CN111338060A - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
CN111338060A
CN111338060A CN202010433363.XA CN202010433363A CN111338060A CN 111338060 A CN111338060 A CN 111338060A CN 202010433363 A CN202010433363 A CN 202010433363A CN 111338060 A CN111338060 A CN 111338060A
Authority
CN
China
Prior art keywords
lens
optical
image
optical lens
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010433363.XA
Other languages
English (en)
Other versions
CN111338060B (zh
Inventor
于笑枝
曾昊杰
刘绪明
曾吉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Lianyi Optics Co Ltd
Original Assignee
Jiangxi Lianyi Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Lianyi Optics Co Ltd filed Critical Jiangxi Lianyi Optics Co Ltd
Priority to CN202010433363.XA priority Critical patent/CN111338060B/zh
Publication of CN111338060A publication Critical patent/CN111338060A/zh
Application granted granted Critical
Publication of CN111338060B publication Critical patent/CN111338060B/zh
Priority to PCT/CN2021/088766 priority patent/WO2021233052A1/zh
Priority to US17/376,196 priority patent/US20210364758A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供了一种光学镜头及成像设备,光学镜头沿光轴从物侧到成像面依次包括光阑、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜。第一透镜具有正光焦度,物侧面为凸面,像侧面在近光轴处为凹面且具有反曲点;第二透镜具有负光焦度,物侧面在近光轴处为凸面,像侧面为凹面;第三透镜具有正光焦度,物侧面和像侧面在近光轴处均为凸面;第四透镜具有负光焦度,物侧面为凹面,像侧面为凸面;第五透镜具有正光焦度,物侧面和像侧面在近光轴处均为凸面,且其物侧面和像侧面均具有反曲点;第六透镜具有负光焦度,物侧面在近光轴处为凹面,像侧面在近光轴处为凹面且具有反曲点。该光学镜头结构紧凑,有利于实现镜头小型化和高像素均衡。

Description

光学镜头及成像设备
技术领域
本申请涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
背景技术
目前,随着便携式电子设备(如智能手机、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了便携式电子设备的标配,摄像镜头甚至已经成为消费者购买便携式电子设备时首要考虑的指标。
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着轻薄化、全面屏、超高清成像等方向发展,这就对搭载在便携式电子设备上的摄像镜头提出了更高的要求。近几年,随着消费者对手机全面屏的热衷,前置镜头除了高像素的需求外,更加追求视觉上的简约。现有的摄像镜头由于头部外径及整体体积较大,所以出现了“刘海屏”。然而,刘海的区域越大,即手机屏幕上的开口区域也越大,屏占比无法进一步提高。
发明内容
基于此,本发明的目的是提供一种光学镜头及成像设备,以解决上述问题。
本发明实施例通过以下技术方案实现上述的目的。
第一方面,本发明实施例提供一种光学镜头,沿光轴从物侧到成像面依次包括:光阑,第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜;其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面在近光轴处为凹面且具有至少一个反曲点;第二透镜具有负光焦度,其物侧面在近光轴处为凸面,像侧面为凹面;所述第三透镜具有正光焦度,其物侧面在近光轴处为凸面,像侧面为凸面;所述第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;所述第五透镜具有正光焦度,其物侧面和像侧面在近光轴处均为凸面,且所述第五透镜的物侧面和像侧面均具有至少一个反曲点;第六透镜具有负光焦度,其物侧面在近光轴处为凹面,像侧面在近光轴处为凹面且具有至少一个反曲点;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为非球面镜片;所述光学镜头满足条件式:4.4<(TTL/IH)×f<4.6;其中,TTL表示所述第一透镜的物侧面至所述成像面在光轴上的距离,IH表示所述光学镜头在成像面上的实际半像高,f表示所述光学镜头的焦距。
第二方面,本发明实施例还提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备,通过合理的搭配六个具有特定光焦度的透镜之间的镜片形状和合理的光焦度组合,在满足光学镜头高像素的同时结构更加紧凑,有利于提高便携式电子产品的屏占比。从而较好地实现了镜头小型化和高像素的均衡,能够有效提升用户的摄像体验。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本发明实施例提供的光学镜头的结构示意图;
图2示出了本发明第一实施例提供的光学镜头的象散曲线图;
图3示出了本发明第一实施例提供的光学镜头的畸变曲线图;
图4示出了本发明第一实施例提供的光学镜头的垂轴色差曲线图;
图5示出了本发明第一实施例提供的光学镜头的轴向色差曲线图;
图6示出了本发明第二实施例提供的光学镜头的象散曲线图;
图7示出了本发明第二实施例提供的光学镜头的畸变曲线图;
图8示出了本发明第二实施例提供的光学镜头的垂轴色差曲线图;
图9示出了本发明第二实施例提供的光学透镜的轴向色差曲线图;
图10示出了本发明第三实施例提供的光学镜头的象散曲线图:
图11示出了本发明第三实施例提供的光学镜头的畸变曲线图;
图12示出了本发明第三实施例提供的光学镜头的垂轴色差曲线图;
图13示出了本发明第三实施例提供的光学透镜的轴向色差曲线图;
图14示出了本发明实施例提供的成像设备的结构示意图。
附图标记:
光阑 ST 第一透镜 L1
第二透镜 L2 第三透镜 L3
第四透镜 L4 第五透镜 L5
第六透镜 L6 滤光片 G
第一透镜的物侧面 S1 第一透镜的像侧面 S2
第二透镜的物侧面 S3 第二透镜的像侧面 S4
第三透镜的物侧面 S5 第三透镜的像侧面 S6
第四透镜的物侧面 S7 第四透镜的像侧面 S8
第五透镜的物侧面 S9 第五透镜的像侧面 S10
第六透镜的物侧面 S11 第六透镜的像侧面 S12
滤光片的物侧面 S13 滤光片的像侧面 S14
成像面 S15 成像设备 200
光学镜头 100 成像元件 210
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
如图1所示,为本发明实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴从物侧到像侧依次包括:光阑ST,第一透镜L1,第二透镜L2,第三透镜L3,第四透镜L4,第五透镜L5,第六透镜L6及滤光片G,这里的像侧即指成像面S15所在的一侧,物侧为与像侧相对的一侧。
其中,第一透镜L1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2在近光轴处为凹面且具有至少一个反曲点(inflection point)。
第二透镜L2具有负光焦度,第二透镜的物侧面S3在近光轴处为凸面,第二透镜的像侧面S4为凹面。
第三透镜L3具有正光焦度,第三透镜的物侧面S5在近光轴处为凸面,第三透镜的像侧面S6为凸面。
第四透镜L4具有负光焦度,第四透镜的物侧面S7为凹面,第四透镜的像侧面S8为凸面。
第五透镜L5具有正光焦度,第五透镜的物侧面S9和第五透镜的像侧面S10在近光轴处均为凸面,且第五透镜的物侧面S9和第五透镜的像侧面S10均具有至少一个反曲点。
第六透镜L6具有负光焦度,第六透镜的物侧面S11在近光轴处为凹面,第六透镜的像侧面S12在近光轴处为凹面且具有至少一个反曲点。
在一些可选的实施例中,光学镜头100满足以下条件式:
4.4<(TTL/IH)×f<4.6; (1)
其中,TTL表示第一透镜的物侧面S1至成像面S15在光轴上的距离,IH表示光学镜头100的实际半像高,f表示光学镜头100的焦距。可以理解的是,这里光学镜头100的实际半像高是指光学镜头100在成像面S15上的实际半象高。
满足条件式(1)时,能够合理地控制光学镜头100的有效焦距和光学总长,有利于缩短光学镜头100的光学总长,实现镜头的小型化。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.3<CT1/DM1<0.35; (2)
其中,CT1表示第一透镜L1的中心厚度,DM1表示第一透镜的物侧面S1的直径。
满足条件式(2)时,能够实现镜头的头部尺寸做小,减小便携式电子设备的屏幕开窗面积,有利于实现镜头的头部小型化,提高便携式电子产品的屏占比。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
3.23<IH/tan(HFOV)<3.48; (3)
其中,IH表示光学镜头100的实际半像高,HFOV表示光学镜头100的最大半视场角。
条件式(3)限定了光学镜头100的畸变,当IH/tan(HFOV)>3.23时,避免镜头的畸变朝负方向增大,当IH/tan(HFOV)<3.48时,可避免畸变朝正方向过分增大,从而降低了矫正畸变的难度。满足条件式(3)时,能够合理控制光学镜头100的光学总长,同时有利于降低光学镜头100的畸变矫正难度。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
2.1<f/EPD<2.3; (4)
其中,f表示光学镜头100的焦距,EPD表示光学镜头100的入瞳直径。
满足条件式(4)时,能够合理控制光学镜头100的通光量,有利于减小光学镜头100的像差,提高光学镜头100的解像力。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.02mm<SAG2max–SAG2<0.04mm; (5)
其中,SAG2max表示第一透镜的像侧面S2的最大矢高,SAG2表示第一透镜的像侧面S2的边缘矢高。
满足条件式(5)时,有利于矫正边缘视场的畸变和像差,提高光学镜头100边缘视场的解像力。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.4<f1/f3<0.6; (6)
-3.6<f2/f<-2.5; (7)
-0.95<f6/f5<0; (8)
其中,f表示光学镜头100的焦距,f1表示第一透镜L1的焦距,f2表示第二透镜L2的焦距,f3表示第三透镜L3的焦距,f5表示第五透镜L5的焦距,f6表示第六透镜L6的焦距。
满足条件式(6)、(7)和(8)时,能够合理的分配各透镜的光焦度,有利于降低高级像差的矫正难度,同时减小光学镜头100的光学总长。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
2.5<(R3+R4)/(R3-R4)<3.9; (9)
