WO2022088648A1 - Metal composite pipe and manufacturing method therefor - Google Patents

Metal composite pipe and manufacturing method therefor Download PDF

Info

Publication number
WO2022088648A1
WO2022088648A1 PCT/CN2021/093114 CN2021093114W WO2022088648A1 WO 2022088648 A1 WO2022088648 A1 WO 2022088648A1 CN 2021093114 W CN2021093114 W CN 2021093114W WO 2022088648 A1 WO2022088648 A1 WO 2022088648A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal composite
base material
composite pipe
pipe
surfacing layer
Prior art date
Application number
PCT/CN2021/093114
Other languages
French (fr)
Chinese (zh)
Inventor
李海生
段君杰
李颖燊
郭俊飞
蒋崇辅
Original Assignee
广东博盈特焊技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博盈特焊技术股份有限公司 filed Critical 广东博盈特焊技术股份有限公司
Publication of WO2022088648A1 publication Critical patent/WO2022088648A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the present application relates to the field of welding technology, for example, to a metal composite pipe and a manufacturing method thereof.
  • Metal composite pipes are widely used in oilfield, chemical, electric power and other industrial fields.
  • the commonly used metal composite pipe manufacturing processes include metallurgical fusion composite method, explosive forming method and nested forming composite method.
  • the metal clad pipes manufactured by the metallurgical fusion composite method have stable product quality, but due to the complex process, the quantity of metal smelted in each furnace is large.
  • the manufacturing cost is high or even impossible to manufacture; the explosive forming method
  • the quality of the manufactured metal clad pipe is unstable, the production process is very complicated, and it is difficult to precisely control; the base material and the cladding layer in the metal clad pipe manufactured by the nested molding method are only mechanically combined, and the scope of application is limited.
  • the present application provides a metal composite pipe and a manufacturing method thereof.
  • the composite pipe By welding a surfacing layer on the outer surface of a base material pipe and polishing, the composite pipe has a relatively simple manufacturing process, stable quality and high precision, and can be produced in small batches ,Increase productivity.
  • an embodiment of the present application proposes a metal composite pipe, which includes a base material pipe and a surfacing layer.
  • a surfacing layer is welded on the outer surface of the base material pipe, and surfacing is an economical and fast process method for material surface modification.
  • a layer of material with certain properties is deposited to increase the wear resistance, heat resistance and corrosion resistance of the parts.
  • the surfacing layer is made of nickel-based, stainless steel or cobalt-based materials.
  • the thickness of the surfacing layer is 0.5 to 5 mm.
  • the thickness of the tube wall of the substrate tube is 2.5-100 mm.
  • the substrate tube is made of carbon steel, alloy steel, stainless steel or nickel-based material.
  • a method for making a metal clad pipe, applied to the metal clad pipe, the metal clad pipe comprising a base material pipe and a surfacing layer comprising:
  • the surfacing layer is polished.
  • the surfacing layer is surfacing on the outer surface of the base material pipe, and the material, thickness and specification of the surfacing layer are various, not restricted by the production mold, and can be produced in small batches.
  • the process is relatively simple, the quality is stable, the precision is high, the cladding layer is metallurgically combined with the base material, the shear strength is higher than the related technology, and the production efficiency is high; It has a flatter and smoother appearance, and is not easy to accumulate ash.
  • GMAW Gas metal arc welding, gas metal arc welding
  • LBW Laser Beam Welding, laser beam welding
  • the surfacing layer is polished by a mechanical polishing method.
  • Fig. 1 is the schematic diagram of the metal composite pipe of the embodiment of the present application.
  • Fig. 2 is the sectional view of Fig. 1;
  • FIG. 3 is a flow chart of manufacturing a metal composite pipe according to an embodiment of the present application.
  • orientation or positional relationship indicated in relation to orientation description is based on the orientation or positional relationship shown in the accompanying drawings, only For the convenience of describing the present application and simplifying the description, it is not indicated or implied that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
