WO2022079925A1 - Fuel cell hydrogen gas concentration sensor - Google Patents

Fuel cell hydrogen gas concentration sensor Download PDF

Info

Publication number
WO2022079925A1
WO2022079925A1 PCT/JP2020/046165 JP2020046165W WO2022079925A1 WO 2022079925 A1 WO2022079925 A1 WO 2022079925A1 JP 2020046165 W JP2020046165 W JP 2020046165W WO 2022079925 A1 WO2022079925 A1 WO 2022079925A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
electrode
concentration
gas concentration
sensor
Prior art date
Application number
PCT/JP2020/046165
Other languages
French (fr)
Japanese (ja)
Inventor
修治 原田
克己 高木
洋司 結城
Original Assignee
株式会社新潟Tlo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新潟Tlo filed Critical 株式会社新潟Tlo
Publication of WO2022079925A1 publication Critical patent/WO2022079925A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a hydrogen gas concentration sensor for a fuel cell.
  • the conventional hydrogen gas concentration sensor is based on the detection method of semiconductor type, ionization type, combustion type, etc. These measurement principles are “extensive physical quantities” such as “carrier concentration (semiconductor type)", “ion concentration (ionization type)", or “heat of reaction (burning type or burning and measuring its water vapor pressure)”. "The amount of hydrogen is detected by an indirect detection method, and they are converted into an electrical quantity to be used as a sensor. Therefore, it took time to detect the hydrogen gas, and it took 100 seconds or more for the slow one.
  • a hydrogen gas concentration sensor for a fuel cell can detect hydrogen gas in the entire concentration range from low concentration to high concentration, and it is indispensable that the time required for detection is short.
  • Patent Document 1 discloses a hydrogen gas concentration sensor in which a detection electrode and a reference electrode are appropriately selected from nickel, titanium, copper iron, aluminum, alloys containing these, and organic conductive materials.
  • the hydrogen gas concentration sensor can detect the hydrogen gas concentration under high concentration, it is difficult to detect the hydrogen gas concentration under low concentration. Further, there is a problem that the response time is long and the time required for detection becomes long.
  • An object of the present invention is to provide a novel hydrogen gas concentration sensor for a fuel cell capable of detecting hydrogen gas from a low concentration to a high concentration, having an excellent response speed, and shortening the detection time.
  • the present invention is as shown below.
  • a first electrode and a second electrode are provided, and a first solid electrolyte that comes into contact with these electrodes is provided, and the first electrode is H 2 ( ⁇ )
  • Material sample ( The first electrode material having a standard electromotive force value of 0.8 V or more in the cell configured with +) is included, and the second electrode has a standard electromotive force value of less than 0.8 V in the cell having the same configuration.
  • a low-concentration hydrogen gas concentration sensor including a second electrode material indicating a value, a third electrode and a fourth electrode, and a second solid electrolyte in contact with these electrodes are provided, and the third electrode is H 2 (.
  • the standard electromotive force value of the cell composed of the substance sample (+) is 0.8 V or more, and the third electrode material having hydrogen absorption property is included.
  • the fourth electrode comprises a high concentration hydrogen gas concentration sensor including a fourth electrode material having a standard electromotive force value of less than 0.8 V in the cell having the same configuration. Hydrogen gas concentration sensor for.
  • the first electrode material is characterized by containing at least one of platinum, a platinum alloy and a material containing them, and the third electrode is characterized by containing at least one of palladium, a palladium alloy and a material containing them.
  • the second electrode material and the fourth electrode material are nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy, organic conductive material, and materials containing these.
  • the hydrogen gas concentration sensor for a fuel cell according to (2) which comprises at least one.
  • the low-concentration hydrogen gas concentration sensor is used in an environment where the hydrogen gas concentration is less than 10% by volume
  • the high-concentration hydrogen gas concentration sensor is used in an environment where the hydrogen gas concentration is 10% by volume or more.
  • a novel hydrogen gas concentration sensor for a fuel cell that can detect hydrogen gas from a low concentration to a high concentration, has an excellent response speed, and can shorten the detection time.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system according to the present embodiment
  • FIG. 2 is a schematic configuration diagram of a hydrogen gas concentration sensor used in the fuel cell system shown in FIG.
  • the fuel cell 10 of the fuel cell system in the present embodiment has a fuel electrode 11, an air electrode 12, and an electrolyte 13 sandwiched between these electrodes.
  • the fuel cell 10 can be configured from any shape such as a solid polymer fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid oxide fuel cell, and the like.
  • the fuel cell 10 is arranged inside the case 16, and a low-concentration hydrogen gas sensor 20 is arranged outside the case 16 under a low-concentration hydrogen gas environment, for example, in the discharge pipe 121 of the air electrode 12, and has a high concentration.
  • a high-concentration hydrogen gas sensor 30 and a low-concentration hydrogen gas sensor 20 are arranged inside the case 16 under a hydrogen gas environment, for example, in the discharge pipe 111 of the fuel electrode 11.
  • the hydrogen gas sensor 30 for altitude and the hydrogen gas sensor 20 for low concentration constitute a hydrogen gas sensor in the entire concentration range.
  • reference numeral 122 represents an air introduction pipe to the air pole 12
  • reference numeral 112 represents a hydrogen gas introduction pipe to the fuel pole 11.
  • the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 are in a low-concentration and high-concentration hydrogen gas environment, respectively, their installation locations are not limited to the above-mentioned locations.
  • the low-concentration gas sensor 20 shown in FIG. 1 includes a plate-shaped first electrode 21 and a second electrode 22 provided so as to face each other, and a solid electrolyte 23 is provided between these electrodes.
  • the structure is such that
  • the first electrode 21 functions as a detection electrode for hydrogen gas, and its electrostatic potential changes significantly when it comes into contact with hydrogen gas.
  • the second electrode 22 functions as a reference electrode for hydrogen gas, and its electrostatic potential hardly changes or even if it changes, it is extremely small when it comes into contact with hydrogen gas.
  • the first electrode 21 can be composed of a first electrode material having a relatively high chemical potential, specifically, a material having a relatively high adsorption activity to hydrogen gas such as platinum and a platinum alloy. be able to.
  • the first electrode 21 may be made of these materials themselves, but these materials can be supported on a predetermined substrate and used. However, it can be used in any embodiment as long as it does not deviate from the scope of the present invention and functions as a detection electrode for hydrogen gas.
  • the second electrode 22 can be made of a material having a relatively low chemical potential, and specifically, nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy. It can also be composed of a material having a relatively low degree of adsorption activity for hydrogen gas, such as an organic conductive material. However, it can be used in any embodiment as long as it does not deviate from the scope of the present invention and functions as a reference electrode for hydrogen gas.
  • the first electrode 21 and the second electrode 22 have a plate shape, and the specific shape thereof can be various shapes such as linear, tubular, disc, and rectangular.
  • the solid electrolyte 23 can be composed of a solid electrolyte having excellent adhesion to the first electrode 21 and the second electrode 22, such as phosphotungstic acid.
  • the solid electrolyte 23 can include a structural reinforcing material such as glass wool in addition to an electrolyte material such as phosphotungsten. In this case, the strength of the solid electrolyte 23 can be increased, and the adhesion to the electrodes 21 and 22 can be further increased.
  • the high-concentration hydrogen gas sensor 30 basically takes the same mode as the hydrogen gas sensor shown in FIG. 2, but the third electrode 31 is required to have a hydrogen storage property. That is, in the case of a non-hydrogen storage electrode, for example, an electrode made of platinum or the like described above, when the hydrogen gas concentration at the electrode interface increases, the oxygen concentration at the electrode interface becomes relatively low. As a result, the change in EMF due to the reaction with oxygen becomes smaller, so that the change in EMF in the sensor is canceled out, and the change in EMF becomes smaller even if the hydrogen concentration increases.
  • a non-hydrogen storage electrode for example, an electrode made of platinum or the like described above
  • the hydrogen existing inside the electrode can keep the oxygen concentration at the electrode interface in a state where it can be substantially ignored. It can be sufficiently detected as a change.
  • Examples of the electrode material constituting the third electrode 31 include palladium and palladium alloys, Mg2Ni alloys, TiFeNiZi - based alloys, and the like, but palladium and palladium alloys having relatively high chemical potential are preferable.
  • the hydrogen gas sensor 20 having the first electrode 21 made of platinum or the like is suitable for detecting hydrogen gas under a low concentration
  • the hydrogen gas sensor 30 having the third electrode 31 made of palladium or the like has a high concentration. Suitable for detection of hydrogen gas sensor.
  • the fourth electrode 32 of the high-concentration hydrogen gas sensor 30 can be made of the same material as the second electrode 22 of the low-concentration hydrogen gas sensor 20, and can be used in the same manner.
  • the solid electrolyte 33 of the high-concentration hydrogen gas sensor 30 can also be made of the same material as the solid electrolyte 23 of the low-concentration hydrogen gas sensor, and can be used in the same manner.
  • the first electrode 21 and the second electrode 22 are provided with the first solid electrolyte 23 in contact with these electrodes, and the first electrode 21 is H 2 ( ⁇ )
  • a low concentration hydrogen gas concentration sensor containing a second electrode material exhibiting a value of less than 0.8 V, a third electrode 31 and a fourth electrode 32, and a second solid electrolyte 33 in contact with these electrodes are provided.
  • the third electrode 31 has a standard electromotive force value of 0.8 V or more in a cell composed of H 2 (-)
  • the fourth electrode 32 contains the third electrode material, and the fourth electrode 32 uses a hydrogen gas concentration sensor for high concentration containing the fourth electrode material showing a standard electromotive force value of less than 0.8 V in the cell having the same configuration. Therefore, the low concentration hydrogen gas sensor is responsible for detecting the hydrogen gas concentration under low concentration, and the high concentration hydrogen gas sensor is responsible for detecting the hydrogen gas concentration under high concentration. Therefore, hydrogen gas from low concentration to high concentration can be detected.
  • both the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 are configured such that the two electrodes constituting the hydrogen gas sensor contain materials having different chemical potentials with respect to hydrogen gas, and are relative to each other.
  • the first electrode 21 and the third electrode 31 containing a material having a relatively high chemical potential are used as detection electrodes, and the second electrode 22 and the fourth electrode 32 containing a material having a relatively low chemical potential are used as reference electrodes.
  • the hydrogen gas sensor 20 or 30 when the atmosphere contains hydrogen gas, the hydrogen gas sensor generates a predetermined electromotive force between electrodes containing materials having different chemical potentials. become. Therefore, even when the first electrode 21 and the second electrode 22 or the third electrode 31 and the fourth electrode 32 of the hydrogen gas sensor are in the same atmosphere, an electromotive force is generated between these electrodes and it is detected. This makes it possible to detect hydrogen gas in the atmosphere.
  • the hydrogen gas sensors 20 and 30 of the embodiment since the hydrogen gas concentration is detected based on the chemical potential, the hydrogen gas can be detected instantly.
  • the electromotive force between the two electrodes of the hydrogen gas sensors 20 and 30 of the embodiment is generated based on the following relational expression.
  • F is the Faraday constant
  • E is the EMF value
  • ⁇ I represents the electrostatic potential of the first electrode
  • ⁇ II represents the electrostatic potential of the second electrode.
  • the high and low hydrogen concentration means a low concentration when the concentration of hydrogen gas in the atmosphere is less than 10% by volume, and means a high concentration when the concentration of hydrogen gas in the atmosphere is 10% by volume or more.
  • At least one of the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 can be arranged on a strip-shaped insulating base material. Specifically, the film-shaped solid electrolytes 23 and 33 are formed, and the first electrode 21, the third electrode 31, the second electrode 22, and the fourth electrode 32 are provided on the film-like solid electrolytes 23 and 33 so as to be separated from each other.
  • the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 can be arranged in a limited space. This can be manufactured by incorporating it into a maintenance / replaceable piping screw or the like.
  • the hydrogen gas concentration sensors 20 and 30 shown in FIGS. 1 and 2 were placed in an atmosphere of an environmental temperature of 90 ° C. to ⁇ 50 ° C. and a humidity of 0% to 100% RH, and the hydrogen gas detection test was carried out.
  • the first electrode 21 of the low-concentration hydrogen gas sensor 20 was made of platinum
  • the third electrode 31 of the high-concentration hydrogen gas sensor 30 was made of palladium.
  • both the second electrode 22 and the fourth electrode 32 were made of tungsten.
  • Fuel cell 11 Fuel cell 12 Air electrode 13 Electrolyte 16 Case 20 Low concentration hydrogen gas sensor 21 1st electrode 22 2nd electrode 23 1st solid electrolyte 30 High concentration hydrogen gas sensor 31 3rd electrode 32 4th electrode 33 2nd solid Electrolytes

Abstract

This invention comprises: a low-concentration hydrogen gas concentration sensor comprising a first electrode, a second electrode, and a first solid electrolyte in contact with the first and second electrodes, the first electrode comprising a first electrode material exhibiting a standard electromotive force value in a prescribed cell configuration of at least 0.8 V and the second electrode comprising a second electrode material exhibiting a standard electromotive force value in the same cell configuration of less than 0.8 V; and a high-concentration hydrogen gas concentration sensor comprising a third electrode, a fourth electrode, and a second solid electrolyte in contact with the third and fourth electrodes, the third electrode comprising a hydrogen-occluding third electrode material exhibiting a standard electromotive force value in a prescribed cell configuration of at least 0.8 V and the fourth electrode comprising a fourth electrode material exhibiting a standard electromotive force value in the same cell configuration of less than 0.8 V.

Description

燃料電池用水素ガス濃度センサHydrogen gas concentration sensor for fuel cells
 本発明は、燃料電池用水素ガス濃度センサに関する。 The present invention relates to a hydrogen gas concentration sensor for a fuel cell.
 今後の水素エネルギー利用社会において水素爆発の危険性を払拭し安全性が高く、利便性に優れた水素エネルギー利用システムの構築が望まれる。水素ガスセンサの仕様は、大気中に漏れた水素量を瞬時に高精度で検出でき、構造がきわめて単純、信頼性が高いことが求められる。 In the future hydrogen energy utilization society, it is desired to eliminate the danger of hydrogen explosion and build a highly safe and convenient hydrogen energy utilization system. The specifications of the hydrogen gas sensor are required to be able to detect the amount of hydrogen leaked into the atmosphere instantly with high accuracy, have an extremely simple structure, and have high reliability.
 従来の水素ガス濃度センサは半導体型、電離型、燃焼型などの検出方法に基づいている。これらの測定原理は「示量性の物理量」である“キャリア濃度(半導体型)”、“イオン濃度(電離型)”、あるいは“反応熱(燃焼型または燃焼させてその水蒸気圧を測定する)”として間接的な検出方法で水素量を検知し、それらを電気的な量に変換してセンサとするものであった。このため、水素ガスの検出に要するまでに時間を要し、遅いものでは100秒以上を必要としていた。特に、燃料電池用水素ガス濃度センサでは、水素ガスの低濃度から高濃度までの全濃度範囲での検出が可能で、検出に要する時間が短いことが不可欠である。 The conventional hydrogen gas concentration sensor is based on the detection method of semiconductor type, ionization type, combustion type, etc. These measurement principles are "extensive physical quantities" such as "carrier concentration (semiconductor type)", "ion concentration (ionization type)", or "heat of reaction (burning type or burning and measuring its water vapor pressure)". "The amount of hydrogen is detected by an indirect detection method, and they are converted into an electrical quantity to be used as a sensor. Therefore, it took time to detect the hydrogen gas, and it took 100 seconds or more for the slow one. In particular, a hydrogen gas concentration sensor for a fuel cell can detect hydrogen gas in the entire concentration range from low concentration to high concentration, and it is indispensable that the time required for detection is short.
 特許文献1には、ニッケル、チタン、銅鉄、アルミニウム、これらを含む合金、及び有機導電材料から適宜検出電極及び基準電極を選択してなる水素ガス濃度センサが開示されている。しかしながら、当該水素ガス濃度センサは、高濃度下での水素ガス濃度の検出は可能であるが、低濃度下での水素ガス濃度の検出は困難である。また、応答時間が長く、検出に要する時間が長時間化してしまうという問題があった。 Patent Document 1 discloses a hydrogen gas concentration sensor in which a detection electrode and a reference electrode are appropriately selected from nickel, titanium, copper iron, aluminum, alloys containing these, and organic conductive materials. However, although the hydrogen gas concentration sensor can detect the hydrogen gas concentration under high concentration, it is difficult to detect the hydrogen gas concentration under low concentration. Further, there is a problem that the response time is long and the time required for detection becomes long.
特許第5201593号Patent No. 5201593
 本発明は、低濃度から高濃度までの水素ガスを検出することができ、かつ応答速度に優れ、検出時間を短縮化できる新規な燃料電池用水素ガス濃度センサを提供することを目的とする。 An object of the present invention is to provide a novel hydrogen gas concentration sensor for a fuel cell capable of detecting hydrogen gas from a low concentration to a high concentration, having an excellent response speed, and shortening the detection time.
 本発明は、以下に示す通りである。
(1)第1電極及び第2電極と、これらの電極と接触する第1固体電解質とを備え、前記第1電極は、H(-)|50mol/mSO|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含み、前記第2電極は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第2電極材料を含む低濃度用水素ガス濃度センサと、第3電極及び第4電極と、これらの電極と接触する第2固体電解質とを備え、前記第3電極は、H(-)|50mol/mSO|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示し、かつ水素吸蔵性を有する第3電極材料を含み、前記第4電極は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第4電極材料を含む高濃度用水素ガス濃度センサと、を備えることを特徴とする、燃料電池用水素ガス濃度センサ。
(2)前記第1電極材料は、白金、白金合金及びこれらを含む材料の少なくとも1つを含み、前記第3電極は、パラジウム、パラジウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、(1)に記載の燃料電池用水素ガス濃度センサ。
(3)前記第2電極材料及び前記第4電極材料は、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金や有機導電材料及びこれらを含む材料の少なくとも1つを含むことを特徴とする、(2)に記載の燃料電池用水素ガス濃度センサ。
(4)前記低濃度用水素ガス濃度センサ及び前記高濃度用水素ガス濃度センサの少なくとも一方は、帯状の基材上に形成されていることを特徴とする、(1)~(3)のいずれか1つに記載の燃料電池用水素ガス濃度センサ。
(5)前記低濃度用水素ガス濃度センサは、水素ガス濃度が10体積%未満の環境下で使用し、前記高濃度用水素ガス濃度センサは、水素ガス濃度が10体積%以上の環境下で使用することを特徴とする、(1)~(4)のいずれか1つに記載の燃料電池用水素ガス濃度センサ。
The present invention is as shown below.
(1) A first electrode and a second electrode are provided, and a first solid electrolyte that comes into contact with these electrodes is provided, and the first electrode is H 2 (−) | 50 mol / m 3 H 2 SO 4 | Material sample ( The first electrode material having a standard electromotive force value of 0.8 V or more in the cell configured with +) is included, and the second electrode has a standard electromotive force value of less than 0.8 V in the cell having the same configuration. A low-concentration hydrogen gas concentration sensor including a second electrode material indicating a value, a third electrode and a fourth electrode, and a second solid electrolyte in contact with these electrodes are provided, and the third electrode is H 2 (. -) | 50 mol / m 3 H 2 SO 4 | The standard electromotive force value of the cell composed of the substance sample (+) is 0.8 V or more, and the third electrode material having hydrogen absorption property is included. The fourth electrode comprises a high concentration hydrogen gas concentration sensor including a fourth electrode material having a standard electromotive force value of less than 0.8 V in the cell having the same configuration. Hydrogen gas concentration sensor for.
(2) The first electrode material is characterized by containing at least one of platinum, a platinum alloy and a material containing them, and the third electrode is characterized by containing at least one of palladium, a palladium alloy and a material containing them. The hydrogen gas concentration sensor for a fuel cell according to (1).
(3) The second electrode material and the fourth electrode material are nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy, organic conductive material, and materials containing these. The hydrogen gas concentration sensor for a fuel cell according to (2), which comprises at least one.
(4) Any of (1) to (3), wherein at least one of the low-concentration hydrogen gas concentration sensor and the high-concentration hydrogen gas concentration sensor is formed on a strip-shaped base material. One of the hydrogen gas concentration sensors for fuel cells.
(5) The low-concentration hydrogen gas concentration sensor is used in an environment where the hydrogen gas concentration is less than 10% by volume, and the high-concentration hydrogen gas concentration sensor is used in an environment where the hydrogen gas concentration is 10% by volume or more. The hydrogen gas concentration sensor for a fuel cell according to any one of (1) to (4), which is characterized by being used.
 本発明によれば、低濃度から高濃度までの水素ガスを検出することができ、かつ応答速度に優れ、検出時間を短縮化できる新規な燃料電池用水素ガス濃度センサを提供することができる。 According to the present invention, it is possible to provide a novel hydrogen gas concentration sensor for a fuel cell that can detect hydrogen gas from a low concentration to a high concentration, has an excellent response speed, and can shorten the detection time.
実施形態における燃料電池システムの概略構成図である。It is a schematic block diagram of the fuel cell system in an embodiment. 図1に示す燃料電池システムで使用する水素ガス濃度センサの概略構成図である。It is a schematic block diagram of the hydrogen gas concentration sensor used in the fuel cell system shown in FIG. 1. 実施例における低濃度用水素ガスセンサによる水素ガス濃度とEMF値との関係を示すグラフである。It is a graph which shows the relationship between the hydrogen gas concentration by the low concentration hydrogen gas sensor in an Example, and an EMF value. 実施例における高濃度用水素ガスセンサによる水素ガス濃度とEMF値との関係を示すグラフである。It is a graph which shows the relationship between the hydrogen gas concentration and the EMF value by the hydrogen gas sensor for high concentration in an Example.
 図1は、本実施形態における燃料電池システムの概略構成図であり、図2は、図1に示す燃料電池システムで使用する水素ガス濃度センサの概略構成図である。 FIG. 1 is a schematic configuration diagram of a fuel cell system according to the present embodiment, and FIG. 2 is a schematic configuration diagram of a hydrogen gas concentration sensor used in the fuel cell system shown in FIG.
 図1に示すように、本実施形態における燃料電池システムの燃料電池10は、燃料極11と空気極12と、これら電極間に挟持された電解質13とを有している。なお、燃料電池10は、固体高分子形燃料電池、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形電量電池等、任意の形から構成することができ、これに応じて、燃料極11、空気極12、電解質13も適当なものを選択して使用することができる。 As shown in FIG. 1, the fuel cell 10 of the fuel cell system in the present embodiment has a fuel electrode 11, an air electrode 12, and an electrolyte 13 sandwiched between these electrodes. The fuel cell 10 can be configured from any shape such as a solid polymer fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid oxide fuel cell, and the like. As the fuel electrode 11, the air electrode 12, and the electrolyte 13, appropriate ones can be selected and used.
 燃料電池10はケース16内に配設され、低濃度の水素ガス環境下であるケース16の外部、例えば空気極12の排出管121には低濃度用水素ガスセンサ20が配設され、高濃度の水素ガス環境下であるケース16の内部、例えば燃料極11の排出管111には高濃度用水素ガスセンサ30及び低濃度用水素ガスセンサ20が配設されている。この場合、高度用水素ガスセンサ30及び低濃度用水素ガスセンサ20で全濃度範囲の水素ガスセンサを構成することになる。 The fuel cell 10 is arranged inside the case 16, and a low-concentration hydrogen gas sensor 20 is arranged outside the case 16 under a low-concentration hydrogen gas environment, for example, in the discharge pipe 121 of the air electrode 12, and has a high concentration. A high-concentration hydrogen gas sensor 30 and a low-concentration hydrogen gas sensor 20 are arranged inside the case 16 under a hydrogen gas environment, for example, in the discharge pipe 111 of the fuel electrode 11. In this case, the hydrogen gas sensor 30 for altitude and the hydrogen gas sensor 20 for low concentration constitute a hydrogen gas sensor in the entire concentration range.
 なお、符号122は空気極12への空気導入管を表し、符号112は燃料極11への水素ガス導入管を表す。 Note that reference numeral 122 represents an air introduction pipe to the air pole 12, and reference numeral 112 represents a hydrogen gas introduction pipe to the fuel pole 11.
 また、低濃度用水素ガスセンサ20及び高濃度用水素ガスセンサ30は、それぞれ低濃度及び高濃度の水素ガス環境下であれば、それらの設置場所は、上述した箇所に限定されるものではない。 Further, as long as the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 are in a low-concentration and high-concentration hydrogen gas environment, respectively, their installation locations are not limited to the above-mentioned locations.
 図1に示す低濃度用ガスセンサ20は、図2に示すように、互いに対向するように設けられた、板状の第1電極21及び第2電極22を備えるとともに、これら電極間に固体電解質23が介在するような構成を採っている。第1電極21は、水素ガスに対する検出電極として機能し、水素ガスと接触することによって、その静電ポテンシャルが大きく変化する。第2電極22は、水素ガスに対する基準電極として機能し、水素ガスと接触することによって、その静電ポテンシャルがほとんど変化しないか、変化するとしても極微小である。 As shown in FIG. 2, the low-concentration gas sensor 20 shown in FIG. 1 includes a plate-shaped first electrode 21 and a second electrode 22 provided so as to face each other, and a solid electrolyte 23 is provided between these electrodes. The structure is such that The first electrode 21 functions as a detection electrode for hydrogen gas, and its electrostatic potential changes significantly when it comes into contact with hydrogen gas. The second electrode 22 functions as a reference electrode for hydrogen gas, and its electrostatic potential hardly changes or even if it changes, it is extremely small when it comes into contact with hydrogen gas.
 第1電極21は、相対的に化学ポテンシャルの高い第1電極材料から構成することができ、具体的には白金、白金合金等の、相対的に水素ガスに対する吸着活性度の高い材料から構成することができる。第1電極21は、これら材料自身から構成することもできるが、これらの材料を所定の基体上に担持させて用いることができる。但し、本発明の範疇を逸脱せず、水素ガスに対する検出電極として機能する限り、任意の態様で使用することができる。 The first electrode 21 can be composed of a first electrode material having a relatively high chemical potential, specifically, a material having a relatively high adsorption activity to hydrogen gas such as platinum and a platinum alloy. be able to. The first electrode 21 may be made of these materials themselves, but these materials can be supported on a predetermined substrate and used. However, it can be used in any embodiment as long as it does not deviate from the scope of the present invention and functions as a detection electrode for hydrogen gas.
 第2電極22は、相対的に化学ポテンシャルの低い材料から構成することができ、具体的には、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金及び有機導電材料などの、相対的に水素ガスに対する吸着活性度合いの低い材料から構成することができる。但し、本発明の範疇を逸脱せず、水素ガスに対する基準電極として機能する限り、任意の態様で使用することができる。 The second electrode 22 can be made of a material having a relatively low chemical potential, and specifically, nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy. It can also be composed of a material having a relatively low degree of adsorption activity for hydrogen gas, such as an organic conductive material. However, it can be used in any embodiment as long as it does not deviate from the scope of the present invention and functions as a reference electrode for hydrogen gas.
 第1電極21及び第2電極22は板状を呈するが、その具体的な形状は線状、管状、円盤状、矩形状など種々の形状にできる。 The first electrode 21 and the second electrode 22 have a plate shape, and the specific shape thereof can be various shapes such as linear, tubular, disc, and rectangular.
 また、固体電解質23は、燐タングステン酸などの、第1電極21及び第2電極22との密着性に優れた固体電解質から構成することができる。固体電解質23は、燐タングステンなどの電解質材料に加えてグラスウールなどの構造補強材を含むことができる。この場合、固体電解質23の強度を増大させることができるとともに、電極21及び22との密着性をさらに増大させることができる。 Further, the solid electrolyte 23 can be composed of a solid electrolyte having excellent adhesion to the first electrode 21 and the second electrode 22, such as phosphotungstic acid. The solid electrolyte 23 can include a structural reinforcing material such as glass wool in addition to an electrolyte material such as phosphotungsten. In this case, the strength of the solid electrolyte 23 can be increased, and the adhesion to the electrodes 21 and 22 can be further increased.
 一方、高濃度用水素ガスセンサ30も、基本的には図2に示す水素ガスセンサと同様の態様を取るが、第3電極31は、水素吸蔵性を有することが要求される。すなわち、非水素吸蔵性の電極、例えば上述した白金等からなる電極の場合、電極界面での水素ガス濃度が高くなると、電極界面での酸素濃度は相対的に低くなる。このことで、酸素との反応によるEMFが小さくなることで、センサのEMFの変化が相殺され、水素濃度が増えてもEMFの変化は小さくなる。一方、上述したパラジウム等からなる水素吸蔵性の電極の場合、電極内部に存在する水素により、電極界面での酸素濃度を実質上無視できる状態に保持できることから、センサのEMFの変化を水素濃度の変化として十分に検出することができる。 On the other hand, the high-concentration hydrogen gas sensor 30 basically takes the same mode as the hydrogen gas sensor shown in FIG. 2, but the third electrode 31 is required to have a hydrogen storage property. That is, in the case of a non-hydrogen storage electrode, for example, an electrode made of platinum or the like described above, when the hydrogen gas concentration at the electrode interface increases, the oxygen concentration at the electrode interface becomes relatively low. As a result, the change in EMF due to the reaction with oxygen becomes smaller, so that the change in EMF in the sensor is canceled out, and the change in EMF becomes smaller even if the hydrogen concentration increases. On the other hand, in the case of the above-mentioned hydrogen storage electrode made of palladium or the like, the hydrogen existing inside the electrode can keep the oxygen concentration at the electrode interface in a state where it can be substantially ignored. It can be sufficiently detected as a change.
 第3電極31を構成する電極材料としては、パラジウム、パラジウム合金や、MgNi合金、TiFeNiZi系合金等を挙げることができるが、相対的に化学ポテンシャルの高いパラジウム、パラジウム合金が好ましい。 Examples of the electrode material constituting the third electrode 31 include palladium and palladium alloys, Mg2Ni alloys, TiFeNiZi - based alloys, and the like, but palladium and palladium alloys having relatively high chemical potential are preferable.
 したがって、白金等から構成した第1電極21を有する水素ガスセンサ20は、低濃度下の水素ガスの検出に好適であって、パラジウム等から構成した第3電極31を有する水素ガスセンサ30は、高濃度の水素ガスセンサの検出に好適である。 Therefore, the hydrogen gas sensor 20 having the first electrode 21 made of platinum or the like is suitable for detecting hydrogen gas under a low concentration, and the hydrogen gas sensor 30 having the third electrode 31 made of palladium or the like has a high concentration. Suitable for detection of hydrogen gas sensor.
 なお、高濃度用水素ガスセンサ30の第4電極32は、低濃度用水素ガスセンサ20の第2電極22と同様の材料から構成することができ、同様の態様で使用することができる。高濃度用水素ガスセンサ30の固体電解質33も低濃度用水素ガスセンサの固体電解質23と同様の材料から構成することができ、同様の態様で使用することができる。 The fourth electrode 32 of the high-concentration hydrogen gas sensor 30 can be made of the same material as the second electrode 22 of the low-concentration hydrogen gas sensor 20, and can be used in the same manner. The solid electrolyte 33 of the high-concentration hydrogen gas sensor 30 can also be made of the same material as the solid electrolyte 23 of the low-concentration hydrogen gas sensor, and can be used in the same manner.
 実施形態によれば、第1電極21及び第2電極22と、これらの電極と接触する第1固体電解質23とを備え、第1電極21は、H(-)|50mol/mSO|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含み、第2電極22は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第2電極材料を含む低濃度用水素ガス濃度センサと、第3電極31及び第4電極32と、これらの電極と接触する第2固体電解質33とを備え、第3電極31は、H(-)|50mol/mSO|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示し、かつ水素吸蔵性の第3電極材料を含み、第4電極32は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第4電極材料を含む高濃度用水素ガス濃度センサとを用いているので、低濃度下での水素ガス濃度の検出は低濃度用水素ガスセンサが担い、高濃度下での水素ガス濃度の検出は高濃度用水素ガスセンサが担う。したがって、低濃度から高濃度までの水素ガスを検出することができる。 According to the embodiment, the first electrode 21 and the second electrode 22 are provided with the first solid electrolyte 23 in contact with these electrodes, and the first electrode 21 is H 2 (−) | 50 mol / m 3 H 2 . SO 4 | Contains the first electrode material having a standard electromotive force value of 0.8 V or more in a cell composed of a material sample (+), and the second electrode 22 has a standard electromotive force value in a cell having the same configuration. A low concentration hydrogen gas concentration sensor containing a second electrode material exhibiting a value of less than 0.8 V, a third electrode 31 and a fourth electrode 32, and a second solid electrolyte 33 in contact with these electrodes are provided. The third electrode 31 has a standard electromotive force value of 0.8 V or more in a cell composed of H 2 (-) | 50 mol / m 3 H 2 SO 4 | substance sample (+), and has a hydrogen absorption property. The fourth electrode 32 contains the third electrode material, and the fourth electrode 32 uses a hydrogen gas concentration sensor for high concentration containing the fourth electrode material showing a standard electromotive force value of less than 0.8 V in the cell having the same configuration. Therefore, the low concentration hydrogen gas sensor is responsible for detecting the hydrogen gas concentration under low concentration, and the high concentration hydrogen gas sensor is responsible for detecting the hydrogen gas concentration under high concentration. Therefore, hydrogen gas from low concentration to high concentration can be detected.
 また、上記低濃度用水素ガスセンサ20及び高濃度用水素ガスセンサ30のいずれも、水素ガスセンサを構成する2つの電極を、水素ガスに対して互いに異なる化学ポテンシャルを有する材料を含むように構成し、相対的に高い化学ポテンシャルを有する材料を含む第1電極21及び第3電極31を検出電極とし、相対的に低い化学ポテンシャルを有する材料を含む第2電極22及び第4電極32を基準電極としている。 Further, both the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 are configured such that the two electrodes constituting the hydrogen gas sensor contain materials having different chemical potentials with respect to hydrogen gas, and are relative to each other. The first electrode 21 and the third electrode 31 containing a material having a relatively high chemical potential are used as detection electrodes, and the second electrode 22 and the fourth electrode 32 containing a material having a relatively low chemical potential are used as reference electrodes.
 したがって、水素ガスセンサ20又は30を同じ雰囲気中に配置した場合においても、雰囲気中に水素ガスが含まれる場合に、水素ガスセンサは、異なる化学ポテンシャルの材料を含む電極間において所定の起電力を生じるようになる。したがって、水素ガスセンサの、第1電極21及び第2電極22、あるいは第3電極31及び第4電極32が同一雰囲気内にある場合においても、これら電極間に起電力が生じ、これを検知することによって、雰囲気中の水素ガスを検知することができるようになる。 Therefore, even when the hydrogen gas sensor 20 or 30 is arranged in the same atmosphere, when the atmosphere contains hydrogen gas, the hydrogen gas sensor generates a predetermined electromotive force between electrodes containing materials having different chemical potentials. become. Therefore, even when the first electrode 21 and the second electrode 22 or the third electrode 31 and the fourth electrode 32 of the hydrogen gas sensor are in the same atmosphere, an electromotive force is generated between these electrodes and it is detected. This makes it possible to detect hydrogen gas in the atmosphere.
 また、実施形態の水素ガスセンサ20及び30によれば、化学ポテンシャルに基づいて水素ガス濃度を検出するようにしているので、水素ガスの検出を瞬時に行うことができる。 Further, according to the hydrogen gas sensors 20 and 30 of the embodiment, since the hydrogen gas concentration is detected based on the chemical potential, the hydrogen gas can be detected instantly.
 なお、実施形態の水素ガスセンサ20及び30の、2つの電極間における起電力は以下の関係式に基づいて生成される。
Figure JPOXMLDOC01-appb-M000001


ここで、Fはファラデー定数、EはEMF値、
Figure JPOXMLDOC01-appb-M000002



はそれぞれ金属、水素ガスに対する原子状の水素の化学ポテンシャルである。端子〔I〕、〔II〕は同種の銅線のため電子の電気化学ポテンシャルは、 
Figure JPOXMLDOC01-appb-M000003



となる。また、静電ポテンシャルと起電力Eとの関係  
Figure JPOXMLDOC01-appb-M000004




を用いた。ここで、φIは第1の電極の静電ポテンシャルを表し、φIIは第2の電極の静電ポテンシャルを表す。
The electromotive force between the two electrodes of the hydrogen gas sensors 20 and 30 of the embodiment is generated based on the following relational expression.
Figure JPOXMLDOC01-appb-M000001


Here, F is the Faraday constant, E is the EMF value,
Figure JPOXMLDOC01-appb-M000002



Are the chemical potentials of atomic hydrogen for metals and hydrogen gas, respectively. Since terminals [I] and [II] are copper wires of the same type, the electrochemical potential of electrons is
Figure JPOXMLDOC01-appb-M000003



Will be. Also, the relationship between the electrostatic potential and the electromotive force E
Figure JPOXMLDOC01-appb-M000004




Was used. Here, φI represents the electrostatic potential of the first electrode, and φII represents the electrostatic potential of the second electrode.
 なお、実施形態において水素濃度の高低は、雰囲気中に占める水素ガスの濃度が10体積%未満の場合に低濃度を意味し、10体積%以上の場合に高濃度を意味するとする。 In the embodiment, the high and low hydrogen concentration means a low concentration when the concentration of hydrogen gas in the atmosphere is less than 10% by volume, and means a high concentration when the concentration of hydrogen gas in the atmosphere is 10% by volume or more.
(変形例)
 変形例において、低濃度用水素ガスセンサ20及び高濃度用水素ガスセンサ30の少なくとも一方を、帯状の絶縁性の基材上に配設することができる。具体的には、膜状の固体電解質23、33を形成し、その上に第1電極21、第3電極31及び第2電極22、第4電極32を互いに離間して設けている。このように、低濃度用水素ガスセンサ20と高濃度用水素ガスセンサ30を基材上に配設して統合型センサとすることにより、限られたスペースに配置できる。これを保守・交換可能な配管用ネジなどに組み込み作製することができる。
(Modification example)
In the modified example, at least one of the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 can be arranged on a strip-shaped insulating base material. Specifically, the film-shaped solid electrolytes 23 and 33 are formed, and the first electrode 21, the third electrode 31, the second electrode 22, and the fourth electrode 32 are provided on the film-like solid electrolytes 23 and 33 so as to be separated from each other. As described above, by arranging the low-concentration hydrogen gas sensor 20 and the high-concentration hydrogen gas sensor 30 on the base material to form an integrated sensor, the sensor can be arranged in a limited space. This can be manufactured by incorporating it into a maintenance / replaceable piping screw or the like.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.
 図1及び図2に示す水素ガス濃度センサ20及び30を環境温度90℃~-50℃、湿度0%~100%RHの雰囲気下に配置して、その水素ガスの検出試験を実施した。なお、低濃度用水素ガスセンサ20の第1電極21は白金から構成し、高濃度用水素ガスセンサ30の第3電極31はパラジウムから構成した。また、第2電極22及び第4電極32は、共にタングステンから構成した。 The hydrogen gas concentration sensors 20 and 30 shown in FIGS. 1 and 2 were placed in an atmosphere of an environmental temperature of 90 ° C. to −50 ° C. and a humidity of 0% to 100% RH, and the hydrogen gas detection test was carried out. The first electrode 21 of the low-concentration hydrogen gas sensor 20 was made of platinum, and the third electrode 31 of the high-concentration hydrogen gas sensor 30 was made of palladium. Further, both the second electrode 22 and the fourth electrode 32 were made of tungsten.
 その結果、図3に示すように、水素濃度が10体積%未満では、低濃度用水素ガスセンサ20が機能してEMF値が変化し、水素ガス濃度検出が可能なことが判明した。また、図4に示すように、水素濃度が10体積%以上の濃度では、高濃度用水素ガスセンサ30が機能してEMF値が変化し、水素ガス濃度検出が可能なことが判明した。 As a result, as shown in FIG. 3, it was found that when the hydrogen concentration is less than 10% by volume, the low concentration hydrogen gas sensor 20 functions and the EMF value changes, and the hydrogen gas concentration can be detected. Further, as shown in FIG. 4, it was found that when the hydrogen concentration is 10% by volume or more, the high concentration hydrogen gas sensor 30 functions and the EMF value changes, and the hydrogen gas concentration can be detected.
 すなわち、低濃度から高濃度までの水素ガスを検出することができ、かつ応答速度に優れ、検出時間を短縮化できる新規な燃料電池用水素ガス濃度センサを提供することができることが分かる。 That is, it can be seen that it is possible to provide a new hydrogen gas concentration sensor for a fuel cell that can detect hydrogen gas from a low concentration to a high concentration, has an excellent response speed, and can shorten the detection time.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are shown as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 10 燃料電池
 11 燃料極
 12 空気極
 13 電解質
 16 ケース
 20 低濃度用水素ガスセンサ
 21 第1電極
 22 第2電極
 23 第1固体電解質
 30 高濃度用水素ガスセンサ
 31 第3電極
 32 第4電極
 33 第2固体電解質
 
10 Fuel cell 11 Fuel cell 12 Air electrode 13 Electrolyte 16 Case 20 Low concentration hydrogen gas sensor 21 1st electrode 22 2nd electrode 23 1st solid electrolyte 30 High concentration hydrogen gas sensor 31 3rd electrode 32 4th electrode 33 2nd solid Electrolytes

Claims (5)

  1.  第1電極及び第2電極と、これらの電極と接触する第1固体電解質とを備え、前記第1電極は、H(-)|50mol/mSO|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含み、前記第2電極は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第2電極材料を含む低濃度用水素ガス濃度センサと、
     第3電極及び第4電極と、これらの電極と接触する第2固体電解質とを備え、前記第3電極は、H(-)|50mol/mSO|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示し、かつ水素吸蔵性の第3電極材料を含み、前記第4電極は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第4電極材料を含む高濃度用水素ガス濃度センサと、
    を備えることを特徴とする、燃料電池用水素ガス濃度センサ。
    The first electrode and the second electrode are provided with a first solid electrolyte in contact with these electrodes, and the first electrode is H 2 (−) | 50 mol / m 3 H 2 SO 4 | Material sample (+). The first electrode material having a standard electromotive force value of 0.8 V or more in the configured cell is included, and the second electrode has a standard electromotive force value of less than 0.8 V in the cell having the same configuration. A low-concentration hydrogen gas concentration sensor containing the second electrode material,
    The third electrode and the fourth electrode are provided with a second solid electrolyte in contact with these electrodes, and the third electrode is H 2 (−) | 50 mol / m 3 H 2 SO 4 | Material sample (+). The standard electromotive force value of the configured cell shows a value of 0.8 V or more and contains a hydrogen-storing third electrode material, and the fourth electrode has a standard electromotive force value of 0. A hydrogen gas concentration sensor for high concentration containing a fourth electrode material showing a value of less than 8 V, and
    A hydrogen gas concentration sensor for a fuel cell, characterized by being equipped with.
  2.  前記第1電極材料は、白金、白金合金及びこれらを含む材料の少なくとも1つを含み、前記第3電極は、パラジウム、パラジウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、請求項1に記載の燃料電池用水素ガス濃度センサ。 The first electrode material comprises at least one of platinum, a platinum alloy and a material containing them, and the third electrode comprises a palladium, a palladium alloy and at least one of a material containing them. The hydrogen gas concentration sensor for a fuel cell according to claim 1.
  3.  前記第2電極材料及び前記第4電極材料は、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、請求項2に記載の燃料電池用水素ガス濃度センサ。 The second electrode material and the fourth electrode material include at least one of nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy and a material containing them. The hydrogen gas concentration sensor for a fuel cell according to claim 2, which is characterized.
  4.  前記低濃度用水素ガス濃度センサ及び前記高濃度用水素ガス濃度センサの少なくとも一方は、帯状の基材上に形成されていることを特徴とする、請求項1に記載の燃料電池用水素ガス濃度センサ。 The hydrogen gas concentration for a fuel cell according to claim 1, wherein at least one of the low concentration hydrogen gas concentration sensor and the high concentration hydrogen gas concentration sensor is formed on a strip-shaped base material. Sensor.
  5.  前記低濃度用水素ガス濃度センサは、水素ガス濃度が10体積%未満の環境下で使用し、前記高濃度用水素ガス濃度センサは、水素ガス濃度が10体積%以上の環境下で使用することを特徴とする、請求項1に記載の燃料電池用水素ガス濃度センサ。 The low-concentration hydrogen gas concentration sensor shall be used in an environment where the hydrogen gas concentration is less than 10% by volume, and the high-concentration hydrogen gas concentration sensor shall be used in an environment where the hydrogen gas concentration is 10% by volume or more. The hydrogen gas concentration sensor for a fuel cell according to claim 1, wherein the hydrogen gas concentration sensor is characterized.
PCT/JP2020/046165 2020-10-15 2020-12-10 Fuel cell hydrogen gas concentration sensor WO2022079925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174282A JP2022065582A (en) 2020-10-15 2020-10-15 Hydrogen gas concentration sensor for fuel cell
JP2020-174282 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022079925A1 true WO2022079925A1 (en) 2022-04-21

Family

ID=81209074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046165 WO2022079925A1 (en) 2020-10-15 2020-12-10 Fuel cell hydrogen gas concentration sensor

Country Status (2)

Country Link
JP (1) JP2022065582A (en)
WO (1) WO2022079925A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090472A1 (en) * 2022-10-27 2024-05-02 株式会社新潟Tlo Hydrogen gas concentration sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519683A (en) * 2001-04-06 2004-07-02 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド Microfabricated thin film sensor array for detecting H2, NH3 and sulfur-containing gas, and methods of making and using the same
WO2005080957A1 (en) * 2004-02-19 2005-09-01 Niigata Tlo Corporation Hydrogen gas sensor
JP2007017208A (en) * 2005-07-06 2007-01-25 Hitachi Ltd Gas detection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519683A (en) * 2001-04-06 2004-07-02 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド Microfabricated thin film sensor array for detecting H2, NH3 and sulfur-containing gas, and methods of making and using the same
WO2005080957A1 (en) * 2004-02-19 2005-09-01 Niigata Tlo Corporation Hydrogen gas sensor
JP2007017208A (en) * 2005-07-06 2007-01-25 Hitachi Ltd Gas detection system

Also Published As

Publication number Publication date
JP2022065582A (en) 2022-04-27

Similar Documents

Publication Publication Date Title
KR100833835B1 (en) Hydrogen gas sensor
Teranishi et al. Degradation mechanism of PEMFC under open circuit operation
US8196448B2 (en) Hydrogen sensor assembly
US8273229B2 (en) Hydrogen quantity sensor and hydrogen storage device using the same
Morawietz et al. High-resolution analysis of ionomer loss in catalytic layers after operation
JP3953677B2 (en) Gas sensor
Polak et al. Applications of novel proton-conducting polymers to hydrogen sensing
CN101477076A (en) Sensor apparatus for measuring and detecting acetylene and hydrogen dissolved in a fluid
Cremers et al. DEMS and online mass spectrometry studies of the carbon support corrosion under various polymer electrolyte membrane fuel cell operating conditions
US20110212376A1 (en) Amperometric sensor
EP1215744A1 (en) A method and apparatus for a fuel cell based fuel sensor
WO2022079925A1 (en) Fuel cell hydrogen gas concentration sensor
Danielson et al. Recent Developments with High Temperature Stabilized‐Zirconia pH Sensors
Tomita et al. Room-temperature hydrogen sensors based on an In3+-doped SnP2O7 proton conductor
WO2022259883A1 (en) Hydrogen gas concentration sensor
CN108963295A (en) Separator for fuel battery
US8839660B2 (en) Liquid water protected implementation of a gas quality hydrogen sensor into a fuel cell exhaust system
Hashimoto et al. A fuel-cell-type sensor for detection of carbon monoxide in reformed gases
JP4465677B2 (en) Hydrogen gas detector
Njodzefon et al. Electrochemical studies on anode supported solid oxide electrolyzer cells
WO2011145150A1 (en) Hydrogen gas sensor
JP2007278876A (en) Hydrogen sensor
Ramesh et al. Studies on modified anode polymer hydrogen sensor
WO2024090472A1 (en) Hydrogen gas concentration sensor
JP4280168B2 (en) Method for evaluating corrosion resistance of metal materials for fuel cell separators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957754

Country of ref document: EP

Kind code of ref document: A1