0mm<SAG4i<0.08mm; (10)
其中,R3表示第二透镜的物侧面S3的曲率半径,R4表示第二透镜的像侧面S4的曲率半径,SAG4i表示第二透镜的像侧面S4距光轴距离为i处的矢高,即第二透镜的像侧面S4任意位置的矢高。
满足条件式(9)和(10)时,能够合理控制第二透镜L2的面型,减小光学镜头100的敏感度,同时有利于降低场曲矫正难度。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.09<CT4/DM7<0.16; (11)
其中,CT4表示第四透镜L4的中心厚度,DM7表示第四透镜的物侧面S7的直径。
满足条件式(11)时,能够合理控制第四透镜L4的口径,有利于降低第四透镜L4的敏感度,提升生产良率。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.32mm<SAG91-SAG9<0.4mm; (12)
0.5<(R9+R10)/(R9-R10)<0.8; (13)
其中,SAG91表示第五透镜的物侧面S9在反曲点处的矢高,SAG9表示第五透镜的物侧面S9的边缘矢高,R9表示第五透镜的物侧面S9的曲率半径,R10表示第五透镜的像侧面S10的曲率半径。
满足条件式(12)和(13)时,有利于光学镜头100场曲和像差的矫正,提高边缘视场的解像力,同时有利于缩短光学镜头100的总长,实现光学镜头100的小型化。
在一些可选的实施方式中,光学镜头100还可以满足以下条件式:
1.8<CT5/CT4<2.3; (14)
0.45mm< CT34+CT45+CT56 <0.5mm; (15)
其中,CT4表示第四透镜L4的中心厚度,CT5表示第五透镜L5的中心厚度,CT34表示第三透镜L3和第四透镜L4在光轴上的间隔距离,CT45表示第四透镜L4和第五透镜L5在光轴上的间隔距离,CT56表示第五透镜L5和第六透镜L6在光轴上的间隔距离。
满足条件式(14)和(15)时,能够合理地分配透镜的中心厚度和透镜之间的间隔距离,降低光学镜头100的敏感度,同时有利于缩短光学镜头100的光学总长。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.48<|θ12/θC|<0.56; (16)
其中,θ12表示第六透镜的像侧面S12的最大面倾角,θC表示光学镜头100的最大主光线入射角度。
满足条件式(16)时,能够合理控制光学镜头100的主光线入射角,有利于提高光学镜头100与传感器的匹配度,提高光学镜头100的解像质量。
作为一种实施方式,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6可以是非球面镜片,可选的,上述透镜均采用塑胶非球面镜片。采用非球面镜片,可以有效减少镜片的数量,修正像差,提供更好的光学性能。本实施例中,作为一种实施方式,当光学镜头100中的各个透镜均为非球面透镜时,光学镜头100的各个非球面面型可以均满足下列方程:
Figure 94747DEST_PATH_IMAGE001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数conic,
Figure 361781DEST_PATH_IMAGE002
为第2i阶的非球面面型系数。
本发明实施例提供的光学镜头100通过采用六个具有特定光焦度的透镜,合理搭配第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6之间的镜片形状与光焦度组合,可以满足镜头具有高像素的前提下使得光学镜头100的结构更加紧凑,较好的实现了镜头小型化和高像素的均衡,能够有效提升用户的摄像体验。
下面分多个实施例对本发明进行进一步的说明。在以下各个实施例中,光学镜头100中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。在各表中,R代表曲率半径(单位:毫米),d代表光学表面间距(单位:毫米),Nd代表材料的d线折射率,Vd代表材料的阿贝数。
第一实施例
在本发明第一实施例中,第一透镜的像侧面S2的反曲点与光轴的垂直距离为0.64毫米,第五透镜的物侧面S9的反曲点与光轴的垂直距离为0.845毫米。
请参照表1所示,本发明第一实施例提供的光学镜头100中各个镜片的相关参数如表1所示。
表 1
Figure 91839DEST_PATH_IMAGE003
请参照表2所示,本发明第一实施例提供的光学镜头100的各非球面的面型系数如表2所示:
表 2
面号 k A<sub>4</sub> A<sub>6</sub> A<sub>8</sub> A<sub>10</sub> A<sub>12</sub> A<sub>14</sub> A<sub>16</sub> A<sub>18</sub> A<sub>20</sub>
S1 0.2129 -0.0281 0.1894 -0.8996 2.7908 -5.3196 5.3533 -2.1578 -0.1937 0.0343
S2 29.2881 -0.0926 0.0575 0.2737 -2.0198 5.0333 -9.4528 7.6450 -1.2765 0.2712
S3 68.7498 -0.1803 0.3564 -0.3839 -0.7164 2.0814 -4.2337 1.0801 2.4804 0.4399
S4 12.0931 -0.1780 0.0676 1.8171 -8.4692 16.4629 -16.6478 6.1387 0.9947 -0.5149
S5 -90.2631 -0.0787 -0.0702 -0.6834 5.3472 -22.8262 52.3354 -62.2405 30.1466 -0.6454
S6 83.5022 -0.0792 0.1894 -1.7734 5.4149 -10.2017 11.9150 -8.7172 3.6403 -0.3455
S7 0.7175 -0.0377 0.0899 0.0130 -0.0326 -0.0659 -0.0010 0.0839 0.1008 -0.1239
S8 7.3481 -0.0892 0.1045 -0.2277 0.4978 -0.3371 0.0275 0.0369 -0.0079 0.0016
S9 -51.7614 0.0192 0.0815 0.0050 -0.6838 1.2117 -1.0743 0.5271 -0.1369 0.0154
S10 -10.5240 -0.1476 0.8015 -1.2816 1.1344 -0.6744 0.2569 -0.0539 0.0046 2.05E-05
S11 -0.7987 -0.0965 0.0330 -0.0013 0.0009 -0.0008 0.0002 -1.4E-05 -6.7E-08 4.16E-08
S12 -8.4290 -0.1018 0.0432 -0.0198 0.0082 -0.0021 0.0003 -1.6E-05 -5.3E-08 2.7E-08
请参照图2、图3、图4及图5,所示分别为光学镜头100的象散曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图2的象散曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:毫米),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的象散控制在±0.1毫米以内,说明光学镜头100的象散矫正良好。
图3畸变曲线表示成像面S15上不同像高处的畸变。其中,图3中横轴表示畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面S15上不同像高处的光学畸变控制在1.5%以内,说明光学镜头100的畸变得到良好的矫正。
图4的垂轴色差曲线表示最长波长与最短波长在成像面S15上不同像高处的色差。其中,图4中横轴表示各波长相对中心波长的垂轴色差值(单位:微米),纵轴表示归一化视场角。从图4中可以看出,最长波长与最短波长的垂轴色差控制在±1.0微米以内,说明光学镜头100的垂轴色差得到良好的矫正。
图5是轴向色差曲线,图中横轴表示偏移量(单位:微米),纵轴表示归一化光瞳半径。从图5中可以看出,轴向色差的偏移量控制在±0.03毫米以内,说明该光学镜头100能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第二实施例
本发明第二实施例提供的光学镜头100与第一实施例提供的光学镜头100的结构大致相同,不同之处主要在于,各透镜的曲率半径、材料选择不同。
在本发明第二实施例中,第一透镜的像侧面S2的反曲点与光轴的垂直距离为0.67毫米,第五透镜的物侧面S9的反曲点与光轴的垂直距离为0.845毫米。
请参照表3所示,本发明第二实施例提供的光学镜头100中各个镜片的相关参数如表3所示。
表 3
Figure 760718DEST_PATH_IMAGE004
请参照表4所示,本发明第二实施例提供的光学镜头100的各非球面的面型系数如表4所示:
表 4
面号 k A<sub>4</sub> A<sub>6</sub> A<sub>8</sub> A<sub>10</sub> A<sub>12</sub> A<sub>14</sub> A<sub>16</sub> A<sub>18</sub> A<sub>20</sub>
S1 0.2223 -0.0230 0.1781 -0.8871 2.8078 -5.3162 5.3355 -2.1958 -0.2130 0.0824
S2 31.8498 -0.0856 0.0788 0.2822 -2.0212 5.0262 -9.4630 7.6451 -1.3173 0.0254
S3 68.5364 -0.1574 0.3680 -0.3724 -0.7024 2.0970 -4.2193 1.0389 2.3565 0.2378
S4 11.8998 -0.1788 0.0781 1.8293 -8.4622 16.4637 -16.6546 6.1504 1.0115 -0.5126
S5 -39.3252 -0.0757 -0.0720 -0.6762 5.3632 -22.7981 52.3710 -62.2364 30.0835 -0.8706
S6 100.0020 -0.0663 0.1602 -1.7750 5.4357 -10.1877 11.9012 -8.7621 3.5906 -0.3485
S7 0.9789 -0.0795 0.1241 0.0280 -0.0468 -0.0925 -0.0114 0.1104 0.1352 -0.1390
S8 7.1795 -0.1181 0.1075 -0.2241 0.5034 -0.3349 0.0276 0.0364 -0.0083 0.0015
S9 23.9027 0.0125 0.0612 0.0280 -0.6817 1.2093 -1.0751 0.5270 -0.1369 0.0154
S10 -11.1021 -0.1673 0.8151 -1.2802 1.1339 -0.6747 0.2568 -0.0539 0.0046 2.27E-05
S11 1.0389 -0.0982 0.0327 -0.0013 0.0009 -0.0008 0.0002 -1.5E-05 -7.7E-08 4.31E-08
S12 -8.9813 -0.0965 0.0420 -0.0197 0.0082 -0.0021 0.0003 -1.6E-05 -5.6E-08 2.8E-08
请参照图6、图7、图8和图9,所示分别为光学镜头100的象散曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图6表示子午像面和弧矢像面的弯曲程度。从图6中可以看出,子午像面和弧矢像面的象散控制在±0.15毫米以内,说明光学镜头100的象散矫正良好。
图7表示成像面S15上不同像高处的畸变。从图7中可以看出,成像面S15上不同像高处的光学畸变控制在1.5%以内,说明光学镜头100的畸变得到良好的矫正。
图8表示最长波长与最短波长在成像面S15上不同像高处的色差。从图8中可以看出,最长波长与最短波长的垂轴色差控制在±1.0微米以内,说明光学镜头100的垂轴色差得到良好的矫正。
图9表示成像面处光轴上的像差。从图9中可以看出,轴向色差的偏移量控制在±0.02毫米以内,说明该光学镜头100能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第三实施例
本发明第三实施例提供的光学镜头100与第一实施例提供的光学镜头100的结构大致相同,不同之处主要在于,各透镜的曲率半径、材料选择不同。
在本发明第三实施例中,第一透镜的像侧面S2的反曲点与光轴的垂直距离为0.64毫米,第五透镜的物侧面S9的反曲点与光轴的垂直距离为0.815毫米。
请参照表5所示,本发明第三实施例提供的光学镜头100中各个镜片的相关参数如表5所示。
表 5
Figure 754082DEST_PATH_IMAGE005
请参照表6所示,本发明第三实施例中的光学镜头100的各非球面的面型系数如表6所示:
表 6
面号 k A<sub>4</sub> A<sub>6</sub> A<sub>8</sub> A<sub>10</sub> A<sub>12</sub> A<sub>14</sub> A<sub>16</sub> A<sub>18</sub> A<sub>20</sub>
S1 0.2682 -0.0077 0.1093 -0.8068 2.8273 -5.3723 5.2688 -2.1463 -0.0948 0.0661
S2 20.7101 -0.1310 0.0765 0.1556 -1.9489 5.3932 -9.0840 7.5712 -2.1923 -0.6020
S3 37.2534 -0.2723 0.3511 -0.3933 -0.7514 2.3252 -3.8016 1.7698 1.9738 -2.6578
S4 12.3041 -0.2108 0.0055 1.9760 -8.5104 16.3958 -16.6750 6.4150 1.2979 -1.3369
S5 0.6865 -0.1361 0.1053 -0.7078 5.0443 -22.8873 52.9034 -62.2835 30.2684 -1.7539
S6 14.4111 -0.1497 0.2676 -1.7919 5.4279 -9.9795 11.8552 -8.8458 3.4709 -0.3684
S7 0.2579 -0.0712 0.0475 0.3342 0.0913 -0.1953 -0.1352 0.0579 0.1507 -0.0716
S8 1.5067 -0.2797 0.3280 -0.2758 0.4924 -0.3320 0.0323 0.0362 -0.0093 0.0002
S9 -62.5623 -0.0159 0.0099 0.1639 -0.7501 1.1840 -1.0635 0.5378 -0.1360 0.0128
S10 -10.4771 -0.1209 0.7592 -1.2646 1.1401 -0.6740 0.2546 -0.0538 0.0046 2.65E-05
S11 -18.8597 -0.0767 0.0276 -0.0014 0.0009 -0.0008 0.0002 -1.4E-05 -7.6E-08 4.22E-08
S12 -10.7231 -0.0661 0.0339 -0.0201 0.0085 -0.0021 0.0003 -1.7E-05 -6E-08 3.22E-08
请参照图10、图11、图12和图13,所示分别为光学镜头100的象散曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图10表示子午像面和弧矢像面的弯曲程度。从图10中可以看出,子午像面和弧矢像面的象散控制在±0.1毫米以内,说明光学镜头100的象散矫正良好。
图11表示成像面S15上不同像高处的畸变。从图11中可以看出,成像面S15上不同像高处的光学畸变控制在1.5%以内,说明光学镜头100的畸变得到良好的矫正。
图12表示最长波长与最短波长在成像面S15上不同像高处的色差。从图12中可以看出,最长波长与最短波长的垂轴色差控制在±1.0微米以内,说明光学镜头100的垂轴色差得到良好的矫正。
图13表示成像面S15处光轴上的像差。从图13中可以看出,成像面S15处轴向色差的偏移量控制在±0.03毫米以内,说明该光学镜头100能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
请参照表7,所示是上述三个实施例提供的光学镜头100分别对应的光学特性。其中,光学特性主要包括光学镜头100的焦距f、光圈数F#、入瞳直径EPD、光学总长TTL及视场角2θ,以及与前述每个条件式对应的相关数值。
表7
第一实施例 第二实施例 第三实施例 备注
f (mm) 3.388 3.403 3.421
F# 2.25 2.20 2.25
TTL (mm) 4.34 4.43 4.46
2θ(°) 87 88.1 88.1
EPD (mm) 1.506 1.547 1.521
IH (mm) 3.30 3.36 3.36
(TTL/IH)×f 4.455 4.486 4.541 条件式(1)
CT1/DM1 0.328 0.305 0.348 条件式(2)
IH/tan(HFOV) 3.478 3.420 3.240 条件式(3)
f/EPD 2.163 2.200 2.248 条件式(4)
SAG2<sub>max</sub>–SAG2 0.030 0.033 0.023 条件式(5)
f1/f3 0.502 0.489 0.569 条件式(6)
f2/f -2.544 -2.515 -3.580 条件式(7)
f6/f5 -0.925 -0.941 -0.936 条件式(8)
(R3+R4)/(R3-R4) 2.598 2.571 3.829 条件式(9)
SAG4<sub>i</sub> (0,0.072) (0,0.068) (0,0.052) 条件式(10)
CT4/DM7 0.128 0.156 0.111 条件式(11)
SAG9<sub>1</sub>-SAG9 0.336 0.324 0.394 条件式(12)
