JP2007278876A - Hydrogen sensor - Google Patents

Hydrogen sensor Download PDF

Info

Publication number
JP2007278876A
JP2007278876A JP2006106243A JP2006106243A JP2007278876A JP 2007278876 A JP2007278876 A JP 2007278876A JP 2006106243 A JP2006106243 A JP 2006106243A JP 2006106243 A JP2006106243 A JP 2006106243A JP 2007278876 A JP2007278876 A JP 2007278876A
Authority
JP
Japan
Prior art keywords
electrode
reference electrode
solid electrolyte
catalyst electrode
hydrogen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006106243A
Other languages
Japanese (ja)
Inventor
Tsutomu Hamano
力 濱野
Isao Imai
功 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006106243A priority Critical patent/JP2007278876A/en
Publication of JP2007278876A publication Critical patent/JP2007278876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen sensor having a simple structure and operating at low temperatures. <P>SOLUTION: The hydrogen sensor 10 comprises a solid electrolyte plate 11 being tabular and having proton conductivity, a catalyst electrode 12 provided on one principal surface of the electrolyte plate 11 in order to dissociate hydrogen gas molecules into protons and electrons, a reference electrode 13 provided on the other principal surface of the electrolyte plate 11 in order to cause the protons and electrons generated owing to the catalyst electrode 12 to re-join to each other on the other principal surface of the electrolyte plate 11, and metallic parts 16 and 17 and lead wires 18 and 19 each made of an electronically conductive material for sending electrons generated on the catalyst electrode 12 to the reference electrode 13. Hydrogen gas detection is performed by measuring a potential difference between the catalyst electrode 12 and the reference electrode 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池等における水素ガス漏れを検知するための水素センサに関する。   The present invention relates to a hydrogen sensor for detecting hydrogen gas leakage in a fuel cell or the like.

近時、燃料電池はクリーンな発電装置として家庭用等の各種給電設備として実用化されるに至っており、また、燃料電池を電気自動車の駆動電源として用いた燃料電池自動車の実用化も間近となっている。燃料電池は水素ガスを用いるために、安全性の観点から水素ガスの管理は重要であり、例えば、燃料電池自動車において水素ガスセンサの設置は必須となっている。   Recently, fuel cells have been put into practical use as various types of power supply equipment for home use as clean power generation devices, and fuel cell vehicles using fuel cells as driving power sources for electric vehicles are coming soon. ing. Since the fuel cell uses hydrogen gas, management of the hydrogen gas is important from the viewpoint of safety. For example, the installation of a hydrogen gas sensor is essential in a fuel cell vehicle.

水素センサには、測定可能な水素濃度範囲が広いこと、応答性がよいこと、長寿命であること、室温での動作が可能であること、ガス選択性に優れること、小型であること等が要求されており、水素検知方法として、半導体式、燃焼式、光学式、固体電解質式等の種々の方法がある。   The hydrogen sensor has a wide measurable hydrogen concentration range, good responsiveness, long life, operation at room temperature, excellent gas selectivity, small size, etc. There are various hydrogen detection methods such as a semiconductor method, a combustion method, an optical method, and a solid electrolyte method.

半導体式は、水素濃度がppmレベルの低濃度領域での検出感度は良好であるが、これによりも高濃度の領域には対応が困難であるという問題がある。一方、燃焼式はこれとは逆に高濃度領域での検出感度はよいが、ppmレベルの低濃度領域での検出感度が悪く、また、ガス選択性に劣るという問題もある。光学式は測定レンジが広く応答性もよいが、小型化,再利用が困難であるという問題がある。   The semiconductor type has good detection sensitivity in a low concentration region where the hydrogen concentration is in the ppm level, but there is a problem that it is difficult to cope with the high concentration region. On the other hand, the combustion type, on the other hand, has good detection sensitivity in the high concentration region, but has poor detection sensitivity in the low concentration region of the ppm level and inferior gas selectivity. The optical type has a wide measurement range and good responsiveness, but there is a problem that miniaturization and reuse are difficult.

