WO2022112095A1 - Process for the hydrodesulfurization of a gasoline cut using a catalyst containing a graphitic material, characterised by 13c mas nmr - Google Patents

Process for the hydrodesulfurization of a gasoline cut using a catalyst containing a graphitic material, characterised by 13c mas nmr Download PDF

Info

Publication number
WO2022112095A1
WO2022112095A1 PCT/EP2021/082172 EP2021082172W WO2022112095A1 WO 2022112095 A1 WO2022112095 A1 WO 2022112095A1 EP 2021082172 W EP2021082172 W EP 2021082172W WO 2022112095 A1 WO2022112095 A1 WO 2022112095A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
sulfur
acid
metal
Prior art date
Application number
PCT/EP2021/082172
Other languages
French (fr)
Inventor
Elodie Devers
Etienne Girard
Philibert Leflaive
Leonor DUARTE MENDES CATITA
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2022112095A1 publication Critical patent/WO2022112095A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding

Definitions

  • the present invention relates to a process for the hydrodesulphurization of a gasoline cut using a catalyst containing a graphitic material characterized by 13 C NMR spectroscopy of rotation at the magic angle MAS (Magic Angle Spinning according to the English terminology). -Saxon).
  • Sulfur is an element naturally present in crude oil and is therefore present in gasoline and diesel if it is not removed during refining.
  • sulfur in gasoline impairs the efficiency of emission reduction systems (catalytic converters) and contributes to air pollution.
  • emission reduction systems catalytic converters
  • all countries are therefore gradually adopting strict sulfur specifications, the specifications being, for example, 10 ppm (weight) of sulfur in commercial gasoline in Europe, China, the United States. and in Japan.
  • the problem of reducing sulfur content essentially concentrates on gasolines obtained by cracking, whether catalytic (FCC Fluid Catalytic Cracking according to Anglo-Saxon terminology) or non-catalytic (coking, visbreaking, steam cracking), main precursors of sulfur in gasoline pools.
  • a solution, well known to those skilled in the art, for reducing the sulfur content consists in carrying out a hydrotreatment (or hydrodesulphurization) of the hydrocarbon cuts (and in particular gasolines from catalytic cracking) in the presence of hydrogen and a heterogeneous catalyst.
  • this process has the major drawback of causing a very significant drop in the octane number if the catalyst used is not selective enough. This decrease in the octane number is in particular linked to the hydrogenation of the olefins present in this type of gasoline concomitantly with the hydrodesulphurization.
  • gasoline hydrodesulphurization must therefore make it possible to respond to a double antagonistic constraint: ensuring deep hydrodesulphurization of gasolines and limiting the hydrogenation of the unsaturated compounds present.
  • the catalysts used for this type of application are sulfide type catalysts containing a group VI B element (Cr, Mo, W) and a group VIII element (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt).
  • group VI B element Cr, Mo, W
  • group VIII element Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt
  • a catalyst containing a group VIII metal, molybdenum (Mo), phosphorus and sulfur supported on a porous inorganic oxide support comprising a carbonaceous material makes it possible to observe an increase selectivity in a gasoline hydrodesulfurization process.
  • the carbonaceous material must contain oxygen and is characterized by a carbon content of between 5 and 20 wt% relative to the weight of the support, an atomic ratio of the amount of hydrogen supported to the amount of carbon supported of 0.4 to 1.0, and an atomic ratio of the amount of oxygen supported to the amount of carbon supported from 0.1 to 0.6.
  • the present invention therefore relates to a process for the hydrodesulphurization of a gasoline cut, the object of which is to maintain the hydrodesulphurizing activity and to significantly improve the selectivity by implementing a catalyst containing a graphitic material characterized by 13 C MAS NMR spectroscopy.
  • the invention relates to a process for the hydrodesulphurization of a gasoline cut containing sulfur compounds and olefins, in which said gasoline cut is brought into contact with hydrogen and a catalyst, said process being carried out at a temperature of between 200 and 400° C., a total pressure of between 1 and 3 MPa, an hourly volumetric speed, defined as being the volume flow rate of charge relative to the volume of catalyst, of between 1 and 10 h 1 , and a volume ratio of hydrogen/gasoline charge comprised Between 100 and 1200 NL/L, said catalyst comprises an oxide support, sulfur and an active phase comprising at least one metal from group VIB and at least one metal from group VIII, said catalyst further comprising a graphitic material containing carbon and hydrogen, said catalyst being characterized in 13 C MAS NMR spectroscopy by an SAromatic/SAiiphatic ratio of the S Aro atic peak surface in a range of chemical shifts from 100 to 160 ppm at the S Aiiphatic peak surface in a range of chemical shifts from
  • Maintaining a fairly low pH thus allows the presence of heteropolyanions to the detriment of monomolybdate and polymolybdate species, said heteropolyanions favoring the sulphidation of the metal species and the formation of more selective sulphide phases.
  • the use of the catalyst containing such a graphitic material also makes it possible to avoid or attenuate thermal runaways (“run away” according to English terminology) during the hydrodesulphurization process which is characterized by very exothermic reactions.
  • the carbon content is between 5 and 20% by weight expressed as carbon element relative to the weight of the catalyst.
  • the sulfur content is between 1 and 8% by weight expressed as sulfur element relative to the weight of the catalyst.
  • the S A r o m atic /S Aiiphatic ratio is between 5 and 15.
  • the catalyst has a group VI B metal content of between 5 and 40% by weight, expressed as group VIB metal oxide, relative to the total weight of the catalyst and a group VIII metal content of between 1 and 10% by weight, expressed as Group VIII metal oxide, relative to the total weight of the catalyst.
  • the molar ratio of group VIII metal to group VIB metal in the catalyst is between 0.1 and 0.8.
  • the specific surface of the catalyst is between 20 and 200 m 2 /g.
  • the catalyst also comprises phosphorus at a content of between 0.1 and 20% by weight, expressed as P2O5 relative to the total weight of the catalyst.
  • the catalyst also comprises an organic compound containing oxygen and/or nitrogen and/or sulfur.
  • the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea, amide, or a compound including a furan ring or even a sugar, and more particularly the organic compound is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, acid ethylenediaminetetraacetic acid (EDTA), maleic acid, malonic acid, citric acid, acetic acid, oxalic acid, gluconic acid, glucose, fructose, sucrose, sorbitol, xylitol, y-ketovaleric acid, a C1-C4 dialkyl succinate and more particularly dimethyl succinate, dimethylform
  • the active phase of the catalyst consists of cobalt and molybdenum.
  • the catalyst is prepared according to a preparation process comprising the following steps: a) at least one hydrocarbon and one sulfur compound are brought into contact with said oxide support making it possible to form said graphitic material comprising carbon and hydrogen on the oxide support, b) then a compound comprising a metal from group VI B and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing said graphitic material, so as to obtain a catalytic precursor, c) said catalytic precursor is dried at a temperature below 200°C without subsequent calcination , so as to obtain a dried catalyst, d) the dried catalyst is optionally activated in the presence of a sulfurizing agent.
  • the catalyst is an at least partially spent catalyst resulting from a hydrotreatment process.
  • the gasoline is a catalytic cracked gasoline.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • specific surface area is meant the BET specific surface area (SBET in m 2 /g) determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical “The Journal of American Society', 1938, 60, 309.
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the wetting angle was taken as equal to 140° by following the recommendations of the work “Engineering techniques, treatise on analysis and characterization”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
  • group VIII and group VI B metals are measured by X-ray fluorescence.
  • group VI B metal, group VIII metal and phosphorus in the catalyst are expressed in oxides after correction of the loss on ignition of the catalyst sample at 550°C for two hours in a muffle furnace. Loss on ignition is due to moisture loss. It is determined according to ASTM D7348.
  • the invention relates to a process for the hydrodesulphurization of a gasoline cut containing sulfur compounds and olefins, in which said gasoline cut is brought into contact with hydrogen and a catalyst, said process being carried out at a temperature of between 200 and 400° C., a total pressure of between 1 and 3 MPa, an hourly volumetric speed, defined as being the volume flow rate of charge relative to the volume of catalyst, of between 1 and 10 h 1 , and a volume ratio of hydrogen/gasoline charge comprised between 100 and 1200 NL/L, said catalyst comprises an oxide support, sulfur and an active phase comprising at least one metal from group VIB and at least one metal from group VIII, said catalyst further comprising a graphitic material containing carbon and hydrogen, said catalyst being characterized in 13 C MAS NMR spectroscopy by a S A aromatic/S A iiphatic ratio of the S Aromatic peak surface in a range of chemical shifts d e 100 to 160 ppm at the surface of emphatic peaks in a range of chemical
  • the hydrodesulfurization process includes bringing the gasoline cut containing sulfur compounds and olefins into contact with the catalyst and hydrogen under the following conditions:
  • WH Hourly Volume Rate
  • the catalytic hydrodesulphurization process can be carried out in one or more reactors in series of the fixed bed type or of the bubbling bed type. If the process is implemented by means of at least two reactors in series, it is possible to provide a device for removing H2S from the effluent from the first hydrodesulphurization reactor before treating said effluent in the second hydrodesulfurization reactor.
  • the operating conditions in the two reactors may or may not be identical.
  • the process according to the invention makes it possible to treat any type of gasoline cut containing sulfur compounds and olefins, such as for example a cut from a coking unit (coking according to the Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology).
  • This gasoline may optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline resulting from direct distillation (or straight run gasoline according to the Anglo-Saxon terminology) or conversion processes (gasoline from coking or steam cracking).
  • Said charge preferably consists of a gasoline cut from a catalytic cracking unit.
  • the feed is advantageously a gasoline cut containing sulfur compounds and olefins and has a boiling point of between 30 and less than 250°C, preferably between 35°C and 240°C, and preferably between 40°C and 220°C.
  • the sulfur content of gasoline cuts produced by catalytic cracking depends on the sulfur content of the FCC-treated feedstock, the presence or not of a pretreatment of the FCC feedstock, as well as the end point of the chopped off.
  • the sulfur contents of an entire gasoline cut, in particular those coming from the FCC are above 100 ppm by weight and most of the time above 500 ppm by weight.
  • the sulfur contents are often higher than 1000 ppm by weight, they can even in certain cases reach values of the order of 4000 to 5000 ppm by weight.
  • gasolines from catalytic cracking units contain, on average, between 0.5% and 5% by weight of diolefins, between 20% and 50% by weight of olefins, between 10 ppm and 0.5% weight of sulfur of which generally less than 300 ppm of mercaptans.
  • Mercaptans are generally concentrated in the light fractions of gasoline and more specifically in the fraction whose boiling point is below 120°C.
  • sulfur compounds present in gasoline can also comprise heterocyclic sulfur compounds, such as for example thiophenes, alkylthiophenes or benzothiophenes.
  • the gasoline treated by the process according to the invention is a heavy gasoline (or HCN for Heavy Cracked Naphtha according to the Anglo-Saxon terminology) resulting from a distillation step aimed at separating a large cut from the gasoline resulting a cracking process (or FRCN for Full Range Cracked Naphtha according to the Anglo-Saxon terminology) into a light gasoline (LCN for Light Cracked Naphtha according to the Anglo-Saxon terminology) and a heavy gasoline HCN.
  • the cut point of light gasoline and heavy gasoline is determined in order to limit the sulfur content of light gasoline and to allow its use in the gasoline pool preferably without additional post-treatment.
  • the large FRCN cut is subjected to a selective hydrogenation step described below before the distillation step so as to at least partially hydrogenate the diolefins and carry out a reaction of weighting down part of the sulfur compounds. .
  • the large FRCN cut is sent to a selective hydrogenation catalytic reactor containing at least one fixed or moving bed of catalyst for the selective hydrogenation of the diolefins and for the weighting down of the mercaptans.
  • the reaction of selective hydrogenation of diolefins and weighting of mercaptans is preferably carried out on a sulfur catalyst comprising at least one element from group VIII and optionally at least one element from group VIB and an oxide support.
  • the group VIII element is preferably chosen from nickel and cobalt and in particular nickel.
  • the element of group VIB when it is present, is preferably chosen from molybdenum and tungsten and very preferably molybdenum.
  • the oxide support of the selective hydrogenation catalyst is preferably chosen from alumina, nickel aluminate, silica, silicon carbide, or a mixture of these oxides.
  • alumina is used and even more preferably, high purity alumina.
  • the selective hydrogenation catalyst contains nickel at a content by weight of nickel oxide (in NiO form) of between 1 and 12%, and molybdenum at a content by weight of molybdenum oxide (in M0O3 form) of between 6% and 18% and a nickel/molybdenum molar ratio of between 0.3 and 2.5, the metals being deposited on a support consisting of alumina and the sulfurization rate of the metals constituting the catalyst being greater than 50%.
  • the gasoline is brought into contact with the catalyst at a temperature of between 50° C. and 250° C., and preferably between 80° C. and 220° C., and even more more preferably between 90°C and 200°C, with a liquid space velocity (LHSV) of between 0.5 fr 1 and 20 h 1 , the unit of the liquid space velocity being the liter of charge per liter of catalyst and per time (L/L.h).
  • LHSV liquid space velocity
  • the pressure is between 0.4 MPa and 5 MPa, preferably between 0.6 and 4 MPa and even more preferably between 1 and 2 MPa.
  • the optional selective hydrogenation step is typically carried out with a gasoline hVcharge ratio of between 2 and 100 Nm 3 of hydrogen per m 3 of charge, preferably between 3 and 30 Nm 3 of hydrogen per m 3 of charge.
  • the catalyst of the process according to the invention comprises an oxide support, sulfur and an active phase comprising at least one metal from group VI B and at least one metal from group VIII, said catalyst additionally containing a graphitic material. It may additionally comprise phosphorus and/or an organic compound as described below.
  • the oxide support of said catalyst of the process according to the invention is usually a porous solid chosen from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or mixed with the alumina or silica alumina.
  • the oxide support advantageously has a total pore volume of between 0.1 and 1.5 mL/g, preferably between 0.4 and 1.1 mL/g.
  • the oxide support advantageously has a specific surface of between 5 and 400 m 2 .g- 1 , preferably between 10 and 350 m 2 .g- 1 , more preferably between 40 and 350 m 2 .g- 1 .
  • the oxide support consists essentially of at least one transition alumina, i.e. that is to say that it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight, of transition alumina. It preferably consists solely of a transition alumina.
  • the oxide support of said catalyst of the process according to the invention is a gamma phase alumina.
  • the oxide present in the support of said catalyst of the process according to the invention is a silica-alumina containing at least 50% by weight of alumina relative to the total weight of the composite support.
  • the silica content in the support is at most 50% by weight relative to the total weight of the support, usually less than or equal to 45% by weight, preferably less than or equal to 40%.
  • Silicon sources are well known to those skilled in the art. Mention may be made, by way of example, of silicic acid, silica in powder form or in colloidal form (silica sol), tetraethylorthosilicate Si(OEt)4.
  • the support of said catalyst is based on silica, it contains more than 50% by weight of silica relative to the total weight of the support and, in general, it contains only silica.
  • the support consists of alumina, silica or silica-alumina.
  • the support may also contain at least a part of metal(s) VIB and VIII, and/or at least a part of the graphitic material and/or at least a part of the dopant(s) including phosphorus and / or at least a part of the sulfur and/or at least a part of the organic compound(s) containing oxygen and/or nitrogen and/or sulfur which have been introduced in- apart from impregnations (introduced for example during the preparation of the support).
  • the support is advantageously in the form of beads, extrudates, pellets or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
  • the active phase of the catalyst comprises at least one metal from group VIB and at least one metal from group VIII.
  • the group VIB metal present in the active phase of the catalyst is preferably chosen from molybdenum and tungsten.
  • the group VIII metal present in the active phase of the catalyst is preferably chosen from cobalt, nickel and a mixture of these two elements.
  • the active phase of the catalyst is preferably chosen from the group formed by the combination of the elements nickel-molybdenum, cobalt-molybdenum and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum.
  • the group VIII metal content is between 1 and 10% by weight, expressed as group VIII metal oxide relative to the total weight of the catalyst, preferably between 1.5 and 9% by weight, and preferably between 2 and 8% weight.
  • the metal content is expressed as CoO or NiO respectively.
  • the group VIB metal content is between 5 and 40% by weight, expressed as group VIB metal oxide relative to the total weight of the catalyst, preferably between 8 and 35% by weight, very preferably between 10 and 30 % weight.
  • the metal is molybdenum or tungsten, the metal content is expressed as M0O 3 or WO 3 respectively.
  • the molar ratio of group VIII metal to group VI B metal in the catalyst is preferably between 0.1 and 0.8, preferably between 0.15 and 0.6 and even more preferably between 0.15 and 0.45.
  • the catalyst of the process according to the invention comprises a graphitic material.
  • graphitic material is meant a material resulting from the carbonization of one or more hydrocarbon compound(s).
  • the graphitic material can also be coke formed on the catalyst during its use in a hydrotreating process beforehand.
  • graphitic material in the present application means a hydrocarbon-based substance deposited on the surface of the catalyst or the oxide support, strongly cyclized and condensed and having an appearance similar to graphite.
  • the catalyst may contain, in addition to the graphitic material, an organic compound (additive) as described below.
  • the carbon content expressed as carbon element, is generally between 5 and 20% by weight, preferably between 7 and 18% by weight and very preferably between 10 and 15% by weight relative to the total weight of the catalyst.
  • the carbon content of the catalyst according to the invention refers to the carbon content of the catalyst without taking into account the carbon contained in any organic additive contained in said catalyst. To this end, the carbon content is determined according to the ASTM D5373 method after pretreatment of the catalyst under a stream of dry air at 300°C for 2 hours and a flow rate of 2 L/h/g.
  • the carbon content refers to the catalyst at the start of the hydrodesulfurization process. As the process progresses, the carbon content may increase due to coke deposition.
  • the nature of the graphitic material is characterized by 13 C MAS NMR spectroscopy, in particular by a SAromatic/SAiiphatic ratio of the S Aromatic peak surface in a range of chemical shifts from 100 to 160 ppm at the St atic peak surface in a range of chemical shifts from 0 to 60 ppm greater than 4, preferably greater than 4.5, and very preferably between 5 and 15.
  • the 13 C NMR experiments were carried out at room temperature using a BrukerTM Avance 400 MHz (9.4 T) spectrometer equipped with a 4 mm probe rotating at the magic angle (54.74° ).
  • the observation frequency of 13 C at 9.4 T is 100.6 MHz.
  • the samples in powder form were packaged in a zirconium oxide rotor (ZrC>2) 4 mm in diameter allowing the study of approximately 100 mg of solid.
  • the pulse sequence used is the HPDEC sequence (high-power proton decoupling or High-Power Decoupling according to English terminology) which consists of applying a 90° pulse of 4 ps duration to the 13 C nucleus, then to perform a 1 H SPINAL-64 decoupling (Small Phase INcrementation ALternation with 64 steps according to the English terminology) at high power (corresponding to a radio-frequency field of 100 kHz) during the acquisition of the 13 C signal.
  • the spectra were recorded at a rotational speed of 12 kHz with a relaxation time of 60 s.
  • the FID signal Free Induction Decay or Free Induction Decay according to English terminology
  • the number of scans was set at 2252, ie 38 hours of total analysis time.
  • the vesting conditions are said to be quantitative.
  • NMR spectra acquisition and processing including Fourier transform, 0- and 1-order phase correction, and baseline correction with a 5-order polynomial) were performed at the Bruker TopSpin v4.0.3 software help.
  • peak integration provides direct access to a relative content of aliphatic carbons (0 - 60 ppm) and aromatic carbons (100 - 160 ppm).
  • the percentages represent the ratio reduced to 100 of the value of the integration of the carbons in their respective environments according to the value of the integration of all the carbons.
  • the catalyst of the process according to the invention also comprises sulphur.
  • the sulfur content in said catalyst is preferably between 1 and 8% by weight expressed as sulfur element, relative to the total weight of the catalyst, preferably between 1 and 6%, and very preferably between 2 and 5% by weight.
  • the sulfur content of the catalyst refers to the total sulfur content of the catalyst introduced during the formation of the graphitic material (carbonization) or already contained in a spent catalyst, taking into account the sulfur contained in any organic additive contained in said catalyst or introduced by a possible activation (sulfidation).
  • the sulfur content is determined according to the ASTM D5373 method (conventional, i.e. without the said pretreatment of the catalyst carried out for the measurement of the carbon content).
  • the catalyst of the process according to the invention can also comprise phosphorus as a dopant.
  • the dopant is an added element which in itself has no catalytic character but which increases the catalytic activity of the active phase.
  • the phosphorus content in said catalyst is preferably between 0.1 and 20% by weight expressed as P2O5 relative to the total weight of the catalyst, preferably between 0.2 and 15% by weight, and very preferably between 0.3 and 6% by weight.
  • the catalyst may also further comprise at least one organic compound containing oxygen and/or nitrogen and/or sulfur before sulfurization.
  • organic compound(s) containing oxygen and/or nitrogen and/or sulfur present in the catalyst is generally between 1 and 30 % by weight, preferably between 1.5 and 25% by weight, and more preferably between 2 and 20% by weight relative to the total weight of the catalyst.
  • the catalyst of the process according to the invention advantageously has a total pore volume greater than or equal to 0.15 mL/g, preferably greater than or equal to 0.18 mL/g, and particularly preferably between 0.2 and 0 .5mL/g.
  • the catalyst of the process according to the invention is advantageously characterized by a specific surface of between 20 and 200 m 2 /g, preferably between 30 and 180 m 2 /g, of preferably between 40 and 160 m 2 /g, very preferably between 50 and 150 m 2 /g.
  • the catalyst of the process according to the invention is advantageously in the form of grains having an average diameter of between 0.5 and 10 mm.
  • the grains can have any shape known to those skilled in the art, for example the shape of beads (preferably having a diameter of between 1 and 6 mm), extrudates, tablets, hollow cylinders.
  • the catalyst (and the support used for the preparation of the catalyst) are either in the form of extrudates with an average diameter of between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and of average length between 0.5 and 20 mm, or in the form of beads with an average diameter of between 0.5 and 10 mm, preferably between 1.4 and 4 mm.
  • the term "average diameter" of the extrudates means the average diameter of the circle circumscribed to the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multi-lobed, tri-lobed or quadri-lobed extrudates. Preferably, its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
  • the catalyst of the process according to the invention can be prepared according to any mode of preparation of a catalyst known to those skilled in the art.
  • the catalyst of the process according to the invention can be prepared according to a preparation process comprising the following steps: a) bringing into contact at least one hydrocarbon and one sulfur compound with said oxide support making it possible to form said graphitic material comprising carbon and hydrogen on the oxide support, b) then a compound comprising a metal from group VI B and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing said graphitic material, so as to obtain a catalytic precursor, c) said catalytic precursor is dried at a temperature below 200°C without subsequent calcination, so as to obtain a dried catalyst, d) the dried catalyst is optionally activated in the presence of a sulfurizing agent.
  • Step a) of bringing at least one hydrocarbon and one sulfur compound into contact with said oxide support making it possible to form said graphitic material can be carried out according to different variants.
  • the preparation of the oxide support containing the graphitic material can be carried out by carbonization of an oxide support by bringing said oxide support into contact with at least one hydrocarbon chosen from olefins, dienes, mono- and polyaromatics and a sulfur compound, generally in the presence of a gas stream containing a gas chosen from nitrogen or hydrogen.
  • said hydrocarbon does not contain oxygen.
  • said graphitic material is formed by the method of chemical vapor deposition of olefinic and/or diene compounds.
  • the graphitic material used in the process according to the invention is prepared by a process comprising a step of bringing into contact a gas comprising nitrogen or hydrogen, a sulfur compound, and one or more olefinic and/or diene hydrocarbons, with the oxide support at a temperature comprised between 500 and 900° C., a pressure comprised between 0.05 and 10 MPa and for a duration comprised between 0.25 and 12 hours.
  • Said sulfur compound can be hhS or a compound capable of decomposing into H2S, such as for example dimethyldisulphide.
  • Said olefinic and/or diene hydrocarbon is a molecule containing one or more unsaturations, advantageously of the olefin (ethylene, propylene, butene) or diene (isoprene, butadiene) type.
  • said graphitic material is formed by reaction of one or more hydrocarbons chosen from mono- or polyaromatic compounds.
  • the graphitic material used in the process according to the invention is prepared by a process comprising a step of contacting a gas comprising nitrogen or hydrogen, a sulfur compound, and one or more hydrocarbons containing at least one aromatic nucleus, with the oxide support at a temperature of between 300 and 600° C., a pressure of between 0.05 and 10 MPa and for a duration of between 0.25 and 12 hours.
  • Said sulfur compound may be h ⁇ S or a compound capable of decomposing into H2S, such as for example dimethyldisulphide.
  • Said hydrocarbon is a molecule containing one or more aromatic nuclei, advantageously of the monoaromatic (benzene, toluene, ortho-xylene, meta-xylene, para-xylene, tetraline) or diaromatic type.
  • said graphitic material is formed by reaction of a hydrocarbon cut having at least 90% of the compounds whose boiling point is between 250° C. and 400° C. at atmospheric pressure.
  • the graphitic material used in the method according to the invention is prepared by a method comprising a step of bringing into contact a gas comprising nitrogen or hydrogen, at least one sulfur compound and a hydrocarbon fraction having at least 90% of the compounds whose boiling point is between 250°C and 400°C at atmospheric pressure, with the oxide support at a temperature between 300 and 600° C, a pressure of between 0.05 and 15 MPa and a duration of between 0.25 and 12 hours.
  • Said sulfur compound can be hhS or a compound capable of decomposing into H2S, such as dimethyldisulphide, or any other compound containing sulfur such as thiophene, alkyl thiophenes, benzothiophene, alkyl benzothiophenes, dibenzothiophene or alkyl dibenzothiophenes.
  • said cut does not contain oxygen.
  • a compound comprising a metal from group VIB and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing the graphitic material is optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing the graphitic material.
  • Bringing at least one compound comprising a group VIB metal and at least one compound comprising a group VIII metal into contact with said oxide support containing the graphitic material can advantageously be carried out by any technique known to the Those skilled in the art, such as ion exchange, dry impregnation, excess impregnation, vapor deposition, etc.
  • the bringing into contact can take place in one step or in several successive steps.
  • said one or more contacting steps is (are) carried out by the so-called “dry” impregnation method well known to those skilled in the art by bringing into contact an impregnation solution containing a compound comprising a group VIII metal and a compound comprising a Group VI B metal with said oxide support containing the graphitic material.
  • the bringing into contact advantageously involves a precursor of said metals.
  • the sources of molybdenum use may be made of oxides and hydroxides, molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid (H 3 PM0 12 O 40 ), and their salts, and optionally silicomolybdic acid (H 4 SNVI0 12 O 40 ) and its salts.
  • the sources of molybdenum can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson, Anderson, Strandberg type, for example.
  • molybdenum trioxide and the heteropolycompounds of Keggin, lacunary Keggin, substituted Keggin and Strandberg type are used.
  • the tungsten precursors which can be used are also well known to those skilled in the art.
  • oxides and hydroxides tungstic acids and their salts, in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and their salts, and optionally silicotungstic acid (H 4 S1W 12 O 40 ) and its salts.
  • the tungsten sources can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson type, for example.
  • ammonium oxides and salts are used, such as ammonium metatungstate or heteropolyanions of Keggin, lacunary Keggin or substituted Keggin type.
  • cobalt precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Cobalt hydroxide and cobalt carbonate are preferably used.
  • the nickel precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example.
  • any impregnation solution described in the present invention can comprise any polar protic solvent known to those skilled in the art.
  • a polar protic solvent is used, for example chosen from the group formed by methanol, ethanol, and water.
  • the impregnation solution comprises a water-ethanol or water-methanol mixture as solvents in order to facilitate the impregnation of the compound containing a metal from group VIB and of the compound containing a metal from group VIII (and optionally the phosphorus and/or an organic compound as described below) on the oxide support containing the graphitic material and which is therefore partly hydrophobic.
  • the solvent used in the impregnation solution consists of a water-ethanol or water-methanol mixture.
  • the contacting step b) can also comprise bringing the oxide support containing the graphitic material into contact with an impregnating solution containing phosphorus, in addition to the compound comprising a group VIB metal. and the compound comprising a Group VIII metal.
  • the phosphorus molar ratio to the group VIB element in the catalyst is greater than or equal to 0.05, preferably greater than or equal to 0.07, preferably between 0.08 and 1, preferably between 0.1 and 0.9 and very preferably between 0.15 and 0.6.
  • the preferred phosphorus precursor is orthophosphoric acid H 3 PO 4 , but its salts and esters such as ammonium phosphates are also suitable.
  • the phosphorus can also be introduced at the same time as the element(s) of group VIB in the form of heteropolyanions of Keggin, lacunary Keggin, substituted Keggin or of the Strandberg type.
  • the contacting step b) can also comprise bringing the oxide support containing the graphitic material into contact with an impregnating solution containing an organic compound containing oxygen and/or nitrogen and/or sulfur, in addition to the compound comprising a metal from group VIB, the compound comprising a metal from group VIII and optionally phosphorus.
  • an impregnating solution containing an organic compound containing oxygen and/or nitrogen and/or sulfur in addition to the compound comprising a metal from group VIB, the compound comprising a metal from group VIII and optionally phosphorus.
  • the function of additives or organic compounds is to increase the catalytic activity compared to catalysts without additives. Said organic compound is preferentially impregnated on said catalyst after solubilization in aqueous or non-aqueous solution.
  • the molar ratio of the organic compound added per group VIB metal in solution is between 0.01 and 5 mol/mol, preferably between 0.05 and 3 mol/mol, preferably between 0.05 and 2 mol/mol and very preferably between 0.1 and 1.5 mol/mol.
  • the different molar ratios apply for each of the organic compounds present.
  • the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide, or a compound including a furan ring or even a sugar.
  • the organic compound containing oxygen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic, alcohol, ether, aldehyde, ketone, ester or carbonate function or else compounds including a furan cycle. or sugars.
  • an organic compound containing oxygen is understood to mean a compound not comprising any other heteroatom.
  • the organic compound containing oxygen can be one or more chosen from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, a polyethylene glycol (with a molecular weight of between 200 and 1500 g /mol), propylene glycol, 2-butoxyethanol, 2-(2-butoxyethoxy)ethanol, 2-(2-methoxyethoxy)ethanol, triethyleneglycoldimethylether, glycerol, acetophenone, 2,4-pentanedione, pentanone, acetic acid, oxalic acid, maleic acid, malic acid, malonic acid, oxalic acid, gluconic acid, tartaric acid, citric acid, y-acid ketovaleric, a dialkyl C1-C4 succinate and more particularly dimethyl succinate, methyl acetoacetate, ethyl acetoacetate, 2-methoxyethyl 3-oxobutanoate, 2-methacryloyloxy
  • the organic compound containing nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from an amine or nitrile function.
  • an organic compound containing nitrogen is understood to mean a compound containing no other heteroatom.
  • the organic compound containing nitrogen can be one or more selected from the group consisting of ethylenediamine, diethylenetriamine, hexamethylenediamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, acetonitrile , octylamine, guanidine or a carbazole.
  • the organic compound containing oxygen and nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic acid, alcohol, ether, aldehyde, ketone, ester, carbonate, amine function. , nitrile, imide, amide, urea or oxime.
  • an organic compound containing oxygen and nitrogen is understood to mean a compound not comprising any other heteroatom.
  • the organic compound containing oxygen and nitrogen can be one or more chosen from the group consisting of 1,2-cyclohexanediaminetetraacetic acid, monoethanolamine (MEA), l- methyl-2-pyrrolidinone, dimethylformamide, ethylenediaminetetraacetic acid (EDTA), alanine, glycine, nitrilotriacetic acid (NTA), N-(2-hydroxyethyl)ethylenediamine-N,N',N acid '-triacetic acid (HEDTA), diethylene-triaminepentaacetic acid (DTPA), tetramethylurea, glutamic acid, dimethylglyoxime, bicine, tricine, 2-methoxyethyl cyanoacetate, 1-ethyl-2-pyrrolidinone, 1-vinyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 1-(2-hydroxyethyl)-2-pyrrolidinone, 1-(2-)
  • the organic compound containing sulfur can be one or more chosen from compounds comprising one or more chemical functions chosen from a thiol, thioether, sulphone or sulphoxide function.
  • the organic compound containing sulfur can be one or more selected from the group consisting of thioglycolic acid, 2,2'-thiodiethanol, 2-hydroxy-4-methylthiobutanoic acid, a sulfonated derivative of a benzothiophene or a sulfoxide derivative of a benzothiophene, ethyl 2-mercaptopropanoate, methyl 3-(methylthio)propanoate and ethyl 3-(methylthio)propanoate.
  • the organic compound contains oxygen, preferably it is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), l maleic acid, malonic acid, citric acid, acetic acid, oxalic acid, gluconic acid, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid , a C1-C4 dialkyl succinate and more particularly dimethyl succinate, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2 -furaldehyde (also known as furfural), 5-hydroxymethylfurfural (also known as 5-(hydroxymethyl)-2-furaldehyde or 5-HMF), 2-acetylfuran, 5-methyl-2-f
  • the impregnation step comprises several modes of implementation. They are distinguished in particular by the moment of introduction of the organic compound when it is present and which can be carried out either at the same time as the impregnation of the metals (co-impregnation), or after (post-impregnation), or before (pre-impregnation). In addition, the modes of implementation can be combined.
  • the impregnated support is allowed to mature. Curing allows the impregnation solution to disperse homogeneously within the support.
  • Any maturation step described in the present invention is advantageously carried out at atmospheric pressure, in an atmosphere saturated with water and at a temperature between 17° C. and 50° C., and preferably at ambient temperature. Generally, a maturation period of between ten minutes and forty-eight hours, and preferably between thirty minutes and six hours, is sufficient.
  • a catalytic precursor which comprises the oxide support comprising the graphitic material, the active phase comprising at least one metal from group VIB and at least one metal from group VIII, sulfur, and optionally phosphorus and/or an organic compound containing oxygen and/or nitrogen and/or sulphur.
  • step c) of the process for preparing the catalyst used according to the process of the invention said catalytic precursor is dried at a temperature below 200° C., advantageously between 50° C. and 180° C., preferably between 70 °C and 150°C, very preferably between 75°C and 130°C, without subsequent calcination, so as to obtain a dried catalyst,
  • the drying step is preferably carried out under an inert atmosphere, typically under a nitrogen atmosphere.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. It is advantageously carried out in a traversed bed using any hot inert gas. Preferably, when the drying is carried out in a fixed bed, the gas used is argon or nitrogen. Very preferably, the drying is carried out in a traversed bed in the presence of nitrogen. Preferably, the drying step lasts between 5 minutes and 15 hours, preferably between 30 minutes and 12 hours.
  • the drying is carried out so as to preferably retain at least 30% by weight of the organic compound introduced during an impregnation step, preferably this quantity is greater than 50% by weight and even more preferably greater than 70% by weight, calculated on the basis of the carbon remaining on the catalyst.
  • the carbon content originating from the organic compound can be determined by taking the difference between the carbon content measured according to ASTM D5373 with and without pretreatment of the catalyst dried under a flow of dry air at 300°C for 2 hours and a flow rate of 2 L /h/g. Indeed, the carbon of the graphitic material has a significantly higher decomposition temperature (generally around 400 to 450°C) than that of the organic compound (generally around 100 to 200°C).
  • calcination means a heat treatment under a gas containing air or oxygen at a temperature greater than or equal to 200°C.
  • a dried catalyst is then obtained, which will be subjected to an optional activation step (sulphurization) for its subsequent implementation in a gasoline hydrodesulphurization process.
  • the dried catalyst is optionally activated in the presence of a sulfurizing agent.
  • the sulfurization is preferably carried out in a sulphur-reducing medium, that is to say in the presence of hhS and hydrogen.
  • Sulfurization is carried out by injecting onto the catalyst a stream containing hhS and hydrogen, or else a sulfur compound capable of decomposing into H2S in the presence of the catalyst and hydrogen.
  • Polysulphides such as dimethyldisulphide (DM DS) are hhS precursors commonly used to sulphide catalysts.
  • the temperature is adjusted so that the hhS reacts with the dried catalyst to form metal sulphides such as, for example, MoS2 and CogSs.
  • This sulfurization can be carried out in situ or ex situ (inside or outside the reactor) of the reactor of the process according to the invention at temperatures between 200 and 600° C. and more preferably between 300 and 500° C.
  • metals To be active, metals must be substantially sulfurized.
  • An element is considered substantially sulfurized when the molar ratio between sulfur (S) present on the catalyst and said element is at least equal to 50% of the theoretical molar ratio corresponding to the total sulfurization of the element considered.
  • the overall sulfurization rate is defined by the following equation:
  • the catalyst comprising several metals, the molar ratio between the S present on the catalyst and all the elements must also be at least equal to 50% of the theoretical molar ratio corresponding to the total sulfurization of each element in sulphide, the calculation being carried out in proportion to the relative molar fractions of each element.
  • the sulfurization rate of the metals will be greater than 70%.
  • the catalyst of the process according to the invention does not undergo a sulfurization step, that is to say that the catalyst is not brought into contact with a sulfurizing agent, before injection of the load.
  • the catalyst is activated (sulphurized) by the sulfur contained in the charge to be desulphurized.
  • the catalyst of the process according to the invention can be an at least partially spent catalyst.
  • an at least partially spent catalyst is meant a catalyst which comes out of a hydrotreatment process.
  • the catalyst at least partially spent can result from a hydrotreating of any petroleum cut, such as a naphtha, kerosene, gas oil, vacuum distillate or residue cut.
  • hydrotreatment is meant reactions including in particular hydrodesulphurization (HDS), hydrodenitrogenation (HDN) and the hydrogenation of aromatics (HDA). It can also come from a hydrotreatment of biomass or bio-oils.
  • the at least partially spent catalyst comes from a hydrodesulphurization process of an olefinic gasoline cut containing sulfur carried out under the conditions as described below.
  • the at least partially spent catalyst does not undergo regeneration, that is to say a heat treatment under a gas containing air or oxygen at a temperature above 200° C. generally making it possible to burn the majority of the coke formed during the hydrotreating process in which it was previously used. It may have undergone a de-oiling step before its use in the gasoline hydrodesulfurization process of the present invention.
  • the de-oiling step generally comprises contacting the at least partially spent catalyst with a stream of inert gas (that is to say substantially free of oxygen), for example in a nitrogen atmosphere or the like, at a temperature between 300°C and 400°C, preferably between 300°C and 350°C.
  • the inert gas flow rate in terms of flow rate per unit volume of catalyst is 5-150 NL.L LIT 1 for 3-7 hours.
  • the de-oiling stage can be carried out by light hydrocarbons, by steam treatment or any other similar process.
  • the de-oiling stage makes it possible to eliminate the soluble hydrocarbons and therefore to release the porosity of the at least partially spent catalyst necessary for the hydrodesulphurization.
  • This at least partially spent catalyst comprises said oxide support, sulfur, the active phase comprising at least one metal from group VI B and at least one metal from group VIII, optionally phosphorus, and said graphitic material containing carbon and hydrogen in the form of coke.
  • the contents of metals, sulphur, carbon and phosphorus of the at least partially spent catalyst are those indicated above. They are determined according to the same methods described above.
  • the at least partially spent catalyst may also have a low content of contaminants originating from the treated charge, such as silicon, arsenic or chlorine.
  • the silicon content is less than 2% by weight and very preferably less than 1% by weight relative to the total weight of the at least partially spent catalyst.
  • the arsenic content is less than 2000 ppm by weight and very preferably less than 500 ppm by weight relative to the total weight of the at least partially spent catalyst.
  • the chlorine content is less than 2000 ppm by weight and very preferably less than 500 ppm by weight relative to the total weight of the at least partially spent catalyst.
  • FIG. 1 represents the 13 C MAS NMR spectrum of catalyst A according to example 1 (according to the invention).
  • FIG. 2 represents the 13 C MAS NMR spectrum of catalyst B according to example 2 (comparative).
  • alumina support having a BET surface area of 230 m 2 /g, a pore volume measured by mercury porosimetry of 0.78 ml/g and an average pore diameter of 11.5 nm defined as the median diameter by volume by mercury porosimetry and which is in the “extruded” form is loaded into a crossed-bed type reactor.
  • the charred support has a water uptake volume of 0.61 mL/g. Cobalt, molybdenum and phosphorus are then added.
  • the impregnation solution is prepared by dissolving at 90°C molybdenum oxide (2.2 g, MOO3 >99.5%, MerckTM), cobalt hydroxide (0.57 g, (Co( OH) 2 95%, MerckTM), and 85% weight phosphoric acid in water (0.46 g, MerckTM) in 5.8 mL of water After dry impregnation of 10 grams of support carbonized, the extrudates are left to mature in a water-saturated atmosphere for 24 hours at room temperature, then they are dried at 90° C. for 16 hours.
  • the dried catalyst thus obtained is denoted A.
  • the catalyst has 4.2% by weight S based on the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373, and 10.4% by weight C based on the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373 after catalyst pretreatment under air flow c at 300°C for 2 hours and a flow rate of 2 L/h/g.
  • the catalyst is analyzed by 13 C MAS NMR spectroscopy as described above. It has an Aromatic S/ Aiiphatic S ratio of the peak surface ( Somatics ) in a range of chemical shifts from 100 to 160 ppm at the surface. of peak ( Statics ) in a range of chemical shifts from 0 to 60 ppm, measured by 13 C MAS NMR spectroscopy, is equal to 6.7 (Fig 1).
  • Example 2 50 cm 3 of the same support as described in Example 1 is loaded into a crossed-bed type reactor.
  • the charred support has a water uptake volume of 0.65 mL/g. Cobalt, molybdenum and phosphorus are then added.
  • the impregnation solution is prepared by dissolving at 90°C molybdenum oxide (2.2 g), cobalt hydroxide (0.57 g), and phosphoric acid at 85% by weight in the water (0.46 g) in 6.2 mL of distilled water. After dry impregnation of 10 grams of carbonized support, the extrudates are left to mature in an atmosphere saturated with water for 24 hours at room temperature, then they are dried at 90° C. for 16 hours. The dried catalyst thus obtained is denoted B.
  • the catalyst has 4.1% weight S relative to the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373, and 10.3% weight C relative to the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373 after pretreatment of the catalyst under a flow of dry air at 300° C. for 2 hours and a flow rate of 2 L/h/g.
  • the catalyst is analyzed by 13 C MAS NMR spectroscopy as described above and shows a SAromatic/SAiiphatic ratio of the peak area (SAromatics) in a range of chemical shifts from 100 to 160 ppm at the peak area ( SA np hatic ) in a range of chemical shifts from 0 to 60 ppm, measured by 13 C MAS NMR spectroscopy, is equal to 2.5 (Fig 2).
  • SAromatics peak area
  • SA np hatic peak area
  • Example 3 Evaluation of the catalytic performance of catalysts A and B
  • a representative model charge of a catalytic cracked gasoline containing 10% by weight of 2,3-dimethylbut-2-ene and 0.33% by weight of 3-methylthiophene (i.e. 1000 ppm by weight of sulfur in the charge) is used for the evaluation of the catalytic performances of the various catalysts.
  • the solvent used is heptane.
  • the catalyst Prior to the HDS reaction, the catalyst is sulfurized in-situ at 350° C. for 2 hours under a flow of hydrogen containing 15 mol% of H2S at atmospheric pressure.
  • Each of the catalysts is successively placed in said reactor. Samples are taken at different time intervals and are analyzed by gas phase chromatography in order to observe the disappearance of the reagents and the formation of the products.
  • the catalytic performances of the catalysts are evaluated in terms of catalytic activity and selectivity.
  • the hydrodesulphurization (HDS) activity is expressed from the rate constant for the HDS reaction of 3-methylthiophene (kHDS), normalized by the volume of catalyst introduced and assuming first-order kinetics with respect to to the sulfur compound.
  • the hydrogenation activity of olefins is expressed from the rate constant of the hydrogenation reaction of 2,3-dimethylbut-2-ene, normalized by the volume of catalyst introduced and assuming a kinetics of order 1 with respect to the olefin.
  • the selectivity of the catalyst is expressed by the normalized rate constant ratio kHDS/kHydO.
  • the kHDS/kHydO ratio will be higher the more selective the catalyst.
  • the values obtained are normalized by taking catalyst B as reference (relative HDS activity and relative selectivity equal to 100). The performances are therefore the relative H DS activity and the relative selectivity.
  • Catalyst A exhibits a slightly lower activity than comparative catalyst B and an improved selectivity in hydrodesulphurization compared to the hydrogenation of olefins compared to comparative catalyst B.
  • This improvement in the selectivity of the catalysts is particularly advantageous in the case of an implementation in a process for the hydrodesulphurization of gasoline containing olefins for which it is sought to limit as much as possible the loss of octane due to the hydrogenation of the olefins.

Abstract

The invention relates to a process for the hydrodesulfurization of a gasoline cut containing sulfur compounds and olefins, wherein said gasoline cut is brought into contact with hydrogen and a catalyst, the catalyst comprises an oxide substrate, sulfur and an active phase comprising at least one group VIB metal and at least one group VIII metal, said catalyst further containing a graphitic material containing carbon and hydrogen, said catalyst being characterized using 13C MAS NMR spectroscopy by an Saromatic/Saliphatic ratio such that the Saromatic peak surface area in a range of chemical shifts from 100 to 160 ppm to the Saliphatic peak surface area in a range of chemical shifts from 0 to 60 ppm is greater than 4.

Description

PROCEDE D’HYDRODESULFURATION D’UNE COUPE ESSENCE METTANT EN ŒUVRE UN CATALYSEUR CONTENANT UN MATERIAU GRAPHITIQUE CARACTERISE PARPROCESS FOR HYDRODESULPHURIZING A GASOLINE CUT USING A CATALYST CONTAINING A GRAPHITE MATERIAL CHARACTERIZED BY
SPECTROSCOPIE RMN 13C MAS MAS 13 C NMR SPECTROSCOPY
Domaine de l’invention La présente invention concerne un procédé d'hydrodésulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par spectroscopie RMN 13C de rotation à l'angle magique MAS (Magic Angle Spinning selon la terminologie anglo-saxonne). FIELD OF THE INVENTION The present invention relates to a process for the hydrodesulphurization of a gasoline cut using a catalyst containing a graphitic material characterized by 13 C NMR spectroscopy of rotation at the magic angle MAS (Magic Angle Spinning according to the English terminology). -Saxon).
État de la technique Le soufre est un élément naturellement présent dans le pétrole brut et est donc présent dans l’essence et le gazole s’il n’est pas retiré lors du raffinage. Or, le soufre dans l'essence nuit à l'efficacité des systèmes de réduction des émissions (pots catalytiques) et contribue à la pollution de l'air. Afin de lutter contre la pollution de l’environnement, l’ensemble des pays adoptent en conséquence progressivement des spécifications sévères en soufre, les spécifications étant par exemple 10 ppm (poids) de soufre dans les essences commerciales en Europe, Chine, Etats-Unis et au Japon. Le problème de réduction des teneurs en soufre se concentre essentiellement sur les essences obtenues par craquage, qu'il soit catalytique (FCC Fluid Catalytic Cracking selon la terminologie anglo-saxonne) ou non catalytique (cokéfaction, viscoréduction, vapocraquage), principaux précurseurs de soufre dans les pools essence. STATE OF THE ART Sulfur is an element naturally present in crude oil and is therefore present in gasoline and diesel if it is not removed during refining. However, sulfur in gasoline impairs the efficiency of emission reduction systems (catalytic converters) and contributes to air pollution. In order to fight against environmental pollution, all countries are therefore gradually adopting strict sulfur specifications, the specifications being, for example, 10 ppm (weight) of sulfur in commercial gasoline in Europe, China, the United States. and in Japan. The problem of reducing sulfur content essentially concentrates on gasolines obtained by cracking, whether catalytic (FCC Fluid Catalytic Cracking according to Anglo-Saxon terminology) or non-catalytic (coking, visbreaking, steam cracking), main precursors of sulfur in gasoline pools.
Une solution, bien connue de l'homme du métier, pour réduire la teneur en soufre consiste à effectuer un hydrotraitement (ou hydrodésulfuration) des coupes hydrocarbonées (et notamment des essences de craquage catalytique) en présence d'hydrogène et d'un catalyseur hétérogène. Cependant ce procédé présente l'inconvénient majeur d'entraîner une chute très importante de l'indice d'octane si le catalyseur mis en œuvre n'est pas assez sélectif. Cette diminution de l'indice d'octane est notamment liée à l'hydrogénation des oléfines présentes dans ce type d'essence de manière concomitante à l'hydrodésulfuration. Contrairement à d’autres procédés d’hydrotraitement, notamment ceux pour des charges de type gazole, l’hydrodésulfuration des essences doit donc permettre de répondre à une double contrainte antagoniste : assurer une hydrodésulfuration profonde des essences et limiter l’hydrogénation des composés insaturés présents. A solution, well known to those skilled in the art, for reducing the sulfur content consists in carrying out a hydrotreatment (or hydrodesulphurization) of the hydrocarbon cuts (and in particular gasolines from catalytic cracking) in the presence of hydrogen and a heterogeneous catalyst. . However, this process has the major drawback of causing a very significant drop in the octane number if the catalyst used is not selective enough. This decrease in the octane number is in particular linked to the hydrogenation of the olefins present in this type of gasoline concomitantly with the hydrodesulphurization. Unlike other hydrotreating processes, in particular those for diesel-type feedstocks, gasoline hydrodesulphurization must therefore make it possible to respond to a double antagonistic constraint: ensuring deep hydrodesulphurization of gasolines and limiting the hydrogenation of the unsaturated compounds present.
La voie la plus utilisée pour répondre à la double problématique mentionnée ci-dessus consiste à employer des procédés dont l’enchaînement des étapes unitaires permet à la fois de maximiser l’hydrodésulfuration tout en limitant l'hydrogénation des oléfines. Ainsi, les procédés les plus récents, tels que le procédé Prime G+ (marque commerciale), permettent de désulfurer les essences de craquage riches en oléfines, tout en limitant l’hydrogénation des mono-oléfines et par conséquent la perte d’octane et la forte consommation d’hydrogène qui en résulte. De tels procédés sont par exemple décrits dans les demandes de brevet EP 1 077247 et EP 1 174485. The way most used to respond to the double problem mentioned above consists in using processes whose sequence of unit steps makes it possible both to maximize hydrodesulphurization while limiting the hydrogenation of olefins. Thus, the most recent processes, such as the Prime G+ process (trademark), make it possible to desulphurize cracked gasolines rich in olefins, while limiting the hydrogenation of mono-olefins and consequently the loss of octane and the resulting high hydrogen consumption. Such processes are for example described in patent applications EP 1 077247 and EP 1 174485.
L’obtention de la sélectivité de réaction recherchée (ratio entre hydrodésulfuration et hydrogénation des oléfines) peut donc être en partie due au choix du procédé mais dans tous les cas l’utilisation d’un système catalytique intrinsèquement sélectif est très souvent un facteur clé. D’une façon générale, les catalyseurs utilisés pour ce type d’application sont des catalyseurs de type sulfure contenant un élément du groupe VI B (Cr, Mo, W) et un élément du groupe VIII (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt). De tels catalyseurs sont par exemple divulgués dans les documents US 5 985 136, US 4 140626, US 4 774 220, US 8637423 et EP 1 892039 qui décrivent des catalyseurs d'hydrodésulfuration sélectifs. Obtaining the desired reaction selectivity (ratio between hydrodesulfurization and hydrogenation of olefins) may therefore be partly due to the choice of process, but in all cases the use of an intrinsically selective catalytic system is very often a key factor. In general, the catalysts used for this type of application are sulfide type catalysts containing a group VI B element (Cr, Mo, W) and a group VIII element (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt). Such catalysts are for example disclosed in documents US 5,985,136, US 4,140,626, US 4,774,220, US 8,637,423 and EP 1,892,039 which describe selective hydrodesulfurization catalysts.
Il existe donc aujourd'hui un vif intérêt chez les raffineurs pour un procédé d’hydrodésulfuration de coupes essences qui présente des performances catalytiques maintenues en termes d'activité catalytique tout en améliorant significativement la sélectivité. There is therefore today a keen interest among refiners for a hydrodesulphurization process for gasoline cuts which has maintained catalytic performance in terms of catalytic activity while significantly improving selectivity.
Il est connu que la présence de carbone dans un catalyseur d’hydrodésulfuration d’une coupe essence peut améliorer la sélectivité. Ainsi, le document US 2 793 170 décrit un procédé d’hydrodésulfuration d’une essence craquée en présence d’un catalyseur contenant entre 0,2 et 6% pds de carbone. Le document FR 2 850299 décrit un procédé d’hydrodésulfuration d’une essence craquée en présence d’un catalyseur avec une teneur en carbone inférieure ou égale à 2,8 % pds. It is known that the presence of carbon in a gasoline cut hydrodesulphurization catalyst can improve selectivity. Thus, document US 2,793,170 describes a process for the hydrodesulphurization of a cracked gasoline in the presence of a catalyst containing between 0.2 and 6% by weight of carbon. Document FR 2 850299 describes a process for the hydrodesulphurization of a cracked gasoline in the presence of a catalyst with a carbon content less than or equal to 2.8% by weight.
Le document EP 0745660 décrit un procédé d’hydrodésulfuration d’une coupe essence oléfinique utilisant un catalyseur préalablement coké en surface, avec une teneur en carbone comprise entre 3 et 10%pds par rapport au poids du catalyseur et un rapport atomique C/H < 0,7 (= rapport H/C > 1,42) dans le coke. Document EP 0745660 describes a process for the hydrodesulphurization of an olefinic gasoline cut using a catalyst previously coked on the surface, with a carbon content between 3 and 10% by weight relative to the weight of the catalyst and a C/H atomic ratio <0.7 (=H/C ratio>1.42) in coke.
Le document US2009/0258780 quant à lui décrit qu’un catalyseur contenant un métal du groupe VIII, du molybdène (Mo), du phosphore et du soufre supporté sur un support d'oxyde inorganique poreux comprenant un matériau carboné permet d’observer une augmentation de la sélectivité dans un procédé d’hydrodésulfuration d’une essence. Le matériau carboné doit contenir de l'oxygène et se caractérise par une teneur en carbone comprise entre 5 et 20 % pds par rapport au poids du support, un rapport atomique de la quantité d'hydrogène supporté par rapport à la quantité de carbone supportée de 0,4 à 1 ,0, et un rapport atomique de la quantité d'oxygène supporté par rapport à la support la quantité de carbone de 0,1 à 0,6. The document US2009/0258780 for its part describes that a catalyst containing a group VIII metal, molybdenum (Mo), phosphorus and sulfur supported on a porous inorganic oxide support comprising a carbonaceous material makes it possible to observe an increase selectivity in a gasoline hydrodesulfurization process. The carbonaceous material must contain oxygen and is characterized by a carbon content of between 5 and 20 wt% relative to the weight of the support, an atomic ratio of the amount of hydrogen supported to the amount of carbon supported of 0.4 to 1.0, and an atomic ratio of the amount of oxygen supported to the amount of carbon supported from 0.1 to 0.6.
Ces deux derniers documents montrent que non seulement la teneur, mais également la nature chimique du matériau carboné semble avoir une influence sur la sélectivité du procédé. Dans le domaine de l’hydrotraitement de distillats moyen (diesel, distillats sous vide), la caractérisation chimique du dépôt de coke dans des catalyseurs d’hydrotraitement a été effectuée par spectroscopie RMN 13C MAS dans les publications Applied Catalysis A : General 278 (2004) 83-91 et Applied Catalysis A : General 367 (2009) 1-8. These last two documents show that not only the content, but also the chemical nature of the carbonaceous material seems to have an influence on the selectivity of the process. In the field of middle distillate hydrotreating (diesel, vacuum distillates), the chemical characterization of coke deposition in hydrotreating catalysts was carried out by 13 C MAS NMR spectroscopy in the publications Applied Catalysis A: General 278 ( 2004) 83-91 and Applied Catalysis A: General 367 (2009) 1-8.
La présente invention concerne donc un procédé d’hydrodésulfuration d’une coupe essence qui a pour objet le maintien en activité hydrodésulfurante et l’amélioration significative de la sélectivité en mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par spectroscopie RMN 13C MAS. The present invention therefore relates to a process for the hydrodesulphurization of a gasoline cut, the object of which is to maintain the hydrodesulphurizing activity and to significantly improve the selectivity by implementing a catalyst containing a graphitic material characterized by 13 C MAS NMR spectroscopy.
Objets de l’invention Objects of the invention
L'invention concerne un procédé d'hydrodésulfuration d'une coupe essence contenant des composés soufrés et des oléfines dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, ledit catalyseur comprend un support d’oxyde, du soufre et une phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, ledit catalyseur contenant entre outre un matériau graphitique contenant du carbone et de l’hydrogène, ledit catalyseur étant caractérisé en spectroscopie RMN 13C MAS par un rapport SAromatiques/SAiiphatiques de la surface de pic SAro atiques dans une gamme de déplacements chimiques de 100 à 160 ppm à la surface de pic SAiiphatiques dans une gamme de déplacements chimiques de 0 à 60 ppm supérieur à 4. The invention relates to a process for the hydrodesulphurization of a gasoline cut containing sulfur compounds and olefins, in which said gasoline cut is brought into contact with hydrogen and a catalyst, said process being carried out at a temperature of between 200 and 400° C., a total pressure of between 1 and 3 MPa, an hourly volumetric speed, defined as being the volume flow rate of charge relative to the volume of catalyst, of between 1 and 10 h 1 , and a volume ratio of hydrogen/gasoline charge comprised Between 100 and 1200 NL/L, said catalyst comprises an oxide support, sulfur and an active phase comprising at least one metal from group VIB and at least one metal from group VIII, said catalyst further comprising a graphitic material containing carbon and hydrogen, said catalyst being characterized in 13 C MAS NMR spectroscopy by an SAromatic/SAiiphatic ratio of the S Aro atic peak surface in a range of chemical shifts from 100 to 160 ppm at the S Aiiphatic peak surface in a range of chemical shifts from 0 to 60 ppm greater than 4.
Il a été constaté que l’utilisation d’un catalyseur contenant du soufre et un matériau graphitique ayant une nature particulière qui est caractérisée par un rapport d’intensités en spectroscopie RMN 13C MAS permet d’observer une augmentation significative de la sélectivité dans un procédé d’hydrodésulfuration sélective d’une coupe essence tout en conservant une bonne activité. En effet, sans être lié à aucune théorie, il semble que la présence du soufre et d’un tel matériau graphitique dans le catalyseur facilite la dispersion des métaux au sein du support en permettant d’éviter les phénomènes de remontée de pH classiquement observée en absence du matériau graphitique lors de l’imprégnation de la solution contenant les précurseurs métalliques. Le maintien d’un pH assez bas permet ainsi la présence d’hétéropolyanions au détriment d’espèces monomolybdates et polymolybdates, lesdits hétéropolyanions favorisant la sulfuration des espèces métalliques et la formation de phases sulfures plus sélectives. L’utilisation du catalyseur contenant un tel matériau graphitique permet également d'éviter ou d’atténuer les emballements thermiques (« run away » selon la terminologie anglo-saxonne) lors du procédé d’hydrodésulfuration qui se caractérise par des réactions très exothermiques. It has been found that the use of a catalyst containing sulfur and a graphitic material having a particular nature which is characterized by a ratio of intensities in 13 C MAS NMR spectroscopy makes it possible to observe a significant increase in selectivity in a process for the selective hydrodesulphurization of a gasoline cut while maintaining good activity. Indeed, without being bound to any theory, it seems that the presence of sulfur and of such a graphitic material in the catalyst facilitates the dispersion of metals within the support by making it possible to avoid the phenomena of rise in pH classically observed in absence of the graphitic material during the impregnation of the solution containing the metal precursors. Maintaining a fairly low pH thus allows the presence of heteropolyanions to the detriment of monomolybdate and polymolybdate species, said heteropolyanions favoring the sulphidation of the metal species and the formation of more selective sulphide phases. The use of the catalyst containing such a graphitic material also makes it possible to avoid or attenuate thermal runaways (“run away” according to English terminology) during the hydrodesulphurization process which is characterized by very exothermic reactions.
Selon une variante, la teneur en carbone est comprise entre 5 et 20% pds exprimée en élément carbone par rapport au poids du catalyseur. According to a variant, the carbon content is between 5 and 20% by weight expressed as carbon element relative to the weight of the catalyst.
Selon une variante, la teneur en soufre est comprise entre 1 et 8% poids exprimée en élément soufre par rapport au poids du catalyseur. According to a variant, the sulfur content is between 1 and 8% by weight expressed as sulfur element relative to the weight of the catalyst.
Selon une variante, le rapport SAromatiques/SAiiphatiques est compris entre 5 et 15. Selon une variante, le catalyseur a une teneur en métal du groupe VI B comprise entre 5 et 40 % poids, exprimée en oxyde de métal du groupe VIB, par rapport au poids total du catalyseur et une teneur en métal du groupe VIII comprise entre 1 et 10 % poids, exprimée en oxyde de métal du groupe VIII, par rapport au poids total du catalyseur. According to a variant, the S A r o m atic /S Aiiphatic ratio is between 5 and 15. According to one variant, the catalyst has a group VI B metal content of between 5 and 40% by weight, expressed as group VIB metal oxide, relative to the total weight of the catalyst and a group VIII metal content of between 1 and 10% by weight, expressed as Group VIII metal oxide, relative to the total weight of the catalyst.
Selon une variante, le rapport molaire métal du groupe VIII sur métal du groupe VIB dans le catalyseur est compris entre 0,1 et 0,8. According to a variant, the molar ratio of group VIII metal to group VIB metal in the catalyst is between 0.1 and 0.8.
Selon une variante, la surface spécifique du catalyseur est comprise entre 20 et 200 m2/g.According to one variant, the specific surface of the catalyst is between 20 and 200 m 2 /g.
Selon une variante, le catalyseur comprend en outre du phosphore à une teneur comprise entre 0,1 et 20 % poids exprimée en P2O5 par rapport au poids total du catalyseur. According to a variant, the catalyst also comprises phosphorus at a content of between 0.1 and 20% by weight, expressed as P2O5 relative to the total weight of the catalyst.
Selon une variante, le catalyseur comprend en outre un composé organique contenant de l’oxygène et/ou de l’azote et/ou du soufre. According to a variant, the catalyst also comprises an organic compound containing oxygen and/or nitrogen and/or sulfur.
Selon cette variante, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée, amide, ou un composé incluant un cycle furanique ou encore un sucre, et plus particulièrement le composé organique est choisi parmi la g-valérolactone, la 2- acétylbutyrolactone, le triéthylèneglycol, le diéthylèneglycol, l’éthylèneglycol, l’acide éthylènediaminetétra-acétique (EDTA), l’acide maléique, l’acide malonique, l’acide citrique, l’acide acétique, l’acide oxalique, l’acide gluconique, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, l’acide y-cétovalérique, un succinate de dialkyle C1-C4 et plus particulièrement le succinate de diméthyle, le diméthylformamide, la 1-méthyl-2- pyrrolidinone, le carbonate de propylène, le 3-oxobutanoate de 2-méthoxyéthyle, la bicine, la tricine, le 2-furaldéhyde (aussi connu sous le nom furfural), le 5-hydroxyméthylfurfural, le 2- acétylfurane, le 5-méthyl-2-furaldéhyde, l’acide ascorbique, le lactate de butyle, le lactate d’éthyle, le butyryllactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3-éthoxypropanoate d’éthyle, l’acétate de 2-éthoxyéthyle, l’acétate de 2-butoxyéthyle, l’acrylate de 2- hydroxyéthyle, la 1-vinyl-2-pyrrolidinone, la 1 ,3-diméthyl-2-imidazolidinone, le 1,5- pentanediol, la1-(2-hydroxyéthyl)-2-pyrrolidinone, la 1-(2-hydroxyéthyl)-2,5-pyrrolidinedione, la 5-méthyl-2(3H)-furanone, la 1-méthyl-2-pipéridinone, l’acide 4-aminobutanoïque, le glycolate de butyle, le 2-mercaptopropanoate d’éthyle, le 4-oxopentanoate d’éthyle, le maléate de diéthyle, le maléate de diméthyle, le fumarate de diméthyle, le fumarate de diéthyle, l’adipate de diméthyle et le 3-oxoglutarate de diméthyle. According to this variant, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea, amide, or a compound including a furan ring or even a sugar, and more particularly the organic compound is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, acid ethylenediaminetetraacetic acid (EDTA), maleic acid, malonic acid, citric acid, acetic acid, oxalic acid, gluconic acid, glucose, fructose, sucrose, sorbitol, xylitol, y-ketovaleric acid, a C1-C4 dialkyl succinate and more particularly dimethyl succinate, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, the bicine, the tricine, the 2 -furaldehyde (also known as furfural), 5-hydroxymethylfurfural, 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl lactate, butyl butyryllactate , ethyl 3-hydroxybutanoate, ethyl 3-ethoxypropanoate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-hydroxyethyl acrylate, 1-vinyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 1,5-pentanediol, 1-(2-hydroxyethyl)-2-pyrrolidinone, 1-(2-hydroxyethyl)-2,5-pyrrolidinedione, 5-methyl- 2(3H)-furanone, 1-methyl-2-piperidinone, 4-aminobutanoic acid, butyl glycolate, ethyl 2-mercaptopropanoate, ethyl 4-oxopentanoate, diethyl maleate, dimethyl maleate, dimethyl fumarate, diethyl fumarate, dimethyl adipate and dimethyl 3-oxoglutarate.
Selon une variante, la phase active du catalyseur est constituée de cobalt et de molybdène.According to a variant, the active phase of the catalyst consists of cobalt and molybdenum.
Selon une variante, le catalyseur est préparé selon un procédé de préparation comprenant les étapes suivantes : a) on met en contact au moins un hydrocarbure et un composé soufré avec ledit support d’oxyde permettant de former ledit matériau graphitique comprenant le carbone et l’hydrogène sur le support d’oxyde, b) puis on met en contact un composé comportant un métal du groupe VI B et un composé comportant un métal du groupe VIII, et optionnellement du phosphore et/ou au moins un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre avec ledit support d’oxyde contenant ledit matériau graphitique, de manière à obtenir un précurseur catalytique, c) on sèche ledit précurseur catalytique à une température inférieure à 200°C sans calcination ultérieure, de manière à obtenir un catalyseur séché, d) on active optionnellement le catalyseur séché en présence d’un agent sulfurant. According to a variant, the catalyst is prepared according to a preparation process comprising the following steps: a) at least one hydrocarbon and one sulfur compound are brought into contact with said oxide support making it possible to form said graphitic material comprising carbon and hydrogen on the oxide support, b) then a compound comprising a metal from group VI B and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing said graphitic material, so as to obtain a catalytic precursor, c) said catalytic precursor is dried at a temperature below 200°C without subsequent calcination , so as to obtain a dried catalyst, d) the dried catalyst is optionally activated in the presence of a sulfurizing agent.
Selon une autre variante, le catalyseur est un catalyseur au moins partiellement usé issu d’un procédé hydrotraitement. According to another variant, the catalyst is an at least partially spent catalyst resulting from a hydrotreatment process.
Selon une variante, l’essence est une essence de craquage catalytique. Définitions According to a variant, the gasoline is a catalytic cracked gasoline. Definitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. On entend par surface spécifique, la surface spécifique BET (SBET en m2/g) déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique " The Journal of American Societÿ', 1938, 60, 309. On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur. Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa). In the following, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief DR Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification. By specific surface area is meant the BET specific surface area (SBET in m 2 /g) determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical “The Journal of American Society', 1938, 60, 309. By total pore volume of the catalyst or of the support used for the preparation of the catalyst is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°. The wetting angle was taken as equal to 140° by following the recommendations of the work “Engineering techniques, treatise on analysis and characterization”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur. In order to obtain better precision, the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
Les teneurs en métaux du groupe VIII et du groupe VI B sont mesurées par fluorescence X.The contents of group VIII and group VI B metals are measured by X-ray fluorescence.
Les teneurs en métal du groupe VI B, en métal du groupe VIII et en phosphore dans le catalyseur sont exprimées en oxydes après correction de la perte au feu de l’échantillon de catalyseur à 550°C pendant deux heures en four à moufle. La perte au feu est due à la perte d'humidité. Elle est déterminée selon l’ASTM D7348. The contents of group VI B metal, group VIII metal and phosphorus in the catalyst are expressed in oxides after correction of the loss on ignition of the catalyst sample at 550°C for two hours in a muffle furnace. Loss on ignition is due to moisture loss. It is determined according to ASTM D7348.
Description détaillée de l'invention Detailed description of the invention
L'invention concerne un procédé d'hydrodésulfuration d'une coupe essence contenant des composés soufrés et des oléfines dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, ledit catalyseur comprend un support d’oxyde, du soufre et une phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, ledit catalyseur contenant entre outre un matériau graphitique contenant du carbone et de l’hydrogène, ledit catalyseur étant caractérisé en spectroscopie RMN 13C MAS par un rapport SAromatiques/SAiiphatiques de la surface de pic SAromatiques dans une gamme de déplacements chimiques de 100 à 160 ppm à la surface de pic emphatiques dans une gamme de déplacements chimiques de 0 à 60 ppm supérieur à 4. Le procédé d'hydrodésulfuration selon l'invention permet de transformer les composés organo-soufrés d'une coupe essence en sulfure d'hydrogène (H2S) tout en limitant autant que possible l'hydrogénation des oléfines présentes dans ladite coupe. The invention relates to a process for the hydrodesulphurization of a gasoline cut containing sulfur compounds and olefins, in which said gasoline cut is brought into contact with hydrogen and a catalyst, said process being carried out at a temperature of between 200 and 400° C., a total pressure of between 1 and 3 MPa, an hourly volumetric speed, defined as being the volume flow rate of charge relative to the volume of catalyst, of between 1 and 10 h 1 , and a volume ratio of hydrogen/gasoline charge comprised between 100 and 1200 NL/L, said catalyst comprises an oxide support, sulfur and an active phase comprising at least one metal from group VIB and at least one metal from group VIII, said catalyst further comprising a graphitic material containing carbon and hydrogen, said catalyst being characterized in 13 C MAS NMR spectroscopy by a S A aromatic/S A iiphatic ratio of the S Aromatic peak surface in a range of chemical shifts d e 100 to 160 ppm at the surface of emphatic peaks in a range of chemical shifts from 0 to 60 ppm greater than 4. The hydrodesulphurization process according to the invention makes it possible to transform the organosulfur compounds of a gasoline cut into hydrogen sulphide (H2S) while limiting as much as possible the hydrogenation of the olefins present in said cut.
Le procédé d'hydrodésulfuration comprend la mise en contact de la coupe d’essence contenant des composés soufrés et des oléfines avec le catalyseur et de l'hydrogène dans les conditions suivantes : The hydrodesulfurization process includes bringing the gasoline cut containing sulfur compounds and olefins into contact with the catalyst and hydrogen under the following conditions:
- une température comprise entre 200 et 400°C, de préférence comprise entre 230 et 330°C ; - a temperature between 200 and 400°C, preferably between 230 and 330°C;
- à une pression totale comprise entre 1 et 3 MPa, de préférence comprise entre 1,5 et 2,5 MPa ; - at a total pressure of between 1 and 3 MPa, preferably between 1.5 and 2.5 MPa;
- une Vitesse Volumique Horaire (WH), définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, de préférence comprise entre 2 et 6 h 1 ; - an Hourly Volume Rate (WH), defined as being the volume flow rate of charge relative to the volume of catalyst, between 1 and 10 h 1 , preferably between 2 and 6 h 1 ;
- un rapport volumique hydrogène/charge essence compris entre 100 et 1200 N L/L, de préférence compris entre 150 et 400 N L/L. - a hydrogen/petrol feedstock ratio of between 100 and 1200 N L/L, preferably between 150 and 400 N L/L.
Le procédé d'hydrodésulfuration catalytique peut être réalisé dans un ou plusieurs réacteurs en série du type lit fixe ou du type lit bouillonnant. Si le procédé est mis en œuvre au moyen d'au moins deux réacteurs en série, il est possible de prévoir un dispositif d'élimination de l'H2S de l'effluent issu du premier réacteur d'hydrodésulfuration avant de traiter ledit effluent dans le deuxième réacteur d'hydrodésulfuration. Les conditions opératoires dans les deux réacteurs peuvent être identiques ou non. The catalytic hydrodesulphurization process can be carried out in one or more reactors in series of the fixed bed type or of the bubbling bed type. If the process is implemented by means of at least two reactors in series, it is possible to provide a device for removing H2S from the effluent from the first hydrodesulphurization reactor before treating said effluent in the second hydrodesulfurization reactor. The operating conditions in the two reactors may or may not be identical.
Charge à traiter Load to be processed
Le procédé selon l'invention permet de traiter tout type de coupe essence contenant des composés soufrés et des oléfines, telle que par exemple une coupe issue d’une unité de cokéfaction (coking selon la terminologie anglo-saxonne), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo-saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). Cette essence peut éventuellement être composée d’une fraction significative d’essence provenant d’autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage). Ladite charge est de préférence constituée d’une coupe essence issue d’une unité de craquage catalytique. The process according to the invention makes it possible to treat any type of gasoline cut containing sulfur compounds and olefins, such as for example a cut from a coking unit (coking according to the Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology). This gasoline may optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline resulting from direct distillation (or straight run gasoline according to the Anglo-Saxon terminology) or conversion processes (gasoline from coking or steam cracking). Said charge preferably consists of a gasoline cut from a catalytic cracking unit.
La charge est avantageusement une coupe essence contenant des composés soufrés et des oléfines et a une température d’ébullition comprise entre 30 et inférieure à 250°C, de préférence entre 35°C et 240°C, et de manière préférée entre 40°C et 220°C. The feed is advantageously a gasoline cut containing sulfur compounds and olefins and has a boiling point of between 30 and less than 250°C, preferably between 35°C and 240°C, and preferably between 40°C and 220°C.
La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée par le FCC, de la présence ou non d’un prétraitement de la charge du FCC, ainsi que du point final de la coupe. Généralement, les teneurs en soufre de l'intégralité d’une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles peuvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids. The sulfur content of gasoline cuts produced by catalytic cracking (FCC) depends on the sulfur content of the FCC-treated feedstock, the presence or not of a pretreatment of the FCC feedstock, as well as the end point of the chopped off. Generally, the sulfur contents of an entire gasoline cut, in particular those coming from the FCC, are above 100 ppm by weight and most of the time above 500 ppm by weight. For gasolines having end points higher than 200° C., the sulfur contents are often higher than 1000 ppm by weight, they can even in certain cases reach values of the order of 4000 to 5000 ppm by weight.
Par ailleurs les essences issues d'unités de craquage catalytique (FCC) contiennent, en moyenne, entre 0,5% et 5% poids de dioléfines, entre 20% et 50% poids d'oléfines, entre 10 ppm et 0,5% poids de soufre dont généralement moins de 300 ppm de mercaptans. Les mercaptans se concentrent généralement dans les fractions légères de l'essence et plus précisément dans la fraction dont la température d'ébullition est inférieure à 120°C. In addition, gasolines from catalytic cracking units (FCC) contain, on average, between 0.5% and 5% by weight of diolefins, between 20% and 50% by weight of olefins, between 10 ppm and 0.5% weight of sulfur of which generally less than 300 ppm of mercaptans. Mercaptans are generally concentrated in the light fractions of gasoline and more specifically in the fraction whose boiling point is below 120°C.
Il est à noter que les composés soufrés présents dans l'essence peuvent également comprendre des composés soufrés hétérocycliques, tels que par exemple les thiophènes, les alkylthiophènes ou des benzothiophènes. It should be noted that the sulfur compounds present in gasoline can also comprise heterocyclic sulfur compounds, such as for example thiophenes, alkylthiophenes or benzothiophenes.
De préférence, l’essence traitée par le procédé selon l’invention est une essence lourde (ou HCN pour Heavy Cracked Naphtha selon la terminologie anglo-saxonne) issue d’une étape de distillation visant à séparer une coupe large de l’essence issue d’un procédé de craquage (ou FRCN pour Full Range Cracked Naphtha selon la terminologie anglo-saxonne) en une essence légère (LCN pour Light Cracked Naphtha selon la terminologie anglo-saxonne) et une essence lourde HCN. Le point de coupe de l’essence légère et de l’essence lourde est déterminé afin de limiter la teneur en soufre de l’essence légère et de permettre son utilisation dans le pool essence de préférence sans post traitement supplémentaire. De façon avantageuse, la coupe large FRCN est soumise à une étape d’hydrogénation sélective décrite ci-après avant l’étape de distillation de manière à hydrogéner au moins partiellement les dioléfines et réaliser une réaction d'alourdissement d'une partie des composés soufrés. Preferably, the gasoline treated by the process according to the invention is a heavy gasoline (or HCN for Heavy Cracked Naphtha according to the Anglo-Saxon terminology) resulting from a distillation step aimed at separating a large cut from the gasoline resulting a cracking process (or FRCN for Full Range Cracked Naphtha according to the Anglo-Saxon terminology) into a light gasoline (LCN for Light Cracked Naphtha according to the Anglo-Saxon terminology) and a heavy gasoline HCN. The cut point of light gasoline and heavy gasoline is determined in order to limit the sulfur content of light gasoline and to allow its use in the gasoline pool preferably without additional post-treatment. Advantageously, the large FRCN cut is subjected to a selective hydrogenation step described below before the distillation step so as to at least partially hydrogenate the diolefins and carry out a reaction of weighting down part of the sulfur compounds. .
A cette fin, la coupe large FRCN est envoyée dans un réacteur catalytique d'hydrogénation sélective contenant au moins un lit fixe ou mobile de catalyseur d'hydrogénation sélective des dioléfines et d'alourdissement des mercaptans. La réaction d'hydrogénation sélective des dioléfines et d'alourdissement des mercaptans s’effectue préférentiellement sur un catalyseur sulfuré comprenant au moins un élément du groupe VIII et éventuellement au moins un élément du groupe VIB et un support d’oxyde. L'élément du groupe VIII est choisi de préférence parmi le nickel et le cobalt et en particulier le nickel. L'élément du groupe VIB, lorsqu'il est présent, est de préférence choisi parmi le molybdène et le tungstène et de manière très préférée le molybdène. Le support d’oxyde du catalyseur d'hydrogénation sélective est de préférence choisi parmi l'alumine, l'aluminate de nickel, la silice, le carbure de silicium, ou un mélange de ces oxydes. On utilise, de manière préférée, de l'alumine et de manière encore plus préférée, de l'alumine de haute pureté. Selon un mode de réalisation préféré le catalyseur d'hydrogénation sélective contient du nickel à une teneur en poids d'oxyde de nickel (sous forme NiO) comprise entre 1 et 12%, et du molybdène à une teneur en poids d'oxyde de molybdène (sous forme M0O3) comprise entre 6% et 18% et un rapport molaire nickel/molybdène compris entre 0,3 et 2,5, les métaux étant déposés sur un support constitué d'alumine et dont le taux de sulfuration des métaux constituant le catalyseur étant supérieur à 50%. To this end, the large FRCN cut is sent to a selective hydrogenation catalytic reactor containing at least one fixed or moving bed of catalyst for the selective hydrogenation of the diolefins and for the weighting down of the mercaptans. The reaction of selective hydrogenation of diolefins and weighting of mercaptans is preferably carried out on a sulfur catalyst comprising at least one element from group VIII and optionally at least one element from group VIB and an oxide support. The group VIII element is preferably chosen from nickel and cobalt and in particular nickel. The element of group VIB, when it is present, is preferably chosen from molybdenum and tungsten and very preferably molybdenum. The oxide support of the selective hydrogenation catalyst is preferably chosen from alumina, nickel aluminate, silica, silicon carbide, or a mixture of these oxides. Preferably, alumina is used and even more preferably, high purity alumina. According to a preferred embodiment, the selective hydrogenation catalyst contains nickel at a content by weight of nickel oxide (in NiO form) of between 1 and 12%, and molybdenum at a content by weight of molybdenum oxide (in M0O3 form) of between 6% and 18% and a nickel/molybdenum molar ratio of between 0.3 and 2.5, the metals being deposited on a support consisting of alumina and the sulfurization rate of the metals constituting the catalyst being greater than 50%.
Lors de l'étape optionnelle d'hydrogénation sélective, l'essence est mise en contact avec le catalyseur à une température comprise entre 50°C et 250°C, et de préférence entre 80°C et 220°C, et de manière encore plus préférée entre 90°C et 200°C, avec une vitesse spatiale liquide (LHSV) comprise entre 0,5 fr1 et 20 h 1, l'unité de la vitesse spatiale liquide étant le litre de charge par litre de catalyseur et par heure (L/L. h). La pression est comprise entre 0,4 MPa et 5 MPa, de préférence entre 0,6 et 4 MPa et de manière encore plus préférée entre 1 et 2 MPa. L’étape optionnelle d'hydrogénation sélective est typiquement réalisée avec un rapport hVcharge essence compris entre 2 et 100 Nm3 d'hydrogène par m3 de charge, de manière préférée entre 3 et 30 Nm3 d'hydrogène par m3 de charge. During the optional selective hydrogenation step, the gasoline is brought into contact with the catalyst at a temperature of between 50° C. and 250° C., and preferably between 80° C. and 220° C., and even more more preferably between 90°C and 200°C, with a liquid space velocity (LHSV) of between 0.5 fr 1 and 20 h 1 , the unit of the liquid space velocity being the liter of charge per liter of catalyst and per time (L/L.h). The pressure is between 0.4 MPa and 5 MPa, preferably between 0.6 and 4 MPa and even more preferably between 1 and 2 MPa. The optional selective hydrogenation step is typically carried out with a gasoline hVcharge ratio of between 2 and 100 Nm 3 of hydrogen per m 3 of charge, preferably between 3 and 30 Nm 3 of hydrogen per m 3 of charge.
Catalyseur Catalyst
Le catalyseur du procédé selon l’invention comprend un support d’oxyde, du soufre et une phase active comprenant au moins un métal du groupe VI B et au moins un métal du groupe VIII, ledit catalyseur contenant entre outre un matériau graphitique. Il peut en plus comprendre du phosphore et/ou un composé organique tel que décrit ci-après. The catalyst of the process according to the invention comprises an oxide support, sulfur and an active phase comprising at least one metal from group VI B and at least one metal from group VIII, said catalyst additionally containing a graphitic material. It may additionally comprise phosphorus and/or an organic compound as described below.
Le support d’oxyde dudit catalyseur du procédé selon l'invention est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine. The oxide support of said catalyst of the process according to the invention is usually a porous solid chosen from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or mixed with the alumina or silica alumina.
Le support d’oxyde présente avantageusement un volume poreux total compris entre 0,1 et 1 ,5 mL/g, de préférence entre 0,4 et 1,1 mL/g. The oxide support advantageously has a total pore volume of between 0.1 and 1.5 mL/g, preferably between 0.4 and 1.1 mL/g.
Le support d’oxyde présente avantageusement une surface spécifique comprise entre 5 et 400 m2.g-1, de préférence entre 10 et 350 m2.g-1, de manière plus préférée entre 40 et 350 m2.g-1. The oxide support advantageously has a specific surface of between 5 and 400 m 2 .g- 1 , preferably between 10 and 350 m 2 .g- 1 , more preferably between 40 and 350 m 2 .g- 1 .
Il est de préférence choisi dans le groupe constitué par : la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support d’oxyde est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il est de préférence constitué uniquement d'une alumine de transition. De manière préférée, le support d’oxyde dudit catalyseur du procédé selon l'invention est une alumine de phase gamma. It is preferably chosen from the group consisting of: silica, the family of transition aluminas and alumina silicas, very preferably, the oxide support consists essentially of at least one transition alumina, i.e. that is to say that it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight, of transition alumina. It preferably consists solely of a transition alumina. Preferably, the oxide support of said catalyst of the process according to the invention is a gamma phase alumina.
Dans un autre cas préféré, l’oxyde présent dans le support dudit catalyseur du procédé selon l'invention est une silice-alumine contenant au moins 50 % poids d'alumine par rapport au poids total du support composite. La teneur en silice dans le support est d'au plus 50% poids par rapport au poids total du support, le plus souvent inférieure ou égale à 45% poids, de préférence inférieure ou égale à 40%. Les sources de silicium sont bien connues de l'Homme du métier. On peut citer à titre d'exemple l'acide silicique, la silice sous forme de poudre ou sous forme colloïdale (sol de silice), le tétraéthylorthosilicate Si(OEt)4. In another preferred case, the oxide present in the support of said catalyst of the process according to the invention is a silica-alumina containing at least 50% by weight of alumina relative to the total weight of the composite support. The silica content in the support is at most 50% by weight relative to the total weight of the support, usually less than or equal to 45% by weight, preferably less than or equal to 40%. Silicon sources are well known to those skilled in the art. Mention may be made, by way of example, of silicic acid, silica in powder form or in colloidal form (silica sol), tetraethylorthosilicate Si(OEt)4.
Lorsque le support dudit catalyseur est à base de silice, il contient plus de 50 % poids de silice par rapport au poids total du support et, de façon générale, il contient uniquement de la silice. When the support of said catalyst is based on silica, it contains more than 50% by weight of silica relative to the total weight of the support and, in general, it contains only silica.
Selon une variante particulièrement préférée, le support est constitué d’alumine, de silice ou de silice-alumine. According to a particularly preferred variant, the support consists of alumina, silica or silica-alumina.
Le support peut contenir aussi au moins une partie de(s) métal (métaux) VIB et VIII, et/ou au moins une partie du matériau graphitique et/ou au moins une partie de(s) dopant(s) dont le phosphore et/ou au moins une partie du soufre et/ou au moins une partie de(s) composé(s) organique(s) contenant de l’oxygène et/ou de l’azote et/ou du soufre qui ont été introduits en- dehors des imprégnations (introduits par exemple lors de la préparation du support). The support may also contain at least a part of metal(s) VIB and VIII, and/or at least a part of the graphitic material and/or at least a part of the dopant(s) including phosphorus and / or at least a part of the sulfur and/or at least a part of the organic compound(s) containing oxygen and/or nitrogen and/or sulfur which have been introduced in- apart from impregnations (introduced for example during the preparation of the support).
Le support se présente avantageusement sous forme de billes, d'extrudés, de pastilles ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. The support is advantageously in the form of beads, extrudates, pellets or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
La phase active du catalyseur comprend au moins un métal du groupe VIB et au moins un métal du groupe VIII. Le métal du groupe VIB présent dans la phase active du catalyseur est préférentiellement choisi parmi le molybdène et le tungstène. Le métal du groupe VIII présent dans la phase active du catalyseur est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux éléments. La phase active du catalyseur est choisie de préférence dans le groupe formé par la combinaison des éléments nickel-molybdène, cobalt- molybdène et nickel-cobalt-molybdène et de manière très préférée la phase active est constituée de cobalt et de molybdène. The active phase of the catalyst comprises at least one metal from group VIB and at least one metal from group VIII. The group VIB metal present in the active phase of the catalyst is preferably chosen from molybdenum and tungsten. The group VIII metal present in the active phase of the catalyst is preferably chosen from cobalt, nickel and a mixture of these two elements. The active phase of the catalyst is preferably chosen from the group formed by the combination of the elements nickel-molybdenum, cobalt-molybdenum and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum.
La teneur en métal du groupe VIII est comprise entre 1 et 10% poids exprimée en oxyde de métal du groupe VIII par rapport au poids total du catalyseur, de préférence comprise entre 1 ,5 et 9 % poids, et de préférence comprise entre 2 et 8% poids. Lorsque le métal est le cobalt ou le nickel, la teneur en métal s’exprime en CoO ou NiO respectivement. The group VIII metal content is between 1 and 10% by weight, expressed as group VIII metal oxide relative to the total weight of the catalyst, preferably between 1.5 and 9% by weight, and preferably between 2 and 8% weight. When the metal is cobalt or nickel, the metal content is expressed as CoO or NiO respectively.
La teneur en métal du groupe VIB est comprise entre 5 et 40 % poids exprimée en oxyde de métal du groupe VIB par rapport au poids total du catalyseur, de préférence comprise entre 8 et 35 % poids, de manière très préférée comprise entre 10 et 30 % poids. Lorsque le métal est le molybdène ou le tungstène, la teneur en métal s’exprime en M0O3 ou WO3 respectivement. The group VIB metal content is between 5 and 40% by weight, expressed as group VIB metal oxide relative to the total weight of the catalyst, preferably between 8 and 35% by weight, very preferably between 10 and 30 % weight. When the metal is molybdenum or tungsten, the metal content is expressed as M0O 3 or WO 3 respectively.
Le rapport molaire métal du groupe VIII sur métal du groupe VI B dans le catalyseur est préférentiellement compris entre 0,1 et 0,8, de préférence compris entre 0,15 et 0,6 et de manière encore plus préférée compris entre 0,15 et 0,45. The molar ratio of group VIII metal to group VI B metal in the catalyst is preferably between 0.1 and 0.8, preferably between 0.15 and 0.6 and even more preferably between 0.15 and 0.45.
Le catalyseur du procédé selon l’invention comprend un matériau graphitique. On entend par matériau graphitique un matériau issu d’une carbonisation d’un ou de composé(s) hydrocarboné(s). Le matériau graphitique peut aussi être du coke formé sur le catalyseur lors son utilisation dans un procédé d’hydrotraitement au préalable. On notera que le terme " matériau graphitique " dans la présente demande désigne une substance à base d’ hydrocarbures déposée sur la surface du catalyseur ou du support d’oxyde, fortement cyclisée et condensée et ayant une apparence similaire au graphite. The catalyst of the process according to the invention comprises a graphitic material. By graphitic material is meant a material resulting from the carbonization of one or more hydrocarbon compound(s). The graphitic material can also be coke formed on the catalyst during its use in a hydrotreating process beforehand. It will be noted that the term "graphitic material" in the present application means a hydrocarbon-based substance deposited on the surface of the catalyst or the oxide support, strongly cyclized and condensed and having an appearance similar to graphite.
Il est important de souligner que le carbone du matériau graphitique n’est pas (ou plus) sous la forme d'une molécule organique. Cependant, le catalyseur peut contenir, en plus du matériau graphitique, un composé organique (additif) telle que décrit ci-dessous. It is important to emphasize that the carbon of the graphitic material is not (or no longer) in the form of an organic molecule. However, the catalyst may contain, in addition to the graphitic material, an organic compound (additive) as described below.
La teneur en carbone, exprimée en élément carbone, est généralement comprise entre 5 et 20 % poids, de préférence entre 7 et 18 % poids et de manière très préférée entre 10 et 15 % poids par rapport au poids total du catalyseur. The carbon content, expressed as carbon element, is generally between 5 and 20% by weight, preferably between 7 and 18% by weight and very preferably between 10 and 15% by weight relative to the total weight of the catalyst.
La teneur en carbone du catalyseur selon l’invention se réfère à la teneur en carbone du catalyseur sans prise en compte du carbone contenu dans un éventuel additif organique contenu dans ledit catalyseur. A cette fin, la teneur en carbone est déterminée selon la méthode ASTM D5373 après prétraitement du catalyseur sous flux d’air sec à 300°C pendant 2 heures et un débit de 2 L/h/g. The carbon content of the catalyst according to the invention refers to the carbon content of the catalyst without taking into account the carbon contained in any organic additive contained in said catalyst. To this end, the carbon content is determined according to the ASTM D5373 method after pretreatment of the catalyst under a stream of dry air at 300°C for 2 hours and a flow rate of 2 L/h/g.
La teneur en carbone se réfère au catalyseur en début du procédé d’hydrodésulfuration. Au cours du temps du procédé, la teneur en carbone peut augmenter dû au dépôt de coke.The carbon content refers to the catalyst at the start of the hydrodesulfurization process. As the process progresses, the carbon content may increase due to coke deposition.
La nature du matériau graphitique est caractérisée par spectroscopie RMN 13C MAS, notamment par un rapport SAromatiques/SAiiphatiques de la surface de pic SAromatiques dans une gamme de déplacements chimiques de 100 à 160 ppm à la surface de pic Statiques dans une gamme de déplacements chimiques de 0 à 60 ppm supérieur à 4, de préférence supérieur à 4,5, et de manière très préférée compris entre 5 et 15. The nature of the graphitic material is characterized by 13 C MAS NMR spectroscopy, in particular by a SAromatic/SAiiphatic ratio of the S Aromatic peak surface in a range of chemical shifts from 100 to 160 ppm at the St atic peak surface in a range of chemical shifts from 0 to 60 ppm greater than 4, preferably greater than 4.5, and very preferably between 5 and 15.
Les expériences RMN du 13C ont été réalisées à température ambiante à l’aide d’un spectromètre Bruker™ Avance 400 MHz (9,4 T) équipé d’une sonde 4 mm en rotation à l’angle magique (54,74°). La fréquence d’observation du 13C à 9,4 T est de 100,6 MHz. Les échantillons sous forme de poudre ont été conditionnés en rotor d’oxyde de zirconium (ZrC>2) de 4 mm de diamètre permettant l’étude d’environ 100 mg de solide. La séquence d’impulsion utilisée est la séquence HPDEC (découplage des protons a haute puissance ou High-Power Decoupling selon la terminologie anglo-saxonne) qui consiste à appliquer une impulsion de 90° de durée 4 ps sur le noyau 13C, puis à effectuer un découplage 1H SPINAL- 64 (Small Phase INcrementation ALternation with 64 steps selon la terminologie anglo- saxonne) à haute puissance (correspondant à un champ de radio-fréquence de 100 kHz) pendant l’acquisition du signal 13C. Les spectres ont été enregistrés à une vitesse de rotation de 12 kHz avec un délai de relaxation de 60 s. Le signal FID (décroissance libre de l'induction ou Free Induction Decay selon la terminologie anglo-saxonne) est constitué de 1666 points correspondant à un temps d’acquisition de 0,01 s. Le nombre de scans a été fixé à 2252, soit 38 h de durée total d’analyse. Les conditions d’acquisition sont dites quantitatives. Les échelles de déplacement chimique (d) des spectres 13C MAS sont référencées par rapport à l’adamantane (d = 37,85 ppm). L’acquisition et le traitement des spectres RMN (y compris transformée de Fourier, correction de phase de l’ordre 0 et de l’ordre 1 et correction de la ligne de base avec un polynôme d’ordre 5) ont été réalisés à l’aide du logiciel Bruker TopSpin v4.0.3. En utilisant le même logiciel, l’intégration des pics permet d’accéder directement à une teneur relative des carbones aliphatiques (0 - 60 ppm) et des carbones aromatiques (100 - 160 ppm). Les pourcentages représentent le ratio ramené à 100 de la valeur de l’intégration des carbones dans leurs environnements respectifs en fonction de la valeur de l’intégration de l’ensemble des carbones. The 13 C NMR experiments were carried out at room temperature using a Bruker™ Avance 400 MHz (9.4 T) spectrometer equipped with a 4 mm probe rotating at the magic angle (54.74° ). The observation frequency of 13 C at 9.4 T is 100.6 MHz. The samples in powder form were packaged in a zirconium oxide rotor (ZrC>2) 4 mm in diameter allowing the study of approximately 100 mg of solid. The pulse sequence used is the HPDEC sequence (high-power proton decoupling or High-Power Decoupling according to English terminology) which consists of applying a 90° pulse of 4 ps duration to the 13 C nucleus, then to perform a 1 H SPINAL-64 decoupling (Small Phase INcrementation ALternation with 64 steps according to the English terminology) at high power (corresponding to a radio-frequency field of 100 kHz) during the acquisition of the 13 C signal. The spectra were recorded at a rotational speed of 12 kHz with a relaxation time of 60 s. The FID signal (Free Induction Decay or Free Induction Decay according to English terminology) consists of 1666 points corresponding to an acquisition time of 0.01 s. The number of scans was set at 2252, ie 38 hours of total analysis time. The vesting conditions are said to be quantitative. The chemical shift scales (d) of the 13 C MAS spectra are referenced relative to adamantane (d = 37.85 ppm). NMR spectra acquisition and processing (including Fourier transform, 0- and 1-order phase correction, and baseline correction with a 5-order polynomial) were performed at the Bruker TopSpin v4.0.3 software help. Using the same software, peak integration provides direct access to a relative content of aliphatic carbons (0 - 60 ppm) and aromatic carbons (100 - 160 ppm). The percentages represent the ratio reduced to 100 of the value of the integration of the carbons in their respective environments according to the value of the integration of all the carbons.
Le catalyseur du procédé selon l’invention comprend également du soufre. La teneur en soufre dans ledit catalyseur est de préférence comprise entre 1 et 8 % poids exprimée en élément soufre, par rapport au poids total du catalyseur, de préférence entre 1 et 6 %, et de manière très préférée entre 2 et 5 % poids. The catalyst of the process according to the invention also comprises sulphur. The sulfur content in said catalyst is preferably between 1 and 8% by weight expressed as sulfur element, relative to the total weight of the catalyst, preferably between 1 and 6%, and very preferably between 2 and 5% by weight.
La teneur en soufre du catalyseur se réfère à la teneur totale en soufre du catalyseur introduit lors de la formation du matériau graphitique (carbonisation) ou déjà contenu dans un catalyseur usé, avec prise en compte du soufre contenu dans un éventuel additif organique contenu dans ledit catalyseur ou introduit par une éventuelle activation (sulfuration). A cette fin, la teneur en soufre est déterminée selon la méthode ASTM D5373 (classique, c’est-à-dire sans ledit prétraitement du catalyseur effectué pour la mesure de la teneur en carbone). The sulfur content of the catalyst refers to the total sulfur content of the catalyst introduced during the formation of the graphitic material (carbonization) or already contained in a spent catalyst, taking into account the sulfur contained in any organic additive contained in said catalyst or introduced by a possible activation (sulfidation). For this purpose, the sulfur content is determined according to the ASTM D5373 method (conventional, i.e. without the said pretreatment of the catalyst carried out for the measurement of the carbon content).
Le catalyseur du procédé selon l’invention peut également comprendre du phosphore en tant que dopant. Le dopant est un élément ajouté qui en lui-même ne présente aucun caractère catalytique mais qui accroît l’activité catalytique de la phase active. The catalyst of the process according to the invention can also comprise phosphorus as a dopant. The dopant is an added element which in itself has no catalytic character but which increases the catalytic activity of the active phase.
La teneur en phosphore dans ledit catalyseur est de préférence comprise entre 0,1 et 20 % poids exprimée en P2O5 par rapport au poids total du catalyseur, de préférence entre 0,2 et 15 % poids, et de manière très préférée entre 0,3 et 6 % poids. The phosphorus content in said catalyst is preferably between 0.1 and 20% by weight expressed as P2O5 relative to the total weight of the catalyst, preferably between 0.2 and 15% by weight, and very preferably between 0.3 and 6% by weight.
Le catalyseur peut également comprendre en outre au moins un composé organique contenant de l'oxygène et/ou de l'azote et/ou du soufre avant sulfuration. De tels additifs sont décrits par la suite. Lorsque le composé organique est présent, la teneur totale en composé(s) organique(s) contenant de l’oxygène et/ou de l’azote et/ou du soufre présent(s) dans le catalyseur est généralement comprise entre 1 et 30 % poids, de préférence entre 1 ,5 et 25 % poids, et de manière plus préférée entre 2 et 20 % poids par rapport au poids total du catalyseur. The catalyst may also further comprise at least one organic compound containing oxygen and/or nitrogen and/or sulfur before sulfurization. Such additives are described below. When the organic compound is present, the total content of organic compound(s) containing oxygen and/or nitrogen and/or sulfur present in the catalyst is generally between 1 and 30 % by weight, preferably between 1.5 and 25% by weight, and more preferably between 2 and 20% by weight relative to the total weight of the catalyst.
Le catalyseur du procédé selon l’invention présente avantageusement un volume poreux total supérieur ou égal à 0,15 mL/g, de préférence supérieur ou égal à 0,18 mL/g, et de manière particulièrement préférée compris entre 0,2 et 0,5 mL/g. The catalyst of the process according to the invention advantageously has a total pore volume greater than or equal to 0.15 mL/g, preferably greater than or equal to 0.18 mL/g, and particularly preferably between 0.2 and 0 .5mL/g.
Le catalyseur du procédé selon l'invention se caractérise avantageusement par une surface spécifique comprise entre 20 et 200 m2/g, de préférence comprise entre 30 et 180 m2/g, de préférence comprise entre 40 et 160 m2/g, de manière très préférée comprise entre 50 et 150 m2/g. The catalyst of the process according to the invention is advantageously characterized by a specific surface of between 20 and 200 m 2 /g, preferably between 30 and 180 m 2 /g, of preferably between 40 and 160 m 2 /g, very preferably between 50 and 150 m 2 /g.
Le catalyseur du procédé selon l’invention est avantageusement sous forme de grains ayant un diamètre moyen compris entre 0,5 et 10 mm. Les grains peuvent avoir toutes les formes connues de l'Homme du métier, par exemple la forme de billes (ayant de préférence un diamètre compris entre 1 et 6 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, le catalyseur (et le support utilisé pour la préparation du catalyseur) sont soit sous forme d'extrudés de diamètre moyen compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de longueur moyenne comprise entre 0,5 et 20 mm, soit sous forme de billes de diamètre moyen compris entre 0,5 et 10 mm, de préférence entre 1 ,4 et 4 mm. On entend par « diamètre moyen » des extrudés le diamètre moyen du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur. The catalyst of the process according to the invention is advantageously in the form of grains having an average diameter of between 0.5 and 10 mm. The grains can have any shape known to those skilled in the art, for example the shape of beads (preferably having a diameter of between 1 and 6 mm), extrudates, tablets, hollow cylinders. Preferably, the catalyst (and the support used for the preparation of the catalyst) are either in the form of extrudates with an average diameter of between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and of average length between 0.5 and 20 mm, or in the form of beads with an average diameter of between 0.5 and 10 mm, preferably between 1.4 and 4 mm. The term "average diameter" of the extrudates means the average diameter of the circle circumscribed to the cross section of these extrudates. The catalyst can advantageously be presented in the form of cylindrical, multi-lobed, tri-lobed or quadri-lobed extrudates. Preferably, its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
Procédé de préparation du catalyseur Catalyst Preparation Process
Le catalyseur du procédé selon l'invention peut être préparé selon tout mode de préparation d’un catalyseur connu de l’Homme de l'art. The catalyst of the process according to the invention can be prepared according to any mode of preparation of a catalyst known to those skilled in the art.
Le catalyseur du procédé selon l'invention peut être préparé selon un procédé de préparation comprenant les étapes suivantes : a) on met en contact au moins un hydrocarbure et un composé soufré avec ledit support d’oxyde permettant de former ledit matériau graphitique comprenant le carbone et l’hydrogène sur le support d’oxyde, b) puis on met en contact un composé comportant un métal du groupe VI B et un composé comportant un métal du groupe VIII, et optionnellement du phosphore et/ou au moins un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre avec ledit support d’oxyde contenant ledit matériau graphitique, de manière à obtenir un précurseur catalytique, c) on sèche ledit précurseur catalytique à une température inférieure à 200°C sans calcination ultérieure, de manière à obtenir un catalyseur séché, d) on active optionnellement le catalyseur séché en présence d’un agent sulfurant. The catalyst of the process according to the invention can be prepared according to a preparation process comprising the following steps: a) bringing into contact at least one hydrocarbon and one sulfur compound with said oxide support making it possible to form said graphitic material comprising carbon and hydrogen on the oxide support, b) then a compound comprising a metal from group VI B and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing said graphitic material, so as to obtain a catalytic precursor, c) said catalytic precursor is dried at a temperature below 200°C without subsequent calcination, so as to obtain a dried catalyst, d) the dried catalyst is optionally activated in the presence of a sulfurizing agent.
L’étape a) de mise en contact d’au moins un hydrocarbure et un composé soufré avec ledit support d’oxyde permettant de former ledit matériau graphitique peut être effectuée selon différentes variantes. La préparation du support d’oxyde contenant le matériau graphitique peut être réalisée par carbonisation d’un support oxyde par une mise en contact dudit support d’oxyde avec au moins un hydrocarbure choisi parmi les oléfines, les diènes, les mono- et polyaromatiques et un composé soufré, généralement en présence d’un flux gazeux contenant un gaz choisi parmi l’azote ou l’hydrogène. De préférence, ledit hydrocarbure ne contient pas d’oxygène. Step a) of bringing at least one hydrocarbon and one sulfur compound into contact with said oxide support making it possible to form said graphitic material can be carried out according to different variants. The preparation of the oxide support containing the graphitic material can be carried out by carbonization of an oxide support by bringing said oxide support into contact with at least one hydrocarbon chosen from olefins, dienes, mono- and polyaromatics and a sulfur compound, generally in the presence of a gas stream containing a gas chosen from nitrogen or hydrogen. Preferably, said hydrocarbon does not contain oxygen.
Selon une première variante de carbonisation, ledit matériau graphitique est formé par la méthode de dépôt chimique en phase vapeur de composés oléfiniques et/ou dièniques.According to a first variant of carbonization, said graphitic material is formed by the method of chemical vapor deposition of olefinic and/or diene compounds.
Selon cette première variante, le matériau graphitique mis en œuvre dans le procédé selon l'invention est préparé par un procédé comprenant une étape de mise en contact d'un gaz comprenant de l’azote ou de l’hydrogène, un composé soufré, et un ou plusieurs hydrocarbures oléfiniques et/ou dièniques, avec le support d’oxyde à une température comprise entre 500 et 900°C, une pression comprise entre 0,05 et 10 MPa et à durée comprise entre 0,25 et 12 heures. Ledit composé soufré peut être l’hhS ou un composé susceptible de se décomposer en H2S, comme par exemple le diméthyldisulfure. Ledit hydrocarbure oléfinique et/ou diènique est une molécule contenant une ou plusieurs insaturations, avantageusement de type oléfine (éthylène, propylène, butène) ou diène (isoprène, butadiène). According to this first variant, the graphitic material used in the process according to the invention is prepared by a process comprising a step of bringing into contact a gas comprising nitrogen or hydrogen, a sulfur compound, and one or more olefinic and/or diene hydrocarbons, with the oxide support at a temperature comprised between 500 and 900° C., a pressure comprised between 0.05 and 10 MPa and for a duration comprised between 0.25 and 12 hours. Said sulfur compound can be hhS or a compound capable of decomposing into H2S, such as for example dimethyldisulphide. Said olefinic and/or diene hydrocarbon is a molecule containing one or more unsaturations, advantageously of the olefin (ethylene, propylene, butene) or diene (isoprene, butadiene) type.
Selon une deuxième variante de carbonisation, ledit matériau graphitique est formé par réaction d’un ou plusieurs hydrocarbures choisis parmi les composés mono- ou polyaromatiques. Selon cette deuxième variante, le matériau graphitique mis en œuvre dans le procédé selon l'invention est préparé par un procédé comprenant une étape de mise en contact d'un gaz comprenant de l’azote ou de l’hydrogène, un composé soufré, et un ou plusieurs hydrocarbures contenant au moins un noyau aromatique, avec le support d’oxyde à une température comprise entre 300 et 600°C, une pression comprise entre 0,05 et 10 MPa et à durée comprise entre 0,25 et 12 heures. Ledit composé soufré peut être l’h^S ou un composé susceptible de se décomposer en H2S, comme par exemple le diméthyldisulfure. Ledit hydrocarbure est une molécule contenant une ou plusieurs noyaux aromatiques, avantageusement de type monoaromatiques (benzène, toluène, ortho-xylène, méta-xylène, para-xylène, tétraline) ou diaromatiques. According to a second variant of carbonization, said graphitic material is formed by reaction of one or more hydrocarbons chosen from mono- or polyaromatic compounds. According to this second variant, the graphitic material used in the process according to the invention is prepared by a process comprising a step of contacting a gas comprising nitrogen or hydrogen, a sulfur compound, and one or more hydrocarbons containing at least one aromatic nucleus, with the oxide support at a temperature of between 300 and 600° C., a pressure of between 0.05 and 10 MPa and for a duration of between 0.25 and 12 hours. Said sulfur compound may be h^S or a compound capable of decomposing into H2S, such as for example dimethyldisulphide. Said hydrocarbon is a molecule containing one or more aromatic nuclei, advantageously of the monoaromatic (benzene, toluene, ortho-xylene, meta-xylene, para-xylene, tetraline) or diaromatic type.
Selon une troisième variante de carbonisation, ledit matériau graphitique est formé par réaction d’une coupe hydrocarbonée présentant au moins 90% des composés dont la température d’ébullition est comprise entre 250°C et 400°C à pression atmosphérique. According to a third variant of carbonization, said graphitic material is formed by reaction of a hydrocarbon cut having at least 90% of the compounds whose boiling point is between 250° C. and 400° C. at atmospheric pressure.
Cette coupe contient généralement un mélange de plusieurs hydrocarbures mono- ou polyaromatiques, oléfiniques et dièniques. Selon cette troisième variante, le matériau graphitique mis en œuvre dans le procédé selon l'invention est préparé par un procédé comprenant une étape de mise en contact d'un gaz comprenant de l’azote ou de l’hydrogène, d’au moins un composé soufré et d’une coupe hydrocarbonée présentant au moins 90% des composés dont la température d’ébullition est comprise entre 250°C et 400°C à pression atmosphérique, avec le support d’oxyde à une température comprise entre 300 et 600°C, une pression comprise entre 0,05 et 15 MPa et à durée comprise entre 0,25 et 12 heures. Le dit composé soufré peut être l’hhS ou un composé susceptible de se décomposer en H2S, comme par exemple le diméthyldisulfure, ou tout autre composé contenant du soufre comme le thiophène, les alkyls thiophènes, le benzothiophène, les alkyls benzothiophènes, le dibenzothiophène ou les alkyls dibenzothiophènes. De préférence, ladite coupe ne contient pas d’oxygène. This cut generally contains a mixture of several mono- or polyaromatic, olefinic and diene hydrocarbons. According to this third variant, the graphitic material used in the method according to the invention is prepared by a method comprising a step of bringing into contact a gas comprising nitrogen or hydrogen, at least one sulfur compound and a hydrocarbon fraction having at least 90% of the compounds whose boiling point is between 250°C and 400°C at atmospheric pressure, with the oxide support at a temperature between 300 and 600° C, a pressure of between 0.05 and 15 MPa and a duration of between 0.25 and 12 hours. Said sulfur compound can be hhS or a compound capable of decomposing into H2S, such as dimethyldisulphide, or any other compound containing sulfur such as thiophene, alkyl thiophenes, benzothiophene, alkyl benzothiophenes, dibenzothiophene or alkyl dibenzothiophenes. Preferably, said cut does not contain oxygen.
Selon l’étape b) du procédé de préparation du catalyseur utilisé selon le procédé de l’invention, on met en contact un composé comportant un métal du groupe VIB et un composé comportant un métal du groupe VIII, et optionnellement du phosphore et/ou au moins un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre avec ledit support d’oxyde contenant le matériau graphitique. According to step b) of the process for preparing the catalyst used according to the process of the invention, a compound comprising a metal from group VIB and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing the graphitic material.
La mise en contact d'au moins un composé comportant un métal du groupe VIB et d’au moins un composé comportant un métal du groupe VIII avec ledit support d’oxyde contenant le matériau graphitique peut avantageusement être réalisée par toute technique connue de l'Homme du métier, comme par exemple l'échange ionique, l'imprégnation à sec, l'imprégnation par excès, le dépôt en phase vapeur, etc. La mise en contact peut se dérouler en une étape ou en plusieurs étapes successives. Selon un mode préféré, ladite ou lesdites étapes de mise en contact est (sont) effectuée(s) par la méthode d'imprégnation dite "à sec" bien connue de l'Homme du métier en mettant en contact une solution d’imprégnation contenant un composé comportant un métal du groupe VIII et un composé comportant un métal du groupe VI B avec ledit support d’oxyde contenant le matériau graphitique. Bringing at least one compound comprising a group VIB metal and at least one compound comprising a group VIII metal into contact with said oxide support containing the graphitic material can advantageously be carried out by any technique known to the Those skilled in the art, such as ion exchange, dry impregnation, excess impregnation, vapor deposition, etc. The bringing into contact can take place in one step or in several successive steps. According to a preferred mode, said one or more contacting steps is (are) carried out by the so-called "dry" impregnation method well known to those skilled in the art by bringing into contact an impregnation solution containing a compound comprising a group VIII metal and a compound comprising a Group VI B metal with said oxide support containing the graphitic material.
La mise en contact fait avantageusement intervenir un précurseur desdits métaux. The bringing into contact advantageously involves a precursor of said metals.
A titre d'exemple, parmi les sources de molybdène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, l'acide phosphomolybdique (H3PM012O40), et leurs sels, et éventuellement l'acide silicomolybdique (H4SNVI012O40) et ses sels. Les sources de molybdène peuvent être également tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, Anderson, Strandberg, par exemple. On utilise de préférence le trioxyde de molybdène et les hétéropolycomposés de type Keggin, Keggin lacunaire, Keggin substitué et Strandberg. By way of example, among the sources of molybdenum, use may be made of oxides and hydroxides, molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid (H 3 PM0 12 O 40 ), and their salts, and optionally silicomolybdic acid (H 4 SNVI0 12 O 40 ) and its salts. The sources of molybdenum can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson, Anderson, Strandberg type, for example. Preferably, molybdenum trioxide and the heteropolycompounds of Keggin, lacunary Keggin, substituted Keggin and Strandberg type are used.
Les précurseurs de tungstène qui peuvent être utilisés sont également bien connus de l'homme du métier. Par exemple, parmi les sources de tungstène, on peut utiliser les oxydes et hydroxydes, les acides tungstiques et leurs sels en particulier les sels d'ammonium tels que le tungstate d'ammonium, le métatungstate d'ammonium, l'acide phosphotungstique et leurs sels, et éventuellement l'acide silicotungstique (H4S1W12O40) et ses sels. Les sources de tungstène peuvent également être tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, par exemple. On utilise de préférence les oxydes et les sels d'ammonium tel que le métatungstate d'ammonium ou les hétéropolyanions de type Keggin, Keggin lacunaire ou Keggin substitué. The tungsten precursors which can be used are also well known to those skilled in the art. For example, among the sources of tungsten, it is possible to use oxides and hydroxides, tungstic acids and their salts, in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and their salts, and optionally silicotungstic acid (H 4 S1W 12 O 40 ) and its salts. The tungsten sources can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson type, for example. Preferably, ammonium oxides and salts are used, such as ammonium metatungstate or heteropolyanions of Keggin, lacunary Keggin or substituted Keggin type.
Les précurseurs de cobalt qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. L'hydroxyde de cobalt et le carbonate de cobalt sont utilisés de manière préférée. The cobalt precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Cobalt hydroxide and cobalt carbonate are preferably used.
Les précurseurs de nickel qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple.The nickel precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example.
Toute solution d'imprégnation décrite dans la présente invention peut comprendre tout solvant protique polaire connu de l'homme du métier. De manière préférée, on utilise un solvant protique polaire, par exemple choisi dans le groupe formé par le méthanol, l'éthanol, et l'eau. De manière préférée, la solution d’imprégnation comprend un mélange eau-éthanol ou eau-méthanol en tant que solvants afin de faciliter l’imprégnation du composé contenant un métal du groupe VIB et du composé contenant un métal du groupe VIII (et éventuellement du phosphore et/ou d’un composé organique tel que décrit ci-dessous) sur le support d’oxyde contenant le matériau graphitique et qui est donc en partie hydrophobe. De préférence, le solvant utilisé dans la solution d’imprégnation est constitué d’un mélange eau- éthanol ou eau-méthanol. Any impregnation solution described in the present invention can comprise any polar protic solvent known to those skilled in the art. Preferably, a polar protic solvent is used, for example chosen from the group formed by methanol, ethanol, and water. Preferably, the impregnation solution comprises a water-ethanol or water-methanol mixture as solvents in order to facilitate the impregnation of the compound containing a metal from group VIB and of the compound containing a metal from group VIII (and optionally the phosphorus and/or an organic compound as described below) on the oxide support containing the graphitic material and which is therefore partly hydrophobic. Preferably, the solvent used in the impregnation solution consists of a water-ethanol or water-methanol mixture.
Selon une autre variante, l’étape de mise en contact b) peut également comprendre la mise en contact du support d’oxyde contenant le matériau graphitique avec une solution d’imprégnation contenant du phosphore, en plus du composé comportant un métal du groupe VIB et du composé comportant un métal du groupe VIII. According to another variant, the contacting step b) can also comprise bringing the oxide support containing the graphitic material into contact with an impregnating solution containing phosphorus, in addition to the compound comprising a group VIB metal. and the compound comprising a Group VIII metal.
Le rapport molaire phosphore sur l’élément du groupe VIB dans le catalyseur est supérieur ou égal à 0,05, de préférence supérieur ou égal à 0,07, de préférence compris entre 0,08 et 1, de préférence compris entre 0,1 et 0,9 et de manière très préférée compris entre 0,15 et 0,6. The phosphorus molar ratio to the group VIB element in the catalyst is greater than or equal to 0.05, preferably greater than or equal to 0.07, preferably between 0.08 and 1, preferably between 0.1 and 0.9 and very preferably between 0.15 and 0.6.
Le précurseur de phosphore préféré est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut également être introduit en même temps que le(s) élément(s) du groupe VIB sous la forme d'hétéropolyanions de Keggin, Keggin lacunaire, Keggin substitué ou de type Strandberg.The preferred phosphorus precursor is orthophosphoric acid H 3 PO 4 , but its salts and esters such as ammonium phosphates are also suitable. The phosphorus can also be introduced at the same time as the element(s) of group VIB in the form of heteropolyanions of Keggin, lacunary Keggin, substituted Keggin or of the Strandberg type.
Selon une autre variante encore, l’étape de mise en contact b) peut également comprendre la mise en contact du support d’oxyde contenant le matériau graphitique avec une solution d’imprégnation contenant un composé organique contenant de l’oxygène et/ou de l’azote et/ou du soufre, en plus du composé comportant un métal du groupe VIB, du composé comportant un métal du groupe VIII et éventuellement du phosphore. La fonction des additifs ou composés organiques est d’augmenter l’activité catalytique par rapport aux catalyseurs non additivés. Ledit composé organique est préférentiellement imprégné sur ledit catalyseur après solubilisation en solution aqueuse ou non aqueuse. According to yet another variant, the contacting step b) can also comprise bringing the oxide support containing the graphitic material into contact with an impregnating solution containing an organic compound containing oxygen and/or nitrogen and/or sulfur, in addition to the compound comprising a metal from group VIB, the compound comprising a metal from group VIII and optionally phosphorus. The function of additives or organic compounds is to increase the catalytic activity compared to catalysts without additives. Said organic compound is preferentially impregnated on said catalyst after solubilization in aqueous or non-aqueous solution.
Dans ce cas, le rapport molaire du composé organique ajouté par métal du groupe VIB en solution est compris entre 0,01 à 5 mol/mol, de préférence compris entre 0,05 à 3 mol/mol, de manière préférée compris entre 0,05 et 2 mol/mol et de manière très préférée, compris entre 0,1 et 1,5 mol/mol. In this case, the molar ratio of the organic compound added per group VIB metal in solution is between 0.01 and 5 mol/mol, preferably between 0.05 and 3 mol/mol, preferably between 0.05 and 2 mol/mol and very preferably between 0.1 and 1.5 mol/mol.
Lorsque plusieurs composés organiques sont présents, les différents rapports molaires s’appliquent pour chacun des composés organiques présents. When more than one organic compound is present, the different molar ratios apply for each of the organic compounds present.
Généralement, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée et amide, ou un composé incluant un cycle furanique ou encore un sucre. Generally, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide, or a compound including a furan ring or even a sugar.
Le composé organique contenant de l’oxygène peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, éther, aldéhyde, cétone, ester ou carbonate ou encore les composés incluant un cycle furanique ou encore les sucres. On entend ici par un composé organique contenant de l’oxygène un composé ne comportant pas d’autre hétéroatome. A titre d’exemple, le composé organique contenant de l’oxygène peut être l’un ou plusieurs choisis dans le groupe constitué par l’éthylèneglycol, le diéthylèneglycol, le triéthylèneglycol, un polyéthylèneglycol (avec un poids moléculaire compris entre 200 et 1500 g/mol), le propylèneglycol, le 2-butoxyéthanol, 2-(2-butoxyéthoxy)éthanol, 2-(2-méthoxyéthoxy)éthanol, le triéthylèneglycoldiméthyléther, le glycérol, l’acétophénone, la 2,4-pentanedione, la pentanone, l’acide acétique, l’acide oxalique, l’acide maléique, l’acide malique, l’acide malonique, l’acide oxalique, l’acide gluconique, l’acide tartrique, l’acide citrique, l’acide y- cétovalérique, un succinate de dialkyle C1-C4 et plus particulièrement le succinate de diméthyle, l’acétoacétate de méthyle, l’acétoacétate d’éthyle, le 3-oxobutanoate de 2- méthoxyéthyle, le 3-oxobutanoate de 2-méthacryloyloxyéthyle, le dibenzofurane, un éther couronne, l’acide orthophtalique, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, la g-valérolactone, la 2-acétylbutyrolactone, le carbonate de propylène, le 2-furaldéhyde (aussi connu sous le nom furfural), le 5-hydroxyméthylfurfural (aussi connu sous le nom 5- (hydroxyméthyl)-2-furaldéhyde ou 5-HMF), le 2-acétylfurane, le 5-méthyl-2-furaldéhyde, le 2- furoate de méthyle, l’alcool furfurylique (aussi connu sous le nom furfuranol), l’acétate de furfuryle, l’acide ascorbique, le lactate de butyle, le lactate d’éthyle, le butyryllactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3-éthoxypropanoate d’éthyle, le 3- méthoxypropanoate de méthyle, l’acétate de 2-éthoxyéthyle, l’acétate de2-butoxyéthyle, l’acrylate de 2-hydroxyéthyle, le méthacrylate de 2-hydroxyéthyle, le 1,5-pentanediol, le 3- méthyl-1,5-pentanediol, le 1,5-hexanediol, le 3-éthyl-1 ,5-pentanediol, le 2,4-diéthyl-1,5- pentanediol, la 5-méthyl-2(3H)-furanone, le glycolate de butyle, le 4-oxo-pentanoate d’éthyle, le maléate de diéthyle, le maléate de diméthyle, le fumarate de diméthyle, le fumarate de diéthyle, l’adipate de diméthyle, le 3-oxoglutarate de diméthyle, le tartrate de diméthyle, le tartrate de diéthyle, le tartrate de diisopropyle, le tartrate de di-tert-butyle, le malate de diméthyle, le malate de diéthyle, le malate de diisopropyle et le malate de dibutyle. The organic compound containing oxygen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic, alcohol, ether, aldehyde, ketone, ester or carbonate function or else compounds including a furan cycle. or sugars. Here, an organic compound containing oxygen is understood to mean a compound not comprising any other heteroatom. By way of example, the organic compound containing oxygen can be one or more chosen from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, a polyethylene glycol (with a molecular weight of between 200 and 1500 g /mol), propylene glycol, 2-butoxyethanol, 2-(2-butoxyethoxy)ethanol, 2-(2-methoxyethoxy)ethanol, triethyleneglycoldimethylether, glycerol, acetophenone, 2,4-pentanedione, pentanone, acetic acid, oxalic acid, maleic acid, malic acid, malonic acid, oxalic acid, gluconic acid, tartaric acid, citric acid, y-acid ketovaleric, a dialkyl C1-C4 succinate and more particularly dimethyl succinate, methyl acetoacetate, ethyl acetoacetate, 2-methoxyethyl 3-oxobutanoate, 2-methacryloyloxyethyl 3-oxobutanoate, dibenzofuran , a crown ether, orthophthalic acid, glucose, fructose, sucrose, sorbitol, xylito l, g-valerolactone, 2-acetylbutyrolactone, propylene carbonate, 2-furaldehyde (also known as furfural), 5-hydroxymethylfurfural (also known as 5-(hydroxymethyl)-2-furaldehyde or 5-HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, 2-methyl furoate, furfuryl alcohol (also known as furfuranol), furfuryl acetate, ascorbic acid, butyl lactate, ethyl lactate, butyl butyryllactate, ethyl 3-hydroxybutanoate, ethyl 3-ethoxypropanoate, methyl 3-methoxypropanoate, 2-ethoxyethyl acetate, de2-butoxyethyl, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,5-hexanediol, 3-ethyl-1,5-pentanediol , 2,4-diethyl-1,5-pentanediol, 5-methyl-2(3H)-furanone, butyl glycolate, ethyl 4-oxo-pentanoate, diethyl maleate, dimethyl maleate , dimethyl fumarate, diethyl fumarate, dimethyl adipate, dimethyl 3-oxoglutarate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, di-tert-butyl tartrate, malate dimethyl malate, diethyl malate, diisopropyl malate and dibutyl malate.
Le composé organique contenant de l’azote peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction amine ou nitrile. On entend ici par un composé organique contenant de l’azote un composé ne comportant pas d’autre hétéroatome. A titre d’exemple, le composé organique contenant de l’azote peut être l’un ou plusieurs choisis dans le groupe constitué par l’éthylènediamine, la diéthylènetriamine, l’hexaméthylènediamine, la triéthylènetétramine, la tétraéthylènepentamine, la pentaéthylènehexamine, l’acétonitrile, l’octylamine, la guanidine ou un carbazole. The organic compound containing nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from an amine or nitrile function. Here, an organic compound containing nitrogen is understood to mean a compound containing no other heteroatom. By way of example, the organic compound containing nitrogen can be one or more selected from the group consisting of ethylenediamine, diethylenetriamine, hexamethylenediamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, acetonitrile , octylamine, guanidine or a carbazole.
Le composé organique contenant de l’oxygène et de l’azote peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction acide carboxylique, alcool, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, amide, urée ou oxime. On entend ici par un composé organique contenant de l’oxygène et de l’azote un composé ne comportant pas d’autre hétéroatome. A titre d’exemple, le composé organique contenant de l’oxygène et de l’azote peut être l’un ou plusieurs choisis dans le groupe constitué par l’acide 1,2-cyclohexanediaminetétraacétique, la monoéthanolamine (MEA), la l-méthyl-2-pyrrolidinone, le diméthylformamide, l’acide éthylènediaminetétraacétique (EDTA), l’alanine, la glycine, l’acide nitrilotriacétique (NTA), l’acide N-(2-hydroxyéthyl)éthylènediamine-N,N',N'-triacétique (HEDTA), l’acide diéthylène- triaminepentaacétique (DTPA), la tétraméthylurée, l’acide glutamique, le diméthylglyoxime, la bicine, la tricine, le cyanoacétate de 2-méthoxyéthyle, la 1-éthyl-2-pyrrolidinone, la 1 -vinyl-2- pyrrolidinone, la 1 ,3-diméthyl-2-imidazolidinone, la 1-(2-hydroxyéthyl)-2-pyrrolidinone, la 1- (2-hydroxyéthyl)-2,5-pyrrolidinedione, la 1-méthyl-2-pipéridinone, la 1-acétyl-2-azépanone, la 1-vinyl-2-azépanone et l’acide 4-aminobutanoïque. Le composé organique contenant du soufre peut être l’un ou plusieurs choisis parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction thiol, thioéther, sulfone ou sulfoxyde. A titre d’exemple, le composé organique contenant du soufre peut être l’un ou plusieurs choisis dans le groupe constitué par l’acide thioglycolique, le 2,2’-thiodiéthanol, l’acide 2-hydroxy-4-méthylthiobutanoïque, un dérivé sulfoné d’un benzothiophène ou un dérivé sulfoxydé d’un benzothiophène, le 2-mercaptopropanoate d’éthyle, le 3-(méthylthio)propanoate de méthyle et le 3-(méthylthio)propanoate d’éthyle.The organic compound containing oxygen and nitrogen can be one or more chosen from compounds comprising one or more chemical functions chosen from a carboxylic acid, alcohol, ether, aldehyde, ketone, ester, carbonate, amine function. , nitrile, imide, amide, urea or oxime. Here, an organic compound containing oxygen and nitrogen is understood to mean a compound not comprising any other heteroatom. By way of example, the organic compound containing oxygen and nitrogen can be one or more chosen from the group consisting of 1,2-cyclohexanediaminetetraacetic acid, monoethanolamine (MEA), l- methyl-2-pyrrolidinone, dimethylformamide, ethylenediaminetetraacetic acid (EDTA), alanine, glycine, nitrilotriacetic acid (NTA), N-(2-hydroxyethyl)ethylenediamine-N,N',N acid '-triacetic acid (HEDTA), diethylene-triaminepentaacetic acid (DTPA), tetramethylurea, glutamic acid, dimethylglyoxime, bicine, tricine, 2-methoxyethyl cyanoacetate, 1-ethyl-2-pyrrolidinone, 1-vinyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 1-(2-hydroxyethyl)-2-pyrrolidinone, 1-(2-hydroxyethyl)-2,5-pyrrolidinedione, 1 -methyl-2-piperidinone, 1-acetyl-2-azepanone, 1-vinyl-2-azepanone and 4-aminobutanoic acid. The organic compound containing sulfur can be one or more chosen from compounds comprising one or more chemical functions chosen from a thiol, thioether, sulphone or sulphoxide function. By way of example, the organic compound containing sulfur can be one or more selected from the group consisting of thioglycolic acid, 2,2'-thiodiethanol, 2-hydroxy-4-methylthiobutanoic acid, a sulfonated derivative of a benzothiophene or a sulfoxide derivative of a benzothiophene, ethyl 2-mercaptopropanoate, methyl 3-(methylthio)propanoate and ethyl 3-(methylthio)propanoate.
De préférence, le composé organique contient de l’oxygène, de manière préférée il est choisi parmi la g-valérolactone, la 2-acétylbutyrolactone, le triéthylèneglycol, le diéthylèneglycol, l’éthylèneglycol, l’acide éthylènediaminetétra-acétique (EDTA), l’acide maléique, l’acide malonique, l’acide citrique, l’acide acétique, l’acide oxalique, l’acide gluconique, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, l’acide g-cétovalérique, un succinate de dialkyle C1-C4 et plus particulièrement le succinate de diméthyle, le diméthylformamide, la 1- méthyl-2-pyrrolidinone, le carbonate de propylène, le 3-oxobutanoate de 2-méthoxyéthyle, la bicine, la tricine, le 2-furaldéhyde (aussi connu sous le nom furfural), le 5- hydroxyméthylfurfural (aussi connu sous le nom 5-(hydroxyméthyl)-2-furaldéhyde ou 5- HMF), le 2-acétylfurane, le 5-méthyl-2-furaldéhyde, l’acide ascorbique, le lactate de butyle, le lactate d’éthyle, le butyryllactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3- éthoxypropanoate d’éthyle, l’acétate de 2-éthoxyéthyle, l’acétate de 2-butoxyéthyle, l’acrylate de 2-hydroxyéthyle, la 1-vinyl-2-pyrrolidinone, la 1,3-diméthyl-2-imidazolidinone, le 1 ,5- pentanediol, la1-(2-hydroxyéthyl)-2-pyrrolidinone, la 1-(2-hydroxyéthyl)-2,5-pyrrolidinedione, la 5-méthyl-2(3H)-furanone, la 1-méthyl-2-pipéridinone, l’acide 4-aminobutanoïque, le glycolate de butyle, le 2-mercaptopropanoate d’éthyle, le 4-oxopentanoate d’éthyle, le maléate de diéthyle, le maléate de diméthyle, le fumarate de diméthyle, le fumarate de diéthyle, l’adipate de diméthyle et le 3-oxoglutarate de diméthyle. Preferably, the organic compound contains oxygen, preferably it is chosen from g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), l maleic acid, malonic acid, citric acid, acetic acid, oxalic acid, gluconic acid, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid , a C1-C4 dialkyl succinate and more particularly dimethyl succinate, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2 -furaldehyde (also known as furfural), 5-hydroxymethylfurfural (also known as 5-(hydroxymethyl)-2-furaldehyde or 5-HMF), 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl lactate, butyl butyryllactate, ethyl 3-hydroxybutanoate, 3 - ethyl ethoxypropanoate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-hydroxyethyl acrylate, 1-vinyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 1,5-pentanediol, 1-(2-hydroxyethyl)-2-pyrrolidinone, 1-(2-hydroxyethyl)-2,5-pyrrolidinedione, 5-methyl-2(3H)-furanone, 1-methyl -2-piperidinone, 4-aminobutanoic acid, butyl glycolate, ethyl 2-mercaptopropanoate, ethyl 4-oxopentanoate, diethyl maleate, dimethyl maleate, dimethyl fumarate, fumarate diethyl, dimethyl adipate and dimethyl 3-oxoglutarate.
L’étape d’imprégnation comporte plusieurs modes de mises en œuvre. Ils se distinguent notamment par le moment de l’introduction du composé organique lorsqu’il est présent et qui peut être effectuée soit en même temps que l’imprégnation des métaux (co-imprégnation), soit après (post-imprégnation), soit avant (pré-imprégnation). De plus, on peut combiner les modes de mise en œuvre. Avantageusement, après chaque étape d’imprégnation, on laisse maturer le support imprégné. La maturation permet à la solution d’imprégnation de se disperser de manière homogène au sein du support. The impregnation step comprises several modes of implementation. They are distinguished in particular by the moment of introduction of the organic compound when it is present and which can be carried out either at the same time as the impregnation of the metals (co-impregnation), or after (post-impregnation), or before (pre-impregnation). In addition, the modes of implementation can be combined. Advantageously, after each impregnation step, the impregnated support is allowed to mature. Curing allows the impregnation solution to disperse homogeneously within the support.
Toute étape de maturation décrite dans la présente invention est avantageusement réalisée à pression atmosphérique, dans une atmosphère saturée en eau et à une température comprise entre 17°C et 50°C, et de préférence à température ambiante. Généralement une durée de maturation comprise entre dix minutes et quarante-huit heures et de préférence comprise entre trente minutes et six heures, est suffisante. Any maturation step described in the present invention is advantageously carried out at atmospheric pressure, in an atmosphere saturated with water and at a temperature between 17° C. and 50° C., and preferably at ambient temperature. Generally, a maturation period of between ten minutes and forty-eight hours, and preferably between thirty minutes and six hours, is sufficient.
Après l’étape b) on obtient ainsi un précurseur catalytique qui comprend le support d’oxyde comprenant le matériau graphitique, la phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, du soufre, et éventuellement du phosphore et/ou un composé organique contenant de l’oxygène et/ou de l’azote et/ou du soufre. After step b), a catalytic precursor is thus obtained which comprises the oxide support comprising the graphitic material, the active phase comprising at least one metal from group VIB and at least one metal from group VIII, sulfur, and optionally phosphorus and/or an organic compound containing oxygen and/or nitrogen and/or sulphur.
Selon l’étape c) du procédé de préparation du catalyseur utilisé selon le procédé de l’invention, on sèche ledit précurseur catalytique à une température inférieure à 200°C, avantageusement comprise entre 50°C et 180°C, de préférence entre 70°C et 150°C, de manière très préférée entre 75°C et 130°C, sans calcination ultérieure, de manière à obtenir un catalyseur séché, According to step c) of the process for preparing the catalyst used according to the process of the invention, said catalytic precursor is dried at a temperature below 200° C., advantageously between 50° C. and 180° C., preferably between 70 °C and 150°C, very preferably between 75°C and 130°C, without subsequent calcination, so as to obtain a dried catalyst,
L’étape de séchage est préférentiellement réalisée sous une atmosphère inerte typiquement sous une atmosphère d’azote. The drying step is preferably carried out under an inert atmosphere, typically under a nitrogen atmosphere.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Elle est avantageusement effectuée en lit traversé en utilisant tout gaz chaud inerte. De manière préférée, lorsque le séchage est effectué en lit fixe, le gaz utilisé est l'argon ou l'azote. De manière très préférée, le séchage est réalisé en lit traversé en présence d'azote. De préférence, l’étape de séchage a une durée comprise entre 5 minutes et 15 heures, de préférence entre 30 minutes et 12 heures. The drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. It is advantageously carried out in a traversed bed using any hot inert gas. Preferably, when the drying is carried out in a fixed bed, the gas used is argon or nitrogen. Very preferably, the drying is carried out in a traversed bed in the presence of nitrogen. Preferably, the drying step lasts between 5 minutes and 15 hours, preferably between 30 minutes and 12 hours.
Selon une variante et avantageusement lorsqu’un composé organique est présent, le séchage est conduit de manière à conserver de préférence au moins 30 % poids du composé organique introduit lors d’une étape d’imprégnation, de préférence cette quantité est supérieure à 50% poids et de manière encore plus préférée, supérieure à 70 % poids, calculée sur la base du carbone restant sur le catalyseur. According to a variant and advantageously when an organic compound is present, the drying is carried out so as to preferably retain at least 30% by weight of the organic compound introduced during an impregnation step, preferably this quantity is greater than 50% by weight and even more preferably greater than 70% by weight, calculated on the basis of the carbon remaining on the catalyst.
La teneur en carbone provenant du composé organique peut être déterminée en faisant la différence entre la teneur en carbone mesurée selon ASTM D5373 avec et sans prétraitement du catalyseur séché sous flux d’air sec à 300°C pendant 2 heures et un débit de 2 L/h/g. En effet, le carbone du matériau graphitique présente une température de décomposition significativement plus élevée (généralement vers 400 à 450°C) que celle du composé organique (généralement vers 100 à 200°C). The carbon content originating from the organic compound can be determined by taking the difference between the carbon content measured according to ASTM D5373 with and without pretreatment of the catalyst dried under a flow of dry air at 300°C for 2 hours and a flow rate of 2 L /h/g. Indeed, the carbon of the graphitic material has a significantly higher decomposition temperature (generally around 400 to 450°C) than that of the organic compound (generally around 100 to 200°C).
Il est important de souligner que le catalyseur lors de son procédé de préparation ne subit pas de calcination afin de préserver le matériau graphitique et, lorsqu’il est présent, au moins en partie le composé organique dans le catalyseur. On entend ici par calcination un traitement thermique sous un gaz contenant de l’air ou de l’oxygène à une température supérieure ou égale à 200°C. It is important to emphasize that the catalyst during its preparation process does not undergo calcination in order to preserve the graphitic material and, when it is present, at least in part the organic compound in the catalyst. Here, calcination means a heat treatment under a gas containing air or oxygen at a temperature greater than or equal to 200°C.
A l’issue de l’étape de séchage, on obtient alors un catalyseur séché, qui sera soumis à une étape d’activation optionnelle (sulfuration) pour sa mise en œuvre ultérieure en procédé d’hydrodésulfuration d’essences. At the end of the drying step, a dried catalyst is then obtained, which will be subjected to an optional activation step (sulphurization) for its subsequent implementation in a gasoline hydrodesulphurization process.
Ainsi, selon l’étape d) du procédé de préparation du catalyseur utilisé selon le procédé de l’invention, on active optionnellement le catalyseur séché en présence d’un agent sulfurant.Thus, according to step d) of the process for preparing the catalyst used according to the process of the invention, the dried catalyst is optionally activated in the presence of a sulfurizing agent.
La sulfuration est de préférence réalisée en milieu sulforéducteur, c'est-à-dire en présence d'hhS et d'hydrogène. La sulfuration est réalisée en injectant sur le catalyseur un flux contenant de l'hhS et de l'hydrogène, ou bien un composé soufré susceptible de se décomposer en H2S en présence du catalyseur et de l'hydrogène. Les polysulfures tel que le diméthyldisulfure (DM DS) sont des précurseurs d'hhS couramment utilisés pour sulfurer les catalyseurs. La température est ajustée afin que l'hhS réagisse avec le catalyseur séché pour former des sulfures métalliques tels que par exemple, le M0S2 et le CogSs. Cette sulfuration peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur du procédé selon l’invention à des températures comprises entre 200 et 600°C et plus préférentiellement entre 300 et 500°C. The sulfurization is preferably carried out in a sulphur-reducing medium, that is to say in the presence of hhS and hydrogen. Sulfurization is carried out by injecting onto the catalyst a stream containing hhS and hydrogen, or else a sulfur compound capable of decomposing into H2S in the presence of the catalyst and hydrogen. Polysulphides such as dimethyldisulphide (DM DS) are hhS precursors commonly used to sulphide catalysts. The temperature is adjusted so that the hhS reacts with the dried catalyst to form metal sulphides such as, for example, MoS2 and CogSs. This sulfurization can be carried out in situ or ex situ (inside or outside the reactor) of the reactor of the process according to the invention at temperatures between 200 and 600° C. and more preferably between 300 and 500° C.
Pour être actifs, les métaux doivent être substantiellement sulfurés. Un élément est considéré comme substantiellement sulfuré lorsque le rapport molaire entre le soufre (S) présent sur le catalyseur et le dit élément est au moins égal à 50% du rapport molaire théorique correspondant à la sulfuration totale de l’élément considéré. Le taux de sulfuration global est défini par l’équation suivante : To be active, metals must be substantially sulfurized. An element is considered substantially sulfurized when the molar ratio between sulfur (S) present on the catalyst and said element is at least equal to 50% of the theoretical molar ratio corresponding to the total sulfurization of the element considered. The overall sulfurization rate is defined by the following equation:
(S/élément}catalyseur >= 0,5 X S/élêment}théorique avec : (S/element}catalyst >= 0.5 X S/element}theoretical with:
(S/élément)cataiyseur rapport molaire entre le soufre (S) et l’élément présent sur le catalyseur (S/élément)théorique rapport molaire entre le soufre et l’élément correspondant à la sulfuration totale de l’élément en sulfure. (S/element) ca taiyseur molar ratio between the sulfur (S) and the element present on the catalyst (S/element) theoretical molar ratio between the sulfur and the element corresponding to the total sulphidation of the element to sulphide.
Ce rapport molaire théorique varie selon l’élément considéré : This theoretical molar ratio varies according to the element considered:
- (S/Co)théorique = 8/9 - (S/Co)theoretical = 8/9
- (S/Ni)théorique = 1 /1 - (S/Ni)theoretical = 1 /1
- (S/Mo)théorique =2/1 - (S/Mo)theoretical =2/1
- (S/W)théorique =2/1 - (S/W)theoretical =2/1
Le catalyseur comprenant plusieurs métaux, le rapport molaire entre le S présent sur le catalyseur et l’ensemble des éléments doit également être au moins égal à 50% du rapport molaire théorique correspondant à la sulfuration totale de chaque élément en sulfure, le calcul étant effectué au prorata des fractions molaires relatives de chaque élément. The catalyst comprising several metals, the molar ratio between the S present on the catalyst and all the elements must also be at least equal to 50% of the theoretical molar ratio corresponding to the total sulfurization of each element in sulphide, the calculation being carried out in proportion to the relative molar fractions of each element.
Par exemple, pour un catalyseur comprenant du molybdène et du nickel avec une fraction molaire respective de 0,7 et 0,3, le rapport molaire minimal (S/Mo+Ni) est donné par la relation suivante : For example, for a catalyst comprising molybdenum and nickel with a respective molar fraction of 0.7 and 0.3, the minimum molar ratio (S/Mo+Ni) is given by the following relationship:
(S/MO+N catalyseur = 0,5 X [(0,7 X 2}+ (0,3 X 1}] (S/MO+N catalyst = 0.5 X [(0.7 X 2}+ (0.3 X 1}]
De façon très préférée, le taux de sulfuration des métaux sera supérieur à 70%. Very preferably, the sulfurization rate of the metals will be greater than 70%.
Selon une autre variante de l’invention, le catalyseur du procédé selon l’invention ne subit pas d’étape de sulfuration, c'est-à-dire que le catalyseur n’est pas mis en contact avec un agent sulfurant, avant injection de la charge. Dans ce cas, le catalyseur est activé (sulfuré) par le soufre contenu dans la charge à désulfurer. According to another variant of the invention, the catalyst of the process according to the invention does not undergo a sulfurization step, that is to say that the catalyst is not brought into contact with a sulfurizing agent, before injection of the load. In this case, the catalyst is activated (sulphurized) by the sulfur contained in the charge to be desulphurized.
Selon une toute autre variante, le catalyseur du procédé selon l’invention peut être un catalyseur au moins partiellement usé. On entend par un catalyseur au moins partiellement usé un catalyseur qui sort d’un procédé d'hydrotraitement. Le catalyseur au moins partiellement usé peut être issu d’un hydrotraitement de n’importe quelle coupe pétrolière, telle qu’une coupe naphta, kérosène, gazole, distillât sous vide ou résidu. On entend par hydrotraitement des réactions englobant notamment l’hydrodésulfuration (H DS), l’hydrodéazotation (HDN) et l’hydrogénation des aromatiques (HDA). Il peut également être issu d’un hydrotraitement de biomasse ou de bio-huiles. De préférence, le catalyseur au moins partiellement usé est issu d’un procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre effectué dans les conditions telles que décrites ci-dessous. Avantageusement, le catalyseur au moins partiellement usé ne subit pas de régénération, c’ est-à-dire un traitement thermique sous un gaz contenant de l’air ou de l’oxygène à une température supérieure à 200°C permettant généralement de brûler la majorité du coke formé lors du procédé d'hydrotraitement dans lequel il a été utilisé auparavant. Il peut avoir subi une étape de déshuilage avant son utilisation dans le procédé d’hydrodésulfuration d’essences de la présente invention. L'étape de déshuilage comprend généralement la mise en contact du catalyseur au moins partiellement usé avec un courant de gaz inerte (c’est-à- dire essentiellement exempt d’oxygène), par exemple dans une atmosphère d'azote ou analogue, à une température comprise entre 300°C et 400°C, de préférence comprise entre 300°C et 350°C. Le débit de gaz inerte en termes de débit par unité de volume du catalyseur est de 5 à 150 NL.L LIT1 pendant 3 à 7 heures. En variante, l'étape de déshuilage peut être réalisée par des hydrocarbures légers, par traitement à la vapeur ou tout autre procédé analogue. According to any other variant, the catalyst of the process according to the invention can be an at least partially spent catalyst. By an at least partially spent catalyst is meant a catalyst which comes out of a hydrotreatment process. The catalyst at least partially spent can result from a hydrotreating of any petroleum cut, such as a naphtha, kerosene, gas oil, vacuum distillate or residue cut. By hydrotreatment is meant reactions including in particular hydrodesulphurization (HDS), hydrodenitrogenation (HDN) and the hydrogenation of aromatics (HDA). It can also come from a hydrotreatment of biomass or bio-oils. Preferably, the at least partially spent catalyst comes from a hydrodesulphurization process of an olefinic gasoline cut containing sulfur carried out under the conditions as described below. Advantageously, the at least partially spent catalyst does not undergo regeneration, that is to say a heat treatment under a gas containing air or oxygen at a temperature above 200° C. generally making it possible to burn the majority of the coke formed during the hydrotreating process in which it was previously used. It may have undergone a de-oiling step before its use in the gasoline hydrodesulfurization process of the present invention. The de-oiling step generally comprises contacting the at least partially spent catalyst with a stream of inert gas (that is to say substantially free of oxygen), for example in a nitrogen atmosphere or the like, at a temperature between 300°C and 400°C, preferably between 300°C and 350°C. The inert gas flow rate in terms of flow rate per unit volume of catalyst is 5-150 NL.L LIT 1 for 3-7 hours. As a variant, the de-oiling stage can be carried out by light hydrocarbons, by steam treatment or any other similar process.
L'étape de déshuilage permet d’éliminer les hydrocarbures solubles et donc de libérer la porosité du catalyseur au moins partiellement usé nécessaire pour l’hydrodésulfuration. The de-oiling stage makes it possible to eliminate the soluble hydrocarbons and therefore to release the porosity of the at least partially spent catalyst necessary for the hydrodesulphurization.
Ce catalyseur au moins partiellement usé comprend ledit support d’oxyde, du soufre, la phase active comprenant au moins un métal du groupe VI B et au moins un métal du groupe VIII, éventuellement du phosphore, et ledit matériau graphitique contenant du carbone et de l’hydrogène sous forme de coke. This at least partially spent catalyst comprises said oxide support, sulfur, the active phase comprising at least one metal from group VI B and at least one metal from group VIII, optionally phosphorus, and said graphitic material containing carbon and hydrogen in the form of coke.
Les teneurs en métaux, en soufre, en carbone et en phosphore du catalyseur au moins partiellement usé sont celles indiquées ci-dessus. Elles sont déterminées selon les mêmes méthodes décrites ci-avant. Optionnellement, le catalyseur au moins partiellement usé peut présenter en outre une faible teneur en contaminants issus de la charge traitée tels que le silicium, l’arsenic ou le chlore. De préférence, la teneur en silicium (outre celui éventuellement présent sur le catalyseur) est inférieure à 2% poids et de manière très préférée inférieure à 1 % poids par rapport au poids total du catalyseur au moins partiellement usé. The contents of metals, sulphur, carbon and phosphorus of the at least partially spent catalyst are those indicated above. They are determined according to the same methods described above. Optionally, the at least partially spent catalyst may also have a low content of contaminants originating from the treated charge, such as silicon, arsenic or chlorine. Preferably, the silicon content (in addition to that possibly present on the catalyst) is less than 2% by weight and very preferably less than 1% by weight relative to the total weight of the at least partially spent catalyst.
De préférence, la teneur en arsenic est inférieure à 2000 ppm poids et de manière très préférée inférieure à 500 ppm poids par rapport au poids total du catalyseur au moins partiellement usé. Preferably, the arsenic content is less than 2000 ppm by weight and very preferably less than 500 ppm by weight relative to the total weight of the at least partially spent catalyst.
De préférence, la teneur en chlore est inférieure à 2000 ppm poids et de manière très préférée inférieure à 500 ppm poids par rapport au poids total du catalyseur au moins partiellement usé. Preferably, the chlorine content is less than 2000 ppm by weight and very preferably less than 500 ppm by weight relative to the total weight of the at least partially spent catalyst.
LISTE DES FIGURES LIST OF FIGURES
Figure 1 Figure 1
La Figure 1 représente le spectre RMN 13C MAS du catalyseur A selon l’exemple 1 (selon l’invention). FIG. 1 represents the 13 C MAS NMR spectrum of catalyst A according to example 1 (according to the invention).
Figure 2 Figure 2
La Figure 2 représente le spectre RMN 13C MAS du catalyseur B selon l’exemple 2 (comparatif). FIG. 2 represents the 13 C MAS NMR spectrum of catalyst B according to example 2 (comparative).
Exemples Exemple 1 - Préparation d'un catalyseur A (selon l’invention) Examples Example 1 - Preparation of a catalyst A (according to the invention)
50 cm3 d’un support d’alumine présentant une surface BET de 230 m2/g, un volume poreux mesuré par porosimétrie au mercure de 0,78 ml/g et un diamètre moyen des pores de 11,5 nm défini comme le diamètre médian en volume par porosimétrie au mercure et qui se présente sous la forme « extrudé » est chargé dans un réacteur de type lit traversé. La carbonisation du support est réalisée avec une charge composée de 20 % poids de toluène, 5,9 % poids de diméthyldisulfure et 74,1 % poids d’hexane dans les conditions suivantes : T = 335°C, WH = 3 h 1 , Ptot = 60 bar (6 MPa), rapport volumique hh/charge = 150 N L/L. Le support carbonisé présente un volume de reprise en eau de 0,61 mL/g. On ajoute alors du cobalt, du molybdène et du phosphore. La solution d’imprégnation est préparée par dissolution à 90°C de l’oxyde de molybdène (2,2 g, M0O3 >99,5%, Merck™), d'hydroxyde de cobalt (0,57 g, (Co(OH)2 95%, Merck™), et d’acide phosphorique à 85 % poids dans l’eau (0,46 g, Merck™) dans 5,8 mL d’eau. Après imprégnation à sec de 10 grammes de support carbonisé, les extrudés sont laissés à maturer en atmosphère saturée en eau pendant 24 h à température ambiante, puis ils sont séchés à 90°C pendant 16 heures. Le catalyseur séché ainsi obtenu est noté A. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : M0O3 = 17,1 +/- 0,2 % poids, CoO = 3,4 +/- 0,1 % poids et P2O5 = 2,2 +/- 0,1 % poids. Le catalyseur présente 4,2% poids S rapporté au poids du catalyseur analysé par analyse CH NS selon l’ASTM D5373, et 10,4 % poids C rapporté au poids du catalyseur analysé par analyse CH NS selon l’ASTM D5373 après prétraitement du catalyseur sous flux d’air sec à 300°C pendant 2 heures et un débit de 2 L/h/g. 50 cm 3 of an alumina support having a BET surface area of 230 m 2 /g, a pore volume measured by mercury porosimetry of 0.78 ml/g and an average pore diameter of 11.5 nm defined as the median diameter by volume by mercury porosimetry and which is in the “extruded” form is loaded into a crossed-bed type reactor. The carbonization of the support is carried out with a charge composed of 20% by weight of toluene, 5.9% by weight of dimethyldisulphide and 74.1% by weight of hexane under the following conditions: T = 335° C., WH = 3 h 1 , Ptot = 60 bar (6 MPa), volume ratio hh/load = 150 NL/L. The charred support has a water uptake volume of 0.61 mL/g. Cobalt, molybdenum and phosphorus are then added. The impregnation solution is prepared by dissolving at 90°C molybdenum oxide (2.2 g, MOO3 >99.5%, Merck™), cobalt hydroxide (0.57 g, (Co( OH) 2 95%, Merck™), and 85% weight phosphoric acid in water (0.46 g, Merck™) in 5.8 mL of water After dry impregnation of 10 grams of support carbonized, the extrudates are left to mature in a water-saturated atmosphere for 24 hours at room temperature, then they are dried at 90° C. for 16 hours. The dried catalyst thus obtained is denoted A. The final metal composition of the catalyst expressed as form of oxides and relative to the weight of the dry catalyst is then as follows: M0O3 = 17.1 +/- 0.2% by weight, CoO = 3.4 +/- 0.1% by weight and P 2 O 5 = 2 2 +/- 0.1% by weight The catalyst has 4.2% by weight S based on the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373, and 10.4% by weight C based on the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373 after catalyst pretreatment under air flow c at 300°C for 2 hours and a flow rate of 2 L/h/g.
Le catalyseur est analysé par spectroscopie RMN 13C MAS telle que décrite ci-dessus est présente un rapport SAromatiques/SAiiphatiques de la surface de pic (Somatiques) dans une gamme de déplacements chimiques de 100 à 160 ppm à la surface de pic (Statiques) dans une gamme de déplacements chimiques de 0 à 60 ppm, mesuré par spectroscopie RMN 13C MAS, est égal à 6,7 (Fig 1). The catalyst is analyzed by 13 C MAS NMR spectroscopy as described above. It has an Aromatic S/ Aiiphatic S ratio of the peak surface ( Somatics ) in a range of chemical shifts from 100 to 160 ppm at the surface. of peak ( Statics ) in a range of chemical shifts from 0 to 60 ppm, measured by 13 C MAS NMR spectroscopy, is equal to 6.7 (Fig 1).
Exemple 2 - Préparation d'un catalyseur B (non conforme) Example 2 - Preparation of a catalyst B (non-compliant)
50 cm3 d’un même support que décrit dans l’exemple 1 est chargé dans un réacteur de type lit traversé. La carbonisation du support est réalisée avec une charge composée de 20 % poids de toluène, 5,9 % poids de diméthyldisulfure et 74,1 % poids d’hexane dans les conditions suivantes : T = 400°C, WH = 4,5 h 1 , Ptot = 60 bar (6 MPa), rapport volumique H2/charge = 150 N L/L. 50 cm 3 of the same support as described in Example 1 is loaded into a crossed-bed type reactor. The carbonization of the support is carried out with a charge composed of 20% by weight of toluene, 5.9% by weight of dimethyldisulphide and 74.1% by weight of hexane under the following conditions: T = 400° C., WH = 4.5 h 1 , P tot = 60 bar (6 MPa), volume ratio H 2 /load = 150 NL/L.
Le support carbonisé présente un volume de reprise en eau de 0,65 mL/g. On ajoute alors du cobalt, du molybdène et du phosphore. La solution d’imprégnation est préparée par dissolution à 90°C de l’oxyde de molybdène (2,2 g), d'hydroxyde de cobalt (0,57 g), et d’acide phosphorique à 85 % poids dans l’eau (0,46 g) dans 6,2 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support carbonisé, les extrudés sont laissés à maturer en atmosphère saturée en eau pendant 24 h à température ambiante, puis ils sont séchés à 90°C pendant 16 heures. Le catalyseur séché ainsi obtenu est noté B. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : M0O3 = 17,1 +/- 0,2 % poids, CoO = 3,4 +/- 0,1 % poids et P2O5 = 2,2 +/- 0,1 % poids. Le catalyseur présente 4,1% poids S rapporté au poids du catalyseur analysé par analyse CH NS selon l’ASTM D5373, et 10,3 % poids C rapporté au poids du catalyseur analysé par analyse CH NS selon l’ASTM D5373 après prétraitement du catalyseur sous flux d’air sec à 300°C pendant 2 heures et un débit de 2 L/h/g. Le catalyseur est analysé par spectroscopie RMN 13C MAS telle que décrite ci-dessus est présente un rapport SAromatiques/SAiiphatiques de la surface de pic (SAromatiques) dans une gamme de déplacements chimiques de 100 à 160 ppm à la surface de pic (SAnphatiques) dans une gamme de déplacements chimiques de 0 à 60 ppm, mesuré par spectroscopie RMN 13C MAS, est égal à 2,5 (Fig 2). Exemple 3 - Evaluation des performances catalytiques des catalyseurs A et B The charred support has a water uptake volume of 0.65 mL/g. Cobalt, molybdenum and phosphorus are then added. The impregnation solution is prepared by dissolving at 90°C molybdenum oxide (2.2 g), cobalt hydroxide (0.57 g), and phosphoric acid at 85% by weight in the water (0.46 g) in 6.2 mL of distilled water. After dry impregnation of 10 grams of carbonized support, the extrudates are left to mature in an atmosphere saturated with water for 24 hours at room temperature, then they are dried at 90° C. for 16 hours. The dried catalyst thus obtained is denoted B. The final metal composition of the catalyst, expressed in the form of oxides and related to the weight of the dry catalyst, is then as follows: M0O3 = 17.1 +/- 0.2% by weight, CoO = 3.4 +/- 0.1 wt% and P2O5 = 2.2 +/- 0.1 wt%. The catalyst has 4.1% weight S relative to the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373, and 10.3% weight C relative to the weight of the catalyst analyzed by CH NS analysis according to ASTM D5373 after pretreatment of the catalyst under a flow of dry air at 300° C. for 2 hours and a flow rate of 2 L/h/g. The catalyst is analyzed by 13 C MAS NMR spectroscopy as described above and shows a SAromatic/SAiiphatic ratio of the peak area (SAromatics) in a range of chemical shifts from 100 to 160 ppm at the peak area ( SA np hatic ) in a range of chemical shifts from 0 to 60 ppm, measured by 13 C MAS NMR spectroscopy, is equal to 2.5 (Fig 2). Example 3 - Evaluation of the catalytic performance of catalysts A and B
Une charge modèle représentative d'une essence de craquage catalytique contenant 10% poids de 2,3-diméthylbut-2-ène et 0,33% poids de 3-méthylthiophène (soit 1000 ppm poids de soufre dans la charge) est utilisée pour l'évaluation des performances catalytiques des différents catalyseurs. Le solvant utilisé est l'heptane. La réaction d'hydrodésulfuration (H DS) est opérée dans un réacteur à lit fixe traversé sous une pression totale de 1 ,5 MPa, à 210°C, à WH = 6 fr1 (WH = débit volumique de charge/volume de catalyseur), et un rapport volumique ^/charge de 300 N L/L, en présence de 4 mL de catalyseur. Au préalable à la réaction d'HDS, le catalyseur est sulfuré in-situ à 350°C pendant 2 heures sous un flux d'hydrogène contenant 15% mol d'H2S à pression atmosphérique. A representative model charge of a catalytic cracked gasoline containing 10% by weight of 2,3-dimethylbut-2-ene and 0.33% by weight of 3-methylthiophene (i.e. 1000 ppm by weight of sulfur in the charge) is used for the evaluation of the catalytic performances of the various catalysts. The solvent used is heptane. The hydrodesulfurization reaction (HDS) is carried out in a fixed-bed reactor passed through under a total pressure of 1.5 MPa, at 210° C., at WH = 6 fr 1 (WH = volume flow rate of charge/volume of catalyst ), and a volume ratio ^/charge of 300 NL/L, in the presence of 4 mL of catalyst. Prior to the HDS reaction, the catalyst is sulfurized in-situ at 350° C. for 2 hours under a flow of hydrogen containing 15 mol% of H2S at atmospheric pressure.
Chacun des catalyseurs est placé successivement dans ledit réacteur. Des échantillons sont prélevés à différents intervalles de temps et sont analysés par chromatographie en phase gazeuse de façon à observer la disparition des réactifs et la formation des produits. Les performances catalytiques des catalyseurs sont évaluées en termes d'activité catalytique et de la sélectivité. L'activité en hydrodésulfuration (H DS) est exprimée à partir de la constante de vitesse pour la réaction d'HDS du 3-méthylthiophène (kHDS), normalisée par le volume de catalyseur introduit et en supposant une cinétique d'ordre 1 par rapport au composé soufré. L'activité en hydrogénation des oléfines (HydO) est exprimée à partir de la constante de vitesse de la réaction d'hydrogénation du 2,3-diméthylbut-2-ène, normalisée par le volume de catalyseur introduit et en supposant une cinétique d'ordre 1 par rapport à l'oléfine. Each of the catalysts is successively placed in said reactor. Samples are taken at different time intervals and are analyzed by gas phase chromatography in order to observe the disappearance of the reagents and the formation of the products. The catalytic performances of the catalysts are evaluated in terms of catalytic activity and selectivity. The hydrodesulphurization (HDS) activity is expressed from the rate constant for the HDS reaction of 3-methylthiophene (kHDS), normalized by the volume of catalyst introduced and assuming first-order kinetics with respect to to the sulfur compound. The hydrogenation activity of olefins (HydO) is expressed from the rate constant of the hydrogenation reaction of 2,3-dimethylbut-2-ene, normalized by the volume of catalyst introduced and assuming a kinetics of order 1 with respect to the olefin.
La sélectivité du catalyseur est exprimée par le rapport normalisé des constantes de vitesse kHDS/kHydO. Le rapport kHDS/kHydO sera d'autant plus élevé que le catalyseur sera plus sélectif. Les valeurs obtenues sont normalisées en prenant le catalyseur B comme référence (activité H DS relative et sélectivité relative égale à 100). Les performances sont donc l’activité H DS relative et la sélectivité relative. The selectivity of the catalyst is expressed by the normalized rate constant ratio kHDS/kHydO. The kHDS/kHydO ratio will be higher the more selective the catalyst. The values obtained are normalized by taking catalyst B as reference (relative HDS activity and relative selectivity equal to 100). The performances are therefore the relative H DS activity and the relative selectivity.
Table 1 Chart 1
Activité H DS Sélectivité H DS activity Selectivity
Catalyseurs relative relative catalysts relative relative
A (selon l’invention) 97 192 A (according to the invention) 97 192
B (comparatif) 100 100 Le catalyseur A présente une activité en léger retrait au catalyseur B comparatif et une sélectivité améliorée en hydrodésulfuration par rapport à l'hydrogénation des oléfines par rapport au catalyseur comparatif B. B (comparative) 100 100 Catalyst A exhibits a slightly lower activity than comparative catalyst B and an improved selectivity in hydrodesulphurization compared to the hydrogenation of olefins compared to comparative catalyst B.
Cette amélioration de sélectivité des catalyseurs est particulièrement intéressante dans le cas d'une mise en œuvre dans un procédé d'hydrodésulfuration d'essence contenant des oléfines pour lequel on cherche à limiter autant que possible la perte d'octane due à l'hydrogénation des oléfines. This improvement in the selectivity of the catalysts is particularly advantageous in the case of an implementation in a process for the hydrodesulphurization of gasoline containing olefins for which it is sought to limit as much as possible the loss of octane due to the hydrogenation of the olefins.

Claims

REVENDICATIONS
1. Procédé d'hydrodésulfuration d'une coupe essence contenant des composés soufrés et des oléfines dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur, ledit procédé étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h 1, et un rapport volumique hydrogène/charge essence compris entre 100 et 1200 NL/L, ledit catalyseur comprend un support d’oxyde, du soufre et une phase active comprenant au moins un métal du groupe VI B et au moins un métal du groupe VIII, ledit catalyseur contenant entre outre un matériau graphitique contenant du carbone et de l’hydrogène, ledit catalyseur étant caractérisé en spectroscopie RMN 13C MAS par un rapport SAromatiques/SAiiphatiques de la surface de pic SAromatiques dans une gamme de déplacements chimiques de 100 à 160 ppm à la surface de pic SAnphatiques dans une gamme de déplacements chimiques de 0 à 60 ppm supérieur à 4. 1. Process for the hydrodesulphurization of a gasoline cut containing sulfur compounds and olefins, in which said gasoline cut is brought into contact with hydrogen and a catalyst, said process being carried out at a temperature between 200 and 400° C. , a total pressure of between 1 and 3 MPa, an hourly volumetric speed, defined as being the volume flow rate of charge relative to the volume of catalyst, of between 1 and 10 h 1 , and a hydrogen/gasoline charge volume ratio of between 100 and 1200 NL/L, said catalyst comprises an oxide support, sulfur and an active phase comprising at least one metal from group VI B and at least one metal from group VIII, said catalyst further comprising a graphitic material containing carbon and hydrogen, said catalyst being characterized in 13 C MAS NMR spectroscopy by a SAromatic/SAiiphatic ratio of the S Aromatic peak surface in a range of chemical shifts from 100 to 160 ppm at the surf ace of S A np hatic peaks in a range of chemical shifts from 0 to 60 ppm greater than 4.
2. Procédé selon la revendication précédente, dans lequel la teneur en carbone est comprise entre 5 et 20% pds exprimée en élément carbone par rapport au poids du catalyseur. 2. Process according to the preceding claim, in which the carbon content is between 5 and 20% by weight, expressed as carbon element relative to the weight of the catalyst.
3. Procédé selon l’une des revendications précédentes, dans lequel la teneur en soufre est comprise entre 1 et 8% poids exprimée en élément soufre par rapport au poids du catalyseur. 3. Method according to one of the preceding claims, in which the sulfur content is between 1 and 8% by weight, expressed as element sulfur relative to the weight of the catalyst.
4. Procédé selon l’une des revendications précédentes, dans lequel le rapport4. Method according to one of the preceding claims, in which the ratio
SAromatiques/SAiiphatiques sst compris entre 5 et 15. SAromatic/SAiiphatic sst between 5 and 15.
5. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur a une teneur en métal du groupe VI B comprise entre 5 et 40 % poids, exprimée en oxyde de métal du groupe VI B, par rapport au poids total du catalyseur et une teneur en métal du groupe VIII comprise entre 1 et 10 % poids, exprimée en oxyde de métal du groupe VIII, par rapport au poids total du catalyseur. 5. Method according to one of the preceding claims, in which the catalyst has a group VI B metal content of between 5 and 40% by weight, expressed as group VI B metal oxide, relative to the total weight of the catalyst and a group VIII metal content of between 1 and 10% by weight, expressed as group VIII metal oxide, relative to the total weight of the catalyst.
6. Procédé selon l’une des revendications précédentes, dans lequel le rapport molaire métal du groupe VIII sur métal du groupe VI B dans le catalyseur est compris entre 0,1 et 0,8. 6. Process according to one of the preceding claims, in which the molar ratio of group VIII metal to group VI B metal in the catalyst is between 0.1 and 0.8.
7. Procédé selon l’une des revendications précédentes, dans lequel la surface spécifique du catalyseur est comprise entre 20 et 200 m2/g. 7. Method according to one of the preceding claims, in which the specific surface of the catalyst is between 20 and 200 m 2 /g.
8. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur comprend en outre du phosphore à une teneur comprise entre 0,1 et 20 % poids exprimée en P2O5 par rapport au poids total du catalyseur. 8. Method according to one of the preceding claims, in which the catalyst further comprises phosphorus at a content of between 0.1 and 20% by weight, expressed as P 2 O 5 relative to the total weight of the catalyst.
9. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur comprend en outre un composé organique contenant de l’oxygène et/ou de l’azote et/ou du soufre.9. Method according to one of the preceding claims, in which the catalyst further comprises an organic compound containing oxygen and/or nitrogen and/or sulfur.
10. Procédé selon la revendication précédente, dans lequel le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée, amide, ou un composé incluant un cycle furanique ou encore un sucre. 10. Method according to the preceding claim, in which the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea, amide, or a compound including a furan ring or even a sugar.
11. Procédé selon la revendication 10, dans lequel le composé organique est choisi parmi parmi la g-valérolactone, la 2-acétylbutyrolactone, le triéthylèneglycol, le diéthylèneglycol, l’éthylèneglycol, l’acide éthylènediaminetétra-acétique (EDTA), l’acide maléique, l’acide malonique, l’acide citrique, l’acide acétique, l’acide oxalique, l’acide gluconique, le glucose, le fructose, le saccharose, le sorbitol, le xylitol, l’acide g-cétovalérique, un succinate de dialkyle C1-C4 et plus particulièrement le succinate de diméthyle, le diméthylformamide, la 1- méthyl-2-pyrrolidinone, le carbonate de propylène, le 3-oxobutanoate de 2-méthoxyéthyle, la bicine, la tricine, le 2-furaldéhyde (aussi connu sous le nom furfural), le 5- hydroxyméthylfurfural, le 2-acétylfurane, le 5-méthyl-2-furaldéhyde, l’acide ascorbique, le lactate de butyle, le lactate d’éthyle, le butyryllactate de butyle, le 3-hydroxybutanoate d’éthyle, le 3-éthoxypropanoate d’éthyle, l’acétate de 2-éthoxyéthyle, l’acétate de 2- butoxyéthyle, l’acrylate de 2-hydroxyéthyle, la 1-vinyl-2-pyrrolidinone, la 1 ,3-diméthyl-2- imidazolidinone, le 1,5-pentanediol, la1-(2-hydroxyéthyl)-2-pyrrolidinone, la 1-(2- hydroxyéthyl)-2,5-pyrrolidinedione, la 5-méthyl-2(3H)-furanone, la 1-méthyl-2-pipéridinone, l’acide 4-aminobutanoïque, le glycolate de butyle, le 2-mercaptopropanoate d’éthyle, le 4- oxopentanoate d’éthyle, le maléate de diéthyle, le maléate de diméthyle, le fumarate de diméthyle, le fumarate de diéthyle, l’adipate de diméthyle et le 3-oxoglutarate de diméthyle. 11. Process according to claim 10, in which the organic compound is chosen from among g-valerolactone, 2-acetylbutyrolactone, triethylene glycol, diethylene glycol, ethylene glycol, ethylenediaminetetra-acetic acid (EDTA), acid maleic acid, malonic acid, citric acid, acetic acid, oxalic acid, gluconic acid, glucose, fructose, sucrose, sorbitol, xylitol, g-ketovaleric acid, a dialkyl C1-C4 succinate and more particularly dimethyl succinate, dimethylformamide, 1-methyl-2-pyrrolidinone, propylene carbonate, 2-methoxyethyl 3-oxobutanoate, bicine, tricine, 2-furaldehyde (also known as furfural), 5-hydroxymethylfurfural, 2-acetylfuran, 5-methyl-2-furaldehyde, ascorbic acid, butyl lactate, ethyl lactate, butyl butyryllactate, Ethyl 3-hydroxybutanoate, ethyl 3-ethoxypropanoate, 2-ethoxyethyl acetate, 2- butoxyethyl, 2-hydroxyethyl acrylate, 1-vinyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 1,5-pentanediol, 1-(2-hydroxyethyl)-2-pyrrolidinone, 1-(2-hydroxyethyl)-2,5-pyrrolidinedione, 5-methyl-2(3H)-furanone, 1-methyl-2-piperidinone, 4-aminobutanoic acid, butyl glycolate, 2- ethyl mercaptopropanoate, ethyl 4-oxopentanoate, diethyl maleate, dimethyl maleate, dimethyl fumarate, diethyl fumarate, dimethyl adipate and dimethyl 3-oxoglutarate.
12. Procédé selon l’une des revendications précédentes, dans lequel la phase active du catalyseur est constituée de cobalt et de molybdène. 12. Method according to one of the preceding claims, in which the active phase of the catalyst consists of cobalt and molybdenum.
13. Procédé selon l’une des revendications précédentes, dans lequel le catalyseur est préparé selon un procédé de préparation comprenant les étapes suivantes : a) on met en contact au moins un hydrocarbure et un composé soufré avec ledit support d’oxyde permettant de former ledit matériau graphitique comprenant le carbone et l’hydrogène sur le support d’oxyde, b) puis on met en contact un composé comportant un métal du groupe VI B et un composé comportant un métal du groupe VIII, et optionnellement du phosphore et/ou au moins un composé organique comprenant de l’oxygène et/ou de l’azote et/ou du soufre avec ledit support d’oxyde contenant ledit matériau graphitique, de manière à obtenir un précurseur catalytique, c) on sèche ledit précurseur catalytique à une température inférieure à 200°C sans calcination ultérieure, de manière à obtenir un catalyseur séché, d) on active optionnellement le catalyseur séché en présence d’un agent sulfurant.13. Method according to one of the preceding claims, in which the catalyst is prepared according to a preparation method comprising the following steps: a) at least one hydrocarbon and one sulfur compound are brought into contact with the said oxide support making it possible to form said graphitic material comprising carbon and hydrogen on the oxide support, b) then a compound comprising a metal from group VI B and a compound comprising a metal from group VIII, and optionally phosphorus and/or at least one organic compound comprising oxygen and/or nitrogen and/or sulfur with said oxide support containing said graphitic material, so as to obtain a catalytic precursor, c) said catalytic precursor is dried to a temperature below 200° C. without subsequent calcination, so as to obtain a dried catalyst, d) the dried catalyst is optionally activated in the presence of a sulfurizing agent.
14. Procédé selon l’une des revendications 1 à 12, dans lequel le catalyseur est un catalyseur au moins partiellement usé issu d’un procédé hydrotraitement. 14. Method according to one of claims 1 to 12, in which the catalyst is an at least partially spent catalyst resulting from a hydrotreatment process.
15. Procédé selon l'une des revendications précédentes, dans lequel l’essence est une essence de craquage catalytique. 15. Process according to one of the preceding claims, in which the gasoline is a catalytic cracking gasoline.
PCT/EP2021/082172 2020-11-27 2021-11-18 Process for the hydrodesulfurization of a gasoline cut using a catalyst containing a graphitic material, characterised by 13c mas nmr WO2022112095A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012331 2020-11-27
FR2012331A FR3116827A1 (en) 2020-11-27 2020-11-27 Process for the hydrodesulphurization of a gasoline cut using a catalyst containing a graphitic material characterized by NMR13C MAS spectroscopy

Publications (1)

Publication Number Publication Date
WO2022112095A1 true WO2022112095A1 (en) 2022-06-02

Family

ID=74554006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082172 WO2022112095A1 (en) 2020-11-27 2021-11-18 Process for the hydrodesulfurization of a gasoline cut using a catalyst containing a graphitic material, characterised by 13c mas nmr

Country Status (2)

Country Link
FR (1) FR3116827A1 (en)
WO (1) WO2022112095A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793170A (en) 1954-10-22 1957-05-21 Union Oil Co Desulfurization of cracked gasolines
US4140626A (en) 1976-03-04 1979-02-20 Standard Oil Company (Indiana) Process for the selective desulfurization of cracked naphthas with magnesia-containing catalyst
US4774220A (en) 1987-03-02 1988-09-27 Texaco, Inc. Lithium-doped gamma-alumina supported cobalt-molybdenum catalyst
EP0745660A1 (en) 1995-06-02 1996-12-04 Mitsubishi Oil Co., Ltd. Desulphurization method for catalytically cracked gasoline
US5985136A (en) 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
EP1077247A1 (en) 1999-08-19 2001-02-21 Institut Francais Du Petrole Process for the production of low sulphur gasolines
EP1174485A1 (en) 2000-07-06 2002-01-23 Institut Francais Du Petrole Process comprising two gasoline hydrodesulphurisation steps with intermediary elimination of H2S
FR2850299A1 (en) 2003-01-29 2004-07-30 Inst Francais Du Petrole Catalyst for hydrotreatment of cuts containing sulfur and olefins, comprises group VI or VIII metal and has low carbon content
EP1892039A1 (en) 2006-07-28 2008-02-27 Ifp Method of hydrodesulfuration of cuts containing sulphur compounds and olefins in the presence of a supported catalyst comprising elements from groups VIII and VIB
US20090258780A1 (en) 2005-03-01 2009-10-15 Makoto Toba Porous inorganic oxide support and hydrotreating catalyst of catalytic cracking gasoline using the same
US8637423B2 (en) 2006-01-17 2014-01-28 Exxonmobil Research And Engineering Company Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
WO2017207976A1 (en) * 2016-05-31 2017-12-07 Oxford University Innovation Limited Process for producing an upgraded petroleum product
JP6646349B2 (en) * 2014-06-20 2020-02-14 日揮グローバル株式会社 Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793170A (en) 1954-10-22 1957-05-21 Union Oil Co Desulfurization of cracked gasolines
US4140626A (en) 1976-03-04 1979-02-20 Standard Oil Company (Indiana) Process for the selective desulfurization of cracked naphthas with magnesia-containing catalyst
US4774220A (en) 1987-03-02 1988-09-27 Texaco, Inc. Lithium-doped gamma-alumina supported cobalt-molybdenum catalyst
EP0745660A1 (en) 1995-06-02 1996-12-04 Mitsubishi Oil Co., Ltd. Desulphurization method for catalytically cracked gasoline
US5985136A (en) 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
EP1077247A1 (en) 1999-08-19 2001-02-21 Institut Francais Du Petrole Process for the production of low sulphur gasolines
EP1174485A1 (en) 2000-07-06 2002-01-23 Institut Francais Du Petrole Process comprising two gasoline hydrodesulphurisation steps with intermediary elimination of H2S
FR2850299A1 (en) 2003-01-29 2004-07-30 Inst Francais Du Petrole Catalyst for hydrotreatment of cuts containing sulfur and olefins, comprises group VI or VIII metal and has low carbon content
US20040226863A1 (en) * 2003-01-29 2004-11-18 Denis Uzio Partially coked catalysts that can be used in the hydrotreatment of fractions that contain sulfur-containing compounds and olefins
US20090258780A1 (en) 2005-03-01 2009-10-15 Makoto Toba Porous inorganic oxide support and hydrotreating catalyst of catalytic cracking gasoline using the same
US8637423B2 (en) 2006-01-17 2014-01-28 Exxonmobil Research And Engineering Company Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
EP1892039A1 (en) 2006-07-28 2008-02-27 Ifp Method of hydrodesulfuration of cuts containing sulphur compounds and olefins in the presence of a supported catalyst comprising elements from groups VIII and VIB
US20080053872A1 (en) * 2006-07-28 2008-03-06 Elodie Devers Process for hydrodesulphurizing gasoline cuts containing sulphur and olefins in the presence of a catalyst comprising at least one support, one group VIII and one group VIB element
JP6646349B2 (en) * 2014-06-20 2020-02-14 日揮グローバル株式会社 Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil
WO2017207976A1 (en) * 2016-05-31 2017-12-07 Oxford University Innovation Limited Process for producing an upgraded petroleum product

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000, D.R. LIDE
APPLIED CATALYSIS A : GENERAL, vol. 278, 2004, pages 83 - 91
APPLIED CATALYSIS A : GENERAL, vol. 367, 2009, pages 1 - 8
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309

Also Published As

Publication number Publication date
FR3116827A1 (en) 2022-06-03

Similar Documents

Publication Publication Date Title
EP3288678A1 (en) CATALYST CONTAINING y-VALEROLACTONE AND/OR THE HYDROLYSIS PRODUCTS THEREOF, AND USE THEREOF IN A HYDROPROCESSING AND/OR HYDROCRACKING METHOD
WO2020126680A1 (en) Method for rejuvenating a catalyst of a hydroprocessing and/or hydrocracking process
EP4263054A1 (en) Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process
WO2020126676A1 (en) Method for regenerating a catalyst which is spent and regenerated by a hydrodesulfurization process of gasolines
EP3897979A1 (en) Method for regenerating a spent catalyst not regenerated by a process for the hydrodesulfurization of gasolines
EP3490708B1 (en) Catalyst based on acetlybutyrolactone and/or its hydrolysis products and the use thereof in a process of hydrotreating and/or hydrocracking
WO2022002641A1 (en) Trimetallic catalyst made from nickel, molybdenum and tungsten and use thereof in a hydrotreatment and/or hydrocracking process
WO2022112095A1 (en) Process for the hydrodesulfurization of a gasoline cut using a catalyst containing a graphitic material, characterised by 13c mas nmr
WO2020126678A1 (en) Process for the hydrodesulfurization of sulfur-containing olefinic gasoline cuts using a regenerated catalyst having an organic compound
EP4251712A1 (en) Method for hydrodesulfurisation of a petroleum fraction using a catalyst containing a graphitic material characterised by the h/c ratio thereof
FR3121368A1 (en) Process for sulfurizing a hydrotreating and/or hydrocracking catalyst containing an organic compound by hydrothermal synthesis
FR3105931A1 (en) CATALYST BASED ON 2-HYDROXY-BUTANEDIOIC ACID OR 2-HYDROXY-BUTANEDIOIC ACID ESTERS AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS
WO2020002135A1 (en) Ascorbic acid derivative-based catalyst and use thereof in a hydroprocessing and/or hydrocracking process
WO2020002140A1 (en) Catalyst based on amine derivatives and use thereof in a hydrotreatment and/or hydrocracking process
WO2020002137A1 (en) Catalyst based on a beta-oxygen ester and use thereof in a hydrotreating and/or hydrocracking process
FR3116740A1 (en) Process for the preparation of a catalyst for the hydrodesulphurization of a gasoline cut comprising a metal from group VIB, a metal from group VIII and graphitic carbon
WO2022112094A1 (en) Process for the hydrodesulfurization of a gasoline cut using a catalyst having a specific bimodal porosity
WO2024017585A1 (en) Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process
WO2024017584A1 (en) Hydrotreatment process using a sequence of catalysts with a catalyst based on nickel and tungsten on a silica-alumina support
WO2024017586A1 (en) Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process
WO2020002136A1 (en) Catalyst based on a beta-substituted ester and use thereof in a hydrotreatment and/or hydrocracking process
WO2020002139A1 (en) Catalyst additivated with alkyl lactate, preparation thereof and use thereof in a hydrotreating and/or hydrocracking process
FR3121367A1 (en) Process for sulfurizing a hydrotreating and/or hydrocracking catalyst by hydrothermal synthesis and addition of an organic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21806769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE