WO2022099661A1 - 箱体、电池、用电设备及电池的制造方法 - Google Patents

箱体、电池、用电设备及电池的制造方法 Download PDF

Info

Publication number
WO2022099661A1
WO2022099661A1 PCT/CN2020/128859 CN2020128859W WO2022099661A1 WO 2022099661 A1 WO2022099661 A1 WO 2022099661A1 CN 2020128859 W CN2020128859 W CN 2020128859W WO 2022099661 A1 WO2022099661 A1 WO 2022099661A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
cooling
cooling device
flow
battery
Prior art date
Application number
PCT/CN2020/128859
Other languages
English (en)
French (fr)
Inventor
陈智明
杨辉
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to PCT/CN2020/128859 priority Critical patent/WO2022099661A1/zh
Priority to KR1020227038808A priority patent/KR20220164052A/ko
Priority to JP2023500399A priority patent/JP2023542590A/ja
Priority to EP20939475.8A priority patent/EP4030535A4/en
Priority to CN202080106816.6A priority patent/CN116349063A/zh
Priority to US17/552,827 priority patent/US20220158296A1/en
Publication of WO2022099661A1 publication Critical patent/WO2022099661A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage devices, and in particular, to a box, a battery, an electrical device and a method for manufacturing the battery.
  • the present application provides a box, a battery, an electrical device and a method for manufacturing the battery, so as to improve the safety of the battery.
  • an embodiment of the present application provides a case for a battery
  • the battery includes a battery cell, and includes: a plurality of walls, and the plurality of walls enclose a container for accommodating the battery cell a space, and a first flow channel is formed inside at least one wall, and the first flow channel is used to discharge the discharge generated by the thermal runaway of the battery cell to the outside of the box; and a cooling device is arranged on the first flow channel.
  • the cooling device is used for cooling the exhaust that flows through the cooling device; wherein, the cooling device includes a cooling structure for increasing the contact area between the exhaust and the cooling device.
  • a first flow channel is formed inside at least one wall of the box body, and the emissions generated by the thermal runaway of the battery cells located in the box body can be discharged to the outside of the box through the first flow channel.
  • a cooling device is provided in the first flow channel. When the exhaust flows through the cooling device in the first flow channel, the cooling device can exchange heat with the exhaust to cool the exhaust, thereby reducing the temperature of the exhaust.
  • the cooling device includes a cooling structure, and the arrangement of the cooling structure increases the contact area between the exhaust and the cooling device, so that the cooling device can take away more heat from the exhaust and improve the cooling capacity of the cooling device. The cooling effect of the cooling device is better, the possibility of fire and combustion of the discharge is reduced, and the safety of the battery is improved.
  • the cooling structure includes a second flow passage for the exhaust to pass.
  • the cooling structure includes a second flow channel for the exhaust to pass through, that is, the cooling device can increase the contact area between the cooling device and the flue gas by arranging the second flow channel, and the structure is simple. During the process of the discharge flowing through the cooling device, the discharge can flow through the second flow channel, which is beneficial for the cooling device to cool the discharge.
  • the second flow channel is formed on the outer surface of the cooling device and/or the interior of the cooling device.
  • a second flow channel may be formed on the outer surface of the cooling device to facilitate the molding of the second flow channel; or a second flow channel may be formed in the cooling device, and the discharge is in the process of flowing through the cooling device.
  • the discharge can flow directionally inside the cooling device; of course, the outer surface of the cooling device and the interior of the cooling device can both be formed with a second flow channel, so as to make full use of the cooling device and increase the cooling device and the cooling device as much as possible. Contact area of emissions.
  • the cooling device includes opposite first ends and second ends in the extending direction of the first flow channel, and the second flow channel penetrates through the first end and the second end.
  • the second flow channel runs through the opposite first end and second end of the cooling device in the extending direction, that is to say, during the process of the exhaust flowing through the cooling device, the exhaust can flow in from one end of the cooling device, The other end flows out, which increases the time for the exhaust to flow in the first flow channel, that is, the contact time between the exhaust and the cooling device is increased, the heat exchange time between the exhaust and the cooling device is longer, and the cooling and cooling capacity of the cooling device is improved.
  • the second flow channel extends in a straight line, a curve or a zigzag line.
  • the second flow channel can be straight, the second flow channel of this structure is simple to form, and the processing cost is low; the second flow channel can also be curved or broken Increasing the flow path of the exhaust in the second flow channel further increases the contact time of the exhaust with the cooling device.
  • the cooling structure includes a plurality of the second flow channels independent of each other.
  • the cooling device may include a plurality of second flow channels that are independent of each other, and all the second flow channels can allow the exhaust to pass through, so that the exhaust can communicate with more second flow channels in the process of flowing through the cooling device.
  • the wall contact of the cooling device improves the cooling and cooling capacity of the cooling device.
  • the cooling device includes a plurality of cooling pipes, each of which is formed with the second flow channel inside.
  • the cooling device includes a plurality of cooling tubes, and each cooling tube is formed with a second flow channel inside, that is, a plurality of cooling tubes with a second flow channel formed inside can be used as the cooling device to
  • the exhaust is cooled, and the overall structure is simple.
  • a gap for the exhaust to pass through can be formed between the cooling pipes, that is, during the process of the exhaust flowing through the cooling device, the exhaust can contact both the inner wall of the cooling pipe and the outer wall of the cooling pipe.
  • the cooling device of this structure has better cooling and cooling capacity for the exhaust.
  • the cooling structure further includes a retention space; the retention space communicates with the second flow channel, and the retention space is used to retain the exhaust.
  • the stagnant space can hold the discharge.
  • the discharge can flow into the stagnant space, and the discharge can stay in the stagnant space for a short time, increasing the emission and cooling.
  • the heat exchange time of the device can be used to hold the discharge.
  • the cooling structure includes a plurality of stagnation spaces spaced along the extending direction of the second flow channel.
  • the cooling structure includes a plurality of stagnant spaces spaced along the extending direction of the second flow channel, and during the process of the discharge material flowing in the second flow channel, the discharge material can enter into the plurality of stagnant spaces, and the plurality of stagnant spaces.
  • the exhaust can be held multiple times to further increase the heat exchange time between the exhaust and the cooling device.
  • the retention space is arranged obliquely from a position perpendicular to the extending direction of the second flow channel to a flow direction of the exhaust in the second flow channel.
  • the inclined arrangement of the retention space makes it easier for the emissions to flow into the retention space from the second flow channel, and more difficult to flow into the second flow channel from the retention space, thereby increasing the retention time of the emissions in the retention space.
  • the cooling device includes a plurality of first cooling members; the plurality of first cooling members are arranged at intervals along the extending direction of the first flow channel, and the plurality of first cooling members are provided with The first openings through which the exhaust passes are communicated with the first openings of the plurality of first cooling elements to form the second flow channels, and the first cooling elements are formed between every two adjacent first cooling elements. Stay space.
  • the cooling device includes a plurality of cooling pieces arranged at intervals along the extending direction of the first flow channel, the first openings of the plurality of cooling pieces form the second flow channel, and a retention is formed between each adjacent two first cooling pieces.
  • the cooling device of this structure has a simple structure, which can effectively reduce the difficulty of forming the first flow channel and the retention space.
  • the cooling device includes a plurality of second cooling members; the plurality of second cooling members are arranged at intervals along the extending direction of the first flow channel, and the plurality of second cooling members are provided with The second openings through which the exhaust passes, the second openings of each adjacent two cooling elements are arranged at a projected dislocation along the extending direction of the first flow channel, and the second openings of the plurality of second cooling elements are The two openings are communicated to form the second flow channel.
  • the projections of the second openings of each of the two adjacent second cooling elements along the extension direction of the first flow channel are dislocated, so that the second flow channels are meanderingly distributed, and the discharge passes through the second cooling element of one second cooling element.
  • the flow direction of the exhaust is changed under the blocking action of the next second cooling element, which increases the flow path of the exhaust and increases the heat exchange time between the exhaust and the cooling device.
  • the box body further includes: a fire fighting mechanism disposed in the first flow channel, the fire fighting mechanism is configured to release a fire fighting medium into the first flow channel when the battery cell is thermally out of control.
  • the fire fighting mechanism can release the fire fighting medium into the first flow channel when the battery cell is thermally out of control, and the fire fighting medium is mixed with the discharge to achieve the cooling of the discharge and the reduction of the concentration of the discharge, so as to achieve the purpose of flame retardant.
  • the fire fighting mechanism in the flow direction of the exhaust in the first flow channel, is located downstream or upstream of the cooling device; or, the fire fighting mechanism is perpendicular to the cooling device
  • the stacking arrangement is in the direction of the flow direction.
  • the fire fighting mechanism can be arranged downstream of the cooling device, and the emissions generated by the thermal runaway of the battery cells can flow through the cooling device for cooling, and then mix with the fire-fighting medium released by the fire fighting mechanism; the fire fighting mechanism can also be arranged in the cooling device. Upstream, the emissions generated by the thermal runaway of the battery cells can be mixed with the fire-fighting medium released by the fire-fighting mechanism, and then flow through the cooling device for cooling;
  • the stacking arrangement in the direction of the flow direction makes the overall structure more compact and saves space.
  • the box body further includes: a detection device disposed in the first flow channel, the detection device is used to detect information parameters of the discharge in the first flow channel;
  • the fire fighting mechanism is configured to release the fire fighting medium into the first flow channel when the information parameter reaches a preset value.
  • the fire protection agency when the detection device detects that the information parameter of the discharge in the first flow channel reaches a preset value, the fire protection agency will release the fire-fighting medium into the first flow channel to realize the release of the fire-fighting medium by the fire-fighting agency.
  • the tank body further comprises: a mixing device disposed in the first flow channel, the mixing device is configured to enable the discharge and the fire fighting medium to be mixed before being discharged from the first flow channel mix.
  • the mixing device in the first flow channel can mix the discharge and the fire fighting medium before being discharged from the first flow channel, so that the discharge and the fire fighting medium are more fully mixed and the risk of local high concentration is reduced.
  • the mixing device includes a blocking structure for blocking and changing the flow direction of the discharge and the fire-fighting medium, so that the discharge and the fire-fighting medium are discharged
  • the first flow channel can be mixed before.
  • the blocking structure in the mixing device mixes the discharge and the fire-fighting medium by blocking the discharge and the fire-fighting medium and changing the flow direction, so that the mixing of the discharge and the fire-fighting medium is more sufficient.
  • the blocking structure includes a plurality of blocking members; the plurality of blocking members are arranged at intervals along the extending direction of the first flow channel, and each blocking member is provided with a third opening, and each adjacent blocking member is provided with a third opening.
  • the projections of the two third openings along the extending direction of the first flow channel are dislocated.
  • the projections of the third openings of each of the adjacent two blocking members along the extending direction of the first flow channel are dislocated, and after the discharge and fire fighting medium pass through the third opening of one blocking member, the discharge and fire fighting medium are in the next
  • the flow direction is changed under the blocking action of the blocking piece, so that the discharge and the fire fighting medium can be fully mixed by the blocking action of the blocking piece.
  • the blocking member of this configuration can increase the flow path of the exhaust and fire fighting medium to enhance the cooling effect of the exhaust.
  • the projection of the blocking structure in the extension direction of the first flow channel covers the projection of the first flow channel in the extension direction.
  • the projection of the blocking structure in the extension direction of the first flow channel covers the projection of the first flow channel in the extension direction. Mix more fully with fire fighting medium.
  • the blocking structure includes a helical blade, and the centerline of the helical blade is coincident with or parallel to the center axis of the first flow channel.
  • the blocking structure includes a plurality of helical blades, the plurality of helical blades are arranged along the extending direction of the first flow channel, and the rotation directions of every two adjacent helical blades are opposite.
  • each adjacent two helical blades in the blocking structure is opposite, so that the discharge and the fire-fighting medium in the process of flowing through the blocking structure, the effect of the helical blades of the discharge and fire-fighting medium in different rotation directions.
  • the helix flows in different directions, so that the blocking structure can more fully mix the discharge and the fire-fighting medium.
  • a plurality of first flow channels extending in the same direction are formed inside at least one wall; every two first flow channels in the plurality of first flow channels are independent of each other; or, one of the plurality of first flow channels is independent of each other. At least two first flow channels communicate.
  • every two first flow channels may be independent of each other, or at least two first flow channels may be connected. If every two first flow channels are independent of each other, the emissions do not interfere with each other during the flow of each first flow channel; if at least two first flow channels are connected, the emissions entering one first flow channel can enter and The first flow channel communicates with another first flow channel.
  • At least two first flow channels of the plurality of first flow channels are in communication, and the exhaust can sequentially flow through the cooling device in the at least two first flow channels and then be discharged to the tank body outside.
  • the exhaust in the case where the at least two first flow channels are connected, can flow through the cooling devices in the at least two first flow channels in sequence and then be discharged to the outside of the box. , the exhaust can be cooled by a plurality of cooling devices in different first flow channels, and the cooling effect of the exhaust is better.
  • the first flow channel includes an inlet; the inlet is provided with a spacer configured to open the inlet to enable the exhaust in the event of thermal runaway of the battery cell into the first flow channel through the inlet.
  • the inlet of the first flow channel is provided with a spacer.
  • the spacer can prevent the particles in the accommodation space of the box from entering the first flow channel and reduce the pressure of the first flow channel. Risk of clogging of inlets by particles.
  • the separator can open the inlet of the first flow channel, so that the emissions generated by the thermal runaway of the battery cell can smoothly enter the first flow channel through the inlet.
  • the spacer is configured to be breached upon thermal runaway of the battery cell to open the inlet.
  • the box body further includes a pressure relief mechanism;
  • the first flow channel includes an outlet, the pressure relief mechanism is provided at the outlet, and the pressure relief mechanism is used to open when the battery cell is thermally out of control the outlet, so that the discharge in the first flow channel can be discharged from the tank through the outlet.
  • the outlet of the first flow channel is provided with a pressure relief mechanism, and under normal circumstances, the pressure relief mechanism can play a role in balancing the pressure.
  • the pressure relief mechanism opens the outlet of the first flow channel, so that the discharge can be smoothly discharged to the outside of the box.
  • an embodiment of the present application provides a battery, including: a battery cell; and the case provided in the first aspect or any embodiment of the first aspect, where the battery cell is accommodated in the accommodating space.
  • the cooling device in the casing of the battery has a cooling structure that can increase the contact area between the exhaust and the cooling device, the cooling device has a better cooling effect and reduces the possibility of the emissions catching fire and burning. Improves battery safety.
  • an embodiment of the present application provides an electrical device, including the battery provided in the second aspect.
  • an embodiment of the present application further provides a method for manufacturing a battery, including: providing a battery cell; and providing a box body, the box body comprising: a plurality of walls, and the plurality of walls are enclosed and formed for accommodating the battery a cell accommodating space, and a first flow channel is formed inside at least one wall, the first flow channel is used to discharge the discharge generated by the thermal runaway of the battery cell to the outside of the box; and a cooling device, located in the In the first flow channel, the cooling device is used for cooling the exhaust that flows through the cooling device; the cooling device includes a cooling structure for increasing the contact area between the exhaust and the cooling device; The battery cells are accommodated in the accommodating space.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a box body provided by some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a box body provided by further embodiments of the present application.
  • FIG. 5 is an A-A cross-sectional view of the case provided by some embodiments shown in FIG. 3;
  • FIG. 6 is an A-A cross-sectional view of a case provided by further embodiments shown in FIG. 3;
  • FIG. 7 is a B-B cross-sectional view of the case provided by some embodiments shown in FIG. 3;
  • FIG. 8 is a B-B cross-sectional view of the case provided by further embodiments shown in FIG. 3;
  • FIG. 9 is a schematic structural diagram of a cooling device arranged in a first flow channel according to some embodiments of the present application.
  • FIG. 10 is a cross-sectional view of a cooling device provided by some embodiments of the present application.
  • FIG. 11 is a cross-sectional view of a cooling device provided by further embodiments of the present application.
  • FIG. 12 is a cross-sectional view of a cooling device provided by further embodiments of the present application.
  • FIG. 13 is a C-C cross-sectional view of the cooling device provided in some embodiments shown in FIG. 11;
  • FIG. 14 is a C-C cross-sectional view of the cooling device provided by further embodiments shown in FIG. 11 ;
  • FIG. 15 is a C-C cross-sectional view of the cooling device provided by further embodiments shown in FIG. 11 ;
  • FIG. 16 is a cross-sectional view of a cooling device provided by further embodiments of the present application.
  • FIG. 17 is a cross-sectional view of a cooling device provided by further embodiments of the present application.
  • FIG. 18 is a cross-sectional view of the cooling device provided in some embodiments of the present application arranged in the first flow channel;
  • FIG. 19 is a schematic structural diagram of a cooling device arranged in a first flow channel according to further embodiments of the present application.
  • FIG. 20 is a schematic structural diagram of a cooling device arranged in a first flow channel according to further embodiments of the present application.
  • FIG. 21 is a schematic structural diagram of a cooling device arranged in a first flow channel according to further embodiments of the present application.
  • FIG. 22 is a schematic diagram of a fire fighting mechanism and a cooling device arranged in the first flow channel according to some embodiments of the present application;
  • FIG. 23 is a schematic diagram of the arrangement of the fire fighting mechanism and the cooling device in the first flow channel according to further embodiments of the present application.
  • FIG. 24 is a schematic diagram of a fire fighting mechanism and a cooling device arranged in the first flow channel according to further embodiments of the present application;
  • FIG. 25 is a schematic diagram of the control of a fire fighting mechanism provided by some embodiments of the present application.
  • Figure 26 is a schematic structural diagram of the fire fighting mechanism shown in Figures 22-24;
  • FIG. 27 is a schematic structural diagram of a fire fighting mechanism, a cooling device and a mixing device arranged in the first flow channel according to some embodiments of the application;