固体電解質型に用いられる材料としては、酸素イオン伝導体であるイットリア安定化ジルコニア(YSZ)に触媒電極として白金(Pt)を、参照電極に金(Au)を用いたものが知られている(例えば、特許文献1参照)。このYSZを用いた水素センサでは、参照電極側を一定の空間を残して封止し、その空間に酸素ガス(空気)を供給する必要があり、構造が複雑になる。また、YSZの酸素イオン伝導性は、例えば800℃以上の高温で良好なために、低温動作型の燃料電池に適用する場合には、水素センサ自体にヒータを設ける必要がある。   As a material used for the solid electrolyte type, a material using platinum (Pt) as a catalyst electrode for yttria stabilized zirconia (YSZ) which is an oxygen ion conductor and gold (Au) as a reference electrode is known ( For example, see Patent Document 1). In this hydrogen sensor using YSZ, it is necessary to seal the reference electrode side leaving a certain space and supply oxygen gas (air) to the space, and the structure becomes complicated. Further, since the oxygen ion conductivity of YSZ is good at a high temperature of, for example, 800 ° C. or higher, when applied to a low temperature operation type fuel cell, it is necessary to provide a heater in the hydrogen sensor itself.

これに対して、酸化物中の金属イオンの一部をそれよりも価数の低い金属イオンで置換したときに生じる欠陥は、酸素分圧および水素分圧が高いとプロトン伝導性を有すると報告されており、例えば、SrCe0.95Eu0.053−δが高いプロトン導電性を有するとの報告がある(例えば、非特許文献1参照)。プロトン導電性を有する材料を用いれば、YSZを用いた水素センサのような参照電極の封止も必要なく、簡単な構造の水素センサを実現することができる。 On the other hand, it is reported that defects generated when a part of metal ions in the oxide is replaced with metal ions having a lower valence have proton conductivity when oxygen partial pressure and hydrogen partial pressure are high. For example, there is a report that SrCe 0.95 Eu 0.05 O 3-δ has high proton conductivity (see, for example, Non-Patent Document 1). If a material having proton conductivity is used, it is not necessary to seal a reference electrode like a hydrogen sensor using YSZ, and a hydrogen sensor having a simple structure can be realized.

しかしながら、プロトン伝導性の固体電解質であっても、500℃〜600℃の動作温度が必要とされており、低温動作が可能な固体電解質型水素センサの実現が切望されている。
特開2004−53579号公報(図1、段落[0045]〜[0051]等) S. J. Song , E. D. Wachsman , J. Rhodes , S. E. Dorris and U. Balachandranet, “Hydrogen permeability of SrCe1-XMXO3-δ(x=0.05, M=Eu, Sm)”,SOLID STATE IONICS 167(2004)pp. 99-105
However, even a proton-conducting solid electrolyte requires an operating temperature of 500 ° C. to 600 ° C., and realization of a solid electrolyte hydrogen sensor capable of operating at a low temperature is desired.
JP 2004-53579 A (FIG. 1, paragraphs [0045] to [0051] etc.) SJ Song, ED Wachsman, J. Rhodes, SE Dorris and U. Balachandranet, “Hydrogen permeability of SrCe1-XMXO3-δ (x = 0.05, M = Eu, Sm)”, SOLID STATE IONICS 167 (2004) pp. 99- 105

本発明はかかる事情に鑑みてなされたものであり、構造が簡単であり、低温で動作可能な水素センサを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen sensor that has a simple structure and can operate at a low temperature.

本発明によれば、平板状でプロトン伝導性を有する固体電解質と、水素ガスの分子をプロトンと電子に解離させるために前記固体電解質の一方の主面に設けられた触媒電極と、前記触媒電極によって生じたプロトンと電子を前記固体電解質の他方の主面において再結合させるために該固体電解質の他方の主面に設けられた参照電極と、前記触媒電極で生じた電子を前記参照電極へ送るための電子伝導性材料からなる導通手段とを有し、前記触媒電極と前記参照電極との間の電位差を測定することにより水素ガスを検知することを特徴とする水素センサが提供される。   According to the present invention, a flat solid electrolyte having proton conductivity, a catalyst electrode provided on one main surface of the solid electrolyte to dissociate hydrogen gas molecules into protons and electrons, and the catalyst electrode A reference electrode provided on the other main surface of the solid electrolyte to recombine protons and electrons generated by the other main surface of the solid electrolyte, and an electron generated on the catalyst electrode to the reference electrode There is provided a hydrogen sensor characterized in that it has a conduction means made of an electron conductive material for detecting hydrogen gas by measuring a potential difference between the catalyst electrode and the reference electrode.

この水素センサにおいて、アルカリ土類金属元素をAとし、Al,Y,Ceのいずれかである三価金属元素をMとし、希土類元素をLとしたときに一般式:AM3−δにて表され、0.8≦X<1、かつ、0.01≦Y≦0.2である固体電解質が好適に用いられる。触媒電極としては白金またはPdが好適であり、参照電極としては白金またはPd以外の貴金属が好ましく、中でも金が最も好ましい。触媒電極と参照電極の厚さはそれぞれ20nm〜100nmとすることが好ましい。導通手段の構成としては、参照電極側に絶縁板を設け、触媒電極と接触し参照電極と接触しないように固体電解質と絶縁板とを金属部材で挟み、一方、触媒電極側に別の絶縁板を設け、参照電極と接触し触媒電極と接触しないように固体電解質と別の絶縁板とを別の金属部材で挟み、これらの金属部材にそれぞれリード線を取り付けた構成が好適である。そして、従来よりも低温の150℃で動作することが可能なものである。 In this hydrogen sensor, when the alkaline earth metal element is A, the trivalent metal element of any one of Al, Y, and Ce is M, and the rare earth element is L, the general formula: AM X L Y O 3− A solid electrolyte represented by δ and satisfying 0.8 ≦ X <1 and 0.01 ≦ Y ≦ 0.2 is preferably used. Platinum or Pd is preferred as the catalyst electrode, and noble metals other than platinum or Pd are preferred as the reference electrode, and gold is most preferred. The thickness of the catalyst electrode and the reference electrode is preferably 20 nm to 100 nm, respectively. As a configuration of the conduction means, an insulating plate is provided on the reference electrode side, and the solid electrolyte and the insulating plate are sandwiched between metal members so as to be in contact with the catalyst electrode but not to be in contact with the reference electrode. A structure in which the solid electrolyte and another insulating plate are sandwiched between different metal members so as to be in contact with the reference electrode but not the catalyst electrode, and lead wires are respectively attached to these metal members is preferable. And it is possible to operate at 150 ° C., which is lower than the conventional temperature.

本発明の水素センサは、構造が簡単なので製造が容易であり、また、従来よりも低い温度で水素ガスを検知することできるという効果を奏する。   The hydrogen sensor of the present invention is easy to manufacture because of its simple structure, and has the effect of being able to detect hydrogen gas at a lower temperature than in the past.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。図1に水素センサ10の概略構造を示す断面図を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic structure of the hydrogen sensor 10.

