WO2023133784A1 - 电池、用电设备、制备电池的方法和设备 - Google Patents

电池、用电设备、制备电池的方法和设备 Download PDF

Info

Publication number
WO2023133784A1
WO2023133784A1 PCT/CN2022/071925 CN2022071925W WO2023133784A1 WO 2023133784 A1 WO2023133784 A1 WO 2023133784A1 CN 2022071925 W CN2022071925 W CN 2022071925W WO 2023133784 A1 WO2023133784 A1 WO 2023133784A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
battery cells
pressure relief
relief mechanism
Prior art date
Application number
PCT/CN2022/071925
Other languages
English (en)
French (fr)
Inventor
钱欧
杨飘飘
张玉峰
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020237026364A priority Critical patent/KR102659525B1/ko
Priority to JP2023547687A priority patent/JP2024504204A/ja
Priority to PCT/CN2022/071925 priority patent/WO2023133784A1/zh
Priority to EP22917635.9A priority patent/EP4261998A4/en
Priority to CN202280024742.0A priority patent/CN117063338A/zh
Priority to US18/353,706 priority patent/US11909068B2/en
Publication of WO2023133784A1 publication Critical patent/WO2023133784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/392Arrangements for facilitating escape of gases with means for neutralising or absorbing electrolyte; with means for preventing leakage of electrolyte through vent holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the embodiments of the present application provide a battery, an electrical device, a method and a device for preparing the battery, which can improve the safety of the battery.
  • a battery in a first aspect, includes: a plurality of battery cells, the battery cells are cylinders, and a pressure relief mechanism is provided on the side of the cylinder of the battery cells, and the pressure relief mechanism for actuating when the internal pressure or temperature of the battery cell reaches a threshold value to relieve the internal pressure of the battery cell; an electrical chamber for accommodating a plurality of the battery cells; a collection chamber for collecting discharge from the battery cells upon activation of the pressure relief mechanism; an isolation member for isolating the electrical chamber from the collection chamber, the isolation member enclosing the first region and the second region, the The first area is used to accommodate the first part of the battery cell, so that the first part protrudes from the surface of the second area facing the collection cavity toward the collection cavity, and the pressure relief mechanism is set A region of the first portion on the side of the cylinder to allow the discharge to enter the collection cavity when the pressure relief mechanism is actuated.
  • the battery cell can be positioned and fixed through the first area of the isolation member, avoiding the rolling of the battery cell, and improving the stability of the battery; moreover, the first part protrudes relative to the second area In the electrical cavity, it can occupy part of the space of the collecting cavity, which improves the space utilization rate of the battery.
  • the pressure relief mechanism of the battery cell is located in the first part, so that when the pressure relief mechanism is actuated, the discharge enters the collection cavity, so as to achieve the purpose of directional discharge and avoid the impact of the discharge on the electrical cavity, that is, It avoids the discharge coming into contact with the high-voltage connection in the electrical cavity, reducing the risk of battery explosion and improving the safety of the battery.
  • the length of the orthographic projection of the first region on the surface of the isolation member facing the electrical cavity along the axial direction of the battery cell is greater than or equal to that of the battery cell.
  • the length of the cylinder side along the axial direction of the battery cell; the length of the orthographic projection along the second direction is smaller than the diameter of the battery cell, wherein the second direction is the plane where the orthographic projection is located A direction perpendicular to the axial direction of the battery cell.
  • the first part of the battery cell located in the first area the first part is only a partial area of the battery cell but not the whole, and is a small part of the battery cell, and the first part will not occupy the collection area. Areas with too many cavities have little effect on the collection cavities.
  • the first region is an opening penetrating through the isolation member.
  • the opening is convenient for processing, and on the other hand, when the pressure relief mechanism located in the first part is actuated, there is no obstacle, and the discharge can be directly discharged to the collection chamber through the opening, and the thermally runaway battery cells can be released in time. Reduce internal pressure and temperature, avoid thermal diffusion, and improve battery safety.
  • the isolation part has an arc surface at the opening, so that the first part fits the isolation part in the opening.
  • the first region is a groove on the isolation member, and the groove protrudes toward the collection chamber from the surface of the second region facing the collection chamber.
  • the electrical cavity and the collection cavity on both sides of the isolation part are relatively closed, and when any one of the battery cells is thermally out of control, its pressure relief mechanism activates to discharge the discharge, which can destroy the The groove in the first area corresponding to the pressure relief mechanism, so that the discharge enters the collection chamber, and at the same time, because the grooves in the first area of other positions are not damaged, the discharge (especially high-temperature gas or Flame) will not return to the electrical cavity through the first area in other positions, which can avoid the impact on other battery cells, reduce the possibility of thermal diffusion, and improve the safety of the battery.
  • the cross-section of the groove along the first plane is arc-shaped, and the first plane is a plane perpendicular to the axial direction of the battery cell. Grooves of other shapes occupy less space in the collection chamber and have less influence on the setting of the collection chamber.
  • the first portion conforms to the isolation member within the groove.
  • the contact area between the battery cell and the isolation member is a circular arc surface, rather than a line contact, which increases the contact area between the two.
  • the stability of the battery cell in the first area can be improved; , when the isolation component is a thermal management component, the temperature regulation efficiency can also be improved.
  • the cross section of the groove along the first plane is rectangular, the first plane is a plane perpendicular to the axial direction of the battery cell, and the rectangular groove has a simple structure and is easy to process.
  • the spacer has an arc surface at the opening of the groove, so that the first part fits the spacer at the opening of the groove, and the battery cell and
  • the isolation components are in surface contact rather than line contact, which increases the contact area between the two. On the one hand, it can improve the stability of the battery cell in the first area. On the other hand, when the isolation component is a thermal management component, It is also possible to improve temperature regulation efficiency.
  • a filler is provided in the electrical cavity, and the filler is used to fill the gaps between the plurality of battery cells.
  • the filler can provide restraint for the internal battery cells to avoid the movement of the battery cells;
  • the thermal runaway occurs, the parts on the surface of the battery cell that are located in the electric cavity except the first part are destroyed, thereby avoiding the spread of the thermal runaway and improving the safety performance of the battery.
  • the electrical cavity houses a plurality of battery cell groups arranged along a first direction, and each of the plurality of battery cell groups includes a plurality of battery cell groups arranged along a second direction.
  • the battery cells, the first direction, the second direction and the axial direction of the battery cells are perpendicular to each other, and multiple battery cells in the same battery cell group correspond to the same isolation part.
  • Arranging multiple battery cells in the battery according to the rules can increase the space utilization rate of the battery; setting multiple battery cells in the same battery cell group to correspond to the same isolation part, then the multiple battery cells correspond to the same One collection chamber, that is, the exhaust discharged from the pressure relief mechanisms of the plurality of battery cells can be discharged to the same collection chamber, which saves space and improves the space utilization rate of the battery.
  • the multiple battery cells in the same battery cell group correspond to the multiple first regions on the same isolation member one by one, which can ensure that each battery cell When thermal runaway occurs, the discharge can be directed toward the collection cavity, and each battery cell can be positioned and installed in the first area, so that the first part of the battery cell can be located in the first area, improving the stability of the battery.
  • two adjacent battery cell groups among the plurality of battery cell groups correspond to two oppositely disposed isolation parts, so that the electrical cavity is between the two isolation parts. , and the electrical cavity is located between the two collecting cavities.
  • the two battery cell groups are arranged in the same electrical cavity, so that the battery cells of the two battery cell groups can be arranged alternately , saving the space of the electrical cavity; at this time, the two collecting cavities corresponding to the two battery cell groups can be respectively located on opposite sides of the electrical cavity, so that the thickness of the battery along the first direction can be minimized.
  • the battery further includes two end plates, and the two end plates are respectively arranged on both sides of the two adjacent battery cell groups along the axial direction of the battery cell, so that The two end plates are connected to the two isolation members to form the electrical cavity.
  • the two end plates are respectively arranged on both sides of two adjacent battery cell groups along the axial direction of the battery cells, which can further restrict the movement of the battery cells in the two battery cell groups along the axial direction of the battery cells. To fix the battery cell, increase the stability of the battery.
  • each of the two end plates is provided with a first protrusion protruding along the first direction
  • the isolation member is provided with a first through hole
  • the first A protrusion passes through the first through hole, so that each of the end plates is fixedly connected to the isolation member; or, each of the two end plates is provided with a second through hole, A second protrusion protruding along the axial direction of the battery cell is provided on the isolation member, and the second protrusion passes through the second through hole so that each end plate is in contact with the The isolation part is fixedly connected.
  • the fixing between the isolation part and the end plate is realized through the mutual cooperation between the protrusion and the through hole, which is convenient for processing, installation and combination, thereby improving the production efficiency of the battery.
  • an electric device including: the battery described in the first aspect or any one of the embodiments in the first aspect.
  • the electric device is a vehicle, ship or spacecraft.
  • a method for manufacturing a battery cell including: providing a plurality of battery cells, the battery cells are cylindrical, and a pressure relief mechanism is provided on the cylindrical side of the battery cells, the a pressure relief mechanism for actuating when the internal pressure or temperature of the battery cells reaches a threshold value to relieve the internal pressure; providing an electrical cavity for accommodating a plurality of the battery cells; providing a collection chamber for collecting discharge from the battery cells upon actuation of the pressure relief mechanism; providing an isolation member for isolating the electrical chamber from the collection chamber,
  • the spacer includes a first region and a second region, the first region is used to accommodate a first portion of the battery cell so that the first portion protrudes beyond the second region toward the collection cavity Towards the surface of the collection chamber, the pressure relief mechanism is arranged on the side of the cylinder in the region of the first portion, so that when the pressure relief mechanism is actuated, the discharge enters the collection chamber.
  • an apparatus for manufacturing a battery cell including a module for performing the method of the third aspect above.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of a battery disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic partial cross-sectional view of a battery disclosed in an embodiment of the present application.
  • Fig. 6 is another partial cross-sectional schematic diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 7 is an enlarged view of area A in Fig. 6;
  • Fig. 8 is a partial structural schematic diagram of another battery disclosed in an embodiment of the present application.
  • Fig. 9 is a schematic cross-sectional view of another battery disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic partial cross-sectional view of another battery disclosed in an embodiment of the present application.
  • Figure 11 is an enlarged view of area B in Figure 10;
  • Fig. 12 is a schematic diagram of a battery cell and an isolation component disclosed in an embodiment of the present application.
  • Fig. 13 is a schematic top view of an isolation component disclosed in an embodiment of the present application.
  • Fig. 14 is a schematic top view of a battery cell and an isolation component disclosed in an embodiment of the present application.
  • Fig. 15 is a cross-sectional view of two battery cells and an isolation component disclosed in an embodiment of the present application.
  • Fig. 16 is a cross-sectional view of another two battery cells and an isolation component disclosed in an embodiment of the present application.
  • Fig. 17 is a cross-sectional view of another two battery cells and an isolation component disclosed in an embodiment of the present application.
  • Fig. 18 is a schematic flowchart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • the same reference numerals represent the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments. It should be understood that the thickness, length, width and other dimensions of the various components in the embodiments of the application shown in the drawings, as well as the overall thickness, length and width of the integrated device, are for illustrative purposes only, and should not constitute any limitation to the application .
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • a pressure relief mechanism is generally installed on the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can adopt elements or components that are sensitive to pressure or temperature, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated, thereby forming a pressure-sensitive or temperature-sensitive pressure relief mechanism. aisle.
  • the "actuation" mentioned in this application refers to the action of the pressure relief mechanism, so that the internal pressure and temperature of the battery cells can be released. Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, be torn, or melt, among others. After the pressure relief mechanism is actuated, the high temperature and high pressure material inside the battery cell will be discharged from the pressure relief mechanism as discharge. In this way, the battery cells can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released to the outside through the actuation of the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • the pressure relief mechanism can be arranged on the battery cell
  • the pressure relief mechanism can be arranged on the cover plate at the top of the battery cell to avoid affecting the performance of the pressure relief mechanism and ensure the safety performance of the battery.
  • battery cells with a non-cuboid shape such as cylindrical battery cells
  • the pressure relief mechanism is arranged on the top circular cover plate, It will lead to poor pressure relief and easily cause the battery cell to explode.
  • the pressure relief mechanism is arranged at other positions of the battery cells, due to the shape characteristics of the cylindrical battery cells, it is also necessary to consider how to avoid the impact on the pressure relief mechanism of each battery cell when assembling the battery.
  • an embodiment of the present application provides a battery, which includes a plurality of cylindrical battery cells, and a pressure relief mechanism is provided on the cylindrical side of the battery cells; cavity, the electrical cavity is used to accommodate a plurality of battery cells; the collection cavity is used to collect discharge from the battery cells when the pressure relief mechanism is actuated.
  • a first area and a second area are provided on the spacer, the first area is used to accommodate the first part of the battery cell, so that the first part protrudes from the surface of the second area facing the collection cavity toward the collection cavity, so that Position and fix the battery cells through the first area, avoiding the rolling of the battery cells and improving the stability of the battery; moreover, the first part protrudes from the electrical cavity relative to the second area, that is, it can occupy part of the space of the collection cavity , improving the space utilization of the battery.
  • the pressure relief mechanism of the battery cell is located in the first part, so that when the pressure relief mechanism is actuated, the discharge enters the collection cavity, so as to achieve the purpose of directional discharge and avoid the impact of the discharge on the electrical cavity, that is, It avoids the discharge coming into contact with the high-voltage connection in the electrical cavity, reducing the risk of battery explosion and improving the safety of the battery.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, a plurality of battery cells may directly form a battery, or may first form a battery module, and the battery module then forms a battery, which is not limited in the embodiment of the present application.
  • Fig. 2 shows the schematic diagram of the exploded structure of the battery 10 of the embodiment of the application
  • Fig. 3 shows the schematic diagram of the structure of some parts in the battery 10 of the embodiment of the application after assembly, for example, this Fig. 3 is shown in Fig. 2
  • FIG. 4 shows a cross-sectional view of the battery 10 of the embodiment of the present application.
  • the battery 10 can be the structure of the battery 10 shown in FIG. 2 after assembly, and the section can be Along the plane perpendicular to the axial direction of the cells in the battery.
  • the battery 10 includes: a plurality of battery cells 20, the battery cells 20 are cylinders, and a pressure relief mechanism 21 is provided on the side of the cylinder of the battery cells 20, the pressure relief mechanism 21 is used to actuate when the internal pressure or temperature of the battery cell 20 reaches a threshold value, so as to release the internal pressure of the battery cell 20; the electrical cavity 15 is used to accommodate a plurality of the battery cells 20; the collection cavity 16 , used to collect the discharge from the battery cell 20 when the pressure relief mechanism 21 is actuated; the isolation member 12 is used to isolate the electrical cavity 15 and the collection cavity 16, and the isolation component 12 includes the first area 121 and The second area 122, the first area 121 is used to accommodate the first portion 22 of the battery cell 20, so that the first portion 22 protrudes from the surface of the second area 122 facing the collection cavity 16 towards the collection cavity 16 , the pressure relief mechanism 21 is disposed on the side of the cylinder at the region of the first portion 22, so that when the pressure relief mechanism 21 is actu
  • the cylindrical battery cell 20 is positioned and fixed through the first area 121 provided on the isolation member 12, so as to avoid the rolling of the battery cell 20 and improve the stability of the battery 10; and
  • the first part 22 of the battery cell 20 protrudes from the electrical cavity 15 relative to the second area 122 , that is, the battery cell 20 can occupy part of the space of the collection cavity 16 , which improves the space utilization of the battery 10 .
  • the pressure relief mechanism 21 of the battery cell 20 is arranged on the first part 22, so that when the pressure relief mechanism 21 is actuated, the discharge enters the collection chamber 16, so as to achieve the purpose of directional discharge and prevent the discharge from entering the electrical chamber. 15, it prevents the discharge from coming into contact with the high-voltage connection in the electrical chamber 15, reduces the risk of explosion of the battery 10, and improves the safety of the battery 10.
  • the battery 10 of the embodiment of the present application includes an electrical chamber 15 and a collection chamber 16 , and optionally, the battery 10 further includes a box body 11 for forming the electrical chamber 15 and the collection chamber 16 .
  • the inside of the box body 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 11 .
  • the box body 11 may include two parts, referred to here as a first box body part 111 and a second box body part 112 respectively, and the first box body part 111 and the second box body part 112 are fastened together.
  • the shapes of the first box part 111 and the second box part 112 can be determined according to the shapes of the components contained inside, for example, according to the combined shape of a plurality of battery cells 20 contained inside, the first box part At least one of the 111 and the second case part 112 has an opening.
  • the first box part 111 and the second box part 112 may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second box body 112 is a hollow cuboid and has an opening 1113
  • the first box body 111 is a plate-shaped example
  • the first box body 111 covers the opening of the second box body 112
  • a box body 11 is formed with a closed cavity, which can be used to accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box 11 formed by fastening the first box part 111 and the second box part 112 .
  • the first box body part 111 and the second box body part 112 can be hollow cuboids and each have a face as an opening surface, and the opening of the first box body part 111 and the second box body part The openings of the body part 112 are arranged oppositely, and the first box body part 111 and the second box body part 112 are interlocked to form the box body 11 with a closed cavity.
  • the inside of the box body 11 includes an electrical cavity 15 and a collection cavity 16 , wherein the electrical cavity 15 is used to accommodate a plurality of battery cells 20 .
  • the battery 10 may further include a confluence part 14, and the confluence part 14 may be used to realize electrical connection between a plurality of battery cells 20, such as parallel connection, series connection or mixed connection.
  • the bus member 14 can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 . Further, the bus member 14 may be fixed to the electrode terminal of the battery cell 20 by welding.
  • a plurality of cylindrical battery cells 20 are accommodated in the electrical chamber 15, and the plurality of battery cells 20 can be arranged and assembled according to certain rules to improve the space utilization rate of the electrical chamber 15, thereby improving the battery capacity. 10 energy density.
  • the size of the multiple battery cells 20 can be set to be the same or different.
  • the size of the multiple battery cells 20 is the same as an example for illustration, so that the capacity of the multiple battery cells 20 can Similarly, in order to facilitate the electrical connection between the multiple battery cells 20 , it is also convenient to arrange the multiple battery cells 20 .
  • the electrical cavity 15 accommodates a plurality of battery cell groups arranged along the first direction Z, and each battery cell group in the plurality of battery cell groups includes a battery cell group along the second direction Z.
  • a plurality of battery cells 20 arranged in the direction Y, the first direction Z, the second direction Y and the axis X of the battery cells 20 are perpendicular to each other, wherein, for a cylindrical battery cell 20, the axis of the battery cell 20 X is the axis X of the cylinder.
  • Arranging a plurality of battery cells 20 in the electrical cavity 15 in an array can effectively utilize the space of the electrical cavity 15 .
  • multiple battery cell groups can be dislocated to reduce the gaps between the battery cells 20 and improve space utilization.
  • the projections of the axes of the plurality of battery cells 20 on the plane do not overlap each other.
  • the projection distances of the axes of the plurality of battery cells 20 on the plane can be equal, so that the battery cells 20 in different battery cell groups can be arranged in a misplaced position, and the space can be rationally used to reduce the number of battery cells. 20 gaps between.
  • the cylinder side of the battery cell 20 in the embodiment of the present application is provided with a pressure relief mechanism 21 , and the cylinder side is a curved surface surrounding the axial direction X of the battery cell 20 , that is, the side of a cylinder.
  • the pressure relief mechanism 21 can be configured in various ways.
  • the pressure relief mechanism 21 can be a notch on the battery cell 20, so that the thickness of the shell of the battery cell 20 at the pressure relief mechanism 21 is smaller than the thickness of other areas, that is, the strength of the pressure relief mechanism 21 is relatively weak. In this way, when the battery cell 20 undergoes thermal runaway and its internal temperature or pressure reaches a preset value, the pressure relief mechanism 21 can be destroyed at the notch to release the internal pressure or temperature.
  • the pressure relief mechanism 21 can also be set as a temperature-sensitive material, so that when the battery cell 20 undergoes thermal runaway and its internal temperature reaches a preset value, the pressure relief mechanism 21 can be melted to release the internal pressure or temperature, but the embodiments of the present application are not limited thereto.
  • the battery 10 further includes a collection chamber 16 for collecting the exhaust discharged through the pressure relief mechanism 21 after the pressure relief mechanism 21 is actuated, so as to prevent the discharge from contacting high-voltage components and causing a short circuit.
  • the battery 10 includes an isolation component 12 , which can be used to isolate the electrical cavity 15 and the collection cavity 16 . As shown in FIGS.
  • the isolation member 12 includes a first area 121 and a second area 122 , the first area 121 is used to accommodate the first portion 22 of the battery cell 20 so that the first portion 22 faces the collector
  • the cavity 16 protrudes from the surface of the second area 122 facing the collection cavity 16; and, the pressure relief mechanism 21 is arranged on the side of the cylinder at the area of the first part 22, so that when the pressure relief mechanism 21 is actuated , the discharge discharged through the pressure relief mechanism 21 can smoothly enter the collection chamber 16 .
  • the isolation component 12 in the embodiment of the present application can be used as a thermal management component, that is, the isolation component 12 can contain fluid to regulate the temperature of the plurality of battery cells 20 .
  • the fluid here may be liquid or gas, and adjusting the temperature refers to heating or cooling the plurality of battery cells 20 .
  • the spacer 12 is used to contain cooling fluid to lower the temperature of the battery cells 20; in addition, the spacer 12 can also be used for heating to cool the battery cells 20. 20 to raise the temperature, which is not limited in the embodiment of the present application.
  • the above-mentioned fluid may flow in circulation, so as to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • multiple battery cells 20 in the same battery cell group correspond to the same isolation component 12 .
  • the multiple battery cells 20 correspond to the same collection chamber 16 That is, the exhaust discharged from the pressure relief mechanism 21 of the plurality of battery cells 20 can be discharged to the same collection chamber 16 , which saves space and improves the space utilization rate of the battery 10 .
  • the multiple battery cells 20 in the same battery cell group correspond to the multiple first regions 121 on the same isolation member 12 one by one.
  • each of the multiple battery cells 20 in the same battery cell group is provided with a first area 121, when thermal runaway occurs in any one of the battery cells 20, it can pass through the isolation member 12 and The corresponding first area 121 discharges the discharge in a directional manner; in addition, the battery cells 20 are cylinders, and the multiple battery cells 20 in the same battery cell group are arranged to be connected to the multiple second battery cells on the same isolation member 12.
  • the one-to-one correspondence of the areas 121 can not only ensure that each battery cell 20 can be discharged toward the collection cavity 16 when thermal runaway occurs, but also use the first area 121 to position and install each battery cell 20, so that the battery cells
  • the first portion 22 of the body 20 can be located in the first region 121 to improve the stability of the battery 10 .
  • two adjacent battery cell groups among the plurality of battery cell groups correspond to two opposite isolation parts 12, so that an electrical cavity 15 is formed between the two isolation parts 12, and the electrical cavity 15 is located between the two isolation parts 12.
  • Between the collection chambers 16. As shown in Figures 2 to 4, for any two adjacent battery cell groups along the first direction Z, if the two battery cell groups are placed in the same electrical cavity 15, the two battery cells can The battery cells 20 of the body group are arranged in a staggered manner to save the space of the electrical chamber 15; at this time, the two collection chambers 16 corresponding to the two battery cell groups can be respectively located on opposite sides of the electrical chamber 15, so that The thickness of the battery 10 along the first direction Z can be minimized, especially when the battery 10 only includes two battery cell groups, which not only facilitates the installation and positioning of each battery cell 20, but also greatly improves the performance of the battery 10. Space utilization.
  • the battery 10 in the embodiment of the present application further includes: two end plates 13, the two end plates 13 are respectively arranged on both sides of two adjacent battery cell groups along the axis X of the battery cell 20, Two end plates 13 are connected to two insulating parts 12 to form an electrical cavity 15 .
  • the plurality of spacers 12 in the embodiment of the present application are arranged along the first direction Z, for example, two spacers 12 are respectively arranged on both sides of two adjacent battery cell groups along the first direction Z, so that, The two spacers 12 can limit the movement of the plurality of battery cells 20 inside them along the first direction Z, and the two end plates 13 are respectively arranged on two adjacent battery cells along the axis X of the battery cells 20 On both sides of the group, the movement of the battery cells in the two battery cell groups along the axis X of the battery cells 20 can be further restricted, so as to fix the battery cells 20 and increase the stability of the battery 10 .
  • the surface of the end plate 13 facing the battery cell 20 may also be provided with a limiting structure 133 for fixing the battery cell 20 .
  • the limiting structure 133 can be in one-to-one correspondence with the battery cells 20, so as to limit the movement of each battery cell 20;
  • the protruding structure of the battery cell 20, for example, can be set as a bracket-shaped limiting structure 133 as shown in the figure corresponding to the cylindrical cell 20, so as to limit the movement of the battery cell 20 along the first direction Z or along the second direction Y, The stability of the battery 10 is further improved.
  • Fig. 15 shows a schematic diagram of the electrical cavity 15 of the embodiment of the present application. As shown in Fig.
  • the cavity 15 is usually a cuboid, therefore, there is a gap in the electrical cavity 15, and the filling 151 is arranged in the gap, on the one hand, it can provide restraint for the internal battery cells 20 and prevent the battery cells 20 from moving; on the other hand, the The filler 151 can also bind the shell of the battery cell 20, so as to avoid the destruction of the parts on the surface of the battery cell 20 that are located in the electrical cavity 15 except the first part 22 when a certain battery cell 20 is thermally runaway. Furthermore, the spread of thermal runaway can be avoided, and the safety performance of the battery 10 can be improved.
  • the battery cell 20 when the filler 151 is arranged in the electrical cavity 15, the strength of the part of the battery cell 20 located in the electrical cavity 15 is increased due to the binding effect of the filler 151, and its strength is greater than that of the first part 22, then , when the battery cell 20 is thermally runaway, even if the battery cell 20 is not provided with a pressure relief mechanism 21, the probability of the first part 22 being damaged is much greater than that of other parts located in the electrical chamber 15. Therefore, the battery cell 20
  • the pressure relief mechanism 21 may not be provided, or in other words, the pressure relief mechanism 21 of the battery cell 20 is the first part 21, and there is no need to form a pressure relief mechanism 21 by additionally setting a scored area or a temperature-sensitive area, which can simplify the battery life.
  • the processing of the battery cell 20 can also ensure that the battery cell 20 explodes in a directional manner and discharges the discharge towards the collection cavity 16 .
  • the filler 151 in the embodiment of the present application may choose a material with better heat dissipation effect, for example, the filler 151 may use thermal conductive glue, but the embodiment of the present application is not limited thereto.
  • connection mode between the end plate 13 and the isolation member 12 in the embodiment of the present application can be flexibly set according to practical applications, and the embodiment of the present application is not limited thereto.
  • each of the two end plates 13 is provided with a first protrusion 131 protruding along the first direction Z
  • the isolation member 12 is provided with a first through hole 123 through which the first protrusion 131 passes.
  • the first through hole 123 is used to securely connect each end plate 13 with the isolation member 12 .
  • FIG. 6 shows a partial schematic diagram of another cross-section of the battery 10 according to the embodiment of the present application.
  • the cross-section is a plane perpendicular to the second direction Y.
  • FIGS. 6 can be as shown in FIGS.
  • FIG. 7 is a partially enlarged view of area A in FIG. 6 .
  • at least one first protrusion 131 may be provided on each end plate 13 , and the first protrusion 131 protrudes toward the isolation member 12 .
  • each isolation member 12 At least one first through hole 123 may be provided, and each first protrusion 131 passes through the corresponding first through hole 123, so as to fix the end plate 13 and the isolation member 12. This fixing method is convenient for processing and assembly, and can improve The processing efficiency of the battery 10.
  • the shapes of the first through hole 123 and the first protrusion 131 may be the same or different, and may be flexibly set according to practical applications.
  • the shape of the first through hole 123 and the first protrusion 131 can be set to be the same, for example, both are set as a cuboid, and the size of the first protrusion 131 is slightly smaller than the first through hole 123 , so that the first protrusion 131 can pass through the first through hole 123 and be stably fixed in the first through hole 123 , so that the relationship between the end plate 13 and the isolation member 12 is relatively stable.
  • a plurality of first protrusions 131 may be provided on each end plate 13, and correspondingly, a plurality of first through holes 123 may also be provided on the isolation member 12, so that the end plate 13 and the isolation member 12 is more stable.
  • the size of the plurality of first protrusions 131 can be the same or different, and the distance between the plurality of first protrusions 131 can be the same or different, for example, the plurality of first protrusions 131 can be dispersed It is arranged on the edge portion of the end plate 13 facing the isolation component 12 , so that different regions of the end plate 13 are stably connected to the isolation component 12 .
  • each of the two end plates 13 is provided with a second through hole 132
  • the isolation member 12 is provided with a second protrusion protruding along the axial direction X of the battery cell 20. part 124 , the second protruding part 124 passes through the second through hole 132 , so that each end plate 13 is fixedly connected with the isolation part 12 .
  • FIG. 8 shows a schematic structural diagram of some components in a battery 10 according to another embodiment of the present application after assembly
  • FIG. 9 is a cross-sectional view of a battery 10 according to another embodiment of the present application, wherein the section can be perpendicular to the The plane of the axis X of the battery cell 20, and the battery 10 shown in FIG.
  • FIG. 8 is a part of the battery 10 shown in FIG. 9;
  • FIG. 10 shows a partial schematic diagram of another section of the battery 10 according to another embodiment of the present application, The section is a plane perpendicular to the second direction Y.
  • the battery 10 shown in FIG. 10 may be part of the battery 10 shown in FIG. 8 ;
  • FIG. 11 is a partially enlarged view of area B in FIG. 10 .
  • each end plate 13 is provided with at least one second through hole 132, and correspondingly, each isolation member 12 may be provided with at least one second protrusion 124, and each second The two protrusions 124 pass through the corresponding second through holes 132 to fix the end plate 13 and the isolation member 12 .
  • This fixing method is convenient for processing and assembly, and can improve the processing efficiency of the battery 10 .
  • the shapes of the second protrusion 124 and the second through hole 132 can be the same or different, and can be flexibly set according to practical applications.
  • the second through hole 132 and the second convex portion 124 can be configured to have the same shape, for example, they are both rectangular parallelepiped, and the size of the second convex portion 124 is slightly smaller than the second through hole. 132 , so that the second protrusion 124 can pass through the second through hole 132 and be stably fixed in the second through hole 132 , so that the relationship between the end plate 13 and the isolation member 12 is relatively stable.
  • a plurality of second protrusions 124 may be provided on each isolation member 12, and correspondingly, a plurality of second through holes 132 may also be provided on the end plate 13, so that the end plate 13 and the isolation member 12 is more stable.
  • the size of the plurality of second protrusions 124 can be the same or different, and the distance between the plurality of second protrusions 124 can be the same or different, for example, the plurality of second protrusions 124 can be dispersed It is arranged on the edge portion of the isolation component 12 facing the end plate 13 , so that different regions of the isolation component 12 are stably connected to the end plate 13 .
  • FIG. 12 shows a schematic diagram of a battery cell 20 and the corresponding isolation member 12, wherein the battery cell 20 can be a battery cell included in any one of the battery cell groups shown in FIGS. 2 to 12 20, and the first part 22 of the battery cell 20 is arranged in the first region 121 of the corresponding isolation member 12;
  • FIG. 13 is a schematic top view of the isolation member 12, and the isolation member 12 in FIG. 12;
  • FIG. 14 shows a schematic top view of the battery cell 20 and the corresponding isolation member 12.
  • the battery cell 20 and the isolation member 12 shown in FIG. 14 can be the battery cell 20 and the isolation member shown in FIG. Part 12.
  • the battery cell 20 of the embodiment of the present application further includes an electrode terminal 23 , and the electrode terminal 23 can be used to electrically connect with the internal electrode assembly of the battery cell 20 to output the voltage of the battery cell 20 .
  • electrical energy
  • the battery cell may include two electrode terminals 23, which are respectively a positive electrode terminal and a negative electrode terminal. Ear connection.
  • the positive electrode terminal and the positive tab can be connected directly or indirectly, and the negative electrode terminal and the negative tab can be directly connected or indirectly connected.
  • the positive electrode terminal is electrically connected to the positive electrode lug through a connecting member
  • the negative electrode terminal is electrically connected to the negative electrode lug through a connecting member.
  • the two cylindrical bottom surfaces of the battery cell 20 are respectively provided with electrode terminals 23 .
  • the components 14 are arranged at both ends of the plurality of battery cells 20 respectively, so as to realize the electrical connection between the plurality of battery cells 20 , which is convenient for assembly and electrical connection.
  • the plurality of first regions 121 on the isolation member 12 may also be provided with The shape and size are the same, which not only facilitates the processing of the isolation component 12 , but also allows any first region 121 to adapt to any battery cell 20 during installation, thereby improving the efficiency of processing the battery 10 .
  • the shapes of the plurality of first regions 121 provided on the isolation member 12 can be set according to actual applications, for example, the orthographic projection of each first region 121 on the surface of the isolation member 12 facing the electrical cavity 15 can be Rectangle, triangle or ellipse etc. 12 to 14 take the orthographic projection as a rectangle as an example.
  • the rectangle is easy to process.
  • the orthographic projection is a rectangle, the lengths along the axis X of the battery cell 20 at different positions of the orthographic projection are the same, and The length along the second direction Y is also the same.
  • the dimensions of the multiple battery cells 20 in each direction can be relatively uniform, for example, there will be no
  • the fact that some of the battery cells 20 protrude from the other part of the battery cells 20 improves the space utilization of the battery 10 .
  • the length L1 of the orthographic projection of the first region 121 on the surface of the isolation member 12 facing the electrical cavity 15 along the axis X of the battery cell 20 is greater than or equal to that of the battery cell 20 .
  • the length L3 of the cylinder side along the axis X of the battery cell 20; the length L2 of the orthographic projection along the second direction Y is smaller than the diameter L4 of the battery cell 20, wherein the second direction Y is perpendicular to the plane where the orthographic projection is located in the direction of the axis X of the battery cell 20 .
  • the orthographic projection of the first region 121 on the surface of the isolation member 12 facing the electrical chamber 15 can be of any shape, and the length L1 of the orthographic projection along the axis X of the battery cell 20 can be each of the orthographic projections
  • the minimum value of the length of the position along the axial direction X of the battery cell 20, similarly, the length L2 of the orthographic projection along the second direction Y is the length of each position along the second direction Y of the orthographic projection min.
  • the first part 22 of the battery cell 20 located in the first area 121 By setting L1 to be greater than or equal to the length L3, and the length L2 to be smaller than the length L4, for the first part 22 of the battery cell 20 located in the first area 121, the first part 22 is only a partial area of the battery cell 20 rather than the whole, And it is a small area of the battery cell 20 , the first part 22 will not occupy too much area of the collection chamber 16 and will not affect the collection chamber 16 .
  • the first region 121 in the embodiment of the present application can accommodate the first portion 22 of the battery cell 20 , and the first region can be set in any shape according to practical applications.
  • the first region 121 is an opening penetrating through the isolation member 12 .
  • FIG. 15 shows a schematic partial cross-sectional view of two battery cells 20 and the corresponding isolation member 12. The cross-section is a plane perpendicular to the axis X of the battery cells 20, and the two battery cells 20 in FIG. 15 It can be any two adjacent battery cells 20 in the battery 10 as shown in FIGS. .
  • the first area 121 of the embodiment of the present application is an opening on the isolation member 12, on the one hand, the opening is convenient for processing; on the other hand, when the pressure relief mechanism 21 located in the first part 22 is activated, no If there is any obstacle, the discharge can be directly discharged to the collection cavity 16 through the opening, and the thermally runaway battery cell 20 can release the internal pressure and temperature in time, avoid thermal diffusion, and improve the safety of the battery 10 .
  • the isolation part 12 has an arc surface 1211 at the opening, so that the first part 22 fits the isolation part 12 in the opening.
  • the side of the battery cell 20 is a curved surface.
  • the first part 22 is attached to the arc surface 1211 , that is, between the battery cell 20 and the isolation member 12 Having a surface contact instead of a line contact increases the contact area between the two, on the one hand, it can improve the stability of the battery cell 20 in the first region 121, and it is not easy to be displaced; on the other hand, when the insulating member 12 is hot It also improves thermoregulation efficiency when managing components.
  • the first region 121 is a groove on the isolation member 12 , and the groove protrudes from the surface of the second region 122 facing the collection chamber 16 toward the collection chamber 16 .
  • FIG. 17 and FIG. 18 respectively show two partial cross-sectional schematic diagrams of two battery cells 20 and corresponding isolation members 12. The cross-section is a plane perpendicular to the axis X of the battery cell 20.
  • the two battery cells 20 can be any two adjacent battery cells in the battery 10 , and the two battery cells 20 correspond to two adjacent first regions 121 of the same isolation member 12 .
  • the first area 121 can be a groove on the isolation member 12, so that when the battery 10 is in normal use, the electrical cavity 15 and the collection cavity 16 on both sides of the isolation component 12 are relatively closed, and When thermal runaway occurs in any one of the battery cells 20, its pressure relief mechanism 21 activates to discharge the discharge, which can destroy the groove in the first region 121 corresponding to the pressure relief mechanism 21, so that the discharge enters the Collecting cavity 16, meanwhile, because the groove of the first zone 121 of other positions is not damaged, so the discharge (especially high-temperature gas or flame) that enters collecting cavity 16 can not return again through the first zone 121 of other positions
  • the electrical cavity 15 can also avoid the impact on other battery cells 20 , reduce the possibility of thermal diffusion, and improve the safety of the battery 10 .
  • the shape of the cross-section of the groove in the first region 121 along the plane perpendicular to the axis X of the battery cell 20 can be flexible according to practical applications.
  • the shape of the section may be an arc or a rectangle, but this embodiment of the present application is not limited thereto.
  • the cross section of the groove along the first plane is arc-shaped, and the first plane is a plane perpendicular to the axial direction X of the battery cell 20 .
  • Grooves of other shapes occupy less space in the collection chamber 16 and have less influence on the arrangement of the collection chamber 16 .
  • the first part 22 fits in the groove with the isolation member 12, that is, the contact area between the battery cell 20 and the isolation member 12 is an arc surface. , rather than line contact, increases the contact area of the two, on the one hand, it can improve the stability of the battery cell 20 in the first region 121, on the other hand, when the isolation component 12 is a thermal management component, it can also increase the temperature Regulatory efficiency.
  • the cross section of the groove along the first plane is rectangular, and the first plane is a plane perpendicular to the axial direction X of the battery cell 20.
  • the rectangular groove is easy to process, for example, it can be punched way to complete the processing quickly.
  • the isolation member 12 has an arc surface 1212 at the opening of the groove, so that the first part 22 fits with the isolation member 12 at the opening of the groove, that is The surface contact between the battery cell 20 and the isolation member 12 is not a line contact, which increases the contact area between the two.
  • the stability of the battery cell 20 in the first region 121 can be improved.
  • the isolation component 12 is a thermal management component, the temperature adjustment efficiency can also be improved.
  • the bottom wall of the groove will cover the pressure relief mechanism 21 of the battery cell 20 .
  • the avoidance area can be set on the bottom wall of the groove, the position of the avoidance area corresponds to the pressure relief mechanism 21, so that the discharge from the pressure relief mechanism 21 can be discharged to the collection chamber 16 by destroying the avoidance area, Therefore, the internal pressure and temperature of the battery cell 20 are released in time, but the embodiment of the present application is not limited thereto.
  • the avoidance area of the bottom wall of the groove can be realized in any way, for example, a notch can be provided on the bottom wall to form an avoidance area, or a temperature-sensitive material can be provided on the bottom wall to form an avoidance area. Not limited to this.
  • the battery 10 and the electrical device of the embodiment of the present application are described above, and the method and device for preparing the battery of the embodiment of the present application will be described below, and the parts that are not described in detail can be referred to the foregoing embodiments.
  • FIG. 18 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 may include: S310, providing a plurality of battery cells 20, the battery cells 20 are cylinders, and a pressure relief mechanism 21 is provided on the side of the cylinder of the battery cells 20, and the pressure relief mechanism 21 is used to Activate when the internal pressure or temperature of the battery cell 20 reaches a threshold value to release the internal pressure; S320, provide the electrical chamber 15, and the electrical chamber 15 is used to accommodate a plurality of battery cells 20; S330, provide the collection chamber 16, The collection chamber 16 is used to collect the discharge from the battery cell 20 when the pressure relief mechanism 21 is actuated; S340, providing the isolation member 12, which is used to isolate the electrical chamber 15 and the collection chamber 16, and the isolation member 12 includes the first The area 121 and the second area 122, the first area 121 is used to accommodate the first part 22 of the battery cell 20, so that the first part 22 protrudes from the surface of the second area
  • FIG. 19 shows a schematic block diagram of a device 400 for preparing a battery according to an embodiment of the present application.
  • the device 400 may include: a providing module 410, the providing module 410 is used to: provide a plurality of battery cells 20, the battery cells 20 are cylinders, and the cylinder side of the battery cells 20 is provided with a leaking A pressure mechanism 21, the pressure relief mechanism 21 is used to actuate when the internal pressure or temperature of the battery cell 20 reaches a threshold value, so as to release the internal pressure; provide an electrical cavity 15, and the electrical cavity 15 is used to accommodate a plurality of battery cells 20;
  • a collection chamber 16 is provided for collecting discharge from the battery cells 20 when the pressure relief mechanism 21 is actuated; an isolation member 12 is provided for isolating the electrical chamber 15 from the collection chamber 16, the isolation member 12 Including a first area 121 and a second area 122, the first area 121 is used to accommodate the first part 22 of the battery cell 20, so that the first part 22 protrudes from the surface of the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池、用电设备、制备电池的方法和设备。该电池包括:多个圆柱体的电池单体,该电池单体的圆柱侧面上设置有泄压机构;电气腔,用于容纳多个该电池单体;收集腔,用于在该泄压机构致动时收集来自该电池单体的排放物;隔离部件,用于隔离该电气腔和该收集腔,该隔离部件包第一区域和第二区域,该第一区域用于容纳该电池单体的第一部分,以使该第一部分朝向该收集腔凸出于该第二区域的朝向该收集腔的表面,该泄压机构设置于该圆柱侧面的位于该第一部分的区域,以在该泄压机构致动时,使该排放物进入该收集腔。本申请实施例的电池、用电设备、制备电池的方法和设备,能够提高电池的安全性。

Description

电池、用电设备、制备电池的方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池、用电设备、制备电池的方法和设备,能够提高电池的安全性。
第一方面,提供了一种电池,所述电池包括:多个电池单体,所述电池单体为圆柱体,所述电池单体的圆柱侧面上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述电池单体的内部压力;电气腔,用于容纳多个所述电池单体;收集腔,用于在所述泄压机构致动时收集来自所述电池单体的排放物;隔离部件,用于隔离所述电气腔和所述收集腔,所述隔离部件包第一区域和第二区域,所述第一区域用于容纳所述电池单体的第一部分,以使所述第一部分朝向所述收集腔凸出于所述第二区域的朝向所述收集腔的表面,所述泄压机构设置于所述圆柱侧面的位于所述第一部分的区域,以在所述泄压机构致动时,使所述排放物进入所述收集腔。
因此,本申请实施例的电池,可以通过隔离部件的第一区域对电池单体进行定位和固定,避免电池单体的滚动,提高电池的稳定性;并且,第一部分相对于第二区域凸出于电气腔,即可以占用部分收集腔的空间,提高了电池的空间利用率。另外,电池单体的泄压机构位于该第一部分,以在泄压机构致动时,使该排放物进入该收集腔,从而达到定向排放的目的,避免排放物对电气腔的影响,也就避免了排放物与电气腔内高压连接接触,降低了电池***的风险,以提高电池的安全性。
在一些实施例中,所述第一区域在所述隔离部件的朝向所述电气腔的表面上的正投影的沿所述电池单体的轴向上的长度大于或者等于所述电池单体的圆柱侧面沿所 述电池单体的轴向上的长度;所述正投影的沿第二方向上的长度小于所述电池单体的直径,其中,所述第二方向为所述正投影所在平面上垂直于所述电池单体的轴向的方向。
这样,对于电池单体的位于第一区域的第一部分而言,该第一部分仅是电池单体的局部区域而非全部,并且是该电池单体的一小部分区域,第一部分不会占用收集腔太多区域,对收集腔影响较小。
在一些实施例中,所述第一区域为贯穿所述隔离部件的开孔。
一方面开孔便于加工,另一方向,位于第一部分的泄压机构致动时,不存在任何阻碍,可以直接将排放物通过该开孔排至收集腔,热失控的电池单体可以及时泄放内部压力和温度,避免热扩散,提高电池的安全性。
在一些实施例中,所述隔离部件在所述开孔处具有圆弧面,以使所述第一部分在所述开孔内与所述隔离部件贴合。
电池单体与隔离部件之间具有面接触,而非线接触,增加了二者之间的接触面积,一方面可以提高电池单体在该第一区域的稳定性,不易发生移位,另一方面,当隔离部件为热管理部件时,还可以提高温度调节效率。
在一些实施例中,所述第一区域为所述隔离部件上的凹槽,所述凹槽朝向所述收集腔凸出于所述第二区域的朝向所述收集腔的表面。
这样,电池正常使用时,该隔离部件两侧的电气腔和收集腔相对封闭,而当任意一个电池单体发生热失控时,其泄压机构致动排出排放物,该排放物能够破坏与该泄压机构对应的第一区域的凹槽,以使该排放物进入收集腔,同时,由于其他位置的第一区域的凹槽未被破坏,所以进入收集腔的排放物(尤其是高温气体或者火焰)并不会通过其他位置的第一区域重新返回电气腔,也就可以避免对其他电池单体的影响,减少热扩散的可能,提高了电池的安全性。
在一些实施例中,所述凹槽沿第一平面的截面为圆弧形,所述第一平面为垂直于所述电池单体的轴向的平面,采用圆弧面的凹槽相比于其他形状的凹槽,占用收集腔的空间较小,对收集腔的设置影响较小。
在一些实施例中,所述第一部分在所述凹槽内与所述隔离部件贴合。此时,电池单体与隔离部件之间接触面积为圆弧面,而非线接触,增加了二者的接触面积,一方面可以提高电池单体在该第一区域的稳定性,另一方面,当隔离部件为热管理部件时,还可以提高温度调节效率。
在一些实施例中,所述凹槽沿第一平面的截面为矩形,所述第一平面为垂直于所述电池单体的轴向的平面,矩形凹槽结构简单,便于加工。
在一些实施例中,所述隔离部件在所述凹槽的开口处具有圆弧面,以使所述第一部分在所述凹槽的开口处与所述隔离部件贴合,则电池单体与隔离部件之间为面接触,而非线接触,增加了二者的接触面积,一方面可以提高电池单体在该第一区域的稳定性,另一方面,当隔离部件为热管理部件时,还可以提高温度调节效率。
在一些实施例中,其特征在于,所述电气腔内设置有填充物,所述填充物用于填充多个所述电池单体之间的间隙。
一方面,填充物可以为内部电池单体提供束缚,避免电池单体的移动;另一方面,该填充物还可以束缚电池单体的外壳,增加外壳的强度,避免在某个电池单体发生热失控时,电池单体的表面上除第一部分以外的位于电气腔内的部分被破坏,进而可以避免热失控扩散,提高电池的安全性能。
在一些实施例中,所述电气腔内容纳有沿第一方向排列的多个电池单体组,所述多个电池单体组中每个电池单体组中包括沿第二方向排列的多个所述电池单体,所述第一方向、所述第二方向和所述电池单体的轴向相互垂直,同一电池单体组内的多个所述电池单体对应同一个所述隔离部件。
将电池内多个电池单体按规律排列,能够增加电池的空间利用率;将同一电池单体组内的多个电池单体设置为对应同一个隔离部件,则该多个电池单体对应同一个收集腔,即该多个电池单体的泄压机构排出的排放物可以排放至同一个收集腔,节省空间,提高电池的空间利用率。
在一些实施例中,所述同一电池单体组内的多个所述电池单体与同一个所述隔离部件上的多个所述第一区域一一对应,既可以保证每个电池单体发生热失控时能够朝向收集腔定向排出排放物,还可以利用该第一区域定位安装每个电池单体,使得电池单体的第一部分能够位于第一区域,提高电池的稳定性。
在一些实施例中,所述多个电池单体组中相邻的两个电池单体组对应两个相对设置的所述隔离部件,以使两个所述隔离部件之间为所述电气腔,且所述电气腔位于两个所述收集腔之间。
对于沿第一方向上的任意相邻的两个电池单体组,将该两个电池单体组设置于同一个电气腔,可以使两个电池单体组的电池单体之间通过交错设置,节省电气腔的空间;此时,该两个电池单体组对应的两个收集腔可以分别位于该电气腔的相对两侧,这样可以使得该电池沿第一方向的厚度最小。
在一些实施例中,所述电池还包括两个端板,所述两个端板沿所述电池单体的轴向分别设置于所述相邻的两个电池单体组的两侧,所述两个端板与两个所述隔离部件相连以形成所述电气腔。
两个端板沿电池单体的轴向分别设置于相邻的两个电池单体组的两侧,可以进一步限制两个电池单体组内电池单体沿电池单体的轴向的运动,以固定电池单体,增加电池的稳定性。
在一些实施例中,所述两个端板中的每个端板上设置有沿所述第一方向凸出的第一凸部,所述隔离部件上设置有第一通孔,所述第一凸部穿过所述第一通孔,以使所述每个端板与所述隔离部件固定连接;或者,所述两个端板中的每个端板上设置有第二通孔,所述隔离部件上设置有沿所述电池单体的轴向凸出的第二凸部,所述第二凸部穿过所述第二通孔,以使所述每个端板与所述隔离部件固定连接。
通过凸部和通孔之间的相互配合实现隔离部件和端板之间的固定,既便于加工,也便于安装和组合,进而提高了电池的生产效率。
第二方面,提供了一种用电设备,包括:第一方面或者第一方面中任意一个实施例所述的电池。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
第三方面,提供了一种制造电池单体的方法,包括:提供多个电池单体,所述电池单体为圆柱体,所述电池单体的圆柱侧面上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部压力;提供电气腔,所述电气腔用于容纳多个所述电池单体;提供收集腔,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体的排放物;提供隔离部件,所述隔离部件用于隔离所述电气腔和所述收集腔,所述隔离部件包第一区域和第二区域,所述第一区域用于容纳所述电池单体的第一部分,以使所述第一部分朝向所述收集腔凸出于所述第二区域的朝向所述收集腔的表面,所述泄压机构设置于所述圆柱侧面的位于所述第一部分的区域,以在所述泄压机构致动时,使所述排放物进入所述收集腔。
第四方面,提供了一种制造电池单体的设备,包括执行上述第三方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池的局部结构示意图;
图4是本申请一实施例公开的一种电池的截面示意图;
图5是本申请一实施例公开的一种电池的局部截面示意图;
图6是本申请一实施例公开的一种电池的另一局部截面示意图;
图7是图6中区域A的放大图;
图8是本申请一实施例公开的另一种电池的局部结构示意图;
图9是本申请一实施例公开的另一种电池的截面示意图;
图10是本申请一实施例公开的另一种电池的局部截面示意图;
图11是图10中区域B的放大图;
图12是本申请一实施例公开的一种电池单体和隔离部件的示意图;
图13是本申请一实施例公开的一种隔离部件的俯视示意图;
图14是本申请一实施例公开的一种电池单体和隔离部件的俯视示意图;
图15是本申请一实施例公开的一种两个电池单体和隔离部件的截面图;
图16是本申请一实施例公开的另一种两个电池单体和隔离部件的截面图;
图17是本申请一实施例公开的再一种两个电池单体和隔离部件的截面图;
图18是本申请一实施例公开的一种制备电池的方法的示意性流程图;
图19是本申请一实施例公开的一种制备电池的设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的 详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯 (polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数以及电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构产生动作,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或***的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体***、起火。
因此,考虑到在电池装配过程中,以长方体的电池单体为例,相邻的电池单体之间通常通过面积较大的壁相互抵接,因此,可以将泄压机构设置在电池单体的面积较小的壁上,例如,可以将泄压机构设置于电池单体的顶端的盖板上,以避免影响泄压机构的性能,保证电池的安全性能。但是对于非长方体形状的电池单体而言,例如圆柱形电池单体,由于电池单体本身形状的限制,电池单体发生热失控时,若泄压机构设置在顶端圆形的盖板上,会导致泄压不畅,容易引起电池单体***。并且,从顶端盖板处泄压时,泄放的烟气更易和高低压部件连接接触,引发高压打火,加剧了电池单体之间的热蔓延。但若将泄压机构设置于电池单体的其他位置,由于圆柱形电池单体的形状特征,还需要考虑在组装电池时,如何避免对各个电池单体的泄压机构的影响。
因此,本申请实施例提供了一种电池,该电池包括多个圆柱形的电池单体,在电池单体的圆柱侧面上设置泄压机构;该电池还包括通过隔离部件隔离的电气腔和收集腔,电气腔用于容纳多个电池单体;收集腔用于在泄压机构致动时收集来自电池单体的排放物。隔离部件上设置有第一区域和第二区域,第一区域用于容纳电池单体的第一部分,以使该第一部分朝向收集腔凸出于第二区域的朝向收集腔的表面,这样,可以通过该第一区域对电池单体进行定位和固定,避免电池单体的滚动,提高电池的 稳定性;并且,第一部分相对于第二区域凸出于电气腔,即可以占用部分收集腔的空间,提高了电池的空间利用率。另外,电池单体的泄压机构位于该第一部分,以在泄压机构致动时,使该排放物进入该收集腔,从而达到定向排放的目的,避免排放物对电气腔的影响,也就避免了排放物与电气腔内高压连接接触,降低了电池***的风险,以提高电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路***,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池,本申请实施例并不限于此。
图2示出了本申请实施例的电池10的分解结构示意图;图3示出了本申请实施例的电池10中部分部件组装之后的结构示意图,例如,该图3为图2中所示的电池10的部分部件组装之后的结构示意图;图4示出了本申请实施例电池10的截面图,例如,该电池10可以为图2所示的电池10在组装之后的结构,该截面可以为沿垂直于电池中电池单体的轴向的平面。如图2至图4所示,该电池10包括:多个电池单体20,该电池单体20为圆柱体,该电池单体20的圆柱侧面上设置有泄压机构21,该泄压机构21用于在该电池单体20的内部压力或温度达到阈值时致动,以泄放该电池单体20的内部压力;电气腔15,用于容纳多个该电池单体20;收集腔16,用于在该泄压机构21致动时收集来自该电池单体20的排放物;隔离部件12,用于隔离该电气腔15和该收集腔16,该隔离部件12包第一区域121和第二区域122,该第一区域121用于容纳该电 池单体20的第一部分22,以使该第一部分22朝向该收集腔16凸出于该第二区域122的朝向该收集腔16的表面,该泄压机构21设置于该圆柱侧面的位于该第一部分22的区域,以在该泄压机构21致动时,使该排放物进入该收集腔16。
因此,本申请实施例的电池10,通过隔离部件12上设置的第一区域121对圆柱形的电池单体20进行定位和固定,避免电池单体20的滚动,提高电池10的稳定性;并且,电池单体20的第一部分22相对于第二区域122凸出于电气腔15,即电池单体20可以占用部分收集腔16的空间,提高了电池10的空间利用率。另外,电池单体20的泄压机构21设置于该第一部分22,以在泄压机构21致动时,使排放物进入该收集腔16,从而达到定向排放的目的,避免排放物对电气腔15的影响,也就避免了排放物与电气腔15内高压连接接触,降低了电池10***的风险,以提高电池10的安全性。
本申请实施例的电池10包括电气腔15和收集腔16,可选地,该电池10还包括箱体11,以用于形成电气腔15和收集腔16。如图2至图4所示,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。箱体11可以包括两部分,这里分别称为第一箱体部111和第二箱体部112,第一箱体部111和第二箱体部112扣合在一起。第一箱体部111和第二箱体部112的形状可以根据内部容纳的部件的形状而定,例如,可以根据内部容纳的多个电池单体20组合的形状而定,第一箱体部111和第二箱体部112中至少一个具有一个开口。例如,如图2所示,第一箱体部111和第二箱体部112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二箱体部112为中空长方体且具有一个开口1113,而第一箱体部111为板状为例,那么第一箱体部111盖合在第二箱体部112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一箱体部111和第二箱体部112扣合后形成的箱体11内。
再例如,不同于图2所示,该第一箱体部111和第二箱体部112均可以为中空长方体且各自有一个面为开口面,第一箱体部111的开口和第二箱体部112的开口相对设置,并且第一箱体部111和第二箱体部112相互扣合形成具有封闭腔室的箱体11。
箱体11内部包括电气腔15和收集腔16,其中,电气腔15用于容纳多个电池单体20。具体地,该电池10还可以包括汇流部件14,汇流部件14可以用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件14可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件14可通过焊接固定于电池单体20的电极端子。
在本申请实施例中,电气腔15中容纳有多个圆柱形的电池单体20,该多个电池单体20可以按照一定规律排列组装,以提高电气腔15的空间利用率,进而提高电池10的能量密度。例如,多个电池单体20的尺寸可以设置为相同的或者不同的,本申请实施例中以多个电池单体20的尺寸相同为例进行说明,这样可以使得多个电池单体20的容量相同,以便于实现多个电池单体20之间的电连接,也便于排列该多个电池单体20。
具体地,如图2至图4所示,电气腔15内容纳有沿第一方向Z排列的多个电池单体组,多个电池单体组中每个电池单体组中包括沿第二方向Y排列的多个电池单体 20,第一方向Z、第二方向Y和电池单体20的轴向X相互垂直,其中,对于圆柱体的电池单体20,该电池单体20的轴向X为圆柱体的轴向X。将电气腔15内的多个电池单体20排列为阵列,可以有效利用电气腔15的空间。
并且,考虑到圆柱体的特点,可以将多个电池单体组错位设置,以减少电池单体20之间的空隙,提高空间利用率。具体地,如图2至图4所示,对于垂直于第一方向Z的平面,多个电池单体20的轴线在该平面上的投影相互不重叠。进一步的,该多个电池单体20的轴线在该平面上的投影的间距可以相等,以使得不同电池单体组中的电池单体20可以错位设置,合理利用空间,减小了电池单体20之间的空隙。
本申请实施例的电池单体20的圆柱侧面上设置有泄压机构21,该圆柱侧面为环绕电池单体20的轴向X的曲面,即圆柱体的侧面。该泄压机构21可以通过多种方式设置。例如,该泄压机构21可以为电池单体20上的刻痕,使得电池单体20的外壳在该泄压机构21处的厚度小于其他区域的厚度,即该泄压机构21处强度相对薄弱,这样,当电池单体20发生热失控时,其内部温度或者压力达到预设值,该泄压机构21可以在刻痕处被破坏,以泄放内部压力或温度。再例如,该泄压机构21还可以设置为温敏材料,这样,当电池单体20发生热失控时,其内部温度达到预设值,该泄压机构21可以被融化,以泄放内部压力或温度,但本申请实施例并不限于此。
在本申请实施例中,电池10还包括收集腔16,以在泄压机构21致动后,收集通过该泄压机构21排出的排放物,以避免排放物接触高压部件而造成短路。具体地,为了实现该泄压机构21朝向收集腔16的定向泄压,该电池10包括隔离部件12,该隔离部件12可以用于隔离电气腔15和收集腔16。如图2至图4所示,该隔离部件12包括第一区域121和第二区域122,该第一区域121用于容纳电池单体20的第一部分22,以使该第一部分22朝向该收集腔16凸出于该第二区域122的朝向该收集腔16的表面;并且,该泄压机构21设置于该圆柱侧面的位于该第一部分22的区域,以在该泄压机构21致动时,通过该泄压机构21排出排放物能够顺利进入该收集腔16。
应理解,本申请实施例的隔离部件12可以作为热管理部件,即该隔离部件12可以容纳流体以给多个电池单体20调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体20加热或者冷却。在给电池单体20冷却或降温的情况下,该隔离部件12用于容纳冷却流体以给多个电池单体20降低温度;另外,隔离部件12也可以用于加热以给多个电池单体20升温,本申请实施例对此并不限定。可选的,上述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
可选地,如图2至图4所示,同一电池单体组内的多个电池单体20对应同一个隔离部件12。考虑到电池10内电池单体20的排列规律,将同一电池单体组内的多个电池单体20设置为对应同一个隔离部件12,则该多个电池单体20对应同一个收集腔16,即该多个电池单体20的泄压机构21排出的排放物可以排放至同一个收集腔16,节省空间,提高电池10的空间利用率。
如图2至图4所示,同一电池单体组内的多个电池单体20与同一个隔离部件12上的多个第一区域121一一对应。同一个电池单体组内多个电池单体20中每个电池 单体20均对应设置有第一区域121时,当任意一个电池单体20发生热失控时,都可以通过隔离部件12的与之对应的第一区域121定向排出排放物;另外,电池单体20为圆柱体,将同一个电池单体组内的多个电池单体20设置为与同一个隔离部件12上的多个第一区域121一一对应,既可以保证每个电池单体20发生热失控时能够朝向收集腔16定向排出排放物,还可以利用该第一区域121定位安装每个电池单体20,使得电池单体20的第一部分22能够位于第一区域121,提高电池10的稳定性。
可选地,多个电池单体组中相邻的两个电池单体组对应两个相对设置的隔离部件12,以使两个隔离部件12之间为电气腔15,且电气腔15位于两个收集腔16之间。如图2至图4所示,对于沿第一方向Z上的任意相邻的两个电池单体组,将该两个电池单体组设置于同一个电气腔15,可以使两个电池单体组的电池单体20之间通过交错设置,节省电气腔15的空间;此时,该两个电池单体组对应的两个收集腔16可以分别位于该电气腔15的相对两侧,这样可以使得该电池10沿第一方向Z的厚度最小,尤其是在该电池10中仅包括两个电池单体组时,既便于安装定位各个电池单体20,还可以极大地提高该电池10的空间利用率。
可选地,本申请实施例的电池10还包括:两个端板13,两个端板13沿电池单体20的轴向X分别设置于相邻的两个电池单体组的两侧,两个端板13与两个隔离部件12相连以形成电气腔15。本申请实施例的多个隔离部件12为沿第一方向Z设置的,例如,将两个隔离部件12沿第一方向Z分别设置于相邻的两个电池单体组的两侧,这样,该两个隔离部件12可以限制其内部多个电池单体20沿第一方向Z的移动,而两个端板13沿电池单体20的轴向X分别设置于相邻的两个电池单体组的两侧,可以进一步限制两个电池单体组内电池单体沿电池单体20的轴向X的运动,以固定电池单体20,增加电池10的稳定性。
可选地,如图2至图4所示,端板13的朝向电池单体20的表面还可以设置有限位结构133,以用于固定电池单体20。具体地,该限位结构133可以与电池单体20一一对应,以用于限制每个电池单体20的移动;该限位结构133可以为端板13表面上朝向电池单体20凸出的凸起结构,例如,可以对应圆柱形单体20设置为如图所示的括号形限位结构133,以限制该电池单体20沿第一方向Z或者沿第二方向Y上的移动,进一步提高电池10的稳定性。
应理解,如图2至图4所示,本申请实施例的端板13、隔离部件12以及第二箱体部112可以用于形成电气腔15。可选地,该电气腔15内设置有填充物151,填充物151用于填充多个电池单体20之间的间隙。图15示出了本申请实施例的电气腔15的示意图,如图15所示,由于电池单体20为圆柱形,而通过端板13、隔离部件12以及第二箱体部112形成的电气腔15通常为长方体,因此,该电气腔15中存在间隙,在该间隙内设置填充物151,一方面可以为内部电池单体20提供束缚,避免电池单体20的移动;另一方面,该填充物151还可以束缚电池单体20的外壳,避免在某个电池单体20发生热失控时,电池单体20的表面上除第一部分22以外的其他位于电气腔15内的部分被破坏,进而可以避免热失控扩散,提高电池10的安全性能。
可选地,在电气腔15中设置填充物151的情况下,电池单体20的位于电气腔 15内的部分由于填充物151的束缚作用,强度增加,其强度大于第一部分22的强度,那么,该电池单体20发生热失控时,即使该电池单体20不设置泄压机构21,该第一部分22被破坏的概率也远大于其他位于电气腔15内的部分,因此,电池单体20可以不设置有泄压机构21,或者说,该电池单体20的泄压机构21即为该第一部分21,而无需通过额外设置刻痕区域或者温敏区域形成泄压机构21,可以简化电池单体20的加工过程,同样可以保证该电池单体20定向***,并朝向收集腔16排出排放物。
可选地,本申请实施例的填充物151可以选择散热效果较好的材料,例如,该填充物151可以采用导热胶,但本申请实施例并不限于此。
应理解,本申请实施例的端板13和隔离部件12之间的连接方式可以根据实际应用灵活设置,本申请实施例并不限于此。例如,两个端板13中的每个端板13上设置有沿第一方向Z凸出的第一凸部131,隔离部件12上设置有第一通孔123,第一凸部131穿过第一通孔123,以使每个端板13与隔离部件12固定连接。具体地,图6示出了本申请实施例的电池10的另一截面的局部示意图,该截面为为垂直于第二方向Y的平面,该图6所示的电池10可以为如图2至图4所示的电池10;图7为图6中区域A的局部放大图。如图6和图7所示,每个端板13上可以设置有至少一个第一凸部131,该第一凸部131朝向隔离部件12凸出,与之对应的,每个隔离部件12上可以设置有至少一个第一通孔123,每个第一凸部131穿过对应的第一通孔123,即可固定端板13与隔离部件12,这种固定方式便于加工和组装,能够提高电池10的加工效率。
可选地,第一通孔123与第一凸部131的形状可以相同或者不同,并且可以根据实际应用灵活设置。例如,如图6和图7所示,可以将第一通孔123与第一凸部131的形状设置为相同,例如均设置为长方体,并且第一凸部131的尺寸略小于第一通孔123的尺寸,以使得第一凸部131能够穿过第一通孔123,并稳定固定在该第一通孔123内,进而使得端板13和隔离部件12之间相对稳定。
可选地,每个端板13上可以设置多个第一凸部131,与之对应地,隔离部件12上也可以设置有多个第一通孔123,以使得该端板13与隔离部件12之间更加稳定。其中,该多个第一凸部131的尺寸可以相同或者不同,并且,该多个第一凸部131之间的间距可以相同或者不同,例如,可以将该多个第一凸部131分散地设置于端板13的朝向隔离部件12的边缘部分,以使得该端板13的不同区域均与隔离部件12之间均稳定连接。
再例如,与之类似的,两个端板13中的每个端板13上设置有第二通孔132,隔离部件12上设置有沿电池单体20的轴向X凸出的第二凸部124,第二凸部124穿过第二通孔132,以使每个端板13与隔离部件12固定连接。图8示出了本申请另一实施例的电池10中部分部件组装之后的结构示意图,图9为本申请另一实施例的电池10的截面图,其中,该截面可以为垂直于电池10中电池单体20的轴向X的平面,并且图8的电池10为图9所示的电池10的一部分;图10示出了本申请另一实施例的电池10的另一截面的局部示意图,该截面为为垂直于第二方向Y的平面,该图10所示的电池10可以为如图8所示的电池10的部分;图11为图10中区域B的局部放大图。如图8至图11所示,每个端板13上设置有至少一个第二通孔132,与之对应的,每个隔离部件 12上可以设置有至少一个第二凸部124,每个第二凸部124穿过对应的第二通孔132,即可固定端板13与隔离部件12,这种固定方式便于加工和组装,能够提高电池10的加工效率。
可选地,第二凸部124与第二通孔132的形状可以相同或者不同,并且可以根据实际应用灵活设置。例如,如图8至图11所示,可以将第二通孔132与第二凸部124的形状设置为相同,例如均设置为长方体,并且第二凸部124的尺寸略小于第二通孔132的尺寸,以使得第二凸部124能够穿过第二通孔132,并稳定固定在该第二通孔132内,进而使得端板13和隔离部件12之间相对稳定。
可选地,每个隔离部件12上可以设置多个第二凸部124,与之对应地,端板13上也可以设置有多个第二通孔132,以使得该端板13与隔离部件12之间更加稳定。其中,该多个第二凸部124的尺寸可以相同或者不同,并且,该多个第二凸部124之间的间距可以相同或者不同,例如,可以将该多个第二凸部124分散地设置于隔离部件12的朝向端板13的边缘部分,以使得该隔离部件12的不同区域均与端板13之间均稳定连接。
下面将结合附图,对本申请实施例的电池单体20以及与之对应的隔离部件12进行详细描述。图12示出了电池单体20以及与之对应的隔离部件12的示意图,其中,该电池单体20可以为如图2至图12所示的任意一个电池单体组中包括的电池单体20,且该电池单体20的第一部分22设置于对应的隔离部件12的第一区域121;图13为隔离部件12的俯视示意图,该图13的隔离部件12可以为图12中的隔离部件12;图14示出了电池单体20以及与之对应的隔离部件12的俯视示意图,该图14所示的电池单体20和隔离部件12可以为图12所示的电池单体20和隔离部件12。
如图12至图14所示,本申请实施例的电池单体20还包括电极端子23,电极端子23可以用于与电池单体20的内部的电极组件电连接,以输出电池单体20的电能。具体地,该电池单体可以包括两个电极端子23,该两个电极端子分别为正极电极端子和负极电极端子,正极电极端子用于与正极极耳电连接,负极电极端子用于与负极极耳电连接。正极电极端子与正极极耳可以直接连接,也可以间接连接,负极电极端子与负极极耳可以直接连接,也可以间接连接。例如,正极电极端子通过一个连接构件与正极极耳电连接,负极电极端子通过一个连接构件与负极极耳电连接。
可选地,如图12至图14所示,对于本申请实施例的圆柱形电池单体20,该电池单体20的两个圆柱底面分别设置有电极端子23,这样,通过将多个汇流部件14分别设置于多个电池单体20的两端,即可实现多个电池单体20之间的电连接,便于组装和电连接。
可选地,如图12至图14所示,考虑到电池10中设置的多个电池单体20的形状和尺寸通常相同,对应的,也可以设置隔离部件12上多个第一区域121的形状和尺寸相同,这样既便于隔离部件12的加工,又可以在安装过程中,使得任意一个第一区域121可以适应任意一个电池单体20,进而提高加工电池10的效率。
可选地,隔离部件12上设置的多个第一区域121的形状可以根据实际应用进行设置,例如,每个第一区域121在隔离部件12的朝向电气腔15的表面上的正投影可以 为矩形、三角形或者椭圆形等。图12至图14以该正投影为矩形为例,一方面矩形便于加工,另一方面,正投影为矩形时,该正投影不同位置处沿电池单体20的轴向X的长度相同,且沿第二方向Y的长度也相同,这样,当圆柱体电池单体20的局部设置于该第一区域121时,使得多个电池单体20的个方向尺寸也能够相对均匀,例如不会存在部分电池单体20凸出于另一部分电池单体20的情况,提高了电池10的空间利用率。
如图12至图14所示,第一区域121在隔离部件12的朝向电气腔15的表面上的正投影的沿电池单体20的轴向X上的长度L1大于或者等于电池单体20的圆柱侧面沿电池单体20的轴向X上的长度L3;正投影的沿第二方向Y上的长度L2小于电池单体20的直径L4,其中,第二方向Y为正投影所在平面上垂直于电池单体20的轴向X的方向。
具体地,第一区域121在隔离部件12的朝向电气腔15的表面上的正投影可以为任意形状,该正投影的沿电池单体20的轴向X上的长度L1可以为该正投影各个位置的沿电池单体20的轴向X上的长度中最小值,类似的,该正投影的沿第二方向Y上的长度L2为该正投影各个位置的沿第二方向Y上的长度中最小值。通过设置L1大于或者等于长度L3,长度L2小于长度L4,对于电池单体20的位于第一区域121的第一部分22而言,该第一部分22仅是电池单体20的局部区域而非全部,并且是该电池单体20的一小部分区域,第一部分22不会占用收集腔16太多区域,并不会影响收集腔16。
应理解,本申请实施例的第一区域121可以容纳电池单体20的第一部分22,该第一区域可以根据实际应用设置为任意形状。例如,该第一区域121为贯穿隔离部件12的开孔。图15示出了两个电池单体20与对应的隔离部件12的局部截面示意图,该截面为垂直于电池单体20的轴向X的平面,并且,图15中的两个电池单体20可以为如图2至图14所示的电池10中的任意两个相邻的电池单体20,该两个电池单体20对应于同一个隔离部件12的两个相邻的第一区域121。
如图15所示,本申请实施例的第一区域121为隔离部件12上的开孔时,一方面开孔便于加工,另一方向,位于第一部分22的泄压机构21致动时,不存在任何阻碍,可以直接将排放物通过该开孔排至收集腔16,热失控的电池单体20可以及时泄放内部压力和温度,避免热扩散,提高电池10的安全性。
可选地,隔离部件12在开孔处具有圆弧面1211,以使第一部分22在开孔内与隔离部件12贴合。如图15所示,电池单体20的侧面为曲面,通过设置第一区域121具有圆弧面1211,使得第一部分22与圆弧面1211贴合,即电池单体20与隔离部件12之间具有面接触,而非线接触,增加了二者的接触面积,一方面可以提高电池单体20在该第一区域121的稳定性,不易发生移位,另一方面,当隔离部件12为热管理部件时,还可以提高温度调节效率。
再例如,第一区域121为隔离部件12上的凹槽,凹槽朝向收集腔16凸出于第二区域122的朝向收集腔16的表面。图17和图18分别示出了两个电池单体20与对应的隔离部件12的两个局部截面示意图,该截面为垂直于电池单体20的轴向X的平面,图17和图18中的两个电池单体20可以为电池10中的任意两个相邻的电池单体,并且,该两个电池单体20对应于同一个隔离部件12的两个相邻的第一区域121。
如图17和图18所示,该第一区域121可以为隔离部件12上的凹槽,这样,电池10正常使用时,该隔离部件12两侧的电气腔15和收集腔16相对封闭,而当任意一个电池单体20发生热失控时,其泄压机构21致动排出排放物,该排放物能够破坏与该泄压机构21对应的第一区域121的凹槽,以使该排放物进入收集腔16,同时,由于其他位置的第一区域121的凹槽未被破坏,所以进入收集腔16的排放物(尤其是高温气体或者火焰)并不会通过其他位置的第一区域121重新返回电气腔15,也就可以避免对其他电池单体20的影响,减少热扩散的可能,提高了电池10的安全性。
可选地,该第一区域121的凹槽的沿垂直于电池单体20的轴向X的平面的截面的形状可以根据实际应用灵活这里。例如,该截面的形状可以为圆弧形或者矩形,但本申请实施例并不限于此。
例如,如图16所示,该凹槽沿第一平面的截面为圆弧形,该第一平面为垂直于电池单体20的轴向X的平面,采用圆弧面的凹槽相比于其他形状的凹槽,占用收集腔16的空间较小,对收集腔16的设置影响较小。
进一步地,该凹槽沿第一平面的截面为圆弧形时,该第一部分22在凹槽内与隔离部件12贴合,即电池单体20与隔离部件12之间接触面积为圆弧面,而非线接触,增加了二者的接触面积,一方面可以提高电池单体20在该第一区域121的稳定性,另一方面,当隔离部件12为热管理部件时,还可以提高温度调节效率。
再例如,如图17所示,凹槽沿第一平面的截面为矩形,第一平面为垂直于电池单体20的轴向X的平面,该矩形凹槽便于加工,例如,可以通过冲压的方式快速完成加工。
进一步地,该凹槽沿第一平面的截面为矩形时,隔离部件12在凹槽的开口处具有圆弧面1212,以使第一部分22在凹槽的开口处与隔离部件12贴合,即电池单体20与隔离部件12之间为面接触,而非线接触,增加了二者的接触面积,一方面可以提高电池单体20在该第一区域121的稳定性,另一方面,当隔离部件12为热管理部件时,还可以提高温度调节效率。
应理解,如图16和图17所示,当第一区域121采用凹槽时,该凹槽的底壁会遮挡电池单体20的泄压机构21,为了提高该泄压机构21向收集腔16排出排放物的速度,可以在凹槽的底壁设置避让区,该避让区的位置对应于泄压机构21,使得泄压机构21排出的排放物能够通过破坏避让区排出至收集腔16,从而及时泄放电池单体20的内部压力和温度,但本申请实施例并不限于此。
可选地,该凹槽底壁的避让区可以通过任意方式实现,例如,可以在底壁设置刻痕以形成避让区,或者在底壁设置温敏材料以形成避让区,本申请实施例并不限于此。
上文描述了本申请实施例的电池10和用电设备,下面将描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
图18示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图18所示,该方法300可以包括:S310,提供多个电池单体20,电池单体20为圆柱体,电池单体20的圆柱侧面上设置有泄压机构21,泄压机构21用于在电池单体20的内部 压力或温度达到阈值时致动,以泄放内部压力;S320,提供电气腔15,电气腔15用于容纳多个电池单体20;S330,提供收集腔16,收集腔16用于在泄压机构21致动时收集来自电池单体20的排放物;S340,提供隔离部件12,隔离部件12用于隔离电气腔15和收集腔16,隔离部件12包第一区域121和第二区域122,第一区域121用于容纳电池单体20的第一部分22,以使第一部分22朝向收集腔16凸出于第二区域122的朝向收集腔16的表面,泄压机构21设置于圆柱侧面的位于第一部分22的区域,以在泄压机构21致动时,使排放物进入收集腔16。
图19示出了本申请一个实施例的制备电池的设备400的示意性框图。如图19所示,该设备400可以包括:提供模块410,该提供模块410用于:提供多个电池单体20,电池单体20为圆柱体,电池单体20的圆柱侧面上设置有泄压机构21,泄压机构21用于在电池单体20的内部压力或温度达到阈值时致动,以泄放内部压力;提供电气腔15,电气腔15用于容纳多个电池单体20;提供收集腔16,收集腔16用于在泄压机构21致动时收集来自电池单体20的排放物;提供隔离部件12,隔离部件12用于隔离电气腔15和收集腔16,隔离部件12包第一区域121和第二区域122,第一区域121用于容纳电池单体20的第一部分22,以使第一部分22朝向收集腔16凸出于第二区域122的朝向收集腔16的表面,泄压机构21设置于圆柱侧面的位于第一部分22的区域,以在泄压机构21致动时,使排放物进入收集腔16。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种电池,其特征在于,包括:
    多个电池单体(20),所述电池单体(20)为圆柱体,所述电池单体(20)的圆柱侧面上设置有泄压机构(21),所述泄压机构(21)用于在所述电池单体(20)的内部压力或温度达到阈值时致动,以泄放所述电池单体(20)的内部压力;
    电气腔(15),用于容纳多个所述电池单体(20);
    收集腔(16),用于在所述泄压机构(21)致动时收集来自所述电池单体(20)的排放物;
    隔离部件(12),用于隔离所述电气腔(15)和所述收集腔(16),所述隔离部件(12)包第一区域(121)和第二区域(122),所述第一区域(121)用于容纳所述电池单体(20)的第一部分(22),以使所述第一部分(22)朝向所述收集腔(16)凸出于所述第二区域(122)的朝向所述收集腔(16)的表面,所述泄压机构(21)设置于所述圆柱侧面的位于所述第一部分(22)的区域,以在所述泄压机构(21)致动时,使所述排放物进入所述收集腔(16)。
  2. 根据权利要求1所述的电池,其特征在于,所述第一区域(121)在所述隔离部件(12)的朝向所述电气腔(15)的表面上的正投影的沿所述电池单体(20)的轴向上的长度大于或者等于所述电池单体(20)的圆柱侧面沿所述电池单体(20)的轴向上的长度;所述正投影的沿第二方向上的长度小于所述电池单体(20)的直径,其中,所述第二方向为所述正投影所在平面上垂直于所述电池单体(20)的轴向的方向。
  3. 根据权利要求1或2所述的电池,其特征在于,所述第一区域(121)为贯穿所述隔离部件(12)的开孔。
  4. 根据权利要求3所述的电池,其特征在于,所述隔离部件(12)在所述开孔处具有圆弧面(1211),以使所述第一部分(22)在所述开孔内与所述隔离部件(12)贴合。
  5. 根据权利要求1或2所述的电池,其特征在于,所述第一区域(121)为所述隔离部件(12)上的凹槽,所述凹槽朝向所述收集腔(16)凸出于所述第二区域(122)的朝向所述收集腔(16)的表面。
  6. 根据权利要求5所述的电池,其特征在于,所述凹槽沿第一平面的截面为圆弧形,所述第一平面为垂直于所述电池单体(20)的轴向的平面。
  7. 根据权利要求6所述的电池,其特征在于,所述第一部分(22)在所述凹槽内与所述隔离部件(12)贴合。
  8. 根据权利要求5所述的电池,其特征在于,所述凹槽沿第一平面的截面为矩形,所述第一平面为垂直于所述电池单体(20)的轴向的平面。
  9. 根据权利要求8所述的电池,其特征在于,所述隔离部件(12)在所述凹槽的开口处具有圆弧面(1212),以使所述第一部分(22)在所述凹槽的开口处与所述隔离部件(12)贴合。
  10. 根据权利要求1至9中任一项所述的电池,其特征在于,所述电气腔(15)内设置有填充物(151),所述填充物(151)用于填充多个所述电池单体(20)之间的间隙。
  11. 根据权利要求1至10中任一项所述的电池,其特征在于,所述电气腔(15)内容纳有沿第一方向排列的多个电池单体组,所述多个电池单体组中每个电池单体组中包括沿第二方向排列的多个所述电池单体(20),所述第一方向、所述第二方向和所述电池单体(20)的轴向相互垂直,
    同一电池单体组内的多个所述电池单体(20)对应同一个所述隔离部件(12)。
  12. 根据权利要求11所述的电池,其特征在于,所述同一电池单体组内的多个所述电池单体(20)与同一个所述隔离部件(12)上的多个所述第一区域(121)一一对应。
  13. 根据权利要求11或12所述的电池,其特征在于,所述多个电池单体组中相邻的两个电池单体组对应两个相对设置的所述隔离部件(12),以使两个所述隔离部件(12)之间为所述电气腔(15),且所述电气腔(15)位于两个所述收集腔(16)之间。
  14. 根据权利要求13所述的电池,其特征在于,所述电池还包括两个端板(13),所述两个端板(13)沿所述电池单体(20)的轴向分别设置于所述相邻的两个电池单体组的两侧,所述两个端板(13)与两个所述隔离部件(12)相连以形成所述电气腔(15)。
  15. 根据权利要求14所述的电池,其特征在于,所述两个端板(13)中的每个端板(13)上设置有沿所述第一方向凸出的第一凸部(131),所述隔离部件(12)上设置有第一通孔(123),所述第一凸部(131)穿过所述第一通孔(123),以使所述每个端板(13)与所述隔离部件(12)固定连接;或者,
    所述两个端板(13)中的每个端板(13)上设置有第二通孔(132),所述隔离部件(12)上设置有沿所述电池单体(20)的轴向凸出的第二凸部(124),所述第二凸部(124)穿过所述第二通孔(132),以使所述每个端板(13)与所述隔离部件(12)固定连接。
  16. 一种用电设备,其特征在于,包括:根据权利要求1至15中任一项所述的电池,所述电池用于为所述用电设备提供电能。
  17. 一种制备电池的方法,其特征在于,包括:
    提供多个电池单体(20),所述电池单体(20)为圆柱体,所述电池单体(20)的圆柱侧面上设置有泄压机构(21),所述泄压机构(21)用于在所述电池单体(20)的内部压力或温度达到阈值时致动,以泄放所述内部压力;
    提供电气腔(15),所述电气腔(15)用于容纳多个所述电池单体(20);
    提供收集腔(16),所述收集腔(16)用于在所述泄压机构(21)致动时收集来自所述电池单体(20)的排放物;
    提供隔离部件(12),所述隔离部件(12)用于隔离所述电气腔(15)和所述收集腔(16),所述隔离部件(12)包第一区域(121)和第二区域(122),所述第一区域(121)用于容纳所述电池单体(20)的第一部分(22),以使所述第一部分(22) 朝向所述收集腔(16)凸出于所述第二区域(122)的朝向所述收集腔(16)的表面,所述泄压机构(21)设置于所述圆柱侧面的位于所述第一部分(22)的区域,以在所述泄压机构(21)致动时,使所述排放物进入所述收集腔(16)。
  18. 一种制备电池的设备,其特征在于,包括:提供模块(410),所述提供模块(410)用于:
    提供多个电池单体(20),所述电池单体(20)为圆柱体,所述电池单体(20)的圆柱侧面上设置有泄压机构(21),所述泄压机构(21)用于在所述电池单体(20)的内部压力或温度达到阈值时致动,以泄放所述内部压力;
    提供电气腔(15),所述电气腔(15)用于容纳多个所述电池单体(20);
    提供收集腔(16),所述收集腔(16)用于在所述泄压机构(21)致动时收集来自所述电池单体(20)的排放物;
    提供隔离部件(12),所述隔离部件(12)用于隔离所述电气腔(15)和所述收集腔(16),所述隔离部件(12)包第一区域(121)和第二区域(122),所述第一区域(121)用于容纳所述电池单体(20)的第一部分(22),以使所述第一部分(22)朝向所述收集腔(16)凸出于所述第二区域(122)的朝向所述收集腔(16)的表面,所述泄压机构(21)设置于所述圆柱侧面的位于所述第一部分(22)的区域,以在所述泄压机构(21)致动时,使所述排放物进入所述收集腔(16)。
PCT/CN2022/071925 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备 WO2023133784A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237026364A KR102659525B1 (ko) 2022-01-14 2022-01-14 배터리, 전기 설비, 배터리의 제조 방법 및 제조 설비
JP2023547687A JP2024504204A (ja) 2022-01-14 2022-01-14 電池、電力消費機器、電池を製造する方法と機器
PCT/CN2022/071925 WO2023133784A1 (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备
EP22917635.9A EP4261998A4 (en) 2022-01-14 2022-01-14 BATTERY, ELECTRICAL DEVICE, BATTERY MANUFACTURING METHOD AND DEVICE
CN202280024742.0A CN117063338A (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备
US18/353,706 US11909068B2 (en) 2022-01-14 2023-07-17 Battery, power consuming apparatus, and method and apparatus for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071925 WO2023133784A1 (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,706 Continuation US11909068B2 (en) 2022-01-14 2023-07-17 Battery, power consuming apparatus, and method and apparatus for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2023133784A1 true WO2023133784A1 (zh) 2023-07-20

Family

ID=87280046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071925 WO2023133784A1 (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备

Country Status (6)

Country Link
US (1) US11909068B2 (zh)
EP (1) EP4261998A4 (zh)
JP (1) JP2024504204A (zh)
KR (1) KR102659525B1 (zh)
CN (1) CN117063338A (zh)
WO (1) WO2023133784A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064283A1 (en) * 2001-09-28 2003-04-03 Seiichi Uemoto Battery module
CN207587793U (zh) * 2017-09-29 2018-07-06 郑州宇通客车股份有限公司 一种电池壳体、安全电池、电池模组、电池箱及车辆
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125641A1 (ja) * 2013-02-18 2014-08-21 日立ビークルエナジー株式会社 電池ブロック及び二次電池モジュ-ル
US11482744B2 (en) * 2014-03-25 2022-10-25 Teledyne Scientific & Imaging, Llc Multi-functional structure for thermal management and prevention of failure propagation
KR102246483B1 (ko) * 2016-10-21 2021-04-30 주식회사 엘지화학 측면 벤트를 포함하는 원통형 전지
DE102017214289A1 (de) * 2017-08-16 2019-02-21 Robert Bosch Gmbh Batteriemodul und Fahrzeug mit dem Batteriemodul
US10658646B2 (en) * 2017-09-12 2020-05-19 Chongqing Jinkang New Energy Vehicle Co., Ltd. Integrated current collector for electric vehicle battery cell
CN208298909U (zh) * 2018-01-29 2018-12-28 浙江美都海创锂电科技有限公司 一种安全防爆圆柱型电池模块
CN210245599U (zh) * 2019-07-16 2020-04-03 常州微宙电子科技有限公司 一种针式锂离子电池
JPWO2021111842A1 (zh) * 2019-12-03 2021-06-10
EP3965211B1 (en) 2020-07-10 2023-11-29 Contemporary Amperex Technology Co., Limited Box body for battery, battery, electric device, and method and device for preparing battery
CA3156580A1 (en) 2020-07-10 2022-01-13 Chengdu Liang Battery, power consumption device, method and device for preparing a battery
EP3965213B1 (en) * 2020-07-10 2023-03-29 Contemporary Amperex Technology Co., Limited Battery and related apparatus thereof, preparation method and preparation device
CN114175378B (zh) * 2020-07-10 2023-12-19 宁德时代新能源科技股份有限公司 电池、用电装置、制备电池的方法和装置
US20220021068A1 (en) * 2020-07-10 2022-01-20 Contemporary Amperex Technology Co., Limited Battery, and related device, preparation method and preparation apparatus thereof
CN213878313U (zh) * 2021-01-11 2021-08-03 天津市捷威动力工业有限公司 一种电池模组结构
CA3193858A1 (en) * 2021-09-28 2023-03-28 Mingguang GU Pressure relief apparatus, battery cell, battery, and electrical device
EP4254622A4 (en) * 2021-10-15 2024-03-06 Contemporary Amperex Technology Co Ltd BATTERY, ELECTRICAL DEVICE AND METHOD AND DEVICE FOR PRODUCING THE BATTERY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064283A1 (en) * 2001-09-28 2003-04-03 Seiichi Uemoto Battery module
CN207587793U (zh) * 2017-09-29 2018-07-06 郑州宇通客车股份有限公司 一种电池壳体、安全电池、电池模组、电池箱及车辆
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261998A4 *

Also Published As

Publication number Publication date
US20230361424A1 (en) 2023-11-09
US11909068B2 (en) 2024-02-20
EP4261998A4 (en) 2024-04-10
KR20230122170A (ko) 2023-08-22
EP4261998A1 (en) 2023-10-18
KR102659525B1 (ko) 2024-04-19
JP2024504204A (ja) 2024-01-30
CN117063338A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
EP4096004A1 (en) Case of battery, battery, electronic device, and method and device for preparing battery
EP4092818B1 (en) Battery box body, battery, electric device, and method for preparing box body
WO2022067810A1 (zh) 电池、装置、电池的制备方法以及制备装置
WO2023134479A1 (zh) 电池和用电设备
WO2023141774A1 (zh) 电池、用电设备、制造电池的方法和设备
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
US20230344033A1 (en) Battery, power consuming device, and method and device for manufacturing battery
US11817601B2 (en) Battery, power consumption device, method and device for producing battery
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023133756A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
EP4270576A1 (en) Battery, electrical device, and battery preparation method and device
WO2024040534A1 (zh) 电池单体的壳体、电池单体、电池和用电设备
CN218414822U (zh) 电池单体、电池和用电设备
WO2024082093A1 (zh) 电池单体、电池和用电设备
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
CN117256074A (zh) 连接构件、电池单体、电池和用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022917635

Country of ref document: EP

Effective date: 20230711

ENP Entry into the national phase

Ref document number: 20237026364

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026364

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023547687

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280024742.0

Country of ref document: CN