  • FIG. 28 is a schematic structural diagram of a blocking structure provided by some embodiments of the present application.
  • FIG. 29 is a schematic structural diagram of a blocking structure provided by further embodiments of the present application.
  • FIG. 30 is a D-direction view of the blocking structure shown in FIG. 29;
  • FIG. 31 is a schematic flowchart of a method for manufacturing a battery provided by some embodiments of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square-shaped battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • a first flow channel is formed in at least one wall of a battery case
  • a cooling device is arranged in the first flow channel
  • the cooling device includes a cooling device for increasing the thermal runaway of the battery cell.
  • the cooling structure of the contact area between the exhaust and the cooling device can improve the cooling capacity of the cooling device, reduce the possibility of the exhaust catching fire and burning, thereby improving the safety of the battery.
  • batteries can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys, and electric tools.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include airplanes, rockets, space shuttles, spacecraft, etc.
  • electric toys include fixed Electric toys that are portable or mobile, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers, etc.
  • the embodiments of the present application do not impose special restrictions on the above-mentioned electrical equipment.
  • the electric device is a vehicle 1000 as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 according to some embodiments of the present application.
  • a battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 may be used for power supply of the vehicle 1000 , for example, the battery 100 may be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 for controlling the battery 100 to supply power to the motor 300 , eg, for starting, navigating, and running the vehicle 1000 for work power requirements.
  • the plurality of battery cells 30 may be arranged in the box 10 in an array manner.
  • a plurality of battery cells 30 are arranged in the box 10 in a 4*11 rectangular array, that is to say, the battery cells 30 in the battery 100 are divided into 4 columns (in FIG. 2 ). 2 columns are shown), with 11 battery cells 30 per column.
  • the battery cells 30 in each row can be connected in series or in parallel or in a mixed manner to form a battery module, and the battery modules can also be connected together in a series or in parallel or in a mixed manner, and are accommodated in the box 10 .
  • the battery 100 may also include other components, for example, the battery 100 further includes a bus component (not shown in the figure), and the electrical connection between the plurality of battery cells 30 is realized through the bus component, so as to realize the plurality of battery cells 30 of parallel or series or mixed.
  • the battery 100 further includes a thermal management component (not shown in the figure) for containing a fluid to adjust the temperature of the battery cells 30 .
  • the fluid contained in the thermal management component may be a liquid or a gas, such as water, a mixture of water and glycol, or air.
  • the thermal management component adjusts the temperature of the battery cells 30 , and can either heat the battery cells 30 or cool the battery cells 30 .
  • the thermal management member may also be referred to as a cooling member, a cooling system, a cooling plate, or the like.
  • the box body 10 is used for accommodating the battery cells 30 , and the box body 10 may have various structures.
  • the structure of the box body 10 will be described in detail below with reference to the accompanying drawings.
  • FIG. 3 is a schematic structural diagram of a box body 10 according to some embodiments of the present application.
  • the box body 10 includes a cooling device 11 and a plurality of walls 12 .
  • a plurality of walls 12 enclose a accommodating space 13 for accommodating battery cells 30 , and at least one wall 12 is internally formed with a first flow channel 14 , and the first flow channel 14 is used for discharging the emissions generated by the thermal runaway of the battery cells 30 . It is discharged to the outside of the box 10 .
  • the cooling device 11 is arranged in the first flow channel 14 , and the cooling device 11 is used for cooling the exhaust flowing through the cooling device 11 , and the cooling device 11 includes a cooling structure 111 for increasing the contact area between the exhaust and the cooling device 11 .
  • the box body 10 may be a hollow cuboid, a cylindrical structure, or the like.
  • the cross section of the first flow channel 14 may be circular, oval, rectangular, etc.
  • the cross section referred to here is the section perpendicular to the extending direction of the first flow channel 14 .
  • first flow channel 14 may be formed, or a plurality of first flow channels 14 may be formed, and each first flow channel 14 may be provided with a cooling device 11 .
  • first flow channels 14 in the wall 12 may be independent of each other, or may be communicated with each other.
  • first flow channels 14 between the walls 12 may be independent of each other, or may be communicated with each other.
  • One of the first flow channels 14 and the other first flow channel 14 are independent of each other, that is, they are not communicated with each other.
  • each wall 12 may be formed first to form the first flow channel 14 in the wall 12 , and then each wall 12 is assembled to form the box body 10 .
  • the arrangement direction of the first flow channels 14 in the wall 12 of the box body 10 may be set according to the specific shape of the box body 10 .
  • the first flow channel 14 may extend along the circumferential direction of the box body 10, or may extend along the axial direction of the box body 10;
  • the first flow channel 14 may extend along the length direction of the side wall of the box body 10 , or may extend along the height direction of the wall 12 of the box body 10 .
  • the accommodating space 13 inside the box body 10 for accommodating the battery cells 30 may have an open end structure, and the battery cells 30 can be put into the battery from the open end of the box body 10 within the monomer 30.
  • the box body 10 has one bottom wall and four side walls, that is, the box body 10 has five walls 12, and the bottom wall and/or the side walls of the box body 10 may be formed with a first flow. Road 14.
  • the openings of the case 10 may be blocked, for example, the openings are blocked by a case cover (not shown), so as to provide a sealed environment for the battery cells 30 .
  • FIG. 4 is a schematic structural diagram of a case body 10 provided in some other embodiments of the present application.
  • the accommodating space 13 inside the case body 10 for accommodating the battery cells 30 may be a closed seal space.
  • the box body 10 may include a first part 15 and a second part 16, the first part 15 is a hollow structure with one end open, the second part 16 covers the opening of the first part 15, and the second part 16 is jointly defined by the first part 15. in the sealed space for accommodating the battery 100 .
  • the first part 15 and the second part 16 may form a rectangular parallelepiped, a cylindrical structure, or the like.
  • the box body 10 has one bottom wall, four side walls and one top wall, that is, the box body 10 has six walls 12 and the first part 15 It is a hollow structure composed of a bottom wall and four side walls with an open end, the second part 16 is a top wall, and the second part 16 is covered at the opening of the first part 15 to form a box 10. At least one of the box 10 A first flow channel 14 may be formed in the wall 12 .
  • FIG. 5 is an A-A cross-sectional view of the box 10 provided by some embodiments shown in FIG. 3 .
  • the first flow channel 14 includes an inlet 141 and an outlet 142 , and the thermal runaway of the battery cell 30 occurs.
  • the exhaust can enter the first flow channel 14 through the inlet 141 , and the exhaust in the first flow channel 14 can be discharged from the tank 10 through the outlet 142 .
  • the inlet 141 may be provided on the inner surface of the wall 12 of the case 10
  • the outlet 142 may be provided on the outer surface of the wall 12 of the case 10 .
  • each first flow channel 14 may be provided with an inlet 141 and an outlet 142 independently, or a plurality of first flow channels 14 may share the inlet 141 and the outlet 142 .
  • some of the first flow channels 14 may share the inlet 141 and the outlet 142.
  • the box 10 is a rectangular parallelepiped, and the box 10 has six walls 12, and each first flow channel 14 in each wall 12 If the inlet 141 and the outlet 142 are shared, the entire box 10 has 6 inlets 141 and 6 outlets 142; in the box 10, it is also possible that all the first flow channels 14 share the inlet 141 and the outlet 142, then the entire box 10 There is one inlet 141 and one outlet 142.
  • first flow channels 14 are formed in the bottom wall and side wall of the box body 10, and each first flow channel 14 is provided with an inlet 141 and an outlet 142 independently; in another non-limiting example, the box A first flow channel 14 is formed in the bottom wall, side wall and top wall of the body 10 , and each first flow channel 14 is provided with an inlet 141 and an outlet 142 individually.
  • the emissions generated by the thermal runaway of the battery cells 30 need to be discharged to the casing 10 through the first flow channel 14 .
  • the particles in the accommodation space 13 of the box body 10 may cause the inlet 141 of the first flow channel 14 to be blocked, resulting in the inability of the emissions generated by the thermal runaway of the battery cells 30. exclude.
  • FIG. 6 is an A-A cross-sectional view of the box body 10 provided by the other embodiments shown in FIG. 17 is configured to open the inlet 141 in the event of thermal runaway of the battery cell 30 to allow exhaust to enter the first flow passage 14 through the inlet 141 .
  • the separator 17 can prevent particles in the accommodation space 13 of the box 10 from entering the first flow channel 14, reducing the risk of the inlet 141 of the first flow channel 14 being blocked by particles.
  • the separator 17 can open the inlet 141 of the first flow channel 14 , so that the emissions generated by the thermal runaway of the battery cell 30 can smoothly enter the first flow channel 14 through the inlet 141 .
  • the separator 17 is configured to be broken to open the inlet 141 when the battery cell 30 is thermally runaway, ie the separator 17 is broken to open the inlet 141 of the first flow channel 14 .
  • the spacer 17 may be damaged due to an increase in the pressure in the box body 10 , or may be destroyed by melting due to an increase in the temperature in the box body 10 .
  • the spacer 17 may be a thin film disposed at the inlet 141 of the first flow channel 14 .
  • the isolation member 17 can also be of other structures.
  • the isolation member 17 can also be an on-off valve disposed at the inlet 141 of the first flow channel 14. When the pressure or temperature in the box 10 reaches a preset value, the on-off valve The inlet 141 of the first flow channel 14 is opened, so that the exhaust can smoothly enter the first flow channel 14 through the inlet 141 .
  • a filter screen (not shown) may also be added at the inlet 141 of the first flow channel 14 to filter the particles in the box body 10 .
  • the inlet 141 of the first flow channel 14 may be provided with a filter screen and a spacer 17 at the same time; the inlet 141 of the first flow channel 14 may also be provided with only the spacer 17, as shown in FIG. 6 ; the inlet of the first flow channel 14 141 can also only set the filter.
  • the cooling device 11 may be fixed in the first flow channel 14 .
  • the cooling device 11 is fixed in the first flow channel 14 by means of connectors or adhesives.
  • the connector may be a bolt, screw, or the like.
  • the cooling device 11 can be directly placed in the first flow channel 14 .
  • a blocking portion 143 is provided on the wall of the first flow channel 14, and the blocking portion 143 is located between the cooling device 11 and the inlet 141 of the first flow channel 14.
  • the blocking portion 143 can block the cooling device 11 and reduce the Due to the displacement of the cooling device 11 in the first flow channel 14 , the inlet 141 is blocked, which affects the risk of the discharge from the casing 10 through the first flow channel 14 normally.
  • the blocking portion 143 can block the cooling device 11 to reduce the collision between the cooling device 11 and the filter screen and/or the spacer 17 due to the displacement of the cooling device 11 in the first flow channel 14 , thereby causing the Risk of damage to the filter and/or separator 17 .
  • the box body 10 further includes a pressure relief mechanism 18 , the pressure relief mechanism 18 is provided at the outlet 142 of the first flow channel 14 , and the pressure relief mechanism 18 is used when the battery cells 30 are heated. In the event of a runaway, the outlet 142 is opened so that the exhaust in the first flow channel 14 can exit the tank 10 through the outlet 142 .
  • the pressure relief mechanism 18 can play a role in balancing the pressure.
  • the pressure relief mechanism 18 may open the outlet 142 of the first flow channel 14 when the thermal runaway of the battery cells 30 causes the internal pressure or temperature of the case 10 to reach a preset value, so that the exhaust can be smoothly discharged to the outside of the case 10 .
  • the pressure relief mechanism 18 may employ, for example, an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve.
  • FIG. 7 is a B-B cross-sectional view of the box body 10 provided by some embodiments shown in FIG. 3 ;
  • FIG. 8 is a box body provided by some other embodiments shown in FIG. 3 .
  • at least one wall 12 has a plurality of first flow passages 14 formed in the same extension direction. That is, in the case 10, a plurality of first flow channels 14 in the same extension direction may be formed in the inside of one wall 12.
  • the first flow channels 14 may also be formed with a plurality of first flow channels 14 extending in the same direction in the interiors of the plurality of walls 12 . Understandably, each first flow channel 14 is provided with a cooling device 11 .
  • every two first flow channels 14 in the plurality of first flow channels 14 may be independent of each other, that is, any two first flow channels 14 are not connected, and contain After the discharge in the space 13 enters the first flow channel 14 from the inlet 141 of the first flow channel 14 (not shown in FIG. 7 ), it flows through the cooling device 11 and then exits the box 10 through the outlet 142 of the first flow channel 14 . , the discharges do not interfere with each other during the flow in each of the first flow channels 14 .
  • any wall 12 of the box body 10 at least two first flow channels 14 among the plurality of first flow channels 14 may be connected, and the discharge entering into one first flow channel 14 may enter into another flow channel communicating with the first flow channel 14 .
  • the exhaust can sequentially flow through the cooling devices 11 in the at least two first flow channels 14 and then be discharged to the outside of the tank 10 . That is to say, during the process of the discharge from the inside of the tank 10 to the outside of the tank 10, the discharge flows in a "Z" shape, and the discharge can be sequentially cooled by a plurality of cooling devices 11 in different first flow passages 14, so that the The cooling effect of the emissions is better.
  • the box body 10 is a rectangular parallelepiped and one side wall thereof is provided with two first flow channels 14 communicating with each other as an example, and the two cooling devices 11 in the two first flow channels 14 are in The first flow channels 14 are arranged at intervals in the extending direction, and the two first flow channels 14 are communicated through a connecting hole 144 , and the connecting hole 144 is located between the two cooling devices 11 in the extending direction of the first flow channel 14 .
  • the extending direction of the first flow channel 14 is the same as the longitudinal direction of the side wall.
  • the function of the cooling device 11 is to cool the exhaust entering the first flow channel 14 .
  • the cooling device 11 can have various structural forms, and the cooling structure 111 of the cooling device 11 can also have various structural forms. The specific structures of the cooling device 11 and the cooling structure 111 are described in detail below with reference to the accompanying drawings.
  • the cooling device 11 may be made of a material with good heat exchange performance, such as metal, ceramic, and the like.
  • the metal may be copper, iron, aluminum, aluminum alloy, stainless steel, and the like.
  • FIG. 9 is a schematic structural diagram of the cooling device 11 arranged in the first flow channel 14 according to some embodiments of the present application.
  • the cooling structure 111 may include a groove 112 formed on the peripheral wall of the cooling device 11 .
  • a gap exists between at least part of the peripheral wall of the cooling device 11 and the wall surface of the first flow channel 14 for the discharge to pass through.
  • the discharge can enter the groove 112 and come into contact with the groove wall 12 of the groove 112 .
  • the arrangement of the grooves 112 on the cooling device 11 can increase the contact area between the exhaust and the cooling device 11 , thereby improving the cooling capacity of the cooling device 11 .
  • a plurality of grooves 112 are arranged on the peripheral wall of the cooling device 11 to further increase the contact area between the exhaust and the cooling device 11 and improve the cooling capacity of the cooling device 11 .
  • the cooling device is a strip-shaped component arranged along the extending direction of the first flow channel.
  • FIG. 10 is a cross-sectional view of the cooling device 11 provided by some embodiments of the present application
  • FIG. 12 is a cross-sectional view of the cooling device 11 provided by further embodiments of the present application.
  • the cooling structure 111 may include a second flow channel 113 for the exhaust to pass through, that is, the cooling device 11 may increase the contact area between the cooling device 11 and the flue gas by arranging the second flow channel 113 , and the structure is simple. During the process of the discharge flowing through the cooling device 11 , the discharge can flow through the second flow channel 113 , which is beneficial for the cooling device 11 to cool the discharge.
  • a second flow channel 113 may be formed on the outer surface of the cooling device 11 to facilitate the molding of the second flow channel 113 ; as shown in FIG. 11 , a second flow channel 113 may be formed in the cooling device 11 .
  • Channel 113 in the process of the exhaust flowing through the cooling device 11, the exhaust can flow directionally inside the cooling device 11; of course, as shown in FIG. 12, it can also be the outer surface of the cooling device 11 and the interior of the cooling device 11
  • a second flow channel 113 is formed in each of them, so as to make full use of the cooling device 11 and increase the contact area between the cooling device 11 and the exhaust as much as possible.
  • the cross section of the second flow channel 113 formed on the outer surface of the cooling device 11 is open and not closed, as shown in FIG. 10 ; the cross section of the second flow channel 113 formed inside the cooling device 11 is open. The section is closed, as shown in Figure 11.
  • the cross section referred to here is a section perpendicular to the extending direction of the second flow channel 113 .
  • the cooling device 11 includes an opposite first end 114 and a second end 115 in the extending direction of the first flow channel 14, and the second flow channel 113 passes through the first end 114 and the second end 115, that is, the discharge flows through the first end 114 and the second end 115.
  • the exhaust can flow in from one end of the cooling device 11 and flow out from the other end, which increases the time for the exhaust to flow in the first flow channel 14 , that is, increases the contact time between the exhaust and the cooling device 11 .
  • the heat exchange time between the exhaust and the cooling device 11 is longer, and the cooling and cooling capacity of the cooling device 11 is improved.
  • the cooling device 11 is a strip-shaped component arranged along the extending direction of the first flow channel 14 .
  • the size of the outer contour of the cooling device 11 can be adapted to the size of the inner contour of the first flow channel 14, that is, there is no gap between the cooling device 11 and the wall surface of the first flow channel 14, and the exhaust can only pass through the second flow channel.
  • Channel 113 flows through cooling device 11 .
  • the cooling device 11 is a cylindrical structure arranged along the extending direction of the first flow channel 14
  • the outer diameter of the cooling device 11 matches the inner diameter of the first flow channel 14 .
  • the second flow channel 113 on the cooling device 11 may extend in a straight line, a curve or a zigzag line. As shown in FIG. 13 , if the second flow channel 113 on the cooling device 11 extends in a straight line, the second flow channel 113 of this structure is simple to form, and the processing cost is low; as shown in FIG. 14 and FIG. 15 , if the first The second flow channel 113 extends in a curved or zigzag shape. This structure can increase the flow path of the exhaust in the second flow channel 113 and further increase the contact time between the exhaust and the cooling device 11 .
  • the second flow channel 113 on the cooling device 11 when the second flow channel 113 on the cooling device 11 extends in a curved shape, the second flow channel 113 may be a curved shape in a plane, that is, the centerline of the second flow channel 113 is located in a plane; The second flow channel 113 may also be a curved shape in space, such as a spiral. In FIG. 14, the second flow channel 113 is curved in a plane.
  • the extending direction of the second flow channel 113 and the extending direction of the first flow channel 14 may be the same, or may be provided at a non-zero included angle.
  • the extending direction of the second flow channel 113 is consistent with the extending direction of the first flow channel 14 .
  • the second flow channels 113 are all formed in the cooling device 11 .
  • the shape of the cross section of the second flow channel 113 may be various shapes, which are not limited in the embodiment of the present application.
  • the cross-section of the second flow channel 113 may be circular, as shown in FIG. 11-FIG. 13; for another example, please refer to FIG. 16, which is a cross-sectional view of the cooling device 11 according to further embodiments of the present application,
  • the cross-section of the second flow channel 113 may also be a rectangle; for another example, please refer to FIG. 17 , which is a cross-sectional view of the cooling device 11 provided by further embodiments of the present application.
  • the cooling device 11 at least part of the second flow channel
  • the cross-sections of the channels 113 are different, and the shapes of the cross-sections of the respective second flow channels 113 may be at least two of a rectangle, a trapezoid, a triangle, and the like.