この水素センサ10は、平板状でプロトン伝導性を有する固体電解質(以下「固体電解質板」という)11と、この固体電解質板11の一方の主面に設けられた触媒電極12と、固体電解質板11の他方の主面に設けられた参照電極13と、触媒電極12から電流を取り出すためのリード線18と、触媒電極12とリード線18とを接続する金具16と、金具16と参照電極13とを絶縁するための絶縁板14と、参照電極13へ電流を供給するためのリード線19と、参照電極13とリード線19とを接続する金具17と、金具17と触媒電極12とを絶縁するための絶縁板15とを備えている。触媒電極12と参照電極13との間の電位差を測定するための電位計21がリード線18,19に接続されている。   This hydrogen sensor 10 includes a flat solid electrolyte (hereinafter referred to as “solid electrolyte plate”) 11, a catalyst electrode 12 provided on one main surface of the solid electrolyte plate 11, and a solid electrolyte plate. 11, a reference electrode 13 provided on the other main surface, a lead wire 18 for taking out current from the catalyst electrode 12, a metal fitting 16 connecting the catalyst electrode 12 and the lead wire 18, a metal fitting 16 and the reference electrode 13. Insulating plate 14 for insulating current, lead wire 19 for supplying current to reference electrode 13, metal fitting 17 for connecting reference electrode 13 and lead wire 19, metal fitting 17 and catalyst electrode 12 are insulated. Insulating plate 15 is provided. An electrometer 21 for measuring a potential difference between the catalyst electrode 12 and the reference electrode 13 is connected to the lead wires 18 and 19.

固体電解質板11としては、アルカリ土類金属A(Mg,Ca,Sr,Baのいずれか)の酸化物と、三価金属M(Al,Y,Ceのいずれか)の酸化物と、希土類金属L(Eu,Sm等のランタノイド金属のいずれか(但し、Y,Ceを除く))の酸化物からなる複合酸化物AM3−δが用いられる。好適な組成としては、0.8≦X<1かつ0.01≦Y≦0.2であり、より好ましくは、0.9≦X<1かつ0.01≦Y≦0.1であり、具体例として、SrCe0.95Eu0.053−δを挙げることができる。 As the solid electrolyte plate 11, an oxide of alkaline earth metal A (Mg, Ca, Sr, Ba), an oxide of trivalent metal M (any of Al, Y, Ce), and a rare earth metal A composite oxide AM X L Y O 3-δ made of an oxide of L (any of lanthanoid metals such as Eu and Sm (excluding Y and Ce)) is used. As a preferred composition, 0.8 ≦ X <1 and 0.01 ≦ Y ≦ 0.2, more preferably 0.9 ≦ X <1 and 0.01 ≦ Y ≦ 0.1, A specific example is SrCe 0.95 Eu 0.05 O 3-δ .

触媒電極12は、水素ガスをプロトン(H)と電子に解離させる役割を果たすが、このとき別のガス種の分子をも解離させてしまったり、他のガスとの反応を引き起こしてしまうと検出感度が低下してしまうため、水素ガスの解離反応選択性の高い金属が用いられ、最も好ましくは、白金(Pt)が用いられる。また、パラジウム(Pd)を用いることもできる。 The catalytic electrode 12 plays a role of dissociating hydrogen gas into protons (H + ) and electrons. At this time, molecules of another gas species are also dissociated, or reaction with other gases is caused. Since the detection sensitivity is lowered, a metal having high selectivity for dissociation reaction of hydrogen gas is used, and most preferably, platinum (Pt) is used. Palladium (Pd) can also be used.

参照電極13は、触媒電極12とは逆に、ガスに対する反応性がないまたは極めて小さい金属材料を用いることが好ましく、白金およびPd以外の貴金属を用いるのが好ましく、金(Au)を用いることが最も好ましい。なお、触媒電極12と参照電極13のいずれにも、使用環境下の雰囲気ガスに対して安定であることが要求され、その観点からも、貴金属電極は好適である。   Contrary to the catalyst electrode 12, the reference electrode 13 is preferably made of a metal material that has no or very little reactivity with the gas, preferably a noble metal other than platinum and Pd, and gold (Au). Most preferred. Note that both the catalyst electrode 12 and the reference electrode 13 are required to be stable with respect to the atmospheric gas in the use environment, and from this viewpoint, the noble metal electrode is preferable.

金具16,17およびリード線18,19は、水素センサ10を用いる場所の雰囲気ガスに対して耐食性を有する金属で構成される。例えば、Pt、Au等の貴金属やステンレス(SUS)等の耐腐食性が高い金属等が好適であり、銅等の良導電性金属の表面を金メッキしたものを用いることができる。これら金具16,17とリード線18,19は、触媒電極12で生じた電子を参照電極13へ送るための導通手段であるが、触媒電極12と参照電極13を導通させる手段は、この形態に限定されるものではない。   The metal fittings 16 and 17 and the lead wires 18 and 19 are made of a metal having corrosion resistance against the atmospheric gas in the place where the hydrogen sensor 10 is used. For example, a noble metal such as Pt or Au or a metal having high corrosion resistance such as stainless steel (SUS) is suitable, and a surface of a highly conductive metal such as copper that is gold-plated can be used. The metal fittings 16 and 17 and the lead wires 18 and 19 are conduction means for sending electrons generated in the catalyst electrode 12 to the reference electrode 13, but means for conducting the catalyst electrode 12 and the reference electrode 13 are in this form. It is not limited.

絶縁板14,15にも、水素センサ10を用いる場所の雰囲気ガスに対して耐食性を有する材料が用いられ、例えば、石英ガラスやアルミナ、ムライト等のセラミックス材料や、フッ素樹脂等の樹脂材料を用いることができる。   The insulating plates 14 and 15 are also made of a material having corrosion resistance against the atmospheric gas in the place where the hydrogen sensor 10 is used. For example, a ceramic material such as quartz glass, alumina, or mullite, or a resin material such as fluororesin is used. be able to.

このように構成された水素センサ10では、参照電極13において水素はプロトンと電子に分離され、プロトンは固体電解質板11を通って参照電極13側へ移動する。一方、電子は、触媒電極12と導通している金具16、リード線18,リード線19,金具17を通って参照電極13へ移動する。そして、参照電極13において、プロトンと電子は再結合して、再び水素ガスとなる。こうして電流が流れているときの触媒電極12と参照電極13間の電位差を電位計21によって計測し、その値で水素濃度を検知することができる。   In the hydrogen sensor 10 configured in this way, hydrogen is separated into protons and electrons in the reference electrode 13, and the protons move to the reference electrode 13 side through the solid electrolyte plate 11. On the other hand, the electrons move to the reference electrode 13 through the metal fitting 16, the lead wire 18, the lead wire 19, and the metal fitting 17 that are electrically connected to the catalyst electrode 12. At the reference electrode 13, protons and electrons recombine to become hydrogen gas again. Thus, the potential difference between the catalyst electrode 12 and the reference electrode 13 when the current is flowing can be measured by the electrometer 21, and the hydrogen concentration can be detected based on the measured value.

このとき、固体電解質板11が厚いとその抵抗が大きくなり、薄いと機械的強度が不足して破損しやすくなることから、その0.5mm以上2.0mm以下とすることが好ましい。固体電解質板11の大きさは、小型化の観点から、20mmφ〜40mmφとすることが好ましい。なお、主面面積が広いと検出感度が良くなるので、実使用に際して許容できる範囲でその大きさを任意に変更することは自由である。また固体電解質板11の形状は円板状に限定されるものではない。   At this time, if the solid electrolyte plate 11 is thick, its resistance increases, and if it is thin, the mechanical strength is insufficient and the glass plate is easily damaged. Therefore, the thickness is preferably 0.5 mm or more and 2.0 mm or less. The size of the solid electrolyte plate 11 is preferably 20 mmφ to 40 mmφ from the viewpoint of miniaturization. Since the detection sensitivity is improved when the main surface area is large, it is possible to freely change the size within a range allowable in actual use. The shape of the solid electrolyte plate 11 is not limited to a disc shape.

触媒電極12と参照電極13の厚さは、上述した各電極の機能を良好に発現させるために、100nm以下とすることが好ましい。但し、薄くし過ぎると電極自体の抵抗が大きくなってしまうことを考慮すると、その厚さは20nm以上とすることが好ましい。触媒電極12と参照電極13はそれぞれ、スパッタ法等により固体電解質板11の主面に形成することができる。   The thicknesses of the catalyst electrode 12 and the reference electrode 13 are preferably set to 100 nm or less in order to satisfactorily express the functions of the above-described electrodes. However, considering that the resistance of the electrode itself increases if it is too thin, the thickness is preferably 20 nm or more. Each of the catalyst electrode 12 and the reference electrode 13 can be formed on the main surface of the solid electrolyte plate 11 by sputtering or the like.

水素センサ10は、酸素イオン伝導体を用いる場合のように一方の電極部をシールし、そのシールにより形成された空間に一定組成のガスを送る必要もないので、簡単な構造とすることができる。   The hydrogen sensor 10 does not need to seal one electrode portion as in the case of using an oxygen ion conductor, and does not need to send a gas having a constant composition to the space formed by the seal, and thus can have a simple structure. .

本発明に基づく水素センサは、一般的に150℃の低温でも動作するものである。   The hydrogen sensor according to the present invention generally operates even at a low temperature of 150 ° C.

SrCe0.95Eu0.053−δからなり、2mm×20mmφの形状を有する固体電解質板の片面にPt電極を片面にAu電極をそれぞれスパッタ法により形成した。絶縁板として石英ガラスを、金属部材としてSUSを、リード線として白金線をそれぞれ用いて、図1に示す構成の水素センサを作製して、これをガラス管内に配置し、150℃に加熱した。このガラス管に、空気と、空気に水素ガスを添加して水素濃度を1000ppmに調整した調整ガスを、それぞれ上記ガラス管内に交互に流した際の電圧変化を測定した。その結果を図2Aに示す。この図2Aに示されるように、作製した水素センサは1000ppmの水素ガスを検知することができることが確認された。その50%応答時間は約60秒であった。 A Pt electrode was formed on one side of a solid electrolyte plate made of SrCe 0.95 Eu 0.05 O 3-δ and having a shape of 2 mm × 20 mmφ, and an Au electrode was formed on one side by sputtering. A hydrogen sensor having the configuration shown in FIG. 1 was prepared using quartz glass as an insulating plate, SUS as a metal member, and platinum wire as a lead wire, and this was placed in a glass tube and heated to 150 ° C. The voltage change was measured when air and hydrogen gas were added to the glass tube to adjust the hydrogen concentration to 1000 ppm alternately in the glass tube. The result is shown in FIG. 2A. As shown in FIG. 2A, it was confirmed that the produced hydrogen sensor was able to detect 1000 ppm of hydrogen gas. Its 50% response time was about 60 seconds.

同様に、空気と、空気に水素ガスを添加して水素濃度を1%(=10000ppm)に調整した調整ガスを、それぞれ上記ガラス管内に交互に流した際の電圧変化を測定した。その結果を図2Bに示す。図2Aと図2Bを対比すれば明らかなように、水素ガス検出感度が極めて大きく向上していることがわかり、その50%応答時間は約10秒という良好な結果を示した。   Similarly, voltage changes were measured when air and hydrogen gas were added to the air to adjust the hydrogen concentration to 1% (= 10000 ppm) alternately in the glass tube. The result is shown in FIG. 2B. As is clear from the comparison between FIG. 2A and FIG. 2B, it was found that the hydrogen gas detection sensitivity was greatly improved, and the 50% response time showed a good result of about 10 seconds.

上記実施例に示されるように、従来の水素ガスセンサは、例えば、500℃以上での高温でしか検知されなかったが、本発明の水素センサは、この実施例の結果に示されるように、従来よりも極めて低い温度において、水素ガスを検知することができる。   As shown in the above embodiment, the conventional hydrogen gas sensor was detected only at a high temperature of, for example, 500 ° C. or more. However, the hydrogen sensor of the present invention has been conventionally detected as shown in the results of this embodiment. It is possible to detect hydrogen gas at an extremely lower temperature.

水素センサの概略構造を示す断面図。Sectional drawing which shows schematic structure of a hydrogen sensor. 1000ppm水素含有空気の測定結果を示すグラフ。The graph which shows the measurement result of 1000 ppm hydrogen containing air. 1%水素含有空気の測定結果を示すグラフ。The graph which shows the measurement result of 1% hydrogen containing air.

符号の説明Explanation of symbols

10…水素センサ、11…固体電解質板、12…触媒電極、13…参照電極、14・15…絶縁板、16,17…金具、18・19…リード線、21…電圧計。   DESCRIPTION OF SYMBOLS 10 ... Hydrogen sensor, 11 ... Solid electrolyte board, 12 ... Catalyst electrode, 13 ... Reference electrode, 14 * 15 ... Insulating board, 16, 17 ... Metal fitting, 18 * 19 ... Lead wire, 21 ... Voltmeter.

Claims (6)

平板状でプロトン伝導性を有する固体電解質と、
水素ガスの分子をプロトンと電子に解離させるために前記固体電解質の一方の主面に設けられた触媒電極と、
前記触媒電極によって生じたプロトンと電子を前記固体電解質の他方の主面において再結合させるために該固体電解質の他方の主面に設けられた参照電極と、
前記触媒電極で生じた電子を前記参照電極へ送るための電子伝導性材料からなる導通手段とを有し、
前記触媒電極と前記参照電極との間の電位差を測定することにより水素ガスを検知することを特徴とする水素センサ。
A solid electrolyte having a flat plate shape and proton conductivity;
A catalyst electrode provided on one main surface of the solid electrolyte for dissociating hydrogen gas molecules into protons and electrons;
A reference electrode provided on the other main surface of the solid electrolyte to recombine protons and electrons generated by the catalyst electrode on the other main surface of the solid electrolyte;
A conduction means made of an electron conductive material for sending electrons generated at the catalyst electrode to the reference electrode;
A hydrogen sensor, wherein hydrogen gas is detected by measuring a potential difference between the catalyst electrode and the reference electrode.
前記固体電解質は、アルカリ土類金属元素をAとし、Al,Y,Ceのいずれかである三価金属元素をMとし、希土類元素をLとしたときに、一般式:AM3−δにて表され、
0.8≦X<1、かつ、0.01≦Y≦0.2であることを特徴とする請求項1に記載の水素センサ。
The solid electrolyte has a general formula: AM X L Y O 3 , where A is an alkaline earth metal element, M is a trivalent metal element of any one of Al, Y, and Ce, and L is a rare earth element. ,
The hydrogen sensor according to claim 1, wherein 0.8 ≦ X <1 and 0.01 ≦ Y ≦ 0.2.
前記触媒電極は白金もしくはPdからなり、前記参照電極は白金もしくはPdを除く貴金属元素からなることを特徴とする請求項1または請求項3に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein the catalyst electrode is made of platinum or Pd, and the reference electrode is made of a noble metal element excluding platinum or Pd. 前記触媒電極と前記参照電極の厚さは20nm〜100nmであることを特徴とする請求項3に記載の水素センサ。   The hydrogen sensor according to claim 3, wherein the catalyst electrode and the reference electrode have a thickness of 20 nm to 100 nm. 前記導通手段は、
前記触媒電極上に配置される第1の絶縁板と、
前記参照電極上の配置される第2の絶縁板と、
前記触媒電極と接触し、前記参照電極と接触しないように、前記固体電解質および前記第2の絶縁板を挟み込む第1の金属部材と、
前記参照電極と接触し、前記触媒電極と接触しないように、前記固体電解質および前記第1の絶縁板を挟み込む第2の金属部材と、
前記第1,第2の金属部材にそれぞれ取り付けられたリード線とを有することを特徴とする請求項1から請求項4のいずれか1項に記載の水素センサ。
The conduction means is
A first insulating plate disposed on the catalyst electrode;
A second insulating plate disposed on the reference electrode;
A first metal member sandwiching the solid electrolyte and the second insulating plate so as to be in contact with the catalyst electrode and not to be in contact with the reference electrode;
A second metal member sandwiching the solid electrolyte and the first insulating plate so as to be in contact with the reference electrode and not in contact with the catalyst electrode;
The hydrogen sensor according to any one of claims 1 to 4, further comprising lead wires attached to the first and second metal members, respectively.
150℃で水素ガスを検知可能であることを特徴とする請求項1から請求項5のいずれか1項に記載の水素センサ。   The hydrogen sensor according to any one of claims 1 to 5, wherein hydrogen gas can be detected at 150 ° C.
JP2006106243A 2006-04-07 2006-04-07 Hydrogen sensor Pending JP2007278876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106243A JP2007278876A (en) 2006-04-07 2006-04-07 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106243A JP2007278876A (en) 2006-04-07 2006-04-07 Hydrogen sensor

Publications (1)

Publication Number Publication Date
JP2007278876A true JP2007278876A (en) 2007-10-25

Family

ID=38680464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106243A Pending JP2007278876A (en) 2006-04-07 2006-04-07 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JP2007278876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520049A (en) * 2011-10-31 2012-06-27 哈尔滨工业大学 Three-electrode solid electrolyte hydrogen sensor and hydrogen concentration measuring method using such sensor
JP2013130481A (en) * 2011-12-21 2013-07-04 Gunze Ltd Hydrogen gas sensor
US10794848B2 (en) 2015-08-28 2020-10-06 Panasonic Semiconductor Solutions Co., Ltd. Gas sensor including first electrode, second electrode, metal oxide layer, and insulating film, and fuel-cell vehicle including the gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520049A (en) * 2011-10-31 2012-06-27 哈尔滨工业大学 Three-electrode solid electrolyte hydrogen sensor and hydrogen concentration measuring method using such sensor
JP2013130481A (en) * 2011-12-21 2013-07-04 Gunze Ltd Hydrogen gas sensor
US10794848B2 (en) 2015-08-28 2020-10-06 Panasonic Semiconductor Solutions Co., Ltd. Gas sensor including first electrode, second electrode, metal oxide layer, and insulating film, and fuel-cell vehicle including the gas sensor

Similar Documents

Publication Publication Date Title
US5124021A (en) Solid electrolyte gas sensor and method of measuring concentration of gas to be detected in gas mixture
AU2018202311A1 (en) Methods of producing and providing purified gas using an electrochemical cell
JP3953677B2 (en) Gas sensor
WO1989001148A1 (en) Combustible gas sensor
US4459340A (en) Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte
JP4977621B2 (en) Electrochemical cell and method for producing electrochemical cell
JP2007278876A (en) Hydrogen sensor
JPH03267753A (en) Ionic substance detector
JP4783095B2 (en) Hydrogen gas detection element and hydrogen gas detection device
KR20100037010A (en) Nox gas sensor
JPH0640092B2 (en) Humidity measurement method
JP4465677B2 (en) Hydrogen gas detector
WO2022079925A1 (en) Fuel cell hydrogen gas concentration sensor
KR20100036726A (en) Nox gas sensor having
JP2008053194A (en) One-chamber type solid oxide fuel cell using lower hydrocarbon as fuel
JPH05180798A (en) Solid electrolyte gas sensor
JP5777503B2 (en) Hydrogen gas sensor
JP2000019152A (en) Hydrogen gas sensor
JP4532923B2 (en) Reducing gas detection element and reducing gas detection device
JP4021827B2 (en) Gas sensor
JP2003002610A (en) Method for isolating hydrogen from reformed hydrocarbon bas by using high temperature durable proton conducting material
JP2005203158A (en) Fuel cell monitoring device
JPWO2005052215A1 (en) Electrode for electrochemical cell and electrochemical cell
JP4100984B2 (en) Hydrogen sensor and hydrogen concentration detection method
WO2011145150A1 (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711