WO2022116312A1 - 一种量子点膜层、背光模组及其制备方法 - Google Patents

一种量子点膜层、背光模组及其制备方法 Download PDF

Info

Publication number
WO2022116312A1
WO2022116312A1 PCT/CN2020/138487 CN2020138487W WO2022116312A1 WO 2022116312 A1 WO2022116312 A1 WO 2022116312A1 CN 2020138487 W CN2020138487 W CN 2020138487W WO 2022116312 A1 WO2022116312 A1 WO 2022116312A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
barrier
barrier layer
blocking
Prior art date
Application number
PCT/CN2020/138487
Other languages
English (en)
French (fr)
Inventor
白雪
周淼
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2022116312A1 publication Critical patent/WO2022116312A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present application relates to the field of display technology, and in particular, to a quantum dot film layer, a backlight module and a preparation method thereof.
  • quantum dots Quantum Dots, QDs
  • QDs quantum dots
  • a water-oxygen barrier film is usually provided around the quantum dot film layer.
  • the quantum dot film layer and the water-oxygen barrier film need to be cut, and the water-oxygen barrier film may fail due to cutting. , so that the quantum dots have the risk of failure, which in turn causes the overall display color gamut and brightness of the display panel to drift downward, and the phenomenon of "blue fringing" occurs, which has a negative impact on the display quality of the display panel (especially the narrow-bezel display panel).
  • the quantum dot film layer in the existing QD-OLED display panel has the problem of covering and fitting with the blue backlight, which will also cause the periphery of the display panel to be bluish.
  • the ink area or the black matrix structure can block the blue light leaking from the edge, but this will increase the size of the display panel, which is not conducive to the design of a narrow frame.
  • the present application provides a quantum dot film layer, a backlight module and a preparation method thereof, so as to improve the technical problems such as the easy failure of quantum dots in the existing quantum dot display panel, the appearance of "blue edge” on the edge of the display panel, and the disadvantage of narrow frame design. .
  • the present application provides a quantum dot film layer, comprising:
  • a quantum dot layer stacked on one side of the first barrier layer
  • a blocking structure is disposed around the quantum dot layer and the first blocking layer.
  • the materials of the first barrier layer and the second barrier layer are at least one of silicon oxide and silicon nitride.
  • the material of the blocking structure is a water-oxygen blocking glue doped with scattering particles, so that the blocking structure has high light absorption (Optical Density, OD) value, while reducing the edge failure of the quantum dot display panel, it can also block most of the blue light.
  • Optical Density, OD Optical Density
  • the scattering particles include at least one of inorganic nanoparticles and resin microspheres
  • the inorganic nanoparticles are titanium dioxide, silicon dioxide, barium carbonate, barium oxide, lithium oxide, and zirconium oxide and at least one of zinc oxide
  • the resin microspheres are at least one of polystyrene, polymethyl methacrylate and polyimide.
  • the water and oxygen barrier adhesive is optical adhesive, pressure-sensitive adhesive or edge sealing adhesive.
  • the material of the blocking structure includes: 25%-50% scattering particles and 50%-75% water-oxygen barrier glue.
  • the cross-sectional shape of the quantum dot layer in a vertical cross-section, is an isosceles trapezoid that is wide at the top and narrow at the bottom, which can greatly increase the light conversion area of the quantum dot layer. Conducive to the design of narrow bezels.
  • the blocking structure in the vertical cross section, includes a first blocking part and a second blocking part, and the first blocking part and the second blocking part are symmetrically arranged on the quantum
  • the dot layer and the two sides of the first barrier layer are beneficial to the compactness and beauty of the overall structure.
  • a plurality of protruding structures are provided on the side of the first blocking layer close to the quantum dot layer, so as to improve the light extraction rate.
  • the quantum dot film layer further includes: a scattering layer, the scattering layer is stacked between the quantum dot layer and the second barrier layer; or, the scattering layer The stack is disposed on the side of the second barrier layer facing away from the quantum dot layer.
  • the scattering layer is used to improve the surface uniformity of the light emitting, and effectively avoid the obvious difference between the brightness around the display panel and the brightness inside the display panel.
  • the quantum dot layer is doped with scattering particles, so as to ensure the uniformity of the surface where the light exits, and to help reduce the thickness of the quantum dot layer.
  • a backlight module including:
  • a quantum dot film layer as described in the first aspect stacked on the light-emitting surface of the blue backlight;
  • a light-shielding structure is arranged around the blue backlight source.
  • a plurality of protruding structures are provided on the side of the first barrier layer close to the quantum dot layer.
  • the quantum dot film layer further includes: a scattering layer, the scattering layer is stacked between the quantum dot layer and the second barrier layer; or, the scattering layer The stack is disposed on the side of the second barrier layer facing away from the quantum dot layer.
  • the quantum dot layer is doped with scattering particles.
  • the light-shielding structure in a vertical cross section, includes a first light-shielding portion and a second light-shielding portion, and the first light-shielding portion and the second light-shielding portion are symmetrically arranged on the blue two sides of the backlight;
  • the blocking structure includes a first blocking part and a second blocking part, the first blocking part and the second blocking part are symmetrically arranged on the quantum dot layer and the first blocking layer sides.
  • the outer edge of the first blocking portion is flush with the outer edge of the first light shielding portion
  • the outer edge of the second blocking portion is flush with the outer edge of the second light shielding portion. The outside edges are flush.
  • the present application provides a method for preparing a backlight module for preparing the backlight module as described in the second aspect, comprising the following steps:
  • a blue backlight is provided, and a light-shielding structure is formed around the blue backlight to obtain a light-shielding structure-blue backlight composite structure;
  • a quantum dot film layer is prepared, and the quantum dot film layer includes: a first barrier layer; a quantum dot layer stacked on one side of the first barrier layer; a second barrier layer stacked on the a side of the quantum dot layer facing away from the first barrier layer; and a barrier structure disposed around the quantum dot layer and the first barrier layer; and
  • the quantum dot film layer is attached to the light-emitting surface of the light-shielding structure-blue backlight composite structure, so that the first barrier layer is stacked and arranged on the light-emitting surface of the blue backlight to obtain the obtained the backlight module.
  • the present application provides a quantum dot film layer, a backlight module and a preparation method thereof.
  • the quantum dot film layer is applied in the backlight module, so as to improve the problem that the quantum dots in the existing quantum dot display panel are easy to fail, and the display panel There are technical problems such as "blue edge" on the edge, which is not conducive to the design of narrow bezels.
  • the second barrier layer, the quantum dot film layer and the first barrier layer are combined to form a structure with a wide top and a narrow bottom, so as to Conducive to the design of a narrow frame; the quantum dot layer and the first barrier layer are provided with a barrier structure around the quantum dot layer to improve the problem of bluishness at the edge of the quantum dot display panel, and the barrier structure has the function of blocking water and oxygen, thereby Greatly reduces the risk of quantum dot failure.
  • a scattering layer can also be added to the quantum dot film layer to improve the surface uniformity of the light emitting, and effectively avoid the obvious difference between the brightness around the quantum dot display panel and the brightness inside.
  • FIG. 1 is a schematic structural diagram of a first backlight module in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a second type of backlight module in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a third type of backlight module according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a fourth type of backlight module according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a fifth type of backlight module according to an embodiment of the present application.