(R9+R10)/(R9-R10) 0.693 0.753 0.581 条件式(13)
CT5/CT4 2.240 1.837 2.188 条件式(14)
CT34+CT45+CT56 0.489 0.492 0.459 条件式(15)
|θ12/θ<sub>C</sub>| 0.551 0.529 0.485 条件式(16)
综上,本发明实施例提供的光学镜头100具有以下的优点:
(1)由于光阑及各透镜形状设置合理,一方面使得光学镜头100具有较小的入瞳直径(EPD<1.55毫米),从而使镜头的头部外径可以做到极小,甚至达到∅2毫米,满足高屏占比的需求;另一方面,使得光学镜头100的总长较短(TTL<4.5毫米),体积减小,能够更好的满足便携式智能电子产品,例如手机的轻薄化的发展趋势。
(2)采用六个具有特定光焦度的塑胶非球面镜片,并且各个透镜通过特定的表面形状搭配,使得光学镜头100具有超高像素的成像质量,可匹配4800万像素的CMOS芯片,有利于清晰成像。
(3)光学镜头100的视场角可达87°,可有效修正光学畸变,控制畸变小于1.5%,能够满足大视场角且高清晰成像需要。
本申请实施例还提供了一种成像设备200,请参阅图14所示,成像设备200包括成像元件210和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件210可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备200可以是相机、移动终端以及其他任意一种形态的装载了光学镜头100的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本申请实施例提供的成像设备200包括光学镜头100,由于光学镜头100具有头部外径小、广视角、成像品质高的优点,具有该光学镜头100的成像设备200也具有体积小、广视角、成像品质高的优点。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

1.一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:
光阑;
第一透镜,所述第一透镜具有正光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;
第二透镜,所述第二透镜具有负光焦度,所述第二透镜的物侧面在近光轴处为凸面,所述第二透镜的像侧面为凹面;
第三透镜,所述第三透镜具有正光焦度,所述第三透镜的物侧面在近光轴处为凸面,所述第三透镜的像侧面为凸面;
第四透镜,所述第四透镜具有负光焦度,所述第四透镜的物侧面为凹面,所述第四透镜的像侧面为凸面;
第五透镜,所述第五透镜具有正光焦度,所述第五透镜的物侧面和像侧面在近光轴处均为凸面,且所述第五透镜的物侧面和像侧面均具有至少一个反曲点;以及
第六透镜,所述第六透镜具有负光焦度,所述第六透镜的物侧面在近光轴处为凹面,所述第六透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;
其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为非球面镜片;
所述光学镜头满足以下条件式:
4.4<(TTL/IH)×f<4.6;
其中,TTL表示所述第一透镜的物侧面至所述成像面在光轴上的距离,IH表示所述光学镜头在成像面上的实际半像高,f表示所述光学镜头的焦距。
2.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.3<CT1/DM1<0.35;
其中,CT1表示所述第一透镜的中心厚度,DM1表示所述第一透镜的物侧面的直径。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
3.23<IH/tan(HFOV)<3.48;
其中,IH表示所述光学镜头在成像面上的实际半像高,HFOV表示所述光学镜头的最大半视场角。
4.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
2.1<f/EPD<2.3;
其中,f表示所述光学镜头的焦距,EPD表示所述光学镜头的入瞳直径。
5.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.02mm< SAG2max -SAG2 <0.04mm;
其中,SAG2max表示所述第一透镜的像侧面的最大矢高,SAG2表示所述第一透镜的像侧面的边缘矢高。
6.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.4<f1/f3<0.6;
-3.6<f2/f<-2.5;
-0.95<f6/f5<0;
其中,f表示所述光学镜头的焦距,f1表示所述第一透镜的焦距,f2表示所述第二透镜的焦距,f3表示所述第三透镜的焦距,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。
7.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
2.5<(R3+R4)/(R3-R4)<3.9;
0mm<SAG4i<0.08mm;
其中,R3表示所述第二透镜的物侧面的曲率半径,R4表示所述第二透镜的像侧面的曲率半径,SAG4i表示所述第二透镜的像侧面距光轴距离为i处的矢高。
8.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.09<CT4/DM7<0.16;
其中,CT4表示所述第四透镜的中心厚度,DM7表示所述第四透镜的物侧面的直径。
9.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.32mm<SAG91-SAG9<0.4mm;
0.5<(R9+R10)/(R9-R10)<0.8;
其中,SAG91表示所述第五透镜物侧面在反曲点处的矢高,SAG9表示所述第五透镜的物侧面的边缘矢高,R9表示所述第五透镜的物侧面的曲率半径,R10表示所述第五透镜的像侧面的曲率半径。
10.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
1.8<CT5/CT4<2.3;
0.45mm< CT34+CT45+CT56 <0.5mm;
其中,CT4表示所述第四透镜的中心厚度,CT5表示所述第五透镜的中心厚度,CT34表示所述第三透镜和所述第四透镜在光轴上的间隔距离,CT45表示所述第四透镜和所述第五透镜在光轴上的间隔距离,CT56表示所述第五透镜和所述第六透镜在光轴上的间隔距离。
11.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.48<|θ12/θC|<0.56;
其中,θ12表示所述第六透镜像侧面的最大面倾角,θC表示所述光学镜头的最大主光线入射角度。
12.一种成像设备,其特征在于,包括成像元件和如权利要求1-11任一项所述的光学镜头,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
CN202010433363.XA 2020-05-21 2020-05-21 光学镜头及成像设备 Active CN111338060B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010433363.XA CN111338060B (zh) 2020-05-21 2020-05-21 光学镜头及成像设备
PCT/CN2021/088766 WO2021233052A1 (zh) 2020-05-21 2021-04-21 光学镜头及成像设备
US17/376,196 US20210364758A1 (en) 2020-05-21 2021-07-15 Optical lens, camera module and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010433363.XA CN111338060B (zh) 2020-05-21 2020-05-21 光学镜头及成像设备

Publications (2)

Publication Number Publication Date
CN111338060A true CN111338060A (zh) 2020-06-26
CN111338060B CN111338060B (zh) 2020-08-18

Family

ID=71184954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010433363.XA Active CN111338060B (zh) 2020-05-21 2020-05-21 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN111338060B (zh)
WO (1) WO2021233052A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112346219A (zh) * 2020-12-02 2021-02-09 浙江舜宇光学有限公司 摄像镜头
CN112965222A (zh) * 2021-05-18 2021-06-15 江西联益光学有限公司 一种光学镜头
WO2021233052A1 (zh) * 2020-05-21 2021-11-25 江西联益光学有限公司 光学镜头及成像设备
CN113777761A (zh) * 2021-11-09 2021-12-10 江西联益光学有限公司 光学镜头及成像设备
CN114114650A (zh) * 2022-01-27 2022-03-01 江西联益光学有限公司 光学镜头及成像设备
CN114185157A (zh) * 2022-02-14 2022-03-15 江西联益光学有限公司 光学镜头
CN114326060A (zh) * 2022-03-07 2022-04-12 江西联益光学有限公司 光学镜头
WO2022105926A1 (zh) * 2020-11-23 2022-05-27 江西联益光学有限公司 光学镜头及成像设备
CN114647065A (zh) * 2022-04-20 2022-06-21 浙江舜宇光学有限公司 光学成像镜头

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355582B (zh) * 2022-03-18 2022-08-12 江西联益光学有限公司 广角镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202522758U (zh) * 2011-09-15 2012-11-07 大立光电股份有限公司 光学影像拾取镜组
CN103777310A (zh) * 2012-10-22 2014-05-07 大立光电股份有限公司 光学摄像***组
CN104898257A (zh) * 2015-03-11 2015-09-09 瑞声声学科技(深圳)有限公司 摄像镜头***
US20160116715A1 (en) * 2014-10-28 2016-04-28 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN205374856U (zh) * 2015-12-31 2016-07-06 浙江舜宇光学有限公司 摄像镜头
US9563038B2 (en) * 2015-02-12 2017-02-07 Newmax Technology Co., Ltd. Six-piece optical lens system
CN109669258A (zh) * 2017-10-16 2019-04-23 大立光电股份有限公司 成像用光学镜头、取像装置及电子装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175903B2 (ja) * 2013-05-28 2017-08-09 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
TWI536039B (zh) * 2014-07-07 2016-06-01 先進光電科技股份有限公司 光學成像系統
CN106802471B (zh) * 2016-12-14 2019-04-26 瑞声科技(新加坡)有限公司 摄像光学镜头
CN208013523U (zh) * 2018-04-03 2018-10-26 江西联益光学有限公司 ***镜头
CN109270665B (zh) * 2018-12-04 2020-11-24 广东旭业光电科技股份有限公司 光学成像镜头及电子设备
CN111338060B (zh) * 2020-05-21 2020-08-18 江西联益光学有限公司 光学镜头及成像设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202522758U (zh) * 2011-09-15 2012-11-07 大立光电股份有限公司 光学影像拾取镜组
CN103777310A (zh) * 2012-10-22 2014-05-07 大立光电股份有限公司 光学摄像***组
US20160116715A1 (en) * 2014-10-28 2016-04-28 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
US9563038B2 (en) * 2015-02-12 2017-02-07 Newmax Technology Co., Ltd. Six-piece optical lens system
CN104898257A (zh) * 2015-03-11 2015-09-09 瑞声声学科技(深圳)有限公司 摄像镜头***
CN205374856U (zh) * 2015-12-31 2016-07-06 浙江舜宇光学有限公司 摄像镜头
CN109669258A (zh) * 2017-10-16 2019-04-23 大立光电股份有限公司 成像用光学镜头、取像装置及电子装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021233052A1 (zh) * 2020-05-21 2021-11-25 江西联益光学有限公司 光学镜头及成像设备
WO2022105926A1 (zh) * 2020-11-23 2022-05-27 江西联益光学有限公司 光学镜头及成像设备
CN112346219B (zh) * 2020-12-02 2024-01-05 浙江舜宇光学有限公司 摄像镜头
CN112346219A (zh) * 2020-12-02 2021-02-09 浙江舜宇光学有限公司 摄像镜头
CN112965222A (zh) * 2021-05-18 2021-06-15 江西联益光学有限公司 一种光学镜头
CN113777761A (zh) * 2021-11-09 2021-12-10 江西联益光学有限公司 光学镜头及成像设备
CN114114650B (zh) * 2022-01-27 2022-07-22 江西联益光学有限公司 光学镜头及成像设备
CN114114650A (zh) * 2022-01-27 2022-03-01 江西联益光学有限公司 光学镜头及成像设备
CN114185157A (zh) * 2022-02-14 2022-03-15 江西联益光学有限公司 光学镜头
CN114185157B (zh) * 2022-02-14 2022-07-22 江西联益光学有限公司 光学镜头
CN114326060A (zh) * 2022-03-07 2022-04-12 江西联益光学有限公司 光学镜头
CN114326060B (zh) * 2022-03-07 2022-08-12 江西联益光学有限公司 光学镜头
CN114647065A (zh) * 2022-04-20 2022-06-21 浙江舜宇光学有限公司 光学成像镜头
CN114647065B (zh) * 2022-04-20 2023-11-28 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN111338060B (zh) 2020-08-18
WO2021233052A1 (zh) 2021-11-25

Similar Documents

Publication Publication Date Title
CN111338060B (zh) 光学镜头及成像设备
CN112230371B (zh) 光学镜头及成像设备
CN110764234B (zh) 光学镜头及成像设备
CN113917667A (zh) 摄像镜头
CN112285907B (zh) 光学镜头及成像设备
CN112987262B (zh) 光学镜头及成像设备
CN114114650B (zh) 光学镜头及成像设备
CN112014957B (zh) 光学镜头及成像设备
CN112684594B (zh) 光学镜头及成像设备
CN113433674B (zh) 光学镜头及成像设备
CN114185157B (zh) 光学镜头
CN111929874B (zh) 光学镜头及成像设备
CN114236790B (zh) 光学镜头及成像设备
CN112526730B (zh) 光学镜头及成像设备
CN113820835B (zh) 光学镜头及成像设备
CN112505901B (zh) 光学镜头及成像设备
CN116500763B (zh) 光学镜头
CN210775999U (zh) 光学***、镜头模组和电子设备
CN113031228B (zh) 光学镜头及成像设备
CN114740604B (zh) 光学***、摄像模组和电子设备
CN113253429B (zh) 广角镜头及成像设备
CN113253437A (zh) 光学镜头
CN112526729A (zh) 光学镜头及成像设备
CN112444940A (zh) 光学***、镜头模组和电子设备
CN114563865B (zh) 光学镜头及成像设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant