WO2022107761A1 - 無人飛行機制御装置、及び記憶媒体 - Google Patents

無人飛行機制御装置、及び記憶媒体 Download PDF

Info

Publication number
WO2022107761A1
WO2022107761A1 PCT/JP2021/042070 JP2021042070W WO2022107761A1 WO 2022107761 A1 WO2022107761 A1 WO 2022107761A1 JP 2021042070 W JP2021042070 W JP 2021042070W WO 2022107761 A1 WO2022107761 A1 WO 2022107761A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerial vehicle
unmanned aerial
radio station
wireless communication
unit
Prior art date
Application number
PCT/JP2021/042070
Other languages
English (en)
French (fr)
Inventor
高史 三好
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/250,219 priority Critical patent/US20230400850A1/en
Priority to CN202180076562.2A priority patent/CN116507554A/zh
Priority to JP2022563767A priority patent/JPWO2022107761A1/ja
Priority to DE112021004698.5T priority patent/DE112021004698T5/de
Publication of WO2022107761A1 publication Critical patent/WO2022107761A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/383Indoor data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present invention relates to an unmanned aerial vehicle operating in a factory and a storage medium readable by a computer.
  • Patent Document 1 describes a robot, a robot control device that controls the robot, a teaching device that sends a teaching signal of the robot to the robot control device in response to an operator's teaching input, an unmanned airplane provided with an image pickup device, and a teaching signal.
  • a robot system comprising a flight control unit that controls the flight of an unmanned airplane so that an image pickup apparatus continuously acquires an image of an object necessary for teaching based on a teaching signal while the robot operates according to the above. It has been disclosed.
  • robots may be used inside fences for safety reasons.
  • the robot system of Patent Document 1 controls the flight of an unmanned aerial vehicle based on a teaching signal that controls the robot while the robot is operating, so that it is difficult for the operator to directly see the movement of the robot from outside the fence. Also, the robot can be taught.
  • Unmanned aerial vehicles are used for warehouse inventory management and factory condition monitoring.
  • Unmanned aerial vehicles are flying objects and have flexible moving areas, so they are expected to be used in new ways.
  • the unmanned airplane which is one aspect of the present disclosure, is an unmanned airplane flying in a factory, and has a communication distance longer than that of short-range wireless communication with a first wireless communication unit that performs short-range wireless communication with mechanical equipment.
  • the mechanical equipment selection unit that determines whether or not the machine equipment is selected as the communication partner in advance, and the self-position of the unmanned airplane flying in the factory. It is provided with a radio station switching unit that detects the existence and switches the connection to the radio station for short-range wireless communication attached to the mechanical equipment.
  • the storage medium includes a first wireless communication unit that performs short-range wireless communication with mechanical equipment and a second wireless communication unit that performs wireless communication having a longer communication distance than short-range wireless communication. Performed by one or more processors of an unmanned aircraft equipped, it determines in advance whether it is the machine equipment selected as the communication partner, and the self-position of the unmanned aircraft flying in the factory is near the selected machine equipment. Stores computer-readable instructions that detect the presence in the radio and switch the connection to a short-range wireless communication radio station installed in the machine.
  • an unmanned aerial vehicle can be utilized.
  • FIG. 1 is a conceptual diagram of an unmanned aerial vehicle control system 100.
  • the unmanned aerial vehicle control system 100 includes one or a plurality of unmanned aerial vehicles 2, a personal computer (PC) 1 for creating a flight plan for the unmanned aerial vehicle 2, and a wireless communication device 3 for mediating communication between the unmanned aerial vehicle 2 and the PC 1. It is equipped with mechanical equipment 4 for short-range wireless communication.
  • the unmanned aerial vehicle control system 100 is provided in a space such as a factory where a plurality of mechanical equipments 4 are arranged.
  • the mechanical equipment 4 includes machine tools, robots, air conditioning equipment, ventilation equipment, flameproof smoke exhaust equipment, inspection equipment, piping equipment, clean room equipment, and the like, but is not particularly limited.
  • the PC 1 of the unmanned aerial vehicle control system 100 is not particularly limited as long as it is an information processing device such as a server or a mobile terminal.
  • the mechanical equipment 4 may be connected to a wireless LAN (Local Area Network) of the factory.
  • the flight plan created by the PC 1 can be output to the unmanned aerial vehicle 2 via the short-range wireless communication of the mechanical equipment 4, and the unmanned aerial vehicle 2 can be controlled.
  • the unmanned aerial vehicle 2 has the hardware configuration as shown in FIG.
  • the CPU 211 included in the unmanned aerial vehicle 2 is a processor that controls the unmanned aerial vehicle 2 as a whole.
  • the CPU 211 reads the system program stored in the ROM 212 via the bus, and controls the entire unmanned aerial vehicle 2 according to the system program.
  • the RAM 213 temporarily stores temporary calculation data, various data input from the outside, and the like.
  • the non-volatile memory 214 is composed of, for example, a memory backed up by a battery (not shown), and the storage state is maintained even when the power supply 221 of the unmanned aerial vehicle 2 is turned off.
  • the non-volatile memory 214 stores data read from an external device (not shown), data acquired from a communication device via a network, and the like.
  • the data stored in the non-volatile memory 214 may be expanded in the RAM 213 at the time of execution / use of the unmanned aerial vehicle 2. Further, various system programs such as known programs are written in advance in the ROM 212.
  • the sensor 215 is an acceleration sensor, an angular velocity sensor, an electronic compass, a barometric pressure sensor, a distance sensor, or the like.
  • the electronic compass obtains the direction of the unmanned aerial vehicle by magnetic force.
  • the distance sensor is, for example, a LIDAR (Light Detection and Ringing) sensor, and measures scattered light with respect to laser irradiation that emits in a pulse shape.
  • the CPU 211 mounted on the unmanned aerial vehicle 2 functions as, for example, a flight controller or a companion controller.
  • the number of CPU 211 is not necessarily one, and a plurality of CPU 211 may be mounted according to the function.
  • the CPU 211 as a flight controller appropriately controls the attitude and position of the aircraft based on the information acquired from the sensor 215.
  • the CPU 211 calculates the inclination and movement of the unmanned airplane 2 based on the amount of change in the speed of the unmanned airplane 2 acquired by the acceleration sensor, and the CPU 211 calculates the inclination and movement of the unmanned airplane 2 based on the amount of change in the rotational speed of the unmanned airplane 2 acquired from the angular velocity sensor.
  • the altitude of the unmanned airplane 2 is calculated from the pressure of the air acquired from the barometric pressure sensor by calculating the change of the inclination and the direction of.
  • the CPU 211 as a companion controller also calculates two-dimensional or three-dimensional point group data based on the value of scattered light acquired by the LIDAR sensor.
  • the point cloud data is an environmental map around the unmanned aerial vehicle 2.
  • the CPU 211 can also sequentially estimate the amount of movement of the unmanned aerial vehicle 2 by matching the point clouds with each other.
  • the self-position can be estimated by integrating the amount of movement. Further, in the estimation of the self-position of the unmanned airplane 2, the point cloud data obtained by the LIDAR sensor and the value acquired from the acceleration sensor or the angular velocity sensor may be combined.
  • an infrared sensor, an ultrasonic sensor, or a radio wave radar sensor may be used as the distance sensor.
  • a camera or an image sensor can also be used as a distance sensor.
  • an AR marker, AR tag, QR code (registered trademark), etc. can also be used together.
  • a distance sensor there is also a method of estimating a self-position using a beacon.
  • the self-position estimation method of the unmanned aerial vehicle 2 is not particularly limited.
  • the image processing unit 216 converts the image captured by the camera 217 into appropriate data and outputs it to the CPU 211.
  • the camera 217 of the unmanned aerial vehicle 2 mainly captures the mechanical equipment 4 selected by the user. As a result, it is possible to grasp the value displayed on the instrument provided in the machine / equipment 4 and the operating state of the factory such as the operating state of the machine / equipment 4.
  • the wireless communication unit 218 includes a wireless LAN communication unit 222 and a short-range wireless communication unit 223.
  • the wireless LAN communication unit 222 is, for example, a Wi-Fi (registered trademark) wireless station.
  • the wireless LAN communication unit 222 communicates with the wireless communication device 3.
  • the communicable area of the wireless communication device 3 includes the entire factory (or the entire flight path of the unmanned aerial vehicle 2).
  • the short-range wireless communication unit 223 is, for example, a Bluetooth (registered trademark) radio station.
  • the short-range wireless communication unit 223 of the unmanned aerial vehicle 2 communicates with the short-range wireless communication unit 41 incorporated in the mechanical equipment 4.
  • the ESC (Electric Speed Controller) 219 also known as an amplifier, is attached to each propeller.
  • the ESC219 controls the rotation speed of the motor according to the instruction from the CPU 211.
  • a pressure difference is generated above and below the propeller 220, and lift is generated by this pressure difference, and the unmanned airplane 2 flies.
  • Lift is a force that works upward to push up the unmanned aerial vehicle 2.
  • the unmanned aerial vehicle 2 can change the speed and the moving direction by changing the rotation speed of the propeller 220.
  • the unmanned airplane 2 has hovering (lift and gravity become equal), ascending (the rotation speed of the four motors increases), and descending (the rotation speed of the four motors decreases).
  • the PC1 has the hardware configuration shown in FIG.
  • the CPU 111 included in the PC 1 is a processor that controls the PC 1 as a whole.
  • the CPU 111 reads out the system program stored in the ROM 112 via the bus 122, and controls the entire PC 1 according to the system program.
  • Temporary calculation data, display data, various data input from the outside, and the like are temporarily stored in the RAM 113.
  • the non-volatile memory 114 is composed of, for example, a memory backed up by a battery (not shown), an SSD (Solid State Drive), or the like, and the storage state is maintained even when the power of the PC 1 is turned off.
  • the non-volatile memory 114 stores data read from the external device 125 via the interface 115, data input via the input unit 124, data acquired from an unmanned airplane via a wireless communication device, and the like. ..
  • the data stored in the non-volatile memory 114 may be expanded in the RAM 113 at the time of execution / use. Further, various system programs such as known programs are written in advance in the ROM 112.
  • each data read on the memory, data obtained as a result of executing the program, etc. are output and displayed via the interface 117.
  • the input unit 124 composed of a keyboard, a pointing device, or the like passes the programmer's input to the CPU 111 via the interface 118.
  • FIG. 4 is a block diagram of the unmanned aerial vehicle control system 100.
  • the unmanned airplane control system 100 includes one or more unmanned airplanes 2, a personal computer (PC) 1 for creating a flight plan for the unmanned airplane 2, a wireless communication device 3 as an access point for a wireless LAN, and short-range wireless communication. It is equipped with the mechanical equipment 4 as a radio station of the above.
  • PC personal computer
  • the PC 1 has a self-position acquisition unit 11 that acquires the self-position of the unmanned airplane 2, an environment map acquisition unit 12 that acquires the environment map of the unmanned airplane 2, and a mapping unit 13 that maps the self-position of the unmanned airplane 2 to a three-dimensional map. It has a flight plan creation unit 14 that creates a flight plan for the unmanned airplane 2, and a flight plan output unit 15 that outputs the flight plan to the unmanned airplane 2.
  • the self-position acquisition unit 11 acquires the self-position of the unmanned aerial vehicle 2 via the wireless communication device 3.
  • the self-position of the unmanned airplane 2 is the position of the unmanned airplane 2 calculated by the unmanned airplane 2 based on the values of the acceleration, the angular velocity sensor, and the distance sensor.
  • the environmental map acquisition unit 12 acquires the environmental map of the unmanned aerial vehicle 2 via the wireless communication device 3.
  • the environmental map is point cloud data around the unmanned aerial vehicle 2.
  • the environmental map is created based on the values of the distance sensor.
  • the self-position of the unmanned aerial vehicle 2 can also be estimated by using the strength of radio waves such as a beacon and Wi-Fi. When using a beacon or Wi-Fi radio wave, the coordinates of the unmanned aerial vehicle 2 can be grasped from the radio wave, so an environmental map is not always necessary.
  • the environmental map is created, the situation around the unmanned aerial vehicle 2 can be acquired in real time, and unexpected obstacles and the like can be detected.
  • the mapping unit 13 associates the environmental map of the unmanned airplane 2 with the three-dimensional map based on the feature points and the like, and maps the self-position of the unmanned airplane 2 to the coordinate system of the three-dimensional map.
  • the flight plan creation unit 14 creates a flight plan for the unmanned aerial vehicle 2.
  • the flight plan output unit 15 outputs the flight plan to the unmanned airplane 2 via the wireless LAN by the wireless communication device 3.
  • the flight plan includes the self-position of the unmanned aerial vehicle 2 on the three-dimensional map.
  • the flight plan may be stored in the non-volatile memory 214 of the unmanned aerial vehicle 2.
  • the flight plan may include the flight start time and the like.
  • the unmanned aircraft 2 has a self-position estimation unit 21 that estimates its own position, an environment map creation unit 22 that creates an environmental map around the unmanned aircraft 2, a flight plan acquisition unit 23 that acquires the flight plan of the unmanned aircraft 2, and a flight plan.
  • the autonomous flight unit 24 that performs autonomous flight in accordance with the movement command, the wireless LAN communication unit 222 that performs wireless LAN communication, the short-range wireless communication unit 223 that performs wireless communication with each machine / equipment 4, and the area indicating the boundary of wireless switching. It includes a radio switching area storage unit 25 for storing, a radio station switching unit 26 for switching radio stations, and a mechanical equipment selection unit 29 for selecting a preselected base station.
  • the self-position estimation unit 21 calculates the inclination and movement of the unmanned aerial vehicle 2 based on the amount of change in the speed of the unmanned aerial vehicle 2 acquired by the acceleration sensor, and based on the amount of change in the rotational speed of the unmanned aerial vehicle 2 acquired from the angular velocity sensor.
  • the change in the inclination and direction of the unmanned aerial vehicle 2 is calculated, the altitude of the unmanned aerial vehicle 2 is calculated from the pressure of the air acquired from the barometric pressure sensor, and the amount of movement of the unmanned aerial vehicle 2 is calculated.
  • the self-position estimation unit 21 sequentially estimates the amount of movement of the unmanned aerial vehicle 2 by matching the environmental map.
  • the self-position is estimated by integrating the amount of movement.
  • the environmental map creation unit 22 also calculates two-dimensional or three-dimensional point group data based on the value of the confusion light acquired by the LIDER sensor.
  • the point cloud data is an environmental map around the unmanned aerial vehicle 2.
  • the flight plan acquisition unit 23 acquires a flight plan from the wireless communication device 3 or the mechanical equipment 4.
  • the flight plan includes the self-position of the unmanned aerial vehicle 2 on the three-dimensional map.
  • the wireless LAN communication unit 222 is, for example, a Wi-Fi (registered trademark) adapter.
  • the wireless LAN communication unit 222 communicates with the wireless communication device 3.
  • the communicable area of the wireless communication device 3 includes the entire factory (or the entire flight path of the unmanned aerial vehicle 2).
  • the short-range wireless communication unit 223 is, for example, a Bluetooth® adapter.
  • the short-range wireless communication unit 223 of the unmanned aerial vehicle 2 communicates with the short-range wireless communication unit 41 incorporated in the mechanical equipment 4.
  • the radio switching area storage unit 25 stores the area obtained by dividing the three-dimensional map or the two-dimensional map of the factory and the radio station to be connected to the unmanned airplane 2 in each area.
  • the wireless switching area storage unit 25 stores a “wireless LAN” in the “region 1” and a “short-range wireless station (device ID)” in the “region 2”.
  • the radio station switching unit 26 refers to the radio switching area storage unit 25, and detects a radio station existing in the area where the self-position on the three-dimensional map or the two-dimensional map of the unmanned airplane 2 exists.
  • the mechanical equipment selection unit 29 determines whether or not a radio station existing in the area where the unmanned aerial vehicle 2 exists is attached to the mechanical equipment 4 selected in advance.
  • the radio station is switched. If a radio station is installed in a machine or equipment selected in advance, the radio station is switched. If a radio station is installed in a machine or equipment that has not been selected in advance, the radio station will not be switched.
  • the mechanical equipment 4 may be selected before the autonomous flight or during the autonomous flight.
  • the selection of the mechanical equipment 4 may be manually input or may be input by an information processing device such as an external system. For example, when the drone performs regular work based on an external program, the mechanical equipment 4 specified in the program may be automatically selected. If the route to move to the machine / equipment 4 to be worked is automatically calculated based on the route calculation algorithm, the machine / equipment (radio station) is selected based on which area the current position of the drone is included in. do it.
  • the radio station means a transmitter, a receiver, or a combination of a transmitter and a receiver that communicates wirelessly. That is, in the present disclosure, the wireless LAN communication unit 222 and the short-range wireless communication unit 223 of the unmanned airplane 2, the wireless communication device 3, and the short-range wireless communication unit 223 of the mechanical equipment 4 are all wireless stations.
  • the mechanical equipment 4 is provided with a short-range wireless communication unit 41.
  • the short-range wireless communication unit 41 is, for example, a Bluetooth adapter.
  • the short-range wireless communication unit 41 outputs packets at regular time intervals. This packet contains the device address and device name of the machine / equipment 4. Upon receiving this packet, the short-range wireless communication unit 223 of the unmanned aerial vehicle 2 returns to the short-range wireless communication unit 41 of the mechanical equipment 4 to establish a connection.
  • the unmanned aerial vehicle 2 estimates its own position (step S1) and creates an environmental map (step S2).
  • the PC 1 maps the self-position of the unmanned airplane 2 and the environmental map to the three-dimensional map of the factory, and acquires the position of the unmanned airplane 2 on the three-dimensional map (step S3).
  • the PC 1 creates a flight plan for the unmanned aerial vehicle 2 (step S4) and outputs it to the unmanned aerial vehicle 2.
  • the user selects the mechanical equipment 4 for wireless communication (step S5).
  • the selected mechanical equipment 4 is registered in the unmanned aerial vehicle 2.
  • the mechanical equipment 4 that performs wireless communication is selected before the start of the autonomous flight, but the mechanical equipment 4 may be selected during the autonomous flight and registered in the unmanned aerial vehicle 2.
  • the unmanned aerial vehicle 2 autonomously flies according to the flight plan received from the PC 1 (step S6).
  • the unmanned aerial vehicle 2 refers to the wireless switching area storage unit 25, and determines an area including the self-position of the unmanned aerial vehicle 2 (step S7).
  • step S8; Yes it is determined that the unmanned aerial vehicle 2 has entered the new area (step S9). If the area including the self-position of the unmanned aerial vehicle 2 does not change (step S8; No), the unmanned aerial vehicle 2 shifts to step S6 and continues autonomous flight.
  • the unmanned aerial vehicle 2 confirms the surrounding radio wave condition (step S10).
  • the radio wave indicating the existence of the mechanical equipment 4 reaches the unmanned aerial vehicle 2.
  • the short-range wireless communication unit 41 of the unmanned aerial vehicle 2 establishes a connection with the short-range wireless communication unit 41 of the mechanical equipment 4 (step S11), and establishes a radio station. Switching (step S12).
  • the mechanical equipment 4 may relay the data from the PC 1, or the mechanical equipment 4 may directly control the unmanned aerial vehicle 2.
  • the mechanical equipment 4 directly controls the unmanned aerial vehicle 2, it is desirable that the mechanical equipment 4 is equipped with a numerical control device or an arithmetic unit such as a PLC (Programmable Logic Controller).
  • the unmanned aerial vehicle control system 100 of the first disclosure has a radio switching area storage unit 25 that divides a three-dimensional map of a factory into areas and records radio stations suitable for each area. This area can be created by actually measuring the radio wave condition in the factory.
  • the unmanned aerial vehicle 2 switches radio stations while confirming which area it is flying.
  • Various wireless systems coexist in the factory, and wireless communication may become unstable due to radio wave noise from the mechanical equipment 4.
  • the unmanned airplane control system 100 switches to short-distance communication in the vicinity of the machine tool 4 in the area where the radio wave condition of the wireless LAN is poor, the unmanned airplane 2 can be operated even in a place where the radio wave in the factory is difficult to reach, such as inside or near a machine tool. Can be controlled.
  • the distance between the radio station and the unmanned aerial vehicle 2 may be measured, and the connection may be switched when the unmanned aerial vehicle 2 comes near the radio station.
  • the Euclidean distance may be calculated from the coordinates of the self-position and the radio station, or the distance from the mechanical equipment 4 may be calculated from the image captured by the unmanned airplane 2.
  • the beacon of the radio station may be used as a distance sensor. Since the reach of the short-range radio differs depending on the device, the threshold value of the switching distance may be set for each device.
  • the protocol of the wireless connection is not limited to the above, and even if a wireless connection of a protocol different from the present disclosure is used, it is included in the idea of the present disclosure.
  • the unmanned aerial vehicle 2 includes a signal strength detection unit 27 and a device ID storage unit 28.
  • the signal strength detection unit 27 detects the radio wave output by the wireless communication device 3 and the signal strength of the mechanical equipment 4.
  • the device ID storage unit 28 stores the device ID, which is the identification information of the short-range wireless communication unit 41 incorporated in the mechanical equipment 4.
  • the device ID storage unit 28 also stores the mechanical equipment 4 selected as the communication partner.
  • the radio station switching unit 26 compares the signal strength detected by the signal strength detection unit 27, and there is a radio station having a better signal state than the currently connected radio station, and the device ID of this radio station is the device ID. It is recorded in the storage unit 28, and when this mechanical equipment 4 is selected as a communication partner, the radio station is switched.
  • the unmanned aerial vehicle 2 estimates its own position (step S21) and creates an environmental map (step S22).
  • the PC 1 maps the self-position of the unmanned airplane 2 and the environmental map to the three-dimensional map of the factory, and acquires the position of the unmanned airplane 2 on the three-dimensional map (step S23).
  • the PC 1 creates a flight plan for the unmanned aerial vehicle 2 (step S24) and outputs it to the unmanned aerial vehicle 2.
  • the unmanned aerial vehicle 2 autonomously flies according to the flight plan received from the PC 1 (step S25).
  • the unmanned aerial vehicle 2 detects the signal strength (step S26).
  • the signal strength of the currently connected radio station is compared with the signal strength of another radio station (step S27), and there is no radio station having a better signal state than the currently connected radio station.
  • step S28; No the process proceeds to step S25 and autonomous flight is continued.
  • step S28; Yes the device ID of this radio station exists in the device ID storage unit 28
  • step S29; Yes this device ID A connection is established with the short-range wireless communication unit 41 having the above (step S30), and the radio station is switched (step S31). If the device ID of the radio station detected in step S28 does not exist in the device ID storage unit 28 (step S29; No), the process proceeds to step S25 and autonomous flight is continued.
  • the unmanned aerial vehicle control system 100 of the second disclosure it is detected that the vicinity of the target mechanical equipment 4 is approached by using the signal strength.
  • the signal strength as a selection criterion for a radio station, it is possible to reliably switch to a radio station with a good signal condition.
  • the unmanned aerial vehicle control system 100 of the third disclosure has substantially the same configuration as the unmanned aerial vehicle control system 100 of the second disclosure shown in FIG.
  • the unmanned aerial vehicle control system 100 of the third disclosure stores the device IDs of the plurality of mechanical equipment 4 in the device ID storage unit 28 of the unmanned aerial vehicle 2.
  • the unmanned aerial vehicle 2 flies while switching the short-range wireless communication unit 41 of the plurality of mechanical equipment 4. For example, when the unmanned aerial vehicle 2 moves on the flight path as shown in FIG. 9, there are four mechanical equipments 4 in the vicinity of the flight path of the unmanned aerial vehicle 2.
  • Short-range wireless communication unit 41 of mechanical equipment A Short-range wireless communication unit 41 of mechanical equipment B, short-range wireless communication unit 41 of mechanical equipment C, short-range wireless communication unit 41 of mechanical equipment D, and a radio station with good signal condition. Fly while switching to. As a result, stable communication can be performed even in a place where the radio wave condition is unstable such as a factory.
  • the device ID storage unit 28 may store the device IDs of all the short-range wireless communication units 41 existing in the factory. As the number of device IDs increases, the area where short-range wireless communication can be performed expands. The choice of communication means is expanded, and the unmanned airplane 2 can be controlled using only short-range wireless even if there is no wireless environment such as a wireless LAN that covers the entire factory.
  • Unmanned aerial vehicle control system 1 Personal computer (PC) 2 Unmanned airplane 3 Wireless communication device 4 Mechanical equipment 11 Self-position acquisition unit 12 Environmental map acquisition unit 13 Mapping unit 14 Flight plan creation unit 15 Flight plan output unit 21 Self-position estimation unit 22 Environmental map creation unit 23 Flight plan acquisition unit 24 Autonomous Flight unit 25 Wireless switching area storage unit 26 Wireless station switching unit 222 Wireless LAN communication unit 223 Short-range wireless communication unit 41 Short-range wireless communication unit 211 CPU 214 Non-volatile memory 215 Sensor 216 Image processing unit 217 Camera

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

工場には、無線LANが構築されている。工場の機械設備4は、短距離無線通信部41を備える。無人飛行機2は、工場の3次元地図又は2次元地図を分割した領域と、各領域において無人飛行機2が接続すべき無線局を記憶している。無人飛行機2は、3次元地図又は2次元地図上の自己位置が存在する領域に応じて接続する無線局を切り替える。

Description

無人飛行機制御装置、及び記憶媒体
 本発明は、工場内で作動する無人飛行機、及びコンピュータが読み取り可能な記憶媒体に関する。
 特許文献1には、ロボットと、ロボットを制御するロボット制御装置と、オペレータの教示入力に応じてロボットの教示信号をロボット制御装置に送る教示装置と、撮像装置を備えた無人飛行機と、教示信号に従ってロボットが動作する間、教示信号に基づいて、教示に必要な物体の画像を撮像装置が継続して取得するように無人飛行機の飛行を制御する飛行制御部と、を具備するロボットシステムが、開示されている。
 一般に生産現場では、安全上の配慮からロボットは柵内で使用される場合がある。特許文献1のロボットシステムは、ロボットが動作する間、ロボットを制御する教示信号に基づいて、無人飛行機の飛行を制御することで、柵外からオペレータがロボットの動きを直接視認することが難しい環境においても、ロボットの教示を行うことができる。
 従来、倉庫の在庫管理や工場の状態監視のために無人飛行機(ドローン)を活用する事例が増えている。無人飛行機は、飛行物体であり、移動領域が柔軟であるため、新たな活用が期待されている。
特開2020-142326号公報
 製造現場では、無人飛行機を活用する技術が望まれている。
 本開示の一態様である無人飛行機は、工場内を飛行する無人飛行機であって、機械設備と短距離無線通信を行う第1の無線通信部と、短距離無線通信より通信距離が長い無線通信を行う第2の無線通信部と、事前に通信相手として選択した機械設備か否かを判定する機械設備選択部と、工場内を飛行する無人飛行機の自己位置が選択された機械設備の近傍にあることを検出し、機械設備に取り付けられた短距離無線通信の無線局に接続を切り替える無線局切替部と、を備える。
 本開示の一態様である記憶媒体は、機械設備と短距離無線通信を行う第1の無線通信部と、短距離無線通信より通信距離が長い無線通信を行う第2の無線通信部と、を備える無人飛行機の1つ又は複数のプロセッサが実行することにより、事前に通信相手として選択した機械設備か否かを判定し、工場内を飛行する無人飛行機の自己位置が選択された機械設備の近傍にあることを検出させ、機械設備に取り付けられた短距離無線通信の無線局に接続を切り替させる、コンピュータが読み取り可能な命令を記憶する。
 本発明の一態様により、無人飛行機を活用することができる。
無人飛行機制御システムの概念図である。 無人飛行機のハードウェア構成図である。 PCのハードウェア構成図である。 第1の開示の無人飛行機制御システムのブロック図である。 無線切替領域記憶部に記憶されたデータ一例を示す図である。 第1の開示の無人飛行機制御システムの動作を説明するフローチャートである。 第2の開示の無人飛行機制御システムのブロック図である。 第2の開示の無人飛行機制御システムの動作を説明するフローチャートである。 無人飛行機の飛行経路の一例を示す図である。
[第1の開示]
 図1は、無人飛行機制御システム100の概念図である。
 無人飛行機制御システム100は、1台又は複数台の無人飛行機2と、無人飛行機2の飛行計画を作成するパーソナルコンピュータ(PC)1、無人飛行機2とPC1との通信を仲介する無線通信装置3、短距離無線通信を行う機械設備4とを備える。
 無人飛行機制御システム100は、複数の機械設備4が配置された工場などの空間に設けられる。機械設備4には、工作機械やロボット、空調設備や換気設備、防炎排煙設備、検査設備、配管設備、クリーンルーム設備などがあるが特に限定しない。
 無人飛行機制御システム100のPC1は、サーバや携帯端末のような情報処理装置であれば特に限定しない。
 機械設備4は、工場の無線LAN(Local Area Network)に接続されていてもよい。この場合、機械設備4の短距離無線通信を介して、PC1が作成した飛行計画を無人飛行機2に出力して、無人飛行機2を制御できる。
 無人飛行機2は、図2のようなハードウェア構成を有する。無人飛行機2が備えるCPU211は、無人飛行機2を全体的に制御するプロセッサである。CPU211はバスを介してROM212に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って無人飛行機2全体を制御する。RAM213は、一時的な計算データや外部から入力された各種データ等が一時的に格納される。
 不揮発性メモリ214は、例えば、図示しないバッテリでバックアップされたメモリ等で構成され、無人飛行機2の電源221がオフされても記憶状態が保持される。不揮発性メモリ214には、外部機器(図示省略)から読み込まれたデータ、ネットワークを介して通信装置から取得したデータ等が記憶される。不揮発性メモリ214に記憶されたデータは、無人飛行機2の実行時/利用時にはRAM213に展開されてもよい。また、ROM212には公知のプログラムなどの各種システム・プログラムが予め書き込まれている。
 センサ215は、加速度センサ、角速度センサ、電子コンパス、気圧センサ、距離センサなどである。電子コンパスは、磁力により無人飛行機の方向を取得する。距離センサは、例えば、LIDAR(Light Detection and Ranging)センサであり、パルス状に発光するレーザー照射に対する散乱光を測定する。
 無人飛行機2に搭載されるCPU211は、例えば、フライトコントローラやコンパニオンコントローラとして機能する。CPU211は必ずしも1つではなく、機能に合わせて複数のCPU211を搭載してもよい。フライトコントローラとしてのCPU211は、センサ215から取得した情報を基に機体の姿勢及び位置を適切に制御する。CPU211は、加速度センサが取得した無人飛行機2の速度の変化量を基に無人飛行機2の傾きや動きを算出し、角速度センサから取得した無人飛行機2の回転速度の変化量を基に無人飛行機2の傾きや向きの変化を算出し、気圧センサから取得した空気の圧力から無人飛行機2の高度を算出する。
 コンパニオンコントローラとしてのCPU211は、LIDARセンサが取得した散乱光の値に基づき2次元もしくは3次元の点群データも算出する。点群データは、無人飛行機2の周囲の環境地図となる。CPU211は、点群同士をマッチングすることで無人飛行機2の移動量を逐次推定することもできる。移動量を積算することで自己位置を推定することができる。また、無人飛行機2の自己位置の推定には、LIDARセンサによる点群データと加速度センサや角速度センサのから取得した値を組み合わせてもよい。
 なお、LIDARセンサの代わりに赤外線センサ、超音波センサ、電波によるレーダセンサを距離センサとして用いてもよい。LIDARセンサの代わりにカメラやイメージセンサも距離センサとして用いることもできる。カメラを使用する場合は、ARマーカやARタグ、QRコード(登録商標)などを併用することもできる。距離センサを使用しない例として、ビーコンを利用して自己位置を推定する方法もある。本開示では、無人飛行機2の自己位置推定方法については特に限定しない。
 画像処理部216は、カメラ217で撮像した画像を適当なデータに変換してCPU211に出力する。無人飛行機2のカメラ217は、主に、ユーザが選択した機械設備4を撮影する。これにより、機械設備4に備わった計器に表示されている値や、機械設備4の動作状態などの工場の稼働状態が把握できる。
 無線通信部218は、無線LAN通信部222と、短距離無線通信部223とを備える。
 無線LAN通信部222は、例えば、Wi-Fi(登録商標)の無線局である。無線LAN通信部222は、無線通信装置3との通信を行う。無線通信装置3の通信可能領域は、工場全体(又は無人飛行機2の飛行経路全体)を含む。
 短距離無線通信部223は、例えば、Bluetooth(登録商標)の無線局である。無人飛行機2の短距離無線通信部223は、機械設備4に組み込まれた短距離無線通信部41との通信を行う。
 ESC(Electric Speed Controller)219は、別名アンプとも呼ばれ、各プロペラに取り付けられている。ESC219は、CPU211からの指示に従いモータの回転数を制御する。プロペラの回転数を制御することにより、プロペラ220の上下で気圧差が生じ、この気圧差により揚力が生じて、無人飛行機2が飛行する。揚力とは、無人飛行機2を押し上げるように上向きに働く力である。無人飛行機2は、プロペラ220の回転数を変えることで速度や移動方向を変えることができる。
 無人飛行機2は、プロペラ220の回転数を制御することで、ホバリング(揚力と重力が等しくなる)、上昇(4つのモータの回転数が高くなる)、下降(4つのモータの回転数が低くなる)、前後左右移動(進行方向とは反対の2枚のプロペラの回転数が高くなり進行方向に移動する)、左旋回(右回転のプロペラの回転数が高くなる)、右旋回(左回転のプロペラの回転数が高くなる)などの動作を行う。
 PC1は、図3に示すハードウェア構成を有する。
 PC1が備えるCPU111は、PC1を全体的に制御するプロセッサである。CPU111は、バス122を介してROM112に格納されたシステム・プログラムを読み出し、該システム・プログラムに従ってPC1全体を制御する。RAM113には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。
 不揮発性メモリ114は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、PC1の電源がオフされても記憶状態が保持される。不揮発性メモリ114には、インタフェース115を介して外部機器125から読み込まれたデータ、入力部124を介して入力されたデータ、無線通信装置を介して無人飛行機から取得されたデータ等が記憶される。不揮発性メモリ114に記憶されたデータは、実行時/利用時にはRAM113に展開されてもよい。また、ROM112には、公知のプログラムなどの各種システム・プログラムが予め書き込まれている。
 表示部123には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等がインタフェース117を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力部124は、プログラマの入力を、インタフェース118を介してCPU111に渡す。
 図4は、無人飛行機制御システム100のブロック図である。無人飛行機制御システム100は、1台又は複数台の無人飛行機2と、無人飛行機2の飛行計画を作成するパーソナルコンピュータ(PC)1、無線LANのアクセスポイントとしての無線通信装置3、短距離無線通信の無線局としての機械設備4とを備える。
 PC1は、無人飛行機2の自己位置を取得する自己位置取得部11、無人飛行機2の環境地図を取得する環境地図取得部12、無人飛行機2の自己位置を3次元地図にマッピングするマッピング部13、無人飛行機2の飛行計画を作成する飛行計画作成部14、無人飛行機2に飛行計画を出力する飛行計画出力部15、を有する。
 自己位置取得部11は、無線通信装置3を介して無人飛行機2の自己位置を取得する。無人飛行機2の自己位置とは、加速度や角速度センサ、距離センサの値を基に無人飛行機2が算出した無人飛行機2の位置である。
 環境地図取得部12は、無線通信装置3を介して無人飛行機2の環境地図を取得する。環境地図とは、無人飛行機2の周囲の点群データである。環境地図は距離センサの値などを基に作成する。なお、無人飛行機2の自己位置は、ビーコンやWi-Fiなどの電波の強弱を用いても推定できる。ビーコンやWi-Fiの電波を用いた場合は、電波から無人飛行機2の座標が把握できるため必ずしも環境地図は必要ではない。環境地図を作成した場合には、無人飛行機2の周囲の状況をリアルタイムで取得でき、予期せぬ障害物などを検出することができる。
 マッピング部13は、特徴点などを基に無人飛行機2の環境地図と3次元地図との対応付けを行い、無人飛行機2の自己位置を3次元地図の座標系にマッピングする。飛行計画作成部14は、無人飛行機2の飛行計画を作成する。
 飛行計画出力部15は、無線通信装置3による無線LANを介して無人飛行機2に飛行計画を出力する。飛行計画には、無人飛行機2の3次元地図上の自己位置が含まれる。無人飛行機2の不揮発性メモリ214に飛行計画を記憶してもよい。飛行計画には、飛行開始時間などを含んでもよい。
 無人飛行機2は、自己位置を推定する自己位置推定部21、無人飛行機2の周囲の環境地図を作成する環境地図作成部22、無人飛行機2の飛行計画を取得する飛行計画取得部23、飛行計画や移動指令に従い自律飛行を行う自律飛行部24、無線LAN通信を行う無線LAN通信部222、各機械設備4との無線通信を行う短距離無線通信部223、無線の切替の境界を示す領域を記憶する無線切替領域記憶部25、無線局を切り換える無線局切替部26、事前に選択された基地局を選択する機械設備選択部29を備える。
 自己位置推定部21は、加速度センサが取得した無人飛行機2の速度の変化量を基に無人飛行機2の傾きや動きを算出し、角速度センサから取得した無人飛行機2の回転速度の変化量を基に無人飛行機2の傾きや向きの変化を算出し、気圧センサから取得した空気の圧力から無人飛行機2の高度を算出し、自己の移動量を算出する。また、自己位置推定部21は、環境地図をマッチングすることで無人飛行機2の移動量を逐次推定する。移動量を積算することで自己位置を推定する。
 環境地図作成部22は、LIDERセンサが取得した錯乱光の値に基づき2次元もしくは3次元の点群データも算出する。点群データは、無人飛行機2の周囲の環境地図となる。
 飛行計画取得部23は、無線通信装置3又は機械設備4から飛行計画を取得する。飛行計画には、無人飛行機2の3次元地図上の自己位置が含まれる。
 無線LAN通信部222は、例えば、Wi-Fi(登録商標)アダプタである。無線LAN通信部222は、無線通信装置3との通信を行う。無線通信装置3の通信可能領域は、工場全体(又は無人飛行機2の飛行経路全体)を含む。
 短距離無線通信部223は、例えば、Bluetooth(登録商標)アダプタである。無人飛行機2の短距離無線通信部223は、機械設備4に組み込まれた短距離無線通信部41との通信を行う。
 無線切替領域記憶部25は、工場の3次元地図又は2次元地図を分割した領域と、各領域において無人飛行機2が接続すべき無線局を記憶している。例えば、無線切替領域記憶部25は、図5に示すように、「領域1」は「無線LAN」、「領域2」は「短距離無線局(デバイスID)」などを記憶している。
 無線局切替部26は、無線切替領域記憶部25を参照し、無人飛行機2の3次元地図又は2次元地図上の自己位置が存在する領域に存在する無線局を検出する。
 機械設備選択部29は、無人飛行機2が存在する領域に存在する無線局が、事前に選択した機械設備4に取り付けられているか否かを判定する。事前に選択した機械設備に無線局が取り付けられている場合、無線局の切替を行う。事前に選択していない機械設備に無線局が取り付けられている場合、無線局の切替を行わない。
 なお、機械設備4の選択は、自律飛行前に行ってもよいし、自律飛行中に行ってもよい。
 また、機械設備4の選択は、人手で入力してもよいし、外部システムなどの情報処理装置が入力してもよい。例えば、外部プログラムに基づきドローンが定期作業を行うといった場合は、プログラム内で指定されている機械設備4を自動的に選択してもよい。また、作業対象の機械設備4に移動するまでの経路を経路計算アルゴリズムに基づいて自動的に算出する場合は、ドローンの現在位置がどの領域に含まれるかに基づき機械設備(無線局)を選択すればよい。
 本開示において無線局とは、無線を用いて通信を行う送信機、受信機、又は送信機と受信機の組合せを意味する。すなわち、本開示において、無人飛行機2の無線LAN通信部222及び短距離無線通信部223、無線通信装置3、機械設備4の短距離無線通信部223は全て無線局である。
 機械設備4には、短距離無線通信部41が設けられている。短距離無線通信部41は、例えば、Bluetoothアダプタである。短距離無線通信部41は、一定時間間隔でパケットを出力する。このパケットには、機械設備4のデバイスアドレスやデバイス名が含まれる。このパケットを受信した無人飛行機2の短距離無線通信部223は、機械設備4の短距離無線通信部41に返信し、接続を確立する。
 図6のフローチャートを参照して、無人飛行機制御システム100の動作について説明する。
 最初に、無人飛行機2は自己位置を推定し(ステップS1)、環境地図を作成する(ステップS2)。PC1は、無人飛行機2の自己位置と環境地図を工場の3次元地図にマッピングし、3次元地図上の無人飛行機2の位置を取得する(ステップS3)。
 PC1は、無人飛行機2の飛行計画を作成し(ステップS4)、無人飛行機2に出力する。ユーザは、無線通信を行う機械設備4を選択する(ステップS5)。選択された機械設備4は、無人飛行機2に登録される。ここでは、自律飛行の開始前に無線通信を行う機械設備4を選択するが、自律飛行中に機械設備4を選択して、無人飛行機2に登録してもよい。
 無人飛行機2は、PC1から受信した飛行計画に従い自律飛行する(ステップS6)。
 無人飛行機2は、無線切替領域記憶部25を参照し、無人飛行機2の自己位置が含まれる領域を判定する(ステップS7)。無人飛行機2の自己位置が含まれる領域が変化した場合(ステップS8;Yes)、無人飛行機2は、新しい領域に進入したと判定する(ステップS9)。無人飛行機2の自己位置が含まれる領域が変化しない場合(ステップS8;No)、無人飛行機2は、ステップS6に移行し、自律飛行を継続する。
 新しい領域に進入したと判定した場合、無人飛行機2は周囲の電波状態を確認する(ステップS10)。無人飛行機2が機械設備4の近傍を飛行している場合には、機械設備4の存在を示す電波が無人飛行機2に到達する。無人飛行機2は、機械設備4の電波を受信すると、無人飛行機2の短距離無線通信部41は、機械設備4の短距離無線通信部41との接続を確立し(ステップS11)、無線局を切り替える(ステップS12)。
 ここで、機械設備4はPC1からのデータを中継してもよいし、機械設備4が直接無人飛行機2を制御してもよい。機械設備4が直接無人飛行機2を制御する場合には、数値制御装置やPLC(Programmable Logic Controller)のような演算装置を備える機械設備4が望ましい。
 以上説明したように、第1の開示の無人飛行機制御システム100は、工場の3次元地図を領域に分割し、各領域に適した無線局を記録した無線切替領域記憶部25を有する。この領域は、工場内の電波状態を実際に計測して作成できる。無人飛行機2は、自身がどの領域を飛行しているかを確認しながら無線局の切替を行う。
 工場内には様々な無線システムが混在し、機械設備4からの電波雑音などにより無線通信が不安定になることがある。また、工作機械の機内や近傍など、工場内の電波が届きにくい領域がある。工作機械(特に大型機)の筐体内部で無人飛行機2を制御する場合には、筐体による通信障害が発生するおそれがある。
 無人飛行機制御システム100は、無線LANの電波状態が悪い領域では機械設備4の近傍の短距離通信に切り替えるため、工作機械の機内や近傍など、工場内の電波が届きにくい場所でも無人飛行機2を制御することができる。
 無線局と無人飛行機2の距離を計測し、無人飛行機2が無線局の近傍にきたときに接続を切り替えてもよい。無線局からの距離は、自己位置と無線局との座標からユークリッド距離を算出してもよいし、無人飛行機2の撮像した画像から機械設備4からの距離を算出することもできる。また、無線局のビーコンを距離センサとして用いてもよい。短距離無線の到達距離は機器によって異なるため、切り替える距離の閾値を機器ごとに設定してもよい。
 無線接続のプロトコルは上記のものに限定せず、本開示とは異なるプロトコルの無線接続を用いても本開示の思想に含まれるものとする。
[第2の開示]
 第2の開示の無人飛行機制御システム100は、図7に示すように、無人飛行機2が信号強度検出部27とデバイスID記憶部28を備える。
 信号強度検出部27は、無線通信装置3が出力する電波及び機械設備4の信号強度を検出する。
 デバイスID記憶部28は、機械設備4に組み込まれた短距離無線通信部41の識別情報であるデバイスIDを記憶している。デバイスID記憶部28は、通信相手として選択された機械設備4も記憶している。
 無線局切替部26は、信号強度検出部27が検出した信号強度を比較し、現在接続している無線局よりも信号状態がよい無線局があり、かつ、この無線局のデバイスIDがデバイスID記憶部28に記録されており、この機械設備4が通信相手として選択されている場合、無線局を切り替える。
 図8のフローチャートを参照して無人飛行機制御システム100の動作を説明する。
 最初に、無人飛行機2は自己位置を推定し(ステップS21)、環境地図を作成する(ステップS22)。PC1は、無人飛行機2の自己位置と環境地図を工場の3次元地図にマッピングし、3次元地図上の無人飛行機2の位置を取得する(ステップS23)。
 PC1は、無人飛行機2の飛行計画を作成し(ステップS24)、無人飛行機2に出力する。無人飛行機2は、PC1から受信した飛行計画に従い自律飛行する(ステップS25)。
 無人飛行機2は、信号強度を検出する(ステップS26)。無人飛行機2は、現在接続している無線局の信号強度と他の無線局の信号強度とを比較し(ステップS27)、現在接続している無線局よりも信号状態がよい無線局が存在しない場合(ステップS28;No)、ステップS25に移行し自律飛行を継続する。
 現在接続している無線局よりも信号状態がよい無線局があり(ステップS28;Yes)、この無線局のデバイスIDがデバイスID記憶部28に存在する場合(ステップS29;Yes)、このデバイスIDを有する短距離無線通信部41と接続を確立して(ステップS30)、無線局を切り替える(ステップS31)。
 ステップS28において検出した無線局のデバイスIDがデバイスID記憶部28に存在しない場合(ステップS29;No)、ステップS25に移行し自律飛行を継続する。
 以上説明したように、第2の開示の無人飛行機制御システム100では、信号強度を用いて目的の機械設備4の近傍に近づいたことを検出する。信号強度を無線局の選択基準とすることにより、確実に信号状態のよい無線局に切り替えることができる。
[第3の開示]
 第3の開示の無人飛行機制御システム100は、図6に示す第2の開示の無人飛行機制御システム100と略同じ構成を有す。第3の開示の無人飛行機制御システム100は、無人飛行機2のデバイスID記憶部28に複数の機械設備4のデバイスIDを記憶する。
 第3の開示の無人飛行機制御システム100では、無人飛行機2が複数の機械設備4の短距離無線通信部41を切り替えながら飛行する。例えば、図9に示すような飛行経路で無人飛行機2が移動する場合、無人飛行機2の飛行経路の近傍には、4つの機械設備4が存在する。機械設備Aの短距離無線通信部41、機械設備Bの短距離無線通信部41、機械設備Cの短距離無線通信部41、機械設備Dの短距離無線通信部41と信号状態のよい無線局に切り替えながら飛行する。これにより工場のような電波状態の不安定な場所でも安定した通信を行うことができる。
 デバイスID記憶部28は工場に存在する全ての短距離無線通信部41のデバイスIDを記憶してもよい。デバイスIDの数が増えると、短距離無線通信できる領域が広がる。通信手段の選択肢が広がり、無線LANなどの工場全体をカバーする無線環境がなくても短距離無線のみを用いて無人飛行機2を制御することもできる。
  100 無人飛行機制御システム
  1   パーソナルコンピュータ(PC)
  2   無人飛行機
  3   無線通信装置
  4   機械設備
  11  自己位置取得部
  12  環境地図取得部
  13  マッピング部
  14  飛行計画作成部
  15  飛行計画出力部
  21  自己位置推定部
  22  環境地図作成部
  23  飛行計画取得部
  24  自律飛行部
  25  無線切替領域記憶部
  26  無線局切替部
  222 無線LAN通信部
  223 短距離無線通信部
  41  短距離無線通信部
  211 CPU
  214 不揮発性メモリ
  215 センサ
  216 画像処理部
  217 カメラ

Claims (6)

  1.  工場内を飛行する無人飛行機であって、
     前記工場内に配置された機械設備と短距離無線通信を行う第1の無線通信部と、
     前記短距離無線通信より通信距離が長い無線通信を行う第2の無線通信部と、
     事前に通信相手として選択した機械設備か否かを判定する機械設備選択部と、
     前記工場内を飛行する無人飛行機の自己位置が前記選択された機械設備の近傍にあることを検出し、前記機械設備に取り付けられた短距離無線通信の無線局に接続を切り替える無線局切替部と、
     を備える無人飛行機。
  2.  飛行計画に従い自律飛行する自律飛行部と、
     前記工場の地図を分割した領域と、各領域において前記無人飛行機が接続すべき無線局を記憶する無線切替領域記憶部を備え、
     前記機械設備選択部は、飛行開始以前又は飛行中に機械設備の選択を取得し、
     前記無線局切替部は、前記無人飛行機が存在する領域に存在する前記選択された機械設備の無線局に接続を切り替える、請求項1記載の無人飛行機。
  3.  無線局ごとの信号強度を検出する信号強度検出部と、
     少なくとも1つの無線局の識別情報を記憶する識別情報記憶部と、を備え、
     前記無線局切替部は、前記信号強度検出部が検出した信号強度を比較し、信号状態がよく、かつ、前記識別情報記憶部に識別情報が記憶された無線局に接続を切り替える、請求項1記載の無人飛行機。
  4.  機械設備と短距離無線通信を行う第1の無線通信部と、
     前記短距離無線通信より通信距離が長い無線通信を行う第2の無線通信部と、を備える無人飛行機の1つ又は複数のプロセッサが実行することにより、
     ユーザが通信相手として選択した機械設備か否かを判定し、
     工場内を飛行する無人飛行機の自己位置が前記選択された機械設備の近傍にあることを検出させ、
     前記機械設備に取り付けられた短距離無線通信の無線局に接続を切り替させる、
     コンピュータが読み取り可能な命令を記憶する記憶媒体。
  5.  飛行計画に従い無人飛行機を自律飛行させ、
     前記工場内の地図を分割した領域と、各領域において前記無人飛行機が接続すべき無線局を記憶させ、
     飛行開始以前又は飛行中に通信相手となる機械設備を選択させ、
     前記無人飛行機が存在する領域に存在する前記選択された機械設備の無線局に接続を切り替えさせる、コンピュータが読み取り可能な命令を記憶する請求項4記載の記憶媒体。
  6.  少なくとも1つの無線局の識別情報を記憶させ、
     無線局ごとの信号強度を検出させ、
     前記信号強度を比較させ、
     前記信号強度を検出した無線局のうち、信号状態がよく、かつ、識別信号が記憶されたる無線局に接続を切り替える、コンピュータが読み取り可能な命令を記憶する請求項4記載の記憶媒体。
PCT/JP2021/042070 2020-11-20 2021-11-16 無人飛行機制御装置、及び記憶媒体 WO2022107761A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/250,219 US20230400850A1 (en) 2020-11-20 2021-11-16 Unmanned aerial vehicle controller, and storage medium
CN202180076562.2A CN116507554A (zh) 2020-11-20 2021-11-16 无人飞行器控制装置以及存储介质
JP2022563767A JPWO2022107761A1 (ja) 2020-11-20 2021-11-16
DE112021004698.5T DE112021004698T5 (de) 2020-11-20 2021-11-16 Steuervorrichtung für ein unbemanntes fluggerät und speichermedium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193376 2020-11-20
JP2020-193376 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107761A1 true WO2022107761A1 (ja) 2022-05-27

Family

ID=81708972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042070 WO2022107761A1 (ja) 2020-11-20 2021-11-16 無人飛行機制御装置、及び記憶媒体

Country Status (5)

Country Link
US (1) US20230400850A1 (ja)
JP (1) JPWO2022107761A1 (ja)
CN (1) CN116507554A (ja)
DE (1) DE112021004698T5 (ja)
WO (1) WO2022107761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115767653A (zh) * 2022-10-25 2023-03-07 重庆德明尚品电子商务有限公司 基于多基站通讯模式的无人机控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036867A (ja) * 2016-08-31 2018-03-08 サイレックス・テクノロジー株式会社 無人走行車、無人走行車の走行システム、及び、無人走行車の制御方法
JP2019059598A (ja) * 2017-09-27 2019-04-18 富士通株式会社 在庫探索システム、在庫探索方法および在庫探索プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272825B2 (ja) 2019-03-06 2023-05-12 ファナック株式会社 ロボットシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036867A (ja) * 2016-08-31 2018-03-08 サイレックス・テクノロジー株式会社 無人走行車、無人走行車の走行システム、及び、無人走行車の制御方法
JP2019059598A (ja) * 2017-09-27 2019-04-18 富士通株式会社 在庫探索システム、在庫探索方法および在庫探索プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115767653A (zh) * 2022-10-25 2023-03-07 重庆德明尚品电子商务有限公司 基于多基站通讯模式的无人机控制方法
CN115767653B (zh) * 2022-10-25 2024-03-22 上海幄萨信息技术有限公司 基于多基站通讯模式的无人机控制方法

Also Published As

Publication number Publication date
CN116507554A (zh) 2023-07-28
US20230400850A1 (en) 2023-12-14
JPWO2022107761A1 (ja) 2022-05-27
DE112021004698T5 (de) 2023-08-24

Similar Documents

Publication Publication Date Title
US20200207474A1 (en) Unmanned aerial vehicle and payload delivery system
CN109923492B (zh) 飞行路径确定
CN106687878B (zh) 用于利用视觉标记进行监视的***和方法
JP6665318B2 (ja) 無人航空機、及び、無人航空機を制御するための方法
CN111033561B (zh) 用于利用语义信息来导航机器人设备的***和方法
EP3428766B1 (en) Multi-sensor environmental mapping
JP6572020B2 (ja) 飛行体搭載車両
CN107077149B (zh) 控制移动设备的方法、控制***和移动设备
WO2020115902A1 (ja) 物品受け渡し場所の決定方法、着陸場所の決定方法、物品受け渡しシステム、及び情報処理装置
JP2018055695A (ja) ある環境内で無人航空機を制御する方法、ある環境のマップを生成する方法、システム、プログラムおよび通信端末
EP3953115A1 (en) System, devices and methods for tele-operated robotics
WO2020000790A1 (zh) 立井检测方法及***
JP2020079997A (ja) 情報処理装置、情報処理方法、及びプログラム
WO2022107761A1 (ja) 無人飛行機制御装置、及び記憶媒体
EP3992747B1 (en) Mobile body, control method, and program
JP7280174B2 (ja) 制御方法、及び物品受け渡しシステム
WO2021002911A1 (en) System, devices and methods for tele-operated robotics
Abdelkader et al. RISCuer: a reliable multi-UAV search and rescue testbed
Asadi et al. An integrated aerial and ground vehicle (UAV-UGV) system for automated data collection for indoor construction sites
JP2019074918A (ja) 制御装置、移動体、及び移動体の分散制御プログラム
JPWO2022107761A5 (ja)
WO2022107760A1 (ja) 数値制御装置、及び記憶媒体
Surmann et al. Teleoperated visual inspection and surveillance with unmanned ground and aerial vehicles
WO2022107758A1 (ja) 無人飛行機制御装置、及び記憶媒体
JP7509914B2 (ja) 数値制御装置、及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563767

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180076562.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21894635

Country of ref document: EP

Kind code of ref document: A1