  • FIG. 1 provides the structure and composition of a first backlight module.
  • the backlight module mainly includes: a blue A backlight source 1 , a quantum dot film layer 2 and a light-shielding structure 3 .
  • the blue backlight source 1 may be a common blue backlight source product in the prior art, and can provide blue natural light with a wavelength of 400 nanometers to 480 nanometers.
  • the blue backlight 1 may be, for example, a blue light-emitting diode (Light-Emitting Diode, LED), a Mini-Light Emitting Diode (Mini-LED), or the like.
  • the quantum dot film layer 2 is stacked on the light emitting surface of the blue backlight 1 , so that there is no gap between the quantum dot film 2 and the light emitting surface of the blue backlight 1 .
  • the quantum dot film layer 2 mainly includes: a first barrier layer 21, a quantum dot layer 22 and a second barrier layer 23 which are stacked in sequence, and a first barrier layer 21 and the quantum dot layer are arranged on the first barrier layer 21 and the quantum dot layer.
  • the first barrier layer 21 is stacked on the blue backlight 1
  • the second barrier layer 23 is stacked on the side of the quantum dot film layer 22 facing away from the first barrier layer 21 .
  • the first barrier layer 21 and the second barrier layer 23 are used to block water and oxygen, and preferably both are made of transparent insulating materials, such as silicon oxide (SiOx), silicon nitride (SiNx), etc. .
  • the first barrier layer 21 and the second barrier layer 23 may be a single-layer structure, such as a single-layer silicon dioxide structure.
  • the first barrier layer 21 and the second barrier layer 23 may also be a multi-layer structure, for example, a multi-layer composite structure formed by alternately arranged silicon dioxide layers and silicon nitride (Si3N4) layers.
  • the quantum dot layer 22 is stacked and disposed on the side of the first blocking layer 21 facing away from the blue backlight 1 .
  • the quantum dot layer 22 may include a red quantum dot film layer, a green quantum dot film layer and a scattering film layer arranged adjacently.
  • the material of the red quantum dot film layer is red quantum dot material
  • the material of the green quantum dot film layer is green quantum dot material.
  • the scattering film layer includes scattering particles, the scattering particles include at least one of inorganic nanoparticles and resin microspheres, and the inorganic nanoparticles are titanium dioxide, silicon dioxide, barium carbonate, barium oxide, lithium oxide, and zirconium oxide , zinc oxide, etc., the resin microspheres are polystyrene, polymethyl methacrylate (PMMA), polyimide, etc., for example: the scattering particles include inorganic nanoparticles and resin microspheres, the inorganic nanoparticle The particles are titanium dioxide, and the resin microspheres are polystyrene microspheres.
  • the blocking structure 24 is disposed around the quantum dot layer 22 and the first blocking layer 21 , and preferably between the blocking structure 24 and the quantum dot layer 22 and between the blocking structure 24 and the first blocking layer There is no gap between 21 to avoid the problem of light leakage.
  • the material of the blocking structure 24 may be a water-oxygen barrier adhesive doped with scattering particles, the water-oxygen barrier adhesive may be, for example, an optical adhesive, a pressure-sensitive adhesive, an edge-sealing adhesive, etc., and the scattering particles may be inorganic nanoparticles and at least one of resin microspheres.
  • the material of the blocking structure 24 is white edge sealant doped with titanium dioxide.
  • the material of the blocking structure 24 is a black edge sealant doped with black resin microspheres, and the OD value is greater than 2.
  • the material of the blocking structure 24 includes: 25%-50% scattering particles and 50%-75% water-oxygen barrier glue.
  • the cross-sectional shape of the quantum dot layer 22 is preferably an isosceles trapezoid.
  • the cross-sectional shapes of the first barrier layer 21 and the second barrier layer 23 are preferably rectangular, and the length of the first barrier layer 21 in the horizontal direction is equal to the length of the upper bottom of the isosceles trapezoid, so The length of the second barrier layer 23 in the horizontal direction is equal to the length of the lower base of the isosceles trapezoid.
  • the blocking structure 24 includes a first blocking portion and a second blocking portion, the cross-sectional shapes of the first blocking portion and the second blocking portion are preferably right-angled trapezoids, and the first blocking portion and the second blocking portion are Symmetrically arranged on both sides of the quantum dot layer 22 and the first barrier layer 21 .
  • the lower bottom of the first blocking part and the lower bottom of the second blocking part are preferably flush with the vertical edges of both ends of the second blocking layer 23 , so that the overall structure is compact and beautiful, which is beneficial to the design of narrow frame.
  • the inclined surface of the first blocking part and the inclined surface of the second blocking part abut against the inclined surfaces on both sides of the quantum dot layer 22 respectively, and the upper bottom surface of the first blocking part and the bottom surface of the second blocking part are in contact with each other.
  • the upper bottom surface abuts against the two side surfaces of the first barrier layer 21 respectively.
  • the materials of the first blocking part and the second blocking part are preferably white edge sealing glue doped with titanium dioxide.
  • the cross-sectional shapes of the first barrier layer 21 , the quantum dot layer 22 , the second barrier layer 23 and the barrier structure 24 are not specifically limited. It is a regular shape or an irregular shape, but it needs to meet the requirements that in a vertical direction, viewed from top to bottom, the second barrier layer 23, the quantum dot layer 22 and the first barrier layer 21 are combined to form
  • the structure with a wide top and a narrow bottom facilitates the design of a narrow frame, and must satisfy the requirement that there is no gap between the blocking structure 24 and the quantum dot layer 22, and between the blocking structure 24 and the first blocking layer 21, to avoid the problem of light leakage.
  • the light-shielding structure 3 is disposed around the blue backlight 1 , and preferably, there is no gap between the light-shielding structure 3 and the blue backlight 1 .
  • the light-shielding structure 3 includes a first light-shielding portion and a second light-shielding portion, and the first light-shielding portion and the second light-shielding portion are symmetrically arranged on both sides of the blue backlight source 1 ,
  • the outer edge of the first shading portion is flush with the outer edge of the first blocking portion, and correspondingly, the outer edge of the second shading portion is flush with the outer edge of the second blocking portion.
  • the material of the light-shielding structure 3 is an opaque material, such as metal, black resin, and the like.
  • the preparation method includes the following steps:
  • the light-shielding structure 3 can be adhered to the periphery of the blue backlight 1 through an adhesive.
  • step S2 includes the following steps:
  • a first barrier layer 21 is provided, and a quantum dot layer 22 is prepared and formed on one side of the first barrier layer 21 .
  • the quantum dot layer 22 can be prepared and formed by means of an inkjet printing (Ink-Jet Printing, IJP) process, a photolithography process, etc., and the inkjet printing process and the photolithography process are both in the art The conventional technical means will not be repeated here.
  • IJP Ink-Jet Printing
  • the material of the second blocking layer 23 is at least one of silicon oxide (SiOx) and silicon nitride (SiNx)
  • chemical vapor deposition (Chemical Vapor Deposition) can be used. Vapor Deposition, CVD) process to prepare and form the second barrier layer 23 .
  • a barrier structure 24 is formed around the first barrier layer 21 and the quantum dot layer 22 .
  • the blocking structure 24 is glued around the first blocking layer 21 and the quantum dot layer 22 .
  • the execution order of the step S1 and the step S2 may be exchanged, or may be executed simultaneously.
  • the barrier structure 24 can also be formed around the first barrier layer 21, and then the quantum dot layer 22 and the quantum dot layer 22 and the second barrier layer 23 .
  • the quantum dot film layer 2 further includes a scattering layer 25, and the scattering layer 25 is used to improve the surface uniformity of the light output, and effectively avoid the obvious difference between the brightness around the quantum dot display panel and the brightness inside .
  • the scattering layer 25 can be stacked between the quantum dot layer 22 and the second barrier layer 23 , and the scattering layer 25 can also be stacked on the second barrier layer 23 away from the quantum dot layer 22 . on the side.
  • the material of the scattering layer 25 is titanium dioxide, silicon dioxide, barium carbonate, barium oxide, lithium oxide, zirconium oxide, zinc oxide, polystyrene, polymethyl methacrylate (PMMA), and the like.
  • FIG. 2 provides the structure and composition of the second type of backlight module.
  • the difference between the second type of backlight module and the first type of backlight module is only in that: the quantum A scattering layer 25 is added to the dot film layer 2 .
  • the material of the scattering layer 25 is preferably titanium dioxide, and the scattering layer 25 is stacked on the side of the second barrier layer 23 away from the quantum dot layer 22 .
  • the cross-sectional shape of the scattering layer 25 is preferably the same as the cross-sectional shape of the second barrier layer 23 , that is, both are rectangular, and the scattering layer 25 and the second barrier layer 23 are horizontal. The lengths in the directions are equal.
  • the backlight module shown in FIG. 2 on the basis of the aforementioned preparation method (for preparing the backlight module shown in FIG. 1 ), it further includes the step of: the second barrier layer 23 is away from the quantum dots A scattering layer 25 is prepared and formed on one side of the layer 22 .
  • This step can be performed between step S2.2 and step S2.3.
  • physical vapor deposition Physical Vapor Deposition
  • PVD Physical Vapor Deposition
  • FIG. 3 provides the structure and composition of a third type of backlight module.
  • the difference between the third type of backlight module and the first type of backlight module is only that: the quantum dots
  • the structural composition of the film layer 2 is different.
  • the quantum dot film layer 2 mainly includes: a first barrier layer 21 , a quantum dot layer 22 , a scattering layer 25 and a second barrier layer 23 , which are stacked in sequence, and are arranged on the first barrier layer 21 , A blocking structure 24 around the quantum dot layer 22 and the scattering layer 25 . There is no gap between the blocking structure 24 and the first blocking layer 21 , between the blocking structure 24 and the quantum dot layer 22 , and between the blocking structure 24 and the scattering layer 25 .
  • the material of the scattering layer 25 is preferably titanium dioxide.
  • the cross-sectional shapes of the first barrier layer 21 and the second barrier layer 22 are both rectangular, and the length of the first barrier layer 21 in the horizontal direction is smaller than that of the second barrier layer 22 length in the horizontal direction.
  • the cross-sectional shape of the scattering layer 25 is preferably the same as the cross-sectional shape of the quantum dot layer 22 , that is, both are isosceles trapezoid, and the length of the first barrier layer 21 in the horizontal direction is the same as that of the quantum dot layer 22 .
  • the length of the upper bottom of the cross section of the quantum dot layer 22 is equal to the length of the upper bottom of the cross section of the quantum dot layer 22 and the length of the upper bottom of the cross section of the scattering layer 25 is the same, and the length of the lower bottom of the cross section of the scattering layer 25 is slightly smaller than that of the The length of the second barrier layer 23 in the horizontal direction.
  • the blocking structure 24 includes a first blocking part and a second blocking part, and the first blocking part and the second blocking part are symmetrically arranged on the quantum dot layer 22 and the quantum dot layer 22 .
  • the cross-sectional shapes of the first barrier portion and the second barrier portion are pentagons.
  • the materials of the first blocking part and the second blocking part are preferably black edge sealing glue (OD value greater than 2) doped with black resin microspheres.
  • the method further includes the step of: when the quantum dot layer 22 is away from the first barrier A scattering layer 25 is prepared and formed on one side of the layer 21 .
  • This step can be performed between step S2.1 and step S2.2.
  • physical vapor deposition Physical Vapor Deposition
  • PVD Physical Vapor Deposition
  • the quantum dot layer 22 is doped with scattering particles, that is, the red quantum dot film layer and the green quantum dot film layer are doped with scattering particles, so as to ensure that the surface where the light exits is uniform It is beneficial to reduce the thickness of the quantum dot layer 22 , that is, in the quantum dot film layer 2 , there is no need to additionally dispose a scattering layer 25 .
  • the scattering particles are preferably titanium dioxide nanoparticles.
  • FIG. 4 provides the structure and composition of a fourth type of backlight module.
  • the difference between the fourth type of backlight module and the first type of backlight module is that the quantum dots
  • the structural composition of the film layer 2 is different.
  • the quantum dot film layer mainly includes: a first barrier layer 21 , a quantum dot layer 22 and a second barrier layer 23 that are stacked in sequence, and the first barrier layer 21 and the quantum dot layer 22 A blocking structure 24 around it. There is no gap between the blocking structure 24 and the first blocking layer 21 , between the blocking structure 24 and the quantum dot layer 22 , and between the blocking structure 24 and the scattering layer 25 .
  • the quantum dot layer 22 is doped with titanium dioxide nanoparticles.
  • the cross-sectional shapes of the first barrier layer 21 and the second barrier layer 23 are both rectangular, and the length of the first barrier layer 21 in the horizontal direction is smaller than that of the second barrier layer 23 length in the horizontal direction.
  • the cross-sectional shape of the quantum dot layer 22 is preferably an isosceles trapezoid, and the length of the first barrier layer 21 in the horizontal direction is less than the length of the upper bottom of the cross-section of the quantum dot layer 22 , and the quantum dot layer 22 The length of the lower bottom of the cross section is smaller than the length of the second barrier layer 23 in the horizontal direction.
  • the blocking structure 24 includes a first blocking part and a second blocking part, and the first blocking part and the second blocking part are symmetrically arranged on the quantum dot layer 22 and the first blocking part Both sides of layer 21.
  • the cross-sectional shapes of the first blocking part and the second blocking part are irregular patterns, and the materials of the first blocking part and the second blocking part are preferably black edge seals doped with black resin microspheres glue (OD value greater than 2).
  • the outer edges of the first blocking part and the second blocking part are not flush with the vertical edges of the two ends of the second blocking layer 23 respectively, but the outer edges of the first blocking part are not flush with the first light shielding part.
  • the outer edge of the second blocking part is flush with the outer edge of the second blocking part.
  • the basic process of the aforementioned preparation method (for preparing the backlight module shown in FIG. 1 ) is the same, but when preparing the quantum dot layer 22 , the red quantum dots The material and the green quantum dot material are doped with scattering particles.
  • a plurality of protruding structures 26 are disposed on the side of the first blocking layer 21 close to the quantum dot layer 22 to improve the light extraction rate.
  • FIG. 5 provides the structure and composition of a fifth type of backlight module.
  • the technical characteristics of the fifth type of backlight module and the first type of backlight module are only: A plurality of protruding structures 26 are provided on the side of the barrier layer 21 close to the quantum dot layer 22 ; and a scattering layer 25 is additionally provided on the quantum dot film layer 2 .
  • the material of the protruding structure may be photoresist.
  • the cross-sectional shape of each of the protruding structures 26 is a semicircle, and the cross-sectional shape of each of the protruding structures 26 is not specifically limited, and can be selected according to actual needs. There may be a gap between adjacent protruding structures 26 , or each of the protruding structures 26 may be connected in sequence.
  • the scattering layer 25 is stacked on the side of the second barrier layer 23 away from the quantum dot layer 22 , and the material of the scattering layer 25 is preferably titanium dioxide.
  • the cross-sectional shape of the scattering layer 25 is a rectangle, and the lengths of the scattering layer 25 and the second blocking layer 23 in the horizontal direction are equal.
  • the method further includes the step of: preparing on one side of the first barrier layer 21 A plurality of raised structures 26 are formed. This step needs to be performed before step S2.1 , that is, firstly prepare and form the plurality of protruding structures 26 , and then prepare and form a quantum dot layer 22 on the plurality of protruding structures 26 .
  • the plurality of protruding structures 26 may be prepared and formed by means of inkjet printing process, photolithography process, or the like.
  • the backlight module of the embodiment of the present application can be applied to a quantum dot display panel, such as a QD-LCD and the like.
  • the quantum dot display panel can be applied to a variety of display devices, such as mobile phones, computers, digital cameras, digital video cameras, game consoles, audio reproduction devices, information terminals, smart wearable devices, smart weighing electronic scales, Any product or component with a display function, such as a car display, a TV, etc., wherein the smart wearable device can be a smart bracelet, a smart watch, a smart glasses, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种量子点膜层(2)、背光模组及其制备方法,量子点膜层(2)包括:依次层叠设置的一第一阻隔层(21)、一量子点层(22)和一第二阻隔层(23),以及设置于第一阻隔层(21)和量子点层(22)四周的一阻挡结构(24)。背光模组包括:一蓝色背光源(1)、层叠设置于蓝色背光源(1)的出光面的一量子点膜层(2)以及设置于蓝色背光源(1)四周的一遮光结构(3),有效改善了现有量子点显示面板中量子点易失效、显示面板边缘出现"蓝边"、不利于窄边框设计等技术问题。

Description

一种量子点膜层、背光模组及其制备方法 技术领域
本申请涉及显示技术领域,尤其涉及一种量子点膜层、背光模组及其制备方法。
背景技术
随着显示技术的迅猛发展,人们对显示面板的显示品质要求日益严苛,例如:要求高色域显示品质。由于量子点(Quantum Dots,QDs)显示技术具有拓宽显示色域、提高显示亮度、提高穿透率等优点,所以量子点显示面板已经成为了当前显示技术领域中的研究热点。
现有量子点显示面板通常是采用蓝色背光源激发红色量子点产生红光,以及激发绿色量子点产生绿光,而蓝光则是由蓝色背光源直接提供,而红色量子点和绿色量子点往往以量子点膜层的形式存在。
技术问题
在现有技术中,由于现有量子点材料具有对水和氧气敏感,所以所述量子点膜层的四周通常设有一水氧阻隔膜。但是,当将所述量子点膜层应用于显示面板中时,需要对所述量子点膜层和所述水氧阻隔膜进行裁剪,所述水氧阻隔膜因裁切可能会出现失效的问题,从而量子点具有失效的风险,进而造成显示面板整体显示色域和亮度向下漂移,并出现“蓝边”的现象,对显示面板(尤其是窄边框显示面板)的显示品质造成负面影响。此外,现有QD-OLED显示面板中的所述量子点膜层与所述蓝色背光源存在覆盖契合的问题,这也会引发显示面板周边泛蓝,需要在显示面板的四周设置较宽的油墨区或者黑色矩阵结构以遮挡边缘漏出的蓝光,但是这样会增大显示面板的尺寸,不利于窄边框的设计。
技术解决方案
本申请提供了一种量子点膜层、背光模组及其制备方法,以改善现有量子点显示面板中量子点易失效、显示面板边缘出现“蓝边”、不利于窄边框设计等技术问题。
第一方面,本申请提供了一种量子点膜层,包括:
一第一阻隔层;
一量子点层,层叠设置于所述第一阻隔层的一面上;
一第二阻隔层,层叠设置于所述量子点层背离所述第一阻隔层的一面上;以及
一阻挡结构,设置于所述量子点层和所述第一阻隔层的四周。
在本申请的一些实施例中,所述阻挡结构与所述量子点层之间,以及所述阻挡结构与所述第一阻隔层之间无间隙,以避免出现漏光的问题。
在本申请的一些实施例中,所述阻挡结构与所述量子点层之间,以及所述阻挡结构与所述第一阻隔层之间无间隙。
在本申请的一些实施例中,所述第一阻隔层和所述第二阻隔层的材质均为氧化硅和氮化硅中的至少一者。
在本申请的一些实施例中,所述阻挡结构的材质为掺杂有散射粒子的水氧阻隔胶,使得所述阻挡结构具有高吸光(Optical Density, OD)值,减少量子点显示面板边缘失效的同时,还可以阻挡大部分的蓝光。
在本申请的一些实施例中,所述散射粒子包括无机纳米粒子和树脂微球中的至少一者,所述无机纳米粒子为二氧化钛、二氧化硅、碳酸钡、氧化钡、氧化锂、氧化锆以及氧化锌中的至少一者,所述树脂微球为聚苯乙烯、聚甲基丙烯酸甲酯以及聚酰亚胺中的至少一者。
在本申请的一些实施例中,所述水氧阻隔胶为光学胶、压敏胶或封边胶。
在本申请的一些实施例中,按照质量百分比计算,所述阻挡结构的材质包括:25%~50%的散射粒子和50%~75%的水氧阻隔胶。
在本申请的一些实施例中,在一垂直截面中,所述量子点层的截面形状为上宽下窄的等腰梯形,可以极大程度地增大量子点层的光转换面积,并有利于窄边框的设计。
在本申请的一些实施例中,在所述垂直截面中,所述阻挡结构包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层和所述第一阻隔层的两侧,有利于整体结构的紧凑与美观。
在本申请的一些实施例中,所述第一阻隔层靠近所述量子点层的一面上设有多个凸起结构,以提高光线的出射率。
在本申请的一些实施例中,所述量子点膜层还包括:一散射层,所述散射层层叠设置于所述量子点层和所述第二阻隔层之间;或者,所述散射层层叠设置于所述第二阻隔层背离所述量子点层的一面上。所述散射层用于提高光线射出的面均匀性,有效避免显示面板四周的亮度与内部的亮度差异明显。
在本申请的一些实施例中,所述量子点层掺杂有散射粒子,以确保光线射出的面均匀性,并有利于减薄所述量子点层的厚度。
第二方面,本申请提供了一种背光模组,包括:
一蓝色背光源;
一如第一方面中所述的量子点膜层,层叠设置于所述蓝色背光源的出光面上;以及
一遮光结构,设置于所述蓝色背光源的四周。
在本申请的一些实施例中,所述第一阻隔层靠近所述量子点层的一面上设有多个凸起结构。
在本申请的一些实施例中,所述量子点膜层还包括:一散射层,所述散射层层叠设置于所述量子点层和所述第二阻隔层之间;或者,所述散射层层叠设置于所述第二阻隔层背离所述量子点层的一面上。
在本申请的一些实施例中,所述量子点层掺杂有散射粒子。
在本申请的一些实施例中,在一垂直截面中,所述遮光结构包括第一遮光部和第二遮光部,所述第一遮光部和所述第二遮光部对称设置于所述蓝色背光源的两侧;所述阻挡结构包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层和所述第一阻隔层的两侧。
在本申请的一些实施例中,所述第一阻挡部的外侧边缘与所述第一遮光部的外侧边缘相齐平,且所述第二阻挡部的外侧边缘与所述第二遮光部的外侧边缘相齐平。
第三方面,本申请提供了一种背光模组的制备方法,用于制备如第二方面中所述的背光模组,包括如下步骤:
提供一蓝色背光源,在所述蓝色背光源的四周制备形成一遮光结构,获得遮光结构-蓝色背光源复合结构体;
制备一量子点膜层,所述量子点膜层包括:一第一阻隔层;一量子点层,层叠设置于所述第一阻隔层的一面上;一第二阻隔层,层叠设置于所述量子点层背离所述第一阻隔层的一面上;以及一阻挡结构,设置于所述量子点层和所述第一阻隔层的四周;以及
将所述量子点膜层贴附于所述遮光结构-蓝色背光源复合结构体的出光面上,使得所述第一阻隔层层叠设置于所述蓝色背光源的出光面上,获得所述背光模组。
有益效果
本申请提供了一种量子点膜层、背光模组及其制备方法,所述量子点膜层应用于所述背光模组中,以改善现有量子点显示面板中量子点易失效、显示面板边缘出现“蓝边”、不利于窄边框设计等技术问题。对于所述量子点膜层,在一垂直方向上,由上至下看,所述第二阻隔层、所述量子点膜层和所述第一阻隔层组合形成上宽下窄的结构,以利于窄边框的设计;所述量子点层和所述第一阻隔层的四周设有阻挡结构,以改善量子点显示面板边缘泛蓝的问题,且所述阻挡结构具有阻隔水氧的功能,从而极大地降低了量子点失效的风险。所述量子点膜层还可以增设一散射层,以提高光线射出的面均匀性,有效避免量子点显示面板四周的亮度与内部的亮度差异明显。
附图说明
图1为本申请实施例中第一种背光模组的结构示意图。
图2为本申请实施例中第二种背光模组的结构示意图。
图3为本申请实施例中第三种背光模组的结构示意图。
图4为本申请实施例中第四种背光模组的结构示意图。
图5为本申请实施例中第五种背光模组的结构示意图。
本发明的实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下。再者,本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
本申请实施例提供了一种量子点膜层、背光模组及其制备方法,参阅图1,图1提供了第一种背光模组的结构组成,所述背光模组主要包括:一蓝色背光源1、一量子点膜层2和一遮光结构3。
所述蓝色背光源1可以是现有技术中常见的蓝色背光源产品,能提供波长在400纳米~480纳米的蓝色自然光。所述蓝色背光源1例如可以是发蓝光的发光二极管(Light-Emitting Diode, LED)、微型发光二极管(Mini-Light Emitting Diode, Mini-LED)等。
所述量子点膜层2层叠设置于所述蓝色背光源1的出光面,使得所述量子点膜层2与所述蓝色背光源1的出光面之间无间隙。所述量子点膜层2主要包括:依次层叠设置的一第一阻隔层21、一量子点层22和一第二阻隔层23,以及设置于所述第一阻隔层21和所述量子点层22四周的一阻挡结构24。
所述第一阻隔层21层叠设置于所述蓝色背光源1上,所述第二阻隔层23层叠设置于所述量子点膜层22背离所述第一阻隔层21的一面上。所述第一阻隔层21和所述第二阻隔层23用于阻隔水和氧气,优选两者的材质均为透明的绝缘材料,例如可以是氧化硅(SiOx)、氮化硅(SiNx)等。所述第一阻隔层21和所述第二阻隔层23可以是单层结构,例如:单层二氧化硅结构。所述第一阻隔层21和所述第二阻隔层23也可以是多层结构,例如:由相互交替设置的二氧化硅层和氮化硅(Si3N4)层而形成的多层复合结构。
所述量子点层22层叠设置于所述第一阻隔层21背离所述蓝色背光源1的一面上。所述量子点层22可以包括相邻设置的红色量子点膜层、绿色量子点膜层和散射膜层。所述红色量子点膜层的材质为红色量子点材料,所述绿色量子点膜层的材质为绿色量子点材料。所述散射膜层包括散射粒子,所述散射粒子包括无机纳米粒子和树脂微球中的至少一者,所述无机纳米粒子为二氧化钛、二氧化硅、碳酸钡、氧化钡、氧化锂、氧化锆、氧化锌等,所述树脂微球为聚苯乙烯、聚甲基丙烯酸甲酯(PMMA)、聚酰亚胺等,例如:所述散射粒子包括无机纳米粒子和树脂微球,所述无机纳米粒子为二氧化钛,所述树脂微球为聚苯乙烯微球。
所述阻挡结构24设置于所述量子点层22和所述第一阻隔层21四周,且优选所述阻挡结构24与所述量子点层22之间以及所述阻挡结构24与第一阻隔层21之间无间隙,以避免出现漏光的问题。所述阻挡结构24的材质可以是掺杂有散射粒子的水氧阻隔胶,所述水氧阻隔胶例如可以是光学胶、压敏胶、封边胶等,所述散射粒子可以是无机纳米粒子和树脂微球中的至少一者。例如,所述阻挡结构24的材质为掺杂有二氧化钛的白色封边胶。又例如,所述阻挡结构24的材质为掺杂有黑色树脂微球的黑色封边胶,且OD值大于2。
优选地,按照质量百分比计算,所述阻挡结构24的材质包括:25%~50%的散射粒子和50%~75%的水氧阻隔胶。