  • the number of second flow channels 113 in the cooling structure 111 may be one or multiple.
  • FIGS. 10 to 17 show the case where the cooling structure 111 includes multiple second flow channels 113 .
  • the plurality of second flow channels 113 may be independent of each other, or at least two second flow channels 113 may communicate with each other.
  • the cooling device 11 may be an integral structure, and the plurality of second flow channels 113 are directly formed on the cooling device 11, as shown in FIGS. 10-17 .
  • the cooling device 11 can also be a split structure, that is, the cooling device 11 is divided into multiple parts, and a second flow channel 113 is formed in each part.
  • FIG. 18 is a cross-sectional view of the cooling device 11 arranged in the first flow channel 14 according to some embodiments of the present application.
  • the cooling device 11 is a split structure, and the cooling device 11 includes multiple Each cooling pipe 116 is formed with a second flow channel 113 inside each cooling pipe 116 . That is to say, a plurality of cooling pipes 116 with the second flow channels 113 formed therein can be used as the cooling device 11 to cool the exhaust, the overall structure is simple, and the manufacturing difficulty of the cooling device 11 is reduced.
  • a gap for the exhaust to pass through can also be formed between the cooling pipes 116 , that is, during the process of the exhaust flowing through the cooling device 11 , the exhaust can not only contact the inner wall of the cooling pipe 116 , but also contact the cooling pipe.
  • the outer wall of 116 is in contact, and the cooling device 11 with this structure has better cooling and cooling capacity for the exhaust.
  • the plurality of cooling pipes 116 in the cooling device 11 can be directly stacked in the first flow channel 14, and the cooling pipes 116 abut against each other and are not fixed;
  • the cooling pipe 116 is installed in the first flow channel 14 as a whole.
  • each cooling tube 116 of the plurality of cooling tubes 116 may be fixed by welding or bonding.
  • FIG. 19 is a schematic structural diagram of the cooling device 11 arranged in the first flow channel 14 according to still some embodiments of the present application.
  • the cooling structure 111 may further include a retention space 117 in communication with the second flow channel 113, and the retention space 117 is used to retain the exhaust.
  • the stay mentioned here is the temporary stay.
  • the retention space 117 can hold the discharge.
  • the discharge flows in the second flow channel 113, the discharge can flow into the retention space 117, and the discharge can stay in the retention space 117 for a short time.
  • the heat exchange time of the cooling device 11 is not limited to
  • the second flow channel 113 may be formed inside the cooling device 11 and/or on the outer surface of the cooling device 11 .
  • the second flow channel 113 in the cooling structure 111 may be one or a plurality of. Exemplarily, in FIG. 19 , there is one second flow channel 113 in the cooling device 11 , and the second flow channel 113 is formed inside the cooling device 11 .
  • the cooling structure 111 includes a plurality of retention spaces 117 spaced apart along the extending direction of the second flow channel 113 .
  • the exhaust can enter into the plurality of retention spaces 117, and the multiple retention spaces 117 can hold the exhaust for multiple times, further increasing the heat between the exhaust and the cooling device 11. exchange time.
  • the retention space 117 is inclined from a position perpendicular to the extending direction of the second flow channel 113 to the flow direction X of the exhaust in the second flow channel 113 .
  • the inclined arrangement of the retention space 117 makes it easier for the exhaust to flow into the retention space 117 from the second flow channel 113 , and more difficult to flow from the retention space 117 into the second flow channel 113 , thereby increasing the retention time of the exhaust in the retention space 117 .
  • the second flow channel 113 has an inlet end 1131 and an outlet end 1132 , and the flow direction X of the discharge in the second flow channel 113 is the direction in which the inlet end 1131 points to the outlet end 1132 .
  • the retention space 117 is arranged obliquely from a position perpendicular to the extending direction of the second flow channel 113 to the flow direction X of the discharge in the second flow channel 113 , that is, the part of the retention space 117 connected to the second flow channel 113 is larger than the retention space 117 The other parts are closer to the inlet end 1131.
  • the retention space 117 may be a hole provided on the wall surface of the second flow channel 113 , or may be a space surrounding the second flow channel 113 .
  • the cooling device 11 may include a plurality of first cooling members 118 , the plurality of first cooling members 118 are arranged at intervals along the extending direction of the first flow channel 14 , and each first cooling member 118 There is a first opening 1181 for the exhaust to pass through, and the first openings 1181 of the plurality of first cooling elements 118 are connected to form a second flow channel 113, and a retention is formed between every two adjacent first cooling elements 118 Space 117.
  • the cooling device 11 with this structure has a simple structure and can effectively reduce the difficulty of forming the first flow channel 14 and the retention space 117 .
  • the first cooling member 118 can be directly fixed on the wall surface of the first flow channel 14; it is also possible to connect a plurality of first cooling members 118 together through the first connecting body 118a, and then install the whole to the first flow channel 118.
  • the cooling device 11 further includes a first connecting body 118a, and each first cooling member 118 is connected to the first connecting body 118a.
  • the first connecting body 118a is a hollow tubular structure, the first connecting body 118a is located in the first flow channel 14, and the first cooling member 118 is fixed on the inner wall of the first connecting body 118a.
  • the first cooling member 118 includes a first cooling plate 1182 and a second cooling plate 1183 , and the first cooling plate 1182 and the second cooling plate 1183 are oppositely arranged on the inner wall of the first connecting body 118 a
  • a first opening 1181 is formed between the first cooling plate 1182 and the second cooling plate 1183
  • a retention space 117 is formed between every two adjacent first cooling plates 1182
  • every two adjacent second cooling plates A retention space 117 is formed between 1183 .
  • the first cooling member 118 may be an annular plate body, and the retention space 117 formed between every two adjacent first cooling members 118 is the space surrounding the second flow channel 113 .
  • the second flow channel 113 may be formed on the outer surface of the cooling device 11 and/or inside the cooling device 11 .
  • the arrangement of the second flow channels 113 is not limited to this.
  • FIG. 20 is a schematic structural diagram of the cooling device 11 arranged in the first flow channel 14 according to further embodiments of the present application;
  • FIG. 21 is another embodiment of the present application The provided schematic diagram of the structure of the cooling device 11 arranged in the first flow channel 14;
  • the cooling device 11 includes a plurality of second cooling members 119, the plurality of second cooling members 119 are arranged at intervals along the extending direction of the first flow channel 14, and each second cooling member 119 is arranged at intervals along the extending direction of the first flow channel 14.
  • the cooling element 119 is provided with a second opening 1191 for the exhaust to pass through, and the second openings 1191 of each adjacent two cooling elements are arranged in a staggered projection along the extending direction of the first flow channel 14 .
  • the second openings 1191 communicate with each other to form the second flow channel 113 .
  • the projections of the second openings 1191 of every two adjacent second cooling elements 119 along the extending direction of the first flow channel 14 are arranged in a staggered manner, so that the second flow channels 113 are serpentinely distributed, and the discharge passes through the second cooling element 119 .
  • the exhaust changes the flow direction under the blocking action of the next second cooling element 119, which increases the flow path of the exhaust and increases the heat exchange time between the exhaust and the cooling device 11.
  • the projections of the second openings 1191 of each of the two adjacent second cooling members 119 along the extending direction of the first flow channel 14 are dislocated.
  • the projections of the two openings 1191 in the extending direction of the first flow channel 14 are partially overlapped, or they may be completely dislocated, that is, the projections of the two second openings 1191 in the extending direction of the first flow channel 14 do not overlap.
  • the second cooling member 119 may be directly fixed on the wall surface of the first flow channel 14; or a plurality of second cooling members 119a may be connected together through the second connecting body 119a, and then the entirety of the second cooling member 119a may be connected to inside the first flow channel 14 .
  • the cooling device 11 further includes a second connecting body 119a, and each second cooling member 119 is connected to the second connecting body 119a.
  • the second connecting body 119a is a hollow tubular structure, the second connecting body 119a is arranged in the first flow channel 14, and the second cooling member 119 is fixed on the inner wall of the second connecting body 119a.
  • the second cooling member 119 is a plate-shaped member.
  • the second openings 1191 of each of the two adjacent second cooling elements 119 are arranged at all the dislocations along the extending direction of the first flow channel 14 .
  • the second opening 1191 may be a hole provided on the second cooling member 119 ; as shown in FIG. 21 , the second opening 1191 may also be formed by the end of the second cooling member 119 and the second connecting body
  • the inner walls of 119a collectively define an opening.
  • FIG. 22 is a schematic diagram of the arrangement of the fire fighting mechanism 19 and the cooling device 11 in the first flow channel 14 provided by some embodiments of the application
  • FIG. 23 is another embodiment of the application
  • FIG. 24 is a schematic diagram of the fire fighting mechanism 19 and the cooling device 11 arranged in the first flow channel 14 provided by some further embodiments of the application.
  • the box body 10 further includes a fire fighting mechanism 19.
  • the fire fighting mechanism 19 is arranged in the first flow channel 14.
  • the fire fighting mechanism 19 is configured to release a fire fighting medium into the first flow channel 14 when the battery cell 30 is thermally out of control.
  • the fire fighting medium can be mixed with the discharge. Mixing to achieve the cooling of emissions and the reduction of the concentration of emissions, in order to achieve the purpose of flame retardant.
  • the fire fighting medium may be a fire fighting gas or a fire fighting solid or liquid capable of producing a fire fighting gas.
  • Fire-fighting solids and fire-fighting liquids can generate fire-fighting gas through phase change, or can generate fire-fighting gas through chemical reaction.
  • Fire-fighting gases include but are not limited to inert gases capable of extinguishing fires, carbon dioxide gas, heptafluoropropane gas, sulfur hexafluoride and other incombustible gases.
  • the fire fighting mechanism 19 can be arranged in various ways. For example, as shown in FIG. 22 , in the flow direction X of the exhaust in the first flow channel 14 , the fire fighting mechanism 19 is located downstream of the cooling device 11 .
  • the discharged material can flow through the cooling device 11 to be cooled, and then be mixed with the fire-fighting medium released by the fire-fighting mechanism 19; for another example, as shown in FIG. Located upstream of the cooling device 11, the emissions generated by the thermal runaway of the battery cells 30 can be mixed with the fire-fighting medium released by the fire-fighting mechanism 19, and then flow through the cooling device 11 for cooling; for another example, as shown in FIG.
  • the fire-fighting mechanism 19 It is arranged in a stack with the cooling device 11 in a direction perpendicular to the flow direction X.
  • the flow direction X is the flow direction X of the exhaust in the first flow channel 14
  • the flow direction X of the exhaust in the first flow channel 14 is the flow direction X of the exhaust in the second flow channel 113 .
  • the box 10 further includes a detection device 20 , the detection device 20 is arranged in the first flow channel 14 , and the detection device 20 is used to detect the information parameters of the discharge in the first flow channel 14 .
  • the fire fighting mechanism 19 is used for releasing fire fighting medium into the first flow channel 14 when the information parameter reaches a preset value.
  • the detection device 20 may be a concentration sensor, a temperature sensor, or the like. If the detection device 20 is a concentration sensor, the detection device 20 can detect the gas concentration of the exhaust in the first flow channel 14, and when the gas concentration reaches a preset value, the fire fighting mechanism 19 releases the fire fighting medium into the first flow channel 14 to realize fire fighting The mechanism 19 releases the fire-fighting medium; if the detection device 20 is a temperature sensor, the detection device 20 can detect the temperature of the discharge in the first flow channel 14, and when the temperature reaches a preset value, the fire-fighting mechanism 19 will send the temperature to the first flow channel 14. The fire-fighting medium is released, and the fire-fighting mechanism 19 releases the fire-fighting medium.
  • FIG. 25 is a control principle diagram of the fire protection mechanism 19 provided by some embodiments of the application. Both the detection device 20 and the fire protection mechanism 19 can be used for electrical connection with the control system 21 .
  • the control system 21 controls the fire fighting mechanism 19 to release the fire fighting medium into the first flow channel 14 to realize the automatic release of the fire fighting medium by the fire fighting mechanism 19 .
  • the control system 21 may be a BMS (Battery Management System, battery management system).
  • FIG. 26 is a schematic structural diagram of the fire fighting mechanism 19 shown in FIGS. 22 to 24 .
  • the fire fighting mechanism 19 may include a housing 191 and a triggering device 192 , and the triggering device 192 is mounted on the housing 191 .
  • an accommodating cavity 1911 and a third flow channel 1912 are formed inside the housing 191.
  • the accommodating cavity 1911 is used to accommodate the fire-fighting medium
  • the third flow channel 1912 is used for the discharge to pass through
  • the trigger device 192 is used to detect the first flow channel in the detection device 20.
  • the information parameter of the discharge in 14 reaches a preset value, it is turned on, so that the fire-fighting medium in the accommodating cavity 1911 enters the third flow channel 1912 and mixes with the discharge.
  • the trigger device 192 is electrically connected to the control system 21 .
  • the triggering device 192 may be an electric switch valve.
  • FIG. 27 is a schematic structural diagram of the fire fighting mechanism 19 , the cooling device 11 and the mixing device 22 arranged in the first flow channel 14 according to some embodiments of the application.
  • the box 10 further includes Mixing device 22, the mixing device 22 is arranged in the first flow channel 14, the mixing device 22 is used to enable the discharge and the fire fighting medium to be mixed before being discharged from the first flow channel 14, so that the discharge and the fire fighting medium can be mixed more fully, reducing local Risk of excessive concentration.
  • the mixing device 22 is located downstream of the fire fighting mechanism 19 .
  • the mixing device 22 may be located upstream or downstream of the cooling device 11 .
  • the cooling device 11 is located upstream of the fire fighting mechanism 19
  • the fire fighting mechanism 19 is located upstream of the mixing device 22 .
  • the mixing device 22 may include a blocking structure 221 for blocking the discharge and the fire fighting medium and changing the flow direction X, so that the discharge and fire fighting medium can be blocked by the discharge before being discharged from the first flow channel 14 . mix.
  • the blocking structure 221 mixes the discharge and the fire-fighting medium by blocking the discharge and the fire-fighting medium and changing the flow direction X, so that the mixing of the discharge and the fire-fighting medium is more sufficient.
  • the blocking structure 221 includes a helical blade 2211 , and the centerline of the helical blade 2211 is coincident with or parallel to the center axis of the first flow channel 14 .
  • the helical blades 2211 in the blocking structure 221 may be one or more. In some embodiments, when there are multiple helical blades 2211, the multiple helical blades 2211 may be arranged along the extending direction of the first flow channel 14, and the rotation directions of every two adjacent helical blades 2211 may be oppositely arranged .
  • This structure enables the discharge and fire-fighting medium to flow in helical lines of different directions under the action of the helical blades 2211 in different directions during the process of flowing through the blocking structure 221, so that the blocking structure 221 is effective against the discharge. The mixture of the substance and the fire-fighting medium is more complete.
  • FIG. 28 is a schematic structural diagram of a blocking structure 221 provided by some embodiments of the present application
  • FIG. 29 is a structural schematic diagram of a blocking structure 221 provided by some other embodiments of the present application.
  • the blocking structure 221 includes a plurality of blocking members 2212; the plurality of blocking members 2212 are arranged at intervals along the extending direction of the first flow channel 14, each blocking member 2212 is provided with a third opening 2213, and each adjacent two third openings 2213 The projection of the extending direction of the first flow channel 14 is arranged in a misaligned manner.
  • the discharge and fire-fighting medium After the discharge and fire-fighting medium pass through the third opening 2213 of one blocking piece 2212, the discharge and fire-fighting medium change their flow directions under the blocking action of the next blocking piece 2212, so that the discharge and fire-fighting medium can be fully discharged by the blocking action of the blocking piece 2212.
  • the structure of the blocking structure 221 using a plurality of blocking members 2212 is relatively simple, and can produce a good mixing effect on the discharge and the fire-fighting medium.
  • the barrier 2212 of this configuration can increase the flow path of the exhaust and fire fighting medium to enhance cooling of the exhaust.
  • the projection dislocation of the third openings 2213 of each of the two adjacent blocking members 2212 along the extending direction of the first flow channel 14 may be a partial dislocation arrangement, that is, two third openings
  • the projections of the two third openings 2213 in the extending direction of the first flow channel 14 are partially overlapped, and may also be completely dislocated, that is, the projections of the two third openings 2213 in the extending direction of the first flow channel 14 do not overlap.
  • the blocking member 2212 can be directly fixed on the wall surface of the first flow channel 14 ; it is also possible to connect a plurality of blocking members 2212 together through the third connecting body 2214 , and then install the entire blocking member 2212 to the first flow channel 14 as a whole.
  • the blocking structure 221 further includes a third connecting body 2214 , and each blocking member 2212 is connected to the third connecting body 2214 .
  • the third connecting body 2214 is a hollow tubular structure, the third connecting body 2214 is arranged in the first flow channel 14 , and the blocking member 2212 is fixed on the inner wall of the third connecting body 2214 .
  • the blocking member 2212 is a plate-shaped member.
  • the third openings 2213 of each of the two adjacent blocking members 2212 are arranged at all positions in the extending direction of the first flow channel 14 .
  • the third opening 2213 may be a hole provided on the blocking member 2212; as shown in FIG. 29, the third opening 2213 may also be formed by the end of the blocking member 2212 and the inner wall of the third connecting body 2214. Limit openings.
  • FIG. 30 is a D-direction view of the blocking structure 221 shown in FIG. 29
  • the D-direction view is a D-direction view of FIG. 29
  • the projection of the blocking structure 221 on the extension direction of the first flow channel 14 covers the projection of the first flow channel 14 in the extension direction thereof, and the coverage here refers to complete coverage.
  • the blocking structure 221 of this structure has a better blocking effect on the discharge and the fire-fighting medium, so that the discharge and the fire-fighting medium are mixed more fully.
  • the blocking structure 221 may also include the helical blade 2211 structure as shown in FIG. 27 and the structure of a plurality of blocking members 2212 as shown in FIGS. 28-29 .
  • a plurality of blocking members 2212 and helical blades 2211 are arranged in the first flow passage 14 , and the helical blades 2211 are located downstream of the plurality of blocking members 2212 in the flow direction X of the exhaust in the first flow passage 14 .
  • the mixing device 22 may be the blocking structure 221 in the above embodiments, and may also be other structures.
  • the movable parts inside the movable parts are rotated or moved to realize the mixing of the fire-fighting medium and the discharge.
  • FIG. 31 is a schematic flowchart of a method for manufacturing the battery 100 provided in some embodiments of the present application.
  • the method for manufacturing the battery 100 includes:
  • S100 provide battery cells 30;
  • S200 Provide the box body 10, and the box body 10 includes:
  • a plurality of walls 12, the plurality of walls 12 enclose a accommodating space 13 for accommodating the battery cells 30, and at least one wall 12 is formed with a first flow channel 14 inside, and the first flow channel 14 is used to heat the battery cells 30. Emissions generated out of control are discharged to the outside of the tank 10; and
  • the cooling device 11 is arranged in the first flow channel 14, and the cooling device 11 is used for cooling the discharge flowing through the cooling device 11;
  • the cooling device 11 includes a cooling structure 111 for increasing the contact area between the exhaust and the cooling device 11;
  • the battery cells 30 are accommodated in the accommodating space 13 of the case 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

一种箱体(10)、电池(100)、用电设备及电池(100)的制造方法,属于储能器件领域。其中,箱体(10)包括冷却装置(11)和多个壁(12),多个壁(12)围合形成用于容纳电池单体(30)的容纳空间(13),且至少一个壁(12)的内部形成有第一流道(14),第一流道(14)用于将电池单体(30)热失控产生的排放物排出至箱体(10)外。冷却装置(11)设于第一流道(14)内,冷却装置(11)用于对流经冷却装置(11)的排放物进行冷却。其中,冷却装置(11)包括用于增大排放物与冷却装置(11)的接触面积的冷却结构(111)。冷却结构(111)的设置增大了排放物与冷却装置(11)的接触面积,使得冷却装置(11)能够带走排放物更多的热量,提高了冷却装置(11)的冷却能力。冷却装置(11)的降温效果更佳,降低了排放物起火、燃烧的可能性,提高了电池(100)的安全性。

Description

箱体、电池、用电设备及电池的制造方法 技术领域
本申请涉及储能器件领域,特别是涉及一种箱体、电池、用电设备及电池的制造方法。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供一种箱体、电池、用电设备及电池的制造方法,以提高电池的安全性。
第一方面,本申请实施例提供一种箱体,用于电池,所述电池包括电池单体,包括:多个壁,所述多个壁围合形成用于容纳所述电池单体的容纳空间,且至少一个壁的内部形成有第一流道,所述第一流道用于将所述电池单体热失控产生的排放物排出至所述箱体外;以及冷却装置,设于所述第一流道内,所述冷却装置用于对流经所述冷却装置的排放物进行冷却;其中,所述冷却装置包括用于增大所述排放物与所述冷却装置的接触面积的冷却结构。
上述方案中,箱体中的至少一个壁的内部形成有第一流道,位于箱体内的电池单体热失控产生的排放物可以通过第一流道排放至箱体外。第一流道内设有冷却装置,排放物在第一流道内流经冷却装置时,冷却装置可与排放物进行热交换,以对排放物进行冷却,从而达到降低排放物的温度的目的。冷却装置包括有冷却结构,冷却结构的设置增大了排放物与冷却装置的接触面积,使得冷却装置能够带走排放物更多的热量,提高了冷却装置的冷却能力。冷却装置的降温效果更佳,降低了排放物起火、燃烧的可能性,提高了电池的安全性。
在一些实施例中,所述冷却结构包括供所述排放物通过的第二流道。
上述方案中,冷却结构包括供排放物通过的第二流道,也就是说,冷却装置可以通过设置第二流道的方式来增大冷却装置与烟气的接触面积,结构简单。排放物在流经冷却装置的过程中,排放物可从第二流道内流过,有利于冷却装置对排放物进行冷却。
在一些实施例中,所述冷却装置的外表面和/或所述冷却装置的内部形成有所述第二流道。
上述方案中,可以是在冷却装置的外表面形成有第二流道,便于第二流道的成型;也可以是冷却装置的内形成有第二流道,排放物在流经冷却装置的过程中,排放物可在冷却装置的内部定向流动;当然,还可以是冷却装置的外表面和冷却装置的内部均形成有第二流道,以充分利用冷却装置,尽可能的增大冷却装置与排放物的接触面积。
在一些实施例中,所述冷却装置在所述第一流道的延伸方向上包括相对的第一端和第二端,所述第二流道贯通所述第一端和所述第二端。
上述方案中,第二流道贯通冷却装置在延伸方向上相对的第一端和第二端,也就是说,排放物在流经冷却装置的过程中,排放物可从冷却装置的一端流入,另一端流出,增大了排放物在第一流道内流动的时间,即增大了排放物与冷却装置的接触时间,排放物与冷却装置的热交换时间更长,提高了冷却装置的冷却降温能力。
在一些实施例中,所述第二流道呈直线形、曲线形或折线形延伸。
上述方案中,第二流道可以是直线形,这种结构的第二流道成型简单,加工成本较低;第二流道也可以是曲线形或折线形,这种结构第二流道可增大排放物在第二流道内的流动路径,进一步增大了排放物与冷却装置的接触时间。
在一些实施例中,所述冷却结构包括多个彼此独立的所述第二流道。
上述方案中,冷却装置可以包括多个彼此独立的第二流道,所有第二流道均可供排放物通过,使得排放物在流经冷却装置的过程中能够与更多的第二流道的壁面接触,提高了冷却装置的冷却降温能力。
在一些实施例中,所述冷却装置包括多个冷却管,每个所述冷却管的内部形成有所述第二流道。
上述方案中,冷却装置包括多个冷却管,每个冷却管的内部形成有第二流道,也就是说,可利用多个内部形成有第二流道的冷却管来作为冷却装置,以对排放物进行冷却,整体结构简单。此外,冷却管之间还可形成供排放物通过的间隙,也就是说,排放物在流经冷却装置的过程中,排放物既可与冷却管的内壁接触,又可与冷却管的外壁接触,这种结构的冷却装置对排放物具有更好的冷却降温能力。
在一些实施例中,所述冷却结构还包括滞留空间;所述滞留空间与所述第二流道连通,所述滞留空间用于滞留所述排放物。
上述方案中,滞留空间对排放物可起到滞留作用,排放物在第二流道内流动时,排放物可流入到滞留空间内,排放物可在滞留空间内短暂的停留,增长排放物与冷却装置的热交换时间。
在一些实施例中,所述冷却结构包括沿所述第二流道的延伸方向间隔分布的多个滞留空间。
上述方案中,冷却结构包括沿第二流道的延伸方向间隔分布的多个滞留空间,排放物在第二流道内流动的过程中,排放物可进入到多个滞留空间内,多个滞留空间可对排放物进行多次滞留,进一步增长排放物与冷却装置的热交换时间。
在一些实施例中,所述滞留空间从垂直于所述第二流道的延伸方向的位置向所述排放物在所述第二流道内的流动方向倾斜布置。
上述方案中,滞留空间的倾斜布置使得排放物更容易从第二流道内流入滞留空间内,更难从滞留空间流入第二流道内,从而增长排放物在滞留空间内的滞留时间。
在一些实施例中,所述冷却装置包括多个第一冷却件;所述多个第一冷却件沿所述第一流道的延伸方向间隔布置,所述多个第一冷却件上设有供所述排放物通过的第一开口,所述多个第一冷却件的所述第一开口连通,以形成所述第二流道,每相邻的两个第一冷却件之间形成所述滞留空间。
上述方案中,冷却装置包括沿第一流道的延伸方向间隔布置的多个冷却件,多个冷却件的第一开口形成第二流道,每相邻的两个第一冷却件之间形成滞留空间,这种结构的冷却装置结构简单,可有效降低第一流道和滞留空间的成型难度。
在一些实施例中,所述冷却装置包括多个第二冷却件;所述多个第二冷却件沿所述第一流道的延伸方向间隔布置,所述多个第二冷却件上设有供所述排放物通过的第二开口,每相邻的两个冷却件的所述第二开口沿所述第一流道的延伸方向的投影错位设置,所述多个第二冷却件的所述第二开口连通,以形成所述第二流道。
上述方案中,每相邻的两个第二冷却件的第二开口沿第一流道的延伸方向的投影错位设置,使得第二流道蜿蜒分布,排放物通过一个第二冷却件的第二开口后,排放物在下一个第二冷却件的阻挡作用下改变流向,增大了排放物的流动路径,增长了排放物与冷却装置的热交换时间。
在一些实施例中,所述箱体还包括:消防机构,设于所述第一流道内,所述消防机构被配置为在所述电池单体热失控时向所述第一流道内释放消防介质。
上述方案中,消防机构可在电池单体热失控时向第一流道内释放消防介质,消防介质与排放物混合,实现对排放物的降温和排放物浓度的降低,以达到阻燃的目的。
在一些实施例中,在所述排放物于所述第一流道内的流动方向上,所述消防机构位于所述冷却装置的下游或上游;或,所述消防机构与所述冷却装置在垂直于所述 流动方向的方向上堆叠布置。
上述方案中,消防机构可以设置在冷却装置的下游,电池单体热失控所产生的排放物可流经冷却装置冷却后,再与消防机构释放的消防介质混合;消防机构也可以设置在冷却装置的上游,电池单体热失控所产生排放物可先与消防机构释放的消防介质混合后,再流经冷却装置冷却;当然,消防机构与冷却装置也可在垂直于排放物在第一流道内的流动方向的方向上堆叠布置,使整体结构更加紧凑,节省空间。
在一些实施例中,所述箱体还包括:检测装置,设于所述第一流道内,所述检测装置用于检测所述第一流道内的排放物的信息参数;
所述消防机构用于在所述信息参数达到预设值时向所述第一流道内释放所述消防介质。
上述方案中,消防机构在检测装置检测到第一流道内的排放物的信息参数达到预设值时,消防机构将向第一流道内释放消防介质,实现消防机构对消防介质的释放。
在一些实施例中,所述箱体还包括:混合装置,设于所述第一流道内,所述混合装置用于使所述排放物和所述消防介质在排出所述第一流道之前能够被混合。
上述方案中,第一流道内的混合装置可对排放物与消防介质在排出第一流道之前进行混合,使排放物与消防介质混合的更加充分,降低局部浓度过高的风险。
在一些实施例中,所述混合装置包括阻挡结构,所述阻挡结构用于对所述排放物和所述消防介质进行阻挡并改变流动方向,以使所述排放物和所述消防介质在排出所述第一流道之前能够被混合。
上述方案中,混合装置中的阻挡结构通过对排放物和消防介质进行阻挡并改变流动方向的方式,来对排放物和消防介质进行混合,使得对排放物和消防介质的混合更加充分。
在一些实施例中,所述阻挡结构包括多个阻挡件;所述多个阻挡件沿所述第一流道的延伸方向间隔布置,每个所述阻挡件上设有第三开口,每相邻的两个所述第三开口沿所述第一流道的延伸方向的投影错位设置。
上述方案中,每相邻的两个阻挡件的第三开口沿第一流道的延伸方向的投影错位设置,排放物和消防介质通过一个阻挡件的第三开口后,排放物和消防介质在下一个阻挡件的阻挡作用下改变流向,从而利用阻挡件的阻挡作用对排放物和消防介质进行充分混合,这种采用多个阻挡件的阻挡结构的结构形式较为简单,对排放物和消防介质可产生很好的混合效果。此外,这种结构的阻挡件可增大排放物和消防介质的流动路径,以增强对排放物的冷却作用。
在一些实施例中,所述阻挡结构在所述第一流道的延伸方向上的投影覆盖所述第一流道在所述延伸方向上的投影。
上述方案中,阻挡结构在第一流道的延伸方向上的投影覆盖第一流道在延伸方向上的投影,这种结构的阻挡结构对排放物和消防介质起到更好的阻挡作用,使排放物和消防介质混合更加充分。
在一些实施例中,所述阻挡结构包括螺旋叶片,所述螺旋叶片的中心线与所述第一流道的中轴线重合或平行。
上述方案中,排放物和消防介质在流经螺旋叶片时,排放物和消防介质在螺旋叶片的作用下呈螺旋线流动,使得排放物与消防介质在螺旋叶片的作用下充分混合。
在一些实施例中,所述阻挡结构包括多个螺旋叶片,所述多个螺旋叶片沿所述第一流道的延伸方向布置,且每相邻的两个螺旋叶片的旋向相反。
上述方案中,阻挡结构中的每相邻的两个螺旋叶片的旋向相反,使得排放物和消防介质在流经阻挡结构的过程中,排放物和消防介质在不同旋向的螺旋叶片的作用下呈不同旋向的螺旋线流动,使阻挡结构对排放物与消防介质的混合更加充分。
在一些实施例中,至少一个壁的内部形成有延伸方向相同的多个第一流道;所述多个第一流道中的每两个第一流道彼此独立;或,所述多个第一流道中的至少两个第一流道连通。
上述方案中,在箱体的壁的内部形成有延伸方向相同的多个第一流道的情况下,每两个第一流道可以是彼此独立的,也可以是至少两个第一流道是连通的。若每两个第一流道是彼此独立的,排放物在各个第一流道内流动过程中互不干扰;若至少两个第一流道是连通的,进入一个第一流道内的排放物,可以进入到与该第一流道连通的另一个第一流道内。
在一些实施例中,所述多个第一流道中的至少两个第一流道连通,所述排放物能够依次流经所述至少两个第一流道中的所述冷却装置后排出至所述箱体外。
上述方案中,在至少两个第一流道连通的情况下,排放物能够依次流经至少两个第一流道中的冷却装置后排出至箱体外,排放物从箱体内到箱体外的过程中,排放物可被不同的第一流道中的多个冷却装置冷却,对排放物的降温效果更佳。
在一些实施例中,所述第一流道包括进口;所述进口设有隔离件,所述隔离件被配置为在所述电池单体热失控时打开所述进口,以使所述排放物能够通过所述进口进入所述第一流道内。
上述方案中,第一流道的进口设有隔离件,在正常情况下(电池单体未热失控),隔离件可防止箱体的容纳空间内的颗粒进入到第一流道内,降低第一流道的进口被颗粒堵塞风险。当电池单体热失控时,隔离件可以打开第一流道的进口,使得电池单体热失控产生的排放物能够顺利通过进口进入到第一流道内。
在一些实施例中,所述隔离件被配置为在所述电池单体热失控时被破坏,以打开所述进口。
在一些实施例中,所述箱体还包括泄压机构;所述第一流道包括出口,所述泄压机构设于所述出口,泄压机构用于在所述电池单体热失控时打开所述出口,以使所述第一流道内的排放物能够通过所述出口排出所述箱体。
上述方案中,第一流道的出口设置有泄压机构,在正常情况下,泄压机构可以起到平衡压力的作用。电池单体热失控时,泄压机构打开第一流道的出口,使得排放物能够顺利排出至箱体外。
第二方面,本申请实施例提供一种电池,包括:电池单体;以及第一方面或第一方面任意一个实施例提供的箱体,所述电池单体容纳于所述容纳空间内。
上述方案中,由于电池中的箱体中的冷却装置具有能够增大排放物与冷却装置的接触面积的冷却结构,冷却装置具有更好的冷却效果,降低了排放物起火、燃烧的可能性,提高了电池的安全性。
第三方面,本申请实施例提供一种用电设备,包括第二方面提供的电池。
第四方面,本申请实施例还提供一种电池的制造方法,包括:提供电池单体;提供箱体,所述箱体包括:多个壁,所述多个壁围合形成用于容纳电池单体的容纳空间,且至少一个壁的内部形成有第一流道,所述第一流道用于将电池单体热失控产生的排放物排出至所述箱体外;以及冷却装置,设于所述第一流道内,所述冷却装置用于对流经所述冷却装置的排放物进行冷却;所述冷却装置包括用于增大所述排放物与所述冷却装置的接触面积的冷却结构;将所述电池单体容纳于所述容纳空间内。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构示意图;
图3为本申请一些实施例提供的箱体的结构示意图;
图4为本申请又一些实施例提供的箱体的结构示意图;
图5为图3所示的一些实施例提供的箱体的A-A剖视图;
图6为图3所示的又一些实施例提供的箱体的A-A剖视图;
图7为图3所示的一些实施例提供的箱体的B-B剖视图;
图8为图3所示的又一些实施例提供的箱体的B-B剖视图;
图9为本申请一些实施例提供的冷却装置布置于第一流道内的结构示意图;
图10为本申请一些实施例提供的冷却装置的截面图;
图11为本申请又一些实施例提供的冷却装置的截面图;
图12为本申请再一些实施例提供的冷却装置的截面图;
图13为图11所示的一些实施例提供冷却装置的C-C剖视图;
图14为图11所示的又一些实施例提供冷却装置的C-C剖视图;
图15为图11所示的再一些实施例提供冷却装置的C-C剖视图;
图16为本申请再一些实施例提供的冷却装置的截面图;
图17为本申请又一些实施例提供的冷却装置的截面图;
图18为本申请一些实施例提供的冷却装置布置于第一流道内的截面图;
图19为本申请又一些实施例提供的冷却装置布置于第一流道内的结构示意图;
图20为本申请再一些实施例提供的冷却装置布置于第一流道内的结构示意图;
图21为本申请又一些实施例提供的冷却装置布置于第一流道内的结构示意图;
图22为本申请一些实施例提供的消防机构和冷却装置布置于第一流道内的示意图;
图23为本申请又一些实施例提供的消防机构和冷却装置布置于第一流道内的示意图;
图24为本申请再一些实施例提供的消防机构和冷却装置布置于第一流道内的示意图;
图25为本申请一些实施例提供的消防机构的控制原理图;
图26为图22-图24所示的消防机构的结构示意图;
图27为本申请一些实施例提供的消防机构、冷却装置和混合装置布置于第一流道内的结构示意图;
图28为本申请一些实施例提供的阻挡结构的结构示意图;
图29为本申请又一些实施例提供的阻挡结构的结构示意图;
图30为图29所示的阻挡结构的D向视图;
图31为本申请一些实施例提供的电池的制造方法的示意性流程图;
在附图中,附图并未按照实际的比例绘制。
标记说明:10-箱体;11-冷却装置;111-冷却结构;112-凹槽;113-第二流道;1131-进口端;1132-出口端;114-第一端;115-第二端;116-冷却管;117-滞留空间;118-第一冷却件;118a-第一连接体;1181-第一开口;1182-第一冷却板;1183-第二冷却板;119-第二冷却件;119a-第二连接体;1191-第二开口;12-壁;13-容纳空间;14-第一流道;141-进口;142-出口;143-阻挡部;144-连接孔;15-第一部分;16-第二部分;17-隔离件;18-泄压机构;19-消防机构;191-壳体;1911-容纳腔;1912-第三流道;192-触发装置;20-检测装置;21-控制***;22-混合装置;221-阻挡结构;2211-螺旋叶片;2212-阻挡件;2213-第三开口;2214-第三连接体;30-电池单体;100-电池;200-控制器;300-马达;1000-车辆;X-流动方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池在使用过程中,电池内的电池单体内部短时间内产生大量气体、温度快速上升,导致电池单体上的防爆阀打开,排放出大量排放物至电池的箱体内,导致箱体内气体大量聚集,温度升高,最终可能导致电池出现***和起火的这一现象称之为电池的热失控。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或***的正负极极片、隔离膜的碎片、反应产生的高温高压气体(如H2、CO等可燃气体)、火焰,等等。
发明人发现,在电池中,电池单体热失控产生的排放物温度和浓度较高,如果直接将排放物排放到空气中,排放物与富氧的空气接触,易起火,导致***,存在较大的安全隐患。
鉴于此,本申请实施例提供一种技术方案,在电池的箱体的至少一个壁内形成第一流道,在第一流道内设置冷却装置,冷却装置包括用于增大电池单体热失控产生的排放物与冷却装置的接触面积的冷却结构,以提高冷却装置的冷却能力,降低排放物起火、燃烧的可能性,从而能够提高电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备,该用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
图1-图31示例性地示出了本申请的箱体、电池、用电设备及电池的制造方法。
以下实施例为了方便说明,以用电设备为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图,车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
根据不同的需求,电池100中的电池单体30可以是一个或多个。若电池单体30为多个,多个电池单体30之间可串联或并联或混联,混联是指多个电池单体30中既有串联又有并联。在电池100中,多个电池单体30之间可直接串联或并联或混联在一起,当然,也可以是多个电池单体30先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体。也就是说,多个电池单体30可以直接用来组成电池100,也可以先组成电池模块,电池模块再组成电池100。
请参照图2,图2为本申请一些实施例提供的电池100的结构示意图。电池100可以包括箱体10和电池单体30,电池单体30容纳于箱体10内。
电池100中若电池单体30为多个,多个电池单体30可以采用阵列的方式排布于箱体10内。比如,如图2所示,多个电池单体30采用4*11矩形阵列的方式排布于箱体10内,也就是说,电池100中的电池单体30分为4列(图2中示出了2列),每列电池单体30为11个。当然,每列的电池单体30可以通过串联或并联或混联的方式组成电池模块,各个电池模块也可通过串联或并联或混联的方式连接在一起,并容纳于箱体10内。
当然,电池100还可以包括其他部件,比如,电池100还包括汇流部件(图未示出),通过汇流部件来实现多个电池单体30之间的电连接,以实现多个电池单体30的并联或串联或混联。再如,电池100还包括热管理部件(图未示出),热管理部件用于容纳流体以给电池单体30调节温度。热管理部件容纳的流体可以是液体或气体,比如,水、水和乙二醇的混合液或者空气等。热管理部件调节电池单体30的温度,可以是给电池单体30加热,也可以是给电池单体30冷却。在给电池单体30冷却的情况下,热管理部件也可以称为冷却部件、冷却***或冷却板等。
箱体10用于容纳电池单体30,箱体10可以是多种结构,下面结合附图对箱体10的结构进行详细阐述。
请参照图3,为本申请一些实施例提供的箱体10的结构示意图,箱体10包括冷却装置11和多个壁12。多个壁12围合形成用于容纳电池单体30的容纳空间13,且至少一个壁12的内部形成有第一流道14,第一流道14用于将电池单体30热失控产生的排放物排出至箱体10外。冷却装置11设于第一流道14内,冷却装置11用于对流经冷却装置11的排放物进行冷却,冷却装置11包括用于增大排放物与冷却装置11的接触面积的冷却结构111。
在上述结构中,箱体10中的至少一个壁12的内部形成有第一流道14,位于箱体10内的电池单体30热失控产生的排放物可以通过第一流道14排放至箱体10外。第一流道14内设有冷却装置11,排放物在第一流道14内流经冷却装置11时,冷却装置11可与排放物进行热交换,以对排放物进行冷却,从而达到降低排放物的温度的目的。冷却装置11包括有冷却结构111,冷却结构111的设置增大了排放物与冷却装置11的接触面积,使得冷却装置11能够带走排放物更多的热量,提高了冷却装置11的冷却能力。冷却装置11的降温效果更佳,降低了排放物起火、燃烧的可能性,提高了电池100的安全性。
需要说明的是,冷却装置11中的冷却结构111的设置增大了冷却装置11与排放物的接触面积,可理解的,排放物在第一流道14内流动的过程中,排放物与未设置冷却结构111的冷却装置11的接触面积小于排放物与设置有冷却结构111的冷却装置11的接触面积。
示例性的,冷却装置11中的冷却结构111用于增大排放物与箱体10的接触面积。比如,在第一流道14内未设置冷却装置11的情况下,排放物在通过第一流道14流出箱体10的过程中与箱体10的接触面积为A1,在第一流道14内设置有包括有 冷却结构111的冷却装置11的情况下,排放物在通过第一流道14流出箱体10的过程中与箱体10的接触面积为A2,A1<A2。
箱体10可以是中空的长方体、圆柱体结构等。第一流道14的横截面可以是圆形、椭圆形、矩形等,这里所指的横截面为垂直于第一流道14的延伸方向的截面。
需要说明的是,在箱体10的任意一个壁12中,可以形成一个第一流道14,也可以形成多个第一流道14,每个第一流道14中均可设置冷却装置11。在一个壁12中形成有多个第一流道14的情况下,该壁12中的第一流道14可以是彼此独立的,也可以是相互连通的。在箱体10的多个壁12中形成有第一流道14的情况下,壁12与壁12之间的第一流道14是可以是彼此独立的,也可以是相互连通。一个第一流道14与另一第一流道14两者彼此独立,即两者彼此不连通。
示例性的,在箱体10的成型过程,可先对各个壁12进行成型加工,使壁12内形成第一流道14,然后再将各个壁12进行组装,以形成箱体10。
需要说明的是,在本申请实施例中,箱体10的壁12中的第一流道14的布置方向,可以根据箱体10的具体形状而进行设置。比如,箱体10为圆柱体,第一流道14可以沿箱体10的周向延伸,也可以沿箱体10的轴向延伸;再如,箱体10为长方体,箱体10的侧壁上的第一流道14可以沿箱体10的侧壁的长度方向延伸,也可以沿箱体10的壁12的高度方向延伸。
在一些实施例中,请继续参照图3,箱体10内部的用于容纳电池单体30的容纳空间13可以是一端开口结构,电池单体30可以从箱体10的开口端放入至电池单体30内。以箱体10为长方体为例,箱体10具有1个底壁和4个侧壁,即箱体10具有5个壁12,箱体10的底壁和/或侧壁内可形成有第一流道14。电池单体30放入箱体10后,可将箱体10的开口封堵,比如,通过箱盖(图未示出)将开口封堵,以为电池单体30提供一个密封的环境。
在一些实施例中,请参照图4,图4为本申请又一些实施例提供的箱体10的结构示意图,箱体10内部的用于容纳电池单体30的容纳空间13可以是封闭的密封空间。箱体10可以包括第一部分15和第二部分16,第一部分15为一端开口的空心结构,第二部分16盖合于第一部分15的开口处,第二部分16于第一部分15共同限定出用于容纳电池100的密封空间。第一部分15和第二部分16可以构成长方体、圆柱体结构等。以第一部分15与第二部分16构成长方体的箱体10为例,箱体10具有1个底壁、4个侧壁和1个顶壁,即箱体10具有6个壁12,第一部分15为1个底壁和4个侧壁组成的一端开口的空心结构,第二部分16为顶壁,第二部分16盖合在第一部分15的开口处形成箱体10,箱体10的至少一个壁12内可形成有第一流道14。
在本申请实施例中,请参照图5,图5为图3所示的一些实施例提供的箱体10的A-A剖视图,第一流道14包括进口141和出口142,电池单体30热失控产生的排放物能够通过进口141进入到第一流道14内,第一流道14内的排放物能够通过出 口142排出箱体10。进口141可以设置在箱体10的壁12的内表面,出口142可以设置在箱体10的壁12的外表面。
在箱体10中,每个第一流道14可以单独设置进口141和出口142,也可以是多个第一流道14共用进口141和出口142。当然,在箱体10中,可以是部分第一流道14共用进口141和出口142,比如,箱体10为长方体,箱体10具有6个壁12,每个壁12中的各个第一流道14共用进口141和出口142,则整个箱体10具有6个进口141和6个出口142;在箱体10中,也可以是所有的第一流道14共用进口141和出口142,则整个箱体10具有1个进口141和一个出口142。在一非限制性例子中,箱体10的底壁和侧壁内均形成有第一流道14,每个第一流道14单独设置进口141和出口142;在又一非限制性例子中,箱体10的底壁、侧壁和顶壁内均形成有第一流道14,每个第一流道14单独设置进口141和出口142。
在本申请实施例中,电池单体30热失控产生的排放物需通过第一流道14排出于箱体10。但在正常情况下(电池单体30未热失控),箱体10的容纳空间13内的颗粒可能会造成第一流道14的进口141堵塞,导致电池单体30热失控所产生的排放物无法排除。
因此,在一些实施例中,请参照图6,图6为图3所示的又一些实施例提供的箱体10的A-A剖视图,在第一流道14的进口141可以设置隔离件17,隔离件17被配置为在电池单体30热失控时打开进口141,以使排放物能够通过进口141进入第一流道14内。
在正常情况下(电池单体30未热失控),隔离件17可防止箱体10的容纳空间13内的颗粒进入到第一流道14内,降低第一流道14的进口141被颗粒堵塞风险。当电池单体30热失控时,隔离件17可以打开第一流道14的进口141,使得电池单体30热失控产生的排放物能够顺利通过进口141进入到第一流道14内。
在一些实施例中,隔离件17被配置为在电池单体30热失控时被破坏,以打开进口141,即隔离件17是以被破坏的方式来打开第一流道14的进口141的。
隔离件17可以是因箱体10内的压力升高而被破坏,也可以是因箱体10内的温度升高而被融化破坏。示例性的,隔离件17可以是设置于第一流道14的进口141的薄膜。
当然,隔离件17也可以是其他结构,比如,隔离件17也可以是设置在第一流道14的进口141的开关阀,在箱体10内的压力或温度达到预设值时,该开关阀打开第一流道14的进口141,使排放物能够顺利通过进口141进入到第一流道14内。
在一些实施例中,也可以在第一流道14的进口141处增设过滤网(图未示出),以对箱体10内的颗粒进行过滤。
需要说明的是,第一流道14的进口141可以是同时设置过滤网和隔离件17;第一流道14的进口141也可以只设置隔离件17,如图6所示;第一流道14的进口 141也可以只设置过滤网。
在本申请实施例中,冷却装置11可以固定在第一流道14内。比如,冷却装置11通过连接件或粘接的方式固定在第一流道14内。在一些实施例中,连接件可以是螺栓、螺钉等。当然,冷却装置11可以直接放置在第一流道14内。
在一些实施例中,第一流道14的壁面上设置阻挡部143,阻挡部143位于冷却装置11与第一流道14的进口141之间,阻挡部143可对冷却装置11起到阻挡作用,降低因冷却装置11在第一流道14内发生位移而挡住进口141,影响排放物正常通过第一流道14排出箱体10的风险。
在第一流道14的进口141设置有过滤网和/或隔离件17的情况下,如图6所示,在第一流道14的壁面上设置阻挡部143,阻挡部143位于冷却装置11与第一流道14的进口141之间,阻挡部143可对冷却装置11起到阻挡作用,降低因冷却装置11在第一流道14内发生位移而与过滤网和/或隔离件17发生碰撞,进而造成过滤网和/或隔离件17的损坏的风险。
此外,在一些实施例中,请继续参见图6,箱体10还包括泄压机构18,泄压机构18设于第一流道14的出口142,泄压机构18用于在电池单体30热失控时打开出口142,以使第一流道14内的排放物能够通过出口142排出箱体10。
在正常情况下,泄压机构18可以起到平衡压力的作用。泄压机构18可以是在电池单体30热失控导致箱体10的内部压力或温度达到预设值时打开第一流道14的出口142,使得排放物能够顺利排出至箱体10外。泄压机构18可以采用诸如防爆阀、气阀、泄压阀或安全阀等。
在一些实施例中,请参照图7和图8,图7为图3所示的一些实施例提供的箱体10的B-B剖视图;图8为图3所示的又一些实施例提供的箱体10的B-B剖视图。在箱体10中,至少一个壁12的内部形成有延伸方向相同的多个第一流道14,也就是说,在箱体10中,可以是一个壁12的内部形成有延伸方向相同的多个第一流道14,也可以是多个壁12的内部均形成有延伸方向相同的多个第一流道14。可理解的,每个第一流道14内设置有冷却装置11。
如图7所示,在箱体10的任意一个壁12中,多个第一流道14中的每两个第一流道14可以是彼此独立的,即任意两个第一流道14不连通,容纳空间13内的排放物从一个第一流道14的进口141(图7未示出)进入该第一流道14后,流经冷却装置11后再通过该第一流道14的出口142排出箱体10,排放物在各个第一流道14内流动过程中互不干扰。
如图8所示,在箱体10的任意一个壁12中,也可以是多个第一流道14中的至少两个第一流道14连通,进入一个第一流道14内的排放物,可以进入到与该第一流道14连通的另一个流道内。在一些实施例中,排放物能够依次流经至少两个第一流道14中的冷却装置11后排出至箱体10外。也就是说,排放物从箱体10内到箱体10 外的过程中,排放物呈“Z”形流动,排放物可以被不同的第一流道14中的多个冷却装置11依次冷却,对排放物的降温效果更佳。
示例性的,如图8所示,箱体10为长方体且其的一个侧壁中设有彼此连通的两个第一流道14为例,两个第一流道14中的两个冷却装置11在第一流道14的延伸方向上间隔布置,两个第一流道14通过连接孔144连通,连接孔144在第一流道14的延伸方向上位于两个冷却装置11之间。在图8中,第一流道14的延伸方向与侧壁的长度方向一致。
在本申请实施例中,冷却装置11的作用是对进入第一流道14内的排放物进行冷却。冷却装置11可以是多种结构形式,冷却装置11的冷却结构111也可以是多种结构形式,下面结合附图对冷却装置11和冷却结构111的具体结构进行详细阐述。
在本申请实施例中,冷却装置11可以采用热交换性能好的材质,比如、金属、陶瓷等。金属可以是铜、铁、铝、铝合金、不锈钢等。
在一些实施例中,请参照图9,为本申请一些实施例提供的冷却装置11布置于第一流道14内的结构示意图,冷却结构111可以包括形成于冷却装置11的周壁上的凹槽112,冷却装置11的周壁至少部分与第一流道14的壁面之间存在间隙,以供排放物通过。排放物在流经冷却装置11时,排放物可进入凹槽112内并与凹槽112的槽壁12接触。冷却装置11上凹槽112的设置可增大排放物与冷却装置11的接触面积,提高了冷却装置11的冷却能力。
可以理解的,参照图9所示,冷却装置11的周壁上设置多个凹槽112,以进一步增大排放物与冷却装置11的接触面积,提高冷却装置11的冷却能力。
示例性的,在图9中,冷却装置为沿第一流道的延伸方向布置的长条形状的部件。
当然,冷却结构111还可以是其他的结构形式,在一些实施例中,请参照图10-图12,图10为本申请一些实施例提供的冷却装置11的截面图;图11为本申请又一些实施例提供的冷却装置11的截面图;图12为本申请再一些实施例提供的冷却装置11的截面图。冷却结构111可以包括供排放物通过的第二流道113,也就是说,冷却装置11可以通过设置第二流道113的方式来增大冷却装置11与烟气的接触面积,结构简单。排放物在流经冷却装置11的过程中,排放物可从第二流道113内流过,有利于冷却装置11对排放物进行冷却。
如图10所示,可以是在冷却装置11的外表面形成有第二流道113,便于第二流道113成型;如图11所示,也可以是冷却装置11的内形成有第二流道113,排放物在流经冷却装置11的过程中,排放物可在冷却装置11的内部定向流动;当然,如图12所示,还可以是冷却装置11的外表面和冷却装置11的内部均形成有第二流道113,以充分利用冷却装置11,尽可能的增大冷却装置11与排放物的接触面积。
可理解的,形成于冷却装置11的外表面的第二流道113的横截面是开口的, 并不封闭,如图10所示;形成于冷却装置11的内部的第二流道113的横截面是封闭的,如图11所示。这里所指的横截面为垂直于第二流道113的延伸方向的截面。
在一些实施例中,请参照图13-图15,图13为图11所示的一些实施例提供冷却装置11的C-C剖视图;图14为图11所示的又一些实施例提供冷却装置11的C-C剖视图;图15为图11所示的再一些实施例提供冷却装置11的C-C剖视图。冷却装置11在第一流道14的延伸方向上包括相对的第一端114和第二端115,第二流道113贯通第一端114和第二端115,也就是说,排放物在流经冷却装置11的过程中,排放物可从冷却装置11的一端流入,另一端流出,增大了排放物在第一流道14内流动的时间,即增大了排放物与冷却装置11的接触时间,排放物与冷却装置11的热交换时间更长,提高了冷却装置11的冷却降温能力。
示例性的,冷却装置11为沿第一流道14的延伸方向布置的长条形状的部件。
冷却装置11的外轮廓的大小可以与第一流道14的内轮廓大小相适配,也就是说,冷却装置11与第一流道14的壁面之间不存在间隙,排放物只能通过第二流道113流过冷却装置11。比如,冷却装置11为沿第一流道14的延伸方向布置的圆柱体结构,则冷却装置11的外直径与第一流道14的内径相匹配。当然,冷却装置11与第一流道14的壁面之间也可以存在间隙,排放物可通过该间隙和第二流道113流过冷却装置11。
在一些实施例中,冷却装置11上的第二流道113可以呈直线形、曲线形或折线形延伸。如图13所示,若冷却装置11上的第二流道113呈直线形延伸,这种结构的第二流道113成型简单,加工成本较低;如图14和图15所示,若第二流道113呈曲线形、折线形延伸,这种结构可增大排放物在第二流道113内的流动路径,进一步增大了排放物与冷却装置11的接触时间。
需要说明的是,在冷却装置11上的第二流道113呈曲线形延伸情况下,第二流道113可以是平面内的曲线形,即第二流道113的中心线位于一平面内;第二流道113也可以是位于空间内的曲线形,比如螺旋线。在图14中,第二流道113是位于平面内的曲线形。在冷却装置11上的第二流道113呈直线型延伸的情况下,第二流道113的延伸方向与第一流道14的延伸方向可以一致,也可以呈非零夹角设置。示例性的,如图13所示,第二流道113的延伸方向与第一流道14的延伸方向一致。在图13-图15中,第二流道113均形成于冷却装置11内。
此外,第二流道113的横截面的形状可以是多种形状,本申请实施例并不限制。比如,第二流道113的横截面可以是圆形,如图11-图13所示;又如,请参照图16,图16为本申请再一些实施例提供的冷却装置11的截面图,第二流道113的横截面也可以是矩形;再如,请参照图17,图17为本申请又一些实施例提供的冷却装置11的截面图,在冷却装置11中,至少部分第二流道113的横截面不同,各个第二流道113的横截面的形状可以是矩形、梯形、三角形等中的至少两种。
在本申请实施例中,冷却结构111中的第二流道113可以是一个也可以是多个,图10-图17示出了冷却结构111中包括多个第二流道113的情况。当然,在冷却结构111包括多个第二流道113的情况下,可以是多个第二流道113彼此独立,也可以是至少两个第二流道113彼此连通。
在冷却结构111中的多个第二流道113彼此独立的情况下,冷却装置11可以是整体式结构,直接在冷却装置11上形成多个第二流道113,如图10-图17所示;冷却装置11也可是分体式结构,即将冷却装置11分为多个部分,每个部分中形成有第二流道113。
在本申请一些实施例中,请参照图18,图18为本申请一些实施例提供的冷却装置11布置于第一流道14内的截面图,冷却装置11为分体式结构,冷却装置11包括多个冷却管116,每个冷却管116的内部形成有第二流道113。也就是说,可利用多个内部形成有第二流道113的冷却管116来作为冷却装置11,以对排放物进行冷却,整体结构简单,降低了冷却装置11的制造难度。此外,冷却管116之间还可形成供排放物通过的间隙,也就是说,排放物在流经冷却装置11的过程中,排放物既可与冷却管116的内壁接触,又可与冷却管116的外壁接触,这种结构的冷却装置11对排放物具有更好的冷却降温能力。
冷却装置11中的多个冷却管116可以直接堆叠在第一流道14内,冷却管116之间相互抵靠,并不固定;也可以将多个冷却管116固定在一起后,再将多个冷却管116作为一个整体安装在第一流道14内。示例性的,多个冷却管116中各个冷却管116可以通过焊接、粘接的方式固定。
在一些实施例中,请参照图19,图19为本申请又一些实施例提供的冷却装置11布置于第一流道14内的结构示意图。冷却结构111还可以包括滞留空间117,滞留空间117与第二流道113连通,滞留空间117用于滞留排放物。这里所提及的滞留即为暂时停留。
滞留空间117对排放物可起到滞留作用,排放物在第二流道113内流动时,排放物可流入到滞留空间117内,排放物可在滞留空间117内短暂的停留,增长排放物与冷却装置11的热交换时间。
在本实施例中,第二流道113可以形成于冷却装置11的内部和/或冷却装置11的外表面。冷却结构111中的第二流道113可以是一个,也可以是多个。示例性的,在图19中,冷却装置11中的第二流道113为一个,且第二流道113形成于冷却装置11的内部。
冷却结构111中与第二流道113连通的滞留空间117可以是一个或多个。
在一些实施例中,冷却结构111包括沿第二流道113的延伸方向间隔分布的多个滞留空间117。
排放物在第二流道113内流动的过程中,排放物可进入到多个滞留空间117 内,多个滞留空间117可对排放物进行多次滞留,进一步增长排放物与冷却装置11的热交换时间。
在一些实施例中,请继续参照图19,滞留空间117从垂直于第二流道113的延伸方向的位置向排放物在第二流道113内的流动方向X倾斜布置。
滞留空间117的倾斜布置使得排放物更容易从第二流道113内流入滞留空间117内,更难从滞留空间117流入第二流道113内,从而增长排放物在滞留空间117内的滞留时间。
其中,第二流道113具有进口端1131和出口端1132,排放物在于第二流道113内的流动方向X即为进口端1131指向出口端1132的方向。滞留空间117从垂直于第二流道113的延伸方向的位置向排放物在第二流道113内的流动方向X倾斜布置,即滞留空间117与第二流道113相连的部分较滞留空间117的其他部分更靠近于进口端1131。
在本实施例中,滞留空间117可以是设置在第二流道113的壁面上的孔道,也可以是环绕第二流道113的空间。
在一些实施例中,请继续参照图19,冷却装置11可以包括多个第一冷却件118,多个第一冷却件118沿第一流道14的延伸方向间隔布置,每个第一冷却件118上设有供排放物通过的第一开口1181,多个第一冷却件118的第一开口1181连通,以形成第二流道113,每相邻的两个第一冷却件118之间形成滞留空间117。这种结构的冷却装置11结构简单,可有效降低第一流道14和滞留空间117的成型难度。
需要说明的是,第一冷却件118可以直接固定在第一流道14的壁面上;也可通过第一连接体118a将多个第一冷却件118连接在一起后,再将整体安装到第一流道14内。例如,如图19所示,冷却装置11还包括第一连接体118a,每个第一冷却件118均连接于第一连接体118a。示例性的,第一连接体118a为空心管状结构,第一连接体118a位于第一流道14内,第一冷却件118固定于第一连接体118a的内壁上。
在一些实施例中,在图19中,第一冷却件118包括第一冷却板1182和第二冷却板1183,第一冷却板1182和第二冷却板1183相对布置在第一连接体118a的内壁上,第一冷却板1182与第二冷却板1183之间形成第一开口1181,每相邻的两个第一冷却板1182之间形成一个滞留空间117,每相邻的两个第二冷却板1183之间形成一个滞留空间117。
在其他实施例中,第一冷却件118可以是环形板体,每相邻的两个第一冷却件118之间形成的滞留空间117即为环绕第二流道113的空间。
由上述各实施例可知,第二流道113可以形成于冷却装置11的外表面和/或冷却装置11的内部。当然,第二流道113的布置形式并不局限于此。
在本申请一些实施例中,请参照图20-图21,图20为本申请再一些实施例提 供的冷却装置11布置于第一流道14内的结构示意图;图21为本申请又一些实施例提供的冷却装置11布置于第一流道14内的结构示意图;冷却装置11包括多个第二冷却件119,多个第二冷却件119沿第一流道14的延伸方向间隔布置,每个第二冷却件119上设有供排放物通过的第二开口1191,每相邻的两个冷却件的第二开口1191沿第一流道14的延伸方向的投影错位设置,多个第二冷却件119的第二开口1191连通,以形成第二流道113。
每相邻的两个第二冷却件119的第二开口1191沿第一流道14的延伸方向的投影错位设置,使得第二流道113蜿蜒分布,排放物通过一个第二冷却件119的第二开口1191后,排放物在下一个第二冷却件119的阻挡作用下改变流向,增大了排放物的流动路径,增长了排放物与冷却装置11的热交换时间。
需要说明的是,每相邻的两个第二冷却件119的第二开口1191沿第一流道14的延伸方向的投影错位设置,这里指的错位设置,可以是部分错位设置,即两个第二开口1191在第一流道14的延伸方向上的投影部分重叠,也可以是全部错位设置,即两个第二开口1191在第一流道14的延伸方向的投影没有重叠的部分。
在本申请实施例中,第二冷却件119可以直接固定在第一流道14的壁面上;也可通过第二连接体119a将多个第二冷却件119a连接在一起后,再将整体安装到第一流道14内。例如,如图20-图21所示,冷却装置11还包括第二连接体119a,每个第二冷却件119均连接于第二连接体119a。示例性的,第二连接体119a为空心管状结构,第二连接体119a布置于第一流道14内,第二冷却件119固定于第二连接体119a的内壁上。
示例性的,图20-图21中,第二冷却件119为板状件。每相邻的两个第二冷却件119的第二开口1191沿第一流道14的延伸方向的全部错位设置。如图20所示,第二开口1191可以是设置在第二冷却件119上的孔;如图21所示,第二开口1191也可以是由第二冷却件119的端部与第二连接体119a的内壁共同限定开口。
在一些实施例中,请参照图22-图24,图22为本申请一些实施例提供的消防机构19和冷却装置11布置于第一流道14内的示意图;图23为本申请又一些实施例提供的消防机构19和冷却装置11布置于第一流道14内的示意图;图24为本申请再一些实施例提供的消防机构19和冷却装置11布置于第一流道14内的示意图。箱体10还包括消防机构19,消防机构19设于第一流道14内,消防机构19被配置为在电池单体30热失控时向第一流道14内释放消防介质,消防介质可与排放物混合,实现对排放物的降温和排放物浓度的降低,以达到阻燃的目的。
示例性的,消防介质可以是消防气体或能够产生消防气体的消防固体或消防液体。消防固体、消防液体可以是通过相变的方式产生消防气体,也可以是通过发生化学反应产生消防气体。
消防气体包括但不限定于能够灭火的惰性气体、二氧化碳气体、七氟丙烷气 体、六氟化硫等不易燃烧的气体。
消防机构19有多种布置方式,比如,如图22所示,在排放物于第一流道14内的流动方向X上,消防机构19位于冷却装置11的下游,电池单体30热失控所产生的排放物可流经冷却装置11冷却后,再与消防机构19释放的消防介质混合;又如,如图23所示,在排放物于第一流道14内的流动方向X上,消防机构19位于冷却装置11的上游,电池单体30热失控所产生排放物可先与消防机构19释放的消防介质混合后,再流经冷却装置11冷却;再如,如图24所示,消防机构19与冷却装置11在垂直于流动方向X的方向上堆叠布置。其中,流动方向X即为排放物于第一流道14内的流动方向X,排放物于第一流道14内的流动方向X即为排放物在第二流道113内的流动方向X。
在一些实施例中,箱体10还包括检测装置20,检测装置20设于第一流道14内,检测装置20用于检测第一流道14内的排放物的信息参数。消防机构19用于在信息参数达到预设值时向第一流道14内释放消防介质。
检测装置20可以是浓度传感器、温度传感器等。若检测装置20为浓度传感器,检测装置20则可检测第一流道14内的排放物的气体浓度,当气体浓度达到预设值时,消防机构19向第一流道14内释放消防介质,实现消防机构19对消防介质的释放;若检测装置20为温度传感器,检测装置20则可检测第一流道14内的排放物的温度,当温度达到预设值时,消防机构19向第一流道14内释放消防介质,实现消防机构19对消防介质的释放。
请参照图25,图25为本申请一些实施例提供的消防机构19的控制原理图,检测装置20和消防机构19均可以用于与控制***21电连接,当检测装置20检测到第一流道14内的排放物的信息参数达到预设值时,控制***21控制消防机构19向第一流道14内释放消防介质,实现消防机构19对消防介质的自动释放。示例性的,控制***21可以是BMS(Battery Management System,电池管理***)。
在一些实施例中,请参照图26,图26为图22-图24所示的消防机构19的结构示意图,消防机构19可以包括壳体191和触发装置192,触发装置192安装于壳体191,壳体191内部形成有容纳腔1911和第三流道1912,容纳腔1911用于容纳消防介质,第三流道1912供排放物通过,触发装置192用于在检测装置20检测到第一流道14内的排放物的信息参数达到预设值时打开,以使容纳腔1911内的消防介质进入第三流道1912内并与排放物混合。
其中,触发装置192与控制***21电连接。示例性的,触发装置192可以是电动开关阀。
此外,在一些实施例中,请参照图27,图27为本申请一些实施例提供的消防机构19、冷却装置11和混合装置22布置于第一流道14内的结构示意图,箱体10还包括混合装置22,混合装置22设于第一流道14内,混合装置22用于使排放物和消防 介质在排出第一流道14之前能够被混合,使排放物与消防介质混合的更加充分,降低局部浓度过高的风险。
可理解的,在排放物于第一流道14内的流动方向X上,混合装置22位于消防机构19的下游。当然,混合装置22可以位于冷却装置11的上游,也可以位于冷却装置11的下游。示例性的,在图27中,在排放物于第一流道14内的流动方向X上,冷却装置11位于消防机构19的上游,消防机构19位于混合装置22的上游。
在一些实施例中,混合装置22可以包括阻挡结构221,阻挡结构221用于对排放物和消防介质进行阻挡并改变流动方向X,以使排放物和消防介质在排出第一流道14之前能够被混合。
阻挡结构221通过对排放物和消防介质进行阻挡并改变流动方向X的方式,来对排放物和消防介质进行混合,使得对排放物和消防介质的混合更加充分。
在一些实施例中,继续参照图27,阻挡结构221包括螺旋叶片2211,螺旋叶片2211的中心线与第一流道14的中轴线重合或平行。
排放物和消防介质在流经螺旋叶片2211时,排放物和消防介质在螺旋叶片2211的作用下呈螺旋线流动,使得排放物与消防介质在螺旋叶片2211的作用下充分混合。
阻挡结构221中的螺旋叶片2211可以是一个或多个。在一些实施例中,在螺旋叶片2211为多个的情况下,可将多个螺旋叶片2211沿第一流道14的延伸方向布置,并将每相邻的两个螺旋叶片2211的旋向相反设置。这种结构使得排放物和消防介质在流经阻挡结构221的过程中,排放物和消防介质在不同旋向的螺旋叶片2211的作用下呈不同旋向的螺旋线流动,使阻挡结构221对排放物与消防介质的混合更加充分。
在一些实施例中,请参照图28-图29,图28为本申请一些实施例提供的阻挡结构221的结构示意图;图29为本申请又一些实施例提供的阻挡结构221的结构示意图。阻挡结构221包括多个阻挡件2212;多个阻挡件2212沿第一流道14的延伸方向间隔布置,每个阻挡件2212上设有第三开口2213,每相邻的两个第三开口2213沿第一流道14的延伸方向的投影错位设置。
排放物和消防介质通过一个阻挡件2212的第三开口2213后,排放物和消防介质在下一个阻挡件2212的阻挡作用下改变流向,从而利用阻挡件2212的阻挡作用对排放物和消防介质进行充分混合,这种采用多个阻挡件2212的阻挡结构221的结构形式较为简单,对排放物和消防介质可产生很好的混合效果。此外,这种结构的阻挡件2212可增大排放物和消防介质的流动路径,以增强对排放物的冷却作用。
需要说明的是,每相邻的两个阻挡件2212的第三开口2213沿第一流道14的延伸方向的投影错位设置,这里指的错位设置,可以是部分错位设置,即两个第三开口2213在第一流道14的延伸方向上的投影部分重叠,也可以是全部错位设置,即两 个第三开口2213在第一流道14的延伸方向的投影没有重叠的部分。
在本申请实施例中,阻挡件2212可以直接固定在第一流道14的壁面上;也可通过第三连接体2214将多个阻挡件2212连接在一起后,再将整体安装到第一流道14内。例如,如图28-图29所示,阻挡结构221还包括第三连接体2214,每个阻挡件2212均连接于第三连接体2214。示例性的,第三连接体2214为空心管状结构,第三连接体2214布置于第一流道14内,阻挡件2212固定于第三连接体2214的内壁上。
示例性的,在图28-图29中,阻挡件2212为板状件。每相邻的两个阻挡件2212的第三开口2213沿第一流道14的延伸方向的全部错位设置。如图28所示,第三开口2213可以是设置在阻挡件2212上的孔;如图29所示,第三开口2213也可以是由阻挡件2212的端部与第三连接体2214的内壁共同限定开口。
在一些实施例中,请参照图30,图30为图29所示的阻挡结构221的D向视图,D向视图是图29的D方向的视图。阻挡结构221在第一流道14的延伸方向上的投影覆盖第一流道14在其延伸方向上的投影,这里所指覆盖为完全覆盖。这种结构的阻挡结构221对排放物和消防介质起到更好的阻挡作用,使排放物和消防介质混合更加充分。
在一些实施例中,阻挡结构221也可以包括如图27所示的螺旋叶片2211结构和如图28-图29所示的多个阻挡件2212的结构。比如,在第一流道14内布置多个阻挡件2212和螺旋叶片2211,在排放物于第一流道14内的流动方向X上,螺旋叶片2211位于多个阻挡件2212的下游。
需要说明的是,在其他实施例中,混合装置22可以是上述各实施例中的阻挡结构221,还可以是其他结构,比如,混合装置22包括可转动或可移动地设置于第一流道14内的活动件,通过活动件转动或移动,来实现对消防介质与排放物的混合。
此外,在一些实施例中,请参照图31,为本申请一些实施例提供的电池100的制造方法的示意性流程图,电池100的制造方法,包括:
S100:提供电池单体30;
S200:提供箱体10,箱体10包括:
多个壁12,多个壁12围合形成用于容纳电池单体30的容纳空间13,且至少一个壁12的内部形成有第一流道14,第一流道14用于将电池单体30热失控产生的排放物排出至箱体10外;以及
冷却装置11,设于第一流道14内,冷却装置11用于对流经冷却装置11的排放物进行冷却;
其中,冷却装置11包括用于增大排放物与冷却装置11的接触面积的冷却结构111;
S300:将电池单体30容纳于箱体10的容纳空间13内。
本实施例中未详细描述的部分可参见前述各实施例。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (29)

