 있다.The transition metal may include Cu and Ni.
상기 탄소나노섬유의 내부에 분포된 적어도 2개의 전이금속은 합성된 형태를 포함할 수 있다.The at least two transition metals distributed inside the carbon nanofiber may include a synthesized form.
상기 탄소나노섬유의 내부에 분포된 적어도 2개의 전이금속은 산화물 형태를 포함할 수 있다.At least two transition metals distributed inside the carbon nanofiber may include an oxide form.
상기 탄소나노섬유 복합체는, 직경이 50 내지 500 nm이고, 기공의 크기는 25 내지 30 nm이며, 비표면적이 100 내지 500 m2/g일 수 있다.The carbon nanofiber composite may have a diameter of 50 to 500 nm, a pore size of 25 to 30 nm, and a specific surface area of 100 to 500 m 2 /g.
그리고 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체의 제조방법은 전이금속을 포함하는 고분자 방사용액을 제조하는 단계, 상기 고분자 방사용액으로 전기 방사하여 나노섬유를 제조하는 단계, 상기 나노섬유를 공기 중에서 열처리하여 안정화하는 단계 및 상기 안정화된 나노섬유를 비활성기체 중에서 열처리하여 탄화시켜 형성된 탄소나노섬유에 상기 전이금속이 균일하게 분포된 탄소나노섬유 복합체를 제조하는 단계를 포함한다.And the manufacturing method of the carbon nanofiber composite for an energy storage device according to the present invention includes the steps of preparing a polymer spinning solution containing a transition metal, electrospinning with the polymer spinning solution to prepare nanofibers, and airing the nanofibers. and stabilizing by heat treatment in an inert gas to prepare a carbon nanofiber composite in which the transition metal is uniformly distributed in carbon nanofibers formed by heat-treating and carbonizing the stabilized nanofibers in an inert gas.
상기 고분자 방사용액을 제조하는 단계는, 유기용매에 고분자 소재를 혼합하여 고분자 용액을 제조하는 단계 및 상기 고분자 용액에 상기 전이금속을 혼합하는 단계를 포함할 수 있다.The preparing of the polymer spinning solution may include preparing a polymer solution by mixing a polymer material with an organic solvent, and mixing the transition metal with the polymer solution.
상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포될 수 있다.The polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
상기 고분자 소재는, 폴리아크릴로나이트릴(PAN, polyacrylonitrile), 폴리이미드(PI, polyimide), 폴리비닐알콜(PVA, polyvinyl alcohol), 페놀수지(phenol resin), 폴리프로필렌(PP, polypropylene), 폴리스티렌(PS, polystyrene), 폴리아닐린(PA, polyaniline) 및 폴리메틸메타클레이트(PMMA, polymethylmethacrylate) 중 적어도 하나를 포함할 수 있다.The polymer material is polyacrylonitrile (PAN, polyacrylonitrile), polyimide (PI, polyimide), polyvinyl alcohol (PVA, polyvinyl alcohol), phenol resin, polypropylene (PP, polypropylene), polystyrene (PS, polystyrene), polyaniline (PA, polyaniline), and polymethyl methacrylate (PMMA, polymethylmethacrylate) may include at least one.
상기 유기용매는, 디메틸포름아마이드(DMF, dimethylformamide), 다이메틸 설폭사이드(DMSO, dimethylsulfoxide) 및 디메틸아세트아미드(DMA, dimethylacetamide) 중 적어도 하나를 포함할 수 있다.The organic solvent may include at least one of dimethylformamide (DMF), dimethylsulfoxide (DMSO), and dimethylacetamide (DMA).
상기 전이금속을 혼합하는 단계는, 상기 고분자 용액에 전이금속을 0.6 내지 2 중량%로 혼합할 수 있다.In the step of mixing the transition metal, 0.6 to 2% by weight of the transition metal may be mixed with the polymer solution.
상기 전이금속을 혼합하는 단계는, 상기 고분자 용액을 50 내지 100℃ 에서 3 내지 7 시간 동안 교반할 수 있다.In the step of mixing the transition metal, the polymer solution may be stirred at 50 to 100° C. for 3 to 7 hours.
상기 나노섬유를 제조하는 단계는, 상기 고분자 방사용액을 단일 노즐(single nozzle)을 이용하며 5 내지 50 ㎸의 고전압, 30 내지 40%의 습도 및 5 내지 50 cm의 방사거리를 유지하면서 0.5 ml/h 내지 25 ml/h의 유량으로 전기 방사할 수 있다.The manufacturing of the nanofiber is 0.5 ml / while maintaining a high voltage of 5 to 50 kV, a humidity of 30 to 40%, and a spinning distance of 5 to 50 cm using the polymer spinning solution using a single nozzle. Electrospinning can be performed at a flow rate of h to 25 ml/h.
상기 안정화하는 단계는, 상기 나노섬유를 공기 중에 150 내지 250 ℃에서 2 내지 4시간 동안 열처리할 수 있다.In the stabilizing step, the nanofiber may be heat-treated at 150 to 250° C. in air for 2 to 4 hours.
상기 탄화시키는 단계는, 상기 안정화된 나노섬유를 비활성기체 중에 700 내지 1000 ℃에서 3 내지 6시간 동안 열처리할 수 있다.In the carbonizing step, the stabilized nanofiber may be heat-treated in an inert gas at 700 to 1000° C. for 3 to 6 hours.
그리고 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극은 전이금속을 포함하는 고분자 방사용액을 전기 방사하여 제조된 나노섬유를 공기 중에서 열처리하여 안정화한 후 비활성기체 중에 열처리하여 탄화시켜 형성된 탄소나노섬유에 상기 전이금속이 균일하게 분포된다.And the electrode for an energy storage device comprising a carbon nanofiber composite according to the present invention is formed by heat-treating and stabilizing nanofibers prepared by electrospinning a polymer spinning solution containing a transition metal in air, and then heat-treating them in an inert gas to carbonize them. The transition metal is uniformly distributed in the carbon nanofibers.
상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포될 수 있다.The polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
그리고 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 제조방법은 전이금속이 탄소나노섬유에 균일하게 분포된 탄소나노섬유 복합체를 제조하는 단계, 상기 탄소나노섬유 복합체 및 도전재를 혼합하여 분쇄하는 단계, 상기 분쇄된 탄소나노섬유 복합체 및 도전재와 증류수를 혼합하여 혼합액을 제조하는 단계, 상기 혼합액에 바인더를 혼합하여 전극 슬러리를 제조 단계, 상기 전극 슬러리를 집전체 위에 도포하는 단계 및 상기 전극 슬러리를 건조하여 전극을 제조하는 단계를 포함하며, 상기 탄소나노섬유 복합체를 제조하는 단계는, 상기 전이금속을 포함하는 고분자 방사용액을 제조하는 단계, 상기 고분자 방사용액으로 전기 방사하여 나노섬유를 제조하는 단계, 상기 나노섬유를 공기 중에서 열처리하여 안정화하는 단계 및 상기 안정화된 나노섬유를 비활성기체 중에서 열처리하여 탄화시키는 단계를 포함한다.And the method of manufacturing an electrode for an energy storage device including a carbon nanofiber composite according to the present invention comprises the steps of preparing a carbon nanofiber composite in which a transition metal is uniformly distributed in carbon nanofibers, the carbon nanofiber composite and a conductive material mixing and pulverizing; preparing a mixed solution by mixing the pulverized carbon nanofiber composite, a conductive material, and distilled water; preparing an electrode slurry by mixing a binder with the mixed solution; applying the electrode slurry on a current collector and manufacturing an electrode by drying the electrode slurry, wherein the manufacturing of the carbon nanofiber composite includes preparing a polymer spinning solution containing the transition metal, and electrospinning with the polymer spinning solution to nano It includes the steps of preparing a fiber, stabilizing the nanofiber by heat treatment in air, and carbonizing the stabilized nanofiber by heat treatment in an inert gas.
상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포될 수 있다.The polymer spinning solution may include at least two transition metals, and the formed carbon nanofiber may have at least two transition metals uniformly distributed therein.
상기 전극 슬러리를 제조 단계는, 상기 탄소나노섬유 복합체, 도전재 및 바인더를 7.6~8.4 : 0.8~1.2 : 0.8~1.2의 중량비로 하여 혼합할 수 있다.In the manufacturing step of the electrode slurry, the carbon nanofiber composite, the conductive material and the binder may be mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2: 0.8 to 1.2.
본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체에 의하면, 열적 및 화학적 안정성과 높은 비표면적을 가지며 산화환원 반응성을 가진 전이금속이 탄소나노섬유에 전체적으로 균일하게 분포되어 높은 전기전도성을 가질 수 있다.According to the carbon nanofiber composite for an energy storage device according to the present invention, a transition metal having thermal and chemical stability, high specific surface area, and redox reactivity is uniformly distributed throughout the carbon nanofiber to have high electrical conductivity.
또한, 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체는 2개 이상의 전이금속이 탄소나노섬유의 표면에는 도핑되지 않고 탄소나노섬유의 내부에 전체적으로 균일하게 분포되어 밀도 높은 에너지 저장장치로 사용될 수 있다.In addition, in the carbon nanofiber composite for energy storage according to the present invention, two or more transition metals are not doped on the surface of the carbon nanofiber and are uniformly distributed throughout the inside of the carbon nanofiber, so that it can be used as a high-density energy storage device. .
또한, 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체의 제조방법은 간단하고 편리한 방법인 전기 방사법으로 전압, 유량, 방사 거리 등을 조절하여 쉽게 나노섬유 기공의 크기를 제어하며 전이금속을 합성할 수 있다.In addition, the manufacturing method of the carbon nanofiber composite for an energy storage device according to the present invention is a simple and convenient method of electrospinning by controlling the voltage, flow rate, spinning distance, etc. to easily control the size of the nanofiber pores and to synthesize transition metals. can
또한, 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 제조방법은 전이금속이 탄소나노섬유에 전체적으로 균일하게 분포된 탄소나노섬유 복합체를 에너지 저장장치용 전극으로 사용함으로써, 높은 에너지 밀도 및 출력 밀도를 가지며 수명이 향상된 에너지 저장장치를 제조할 수 있다.In addition, the method for manufacturing an electrode for an energy storage device including a carbon nanofiber composite according to the present invention uses a carbon nanofiber composite in which a transition metal is uniformly distributed throughout the carbon nanofiber as an electrode for an energy storage device, thereby providing high energy It is possible to manufacture an energy storage device having a density and a power density and having an improved lifespan.
도 1은 본 발명에 따른 탄소나노섬유 복합체의 제조방법에 따른 흐름도이다.1 is a flowchart according to a method for manufacturing a carbon nanofiber composite according to the present invention.
도 2는 본 발명에 따른 고분자 방사용액을 제조하는 단계에 대한 상세한 흐름도이다.Figure 2 is a detailed flow chart for the step of preparing the polymer spinning solution according to the present invention.
도 3은 도 1의 제조방법에 따라 제조된 나노섬유, 안정화된 나노섬유 및 탄소나노섬유 복합체를 개략적으로 나타낸 도면이다.3 is a view schematically showing nanofibers, stabilized nanofibers, and carbon nanofiber composites manufactured according to the manufacturing method of FIG. 1 .
도 4는 본 발명에 따른 나노섬유의 탄화처리 전후를 나타낸 도면이다.4 is a view showing before and after carbonization treatment of nanofibers according to the present invention.
도 5는 본 발명에 따른 탄소나노섬유 복합체의 내부에 합성된 전이금속을 보여주는 도면이다.5 is a view showing a transition metal synthesized inside the carbon nanofiber composite according to the present invention.
도 6은 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 사진이다.6 is a photograph of an electrode for an energy storage device including a carbon nanofiber composite according to the present invention.
도 7은 본 발명에 따른 에너지 저장장치용 전극의 제조방법에 따른 흐름도이다.7 is a flowchart according to a method of manufacturing an electrode for an energy storage device according to the present invention.
도 8 내지 도 10은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체를 각각 SEM으로 촬영한 도면이다.8 to 10 are views taken by SEM of the carbon nanofiber composites according to the first to third embodiments of the present invention, respectively.
도 11 내지 도 13은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체의 TEM 측정 결과를 각각 보여주는 도면이다.11 to 13 are views each showing the TEM measurement results of the carbon nanofiber composites according to the first to third examples of the present invention.
도 14 내지 도 16은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체의 BET 측정 결과를 각각 보여주는 도면이다.14 to 16 are views each showing the BET measurement results of the carbon nanofiber composites according to the first to third embodiments of the present invention.
도 17 내지 도 19는 본 발명의 제1 내지 제3 실시예에 따른 에너지 저장장치용 전극의 CV 측정 결과를 각각 보여주는 그래프이다. 17 to 19 are graphs respectively showing CV measurement results of electrodes for energy storage devices according to first to third embodiments of the present invention.
도 20 내지 도 22는 본 발명의 제1 내지 제 3 실시예 및 비교예에 따른 에너지 저장장치용 전극의 비축전 용량 측정 결과를 각각 보여주는 그래프이다. 20 to 22 are graphs each showing specific capacitance measurement results of electrodes for an energy storage device according to first to third examples and comparative examples of the present invention.
도 23은 본 발명의 제3 실시예에 따른 에너지 저장장치용 전극의 충방전 테스트 측정 결과를 보여주는 그래프이다.23 is a graph showing a measurement result of a charge/discharge test of an electrode for an energy storage device according to a third embodiment of the present invention.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that, in the following description, only the parts necessary for understanding the embodiments of the present invention will be described, and descriptions of other parts will be omitted in the scope not disturbing the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the present specification and claims described below should not be construed as being limited to their ordinary or dictionary meanings, and the inventors have appropriate concepts of terms to describe their invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined in Accordingly, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be variations and variations.
본 발명은 에너지 저장장치용 탄소나노섬유 복합체, 이를 포함하는 전극, 그리고 이의 제조방법에 관한 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.The present invention relates to a carbon nanofiber composite for an energy storage device, an electrode including the same, and a method for manufacturing the same. Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체는 전이금속을 포함하는 고분자 방사용액을 전기 방사하여 제조된 나노섬유를 공기 중에서 열처리하여 안정화(stabilization)한 후 비활성기체 중에 열처리하여 탄화(carbonization)시켜 형성된 탄소나노섬유에 전이금속이 균일하게 분포된다.Carbon nanofiber composite for energy storage device according to the present invention is stabilized (stabilization) by heat-treating nanofibers prepared by electrospinning a polymer spinning solution containing a transition metal in air, and then heat-treating in an inert gas for carbonization. The transition metal is uniformly distributed in the formed carbon nanofibers.
전기 방사시 사용되는 고분자 방사용액은 Cu, Co, Ni, Mn, Fe, Zr, Pd 및 Mo 중 적어도 하나의 전이금속을 포함할 수 있다.The polymer spinning solution used in electrospinning may include at least one transition metal among Cu, Co, Ni, Mn, Fe, Zr, Pd, and Mo.
여기서, 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 형성된 탄소나노섬유는 적어도 2개의 전이금속이 탄소나노섬유 표면에 도핑되지 않고 탄소나노섬유의 내부에 전체적으로 균일하게 분포될 수 있다. 더 구체적으로는, 이때, 전이금속은 Cu 및 Ni을 포함할 수 있다.Here, the polymer spinning solution includes at least two transition metals, and in the formed carbon nanofiber, at least two transition metals are not doped on the surface of the carbon nanofiber and may be uniformly distributed throughout the inside of the carbon nanofiber. More specifically, in this case, the transition metal may include Cu and Ni.
이때, 탄소나노섬유는 내부에 적어도 2개의 전이금속이 분포되며 전이금속이 합성된 형태로 존재하거나 전이금속의 산화물 형태를 포함할 수 있다. In this case, at least two transition metals are distributed therein, and the carbon nanofibers may exist in a synthesized form of the transition metal or may include an oxide form of the transition metal.
탄소나노섬유 복합체는 직경이 50 내지 500nm이고, 기공의 크기는 25 내지 30nm이며, 비표면적이 100 내지 500m2/g일 수 있다.The carbon nanofiber composite may have a diameter of 50 to 500 nm, a pore size of 25 to 30 nm, and a specific surface area of 100 to 500 m 2 /g.
이와 같은 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체는 도 1 및 도 2에 도시된 제조방법으로 제조될 수 있다. 여기서 도 1은 본 발명에 따른 탄소나노섬유 복합체의 제조방법에 따른 흐름도이다. 그리고 도 2는 본 발명에 따른 고분자 방사용액을 제조하는 단계에 대한 상세한 흐름도이다.The carbon nanofiber composite for an energy storage device according to the present invention as described above may be manufactured by the manufacturing method shown in FIGS. 1 and 2 . Here, Figure 1 is a flow chart according to the manufacturing method of the carbon nanofiber composite according to the present invention. And Figure 2 is a detailed flowchart for the step of preparing the polymer spinning solution according to the present invention.
도 1 및 도 2를 참고하면, 본 발명의 제1 실시예에 따른 에너지 저장장치용 탄소나노섬유 복합체의 제조방법은 전이금속을 포함하는 고분자 방사용액을 제조하는 단계(S10), 고분자 방사용액으로 전기 방사하여 나노섬유를 제조하는 단계(S20), 나노섬유를 공기 중에서 열처리하여 안정화하는 단계(S30) 및 안정화된 나노섬유를 비활성기체 중에서 열처리하여 탄화시켜 형성된 탄소나노섬유에 전이금속이 균일하게 분포된 탄소나노섬유 복합체를 제조하는 단계(S40)를 포함한다.1 and 2, the manufacturing method of the carbon nanofiber composite for an energy storage device according to the first embodiment of the present invention comprises the steps of preparing a polymer spinning solution containing a transition metal (S10), a polymer spinning solution. Transition metal is uniformly distributed in carbon nanofibers formed by electrospinning to produce nanofibers (S20), stabilizing the nanofibers by heat treatment in air (S30), and heat-treating the stabilized nanofibers in an inert gas to carbonize them. It includes a step (S40) of preparing the carbon nanofiber composite.
우선, S10 단계는 고분자 방사용액을 도 2에 도시된 제조방법으로 제조될 수 있으며, 전이금속을 포함하는 유기용매에 고분자 소재를 혼합하여 고분자 용액을 제조하는 단계(S11) 및 고분자 용액에 전이금속을 혼합하는 단계(S12)를 포함할 수 있다.First, in step S10, a polymer spinning solution may be prepared by the manufacturing method shown in FIG. 2, and a polymer solution is prepared by mixing a polymer material in an organic solvent containing a transition metal (S11) and a transition metal in the polymer solution It may include a step (S12) of mixing.
먼저, S11 단계에서 유기용매에 고분자 소재를 혼합하여 고분자 용액을 제조한다.First, a polymer solution is prepared by mixing a polymer material with an organic solvent in step S11.
여기서, 고분자 용액은 50 내지 90℃에서 20 내지 25 시간 동안 교반되어 제조될 수 있다.Here, the polymer solution may be prepared by stirring at 50 to 90° C. for 20 to 25 hours.
이때, 고분자 소재는 폴리아크릴로나이트릴(PAN, polyacrylonitrile), 폴리이미드(PI, polyimide), 폴리비닐알콜(PVA, polyvinyl alcohol), 페놀수지(phenol resin), 폴리프로필렌(PP, polypropylene), 폴리스티렌(PS, polystyrene), 폴리아닐린(PA, polyaniline) 및 폴리메틸메타클레이트(PMMA, polymethylmethacrylate) 중 적어도 하나를 포함할 수 있다.At this time, the polymer material is polyacrylonitrile (PAN, polyacrylonitrile), polyimide (PI, polyimide), polyvinyl alcohol (PVA, polyvinyl alcohol), phenol resin, polypropylene (PP, polypropylene), polystyrene (PS, polystyrene), polyaniline (PA, polyaniline), and polymethyl methacrylate (PMMA, polymethylmethacrylate) may include at least one.
그리고 유기용매는 디메틸포름아마이드(DMF, dimethylformamide), 다이메틸 설폭사이드(DMSO, dimethylsulfoxide) 및 디메틸아세트아미드(DMA, dimethylacetamide) 중 적어도 하나를 포함할 수 있다.The organic solvent may include at least one of dimethylformamide (DMF), dimethylsulfoxide (DMSO), and dimethylacetamide (DMA).
다음으로, S12 단계에서 고분자 용액에 전이금속을 혼합하여 고분자 방사용액을 제조한다.Next, in step S12, a transition metal is mixed with the polymer solution to prepare a polymer spinning solution.
이때, 고분자 방사용액은 적어도 2개의 전이금속을 포함할 수 있다.In this case, the polymer spinning solution may contain at least two transition metals.
여기서, 전이금속을 혼합된 고분자 용액은 50 내지 100℃ 에서 3 내지 7 시간 동안 교반할 수 있다.Here, the polymer solution mixed with the transition metal may be stirred at 50 to 100° C. for 3 to 7 hours.
다음으로, S20 단계 내지 S40 단계에서 나노섬유, 안정화된 나노섬유 및 탄소나노섬유 복합체가 도 3에 도시된 형태로 제조될 수 있다. 여기서 도 3은 도 1의 제조방법에 따라 제조된 나노섬유, 안정화된 나노섬유 및 탄소나노섬유 복합체를 개략적으로 나타낸 도면이다.Next, in steps S20 to S40, nanofibers, stabilized nanofibers, and carbon nanofiber composites may be prepared in the form shown in FIG. 3 . Here, FIG. 3 is a view schematically showing nanofibers, stabilized nanofibers and carbon nanofiber composites manufactured according to the manufacturing method of FIG. 1 .
도 1 및 도 3을 참고하면, S20 단계에서 제조된 고분자 방사용액을 전기방사(electrospinning) 하여 나노섬유를 제조한다.1 and 3, by electrospinning the polymer spinning solution prepared in step S20 (electrospinning) to prepare nanofibers.
본 발명에서 사용되는 전기방사는 고분자와 같은 고점도 유체의 정전 스프레이 현상을 이용하여 직경이 나노미터의 초극세 섬유 및 다공성 웹, 즉 부직포를 제조할 수 있는 기술로, 전극의 정전기력으로 방사 용액을 끌어당김으로써 극세한 섬유를 방사해낼 수 있는 전기방사 장치를 사용한다.Electrospinning used in the present invention is a technology capable of manufacturing ultrafine fibers and porous webs, that is, non-woven fabrics, with a diameter of nanometers using electrostatic spraying of a high-viscosity fluid such as a polymer, and the spinning solution is attracted by the electrostatic force of the electrode As a result, an electrospinning device capable of spinning ultra-fine fibers is used.
전기방사를 실행하게 되면, 점성을 지니고 있는 고분자 방사 용액은 전계가 가해짐에 따라 전기방사 장치 집전체에 나노섬유가 형성된다.When electrospinning is performed, nanofibers are formed on the current collector of the electrospinning device as an electric field is applied to the viscous polymer spinning solution.
이때, 균일하며 우수한 기계적 물성을 지니는 나노섬유을 만들기 위해 중요한 요소인 습도, 온도, 방사전압, 노즐 및 집전체 사이의 거리(방사거리) 및 유량(방사속도)을 각각 30 내지 40%의 습도, 25 내지 30℃의 온도, 5 내지 50kV의 전압, 5 내지 50cm의 방사거리 및 0.5 내지 25 ml/h의 유량 하에서 고분자 방사용액을 단일 노즐(single nozzle)을 이용하며 수행되는 것이 바람직하다.At this time, humidity, temperature, radiation voltage, distance between nozzle and current collector (radiation distance) and flow rate (spinning speed), which are important factors for making nanofibers with uniform and excellent mechanical properties, are 30 to 40% humidity, 25 The polymer spinning solution is preferably performed using a single nozzle at a temperature of 30° C., a voltage of 5 to 50 kV, a spinning distance of 5 to 50 cm, and a flow rate of 0.5 to 25 ml/h.
이러한 전기방사 조건에 따라 나노섬유의 직경 및 나노섬유의 적정한 두께를 조절할 수 있다.According to these electrospinning conditions, the diameter of the nanofiber and an appropriate thickness of the nanofiber can be adjusted.
따라서 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체의 제조방법은 간단하고 편리한 방법인 전기 방사법으로 전압, 유량, 방사 거리 등을 조절하여 쉽게 나노섬유 기공의 크기를 제어하며 전이금속을 합성할 수 있다.Therefore, the manufacturing method of the carbon nanofiber composite for energy storage device according to the present invention can easily control the size of the nanofiber pores by controlling the voltage, flow rate, spinning distance, etc. by electrospinning, which is a simple and convenient method, and can synthesize transition metals. have.
도 3(a)에 도시된 바와 같이, 방사된 나노섬유는 복수 개의 나노섬유가 교차된 구조의 형태로 제조될 수 있다.As shown in Figure 3 (a), the spun nanofibers can be prepared in the form of a structure in which a plurality of nanofibers are crossed.
다음으로, S30 단계에서 방사된 나노섬유를 공기 중에서 열처리하여 안정화한다. Next, the nanofibers spun in step S30 are heat-treated in air to be stabilized.
도 3(b)에 도시된 바와 같이, 나노섬유를 공기 중에 150 내지 250 ℃에서 2 내지 4 시간 동안 열처리하여 산화된 나노섬유를 얻을 수 있다.As shown in FIG. 3(b), oxidized nanofibers can be obtained by heat-treating the nanofibers in air at 150 to 250° C. for 2 to 4 hours.
마지막으로, S40 단계에서 안정화된 나노섬유를 비활성기체 중에서 열처리하여 탄화시킨다. Finally, the nanofibers stabilized in step S40 are heat-treated in an inert gas to carbonize them.
도 3(c)에 도시된 바와 같이, 안정화된 나노섬유를 비활성기체 중에 700 내지 1000 ℃에서 1 내지 6시간 동안 열처리하여 탄소나노섬유를 얻을 수 있다.As shown in FIG. 3(c), carbon nanofibers can be obtained by heat-treating the stabilized nanofibers in an inert gas at 700 to 1000° C. for 1 to 6 hours.
이때, 비활성기체는 이산화탄소(CO2), 아르곤(Ar), 질소(N2) 중 적어도 하나를 포함하는 기체일 수 있다.In this case, the inert gas may be a gas containing at least one of carbon dioxide (CO 2 ), argon (Ar), and nitrogen (N 2 ).
열처리에 통해 탄소나노섬유에는 전이금속이 균일하게 분포된 탄소나노섬유 복합체가 제조된다.A carbon nanofiber composite in which a transition metal is uniformly distributed in carbon nanofibers is manufactured through heat treatment.
여기서, 적어도 2개의 전이금속을 포함한 고분자 방사용액을 사용하여 제조된 탄소나노섬유 복합체는 100 m2/g 이상의 비표면적을 가지며, 2가지 이상의 전이금속이 탄소나노섬유 내부에 균일하게 분포될 수 있다.Here, the carbon nanofiber composite prepared using a polymer spinning solution containing at least two transition metals has a specific surface area of 100 m 2 /g or more, and two or more transition metals can be uniformly distributed inside the carbon nanofibers. .
다음으로, 도 4 및 도 5를 참고하면, 탄소나노섬유 내부에 적어도 2개의 전이금속이 분포되며 전이금속이 합성된 형태를 확인할 수 있다. 여기서 도 4는 본 발명의 제1 실시예에 따른 나노섬유의 탄화처리 전후를 나타낸 도면이다. 그리고 도 5는 본 발명의 제1 실시예에 따른 탄소나노섬유 복합체의 내부에 합성된 전이금속을 보여주는 도면이다.Next, referring to FIGS. 4 and 5 , at least two transition metals are distributed inside the carbon nanofiber, and it can be confirmed that the transition metal is synthesized. Here, Figure 4 is a view showing before and after carbonization treatment of the nanofiber according to the first embodiment of the present invention. And Figure 5 is a view showing a transition metal synthesized inside the carbon nanofiber composite according to the first embodiment of the present invention.
도 4(a)는 나노섬유를 공기 중에 열처리하여 안정화한 모습을 나타내는 도면이며, 도 4(b)는 안정화된 나노섬유를 비활성기체 중에 열처리하여 탄화시킨 모습을 나타낸 도면이다.Figure 4 (a) is a view showing a state in which the nanofibers are heat-treated and stabilized in air, and Figure 4 (b) is a view showing the state in which the stabilized nano-fibers are heat-treated in an inert gas and carbonized.
도 4(a)에 도시된 바와 같이, 나노섬유를 공기 중에 열처리하게 되면 전이금속이 나노섬유 내부에서 산화된 형태로 존재하게 된다. 그리고 도 4(b)에 도시된 바와 같이, 안정화된 나노섬유를 비활성기체 중에 열처리하게 되면 나노섬유가 탄화되어 색이 검게 변하면서 비표면적이 증가된 탄소나노섬유를 제조할 수 있다.As shown in Fig. 4(a), when the nanofiber is heat-treated in air, the transition metal is present in an oxidized form inside the nanofiber. And, as shown in FIG. 4(b), when the stabilized nanofibers are heat-treated in an inert gas, carbon nanofibers with an increased specific surface area can be manufactured while the nanofibers are carbonized and the color changes to black.
다음으로, 도 5(a)는 탄소나노섬유를 확대한 모습이며, 도 5(b)는 합성된 전이금속의 모습이다.Next, FIG. 5(a) is an enlarged view of carbon nanofibers, and FIG. 5(b) is a view of the synthesized transition metal.
도 5(a)의 A에 도시된 바와 같이, 탄소나노섬유 내부에는 전이금속이 산화된 형태나 합성된 형태로 균일하게 박혀있는 형태를 포함한다.As shown in A of Figure 5 (a), the inside of the carbon nanofiber includes a form in which the transition metal is uniformly embedded in an oxidized form or a synthetic form.
그리고 도 5(a)의 A를 확대하면, 합성된 전이금속의 형태를 확인할 수 있다.And, if A of FIG. 5(a) is enlarged, the form of the synthesized transition metal can be confirmed.
도 5(b)의 B에 도시된 바와 같이, 탄소나노섬유는 2개의 전이금속이 분포되며 전이금속이 합성된 형태로 존재한다. As shown in B of FIG. 5(b), carbon nanofibers have two transition metals distributed therein and exist in a synthesized form of transition metals.
다음으로 도 6에 도시된 바와 같이, 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극을 제조할 수 있다. 여기서 도 6은 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극 사진이다.Next, as shown in FIG. 6 , an electrode for an energy storage device including the carbon nanofiber composite according to the present invention may be manufactured. 6 is a photograph of an electrode for an energy storage device including the carbon nanofiber composite according to the present invention.
도 6을 참고하면, 본 발명에 따른 에너지 저장장치용 전극은 탄소나노섬유 복합체를 포함한다.Referring to FIG. 6 , the electrode for an energy storage device according to the present invention includes a carbon nanofiber composite.
여기서, 탄소나노섬유 복합체는 탄소나노섬유는 내부에 적어도 2개의 전이금속이 균일하게 분포될 수 있다.Here, in the carbon nanofiber composite, at least two transition metals may be uniformly distributed in the carbon nanofiber.
이와 같은 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극은 도 7에 도시된 제조방법으로 제조될 수 있다. 여기서 도 7은 본 발명에 따른 탄소나노섬유 복합체를 포함하는 전극의 제조방법에 따른 흐름도이다.The electrode for an energy storage device including the carbon nanofiber composite according to the present invention as described above may be manufactured by the manufacturing method shown in FIG. 7 . 7 is a flowchart according to a method of manufacturing an electrode including a carbon nanofiber composite according to the present invention.
도 7을 참고하면, 본 발명에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 제조방법은 전이금속이 탄소나노섬유의 내부에 균일하게 분포된 탄소나노섬유 복합체를 제조하는 단계(S100), 탄소나노섬유 복합체 및 도전재를 혼합하여 분쇄하는 단계(S200), 분쇄된 탄소나노섬유 복합체 및 도전재와 증류수를 혼합하여 혼합액을 제조하는 단계(S300), 혼합액에 바인더를 혼합하여 전극 슬러리를 제조 단계(S400), 전극 슬러리를 집전체 위에 도포하는 단계(S500) 및 전극 슬러리를 건조하여 전극을 제조하는 단계(S600)를 포함한다.Referring to FIG. 7 , the method for manufacturing an electrode for an energy storage device including a carbon nanofiber composite according to the present invention includes the steps of preparing a carbon nanofiber composite in which a transition metal is uniformly distributed inside the carbon nanofiber (S100) , mixing and pulverizing the carbon nanofiber composite and the conductive material (S200), mixing the pulverized carbon nanofiber composite and the conductive material with distilled water to prepare a mixed solution (S300), mixing the binder with the mixed solution to form an electrode slurry It includes a manufacturing step (S400), applying the electrode slurry on the current collector (S500), and drying the electrode slurry to prepare an electrode (S600).
우선, S100 단계에서 탄소나노섬유 복합체를 제조한다. 탄소나노섬유 복합체의 제조방법은 도 1에 도시된 바와 같이, S10 단계 내지 S40 단계의 제조방법으로 진행될 수 있다. First, a carbon nanofiber composite is prepared in step S100. The manufacturing method of the carbon nanofiber composite may be performed by the manufacturing method of steps S10 to S40, as shown in FIG. 1 .
다음으로, S200 단계에서 탄소나노섬유 복합체 및 도전재를 혼합하여 건조 상태에서 분말 형태로 분쇄한다. Next, in step S200, the carbon nanofiber composite and the conductive material are mixed and pulverized in a dry state in a powder form.
이때, 탄소나노섬유 복합체 및 도전재를 7.6~8.4 : 0.8~1.2의 중량비로 하여 혼합할 수 있다.At this time, the carbon nanofiber composite and the conductive material may be mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2.
여기서, 도전재는 카본 블랙(CB ; carbon black), 아세틸렌 블랙(acetylene black), 캐첸 블랙(ketjen black), 흑연 및 슈퍼피(super-p) 중에 적어도 하나를 포함할 수 있다.Here, the conductive material may include at least one of carbon black (CB), acetylene black, ketjen black, graphite, and super-p.
이어서, S300 단계에서 분쇄된 탄소나노섬유 복합체 및 도전재와 증류수를 혼합하여 혼합액을 제조한다.Then, a mixed solution is prepared by mixing the carbon nanofiber composite pulverized in step S300, a conductive material, and distilled water.
이때, 분쇄된 탄소나노섬유 복합체 및 도전재에 적정량의 증류수를 첨가하여 혼합할 수 있다.At this time, an appropriate amount of distilled water may be added to the pulverized carbon nanofiber composite and the conductive material and mixed.
다음으로, S400 단계에서 혼합액에 바인더를 혼합하여 전극 슬러리를 제조한다. 이때, 탄소나노섬유 복합체, 도전재 및 바인더를 7.6~8.4 : 0.8~1.2 : 0.8~1.2의 중량비로 하여 혼합할 수 있다.Next, in step S400, a binder is mixed with the mixed solution to prepare an electrode slurry. At this time, the carbon nanofiber composite, the conductive material and the binder may be mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2: 0.8 to 1.2.
바인더는 CMC(carboxy methyl cellulose), 폴리비닐피롤리돈(PVP ; polyvinylpyrrolidone), 불소계의 폴리테트라플루오로에틸렌(PTFE ; poly tetra fluoroethylene) 분말이나 에멀젼, 고무계의 스티렌 부타디엔 러버(SBR ; styrene butadiene rubber), 폴리비닐리덴플루오라이드, 카르복시메틸셀룰로오즈, 하이드로프로필메틸셀룰로오즈, 폴리비닐알콜로 및 폴리아닐린 중 적어도 하나를 포함할 수 있다.The binder is CMC (carboxy methyl cellulose), polyvinylpyrrolidone (PVP; polyvinylpyrrolidone), fluorine-based polytetrafluoroethylene (PTFE; poly tetra fluoroethylene) powder or emulsion, and rubber-based styrene butadiene rubber (SBR; styrene butadiene rubber) , polyvinylidene fluoride, carboxymethyl cellulose, hydropropylmethyl cellulose, polyvinyl alcohol, and may include at least one of polyaniline.
이어서, S500 단계에서 제조된 전극 슬러리를 집전체 위에 도포한다. Then, the electrode slurry prepared in step S500 is applied on the current collector.
전극 슬러리의 도포 방법은 특별히 제한되지 않는다. 예컨대, 닥터 블레이드법, 딥법, 리버스 롤법, 디렉트 롤법, 그라비아법, 압출법 및 브러쉬 도포법 등의 방법이 사용될 수 있다.The method for applying the electrode slurry is not particularly limited. For example, methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush application method may be used.
마지막으로, S600 단계에서 전극 슬러리를 건조하여 전극을 제조한다.Finally, the electrode is prepared by drying the electrode slurry in step S600.
이때, 전극 슬러리를 70 내지 90 ℃에서 30 내지 90분 동안 열처리하여 건조할 수 있다.At this time, the electrode slurry may be dried by heat treatment at 70 to 90° C. for 30 to 90 minutes.
건조 방법도 특별히 제한되지 않고, 예컨대 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, 적외선 및 전자선 등의 조사에 의한 건조법이 사용될 수 있으며 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 액상 매체를 제거할 수 있도록 조정한다.The drying method is also not particularly limited, and for example, drying by hot air, hot air, low humidity wind, vacuum drying, and drying method by irradiation with infrared rays and electron beams, etc. Adjust to be removed.
이하 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체의 특성을 상세히 설명하도록 한다. 우선, 전이금속이 분포된 탄소나노섬유 복합체의 구조 및 특성을 확인하기 위하여 제1 내지 제3 실시예를 제조한 후 다음과 같은 실험을 진행하였다.Hereinafter, the characteristics of the carbon nanofiber composite for an energy storage device according to the present invention will be described in detail. First, in order to confirm the structure and characteristics of the carbon nanofiber composite in which the transition metal is distributed, Examples 1 to 3 were prepared, and then the following experiment was performed.
<제1 실시예><First embodiment>
먼저, 디메틸포름아마이드(DMF, dimethylformamide)에 폴리아크릴로나이트릴(PAN, polyacrylonitrile)를 첨가하여 70℃에서 24시간 동안 교반하여 고분자 용액을 제조하였다.First, polyacrylonitrile (PAN, polyacrylonitrile) was added to dimethylformamide (DMF, dimethylformamide) and stirred at 70° C. for 24 hours to prepare a polymer solution.
다음으로, 고분자 용액에 니켈아세테이트(Nickel acetate)를 첨가하여 고분자 방사용액을 제조하였다. 이때, 고분자 방사용액은 50 내지 100℃ 에서 5 시간 동안 교반하여 혼합된다.Next, nickel acetate was added to the polymer solution to prepare a polymer spinning solution. At this time, the polymer spinning solution is mixed by stirring at 50 to 100 ℃ for 5 hours.
다음으로, 전기방사 장치를 이용하여 고분자 방사용액을 단일 노즐(single nozzle)을 이용하며 5 내지 50 ㎸의 고전압, 30 내지 40%의 습도 및 5 내지 50 cm의 방사거리를 유지하면서 0.5 ml/h 내지 25 ml/h의 유량으로 전기 방사하여 나노섬유를 제조하였다.Next, 0.5 ml/h of a polymer spinning solution using an electrospinning device using a single nozzle while maintaining a high voltage of 5 to 50 kV, a humidity of 30 to 40%, and a spinning distance of 5 to 50 cm Nanofibers were prepared by electrospinning at a flow rate of 25 ml/h.
이어서 나노섬유를 250℃의 온도의 공기 중에서 3시간 동안 열처리하여 안정화시킨다.Then, the nanofiber is stabilized by heat treatment in air at a temperature of 250° C. for 3 hours.
최종적으로 안정화된 나노섬유를 N2, Ar, CO2와 같은 비활성기체 중에서 800 ℃의 온도에서 5시간 동안 탄화시켜 본 발명의 제1 실시예에 따른 탄소나노섬유 복합체 제조(Ni-CNFs)를 제조하였다.Finally, the stabilized nanofiber is carbonized in an inert gas such as N 2 , Ar, CO 2 at a temperature of 800 ° C. for 5 hours to prepare a carbon nanofiber composite (Ni-CNFs) according to the first embodiment of the present invention did.
<제2 실시예><Second embodiment>
다음으로 고분자 용액에 니켈아세테이트 대신 구리아세테이트(Copper acetate)를 첨가하여 고분자 방사용액을 제조한 후 제1 실시예와 같은 방법으로 제2 실시예에 따른 탄소나노섬유 복합체 제조(Cu-CNFs)를 제조하였다.Next, a polymer spinning solution was prepared by adding copper acetate instead of nickel acetate to the polymer solution, and then manufacturing a carbon nanofiber composite (Cu-CNFs) according to Example 2 in the same manner as in Example 1 was prepared. did
<제3 실시예><Third embodiment>
다음으로 고분자 용액에 니켈아세테이트 및 구리아세테이트를 0.9 : 0.1의 중량비로 첨가하여 고분자 방사용액을 제조한 후 제1 실시예와 같은 방법으로 제3 실시예에 따른 탄소나노섬유 복합체 제조(NiCu-CNFs)를 제조하였다.Next, nickel acetate and copper acetate were added to the polymer solution in a weight ratio of 0.9: 0.1 to prepare a polymer spinning solution, and then prepare a carbon nanofiber composite according to Example 3 in the same manner as in Example 1 (NiCu-CNFs) was prepared.
[탄소나노섬유 복합체의 표면 분석][Surface analysis of carbon nanofiber composites]
먼저, 제1 내지 제3 실시예에 따른 에너지 저장장치용 탄소나노섬유 복합체의 구조 및 표면을 확인하기 위하여 주사전자현미경(Scanning Electron Microscope, SEM)을 이용하여 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체를 촬영하여 배율에 따른 이미지를 도 8 내지 도 10에 나타내었다. 여기서 도 8 내지 도 10은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체를 각각 SEM으로 촬영한 도면이다.First, in order to confirm the structure and surface of the carbon nanofiber composite for an energy storage device according to the first to third embodiments, the carbon according to the first to third embodiments using a scanning electron microscope (SEM) The nanofiber composite was photographed and images according to magnification were shown in FIGS. 8 to 10 . 8 to 10 are views taken by SEM of the carbon nanofiber composites according to the first to third embodiments of the present invention, respectively.
도 8 내지 도 10을 참고하면, 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체는 200 내지 300 nm의 직경을 가짐을 확인할 수 있었으며, 복수 개의 나노섬유가 교차된 다공성인 구조임을 확인할 수 있었다.8 to 10 , it was confirmed that the carbon nanofiber composites according to the first to third Examples had a diameter of 200 to 300 nm, and it was confirmed that a plurality of nanofibers had a cross-porous structure. .
[탄소나노섬유 복합체 내부의 성분분석][Inside component analysis of carbon nanofiber composite]
다음으로 1 내지 제3 실시예에 따른 탄소나노섬유 복합체의 내부를 확인하기 위하여 투과전자현미경(Transmission Electron Microscopy, TEM)을 사용하여 탄소나노섬유 복합체를 촬영한 결과를 도 11 내지 도 13에 나타내었다. 여기서 도 11 내지 도 13은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체의 TEM 측정 결과를 각각 보여주는 도면이다.Next, in order to check the inside of the carbon nanofiber composite according to Examples 1 to 3, the results of photographing the carbon nanofiber composite using a transmission electron microscope (TEM) are shown in FIGS. 11 to 13 . . 11 to 13 are views each showing the TEM measurement results of the carbon nanofiber composites according to the first to third embodiments of the present invention.
도 11(a) 및 (b)에 도시된 바와 같이, 제1 실시예에 따른 탄소나노섬유 복합체는 탄소나노섬유에 Ni 입자가 균일하게 분포되어 있음을 확인할 수 있었다. 11(a) and (b), in the carbon nanofiber composite according to the first embodiment, it was confirmed that Ni particles were uniformly distributed in the carbon nanofibers.
또한, 도 11(c)에 도시된 바와 같이, 제1 실시예에 따른 탄소나노섬유 복합체의 이미지 맵핑(mapping) 결과에서 Ni 전이금속이 탄소나노섬유에 균일하게 분포되어 있음을 확인할 수 있다.In addition, as shown in FIG. 11(c), it can be confirmed that the Ni transition metal is uniformly distributed in the carbon nanofibers in the image mapping result of the carbon nanofiber composite according to the first embodiment.
다음으로, 도 12(a) 및 (b)에 도시된 바와 같이, 제2 실시예에 따른 탄소나노섬유 복합체는 탄소나노섬유에 Cu 입자가 균일하게 분포되어 있음을 확인할 수 있었다. Next, as shown in FIGS. 12 ( a ) and ( b ), in the carbon nanofiber composite according to the second embodiment, it was confirmed that Cu particles were uniformly distributed in the carbon nanofibers.
이어서, 도 13(a) 및 (b)에 도시된 바와 같이, 제3 실시예에 따른 탄소나노섬유 복합체는 탄소나노섬유 내부에 적어도 2개의 전이금속이 균일하게 분포되어 있음을 확인할 수 있었다. Then, as shown in FIGS. 13(a) and (b), in the carbon nanofiber composite according to the third embodiment, it was confirmed that at least two transition metals were uniformly distributed inside the carbon nanofiber.
또한, 도 13(c)에 도시된 바와 같이, 제3 실시예에 따른 탄소나노섬유 복합체의 이미지 맵핑 결과에서 Ni 및 Cu 전이금속이 탄소나노섬유의 내부에 균일하게 분포되어 있음을 확인할 수 있다.In addition, as shown in FIG. 13(c), in the image mapping result of the carbon nanofiber composite according to the third embodiment, it can be confirmed that the Ni and Cu transition metals are uniformly distributed inside the carbon nanofibers.
따라서, 제 3실시예에 따른 탄소나노섬유 복합체는 2개 이상의 전이금속이 탄소나노섬유의 표면에는 도핑되지 않고 탄소나노섬유의 내부에 전체적으로 균일하게 분포되어 밀도 높은 에너지 저장장치로 사용될 수 있다. Accordingly, in the carbon nanofiber composite according to the third embodiment, two or more transition metals are not doped on the surface of the carbon nanofiber and are uniformly distributed throughout the inside of the carbon nanofiber, so that it can be used as a high-density energy storage device.
[탄소나노섬유 복합체의 비표면적 분석][Specific surface area analysis of carbon nanofiber composites]
다음으로 제1 내지 제3 실시예에 따른 에너지 저장장치용 탄소나노섬유 복합체의 비표면적을 확인하기 위하여 비표면적측정기(BET)를 사용하여 탄소나노섬유 복합체를 비표면적을 측정한 결과를 도 14 내지 도 16 및 표 1 내지 표3에 나타내었다. 여기서, 도 14 내지 도 16은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체의 BET 측정 결과를 각각 보여주는 도면이다. 그리고 표 1 내지 표 3은 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체 각각의 비표면적 측정 값이다.Next, in order to confirm the specific surface area of the carbon nanofiber composite for an energy storage device according to the first to third embodiments, the results of measuring the specific surface area of the carbon nanofiber composite using a specific surface area meter (BET) are shown in FIGS. 14 to 16 and Tables 1 to 3 are shown. Here, FIGS. 14 to 16 are views each showing the BET measurement results of the carbon nanofiber composites according to the first to third embodiments of the present invention. And Tables 1 to 3 are measurement values of the specific surface area of each of the carbon nanofiber composites according to the first to third embodiments of the present invention.
Figure PCTKR2021004531-appb-T000001
Figure PCTKR2021004531-appb-T000001
도 14 및 표 1을 참조하면, 제1 실시예에 따른 복합체는 367 m2/g 의 비표면적을 가졌으며, 세공 용적이 0.368 cm3/g, 기공크기가 40.9 nm 임을 확인할 수 있다.14 and Table 1, it can be seen that the composite according to Example 1 had a specific surface area of 367 m 2 /g, a pore volume of 0.368 cm 3 /g, and a pore size of 40.9 nm.
Figure PCTKR2021004531-appb-T000002
Figure PCTKR2021004531-appb-T000002
도 15 및 표 2를 참조하면, 제2 실시예에 따른 탄소나노섬유 복합체는 78 m2/g 의 비표면적을 가졌으며, 세공 용적이 0.054 cm3/g, 기공크기가 27.7 nm 임을 확인할 수 있다.15 and Table 2, it can be confirmed that the carbon nanofiber composite according to Example 2 had a specific surface area of 78 m 2 /g, a pore volume of 0.054 cm 3 /g, and a pore size of 27.7 nm. .
Figure PCTKR2021004531-appb-T000003
Figure PCTKR2021004531-appb-T000003
도 16 및 표 3을 참조하면, 제3 실시예에 따른 탄소나노섬유 복합체는 244 m2/g 의 비표면적을 가졌으며, 세공 용적이 0.169 cm3/g, 기공크기가 27.7 nm 임을 확인할 수 있다.16 and Table 3, it can be seen that the carbon nanofiber composite according to Example 3 had a specific surface area of 244 m 2 /g, a pore volume of 0.169 cm 3 /g, and a pore size of 27.7 nm. .
따라서 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체는 높은 비표면적을 가질 수 있다.Accordingly, the carbon nanofiber composites according to the first to third embodiments of the present invention may have a high specific surface area.
또한, 본 발명에 따른 에너지 저장장치용 탄소나노섬유 복합체는 열적 및 화학적 안정성과 높은 비표면적을 가지며 산화환원 반응성을 가진 전이금속이 탄소나노섬유에 전체적으로 균일하게 분포되어 높은 전기전도성을 가질 수 있다.In addition, the carbon nanofiber composite for an energy storage device according to the present invention has thermal and chemical stability, a high specific surface area, and a transition metal having redox reactivity is uniformly distributed throughout the carbon nanofiber to have high electrical conductivity.
이하 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 전기화학적 특성을 확인하기 위하여 다음과 같은 실험을 진행하였다.Hereinafter, in order to confirm the electrochemical characteristics of the electrode for an energy storage device including the carbon nanofiber composite according to the first to third embodiments of the present invention, the following experiment was conducted.
먼저, 본 발명의 제1 실시예에 따른 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극을 제조한 후, CV를 통하여 전기화학적 특성 분석하였다. First, an electrode for an energy storage device including a carbon nanofiber composite according to a first embodiment of the present invention was prepared, and then electrochemical properties were analyzed through CV.
<제1 실시예에 따른 에너지 저장장치용 전극 제조><Production of electrode for energy storage device according to the first embodiment>
우선, 제1 실시예에 따른 탄소나노섬유 복합체(Ni-CNFs) 및 super P를 8 : 1의 중량비로 혼합한 후, 그라인드를 작업을 통해 건조상태로 분쇄하였다.First, the carbon nanofiber composite (Ni-CNFs) and super P according to Example 1 were mixed in a weight ratio of 8: 1, and then the grind was pulverized in a dry state through operation.
다음으로 분쇄된 탄소나노섬유 복합체와 super p에 적정량의 DI water를 첨가하여 혼합액을 제조하였다.Next, an appropriate amount of DI water was added to the pulverized carbon nanofiber composite and super p to prepare a mixed solution.
이어서 탄소나노섬유 복합체와 super p를 포함하는 혼합액에 바인더인 SBR 및 PTFE를 첨가하여 전극 슬러리를 제조하였다. 이때 탄소나노섬유 복합체, super p 및 바인더는 각각 8 : 1 : 1의 중량비로 혼합된다.Then, SBR and PTFE as binders were added to the mixture containing the carbon nanofiber composite and super p to prepare an electrode slurry. At this time, the carbon nanofiber composite, super p, and binder are each mixed in a weight ratio of 8: 1: 1.
다음으로 집전체인 Nickel Foam 위에 전극 슬러리를 도포 한 후, 80℃의 오븐에서 1시간 동안 건조하여 제1 실시예에 따른 에너지 저장장치용 전극을 제조하였다.Next, the electrode slurry was applied on the Nickel Foam, which is a current collector, and dried in an oven at 80° C. for 1 hour to prepare an electrode for an energy storage device according to Example 1.
<제2 실시예에 따른 에너지 저장장치용 전극 제조><Production of electrode for energy storage device according to the second embodiment>
다음으로 탄소나노섬유 복합체(Ni-CNFs) 대신 제2 실시예에 따른 탄소나노섬유 복합체(Cu-CNFs)를 사용하여 super P와 혼합된다. Next, carbon nanofiber composites (Cu-CNFs) according to the second embodiment are used instead of carbon nanofiber composites (Ni-CNFs) and mixed with super P.
다음으로 집전체인 Aluminum Foil 위에 전극 슬러리를 도포 한 후, 80℃의 오븐에서 1시간 동안 건조하여 제2 실시예에 따른 에너지 저장장치용 전극을 제조하였다.Next, the electrode slurry was applied on the aluminum foil, which is a current collector, and dried in an oven at 80° C. for 1 hour to prepare an electrode for an energy storage device according to the second embodiment.
<제3 실시예에 따른 에너지 저장장치용 전극 제조><Production of electrode for energy storage device according to the third embodiment>
다음으로 탄소나노섬유 복합체(Ni-CNFs) 대신 제3 실시예에 따른 탄소나노섬유 복합체(NiCu-CNFs)를 사용하여 super P와 혼합한 후 제1 실시예와 같은 방법으로 제3 실시예에 따른 에너지 저장장치용 전극을 제조하였다.Next, carbon nanofiber composites (NiCu-CNFs) according to the third embodiment were used instead of carbon nanofiber composites (Ni-CNFs) and mixed with super P according to the third embodiment in the same manner as in the first embodiment. An electrode for an energy storage device was manufactured.
다음으로 제1 내지 제3 실시예에 따른 에너지 저장장치용 전극의 전기화학적 성능을 확인하기 위하여 -1 V 내지 1 V의 전압 범위와 1M Na2SO4 전해질 내의 전극 시스템에서 Cyclic voltammetry(CV)를 측정하였고, 제 2 실시예는 전기화학적 성능을 확인하기 위하여 -1 V 내지 1 V의 전압 범위와 6M KOH 전해질 내의 전극 시스템에서 Cyclic voltammetry (CV)를 측정하였다.Next, in order to confirm the electrochemical performance of the electrode for energy storage according to the first to third embodiments, Cyclic voltammetry (CV) was performed in the electrode system in a voltage range of -1 V to 1 V and 1M Na 2 SO 4 electrolyte. In the second embodiment, cyclic voltammetry (CV) was measured in an electrode system in a voltage range of -1 V to 1 V and a 6M KOH electrolyte to confirm electrochemical performance.
[전기화학적 안정성 확인][Confirmation of electrochemical stability]
먼저, 본 발명의 제1 내지 제3 실시예에 따른 에너지 저장장치용 전극의 전기화학적 안정성을 확인하기 위하여 CV 측정한 결과를 도 17 내지 도 19에 나타내었다. 여기서, 도 17 내지 도 19는 본 발명의 제1 내지 제3 실시예에 따른 에너지 저장장치용 전극의 CV 측정 결과를 각각 보여주는 그래프이다. First, the results of CV measurement in order to confirm the electrochemical stability of the electrodes for an energy storage device according to the first to third embodiments of the present invention are shown in FIGS. 17 to 19 . Here, FIGS. 17 to 19 are graphs each showing CV measurement results of the electrodes for an energy storage device according to the first to third embodiments of the present invention.
도 17(a)를 참조하면, 제1 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 0.01 내지 0.8의 변화된 주사 속도(scan rate)에 따라 커패시턴스의 변화가 안정적인 값이 나타났다.Referring to FIG. 17( a ), the electrode including the carbon nanofiber composite according to the first embodiment showed a stable value of the capacitance change according to the changed scan rate of 0.01 to 0.8.
그리고 도 17(b)를 참조하면, 제1 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 0.5 V / s의 스캔 속도에서 25회 이상의 싸이클로 CV 측정을 진행했을 때, 전류가 약간 증가하였으며 1.0V에서 가장 높은 전류 값을 나타냄을 알 수 있다.And, referring to FIG. 17(b), when the CV measurement was carried out in 25 or more cycles at a scan rate of 0.5 V / s in the electrode including the carbon nanofiber composite according to the first embodiment, the current slightly increased and 1.0 It can be seen that V represents the highest current value.
다음으로 도 18(a)를 참조하면, 제2 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 0.01 내지 0.6의 변화된 주사 속도(scan rate)에 따라 커패시턴스의 변화가 안정적인 값이 나타났다.Next, referring to FIG. 18( a ), the electrode including the carbon nanofiber composite according to the second embodiment showed a stable value of the capacitance change according to the changed scan rate of 0.01 to 0.6.
그리고 도 18(b)를 참조하면, 제2 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 0.1 V / s의 스캔 속도에서 25회 이상의 싸이클로 CV 측정을 진행했을 때, 전류가 약간 증가하였음을 알 수 있다.And, referring to FIG. 18(b), the electrode including the carbon nanofiber composite according to the second embodiment slightly increased the current when the CV measurement was carried out in 25 or more cycles at a scan rate of 0.1 V / s. Able to know.
이어서 도 19(a)를 참조하면, 제3 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 0.01 내지 0.6의 변화된 주사 속도(scan rate)에 따라 커패시턴스의 변화가 안정적인 값이 나타났다.Then, referring to Figure 19 (a), the electrode including the carbon nanofiber composite according to the third embodiment showed a stable value of the capacitance change according to the changed scan rate of 0.01 to 0.6.
그리고 도 19(b)를 참조하면, 제3 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 0.1 V / s의 스캔 속도에서 25회 이상의 싸이클로 CV 측정을 진행했을 때, 전류가 약간 증가하였으며 1.0V에서 가장 높은 전류 값을 나타냄을 알 수 있다.And referring to FIG. 19( b ), the electrode including the carbon nanofiber composite according to the third embodiment showed a slight increase in current when the CV measurement was performed 25 or more cycles at a scan rate of 0.1 V / s, and 1.0 It can be seen that V represents the highest current value.
따라서 본 발명의 제1 내지 제3 실시예에 따른 에너지 저장장치용 전극은 전기화학적으로 안정적인 것을 CV 곡선을 통하여 확인할 수 있었다. Accordingly, it was confirmed through the CV curve that the electrodes for an energy storage device according to the first to third embodiments of the present invention were electrochemically stable.
[비축전 용량(specific capacitance : F/g) 측정][Specific capacitance (F/g) measurement]
다음으로 탄소나노섬유 복합체 대신 탄소나노튜브(Carbon nanotube, CNT)를 사용하여 제1 내지 제3 실시예와 같은 방법으로 비교예에 따른 에너지 저장장치용 전극을 제조한 후 제1 내지 제3 실시예에 및 비교예에 따른 에너지 저장장치용 전극의 비축전 용량을 측정하여 도 20 내지 도 22에 나타내었다. 여기서 도 20 내지 도 22는 본 발명의 제1 내지 제 3 실시예 및 비교예에 따른 에너지 저장장치용 전극의 비축전 용량 측정 결과를 각각 보여주는 그래프이다. Next, using a carbon nanotube (CNT) instead of a carbon nanofiber composite to prepare an electrode for an energy storage device according to a comparative example in the same manner as in Examples 1 to 3, Examples 1 to 3 The specific capacitances of the electrodes for energy storage devices according to the above and Comparative Examples were measured and shown in FIGS. 20 to 22 . Here, FIGS. 20 to 22 are graphs showing specific capacitance measurement results of electrodes for an energy storage device according to the first to third examples and comparative examples of the present invention, respectively.
도 20을 참고하면, 본 발명의 제1 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 비축전 용량의 측정값은 347 F/g로 측정되었다.Referring to FIG. 20 , the specific capacitance of the electrode including the carbon nanofiber composite according to the first embodiment of the present invention was measured to be 347 F/g.
다음으로 도 21을 참고하면, 본 발명의 제2 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 비축전 용량의 측정값은 84 F/g로 측정되었다.Next, referring to FIG. 21 , the specific capacitance of the electrode including the carbon nanofiber composite according to the second embodiment of the present invention was measured to be 84 F/g.
도 22를 참고하면, 본 발명의 제3 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 비축전 용량의 측정값은 337 F/g로 측정되었으며, 제3 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 비축전 용량의 측정값은 약 130 F/g로 측정되었다. 여기서 본 발명의 제3 실시예에 따른 탄소나노섬유 복합체를 포함하는 전극은 비교예보다 2배 이상의 높은 비축전 용량을 가지고 있음을 알 수 있다. Referring to Figure 22, the electrode including the carbon nanofiber composite according to the third embodiment of the present invention, the measured value of the specific capacitance was measured to be 337 F / g, the carbon nanofiber composite according to the third embodiment For the included electrode, the specific capacitance was measured to be about 130 F/g. Here, it can be seen that the electrode including the carbon nanofiber composite according to the third embodiment of the present invention has a specific capacitance more than twice as high as that of the comparative example.
따라서, 본 발명의 제3 실시예에 따른 에너지 저장장치용 전극은 탄소나노섬유의 내부에 분포된 전이금속으로 인해 비교예 보다 높은 에너지 밀도를 가짐을 알 수 있었다.Therefore, it can be seen that the electrode for an energy storage device according to the third embodiment of the present invention has a higher energy density than the comparative example due to the transition metal distributed inside the carbon nanofibers.
또한, 본 발명의 제1 내지 제3 실시예에 따른 탄소나노섬유 복합체는 넓은 비표면적과 기공의 크기로 인해 높은 에너지 밀도를 가지는 슈퍼커패시터의 전극물질로 활용될 수 있다.In addition, the carbon nanofiber composites according to the first to third embodiments of the present invention can be used as electrode materials for supercapacitors having high energy density due to their large specific surface area and pore size.
[충방전 테스트][Charge/Discharge Test]
다음으로 제3 실시예에 따른 에너지 저장장치용 전극의 전기화학적 성능을 확인하기 위하여 -1 V 내지 1 V의 전압 범위와 1M Na2SO4 전해질 내의 전극 시스템에서 충방전 안정성 테스트를 측정하여 충방전을 테스트 결과를 도 23에 나타내었다. 여기서 도 23은 본 발명의 제3 실시예에 따른 에너지 저장장치용 전극의 충방전 테스트 측정 결과를 보여주는 그래프이다. Next, in order to confirm the electrochemical performance of the electrode for the energy storage device according to the third embodiment, the charge/discharge stability test was measured in the electrode system in the voltage range of -1 V to 1 V and the 1M Na 2 SO 4 electrolyte. The test results are shown in FIG. 23 . Here, FIG. 23 is a graph showing a measurement result of a charge/discharge test of an electrode for an energy storage device according to a third embodiment of the present invention.
도 23을 참고하면, 본 발명의 제3 실시예에 따른 에너지 저장장치용 전극은 5000회의 사이클 동안의 충방전을 통해서 슈퍼커패시터의 전극 물질로써 충분한 수명 안정성을 가지고 있음을 알 수 있다.Referring to FIG. 23 , it can be seen that the electrode for an energy storage device according to the third embodiment of the present invention has sufficient lifetime stability as an electrode material of a supercapacitor through charging and discharging for 5000 cycles.
따라서 본 발명에 따른 에너지 저장장치용 전극의 제조방법은 전이금속이 탄소나노섬유에 전체적으로 균일하게 분포된 탄소나노섬유 복합체를 에너지 저장장치용 전극으로 사용함으로써, 높은 에너지 밀도 및 출력 밀도를 가지며 수명이 향상된 에너지 저장장치를 제조할 수 있다Therefore, the method for manufacturing an electrode for an energy storage device according to the present invention uses a carbon nanofiber composite in which a transition metal is uniformly distributed throughout the carbon nanofiber as an electrode for an energy storage device, so that it has high energy density and output density and has a long lifespan. Improved energy storage can be manufactured
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다. 또한, 본 명세서와 도면에서 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다.On the other hand, the embodiments disclosed in the present specification and drawings are merely presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It will be apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein. In addition, although specific terms have been used in the present specification and drawings, these are only used in a general sense to easily explain the technical contents of the present invention and help the understanding of the present invention, and are not intended to limit the scope of the present invention.
본 발명에 따른 탄소나노섬유의 내부에 적어도 2개의 전이금속이 균일하게 분포된 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극은 기존의 에너지 저장장치용 전극에 비해 높은 비축전 용량을 나타내었다. The electrode for an energy storage device including the carbon nanofiber composite in which at least two transition metals are uniformly distributed inside the carbon nanofiber according to the present invention exhibited a higher specific capacitance than the conventional electrode for an energy storage device.
또한, 본 발명에 따른 에너지 저장장치용 전극은 5000회 이상의 충방전 테스트에서도 성능이 지속해서 유지되는 수명특성을 가졌으므로 산업상 이용 가능성이 매우 크다.In addition, since the electrode for an energy storage device according to the present invention has a lifespan characteristic in which performance is continuously maintained even in a charge/discharge test of more than 5000 times, industrial applicability is very high.

Claims (22)

  1. 전이금속을 포함하는 고분자 방사용액을 전기 방사하여 제조된 나노섬유를 공기 중에서 열처리하여 안정화(stabilization)한 후 비활성기체 중에 열처리하여 탄화(carbonization)시켜 형성된 탄소나노섬유에 상기 전이금속이 균일하게 분포된 에너지 저장장치용 탄소나노섬유 복합체.The transition metal is uniformly distributed in the carbon nanofibers formed by electrospinning a polymer spinning solution containing a transition metal to heat-treat it in air to stabilize it, and then heat-treat it in an inert gas for carbonization. Carbon nanofiber composite for energy storage.
  2. 제1항에 있어서,The method of claim 1,
    상기 전이금속은 Cu, Co, Ni, Mn, Fe, Zr, Pd 및 Mo 중 적어도 하나를 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체.The transition metal is a carbon nanofiber composite for an energy storage device, characterized in that it comprises at least one of Cu, Co, Ni, Mn, Fe, Zr, Pd and Mo.
  3. 제1항에 있어서,According to claim 1,
    상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포되는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체.The polymer spinning solution contains at least two transition metals, and the carbon nanofiber composite for an energy storage device, characterized in that at least two transition metals are uniformly distributed therein.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 전이금속은 Cu 및 Ni을 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체.The transition metal is a carbon nanofiber composite for an energy storage device, characterized in that it includes Cu and Ni.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 탄소나노섬유의 내부에 분포된 적어도 2개의 전이금속은 합성된 형태를 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체.The carbon nanofiber composite for an energy storage device, characterized in that the at least two transition metals distributed inside the carbon nanofibers include a synthesized form.
  6. 제3항에 있어서,4. The method of claim 3,
    상기 탄소나노섬유의 내부에 분포된 적어도 2개의 전이금속은 산화물 형태를 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체.The carbon nanofiber composite for an energy storage device, characterized in that the at least two transition metals distributed inside the carbon nanofiber include an oxide form.
  7. 제3항에 있어서,4. The method of claim 3,
    상기 탄소나노섬유 복합체는,The carbon nanofiber composite,
    직경이 50 내지 500 nm이고, 기공의 크기는 25 내지 30 nm이며, 비표면적이 100 내지 500 m2/g인 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체.A carbon nanofiber composite for energy storage, characterized in that it has a diameter of 50 to 500 nm, a pore size of 25 to 30 nm, and a specific surface area of 100 to 500 m 2 /g.
  8. 전이금속을 포함하는 고분자 방사용액을 제조하는 단계;Preparing a polymer spinning solution containing a transition metal;
    상기 고분자 방사용액으로 전기 방사하여 나노섬유를 제조하는 단계;producing nanofibers by electrospinning with the polymer spinning solution;
    상기 나노섬유를 공기 중에서 열처리하여 안정화(stabilization)하는 단계; 및stabilizing the nanofibers by heat treatment in air; and
    상기 안정화된 나노섬유를 비활성기체 중에서 열처리하여 탄화(carbonization)시켜 형성된 탄소나노섬유에 상기 전이금속이 균일하게 분포된 탄소나노섬유 복합체를 제조하는 단계;preparing a carbon nanofiber composite in which the transition metal is uniformly distributed in carbon nanofibers formed by heat-treating the stabilized nanofibers in an inert gas to carbonize them;
    를 포함하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method for producing a carbon nanofiber composite for an energy storage device comprising a.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 고분자 방사용액을 제조하는 단계는,The step of preparing the polymer spinning solution,
    유기용매에 고분자 소재를 혼합하여 고분자 용액을 제조하는 단계; 및preparing a polymer solution by mixing a polymer material with an organic solvent; and
    상기 고분자 용액에 상기 전이금속을 혼합하는 단계;mixing the transition metal with the polymer solution;
    를 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method of manufacturing a carbon nanofiber composite for an energy storage device, comprising:
  10. 제9항에 있어서,10. The method of claim 9,
    상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포되는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.The polymer spinning solution contains at least two transition metals, and at least two transition metals are uniformly distributed therein in the formed carbon nanofibers.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 고분자 소재는, The polymer material is
    폴리아크릴로나이트릴(PAN, polyacrylonitrile), 폴리이미드(PI, polyimide), 폴리비닐알콜(PVA, polyvinyl alcohol), 페놀수지(phenol resin), 폴리프로필렌(PP, polypropylene), 폴리스티렌(PS, polystyrene), 폴리아닐린(PA, polyaniline) 및 폴리메틸메타클레이트(PMMA, polymethylmethacrylate) 중 적어도 하나를 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.Polyacrylonitrile (PAN, polyacrylonitrile), polyimide (PI, polyimide), polyvinyl alcohol (PVA, polyvinyl alcohol), phenol resin, polypropylene (PP, polypropylene), polystyrene (PS, polystyrene) , polyaniline (PA, polyaniline) and polymethyl methacrylate (PMMA, polymethylmethacrylate) method of manufacturing a carbon nanofiber composite for an energy storage device, characterized in that it comprises at least one.
  12. 제9항에 있어서,10. The method of claim 9,
    상기 유기용매는, The organic solvent is
    디메틸포름아마이드(DMF, dimethylformamide), 다이메틸 설폭사이드(DMSO, dimethylsulfoxide) 및 디메틸아세트아미드(DMA, dimethylacetamide) 중 적어도 하나를 포함하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method of manufacturing a carbon nanofiber composite for an energy storage device, comprising at least one of dimethylformamide (DMF, dimethylformamide), dimethyl sulfoxide (DMSO, dimethylsulfoxide) and dimethylacetamide (DMA).
  13. 제9항에 있어서,10. The method of claim 9,
    상기 전이금속을 혼합하는 단계는,The step of mixing the transition metal,
    상기 고분자 용액에 상기 적어도 2개의 전이금속을 0.6 내지 2 중량%로 혼합하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method for producing a carbon nanofiber composite for an energy storage device, characterized in that 0.6 to 2 wt% of the at least two transition metals are mixed in the polymer solution.
  14. 제9항에 있어서,10. The method of claim 9,
    상기 전이금속을 혼합하는 단계는,The step of mixing the transition metal,
    상기 고분자 용액을 50 내지 100℃ 에서 3 내지 7 시간 동안 교반하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method for producing a carbon nanofiber composite for an energy storage device, characterized in that the polymer solution is stirred at 50 to 100° C. for 3 to 7 hours.
  15. 제8항에 있어서,9. The method of claim 8,
    상기 나노섬유를 제조하는 단계는,The step of preparing the nanofiber,
    상기 고분자 방사용액을 단일 노즐(single nozzle)을 이용하며 5 내지 50 ㎸의 고전압, 30 내지 40%의 습도 및 5 내지 50 cm의 방사거리를 유지하면서 0.5 ml/h 내지 25 ml/h의 유량으로 전기 방사하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.Using a single nozzle, the polymer spinning solution is applied at a flow rate of 0.5 ml/h to 25 ml/h while maintaining a high voltage of 5 to 50 kV, a humidity of 30 to 40%, and a spinning distance of 5 to 50 cm. A method of manufacturing a carbon nanofiber composite for an energy storage device, characterized in that electrospinning.
  16. 제8항에 있어서,9. The method of claim 8,
    상기 안정화하는 단계는,The stabilizing step is
    상기 나노섬유를 공기 중에 150 내지 250 ℃에서 2 내지 4시간 동안 열처리하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method for producing a carbon nanofiber composite for an energy storage device, characterized in that heat treatment of the nanofibers in air at 150 to 250° C. for 2 to 4 hours.
  17. 제8항에 있어서,9. The method of claim 8,
    상기 탄화시키는 단계는,The carbonizing step is,
    상기 안정화된 나노섬유를 비활성기체 중에 700 내지 1000 ℃에서 3 내지 6시간 동안 열처리하는 것을 특징으로 하는 에너지 저장장치용 탄소나노섬유 복합체의 제조방법.A method for producing a carbon nanofiber composite for an energy storage device, characterized in that heat treatment of the stabilized nanofibers in an inert gas at 700 to 1000° C. for 3 to 6 hours.
  18. 전이금속을 포함하는 고분자 방사용액을 전기 방사하여 제조된 나노섬유를 공기 중에서 열처리하여 안정화(stabilization)한 후 비활성기체 중에 열처리하여 탄화(carbonization)시켜 형성된 탄소나노섬유에 상기 전이금속이 균일하게 분포된 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극.The transition metal is uniformly distributed in the carbon nanofibers formed by electrospinning a polymer spinning solution containing a transition metal to heat-treat it in air to stabilize it, and then heat-treat it in an inert gas for carbonization. An electrode for an energy storage device comprising a carbon nanofiber composite.
  19. 제18항에 있어서,19. The method of claim 18,
    상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포되는 것을 특징으로 하는 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극.The polymer spinning solution contains at least two transition metals, and the formed carbon nanofibers are an electrode for an energy storage device comprising a carbon nanofiber composite, characterized in that at least two transition metals are uniformly distributed therein.
  20. 전이금속이 탄소나노섬유에 균일하게 분포된 탄소나노섬유 복합체를 제조하는 단계;Preparing a carbon nanofiber composite in which the transition metal is uniformly distributed in the carbon nanofiber;
    상기 탄소나노섬유 복합체 및 도전재를 혼합하여 분쇄하는 단계;mixing and pulverizing the carbon nanofiber composite and a conductive material;
    상기 분쇄된 탄소나노섬유 복합체 및 도전재와 증류수를 혼합하여 혼합액을 제조하는 단계;preparing a mixed solution by mixing the pulverized carbon nanofiber composite, a conductive material, and distilled water;
    상기 혼합액에 바인더를 혼합하여 전극 슬러리를 제조 단계; preparing an electrode slurry by mixing a binder with the mixed solution;
    상기 전극 슬러리를 집전체 위에 도포하는 단계; 및 applying the electrode slurry on a current collector; and
    상기 전극 슬러리를 건조하여 전극을 제조하는 단계;를 포함하며,Including; drying the electrode slurry to prepare an electrode;
    상기 탄소나노섬유 복합체를 제조하는 단계는,The step of preparing the carbon nanofiber composite,
    상기 전이금속을 포함하는 고분자 방사용액을 제조하는 단계;preparing a polymer spinning solution containing the transition metal;
    상기 고분자 방사용액으로 전기 방사하여 나노섬유를 제조하는 단계;producing nanofibers by electrospinning with the polymer spinning solution;
    상기 나노섬유를 공기 중에서 열처리하여 안정화(stabilization)하는 단계; 및stabilizing the nanofibers by heat treatment in air; and
    상기 안정화된 나노섬유를 비활성기체 중에서 열처리하여 탄화(carbonization)시키는 단계;heat-treating the stabilized nanofibers in an inert gas to carbonize them;
    를 포함하는 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 제조방법.A method of manufacturing an electrode for an energy storage device comprising a carbon nanofiber composite comprising a.
  21. 제20항에 있어서,21. The method of claim 20,
    상기 고분자 방사용액은 적어도 2개의 전이금속을 포함하며 상기 형성된 탄소나노섬유는 내부에 적어도 2개의 상기 전이금속이 균일하게 분포되는 것을 특징으로 하는 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 제조방법.The polymer spinning solution contains at least two transition metals, and the formed carbon nanofibers are manufactured in an energy storage device comprising a carbon nanofiber composite, characterized in that at least two transition metals are uniformly distributed therein. Way.
  22. 제20항에 있어서,21. The method of claim 20,
    상기 전극 슬러리를 제조 단계는, The step of preparing the electrode slurry,
    상기 탄소나노섬유 복합체, 도전재 및 바인더를 7.6~8.4 : 0.8~1.2 : 0.8~1.2의 중량비로 하여 혼합하는 것을 특징으로 하는 탄소나노섬유 복합체를 포함하는 에너지 저장장치용 전극의 제조방법.A method of manufacturing an electrode for an energy storage device comprising a carbon nanofiber composite, characterized in that the carbon nanofiber composite, the conductive material and the binder are mixed in a weight ratio of 7.6 to 8.4: 0.8 to 1.2: 0.8 to 1.2.
PCT/KR2021/004531 2020-12-01 2021-04-09 Carbon nanofiber composite for energy storage device, electrode comprising same, and method for preparing same WO2022119059A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0165986 2020-12-01
KR20200165986 2020-12-01
KR1020210009966A KR102481903B1 (en) 2020-12-01 2021-01-25 Carbon nanofiber composite for energy storage device, electrode including the same, and manufacturing method thereof
KR10-2021-0009966 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022119059A1 true WO2022119059A1 (en) 2022-06-09

Family

ID=81853460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004531 WO2022119059A1 (en) 2020-12-01 2021-04-09 Carbon nanofiber composite for energy storage device, electrode comprising same, and method for preparing same

Country Status (1)

Country Link
WO (1) WO2022119059A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120058193A (en) * 2010-11-29 2012-06-07 광주과학기술원 Carbon nanofiber catalysts using nanofiber including low cost trasition metal for fuel cells and its Manufacturing Method Thereof
KR20130085548A (en) * 2011-12-20 2013-07-30 비나텍주식회사 Manufacturing method of slurry for super capacitor providing enhanced resistance characteristic and super capacitor manufactured using the same and manufacturing method of super capacitor thereof
KR101348200B1 (en) * 2012-09-26 2014-01-07 전남대학교산학협력단 Carbon nanofiber composite containing silicon nanoparticles coated with stabilizer, preparation of the same and lithium secondary battery using the same
JP2020528655A (en) * 2017-08-17 2020-09-24 エルジー・ケム・リミテッド Electrodes for all-solid-state batteries and their manufacturing methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120058193A (en) * 2010-11-29 2012-06-07 광주과학기술원 Carbon nanofiber catalysts using nanofiber including low cost trasition metal for fuel cells and its Manufacturing Method Thereof
KR20130085548A (en) * 2011-12-20 2013-07-30 비나텍주식회사 Manufacturing method of slurry for super capacitor providing enhanced resistance characteristic and super capacitor manufactured using the same and manufacturing method of super capacitor thereof
KR101348200B1 (en) * 2012-09-26 2014-01-07 전남대학교산학협력단 Carbon nanofiber composite containing silicon nanoparticles coated with stabilizer, preparation of the same and lithium secondary battery using the same
JP2020528655A (en) * 2017-08-17 2020-09-24 エルジー・ケム・リミテッド Electrodes for all-solid-state batteries and their manufacturing methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(SON, YOUHYUN.: "Manufacture and characterization of carbon fiber for supercapacitors by electrospinning. - Thesis", THE GRADUATE SCHOOL OF CHONBUK NATIONAL UNIVERSITY)., Korea, article SON YOOHYEON., pages: 1 - 104 *

Similar Documents

Publication Publication Date Title
WO2011099677A1 (en) Method for preparing porous carbon nanofibers containing a metal oxide, porous carbon nanofibers prepared using the method, and carbon nanofiber products including same
WO2012005556A2 (en) Carbon nanofiber containing metal oxide or intermetallic compound, preparation method thereof, and lithium secondary battery using same
WO2017217832A1 (en) Method for producing carbon aerogel precursor, and carbon aerogel precursor and carbon aerogel produced thereby
WO2015065047A1 (en) Negative electrode active material and method for preparing same
WO2014092334A1 (en) Porous separator coated with organic/inorganic complex using aqueous coating solution, method for manufacturing same, and electrochemical device using same
WO2011055967A2 (en) Heat-resistant and high-tenacity ultrafine fibrous separation layer, method for manufacturing same, and secondary cell using same
WO2015156446A1 (en) Graphene-metal nanoparticle composite, carbon nanofiber composite containing composite, and secondary battery containing carbon nanoparticle composite
WO2019093681A2 (en) Porous carbon, and positive electrode and lithium secondary battery comprising same
WO2015064867A1 (en) Electrode active material for magnesium battery
WO2018110776A1 (en) Method for manufacturing crumpled graphene composite, composite manufactured thereby, and supercapacitor including composite
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2017086609A1 (en) Porous carbon structure using intrinsically microporous polymer, and battery electrode including same
WO2019177355A1 (en) Ceria-carbon-sulfur composite, method for preparing same, and positive electrode and lithium-sulfur battery comprising same
WO2010117134A2 (en) Composition for producing positive electrode for electricity storage device, positive electrode for electricity storage device made with said composition, and electricity storage device comprising same
WO2019212162A1 (en) Binder for lithium-sulfur secondary battery and lithium-sulfur secondary battery including same
WO2022119059A1 (en) Carbon nanofiber composite for energy storage device, electrode comprising same, and method for preparing same
WO2018131897A1 (en) Graphene-based liquid crystal dispersion liquid, liquid crystal composite elastic fiber and method for preparing same
WO2021251663A1 (en) Anode and secondary battery comprising same
KR20220077813A (en) Carbon nanofiber composite for energy storage device, electrode including the same, and manufacturing method thereof
WO2019098733A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium secondary battery comprising same
WO2022119359A1 (en) Anode current collector for lithium metal battery, preparation method therefor, and lithium metal battery comprising same
WO2022131695A1 (en) Anode material for lithium ion secondary battery, preparation method therefor, and lithium ion secondary battery comprising same
WO2022080979A1 (en) Negative electrode and method for manufacturing same
WO2022045756A1 (en) Supercapacitor electrode material and method for manufacturing same
WO2021025349A1 (en) Anode, manufacturing method therefor, and secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900747

Country of ref document: EP

Kind code of ref document: A1