  • FIG. 1 is a schematic diagram of a metal composite pipe according to an embodiment of the present application.
  • an embodiment of the present application proposes a metal composite pipe, which includes a base material pipe 100 and a surfacing layer 110 , and the surfacing layer 110 is welded on the outer surface of the base material pipe 100 .
  • a surfacing layer 110 is welded on the outer surface of the base material pipe 100.
  • Surfacing welding is an economical and rapid process method for material surface modification.
  • a layer of material with certain properties is deposited on the surface of the parts to increase the wear resistance, heat resistance and corrosion resistance of the parts.
  • the surfacing layer 110 is made of stainless steel, nickel-based or cobalt-based material, and stainless steel has certain acid and alkali corrosion resistance and certain wear resistance; nickel-based alloys have good Comprehensive performance, good acid and alkali corrosion resistance, high strength at high temperature and certain oxidation corrosion resistance; cobalt-based alloys can be divided into cobalt-based wear-resistant alloys, cobalt-based high-temperature alloys and cobalt-based alloys Base wear and aqueous corrosion resistant alloys. In general, cobalt-based alloys are actually both wear and high temperature resistance or wear and corrosion resistance, and some working conditions may also require high temperature resistance, wear and corrosion resistance at the same time.
  • FIG. 2 is a cross-sectional view of FIG. 1 .
  • the thickness of the surfacing layer 110 is 0.5 to 5 mm.
  • the thickness of the tube wall of the substrate tube is 2.5-100 mm.
  • the substrate tube 100 is made of carbon steel, alloy steel, stainless steel, or nickel-based material.
  • Carbon steel and alloy steel pipes are often used for heating surface pipes with wall temperature less than or equal to 460°C or 560°C in boilers, such as 20G and 15CrMoG, which have the characteristics of low price, good weldability and good cold and hot forming properties, but their resistance The corrosion and wear resistance are poor, and thinning failure is easy to occur during use; stainless steel pipes are often used for heating surface pipes with a wall temperature of less than or equal to 670 °C in boilers, such as 07Cr19Ni10, which has a certain resistance to acid and alkali salt corrosion and wear resistance.
  • FIG. 3 is a flow chart of manufacturing a metal clad pipe according to an embodiment of the present application.
  • the metal composite pipe includes a base material pipe 100 and a surfacing layer 110 , and the method includes:
  • the surfacing layer 110 is surfacing on the outer surface of the base pipe 100.
  • the material, thickness and specification of the surfacing layer 110 are various, not restricted by the production mold, and can be used for small Mass production, the process is relatively simple, the quality is stable, the precision is high, the cladding and the base material are metallurgically combined, the shear strength is higher than the related technology, and the production efficiency is high;
  • the composite pipe has a flatter and smoother surface, and is not easy to accumulate ash.
  • nickel-based, stainless steel or cobalt-based materials are surfacing on the outer surface of the base tube 100 using GMAW and LBW methods.
  • the surfacing layer 110 is polished by a mechanical polishing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Arc Welding In General (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A metal composite pipe and a manufacturing method therefor. The metal composite pipe comprises a base material pipe and a surfacing layer. For the surfacing layer, a nickel-based, stainless steel or cobalt-based material is surfaced by using a GMAW or LBW method on the base material pipe made of carbon steel, alloy steel or stainless steel, and the surfacing layer is polished by using a mechanical polishing method. The manufacturing method is not restricted by a production mold, small-batch production can be carried out, the process is relatively simple, the quality is stable, the precision is high, a composite layer and a base material are metallurgically combined, the shear strength is higher than that of the prior art, and the production efficiency is high.

Description

金属复合管及其制作方法Metal composite pipe and method of making the same
本申请要求申请日为2021年4月27日、申请号为202110458222.8,以及申请日为2020年10月29日、申请号为202011180715.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application with an application date of April 27, 2021, application number 202110458222.8, and an application date of October 29, 2020, application number of 202011180715.1, the entire contents of the above applications are incorporated by reference in in this application.
技术领域technical field
本申请涉及焊接技术领域,例如涉及一种金属复合管及其制作方法。The present application relates to the field of welding technology, for example, to a metal composite pipe and a manufacturing method thereof.
背景技术Background technique
金属复合管被广泛应用于广泛应用于油田、化工、电力等工业领域。目前常用的金属复合管制作工艺包括冶金熔合复合法,***成型法及嵌套成型复合法。其中,冶金熔合复合法制造的金属复合管产品质量稳定,但由于工艺复杂,每炉冶炼金属数量较大,当客户需求特殊规格或订购数量较少时,制造成本高昂甚至无法制造;***成型法制造的金属复合管产品质量不稳定,生产工艺非常复杂,难以精确控制;嵌套成型法制造的金属复合管中基材与复层仅机械结合,适用范围较少。Metal composite pipes are widely used in oilfield, chemical, electric power and other industrial fields. At present, the commonly used metal composite pipe manufacturing processes include metallurgical fusion composite method, explosive forming method and nested forming composite method. Among them, the metal clad pipes manufactured by the metallurgical fusion composite method have stable product quality, but due to the complex process, the quantity of metal smelted in each furnace is large. When customers require special specifications or order a small quantity, the manufacturing cost is high or even impossible to manufacture; the explosive forming method The quality of the manufactured metal clad pipe is unstable, the production process is very complicated, and it is difficult to precisely control; the base material and the cladding layer in the metal clad pipe manufactured by the nested molding method are only mechanically combined, and the scope of application is limited.
发明内容SUMMARY OF THE INVENTION
本申请提供一种金属复合管及其制作方法,其通过在基材管外表面焊接堆焊层,并进行抛光,使得复合管制作工艺相对简单,质量稳定,精度高,且可进行小批量生产,提高生产效率。The present application provides a metal composite pipe and a manufacturing method thereof. By welding a surfacing layer on the outer surface of a base material pipe and polishing, the composite pipe has a relatively simple manufacturing process, stable quality and high precision, and can be produced in small batches ,Increase productivity.
一方面,本申请实施例提出了一种金属复合管,包括基材管和堆焊层。On the one hand, an embodiment of the present application proposes a metal composite pipe, which includes a base material pipe and a surfacing layer.
相比于传统的金属复合管,本申请实施例中,在基材管外表面焊接有堆焊层,堆焊为材料表面改性的一种经济而快速的工艺方法,用焊接方法在零件表面堆敷一层具有一定性能的材料,以增加零件的耐磨、耐热、耐腐蚀等方面性能。Compared with the traditional metal composite pipe, in the embodiment of the present application, a surfacing layer is welded on the outer surface of the base material pipe, and surfacing is an economical and fast process method for material surface modification. A layer of material with certain properties is deposited to increase the wear resistance, heat resistance and corrosion resistance of the parts.
可选地,所述堆焊层为镍基、不锈钢或钴基材料制成。Optionally, the surfacing layer is made of nickel-based, stainless steel or cobalt-based materials.
可选地,所述堆焊层的厚度为0.5至5mm。Optionally, the thickness of the surfacing layer is 0.5 to 5 mm.
可选地,所述基材管的管壁厚度为2.5-100mm。Optionally, the thickness of the tube wall of the substrate tube is 2.5-100 mm.
可选地,所述基材管由碳钢、合金钢、不锈钢或镍基材料制成。Optionally, the substrate tube is made of carbon steel, alloy steel, stainless steel or nickel-based material.
另一方面,一种制作金属复合管的方法,应用于金属复合管,金属复合管包括基材管和堆焊层,所述方法包括:On the other hand, a method for making a metal clad pipe, applied to the metal clad pipe, the metal clad pipe comprising a base material pipe and a surfacing layer, the method comprising:
在所述基材管外表面堆焊所述堆焊层;Surfacing the surfacing layer on the outer surface of the base material tube;
对所述堆焊层进行抛光。The surfacing layer is polished.
相比于传统的金属复合管,本申请实施例中,在基材管外表面堆焊堆焊层,堆焊层的材料、厚度及规格多样,不受生产模具约束,可进行小批量生产,工艺相对简单,质量稳定,精度高,复层与基材冶金结合,剪切强度高于相关技术,生产效率高;此外,对所述堆焊层进行抛光,相对未抛光的堆焊管,复合管有更平整光滑的外表,不易集聚灰渣。Compared with the traditional metal composite pipe, in the embodiment of the present application, the surfacing layer is surfacing on the outer surface of the base material pipe, and the material, thickness and specification of the surfacing layer are various, not restricted by the production mold, and can be produced in small batches. The process is relatively simple, the quality is stable, the precision is high, the cladding layer is metallurgically combined with the base material, the shear strength is higher than the related technology, and the production efficiency is high; It has a flatter and smoother appearance, and is not easy to accumulate ash.
可选地,使用GMAW(Gas metal arc welding,熔化极气体保护焊)或LBW(Laser Beam Welding,激光束焊接)方法在所述基材管外表面堆焊镍基、不锈钢或钴基材料。Optionally, use GMAW (Gas metal arc welding, gas metal arc welding) or LBW (Laser Beam Welding, laser beam welding) method to weld nickel-based, stainless steel or cobalt-based materials on the outer surface of the base tube.
可选地,使用机械抛光的方法对所述堆焊层进行抛光。Optionally, the surfacing layer is polished by a mechanical polishing method.
附图说明Description of drawings
图1是本申请实施例的金属复合管的示意图;Fig. 1 is the schematic diagram of the metal composite pipe of the embodiment of the present application;
图2是图1的剖视图;Fig. 2 is the sectional view of Fig. 1;
图3是本申请实施例的制作金属复合管的流程图。FIG. 3 is a flow chart of manufacturing a metal composite pipe according to an embodiment of the present application.
具体实施方式Detailed ways
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the orientation or positional relationship indicated in relation to orientation description, such as up, down, front, rear, left, right, etc., is based on the orientation or positional relationship shown in the accompanying drawings, only For the convenience of describing the present application and simplifying the description, it is not indicated or implied that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。In the description of this application, unless otherwise clearly defined, words such as setting, installation, and connection should be understood in a broad sense, and those skilled in the art can reasonably determine the specific meanings of the above words in this application in combination with the specific content of the technical solution.
下面结合附图,对本申请实施例作进一步阐述。The embodiments of the present application will be further described below with reference to the accompanying drawings.
如图1所示,图1是本申请实施例的金属复合管的示意图。As shown in FIG. 1 , FIG. 1 is a schematic diagram of a metal composite pipe according to an embodiment of the present application.
参照图1,一方面,本申请实施例提出了一种金属复合管,包括基材管100和堆焊层110,堆焊层110焊接在基材管100外表面。Referring to FIG. 1 , on the one hand, an embodiment of the present application proposes a metal composite pipe, which includes a base material pipe 100 and a surfacing layer 110 , and the surfacing layer 110 is welded on the outer surface of the base material pipe 100 .
相比于传统的金属复合管,本申请实施例中,在基材管100外表面焊接有堆焊层110,堆焊为材料表面改性的一种经济而快速的工艺方法,用焊接方法在零件表面堆敷一层具有一定性能的材料,以增加零件的耐磨、耐热、耐腐蚀等方面性能。Compared with the traditional metal composite pipe, in the embodiment of the present application, a surfacing layer 110 is welded on the outer surface of the base material pipe 100. Surfacing welding is an economical and rapid process method for material surface modification. A layer of material with certain properties is deposited on the surface of the parts to increase the wear resistance, heat resistance and corrosion resistance of the parts.
在本申请的一个实施例中,堆焊层110为不锈钢、镍基或钴基材料制成,不锈钢具有一定耐酸碱腐蚀性能力,以及具有一定的耐磨损能力;镍基合金具有良好的综合性能,具有很好的耐酸碱腐蚀能力,在高温下有较高的强度并具有一定的抗氧化腐蚀能力;钴基合金可以 分为钴基耐磨损合金,钴基耐高温合金及钴基耐磨损和水溶液腐蚀合金。一般使情况下,钴基合金其实都是兼有耐磨损耐高温或耐磨损耐腐蚀的情况,有的工况还可能要求同时耐高温耐磨损耐腐蚀。In one embodiment of the present application, the surfacing layer 110 is made of stainless steel, nickel-based or cobalt-based material, and stainless steel has certain acid and alkali corrosion resistance and certain wear resistance; nickel-based alloys have good Comprehensive performance, good acid and alkali corrosion resistance, high strength at high temperature and certain oxidation corrosion resistance; cobalt-based alloys can be divided into cobalt-based wear-resistant alloys, cobalt-based high-temperature alloys and cobalt-based alloys Base wear and aqueous corrosion resistant alloys. In general, cobalt-based alloys are actually both wear and high temperature resistance or wear and corrosion resistance, and some working conditions may also require high temperature resistance, wear and corrosion resistance at the same time.
如图2所示,图2是图1的剖视图。As shown in FIG. 2 , FIG. 2 is a cross-sectional view of FIG. 1 .
参照图2,在本申请的一个实施例中,堆焊层110的厚度为0.5至5mm。Referring to FIG. 2 , in an embodiment of the present application, the thickness of the surfacing layer 110 is 0.5 to 5 mm.
在本申请的一个实施例中,所述基材管的管壁厚度为2.5-100mm。In an embodiment of the present application, the thickness of the tube wall of the substrate tube is 2.5-100 mm.
在本申请的一个实施例中,基材管100由碳钢、合金钢、不锈钢或镍基材料制成。In one embodiment of the present application, the substrate tube 100 is made of carbon steel, alloy steel, stainless steel, or nickel-based material.
碳钢及合金钢管子常用于锅炉中壁温小于等于460℃或560℃的受热面管子,如20G及15CrMoG,具有价格低廉,焊接性良好,较好的冷热成型性能的特点,但其耐腐蚀及耐磨能力较差,在使用过程中容易发生减薄失效;不锈钢管常用于锅炉中壁温小于等于670℃的受热面管子,如07Cr19Ni10,具有一定耐酸碱盐腐蚀及耐磨能力,焊接性良好,较好的冷热成型性能的特点,但其价格较高,且在高温腐蚀环境下依然存在减薄失效风险;镍基材料管子具有很好的耐腐蚀能力,但价格高昂,因此一般只设计使用薄壁管,同样容易发生减薄风险。Carbon steel and alloy steel pipes are often used for heating surface pipes with wall temperature less than or equal to 460°C or 560°C in boilers, such as 20G and 15CrMoG, which have the characteristics of low price, good weldability and good cold and hot forming properties, but their resistance The corrosion and wear resistance are poor, and thinning failure is easy to occur during use; stainless steel pipes are often used for heating surface pipes with a wall temperature of less than or equal to 670 ℃ in boilers, such as 07Cr19Ni10, which has a certain resistance to acid and alkali salt corrosion and wear resistance. Good weldability, good cold and hot forming performance, but its price is high, and there is still a risk of thinning failure in high temperature corrosion environment; nickel-based material pipe has good corrosion resistance, but the price is high, so Generally, only thin-walled tubes are designed to be used, and the risk of thinning is also prone to occur.
如图3所示,图3是本申请实施例的制作金属复合管的流程图。As shown in FIG. 3 , FIG. 3 is a flow chart of manufacturing a metal clad pipe according to an embodiment of the present application.
参照图3,另一方面,一种制作金属复合管的方法,应用于金属复合管,金属复合管包括基材管100和堆焊层110,方法包括:Referring to FIG. 3 , on the other hand, a method for making a metal composite pipe is applied to the metal composite pipe. The metal composite pipe includes a base material pipe 100 and a surfacing layer 110 , and the method includes:
S100、在基材管100外表面堆焊堆焊层110;S100, surfacing the surfacing layer 110 on the outer surface of the base material pipe 100;
S200、对堆焊层110进行抛光。S200 , polishing the surfacing layer 110 .
相比于传统的金属复合管,本申请实施例中,在基材管100外表面堆焊堆焊层110,堆焊层110的材料、厚度及规格多样,不受生产模具约束,可进行小批量生产,工艺相对简单,质量稳定,精度高,复层与基材冶金结合,剪切强度高于相关技术,生产效率高;此外,对堆焊层110进行抛光,相对未抛光的堆焊管,复合管有更平整光滑的外表,不易集聚灰渣。Compared with the traditional metal composite pipe, in the embodiment of the present application, the surfacing layer 110 is surfacing on the outer surface of the base pipe 100. The material, thickness and specification of the surfacing layer 110 are various, not restricted by the production mold, and can be used for small Mass production, the process is relatively simple, the quality is stable, the precision is high, the cladding and the base material are metallurgically combined, the shear strength is higher than the related technology, and the production efficiency is high; The composite pipe has a flatter and smoother surface, and is not easy to accumulate ash.
在本申请的一个实施例中,使用GMAW及LBW方法在基材管100外表面堆焊镍基、不锈钢或钴基材料。In one embodiment of the present application, nickel-based, stainless steel or cobalt-based materials are surfacing on the outer surface of the base tube 100 using GMAW and LBW methods.
在本申请的一个实施例中,使用机械抛光的方法对堆焊层110进行抛光。In one embodiment of the present application, the surfacing layer 110 is polished by a mechanical polishing method.

Claims (8)

  1. 一种金属复合管,包括基材管和堆焊层,所述堆焊层焊接在所述基材管外表面。A metal composite pipe comprises a base material pipe and a surfacing layer, wherein the surfacing layer is welded on the outer surface of the base material pipe.
  2. 根据权利要求1所述的一种金属复合管,其中:所述堆焊层为镍基、不锈钢或钴基材料制成。A metal composite pipe according to claim 1, wherein: the surfacing layer is made of nickel-based, stainless steel or cobalt-based materials.
  3. 根据权利要求1所述的一种金属复合管,其中:所述堆焊层的厚度为0.5至5mm。A metal composite pipe according to claim 1, wherein: the thickness of the surfacing layer is 0.5 to 5 mm.
  4. 根据权利要求1所述的一种金属复合管,其中:所述基材管的管壁厚度为2.5-100mm。A metal composite pipe according to claim 1, wherein: the thickness of the pipe wall of the base material pipe is 2.5-100 mm.
  5. 根据权利要求1所述的一种金属复合管,其中:所述基材管由碳钢、合金钢、不锈钢或镍基材料制成。A metal composite pipe according to claim 1, wherein: the base material pipe is made of carbon steel, alloy steel, stainless steel or nickel-based material.
  6. 一种制作金属复合管的方法,应用于金属复合管,金属复合管包括基材管和堆焊层,所述方法包括:A method for making a metal composite pipe, applied to the metal composite pipe, the metal composite pipe comprises a base material pipe and a surfacing layer, and the method comprises:
    在所述基材管外表面堆焊所述堆焊层;Surfacing the surfacing layer on the outer surface of the base material tube;
    对所述堆焊层进行抛光。The surfacing layer is polished.
  7. 根据权利要求6所述的一种制作金属复合管的方法,在所述基材管外表面堆焊所述堆焊层,其中:使用GMAW或LBW方法在所述基材管外表面堆焊镍基、不锈钢或钴基材料。A method of manufacturing a metal composite pipe according to claim 6, wherein the surfacing layer is surfacing on the outer surface of the base material pipe, wherein: GMAW or LBW method is used to surfacing nickel on the outer surface of the base material pipe base, stainless steel or cobalt-based materials.
  8. 根据权利要求6所述的一种制作金属复合管的方法,对所述堆焊层进行抛光,其中:使用机械抛光的方法对所述堆焊层进行抛光。According to a method for manufacturing a metal composite pipe according to claim 6, the surfacing layer is polished, wherein: the surfacing layer is polished by a mechanical polishing method.
PCT/CN2021/093114 2020-10-29 2021-05-11 Metal composite pipe and manufacturing method therefor WO2022088648A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011180715.1 2020-10-29
CN202011180715.1A CN112303344A (en) 2020-10-29 2020-10-29 Metal composite pipe and manufacturing method thereof
CN202110458222.8 2021-04-27
CN202110458222.8A CN113566026A (en) 2020-10-29 2021-04-27 Metal composite pipe and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022088648A1 true WO2022088648A1 (en) 2022-05-05

Family

ID=74331623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093114 WO2022088648A1 (en) 2020-10-29 2021-05-11 Metal composite pipe and manufacturing method therefor

Country Status (2)

Country Link
CN (3) CN112303344A (en)
WO (1) WO2022088648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679041A (en) * 2022-11-02 2023-02-03 包头钢铁(集团)有限责任公司 Rapid smelting method of low-carbon aluminum-free deoxidizing low-sulfur steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303344A (en) * 2020-10-29 2021-02-02 广东博盈特焊技术股份有限公司 Metal composite pipe and manufacturing method thereof
CN114414176B (en) * 2022-03-30 2022-06-03 风凯换热器制造(常州)有限公司 Processing method and leakage detection method for double-layer conveying pipeline

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256450A (en) * 1994-03-18 1995-10-09 Daido Steel Co Ltd Production of composite steel tube
US6013890A (en) * 1997-10-20 2000-01-11 Welding Services, Inc. Dual pass weld overlay method and apparatus
EP1535696A1 (en) * 2003-11-25 2005-06-01 CESI-Centro Elettrotecnico Sperimentale Italiano Giacinto Motta S.p.A. Apparatus for coating tubes by means of laser beam and relative method
CN1991291A (en) * 2005-12-28 2007-07-04 同和控股(集团)有限公司 Heat exchanger tube, method of manufacturing heat exchanger tube, and fluidized-bed furnace
CN102909463A (en) * 2011-08-04 2013-02-06 通用电气公司 Cladding system and method for applying a cladding to a power generation system component
JP2016123992A (en) * 2014-12-26 2016-07-11 川崎重工業株式会社 Bent pipeline manufacturing method
CN112303344A (en) * 2020-10-29 2021-02-02 广东博盈特焊技术股份有限公司 Metal composite pipe and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756718A (en) * 1969-10-09 1971-03-01 Kabel Metallwerke Ghh METAL TUBE
CA2349137C (en) * 2000-06-12 2008-01-08 Daido Tokushuko Kabushiki Kaisha Multi-layered anti-coking heat resistant metal tube and method for manufacture thereof
US20050058851A1 (en) * 2003-09-15 2005-03-17 Smith Gaylord D. Composite tube for ethylene pyrolysis furnace and methods of manufacture and joining same
CN100551603C (en) * 2007-04-28 2009-10-21 重庆大学 A kind of consumable electrode surfacing method of electromagnetic complex field, equipment and expansion thereof are used
US20120214017A1 (en) * 2011-02-22 2012-08-23 Pourin Welding Engineering Co., Ltd. Weld Overlay Structure and a Method of Providing a Weld Overlay Structure
CN103967425A (en) * 2013-01-28 2014-08-06 扬州安泰威合金硬面科技有限公司 Abrasion-resistant and corrosion-resistant bimetal composite oil pipe completely coated with coating
CN103216682A (en) * 2013-05-09 2013-07-24 中国海洋石油总公司 Composite tube and manufacture method thereof
CN103486429A (en) * 2013-10-02 2014-01-01 黑龙江宏宇电站设备有限公司 Bead weld alloy wear-resisting tube and bead weld manufacturing method thereof
JP6249859B2 (en) * 2014-03-31 2017-12-20 日立造船株式会社 Pipe overlay welding method and apparatus
CN104266003B (en) * 2014-09-11 2016-07-06 邯郸新兴特种管材有限公司 A kind of production method of dual-metal clad steel pipe
CN206326325U (en) * 2016-11-17 2017-07-14 郑州万达重工股份有限公司 A kind of straight tube built-up welding alignment frock
CN106835118B (en) * 2016-12-06 2019-05-31 武汉武钢华工激光大型装备有限公司 Deep hole laser melting coating head
CN110576182B (en) * 2018-06-08 2021-08-31 中国科学院沈阳自动化研究所 Composite additive manufacturing method of conformal cooling mold
CN109014654B (en) * 2018-07-16 2020-12-11 中冶建筑研究总院有限公司 Submerged arc surfacing flux-cored wire for composite (re) manufacturing continuous casting roller and process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256450A (en) * 1994-03-18 1995-10-09 Daido Steel Co Ltd Production of composite steel tube
US6013890A (en) * 1997-10-20 2000-01-11 Welding Services, Inc. Dual pass weld overlay method and apparatus
EP1535696A1 (en) * 2003-11-25 2005-06-01 CESI-Centro Elettrotecnico Sperimentale Italiano Giacinto Motta S.p.A. Apparatus for coating tubes by means of laser beam and relative method
CN1991291A (en) * 2005-12-28 2007-07-04 同和控股(集团)有限公司 Heat exchanger tube, method of manufacturing heat exchanger tube, and fluidized-bed furnace
CN102909463A (en) * 2011-08-04 2013-02-06 通用电气公司 Cladding system and method for applying a cladding to a power generation system component
JP2016123992A (en) * 2014-12-26 2016-07-11 川崎重工業株式会社 Bent pipeline manufacturing method
CN112303344A (en) * 2020-10-29 2021-02-02 广东博盈特焊技术股份有限公司 Metal composite pipe and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679041A (en) * 2022-11-02 2023-02-03 包头钢铁(集团)有限责任公司 Rapid smelting method of low-carbon aluminum-free deoxidizing low-sulfur steel
CN115679041B (en) * 2022-11-02 2024-01-19 包头钢铁(集团)有限责任公司 Rapid smelting method of low-carbon aluminum-free deoxidized low-sulfur steel

Also Published As

Publication number Publication date
CN113566026A (en) 2021-10-29
CN112303344A (en) 2021-02-02
CN113864537A (en) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2022088648A1 (en) Metal composite pipe and manufacturing method therefor
CN101574775B (en) Method for preparing butt-welding elbow through molding of stainless steel composite steel plate
CN103350124B (en) A kind of manufacture method of vertical masonry joint bimetallic composite welded pipe of transfer oil natural gas
CN105127618B (en) A kind of high tough composite silver solder ring of fabricated in situ solder flux
KR102278376B1 (en) Process for producing a multilayer pipe having a metallurgical bond by drawing, and multilayer pipe produced by this process
CN106271214B (en) A kind of preparation method being brazed stainless steel Ag-Cu/W nano-multilayer film solder
CN105855705A (en) Stainless steel-tita nium alloy different metal laser welding method
BR102013021663A2 (en) PROCESS FOR PRODUCTION OF EXPANSION COATED PIPE AND COATED PIPE PRODUCED BY THIS PROCESS
CN105965150A (en) Friction stir welding method for different metal plates
JP5368682B2 (en) Brazing flake preforms and their use in the manufacture of heat exchangers.
CN103343847B (en) Cu-AL pipe and its welding procedure
CN104455761A (en) Nickel-based alloy and carbon steel metallurgical bonding composite welded tube and manufacturing method thereof
CN101941106A (en) High temperature brazing process of super nickel laminated material and Cr18-Ni8 stainless steel
CN108296305A (en) A kind of manufacturing method of heavy caliber thick wall composite bimetal pipe
JP2007331029A5 (en)
CN110172691A (en) A method of mould structure and performance are changed by laser melting coating
CN111037065B (en) Welding method for inner hole welding of tube plate of small-aperture heat exchange tube
CN204094301U (en) Copper pipe and device for welding aluminium pipe plumb joint in refrigeration plant
CN111876717B (en) High-temperature-resistant, abrasion-resistant and remelting nickel-based composite material coating for fire grate segment of garbage incinerator and preparation method thereof
Kocurek et al. Manufacturing technologies of finned tubes
CN106584043B (en) A kind of production method of clad type header
CN112475554A (en) Welding process of dissimilar aging strengthening alloy pipe for 700-DEG C grade boiler
Moures et al. Optimisation of refractory coatings realised with cored wire addition using a high-power diode laser
CN108907606A (en) CLOOS welding robot welding gun restorative procedure
US20150183047A9 (en) System for creating clad materials using resistance seam welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884391

Country of ref document: EP

Kind code of ref document: A1