JP6249859B2 - Pipe overlay welding method and apparatus - Google Patents

Pipe overlay welding method and apparatus Download PDF

Info

Publication number
JP6249859B2
JP6249859B2 JP2014070709A JP2014070709A JP6249859B2 JP 6249859 B2 JP6249859 B2 JP 6249859B2 JP 2014070709 A JP2014070709 A JP 2014070709A JP 2014070709 A JP2014070709 A JP 2014070709A JP 6249859 B2 JP6249859 B2 JP 6249859B2
Authority
JP
Japan
Prior art keywords
welding
build
pipe
heat input
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014070709A
Other languages
Japanese (ja)
Other versions
JP2015188933A (en
Inventor
光良 中谷
光良 中谷
智大 田中
智大 田中
順也 山田
順也 山田
要輔 佐々木
要輔 佐々木
吉夫 基
吉夫 基
一彦 南
一彦 南
伊藤 寛之
寛之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014070709A priority Critical patent/JP6249859B2/en
Publication of JP2015188933A publication Critical patent/JP2015188933A/en
Application granted granted Critical
Publication of JP6249859B2 publication Critical patent/JP6249859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、たとえば熱交換器などの高温に晒される伝熱管に肉盛り層を形成するための管の肉盛り溶接方法および装置に関する。   The present invention relates to a method and apparatus for build-up welding of a tube for forming a build-up layer on a heat transfer tube exposed to a high temperature such as a heat exchanger.

たとえば高温に晒される伝熱管の外周部に、減耗対策として、管軸心方向または管周方向に肉盛り層を形成することは良く知られている。たとえば伝熱管の外周部に、管軸心方向に沿って肉盛り溶接する場合、溶接部を周方向に変更して複数回、パスを繰り返すことにより、全周面や半周面にわたって肉盛り溶接する。ところで、1パスごとに、肉盛り層側が収縮して伝熱管が湾曲状に変形し、次の肉盛り溶接に支障を来すため、1パスごとに伝熱管を直線状に矯正する作業が必要となる。   For example, it is well known that a build-up layer is formed on the outer peripheral portion of a heat transfer tube exposed to a high temperature in the axial direction of the tube or in the circumferential direction of the tube as a countermeasure against wear. For example, when overlay welding is performed on the outer periphery of the heat transfer tube along the axial direction of the tube, overlay welding is performed over the entire circumferential surface or half circumferential surface by changing the welded portion in the circumferential direction and repeating the pass multiple times. . By the way, in each pass, the build-up layer side contracts and the heat transfer tube is deformed into a curved shape, which hinders the next build-up welding. Therefore, it is necessary to correct the heat transfer tube in a straight line every pass. It becomes.

たとえば薄板パネルの表面に付属品を隅肉溶接する際に、溶接線に沿った前方を先行加熱することにより、薄板パネルの歪みを防止する技術が、特許文献1に提案されている。   For example, Patent Document 1 proposes a technique for preventing distortion of a thin plate panel by pre-heating the front along the weld line when filling the accessories to the surface of the thin plate panel.

特開平6−355766号公報JP-A-6-355766

ところで、焼却炉や熱交換器の伝熱管の肉盛り溶接に際して、十分な幅や厚みの肉盛り層を形成するには、十分な入熱量が必要となるが、入熱量が大きいと管母材が深部まで溶け込み、管母材と肉盛り材料との希釈が促進されて、肉盛り層の耐久性が低下する恐れがある。また先行加熱部分でも、肉盛り溶接部に対応する入熱量が必要となるが、局部的に入熱量が大きいと、管母材が溶融したり、また焼入れ温度以上に加熱されると、硬化組織を生成する恐れがあった。   By the way, in the build-up welding of heat transfer tubes of incinerators and heat exchangers, a sufficient amount of heat input is required to form a build-up layer with sufficient width and thickness. Melts to the deep part, and dilution of the pipe base material and the build-up material is promoted, which may reduce the durability of the build-up layer. In addition, even in the pre-heating part, the heat input corresponding to the build-up weld is required, but if the heat input is locally large, the tube base material melts or is heated above the quenching temperature. There was a risk of generating.

本発明は、上記問題点を解決して、管母材と肉盛り材料との希釈を減少しつつ、加熱部分の溶融や硬化を防止し、さらに肉盛り溶接後の管の曲がりを減少させることができる管の肉盛り溶接方法および装置を提供することを目的とする。   The present invention solves the above-mentioned problems, prevents the heating part from melting and hardening while reducing the dilution of the tube base material and the build-up material, and further reduces the bending of the tube after build-up welding. It is an object of the present invention to provide a method and an apparatus for welding welded pipes.

請求項1記載の発明は、
管の表面を肉盛り溶接する時に、当該管を裏面から加熱する管の肉盛り溶接方法であって、
管内に冷却水を循環させ、
肉盛り溶接位置より所定距離前方の第1先行位置の裏面を加熱し、
管の裏面で前記第1先行位置と前記肉盛り溶接位置の間の第2先行位置を加熱し、
肉盛り溶接位置の肉盛り入熱量に対して、第1先行位置の第1先行入熱量と第2先行位置の第2先行入熱量の総和を小さくするとともに、前記第1先行入熱量より前記第2先行入熱量を小さくし、
前記肉盛り入熱量と、前記第1先行入熱量および前記第2先行入熱量とを調整して管の表面と裏面の曲がりを均等化することを特徴とする。
The invention described in claim 1
A build-up welding method for a pipe that heats the pipe from the back surface when build-up welding the surface of the pipe,
Circulating cooling water in the pipe,
Heating the back surface of the first preceding position a predetermined distance ahead of the build-up welding position;
Heating a second preceding position between the first preceding position and the build-up welding position on the back side of the tube;
The sum of the first preceding heat input amount at the first preceding position and the second preceding heat input amount at the second preceding position is reduced with respect to the buildup heat input amount at the buildup welding position, and the first preceding heat input amount is greater than the first preceding heat input amount. 2 Reduce the preceding heat input,
The bend of the front surface and the back surface of the tube is equalized by adjusting the build-up heat input amount, the first preceding heat input amount, and the second preceding heat input amount.

請求項2記載の発明は、請求項1記載の構成において、
第1先行位置での加熱温度が管の焼入れ温度以上となった場合に、第2先行位置の加熱温度を、管の焼戻し温度以上として管の裏面の硬化を低減することを特徴とする。
The invention according to claim 2 is the configuration according to claim 1,
When the heating temperature at the first preceding position becomes equal to or higher than the quenching temperature of the pipe, the heating temperature at the second preceding position is set to be equal to or higher than the tempering temperature of the pipe, thereby reducing the hardening of the back surface of the pipe.

請求項3記載の発明は、請求項1または2記載の構成において、
管の初端部では、肉盛り溶接開始位置の溶接方向後方の原点位置から、第1先行位置、第2先行位置の裏面の加熱を開始し、管軸心方向前方に移動させて前記肉盛り溶接開始位置を通過させ、
前記肉盛り溶接開始位置で表面の肉盛り溶接を開始することを特徴とする。
The invention according to claim 3 is the configuration according to claim 1 or 2,
At the first end of the pipe, heating of the back surface of the first preceding position and the second preceding position is started from the origin position behind the welding direction of the buildup welding start position, and the welding is moved forward in the tube axis direction. Pass the welding start position,
The build-up welding of the surface is started at the build-up welding start position.

請求項4記載の発明は、請求項1乃至3のいずれかに記載の構成において、
第1先行位置の入熱量が大きくなると、第2先行位置を第1先行位置に接近させるか、または第2先行位置の入熱量を増大することを特徴とする。
The invention according to claim 4 is the configuration according to any one of claims 1 to 3,
When the heat input amount at the first preceding position increases, the second preceding position approaches the first preceding position, or the heat input amount at the second preceding position increases.

請求項5記載の発明は、
管の表面を肉盛り溶接する時に、当該管を裏面から加熱する管の肉盛り溶接装置であって、
管内に冷却水を流送して肉盛り材料の希釈を減少させる管冷却装置と、
肉盛り溶接位置に配置されて管の表面に肉盛り材料を溶接する消耗電極式の肉盛りアーク溶接電源と、
前記肉盛り溶接位置より所定距離前方の第1先行位置で裏面を加熱する非消耗電極式の第1先行アーク溶接電源と、
前記第1先行位置と前記肉盛り溶接位置の間の第2先行位置で裏面を、第1先行位置の第1先行入熱量より小さい第2先行入熱量で加熱する非消耗電極式の第2先行アーク溶接電源と、を具備したことを特徴とする。
The invention according to claim 5
A build-up welding apparatus for a pipe that heats the pipe from the back surface when welding the surface of the pipe,
A pipe cooling device for flowing cooling water into the pipe to reduce dilution of the overlay material;
A consumable electrode type build-up arc welding power source which is arranged at the build-up welding position and welds the build-up material to the surface of the pipe;
A non-consumable electrode type first leading arc welding power source that heats the back surface at a first leading position that is a predetermined distance ahead of the build-up welding position;
A non-consumable electrode type second lead that heats the back surface at a second leading position between the first leading position and the build-up welding position with a second leading heat input that is smaller than the first leading heat input at the first leading position. And an arc welding power source.

請求項6記載の発明は、請求項5記載の構成において、
肉盛りアーク溶接電源は、MIG溶接機またはMAG溶接機であり、
第1先行アーク溶接電源および第2先行アーク溶接電源は、TIG溶接機またはプラズマ溶接機であることを特徴とする。
The invention according to claim 6 is the configuration according to claim 5,
The build-up arc welding power source is a MIG welding machine or a MAG welding machine,
The first preceding arc welding power source and the second preceding arc welding power source are TIG welding machines or plasma welding machines.

請求項1記載の発明によれば、管内に冷却水を流送することにより、管母材の過熱を防止して肉盛り材料が管母材に溶け込むのを減少させ、肉盛り材料の希釈量を低減することができる。また肉盛り溶接位置の肉盛り入熱量に比較して、第1先行入熱量+第2先行入熱量を小さくすることにより、管の表面と裏面の収縮量を均等にして、肉盛り溶接による管の曲がりを防止することができる。これにより、先行加熱における管母材の溶融や焼入れ温度以上の過熱を減少させることができ、全体として小さい熱エネルギーで肉盛り溶接ができてエネルギーコストを削減することができる。さらに、第1先行位置と第2先行位置とに分けてタンデムで先行加熱することで、それぞれの入熱量を小さくすることができ、局部的に過剰な加熱による管母材の溶融や硬化を防止することができる。   According to the first aspect of the present invention, the cooling water is flowed into the pipe to prevent the pipe base material from being overheated and to reduce the build-up material from being melted into the pipe base material. Can be reduced. In addition, by reducing the first preceding heat input amount + the second preceding heat input amount compared to the build-up heat input amount at the build-up welding position, the shrinkage amount on the front surface and back surface of the tube is made uniform, and the tube by build-up welding is used. Can be prevented. Thereby, melting of the pipe base material in the preheating and overheating above the quenching temperature can be reduced, and build-up welding can be performed with a small amount of thermal energy as a whole, and energy costs can be reduced. Furthermore, by preheating in tandem by dividing it into the first preceding position and the second preceding position, each heat input can be reduced, preventing melting and hardening of the pipe base material due to excessive heating locally. can do.

請求項2記載の発明によれば、第1先行位置で管が焼入れ温度以上に加熱された場合、第2先行位置で管の焼戻し温度以上に加熱することにより、管母材を焼戻しして硬化組織を改質でき、硬化を低減することができる。   According to invention of Claim 2, when a pipe | tube is heated more than the quenching temperature in the 1st preceding position, the pipe base material is tempered and hardened by heating above the tempering temperature of the pipe in the 2nd preceding position. The tissue can be modified and hardening can be reduced.

請求項3記載の発明によれば、原点位置から肉盛り溶接開始位置までの間で、第1先行位置、第2先行位置において加熱しつつ溶接方向前方に移動させて、肉盛り溶接開始位置の前後の所定範囲で、管の裏面を予熱しておき、肉盛り溶接開始位置から肉盛り溶接を開始することで、管の曲がりを効果的に防止することができる。   According to the invention described in claim 3, between the origin position and the buildup welding start position, the first welding position is moved forward in the welding direction while being heated at the first preceding position and the second preceding position, and the buildup welding start position is set. By preheating the back surface of the pipe in a predetermined range before and after and starting build-up welding from the build-up welding start position, it is possible to effectively prevent the bending of the pipe.

請求項4記載の発明によれば、肉盛り溶接位置の入熱量増加に対応して、第1先行位置の入熱量が増加される時に、第2先行位置の入熱量を増大させるか、または第2先行位置を第1先行位置に接近させることにより、肉盛り溶接部と先行加熱部の入熱量をバランスさせて管の曲がりを防止することができ、硬化組織の改質が可能となる。   According to the fourth aspect of the present invention, when the heat input amount at the first preceding position is increased in response to the increase in the heat input amount at the buildup welding position, the heat input amount at the second preceding position is increased, or 2 By bringing the preceding position closer to the first preceding position, it is possible to balance the heat input amounts of the build-up welded part and the preceding heating part to prevent the bending of the pipe, and it is possible to modify the hardened structure.

請求項5記載の発明によれば、冷却装置により、管内に冷却水を流送して管母材が過熱されて溶け込みが深くなるのを防止するので、肉盛り材料が管母材に深くまで溶け込み、肉盛り材料が希釈されるのを効果的に防止することができる。また消耗電極式の肉盛りアーク溶接電源による肉盛り入熱量に対して、小さい第1先行アーク溶接電源と第2先行アーク溶接電源の先行入熱量で、管の表面と裏面の収縮量を均等にして管の曲がり防止することができる。さらに、第1先行入熱量より第2先行入熱量を小さくすることにより、過剰な加熱による管母材の溶融と、焼入れ温度以上の過熱を防止して硬化組織の発生を防止することができる。   According to the fifth aspect of the present invention, the cooling device feeds the cooling water into the pipe to prevent the pipe base material from being overheated and deepening the melt, so that the build-up material is deep into the pipe base material. It is possible to effectively prevent melting and dilution of the build-up material. In addition, the amount of shrinkage on the front and back surfaces of the tube is made equal by the small amount of heat input from the first preceding arc welding power source and the second preceding arc welding power source, compared to the amount of heat input by the consumable electrode type overlay arc welding power source. Can prevent the tube from bending. Furthermore, by making the second preceding heat input amount smaller than the first preceding heat input amount, the melting of the tube base material due to excessive heating and the overheating above the quenching temperature can be prevented, thereby preventing the occurrence of a hardened structure.

本発明に係る管の肉盛り溶接装置の実施例を示す要部の側面図である。It is a side view of the principal part which shows the Example of the build-up welding apparatus of the pipe | tube which concerns on this invention. 溶接装置の全体側面図である。It is a whole side view of a welding apparatus. ウィービングを説明する溶接部の概略横断面図である。It is a general | schematic cross-sectional view of the welding part explaining a weaving. 先行加熱位置の温度勾配を示すグラフである。It is a graph which shows the temperature gradient of a prior heating position. 肉盛り溶接開始位置の説明図である。It is explanatory drawing of the build-up welding start position. (a)および(b)は裏面加熱の比較例を示し、(a)は肉盛り溶接位置と同一位置での裏面加熱を示す説明図、(b)はシングルトーチ式の先行裏面加熱を示す説明図である。(A) And (b) shows the comparative example of back surface heating, (a) is explanatory drawing which shows back surface heating in the same position as the build-up welding position, (b) is description which shows single torch type preceding back surface heating. FIG. シングルトーチ式とタンデムトーチ式の裏面加熱実験における管の変形量を表したグラフおよび説明図である。It is the graph and explanatory drawing showing the deformation | transformation amount of the pipe | tube in the back surface heating experiment of a single torch type and a tandem torch type.

以下、本発明に係る実施例を図面に基づいて説明する。
図2に示すように、この溶接設備は、ベースフレーム11上に、肉盛りする長尺(たとえば10m前後)の管Pを水平に保持する管支持具12が前後一対設置され、図示しないレールを介して溶接台車13が管Pと平行で前後方向に移動自在に配置されている。またベースフレーム11上には、管Pの中間部を支持する複数のサポート台車14が前後方向に移動、固定自在に配置されている。さらに管P内に冷却水を循環させて管Pを冷却する管冷却装置15が設けられている。この管冷却装置15は、管Pの両端部にそれぞれロータリジョイント等を介して接続される給水ホース16iおよび排水ホース16oと、これら給排水ホース16i,16oが接続された循環ポンプ17と、給水ホース16i側に介在されて冷却水の温度を調整可能な冷却装置18と、循環ポンプ17および冷却装置18を制御して略均一に管Pを冷却可能な管冷却制御装置19とを具備している。
Embodiments according to the present invention will be described below with reference to the drawings.
As shown in FIG. 2, in this welding facility, a pair of front and rear pipe supporters 12 for horizontally holding a long pipe P (for example, around 10 m) to be built up are installed on a base frame 11, and a rail (not shown) is installed. The welding carriage 13 is arranged in parallel with the pipe P so as to be movable in the front-rear direction. On the base frame 11, a plurality of support carriages 14 that support an intermediate portion of the pipe P are arranged to be movable and fixed in the front-rear direction. Further, a pipe cooling device 15 for cooling the pipe P by circulating cooling water in the pipe P is provided. The pipe cooling device 15 includes a water supply hose 16i and a drainage hose 16o connected to both ends of the pipe P via rotary joints, a circulation pump 17 connected to the water supply / drainage hoses 16i and 16o, and a water supply hose 16i. A cooling device 18 that is interposed on the side and can adjust the temperature of the cooling water, and a pipe cooling control device 19 that controls the circulation pump 17 and the cooling device 18 to cool the pipe P substantially uniformly.

図1,図2に示すように、溶接台車13には、肉盛り溶接位置Pwで管Pの表面(上面)に肉盛り溶接するための消耗電極式の肉盛りアーク溶接電源21と、肉盛りアーク溶接電源21の溶接方向前方の肉盛り溶接位置Pwで管Pをセンシングする上側倣い装置24と、当該肉盛りアーク溶接電源21より溶接方向前方の第1先行位置P1で管Pの裏面(下面)を加熱する非消耗電極式の第1先行アーク溶接電源22と、第1先行位置P1と肉盛り溶接位置Pwの間の第2先行位置P2で管Pの裏面を加熱する非消耗電極式の第2先行アーク溶接電源23と、第1アーク溶接電源22の溶接方向前方の管Pをセンシングする下側習い装置25と、を具備している。   As shown in FIGS. 1 and 2, the welding carriage 13 includes a consumable electrode type build-up arc welding power source 21 for build-up welding on the surface (upper surface) of the pipe P at the build-up welding position Pw, and build-up. The upper copying device 24 that senses the pipe P at the buildup welding position Pw in the front of the arc welding power source 21 in the welding direction, and the back surface (lower surface) of the pipe P at the first preceding position P1 in the welding direction forward of the buildup arc welding power supply 21. Non-consumable electrode type first arc power source 22 for heating) and a non-consumable electrode type for heating the back surface of the pipe P at the second preceding position P2 between the first preceding position P1 and the build-up welding position Pw. A second leading arc welding power source 23 and a lower learning device 25 for sensing the pipe P in the welding direction of the first arc welding power source 22 are provided.

(溶接電源)
ここで、肉盛りアーク溶接電源21には、たとえばMIG溶接機(Metal inert gas welding)またはMAG溶接機(Metal active gas welding)などのGMA溶接機(Gas metal arc welding)が採用され、溶接電極21tに肉盛り材料となる溶接線21bが供給される。また第1先行アーク溶接電源22および第2先行アーク溶接電源23には、たとえば非消耗式のタングステン電極22t,23tを有し十分な熱量を管Pの裏面に供給可能なTIG溶接機(Tungsten inert gas welding)、またはプラズマアーク溶接機が採用される。
(Welding power supply)
Here, as the build-up arc welding power source 21, for example, a GMA welding machine (Gas metal arc welding) such as a MIG welding machine (Metal inert gas welding) or a MAG welding machine (Metal active gas welding) is adopted, and the welding electrode 21t. The welding line 21b used as a build-up material is supplied. The first leading arc welding power source 22 and the second leading arc welding power source 23 include, for example, a TIG welding machine (Tungsten inert gas) having non-consumable tungsten electrodes 22t and 23t and capable of supplying a sufficient amount of heat to the back surface of the pipe P. gas welding) or plasma arc welding machines are employed.

(ウィービング)
図3に示すように、肉盛りアーク溶接電源21は、管軸心に対して直角な水平方向に溶接電極21tをウィービングさせる直線方向移動式のウィービング装置(図示せず)を具備し、たとえば溶接線21bの出退と溶接電流波形を同期させて制御することで、アーク長の変動に対応できるCMT電源(Cold Metal Transfer)を搭載しており、CMT電源により肉盛りアーク溶接電源21の構造を簡略化させるとともに、所定の角度範囲の幅で肉盛り溶接することができる。さらに、管Pを周方向一定角度ごとに回転させて、5〜6パスの肉盛り溶接を行うことにより、たとえば管Pの半周に肉盛りを施す。もちろん、複数パスの肉盛り溶接により、全周または任意の角度範囲に肉盛りしてもよい。
(Weaving)
As shown in FIG. 3, the build-up arc welding power source 21 includes a linearly moving weaving device (not shown) for weaving a welding electrode 21t in a horizontal direction perpendicular to the tube axis. A CMT power supply (Cold Metal Transfer) that can cope with fluctuations in the arc length is controlled by controlling the exit and exit of the wire 21b and the welding current waveform in synchronism, and the structure of the overlay arc welding power supply 21 is configured by the CMT power supply. In addition to simplification, overlay welding can be performed with a width in a predetermined angle range. Further, the pipe P is rotated at every constant angle in the circumferential direction, and build-up welding of 5 to 6 passes is performed, for example, the half circumference of the pipe P is given. Of course, it is also possible to build up the entire circumference or any angle range by multipass welding.

第1先行アーク溶接電源22および第2先行アーク溶接電源23は、管Pの軸心を中心とする弧方向移動式のウィービング装置(図示せず)を具備し、管Pの外周面とタングステン電極22t,33tとの距離を一定にしてアーク長を維持するように構成される。これにより、先行の裏面を所定の角度範囲の幅で安定して行うことができる。   The first preceding arc welding power source 22 and the second preceding arc welding power source 23 include a weaving device (not shown) that moves in the arc direction around the axis of the tube P. The outer peripheral surface of the tube P and the tungsten electrode The distance between 22t and 33t is constant and the arc length is maintained. Thereby, the preceding back surface can be stably performed with a width in a predetermined angle range.

(管母材と先行加熱位置)
この肉盛り溶接装置において、肉盛り対象となる管Pは、たとえばボイラや熱交換器に使用される伝熱管で、炭素鋼鋼管であるが、その他の材質や用途であってもよい。
(Pipe base material and preheating position)
In this build-up welding apparatus, the pipe P to be built up is a heat transfer pipe used for, for example, a boiler or a heat exchanger, and is a carbon steel pipe, but may be other materials or applications.

また管Pの外径は、たとえば18mm以上で100mm以下である。また肉盛り溶接位置Pwから第1先行位置P1まで距離L1は、たとえば50mm以上で700mm以下であり、また第1先行位置P1から後続の第2先行位置P2までの距離L2は、たとえば50mm以上で200mm以下である。   The outer diameter of the tube P is, for example, 18 mm or more and 100 mm or less. The distance L1 from the buildup welding position Pw to the first preceding position P1 is, for example, 50 mm or more and 700 mm or less, and the distance L2 from the first preceding position P1 to the subsequent second preceding position P2 is, for example, 50 mm or more. 200 mm or less.

[先行加熱の入熱量]
(比較例1)
まず、図6(a)に示すように、肉盛り溶接位置Pwで肉盛り溶接と曲がり防止のための加熱を同一位置で行う、すなわち表面をMAG溶接電源(トーチ)W1により入熱量:Q1で入熱して肉盛り溶接し、その裏面をTIG溶接機(トーチ)W2により入熱量:Q2で加熱した場合、略同一の入熱量(Q1≒Q2)で入熱されることで、表面と裏面との伸縮量が同一となり管Pの曲がりがバランスされて、管Pが変形しない。しかし、MAG溶接機W1は肉盛り材料があるため熱変形(膨張⇒収縮)が大きく、TIG溶接機W2は肉盛り材料が無いため熱変形(膨張⇒収縮)が小さい。したがって、表面のMAG溶接機W1の入熱量Q1に比較して、裏面のTIG溶接機W2の入熱量を幾分大きくする必要がある。また、肉盛り溶接位置Pwでの裏面の入熱量が大きく、特に裏面では管母材が焼入れ温度以上に加熱されて、溶け込み深さも大きく、冷却されることで管母材に硬化組織が生成される恐れがある。
[Amount of heat input for preheating]
(Comparative Example 1)
First, as shown in FIG. 6 (a), build-up welding and heating for preventing bending are performed at the same position at the build-up welding position Pw, that is, the surface is heated by a MAG welding power source (torch) W1 at a heat input amount: Q1. When heat is applied and build-up welding is performed, and the back surface is heated by a TIG welder (torch) W2 at a heat input amount: Q2, heat input is performed with substantially the same heat input amount (Q1≈Q2). The amount of expansion and contraction becomes the same, the bending of the pipe P is balanced, and the pipe P does not deform. However, since the MAG welding machine W1 has a build-up material, thermal deformation (expansion → shrinkage) is large, and since the TIG welder W2 has no build-up material, thermal deformation (expansion → shrinkage) is small. Therefore, it is necessary to somewhat increase the heat input amount of the back surface TIG welder W2 as compared to the heat input amount Q1 of the front surface MAG welder W1. In addition, the heat input amount on the back surface at the buildup welding position Pw is large. In particular, the tube base material is heated to a temperature higher than the quenching temperature on the back surface, the penetration depth is large, and the tube base material is hardened by being cooled. There is a risk.

(比較例2)
また図6(b)に示すように、加熱位置を先行させたシングルトーチ式の場合、すなわち肉盛り溶接位置Pwで表面をMAG溶接機(トーチ)W1により入熱量:Q1で入熱して肉盛り溶接し、所定距離Lだけ溶接方向前方の先行位置Pfで、その裏面をTIG溶接機(トーチ)W21により入熱量:Q21で加熱するものである。この方式では、TIG溶接機W21により、先行位置Pfで裏面が一旦加熱膨張された後、冷却されて収縮し曲がった状態の肉盛り溶接位置PwでMAG溶接機W1により表面が肉盛り溶接されるので、先行位置PfのTIG溶接が少ない入熱量(Q1>Q21)であっても、表面のMAG溶接機W1による肉盛り溶接との熱変形をバランスさせて管の変形を小さくできることが、発明者等の実験により判明している。
(Comparative Example 2)
Further, as shown in FIG. 6 (b), in the case of a single torch type in which the heating position is advanced, that is, the surface is heated by the MAG welding machine (torch) W1 at the buildup welding position Pw and heat is input at Q1: Welding is performed at a preceding position Pf forward in the welding direction by a predetermined distance L, and the back surface is heated by a TIG welding machine (torch) W21 with a heat input amount: Q21. In this method, the back surface is once heated and expanded at the preceding position Pf by the TIG welder W21, and then the surface is build-up welded by the MAG welder W1 at the build-up weld position Pw that is cooled and contracted and bent. Therefore, even if the amount of heat input (Q1> Q21) is small in TIG welding at the leading position Pf, the deformation of the pipe can be reduced by balancing the thermal deformation with the build-up welding by the surface MAG welding machine W1. It has been proved by experiments.

しかしながら、シングルトーチ式の先行加熱であっても、先行位置PfでTIG溶接機W21から十分に大きい入熱量Q21が必要であり、管母材の形状や材質、剛性などにより、管母材が焼入れ温度以上に加熱されて深く溶け込み、肉盛り材料の希釈や管母材に硬化組織が生成される恐れがあった。   However, even with a single torch type preheating, a sufficiently large heat input Q21 from the TIG welder W21 is required at the predecessor position Pf, and the pipe base material is quenched due to the shape, material, rigidity, etc. of the pipe base material. When heated above the temperature, it melts deeply, and there is a risk that the build-up material is diluted and a hardened structure is generated in the tube base material.

(本発明)
本発明に係るタンデムトーチ式の先行加熱は、図1に示すように、肉盛り溶接位置Pwで肉盛りアーク溶接電源21により、入熱量(肉盛り入熱量):Q1で表面に入熱して肉盛り材料を肉盛り溶接する。そして、肉盛り溶接位置Pwから第1トーチ間隔L1だけ前方の第1先行位置P1で、第1先行アーク溶接電源22により入熱量(第1先行入熱量):Q31で裏面に加熱する。さらに先行位置P1から第2トーチ間隔L2だけ後方の第2先行位置P2で、第2先行アーク溶接電源23により入熱量(第2先行入熱量):Q32で裏面を再加熱する。ここで、第3トーチ間隔L3は、肉盛り溶接位置Pwと第2先行位置P2と距離を示す。
(Invention)
As shown in FIG. 1, the tandem torch type preheating according to the present invention heats the surface with a build-up arc welding power source 21 at the build-up welding position Pw with a heat input amount (build-up heat input amount): Q1. Welding the overlay material. Then, at the first preceding position P1 that is ahead by the first torch interval L1 from the buildup welding position Pw, the back surface is heated by the first preceding arc welding power source 22 with a heat input amount (first preceding heat input amount): Q31. Further, at the second preceding position P2 that is behind the preceding position P1 by the second torch interval L2, the back surface is reheated by the second preceding arc welding power source 23 with a heat input amount (second preceding heat input amount): Q32. Here, the third torch interval L3 indicates the distance between the build-up welding position Pw and the second preceding position P2.

上記タンデムトーチ式の先行加熱において、図4に示すように、第1先行位置P1で管母材の裏面に入熱量Q31で加熱されて裏面が一旦加熱膨張し、さらに管母材が冷却されて裏面が収縮した後、第2先行位置P2で管母材の裏面に入熱量Q32で再加熱される。この第2先行位置P2では、完全に冷却されず、管母材は先の入熱量Q31の一部を保持しているため、入熱量Q32は第1先行位置P1の入熱量Q31より小さくてもよい。次いで管母材が冷却されて裏面が収縮された後(L2<L3)、肉盛り溶接位置Pwで管母材の表面に入熱量Q31で肉盛り溶接される。ここで、先行加熱の総和入熱量(Q31+Q32)が、肉盛り溶接時の入熱量Q1(またはたシングルトーチ式の先行加熱の熱量Q21)より小さくても、管Pの変形を矯正することができる。   In the tandem torch type preheating, as shown in FIG. 4, the back surface of the pipe base material is heated with the heat input amount Q31 at the first predecessor position P1, the back surface is once heated and expanded, and the pipe base material is further cooled. After the back surface contracts, the back surface of the pipe base material is reheated with the heat input amount Q32 at the second preceding position P2. At the second preceding position P2, the pipe base material is not completely cooled and holds a part of the previous heat input amount Q31. Therefore, even if the heat input amount Q32 is smaller than the heat input amount Q31 at the first preceding position P1. Good. Next, after the pipe base material is cooled and the back surface is contracted (L2 <L3), the surface of the pipe base material is build-up welded with the heat input Q31 at the build-up welding position Pw. Here, the deformation of the pipe P can be corrected even if the total heat input amount (Q31 + Q32) of the preheating is smaller than the heat input amount Q1 (or the heat amount Q21 of the single torch type preheating) at the time of build-up welding. .

このタンデム式の先行加熱における各入熱量(J/mm)は、Q1>(Q31+Q32)…(1式)の関係となり、Q31>Q32…(2式)の関係となる。
さらに、図4に示すように、第1先行位置P1の入熱量Q31により、管母材が焼入れ温度以上に加熱された場合、第2先行位置P2で入熱量Q32により焼戻し温度以上に加熱する必要がある。焼戻し温度未満では、入熱量Q31によりトーチ間隔L2における冷却で形成された硬化組織を改質することができないからである。
Each amount of heat input (J / mm) in this tandem type pre-heating has a relationship of Q1> (Q31 + Q32) (1 formula), and a relationship of Q31> Q32 (2 formula).
Furthermore, as shown in FIG. 4, when the pipe base material is heated to the quenching temperature or higher by the heat input amount Q31 at the first preceding position P1, it is necessary to heat it to the tempering temperature or higher by the heat input amount Q32 at the second preceding position P2. There is. This is because if the temperature is lower than the tempering temperature, the hardened structure formed by cooling in the torch interval L2 cannot be modified by the heat input Q31.

ところで、タンデムトーチ式の先行加熱を実施する場合、各トーチ間隔L1〜L3は、管Pの剛性(厚みや材質など)やそれぞれの入熱量Q1、Q31、Q32を考慮して、後管Pの変形を低減できる値を設定する必要がある。   By the way, when performing the tandem torch type preheating, the torch intervals L1 to L3 are determined by considering the rigidity (thickness, material, etc.) of the pipe P and the respective heat input amounts Q1, Q31, Q32. It is necessary to set a value that can reduce deformation.

たとえば肉盛りアーク溶接電源21の入熱量Q1や、第1先行アーク溶接電源22の入熱量Q31、第2先行アーク溶接電源23の入熱量Q32が大きい場合、または材質や大きい厚みなどに起因して管Pの剛性が高い場合、管Pの大きい変形を矯正可能な効果が大きくなるように、トーチ間隔L1およびトーチ間隔L3を長く設定する。反対に、肉盛りアーク溶接電源21の入熱量Q1や、第1先行アーク溶接電源22の入熱量Q31、第2先行アーク溶接電源23の入熱量Q32が小さい場合、または材質や小さい厚みなどに起因して管Pの剛性が低い場合、管Pの変形を矯正する効果が小さくてもよく、トーチ間隔L1およびL3を短く設定する。   For example, when the heat input amount Q1 of the build-up arc welding power source 21, the heat input amount Q31 of the first preceding arc welding power source 22, and the heat input amount Q32 of the second preceding arc welding power source 23 are large, or due to the material, the large thickness, etc. When the rigidity of the pipe P is high, the torch interval L1 and the torch interval L3 are set long so that the effect of correcting the large deformation of the pipe P is increased. Conversely, when the heat input amount Q1 of the build-up arc welding power source 21, the heat input amount Q31 of the first preceding arc welding power source 22, and the heat input amount Q32 of the second preceding arc welding power source 23 are small, or due to the material, small thickness, etc. If the rigidity of the pipe P is low, the effect of correcting the deformation of the pipe P may be small, and the torch intervals L1 and L3 are set short.

さらに、第1,第3トーチ間隔L1,L3が適正値よりも大きい場合、管Pの裏面の収縮が完了した状態で、肉盛り溶接が行われるため、管Pの裏面の変形量が肉盛り溶接による変形量より大きくなって、十分に矯正されず、裏面が内周側をとなる湾曲状に変形する。反対に第1,第3トーチ間隔L1,L3が適正値よりも小さい場合、管Pの裏面が十分に収縮していない状態で、肉盛り溶接が行われるため、管Pの裏面の変形量が肉盛り溶接による変形量より小さくなって、十分に矯正されず、表面が内周側となるように湾曲状に変形する。   Further, when the first and third torch intervals L1 and L3 are larger than the appropriate values, since the build-up welding is performed in a state where the shrinkage of the back surface of the pipe P is completed, the deformation amount of the back surface of the pipe P is increased. It becomes larger than the deformation amount due to welding, and is not sufficiently corrected, and the back surface is deformed into a curved shape that becomes the inner peripheral side. On the other hand, when the first and third torch intervals L1 and L3 are smaller than the appropriate values, since the build-up welding is performed in a state where the back surface of the pipe P is not sufficiently contracted, the deformation amount of the back surface of the pipe P is small. It becomes smaller than the deformation amount due to build-up welding, and is not sufficiently corrected, and deforms into a curved shape so that the surface is on the inner peripheral side.

さらに、第2トーチ間隔L2と第2先行アーク溶接電源23の入熱量Q32を考慮する必要がある。第2トーチ間隔L2が適正値よりも大きい場合、第1先行アーク溶接電源22による加熱状態から十分に冷却されて管母材の温度が下がるため、第2先行アーク溶接電源23により再加熱されても、焼戻し温度まで再加熱することができず、硬化組織を改質することができないことがある。反対に、第2トーチ間隔L2が適正値よりも小さい場合、第1先行アーク溶接電源22による加熱状態からあまり冷却されずに管母材の温度が高く、第2先行アーク溶接電源23により再加熱されると、焼入れ温度まで再加熱されることになり、その後冷却水により急冷されると、硬化組織を形成することがある。同時に、第1,第2先行アーク溶接電源22,23の入熱量の総和(Q31+Q32)が大きくなるため、管Pの裏面の変形量が、肉盛り溶接電源21による変形量より大きくなって、直線状に矯正されず、表面が内周側となる湾曲状に変形することがある。   Furthermore, it is necessary to consider the second torch interval L2 and the heat input Q32 of the second preceding arc welding power source 23. When the second torch interval L2 is larger than the appropriate value, the tube base material is sufficiently cooled from the heating state by the first preceding arc welding power source 22 and the temperature of the pipe base material is lowered, so that it is reheated by the second preceding arc welding power source 23. However, it cannot be reheated to the tempering temperature and the hardened structure may not be modified. On the contrary, when the second torch interval L2 is smaller than the appropriate value, the temperature of the pipe base material is high without being cooled much from the heating state by the first preceding arc welding power source 22, and reheating is performed by the second leading arc welding power source 23. If it is done, it will be reheated to the quenching temperature, and if it is then quenched with cooling water, it may form a hardened structure. At the same time, the total heat input amount (Q31 + Q32) of the first and second preceding arc welding power sources 22, 23 is increased, so that the deformation amount of the back surface of the pipe P is larger than the deformation amount by the build-up welding power source 21, The surface may be deformed into a curved shape having an inner peripheral side.

(タンデムトーチ式とシングルトーチ式の先行裏面加熱の実験)
ここで図7を参照して、タンデムトーチ式の先行加熱とシングルトーチ式の先行加熱により、外径38.2mm,長さ1500mmの炭素鋼鋼管に1パスの肉盛り溶接を施した場合の管Pの変形量を計測した実験結果を説明する。
(Tandem torch type and single torch type front side heating experiments)
Here, referring to FIG. 7, a pipe in which one pass build-up welding is performed on a carbon steel pipe having an outer diameter of 38.2 mm and a length of 1500 mm by tandem torch type preheating and single torch type preheating. The experimental results of measuring the deformation amount of P will be described.

ここで、肉盛りアーク溶接電源21にMAG溶接トーチ、第1先行アーク溶接電源22にTIG溶接トーチ、第2先行アーク溶接電源23にTIG溶接トーチを使用した。また、ここで、タンデムトーチ式の第1トーチ間隔L1=250mm、第2トーチ間隔L2=90mm、シングルトーチ式のトーチ間隔L=240mmである。さらにタンデムトーチ式の入熱量は、Q1>(Q31+Q32)であり、かつQ31>Q32であった。シングルトーチ式の入熱量は、Q1>Q22である。   Here, a MAG welding torch was used as the build-up arc welding power source 21, a TIG welding torch was used as the first preceding arc welding power source 22, and a TIG welding torch was used as the second preceding arc welding power source 23. Here, the tandem torch type first torch interval L1 = 250 mm, the second torch interval L2 = 90 mm, and the single torch type torch interval L = 240 mm. Furthermore, the heat input of the tandem torch type was Q1> (Q31 + Q32) and Q31> Q32. The heat input of the single torch type is Q1> Q22.

上記実験によれば、シングルトーチ式の先行加熱で管Pの変形量が約0.4mmであるのに対して、タンデムトーチ式の先行加熱で管Pの変形量が約0.1mmであり、タンデムトーチ式の先行加熱がシングルトーチ式の先行加熱に比較して、管Pの変形量を十分に小さくできることが判明した。   According to the above experiment, the deformation amount of the pipe P is about 0.4 mm by the single-torch type preheating, whereas the deformation amount of the pipe P is about 0.1 mm by the tandem torch type preheating, It has been found that the tandem torch-type preheating can sufficiently reduce the deformation amount of the pipe P as compared with the single torch-type preheating.

(溶接初端部の動作)
肉盛り溶接するに際して、管Pの初端部における動作を、図5を参照して説明する。
管Pの初端部の加熱の動作の概要は、肉盛り溶接開始位置Wsの溶接方向後方の原点位置Wpから、第1先行位置の第1先行アーク溶接電源22と、第2先行位置の第2先行アーク溶接電源23を起動して裏面の加熱を開始し、溶接台車13を前方に移動させて肉盛り溶接開始位置Wsを通過させ、肉盛り溶接開始位置置Wsで表面の肉盛りアーク溶接電源21を起動して肉盛り溶接を開始するものである。
(Operation of welding first end)
The operation at the initial end of the pipe P when performing build-up welding will be described with reference to FIG.
The outline of the heating operation of the first end portion of the pipe P is as follows. From the origin position Wp behind the build-up welding start position Ws in the welding direction, the first preceding arc welding power source 22 at the first leading position and the second leading position at the second leading position. (2) The leading arc welding power source 23 is activated to start heating the back surface, the welding carriage 13 is moved forward to pass the buildup welding start position Ws, and the surface buildup arc welding is performed at the buildup welding start position Ws. The power source 21 is activated to start overlay welding.

すなわち、溶接台車13を原点位置に停止させ、肉盛りアーク溶接電源21を停止するとともに、第1先行アーク溶接電源22および第2先行アーク溶接電源23を起動して管の裏面を予熱し、溶接台車13を原点Wpから肉盛り溶接開始位置Wsに向かって前進させる。そして肉盛りアーク溶接電源21が原点Wpから肉盛り溶接開始位置Wsに至る間で、第1先行アーク溶接電源22により管Pの裏面を第1先行予熱区間Lp1に沿って予熱するとともに、第2先行アーク溶接電源23により管Pの裏面を第2先行予熱区間Lp2に沿って予熱する。さらに溶接台車13を前進させて第1先行アーク溶接電源22および第2先行アーク溶接電源23が、肉盛り溶接開始位置Wsを通過する。   That is, the welding carriage 13 is stopped at the origin position, the build-up arc welding power source 21 is stopped, the first preceding arc welding power source 22 and the second preceding arc welding power source 23 are activated to preheat the back surface of the pipe, and welding is performed. The carriage 13 is advanced from the origin Wp toward the buildup welding start position Ws. Then, while the build-up arc welding power source 21 reaches the build-up welding start position Ws from the origin Wp, the first preceding arc welding power source 22 preheats the back surface of the pipe P along the first preceding preheating section Lp1, and the second The back surface of the pipe P is preheated along the second preceding preheating section Lp2 by the preceding arc welding power source 23. Further, the welding carriage 13 is advanced, and the first preceding arc welding power source 22 and the second preceding arc welding power source 23 pass the buildup welding start position Ws.

これにより、肉盛り溶接開始位置Wsの後方では、第1先行アーク溶接電源22により第1先行予熱区間Lp1が予熱され、第2先行アーク溶接電源23により第2先行予熱区間Lp2が予熱される。また肉盛り溶接開始位置Wsの前方では、第1先行アーク溶接電源22により第1トーチ間隔L1が予熱され、第2先行アーク溶接電源23により第3トーチ間隔L3が予熱される。このように、肉盛り溶接開始位置Wsの前後で管Pの裏面が十分に予熱された状態で、肉盛りアーク溶接電源21により溶接開始位置Wsから肉盛り溶接が開始される。   As a result, the first preceding pre-heating section Lp1 is preheated by the first preceding arc welding power supply 22 and the second preceding preheating section Lp2 is preheated by the second preceding arc welding power supply 23 behind the overlay welding start position Ws. Further, in front of the buildup welding start position Ws, the first torch interval L1 is preheated by the first preceding arc welding power source 22, and the third torch interval L3 is preheated by the second preceding arc welding power source 23. Thus, build-up welding is started from the welding start position Ws by the build-up arc welding power source 21 in a state where the back surface of the pipe P is sufficiently preheated before and after the build-up welding start position Ws.

ここで、たとえば第1先行予熱区間Lp1は、少なくともL1以上であり、第2先行予熱区間Lp2は、少なくとも第1先行予熱区間Lp1+L2である。
上記構成において、肉盛り溶接開始位置Wsより第1トーチ間隔後方の原点位置Wpから第1先行アーク溶接電源22と第2先行アーク溶接電源23を起動して管Pの裏面を予熱しておき、肉盛り溶接開始位置Wsで、肉盛りアーク溶接電源21を起動して肉盛り溶接を開始するので、肉盛り溶接開始位置Wsから溶接方向前方の管Pの変形を効果的に防止することができ、管始端部で変形が大きくて不適正な肉盛り溶接部の無駄をなくすことができる。
Here, for example, the first preceding preheating section Lp1 is at least L1 or more, and the second preceding preheating section Lp2 is at least the first preceding preheating section Lp1 + L2.
In the above configuration, the back surface of the pipe P is preheated by starting the first preceding arc welding power source 22 and the second preceding arc welding power source 23 from the origin position Wp behind the first torch interval from the buildup welding start position Ws, Since the build-up arc welding power source 21 is activated and the build-up welding is started at the build-up welding start position Ws, deformation of the pipe P ahead in the welding direction from the build-up welding start position Ws can be effectively prevented. In addition, it is possible to eliminate the waste of an improper build-up welded portion that is largely deformed at the pipe start end.

上記実施例によれば、管冷却装置15により管Pを冷却水により冷却することにより、管母材の過熱を防止して肉盛り材料の希釈を低減することができる。また肉盛り溶接位置Pwの肉盛りアーク溶接電源21による肉盛り入熱量Q1に比較して、第1,第2先行アーク溶接電源22,23による(入熱量Q31+入熱量Q32)を小さくしても、肉盛り溶接による管Pの曲がりを防止することができる。また、これにより先行加熱による管母材底面の溶融や焼入れ温度以上の過熱を減少させることができ、全体として小さい熱エネルギーでエネルギーコストを削減することができる。さらに、第1先行入熱量Q31より第2先行入熱量Q32を小さくすることにより、過剰な加熱による管母材の溶融や硬化を防止することができる。   According to the above embodiment, the pipe P is cooled by the pipe cooling device 15 with the cooling water, thereby preventing overheating of the pipe base material and reducing the dilution of the build-up material. Further, even if (heat input Q31 + heat input Q32) by the first and second preceding arc welding power sources 22, 23 is made smaller than the heat input Q1 by the build arc welding power source 21 at the build-up welding position Pw. Further, it is possible to prevent the pipe P from bending due to build-up welding. Further, it is possible to reduce the melting of the bottom surface of the pipe base material due to the preceding heating and the overheating above the quenching temperature, and the energy cost can be reduced with a small amount of heat energy as a whole. Furthermore, by making the second preceding heat input amount Q32 smaller than the first preceding heat input amount Q31, it is possible to prevent the tube base material from being melted or cured by excessive heating.

また、第1先行位置P1で管Pが焼入れ温度以上に加熱された場合に、第2先行位置P2で管を焼戻し温度以上に加熱することにより、管母材を焼戻しして硬化組織を改質することができる。   In addition, when the pipe P is heated above the quenching temperature at the first preceding position P1, the pipe base material is tempered to improve the hardened structure by heating the pipe above the tempering temperature at the second preceding position P2. can do.

さらに、第1先行位置P1および第2先行位置P2で加熱しつつ原点位置Wpから肉盛り溶接開始位置Wsの間で移動することで、管Pの裏面を予熱しておき、肉盛り溶接開始位置Wsで肉盛り溶接を開始することで、管Pの曲がりを効果的に防止することができる。   Furthermore, the back surface of the pipe P is preheated by moving between the origin position Wp and the buildup welding start position Ws while heating at the first preceding position P1 and the second preceding position P2, and the buildup welding start position By starting the build-up welding with Ws, the bending of the pipe P can be effectively prevented.

さらにまた、肉盛り溶接位置Pwにおける入熱量Q1の増加に対応して、第1先行位置P1の入熱量Q31が増加した時に、第2先行位置P2の入熱量Q32を増大させるか、または第2先行位置P2を第1先行位置P1に接近させることにより、肉盛り溶接部の入熱量Q1と先行加熱部P1,P2の入熱量(Q1+Q2)をバランスさせることができ、管Pの曲がりを防止することができる。   Furthermore, when the heat input amount Q31 at the first preceding position P1 increases corresponding to the increase in the heat input amount Q1 at the buildup welding position Pw, the heat input amount Q32 at the second preceding position P2 is increased, or the second By bringing the preceding position P2 closer to the first preceding position P1, the heat input amount Q1 of the build-up welded portion and the heat input amounts (Q1 + Q2) of the preceding heated portions P1, P2 can be balanced, and the bending of the pipe P is prevented. be able to.

P 管
Pw 肉盛り溶接位置
P1 第1先行位置
P2 第2先行位置
Q1 入熱量(肉盛り入熱量)
Q31 入熱量(第1先行入熱量)
Q32 入熱量(第2先行入熱量)
11 ベースフレーム
12 管支持具
13 溶接台車
14 サポート台車
15 管冷却装置
16i 給水ホース
16o 排水ホース
17 循環ポンプ
18 冷却装置
19 管冷却制御装置
21 肉盛りアーク溶接電源
21t 溶接トーチ
21b 溶接線
22 第1先行アーク溶接電源
22t タングステントーチ
23 第2先行アーク溶接電源
23t タングステントーチ
P Pipe Pw Overlay welding position P1 1st precedence position P2 2nd precedence position Q1 Heat input (buildup heat input)
Q31 heat input (first preceding heat input)
Q32 heat input (second preceding heat input)
11 Base frame 12 Pipe support 13 Welding carriage 14 Support carriage 15 Pipe cooling device 16i Water supply hose 16o Drain hose 17 Circulation pump 18 Cooling device 19 Pipe cooling control device 21 Overlaying arc welding power source 21t Welding torch 21b Welding line 22 First lead Arc welding power source 22t tungsten torch 23 Second preceding arc welding power source 23t tungsten torch

Claims (6)

管の表面を軸心方向に沿って肉盛り溶接する際に、当該管を裏面から加熱する管の肉盛り溶接方法であって、
管内に冷却水を循環させ、
肉盛り溶接位置より溶接方向前方の第1先行位置で裏面を加熱し、
管の裏面で前記第1先行位置と前記肉盛り溶接位置の間の第2先行位置で、管の裏面で加熱し、
肉盛り溶接位置の肉盛り入熱量に対して、第1先行位置の第1先行入熱量と第2先行位置の第2先行入熱量の総和を小さくするとともに、
前記第1先行入熱量より前記第2先行入熱量を小さくし、
前記肉盛り入熱量と、前記第1先行入熱量および前記第2先行入熱量とを調整して管の表面と裏面の曲がりを均等化する
ことを特徴とする管の肉盛り溶接方法。
A build-up welding method for a pipe that heats the pipe from the back surface when build-up welding the surface of the pipe along the axial direction,
Circulating cooling water in the pipe,
The back surface is heated at the first preceding position in front of the welding direction from the buildup welding position,
Heating on the back surface of the tube at a second preceding position between the first preceding position and the build-up welding position on the back surface of the tube;
The sum of the first preceding heat input at the first preceding position and the second preceding heat input at the second preceding position is reduced with respect to the amount of heat input at the buildup welding position,
Making the second preceding heat input smaller than the first preceding heat input,
A method for build-up welding of a tube, characterized by equalizing the bending of the front surface and the back surface of the tube by adjusting the amount of heat build-up heat input, the first preceding heat input amount, and the second preceding heat input amount.
第1先行位置での加熱温度が管の焼入れ温度以上となった場合に、第2先行位置の加熱温度を、管の焼戻し温度以上として管の裏面の硬化を低減する
ことを特徴とする請求項1記載の管の肉盛り溶接方法。
When the heating temperature at the first leading position becomes equal to or higher than the quenching temperature of the pipe, the heating temperature at the second leading position is set to be equal to or higher than the tempering temperature of the pipe to reduce the hardening of the back surface of the pipe. A method for overlay welding of pipes according to 1.
管の初端部では、肉盛り溶接開始位置の溶接方向後方の原点位置から、第1先行位置、第2先行位置の裏面の加熱を開始し、管軸心方向前方に移動させて前記肉盛り溶接開始位置を通過させ、
前記肉盛り溶接開始位置で表面の肉盛り溶接を開始する
ことを特徴とする請求項1または2記載の管の肉盛り溶接方法。
At the first end of the pipe, heating of the back surface of the first preceding position and the second preceding position is started from the origin position behind the welding direction of the buildup welding start position, and the welding is moved forward in the tube axis direction. Pass the welding start position,
The build-up welding method for pipes according to claim 1 or 2, wherein build-up welding of a surface is started at the build-up welding start position.
第1先行位置の入熱量が大きくなると、第2先行位置を第1先行位置に接近させるか、または第2先行位置の入熱量を増大する
ことを特徴とする請求項1乃至3のいずれかに記載の管の肉盛り溶接方法。
4. The heat input amount at the second preceding position is increased by bringing the second preceding position closer to the first preceding position or when the amount of heat input at the first preceding position is increased. 5. The method of overlay welding of a pipe as described.
管の表面を肉盛り溶接する時に、当該管を裏面から加熱する管の肉盛り溶接装置であって、
管内に冷却水を流送して肉盛り材料の希釈を減少する冷却装置と、
肉盛り溶接位置に配置されて管の表面に肉盛り材料を溶接する消耗電極式の肉盛りアーク溶接電源と、
前記肉盛り溶接位置より所定距離前方の第1先行位置で裏面を加熱する非消耗電極式の第1先行アーク溶接電源と、
前記第1先行位置と前記肉盛り溶接位置の間の第2先行位置で、裏面を前記第1先行位置の第1先行入熱量より小さい第2先行入熱量で加熱する非消耗電極式の第2先行アーク溶接電源と、
を具備したことを特徴とする管の肉盛り溶接装置。
A build-up welding apparatus for a pipe that heats the pipe from the back surface when welding the surface of the pipe,
A cooling device for flowing cooling water into the pipe to reduce dilution of the overlay material;
A consumable electrode type build-up arc welding power source which is arranged at the build-up welding position and welds the build-up material to the surface of the pipe;
A non-consumable electrode type first leading arc welding power source that heats the back surface at a first leading position that is a predetermined distance ahead of the build-up welding position;
A non-consumable electrode type second that heats the back surface with a second preceding heat input amount smaller than the first preceding heat input amount at the first preceding position at a second preceding position between the first preceding position and the build-up welding position. A leading arc welding power source;
A build-up welding apparatus for pipes, comprising:
肉盛りアーク溶接電源は、MIG溶接機またはMAG溶接機であり、
第1先行アーク溶接電源および第2先行アーク溶接電源は、TIG溶接機またはプラズマ溶接機である
ことを特徴とする請求項5記載の管の肉盛り溶接装置。

The build-up arc welding power source is a MIG welding machine or a MAG welding machine,
The pipe build-up welding apparatus according to claim 5, wherein the first preceding arc welding power source and the second leading arc welding power source are TIG welding machines or plasma welding machines.

JP2014070709A 2014-03-31 2014-03-31 Pipe overlay welding method and apparatus Active JP6249859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070709A JP6249859B2 (en) 2014-03-31 2014-03-31 Pipe overlay welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070709A JP6249859B2 (en) 2014-03-31 2014-03-31 Pipe overlay welding method and apparatus

Publications (2)

Publication Number Publication Date
JP2015188933A JP2015188933A (en) 2015-11-02
JP6249859B2 true JP6249859B2 (en) 2017-12-20

Family

ID=54423916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070709A Active JP6249859B2 (en) 2014-03-31 2014-03-31 Pipe overlay welding method and apparatus

Country Status (1)

Country Link
JP (1) JP6249859B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467066B2 (en) * 2019-10-18 2024-04-15 三菱重工業株式会社 Welding device and method for controlling the same
JP7218271B2 (en) * 2019-10-18 2023-02-06 株式会社ウェルディングアロイズ・ジャパン Overlay welding device, shrinkage reduction method, and deformation reduction method
CN112303344A (en) * 2020-10-29 2021-02-02 广东博盈特焊技术股份有限公司 Metal composite pipe and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496446A (en) * 1978-01-17 1979-07-30 Nippon Kokan Kk <Nkk> Welding method for welded steel pipe of high toughness
JPS61219483A (en) * 1985-03-26 1986-09-29 Nippon Steel Corp Method for preventing sheet pile of steel pipe from bending
JPS62166075A (en) * 1986-01-16 1987-07-22 Daido Steel Co Ltd Overlay welding method and jig for welding
JPH07299578A (en) * 1994-05-10 1995-11-14 Sky Alum Co Ltd Deformation preventing/correcting method of fillet welded joint of aluminum thin sheet
JP5687825B2 (en) * 2009-05-20 2015-03-25 Jfeスチール株式会社 Distortion suppression jig and steel wall repair method

Also Published As

Publication number Publication date
JP2015188933A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP3200387U (en) System using consumables with welding puddles
JP2000301376A (en) Heat treatment of weld bead
US10005151B2 (en) Friction stir welding method for steel sheets and method of manufacturing joint
JP6249859B2 (en) Pipe overlay welding method and apparatus
CN109475980B (en) Laser welding, cladding and/or additive manufacturing system and method of laser welding, cladding and/or additive manufacturing
JP5499577B2 (en) Laser welding equipment
JP2009500177A (en) System and method for laser resistance hybrid welding
KR20150027834A (en) Hot-wire consumable incapable of sustaining an arc
KR20140142226A (en) Method of welding structural steel and welded steel structure
JP6289713B1 (en) Welding system and welding method
JP7097282B2 (en) Butt welding method for extra-thick plates and butt welding equipment for extra-thick plates
JP4415863B2 (en) Multilayer prime welding method and multilayer prime welded structure
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JP6328367B2 (en) Propeller shaft manufacturing method and propeller shaft
JP2014161858A (en) Apparatus and method for hardening build-up welding
JP5381221B2 (en) Laser welding apparatus and laser welding method
JP5245972B2 (en) Laser welding method and laser welding apparatus
JP6143635B2 (en) Laser welding method and laser welding apparatus
JP2015199111A (en) Manufacturing method of welded structure
JP5931341B2 (en) Welding method
CN111805053B (en) Manufacturing method of efficient ultra-supercritical boiler T23 material membrane wall
JP4538394B2 (en) Residual stress improvement welding method and welded structure
JP2017087263A (en) Welding method
JP6913062B2 (en) Resistance spot welding method and welding member manufacturing method
WO2016103306A1 (en) Overlay welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6249859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250