继续参阅图1,在所述量子点膜层2的一垂直截面中,所述量子点层22的截面形状优选为等腰梯形。所述第一阻隔层21和所述第二阻隔层23的截面形状均优选为矩形,且所述第一阻隔层21在水平方向上的长度与所述等腰梯形的上底长度相等,所述第二阻隔层23在水平方向上的长度与所述等腰梯形的下底长度相等。
所述阻挡结构24包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部的截面形状优选为直角梯形,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层22和所述第一阻隔层21的两侧。所述第一阻挡部的下底和第二阻挡部的下底优选分别与所述第二阻隔层23两端的垂直方向边缘相齐平,使得整体结构紧凑而美观,有利于窄边框的设计。所述第一阻挡部的斜面和所述第二阻挡部的斜面分别与所述量子点层22的两侧斜面相抵靠,且所述第一阻挡部的上底面和所述第二阻挡部的上底面分别与所述第一阻隔层21的两侧面相抵靠。所述第一阻挡部和所述第二阻挡部的材质均优选为掺杂有二氧化钛的白色封边胶。
需要说明的是,在所述垂直截面中,所述第一阻隔层21、所述量子点层22、所述第二阻隔层23和所述阻挡结构24的截面形状并不作具体限定,既可以是规则形状,也可以是不规则形状,但需满足在一垂直方向上,由上至下看,所述第二阻隔层23、所述量子点层22和所述第一阻隔层21组合形成上宽下窄的结构以利于窄边框的设计,并且需满足所述阻挡结构24与所述量子点层22之间,以及所述阻挡结构24与所述第一阻隔层21之间无间隙,以避免出现漏光的问题。
继续参阅图1,所述遮光结构3设置于所述蓝色背光源1的四周,优选所述遮光结构3与所述蓝色背光源1之间无间隙。在所述垂直截面中,所述遮光结构3包括第一遮光部和第二遮光部,所述第一遮光部和所述第二遮光部对称设置于所述蓝色背光源1的两侧,优选所述第一遮光部的外侧边缘与所述第一阻挡部的外侧边缘相齐平,对应地,所述第二遮光部的外侧边缘与所述第二阻挡部的外侧边缘相齐平。所述遮光结构3的材质是不透光的材料,例如可以是金属、黑色树脂等。
对于图1中所示的背光模组,制备方法包括如下步骤:
S1、提供一蓝色背光源1,在所述蓝色背光源1的四周制备形成一遮光结构3,获得遮光结构-蓝色背光源复合结构体。
例如,所述遮光结构3可以通过粘合剂粘接于所述蓝色背光源1的四周。
S2、制备一量子点膜层2。
具体的,所述步骤S2包括如下步骤:
S2.1、提供一第一阻隔层21,在所述第一阻隔层21的一面上制备形成一量子点层22。
例如,可以采用喷墨打印(Ink-Jet Printing, IJP)工艺、光刻工艺(Photolithography)等方式制备形成所述量子点层22,所述喷墨打印工艺和所述光刻工艺均为本领域常规技术手段,在此不再赘述。
S2.2、在所述量子点层22背离所述第一阻隔层21的一面上制备形成一第二阻隔层23。
例如,所述第二阻隔层23的材质为氧化硅(SiOx)和氮化硅(SiNx)中的至少一者,则可以采用化学气相沉积(Chemical Vapor Deposition, CVD)工艺制备形成所述第二阻隔层23。
S2.3、在所述第一阻隔层21和所述量子点层22的四周制备形成一阻挡结构24。
例如,所述阻挡结构24胶合于所述第一阻隔层21和所述量子点层22的四周。
S3、将所述量子点膜层2贴附于所述遮光结构-蓝色背光源复合结构体的出光面上,使得所述第一阻隔层21层叠设置于所述蓝色背光源1的出光面上,获得所述背光模组。
对上述步骤需要说明的是,所述步骤S1和所述步骤S2可以交换执行顺序,也可以同时执行。在所述步骤S2中,也可以先在所述第一阻隔层21的四周制备形成所述阻挡结构24,然后在所述第一阻隔层21的一面上依次制备形成所述量子点层22和所述第二阻隔层23。
在一些实施例中,所述量子点膜层2还包括一散射层25,所述散射层25用于提高光线射出的面均匀性,有效避免量子点显示面板四周的亮度与内部的亮度差异明显。所述散射层25可以层叠设置于所述量子点层22和所述第二阻隔层23之间,所述散射层25还可以层叠设置于所述第二阻隔层23背离所述量子点层22的一面上。所述散射层25的材质为二氧化钛、二氧化硅、碳酸钡、氧化钡、氧化锂、氧化锆、氧化锌、聚苯乙烯、聚甲基丙烯酸甲酯(PMMA)等。
在本申请的一个实施例中,参阅图2,图2提供了第二种背光模组的结构组成,第二种背光模组与第一种背光模组的区别技术特征仅在于:所述量子点膜层2增设有一散射层25。
所述散射层25的材质优选为二氧化钛,所述散射层25层叠设置于所述第二阻隔层23背离所述量子点层22的一面上。在一垂直截面中,所述散射层25的截面形状优选为与所述第二阻隔层23的截面形状相同,即均为矩形,且所述散射层25与所述第二阻隔层23在水平方向上的长度相等。
对于图2中所示的背光模组,在前述制备方法(用于制备图1中所示的背光模组)的基础上,还包括步骤:在所述第二阻隔层23背离所述量子点层22的一面上制备形成一散射层25。该步骤可在步骤S2.2和步骤S2.3之间执行。例如,可以采用物理气相沉积(Physical Vapor Deposition, PVD)工艺制备形成所述散射层25。
在本申请的另一个实施例中,参阅图3,图3提供了第三种背光模组的结构组成,第三种背光模组与第一种背光模组的区别仅在于:所述量子点膜层2的结构组成不相同。
所述量子点膜层2主要包括:依次层叠设置的一第一阻隔层21、一量子点层22、一散射层25和一第二阻隔层23,以及设置于所述第一阻隔层21、所述量子点层22和所述散射层25四周的一阻挡结构24。所述阻挡结构24与所述第一阻隔层21之间、所述阻挡结构24与所述量子点层22之间以及所述阻挡结构24与所述散射层25之间均无间隙。所述散射层25的材质优选为二氧化钛。
在一垂直截面中,所述第一阻隔层21和所述第二阻隔层22的截面形状均为矩形,且所述第一阻隔层21在水平方向上的长度小于所述第二阻隔层22在水平方向上的长度。所述散射层25的截面形状优选为与所述量子点层22的截面形状相同,即均为等腰梯形,且所述第一阻隔层21在水平方向上的长度与所述量子点层22的截面的上底长度相等,且所述量子点层22的截面的下底长度与所述散射层25的截面的上底长度相等,且所述散射层25的截面的下底长度略小于所述第二阻隔层23在水平方向上的长度。
继续参阅图3,在所述垂直截面中所述阻挡结构24包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层22和所述第一阻隔层21的两侧,所述第一阻挡部和所述第二阻挡部的截面形状为五边形。所述第一阻挡部和所述第二阻挡部的材质均优选为掺杂有黑色树脂微球的黑色封边胶(OD值大于2)。
对于图3中所示的背光模组,在前述制备方法(用于制备图1中所示的背光模组)的基础上,还包括步骤:在所述量子点层22背离所述第一阻隔层21的一面上制备形成一散射层25。该步骤可在步骤S2.1和步骤S2.2之间执行。例如,可以采用物理气相沉积(Physical Vapor Deposition, PVD)工艺制备形成所述散射层25。
作为一替代性方案,所述量子点层22掺杂有散射粒子,即:在所述红色量子点膜层和所述绿色量子点膜层中掺杂有散射粒子,以确保光线射出的面均匀性,并有利于减薄所述量子点层22的厚度,即:在所述量子点膜层2中,无需额外设置一散射层25。所述散射粒子优选为二氧化钛纳米粒子。
在本申请的一个实施例中,参阅图4,图4提供了第四种背光模组的结构组成,第四种背光模组与第一种背光模组的区别技术特征在于:所述量子点膜层2的结构组成不相同。
所述量子点膜层主要包括:依次层叠设置的一第一阻隔层21、一量子点层22和一第二阻隔层23,以及设置于所述第一阻隔层21和所述量子点层22四周的一阻挡结构24。所述阻挡结构24与所述第一阻隔层21之间、所述阻挡结构24与所述量子点层22之间以及所述阻挡结构24与所述散射层25之间均无间隙。所述量子点层22掺杂有二氧化钛纳米粒子。
在一垂直截面中,所述第一阻隔层21和所述第二阻隔层23的截面形状均为矩形,且所述第一阻隔层21在水平方向上的长度小于所述第二阻隔层23在水平方向上的长度。所述量子点层22的截面形状优选为等腰梯形,且所述第一阻隔层21在水平方向上的长度小于所述量子点层22的截面的上底长度,且所述量子点层22的截面的下底长度小于所述第二阻隔层23在水平方向上的长度。
在所述垂直截面中所述阻挡结构24包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层22和所述第一阻隔层21的两侧。所述第一阻挡部和所述第二阻挡部的截面形状为不规则图形,所述第一阻挡部和所述第二阻挡部的材质均优选为掺杂有黑色树脂微球的黑色封边胶(OD值大于2)。所述第一阻挡部和所述第二阻挡部的外侧边缘分别与所述第二阻隔层23两端的垂直方向边缘不齐平,但所述第一阻挡部的外侧边缘与所述第一遮光部的外侧边缘相齐平,且所述第二阻挡部的外侧边缘与所述第二遮光部的外侧边缘相齐平。
对于图4中所示的背光模组,与前述制备方法(用于制备图1中所示的背光模组)的基本流程相同,但在制备所述量子点层22时,需在红色量子点材料和绿色量子点材料中掺杂散射粒子。
在一些实施例中,所述第一阻隔层21靠近所述量子点层22的一面上设有多个凸起结构26,以提高光线的出射率。
在本申请的一个实施例中,参阅图5,图5提供了第五种背光模组的结构组成,第五种背光模组与第一种背光模组的区别技术特征仅在于:所述第一阻隔层21靠近所述量子点层22的一面上设有多个凸起结构26;以及,所述量子点膜层2增设有一散射层25。
所述凸起结构的材质可以为光刻胶。在一垂直截面上,各个所述凸起结构26的截面形状为半圆形,对各个所述凸起结构26的截面形状不作具体限定,可依据实际需要自行选择。相邻所述凸起结构26之间可以具有一间隙,或者各个所述凸起结构26依次相连。
所述散射层25层叠设置于所述第二阻隔层23背离所述量子点层22的一面上,所述散射层25的材质优选为二氧化钛。在所述垂直截面中,优选所述散射层25的截面形状为矩形,且所述散射层25与所述第二阻隔层23在水平方向上的长度相等。
对于图5中所示的背光模组,在前述制备方法(用于制备图1中所示的背光模组)的基础上,在还包括步骤:在所述第一阻隔层21的一面上制备形成多个凸起结构26。该步骤需在步骤S2.1之前执行,即:先制备形成所述多个凸起结构26,然后在所述多个凸起结构26之上制备形成一量子点层22。例如,可以采用喷墨打印工艺、光刻工艺等方式制备形成所述多个凸起结构26。
本申请实施例的背光模组可应用于量子点显示面板中,如:QD-LCD等。所述量子点显示面板可应用于多种显示装置中,例如可以是手机、电脑、数码相机、数码摄像机、游戏机、音频再生装置、信息终端机、智能可穿戴设备、智能称重电子秤、车载显示器、电视机等任何具有显示功能的产品或部件,其中,所述智能可穿戴设备可为智能手环、智能手表、智能眼镜等。
本申请已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (20)

  1. 一种量子点膜层,其中,包括:
    一第一阻隔层;
    一量子点层,层叠设置于所述第一阻隔层的一面上;
    一第二阻隔层,层叠设置于所述量子点层背离所述第一阻隔层的一面上;以及
    一阻挡结构,设置于所述量子点层和所述第一阻隔层的四周。
  2. 根据权利要求1所述的量子点膜层,其中,所述阻挡结构与所述量子点层之间,以及所述阻挡结构与所述第一阻隔层之间无间隙。
  3. 根据权利要求1所述的量子点膜层,其中,所述第一阻隔层和所述第二阻隔层的材质均为氧化硅和氮化硅中的至少一者。
  4. 根据权利要求1所述的量子点膜层,其中,所述阻挡结构的材质为掺杂有散射粒子的水氧阻隔胶。
  5. 根据权利要求4所述的量子点膜层,其中,所述散射粒子包括无机纳米粒子和树脂微球中的至少一者。
  6. 根据权利要求4所述的量子点膜层,其中,所述水氧阻隔胶为光学胶、压敏胶或封边胶。
  7. 根据权利要求4所述的量子点膜层,其中,按照质量百分比计算,所述阻挡结构的材质包括:25%~50%的散射粒子和50%~75%的水氧阻隔胶。
  8. 根据权利要求1所述的量子点膜层,其中,在一垂直截面中,所述量子点层的截面形状为上宽下窄的等腰梯形。
  9. 根据权利要求8所述的量子点膜层,其中,在所述垂直截面中,所述阻挡结构包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层和所述第一阻隔层的两侧。
  10. 根据权利要求1所述的量子点膜层,其中,所述第一阻隔层靠近所述量子点层的一面上设有多个凸起结构。
  11. 根据权利要求10所述的量子点膜层,其中,所述凸起结构的材质为光刻胶。
  12. 根据权利要求1所述的量子点膜层,其中,所述量子点膜层还包括:一散射层,所述散射层层叠设置于所述量子点层和所述第二阻隔层之间;或者,所述散射层层叠设置于所述第二阻隔层背离所述量子点层的一面上。
  13. 根据权利要求1所述的量子点膜层,其中,所述量子点层掺杂有散射粒子。
  14. 一种背光模组,其中,包括:
    一蓝色背光源;
    一量子点膜层,层叠设置于所述蓝色背光源的出光面上;以及
    一遮光结构,设置于所述蓝色背光源的四周;
    其中,所述量子点膜层包括:一第一阻隔层;一量子点层,层叠设置于所述第一阻隔层的一面上;一第二阻隔层,层叠设置于所述量子点层背离所述第一阻隔层的一面上;以及一阻挡结构,设置于所述量子点层和所述第一阻隔层的四周。
  15. 根据权利要求14所述的背光模组,其中,所述第一阻隔层靠近所述量子点层的一面上设有多个凸起结构。
  16. 根据权利要求14所述的背光模组,其中,所述背光模组还包括:一散射层,所述散射层层叠设置于所述量子点层和所述第二阻隔层之间;或者,所述散射层层叠设置于所述第二阻隔层背离所述量子点层的一面上。
  17. 根据权利要求14所述的背光模组,其中,所述量子点层掺杂有散射粒子。
  18. 根据权利要求14所述的背光模组,其中,在一垂直截面中,所述遮光结构包括第一遮光部和第二遮光部,所述第一遮光部和所述第二遮光部对称设置于所述蓝色背光源的两侧;所述阻挡结构包括第一阻挡部和第二阻挡部,所述第一阻挡部和所述第二阻挡部对称设置于所述量子点层和所述第一阻隔层的两侧。
  19. 根据权利要求18所述的背光模组,其中,所述第一阻挡部的外侧边缘与所述第一遮光部的外侧边缘相齐平,且所述第二阻挡部的外侧边缘与所述第二遮光部的外侧边缘相齐平。
  20. 一种背光模组的制备方法,其中,包括如下步骤:
    提供一蓝色背光源,在所述蓝色背光源的四周制备形成一遮光结构,获得遮光结构-蓝色背光源复合结构体;
    制备一量子点膜层,所述量子点膜层包括:一第一阻隔层;一量子点层,层叠设置于所述第一阻隔层的一面上;一第二阻隔层,层叠设置于所述量子点层背离所述第一阻隔层的一面上;以及一阻挡结构,设置于所述量子点层和所述第一阻隔层的四周;以及
    将所述量子点膜层贴附于所述遮光结构-蓝色背光源复合结构体的出光面上,使得所述第一阻隔层层叠设置于所述蓝色背光源的出光面上,获得所述背光模组。
PCT/CN2020/138487 2020-12-02 2020-12-23 一种量子点膜层、背光模组及其制备方法 WO2022116312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011405675.6A CN112542537B (zh) 2020-12-02 2020-12-02 一种量子点膜层、背光模组及其制备方法
CN202011405675.6 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116312A1 true WO2022116312A1 (zh) 2022-06-09

Family

ID=75015925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138487 WO2022116312A1 (zh) 2020-12-02 2020-12-23 一种量子点膜层、背光模组及其制备方法

Country Status (2)

Country Link
CN (1) CN112542537B (zh)
WO (1) WO2022116312A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759590B (zh) * 2021-10-13 2023-04-21 厦门天马微电子有限公司 一种背光源及显示装置
CN115036406A (zh) * 2022-06-24 2022-09-09 苏州华星光电技术有限公司 显示面板及其制作方法、移动终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111518A (ja) * 2013-12-06 2015-06-18 株式会社ジャパンディスプレイ バックライト及びそれを用いた液晶表示装置
CN105551389A (zh) * 2016-03-07 2016-05-04 京东方科技集团股份有限公司 显示面板及显示装置
CN107065299A (zh) * 2016-12-31 2017-08-18 惠科股份有限公司 背光模块的制造方法
CN107708992A (zh) * 2015-06-18 2018-02-16 富士胶片株式会社 层叠膜
CN107760232A (zh) * 2017-09-27 2018-03-06 苏州星烁纳米科技有限公司 树脂组合物、光转换元件及光源组件
CN107848256A (zh) * 2015-07-31 2018-03-27 富士胶片株式会社 层叠膜
CN108279528A (zh) * 2018-01-17 2018-07-13 惠州市华星光电技术有限公司 一种背光源
CN109407396A (zh) * 2018-10-23 2019-03-01 惠州市华星光电技术有限公司 一种液晶显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712925B2 (ja) * 2016-07-28 2020-06-24 富士フイルム株式会社 バックライト用フィルム
JP6817451B2 (ja) * 2016-09-13 2021-01-20 迎輝科技股▲分▼有限公司Efun Technology Co.,Ltd. 量子構造発光モジュール
CN106773290B (zh) * 2016-12-15 2020-02-14 武汉华星光电技术有限公司 一种量子点薄膜及其制作方法
CN107024800B (zh) * 2017-03-03 2019-09-06 厦门天马微电子有限公司 量子点膜、背光模组、显示装置及量子点膜的制作方法
CN106873242A (zh) * 2017-03-30 2017-06-20 广东普加福光电科技有限公司 一种量子点荧光膜的封边结构
CN207067597U (zh) * 2017-05-05 2018-03-02 信利半导体有限公司 一种量子点膜及背光源
CN107153297B (zh) * 2017-07-21 2019-04-23 深圳市华星光电技术有限公司 显示面板及显示设备
CN108020958B (zh) * 2017-12-04 2020-09-01 福州大学 一种用于直下式背光源的封装结构及其制作方法
CN109256455B (zh) * 2018-09-19 2020-06-12 福州大学 一种光效提取和无像素干扰的全彩化Micro-LED显示结构及其制造方法
CN111261665A (zh) * 2018-12-03 2020-06-09 昆山工研院新型平板显示技术中心有限公司 量子点发光器件及其制备方法、显示装置
CN109901329B (zh) * 2019-04-12 2021-09-17 纳晶科技股份有限公司 一种背光模组、量子点膜及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111518A (ja) * 2013-12-06 2015-06-18 株式会社ジャパンディスプレイ バックライト及びそれを用いた液晶表示装置
CN107708992A (zh) * 2015-06-18 2018-02-16 富士胶片株式会社 层叠膜
CN107848256A (zh) * 2015-07-31 2018-03-27 富士胶片株式会社 层叠膜
CN105551389A (zh) * 2016-03-07 2016-05-04 京东方科技集团股份有限公司 显示面板及显示装置
CN107065299A (zh) * 2016-12-31 2017-08-18 惠科股份有限公司 背光模块的制造方法
CN107760232A (zh) * 2017-09-27 2018-03-06 苏州星烁纳米科技有限公司 树脂组合物、光转换元件及光源组件
CN108279528A (zh) * 2018-01-17 2018-07-13 惠州市华星光电技术有限公司 一种背光源
CN109407396A (zh) * 2018-10-23 2019-03-01 惠州市华星光电技术有限公司 一种液晶显示装置

Also Published As

Publication number Publication date
CN112542537B (zh) 2022-10-04
CN112542537A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
TWI660222B (zh) 包括量子點膜和色彩純度增強薄膜的液晶顯示器
CN104865749B (zh) 光学膜片组、背光模组以及液晶显示器
CN108388050B (zh) 一种量子点膜导光组件的制备方法及其对应的背光模组
WO2017075879A1 (zh) 量子点彩膜基板及其制作方法与液晶显示装置
WO2020258864A1 (zh) 色彩转化组件及其制作方法、显示面板
WO2017031951A1 (zh) 显示基板
WO2021238444A1 (zh) 显示面板及其制作方法、显示装置
TWI520398B (zh) 有機發光裝置及包含其之影像顯示系統
TW202009580A (zh) 畫素陣列封裝結構及顯示面板
WO2022116312A1 (zh) 一种量子点膜层、背光模组及其制备方法
WO2020042650A1 (zh) 显示面板
WO2022032701A1 (zh) 显示盖板及其制备方法、显示装置
TWI698678B (zh) 顯示裝置
KR20200098749A (ko) 표시 장치
WO2022134135A1 (zh) Oled显示面板及显示装置
CN213124489U (zh) 显示面板及显示装置
WO2020168669A1 (zh) 量子点液晶显示器
US20220246697A1 (en) Display panel and display device
WO2020164315A1 (zh) 前置光源和显示装置
WO2019227669A1 (zh) 显示面板及显示装置
WO2021056729A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
WO2020211153A1 (zh) 双面白光有机发光二极管显示装置及其制造方法
WO2020133789A1 (zh) 一种显示面板及其终端器件
US10914980B2 (en) Quantum-dot color filter substrate and display panel
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964157

Country of ref document: EP

Kind code of ref document: A1