  1. 一种箱体,用于电池,所述电池包括电池单体,包括:
    多个壁,所述多个壁围合形成用于容纳所述电池单体的容纳空间,且至少一个壁的内部形成有第一流道,所述第一流道用于将所述电池单体热失控产生的排放物排出至所述箱体外;以及
    冷却装置,设于所述第一流道内,所述冷却装置用于对流经所述冷却装置的排放物进行冷却;
    其中,所述冷却装置包括用于增大所述排放物与所述冷却装置的接触面积的冷却结构。
  2. 根据权利要求1所述的箱体,其中,所述冷却结构包括供所述排放物通过的第二流道。
  3. 根据权利要求2所述的箱体,其中,所述冷却装置的外表面和/或所述冷却装置的内部形成有所述第二流道。
  4. 根据权利要求2或3所述的箱体,其中,所述冷却装置在所述第一流道的延伸方向上包括相对的第一端和第二端,所述第二流道贯通所述第一端和所述第二端。
  5. 根据权利要求2-4任一项所述的箱体,其中,所述第二流道呈直线形、曲线形或折线形延伸。
  6. 根据权利要求2-5任一项所述的箱体,其中,所述冷却结构包括多个彼此独立的所述第二流道。
  7. 根据权利要求2-6任一项所述的箱体,其中,所述冷却装置包括多个冷却管,每个所述冷却管的内部形成有所述第二流道。
  8. 根据权利要求2-7任一项所述的箱体,其中,所述冷却结构还包括滞留空间;
    所述滞留空间与所述第二流道连通,所述滞留空间用于滞留所述排放物。
  9. 根据权利要求8所述的箱体,其中,所述冷却结构包括沿所述第二流道的延伸方向间隔分布的多个滞留空间。
  10. 根据权利要求8或9所述的箱体,其中,所述滞留空间从垂直于所述第二流道的延伸方向的位置向所述排放物在所述第二流道内的流动方向倾斜布置。
  11. 根据权利要求8-10任一项所述的箱体,其中,所述冷却装置包括多个第一冷却件;
    所述多个第一冷却件沿所述第一流道的延伸方向间隔布置,所述多个第一冷却件上设有供所述排放物通过的第一开口,所述多个第一冷却件的所述第一开口连通,以形成所述第二流道,每相邻的两个第一冷却件之间形成所述滞留空间。
  12. 根据权利要求2所述的箱体,其中,所述冷却装置包括多个第二冷却件;
    所述多个第二冷却件沿所述第一流道的延伸方向间隔布置,所述多个第二冷却件上设有供所述排放物通过的第二开口,每相邻的两个冷却件的所述第二开口沿所述第一流道的延伸方向的投影错位设置,所述多个第二冷却件的所述第二开口连通,以形 成所述第二流道。
  13. 根据权利要求1-12任一项所述的箱体,其中,所述箱体还包括:
    消防机构,设于所述第一流道内,所述消防机构被配置为在所述电池单体热失控时向所述第一流道内释放消防介质。
  14. 根据权利要求13所述的箱体,其中,在所述排放物于所述第一流道内的流动方向上,所述消防机构位于所述冷却装置的下游或上游;或,所述消防机构与所述冷却装置在垂直于所述流动方向的方向上堆叠布置。
  15. 根据权利要求13或14所述的箱体,其中,所述箱体还包括:
    检测装置,设于所述第一流道内,所述检测装置用于检测所述第一流道内的排放物的信息参数;
    所述消防机构用于在所述信息参数达到预设值时向所述第一流道内释放所述消防介质。
  16. 根据权利要求13-15任一项所述的箱体,其中,所述箱体还包括:
    混合装置,设于所述第一流道内,所述混合装置用于使所述排放物和所述消防介质在排出所述第一流道之前能够被混合。
  17. 根据权利要求16所述的箱体,其中,所述混合装置包括阻挡结构,所述阻挡结构用于对所述排放物和所述消防介质进行阻挡并改变流动方向,以使所述排放物和所述消防介质在排出所述第一流道之前能够被混合。
  18. 根据权利要求17所述的箱体,其中,所述阻挡结构包括多个阻挡件;
    所述多个阻挡件沿所述第一流道的延伸方向间隔布置,每个所述阻挡件上设有第三开口,每相邻的两个所述第三开口沿所述第一流道的延伸方向的投影错位设置。
  19. 根据权利要求17或18所述的箱体,其中,所述阻挡结构在所述第一流道的延伸方向上的投影覆盖所述第一流道在所述延伸方向上的投影。
  20. 根据权利要求17-19任一项所述的箱体,其中,所述阻挡结构包括螺旋叶片,所述螺旋叶片的中心线与所述第一流道的中轴线重合或平行。
  21. 根据权利要求17-20任一项所述的箱体,其中,所述阻挡结构包括多个螺旋叶片,所述多个螺旋叶片沿所述第一流道的延伸方向布置,且每相邻的两个螺旋叶片的旋向相反。
  22. 根据权利要求1-21任一项所述的箱体,其中,至少一个壁的内部形成有延伸方向相同的多个第一流道;
    所述多个第一流道中的每两个第一流道彼此独立;或,
    所述多个第一流道中的至少两个第一流道连通。
  23. 根据权利要求22所述的箱体,其中,所述多个第一流道中的至少两个第一流道连通,所述排放物能够依次流经所述至少两个第一流道中的所述冷却装置后排出至所述箱体外。
  24. 根据权利要求1-23任一项所述的箱体,其中,所述第一流道包括进口;
    所述进口设有隔离件,所述隔离件被配置为在所述电池单体热失控时打开所述进口,以使所述排放物能够通过所述进口进入所述第一流道内。
  25. 根据权利要求24所述的箱体,其中,所述隔离件被配置为在所述电池单体热失控时被破坏,以打开所述进口。
  26. 根据权利要求1-25任一项所述的箱体,其中,所述箱体还包括泄压机构;
    所述第一流道包括出口,所述泄压机构设于所述出口,泄压机构用于在所述电池单体热失控时打开所述出口,以使所述第一流道内的排放物能够通过所述出口排出所述箱体。
  27. 一种电池,包括:
    电池单体;以及
    根据权利要求1-26任一项所述的箱体,所述电池单体容纳于所述容纳空间内。
  28. 一种用电设备,包括根据权利要求27所述的电池。
  29. 一种电池的制造方法,包括:
    提供电池单体;
    提供箱体,所述箱体包括:
    多个壁,所述多个壁围合形成用于容纳电池单体的容纳空间,且至少一个壁的内部形成有第一流道,所述第一流道用于将电池单体热失控产生的排放物排出至所述箱体外;以及
    冷却装置,设于所述第一流道内,所述冷却装置用于对流经所述冷却装置的排放物进行冷却;
    其中,所述冷却装置包括用于增大所述排放物与所述冷却装置的接触面积的冷却结构;
    将所述电池单体容纳于所述容纳空间内。
PCT/CN2020/128859 2020-11-13 2020-11-13 箱体、电池、用电设备及电池的制造方法 WO2022099661A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/128859 WO2022099661A1 (zh) 2020-11-13 2020-11-13 箱体、电池、用电设备及电池的制造方法
KR1020227038808A KR20220164052A (ko) 2020-11-13 2020-11-13 박스 본체, 전지, 전기 기기 및 전지 제조 방법
JP2023500399A JP2023542590A (ja) 2020-11-13 2020-11-13 筐体、電池、電力消費装置及び電池の製造方法
EP20939475.8A EP4030535A4 (en) 2020-11-13 2020-11-13 HOUSING, BATTERY, ELECTRICAL DEVICE AND METHOD FOR PRODUCING A BATTERY
CN202080106816.6A CN116349063A (zh) 2020-11-13 2020-11-13 箱体、电池、用电设备及电池的制造方法
US17/552,827 US20220158296A1 (en) 2020-11-13 2021-12-16 Box body, battery, electric apparatus and manufactuirng method of the battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128859 WO2022099661A1 (zh) 2020-11-13 2020-11-13 箱体、电池、用电设备及电池的制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/552,827 Continuation US20220158296A1 (en) 2020-11-13 2021-12-16 Box body, battery, electric apparatus and manufactuirng method of the battery

Publications (1)

Publication Number Publication Date
WO2022099661A1 true WO2022099661A1 (zh) 2022-05-19

Family

ID=81587974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128859 WO2022099661A1 (zh) 2020-11-13 2020-11-13 箱体、电池、用电设备及电池的制造方法

Country Status (6)

Country Link
US (1) US20220158296A1 (zh)
EP (1) EP4030535A4 (zh)
JP (1) JP2023542590A (zh)
KR (1) KR20220164052A (zh)
CN (1) CN116349063A (zh)
WO (1) WO2022099661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116250138A (zh) * 2022-06-29 2023-06-09 宁德时代新能源科技股份有限公司 箱体、电池及用电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240407A1 (zh) * 2022-06-13 2023-12-21 宁德时代新能源科技股份有限公司 热管理部件、热管理***、电池及用电装置
WO2024019633A1 (ru) * 2022-07-22 2024-01-25 Дмитрий Александрович ЛАШИН Водное мобильное устройство для зарядки электрических транспортных средств

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539667A (ja) * 2007-09-21 2010-12-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 温度調節されるバッテリー装置およびバッテリー装置を温度調節するための方法
CN105742759A (zh) * 2016-04-22 2016-07-06 重庆超力高科技股份有限公司 电池冷却液温控装置
CN109546262A (zh) * 2018-11-19 2019-03-29 北京交通大学 一种斜翅片液冷散热装置
CN209766599U (zh) * 2019-01-29 2019-12-10 比亚迪股份有限公司 一种电池冷却管路、热管理装置及车辆
CN111668406A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包及车辆
CN211798393U (zh) * 2019-11-06 2020-10-30 欣旺达电动汽车电池有限公司 电池灭火设备,电池组件以及电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539667A (ja) * 2007-09-21 2010-12-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 温度調節されるバッテリー装置およびバッテリー装置を温度調節するための方法
CN105742759A (zh) * 2016-04-22 2016-07-06 重庆超力高科技股份有限公司 电池冷却液温控装置
CN109546262A (zh) * 2018-11-19 2019-03-29 北京交通大学 一种斜翅片液冷散热装置
CN209766599U (zh) * 2019-01-29 2019-12-10 比亚迪股份有限公司 一种电池冷却管路、热管理装置及车辆
CN111668406A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包及车辆
CN211798393U (zh) * 2019-11-06 2020-10-30 欣旺达电动汽车电池有限公司 电池灭火设备,电池组件以及电源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116250138A (zh) * 2022-06-29 2023-06-09 宁德时代新能源科技股份有限公司 箱体、电池及用电装置

Also Published As

Publication number Publication date
EP4030535A4 (en) 2023-09-06
CN116349063A (zh) 2023-06-27
EP4030535A1 (en) 2022-07-20
KR20220164052A (ko) 2022-12-12
JP2023542590A (ja) 2023-10-11
US20220158296A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN112103443B (zh) 箱体、电池、用电设备及电池的制造方法
WO2022099661A1 (zh) 箱体、电池、用电设备及电池的制造方法
WO2022083022A1 (zh) 箱体、电池及装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024077789A1 (zh) 电池及用电装置
US20240033549A1 (en) Fire-fighting apparatus, box assembly, battery, power consumption apparatus, and method for preparing battery
WO2023141774A1 (zh) 电池、用电设备、制造电池的方法和设备
KR20220107025A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
KR20220104219A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
WO2022134123A1 (zh) 阀、电池、用电设备、阀的制造设备和方法
WO2024088136A1 (zh) 电池、储能装置以及用电设备
KR20230060517A (ko) 전지 케이스, 전지, 전기 장치, 전지의 제조 방법 및 장치
WO2024077604A1 (zh) 电池和用电装置
WO2023141878A1 (zh) 电池、用电装置及电池的制造方法和制造设备
WO2023004722A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
JP7490085B2 (ja) 電池、電力消費装置、電池を製造する方法と装置
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4266472A1 (en) Battery, electric device, and battery preparation method and device
EP4270576A1 (en) Battery, electrical device, and battery preparation method and device
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230344017A1 (en) Battery, electric apparatus, and method and apparatus for preparing battery
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
WO2022252010A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024059963A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020939475

Country of ref document: EP

Effective date: 20211216

ENP Entry into the national phase

Ref document number: 20227038808

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023500399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE