WO2022259883A1 - Hydrogen gas concentration sensor - Google Patents

Hydrogen gas concentration sensor Download PDF

Info

Publication number
WO2022259883A1
WO2022259883A1 PCT/JP2022/021641 JP2022021641W WO2022259883A1 WO 2022259883 A1 WO2022259883 A1 WO 2022259883A1 JP 2022021641 W JP2022021641 W JP 2022021641W WO 2022259883 A1 WO2022259883 A1 WO 2022259883A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hydrogen gas
electrode piece
gas concentration
concentration sensor
Prior art date
Application number
PCT/JP2022/021641
Other languages
French (fr)
Japanese (ja)
Inventor
修治 原田
和則 反町
克己 高木
洋司 結城
Original Assignee
株式会社新潟Tlo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新潟Tlo filed Critical 株式会社新潟Tlo
Priority to JP2022558163A priority Critical patent/JPWO2022259883A1/ja
Publication of WO2022259883A1 publication Critical patent/WO2022259883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a hydrogen gas concentration sensor.
  • hydrogen concentration sensors for controlling hydrogen fuel cells in automobiles and heavy machinery efficiency use of hydrogen gas
  • hydrogen concentration sensors for liquids such as lubricating oil for generator bearings and transformer oil
  • hydrogen concentration sensor in medical chemicals such as kidney dialysis (promotes treatment effect by dissolving hydrogen)
  • hydrogen concentration sensor in solution such as hydrogen water, process control in chemical industry, etc.
  • the development of a hydrogen concentration sensor for gas is desired.
  • a hydrogen gas concentration sensor for shortening the detection time includes, for example, a first electrode and a second electrode made of materials having different chemical potentials with respect to hydrogen, and an electrolyte in contact with these electrodes.
  • a hydrogen gas sensor has been proposed that detects hydrogen gas based on the value of the electromotive force generated in (Patent Document 1).
  • the first electrode, the second electrode and the electrolyte are covered with an outer skin.
  • the first electrode, which is the sensing electrode be exposed from the skin and immersed in the liquid, while the electrolyte must be sealed from the liquid. Therefore, the structure of the hydrogen gas sensor becomes complicated, and the sealing method poses technical and economic problems.
  • An object of the present invention is to provide a hydrogen gas concentration sensor of a novel configuration capable of detecting the concentration of hydrogen gas present in environments such as special gases and liquids used in the chemical industry under high-temperature and high-humidity environments. aim.
  • the present invention is as described below.
  • the first electrode piece is a first electrode material exhibiting a standard electromotive force value of 0.8 V or more in a cell composed of H 2 ( ⁇ )
  • a hydrogen gas concentration sensor with a novel configuration that is capable of detecting the concentration of hydrogen gas in special gases and liquids used in the chemical industry under high-temperature and high-humidity environments.
  • FIG. 4 is a graph showing the EMF value when a platinum wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example.
  • 4 is a graph showing EMF values when a palladium wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example.
  • 4 is a graph showing the hydrogen gas concentration and the EMF value when a platinum wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example.
  • 4 is a graph showing the relationship between the hydrogen gas concentration and the EMF value when a palladium wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example.
  • FIG. 1 is a schematic configuration diagram of a hydrogen gas concentration sensor according to this embodiment.
  • the hydrogen gas concentration sensor 10 of this embodiment includes a first linear electrode piece 11, a second linear electrode piece 12, and an electrolyte 14 in which these electrode pieces are spaced apart. , and a container 15 with one end sealed to accommodate the first electrode piece 11 , the second electrode piece 12 and the electrolyte 14 .
  • the container 15 is arranged such that its tip is inserted into the system to be measured. Therefore, the inside of the container 15 is gas-insulated from the system to be measured.
  • the first electrode piece 11 functions as a hydrogen gas detection electrode, its tip penetrates through the sealed portion of the electrolyte 14 and is exposed to the outside of the container 15 .
  • the portion of the first electrode piece 11 that penetrates the container 15 is melt-sealed.
  • the second electrode piece 12 is made of a material with a relatively low chemical potential and does not affect the detection of hydrogen gas. Like the electrode piece 11 , it can be exposed to the outside from the sealed portion of the container 15 . However, in general, it is preferable not to expose the sensor 15 to the outside of the container 15 , because re-melting and sealing is generally required, which complicates the structure and manufacturing process of the hydrogen gas concentration sensor 10 .
  • the linear temperature compensating third electrode piece 13 is arranged to eliminate the influence of the environmental temperature. It is The third electrode piece 13 is also arranged with respect to the electrolyte 14 so as to be separated from the first electrode piece 11 and the second electrode piece 12 .
  • first electrode piece 11, the second electrode piece 12 and the third electrode piece 13 are connected to the rear end opening of the container 15 on the side opposite to the sealed portion of the container 15 in order to measure the electromotive force associated with the detection of the hydrogen gas concentration. It is arranged so as to extend outward from the container 15 from the part.
  • the first electrode piece 11 functions as a detection electrode for hydrogen gas, and when it comes into contact with hydrogen gas, the chemical potential of (atomic) hydrogen changes greatly.
  • the second electrode piece 12 functions as a reference electrode for hydrogen gas, and when it comes into contact with hydrogen gas, its chemical potential hardly changes or changes very little.
  • the first electrode piece 11 can be made of a first electrode material with a relatively high chemical potential, specifically H 2 ( ⁇ )
  • the above materials include materials with relatively high adsorption activity for hydrogen gas, such as platinum and platinum alloys.
  • the first electrode piece 11 can be composed of these materials themselves, these materials can be used by carrying them on a predetermined substrate. However, it can be used in any manner as long as it functions as a detection electrode for hydrogen gas without departing from the scope of the present invention.
  • the material described above it is also possible to use a material with relatively high adsorption activity for hydrogen gas, such as palladium or a palladium alloy.
  • the first electrode piece 11 can be made of these materials themselves, but these materials can also be used by carrying them on a predetermined substrate. However, it can be used in any manner as long as it functions as a detection electrode for hydrogen gas without departing from the scope of the present invention.
  • the hydrogen molecules are dissociated, so that the hydrogen gas adsorbed on the first electrode piece 11 is quickly detached. It is suitable as a detection electrode for a hydrogen gas concentration sensor that responds quickly, such as a hydrogen gas concentration sensor dissolved in water.
  • the first electrode piece 11 when the first electrode piece 11 is made of a palladium-based material, the amount of hydrogen corresponding to the hydrogen partial pressure dissolves in solid solution, but the dissolved hydrogen is difficult to escape. It takes time. Therefore, when the first electrode piece 11 is made of a palladium-based material, the first electrode piece 11 has a memory function and can be applied as a detection electrode suitable for checking deterioration of transformer oil, for example.
  • the second electrode piece 12 can be made of a material with a relatively low chemical potential, specifically H 2 ( ⁇ )
  • the second electrode material exhibits a cell standard electromotive force value of less than 0.8V.
  • the materials mentioned above include tungsten, tungsten alloys, nickel, nickel alloys, titanium, titanium alloys, copper, copper alloys, iron, iron alloys, aluminum, aluminum alloys and organic conductive materials, which have relatively high adsorption activity for hydrogen gas. Low degree materials can be mentioned. However, it can be used in any manner as long as it functions as a reference electrode for hydrogen gas without departing from the scope of the present invention.
  • the third electrode piece 13 is an electrode piece for temperature compensation, and is arranged to offset changes in the environmental temperature of the hydrogen gas concentration sensor 10, that is, the environmental temperature of the first electrode piece 11, which is the detection electrode. Therefore, it is preferable to use the same material as the first electrode piece 11 .
  • the electrolyte 14 can be composed of an electrolyte having excellent adhesion to the first electrode 21 and the second electrode 22, such as phosphotungstic acid. Electrolyte 14 may include structural reinforcements such as glass wool in addition to electrolyte materials such as phosphotungsten. In this case, the strength of the electrolyte 14 can be increased, and the adhesion between the first electrode piece 11 and the second electrode piece 12 can be further increased.
  • the container 15 is preferably made of glass, resin, ceramics, or the like in order to ensure insulation between the first electrode piece 11 and the second electrode piece 12 .
  • the container 15 is made of an electrically conductive material such as metal, it is preferable to insulate the first electrode piece 11 from the container 15 by coating it with resin or ceramic.
  • a first electrode material having a value of 0.8 V or more is included, and the second electrode piece 12 includes a second electrode material having a standard electromotive force value of less than 0.8 V in a cell with the same configuration.
  • the first electrode piece 11 penetrates the electrolyte 14 and has an end exposed outside from the container 15 .
  • the first electrode piece 11 exposed from the container 15 of the hydrogen gas concentration sensor 10 should be immersed in a liquid containing dissolved hydrogen gas. At this time, even if the tip portion of the container 15 is immersed in the liquid, the electrolyte 14 itself is housed and sealed in the container 15 and is therefore not immersed in the liquid. That is, the hydrogen gas concentration sensor 10 can detect the concentration of hydrogen gas dissolved in the liquid by means of the first electrode piece 11, which is the detection electrode, and the second electrode piece 12, which is the reference electrode, both of which are immersed in the liquid. can. Similarly, it is possible to detect the concentration of hydrogen gas in special gases such as those used in high-temperature, high-humidity environments or in the chemical industry.
  • the hydrogen gas concentration sensor 10 of this embodiment it is sufficient to immerse the tip portion in the liquid and immerse the first electrode piece 11 as the detection electrode in the liquid. Therefore, unlike the conventional sealed hydrogen gas concentration sensor, it is not necessary to expose at least the first electrode, which is the detection electrode, from the outer skin and immerse it in the liquid, and to seal the electrolyte from the liquid with the outer skin. That is, the hydrogen gas concentration can be detected with an extremely simple configuration.
  • the hydrogen concentration of the hydrogen gas concentration sensor 10 of this embodiment is detected by the electromotive force generated between the first electrode piece 11 and the second electrode piece 12.
  • the electromotive force is expressed by the following relational expression. generated based on
  • E is the EMF value
  • F Faraday constant
  • E the EMF value
  • ⁇ I the electrostatic potential of the first electrode
  • ⁇ II the electrostatic potential of the second electrode.
  • the temperature compensation by the third electrode piece 13 is ( ⁇ : adsorption energy, k: Boltzmann constant, T: temperature, n: hydrogen concentration) and can be done by subtracting this E value from the EMF value above.
  • the hydrogen concentration exceeds 1% (n is 0.01 or more)
  • the E value becomes a very small value, so temperature compensation does not need to be considered, and the third electrode piece 13 itself can also be omitted.
  • a hydrogen gas concentration sensor 10 shown in FIG. 1 was prepared, and a simple hydrogen gas detection test was carried out.
  • a platinum wire and a palladium wire with a diameter of 0.2 mm were used for the first electrode piece 11, and a tungsten wire with a diameter of 0.2 mm was used for the second electrode piece 12.
  • the third electrode piece 13 is omitted for simplification.
  • the first electrode piece 11 and the second electrode piece 12 are arranged on the electrolyte 14 made of cesium phosphotungstate with a gap of 0.2 mm.
  • 14 was housed in a glass tube 15 having a diameter of 6 mm and a length of 25 mm, and the first electrode piece 11 was exposed with a length of 3 mm from the tip of the glass tube 15 and melt-sealed. Note that the exposed portion may be cut off at the root portion.
  • the electrolyte and electrodes There are also no special restrictions on the arrangement of the electrolyte and electrodes.
  • the first electrode piece 11 and the second electrode piece 12 were exposed from the rear end side of the glass tube 15 so that the electromotive force could be measured by detecting the hydrogen gas concentration.
  • FIG. 2 shows the detected voltage (V) when a platinum wire is used as the first electrode piece 11
  • FIG. 3 shows the detected voltage (V) when a palladium wire is used as the first electrode piece 11.
  • the hydrogen gas concentration was adjusted by filling hydrogen gas into a sealed container having an opening for inserting the glass container 15, and the detected electromotive force was measured at the rear end opening of the glass tube 15. Measured at
  • the detection voltage decreases from 0.4 V to 0.03 V by detecting hydrogen gas. It can be seen that the electromotive force immediately recovers to 0.4 V when the voltage is cut off. That is, it can be seen that hydrogen gas desorbs quickly and is suitable as a detection electrode for a hydrogen gas concentration sensor with fast response. Assuming a fuel cell control sensor, the measurement result was obtained at a temperature of 85°C.
  • the hydrogen concentration was set to 10% to compare the responsiveness to hydrogen gas.
  • the value of the spontaneous electromotive force of the sensor which is a feature of the EMF type hydrogen sensor, was measured at the rear end opening of the glass tube 15 with an electrometer.
  • the hydrogen gas concentration sensor 10 configured as shown in FIG. 1 can detect the hydrogen gas concentration and functions as a sensor. Therefore, it can be seen that the hydrogen gas concentration sensor 10 shown in FIG. 1 can be applied to liquids such as oil to detect the concentration of hydrogen gas dissolved in these liquids.
  • the detection voltage increases as the hydrogen gas concentration increases while maintaining its memory function. That is, it can be seen that the hydrogen gas concentration sensor 10 configured as shown in FIG. 1 can detect the hydrogen gas concentration and functions as a sensor. Therefore, it can be seen that the hydrogen gas concentration sensor 10 shown in FIG. 1 can be applied to liquids such as oil to detect the concentration of hydrogen gas dissolved in these liquids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

The present invention comprises a first electrode piece, a second electrode piece, an electrolyte in which the electrode pieces are disposed apart from each other, and a container which accommodates the first electrode piece, the second electrode piece, and the electrolyte, wherein: the first electrode piece includes a first electrode material exhibiting a standard electromotive force value of at least 0.8 V in a cell configured from H2 (-), 50 mol/m3 of H2SO4, and a substance sample (+); the second electrode includes a second electrode material exhibiting a standard electromotive force value of less than 0.8 V in a cell having the same configuration; and the first electrode piece penetrates through the electrolyte and has an end that is externally exposed from the container.

Description

水素ガス濃度センサHydrogen gas concentration sensor
 本発明は、水素ガス濃度センサに関する。 The present invention relates to a hydrogen gas concentration sensor.
 今後の水素エネルギー利用社会において水素爆発の危険性を払拭し安全性が高く、利便性に優れた水素エネルギー利用システムの構築が望まれる。水素ガスセンサの仕様は、大気中に漏れた水素量を瞬時に高精度で検出でき、構造がきわめて単純、信頼性が高いことが求められる。 In the future society that uses hydrogen energy, it is desirable to build a highly safe and convenient hydrogen energy utilization system that eliminates the danger of hydrogen explosions. The specifications of the hydrogen gas sensor are required to be able to instantly detect the amount of hydrogen leaked into the atmosphere with high accuracy, to have an extremely simple structure, and to be highly reliable.
 一方で、自動車・重機などの水素燃料電池の制御用水素濃度センサ(水素ガスの効率利用)、発電機軸受用の潤滑油やトランスオイルなど液中用の水素濃度センサ(水素ガスの溶解量やオイル劣化による水素ガス量の検知)や腎臓透析などの医療薬液中の水素濃度センサ(水素を溶存することで治療効果を促進)、水素水など溶液中の水素濃度センサ、化学工業などでのプロセス制御用水素濃度センサの開発が望まれている。 On the other hand, hydrogen concentration sensors for controlling hydrogen fuel cells in automobiles and heavy machinery (efficient use of hydrogen gas), hydrogen concentration sensors for liquids such as lubricating oil for generator bearings and transformer oil (dissolving amount of hydrogen gas and oil detection of hydrogen gas volume due to deterioration), hydrogen concentration sensor in medical chemicals such as kidney dialysis (promotes treatment effect by dissolving hydrogen), hydrogen concentration sensor in solution such as hydrogen water, process control in chemical industry, etc. The development of a hydrogen concentration sensor for gas is desired.
 従来の水素ガス濃度センサは半導体型、電離型、燃焼型などの検出方法に基づいている。これらの測定原理は「示量性の物理量」である“キャリア濃度(半導体型)”、“イオン濃度(電離型)”、あるいは“反応熱(燃焼型または燃焼させてその水蒸気圧を測定する”として間接的な検出方法で水素量を検知し、それらを電気的な量に変換してセンサとするものであった。 Conventional hydrogen gas concentration sensors are based on detection methods such as semiconductor type, ionization type, and combustion type. These measurement principles are "quantitative physical quantities" such as "carrier concentration (semiconductor type)", "ion concentration (ionization type)", or "reaction heat (combustion type or by burning and measuring the water vapor pressure"). As an indirect detection method, the amount of hydrogen is detected, and the amount of hydrogen is converted into an electric amount and used as a sensor.
 したがって、高温高湿度環境下での水素濃度検知やオイルや薬液などの液体に適用することはできず、当然にこれら液体中に溶存した水素ガスの濃度の検出に適用することはできなかった。
Therefore, it cannot be applied to hydrogen concentration detection in a high temperature and high humidity environment or to liquids such as oil and chemical solutions, and naturally it cannot be applied to detect the concentration of hydrogen gas dissolved in these liquids.
 検出時間を短縮化する水素ガス濃度センサとしては、例えば、互いに水素に対する化学ポテンシャルが異なる材料からなる第1の電極及び第2の電極と、これらの電極と接触する電解質とを備え、これら電極間に発生する起電力値に基づいて水素ガスを検出する水素ガスセンサが提案されている(特許文献1)。 A hydrogen gas concentration sensor for shortening the detection time includes, for example, a first electrode and a second electrode made of materials having different chemical potentials with respect to hydrogen, and an electrolyte in contact with these electrodes. A hydrogen gas sensor has been proposed that detects hydrogen gas based on the value of the electromotive force generated in (Patent Document 1).
特許第4035848号Patent No. 4035848
 しかしながら、特許文献1に記載の当該水素ガスセンサは、第1電極、第2電極及び電解質が外皮で覆われているため、当該水素ガスセンサを液体中の溶存水素ガス濃度を測定するようにするためには、少なくとも検出電極である第1電極を外皮から露出させて上記液体中に浸漬させる必要がある一方、電解質は液体からシールしなければならない。したがって、水素ガスセンサの構造が複雑になるとともに、シール方法に技術的及び経済的な課題があった。 However, in the hydrogen gas sensor described in Patent Document 1, the first electrode, the second electrode and the electrolyte are covered with an outer skin. requires that at least the first electrode, which is the sensing electrode, be exposed from the skin and immersed in the liquid, while the electrolyte must be sealed from the liquid. Therefore, the structure of the hydrogen gas sensor becomes complicated, and the sealing method poses technical and economic problems.
 本発明は、高温高湿度環境下、化学工業などでの特殊ガス中や液体中などの環境に存在する水素ガス濃度を検出することが可能な新規な構成の水素ガス濃度センサを提供することを目的とする。 An object of the present invention is to provide a hydrogen gas concentration sensor of a novel configuration capable of detecting the concentration of hydrogen gas present in environments such as special gases and liquids used in the chemical industry under high-temperature and high-humidity environments. aim.
 本発明は、以下に示す通りである。
(1)第1電極片及び第2電極片と、これら電極片が離隔して配設された電解質と、前記第1電極片、前記第2電極片及び前記電解質を収容する容器と、を備え、前記第1電極片は、H2(-)|50mol/m32SO4|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含み、前記第2電極は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第2電極材料を含み、前記第1電極片は、前記固体電解質を貫通し、端部が前記容器から外部に露出していることを特徴とする、水素ガス濃度センサ。
(2)前記第1電極材料は、白金、白金合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、(1)に記載の水素ガス濃度センサ。
(3)前記第1電極材料は、パラジウム、パラジウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、(1)に記載の水素ガス濃度センサ。
(4)前記第2電極材料は、タングステン、タングステン合金、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、(1)~(3)のいずれか1つに記載の水素ガス濃度センサ。
(5)前記容器内に収容され、前記電解質に配設された温度補償用の第3電極片を備えることを特徴とする、(1)~(4)のいずれ1つに記載の水素ガス濃度センサ。
The present invention is as described below.
(1) A first electrode piece, a second electrode piece, an electrolyte in which these electrode pieces are spaced apart, and a container that accommodates the first electrode piece, the second electrode piece, and the electrolyte. , the first electrode piece is a first electrode material exhibiting a standard electromotive force value of 0.8 V or more in a cell composed of H 2 (−)|50 mol/m 3 H 2 SO 4 | material sample (+) wherein the second electrode includes a second electrode material that exhibits a standard electromotive force value of less than 0.8 V in a cell with the same configuration, the first electrode piece penetrates the solid electrolyte, A hydrogen gas concentration sensor, wherein an end portion is exposed outside from the container.
(2) The hydrogen gas concentration sensor according to (1), wherein the first electrode material includes at least one of platinum, platinum alloys, and materials containing these.
(3) The hydrogen gas concentration sensor according to (1), wherein the first electrode material includes at least one of palladium, a palladium alloy, and materials containing these.
(4) The second electrode material includes at least one of tungsten, tungsten alloys, nickel, nickel alloys, titanium, titanium alloys, copper, copper alloys, iron, iron alloys, aluminum, aluminum alloys, and materials containing these. The hydrogen gas concentration sensor according to any one of (1) to (3), characterized by:
(5) The hydrogen gas concentration according to any one of (1) to (4), which is housed in the container and provided with a third electrode piece for temperature compensation disposed in the electrolyte. sensor.
 本発明によれば、高温高湿度環境下、化学工業などの特殊ガス中や液体中に存在する水素ガス濃度を検出することが可能な新規な構成の水素ガス濃度センサを提供することができる。 According to the present invention, it is possible to provide a hydrogen gas concentration sensor with a novel configuration that is capable of detecting the concentration of hydrogen gas in special gases and liquids used in the chemical industry under high-temperature and high-humidity environments.
実施形態における水素ガス農度センサの概略構成図である。1 is a schematic configuration diagram of a hydrogen gas intensity sensor in an embodiment; FIG. 実施例における水素ガス濃度センサの、第1電極片として白金線を用いた場合のEMF値を示すグラフである。4 is a graph showing the EMF value when a platinum wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example. 実施例における水素ガス濃度センサの、第1電極片としてパラジウム線を用いた場合のEMF値を示すグラフである。4 is a graph showing EMF values when a palladium wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example. 実施例における水素ガス濃度センサの、第1電極片として白金線を用いた場合の水素ガス濃度とEMF値を示すグラフである。4 is a graph showing the hydrogen gas concentration and the EMF value when a platinum wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example. 実施例における水素ガス濃度センサの、第1電極片としてパラジウム線を用いた場合の水素ガス濃度とEMF値との関係を示すグラフである。4 is a graph showing the relationship between the hydrogen gas concentration and the EMF value when a palladium wire is used as the first electrode piece of the hydrogen gas concentration sensor in the example.
 図1は、本実施形態における水素ガス濃度センサの概略構成図である。 FIG. 1 is a schematic configuration diagram of a hydrogen gas concentration sensor according to this embodiment.
 図1に示すように、本実施形態の水素ガス濃度センサ10は、線状の第1電極片11及び線状の第2電極片12と、これら電極片が離隔して配設された電解質14と、第1電極片11,第2電極片12及び電解質14とを収容する、一端が密閉された容器15とを備えている。 As shown in FIG. 1, the hydrogen gas concentration sensor 10 of this embodiment includes a first linear electrode piece 11, a second linear electrode piece 12, and an electrolyte 14 in which these electrode pieces are spaced apart. , and a container 15 with one end sealed to accommodate the first electrode piece 11 , the second electrode piece 12 and the electrolyte 14 .
 なお、容器15は、その先端部を測定したい系の中に挿入し配設されているものである。従って、容器15の内部は測定したい系とガス的に絶縁状態となるが、外界からの湿度などの影響を受けないように、この内部をシールして使用することが望ましい。 It should be noted that the container 15 is arranged such that its tip is inserted into the system to be measured. Therefore, the inside of the container 15 is gas-insulated from the system to be measured.
 また、第1電極片11は水素ガス検出電極として機能するため、その先端部は、電解質14の密閉部を貫通して、容器15の外部に露出している。なお、第1電極片11の容器15の貫通部分は溶融封止されている。 In addition, since the first electrode piece 11 functions as a hydrogen gas detection electrode, its tip penetrates through the sealed portion of the electrolyte 14 and is exposed to the outside of the container 15 . The portion of the first electrode piece 11 that penetrates the container 15 is melt-sealed.
 但し、以下に説明するように、第2電極片12は相対的に化学ポテンシャルの低い材料から構成されており、水素ガスの検出には影響しないので、第2電極片12の端部も第1電極片11と同様に、容器15の密閉部から外部に露出させることができる。しかしながら、一般には、再度の溶融封止が必要となり、水素ガス濃度センサ10の構成及び作製工程が煩雑となるため、容器15外には露出させないことが好ましい。 However, as described below, the second electrode piece 12 is made of a material with a relatively low chemical potential and does not affect the detection of hydrogen gas. Like the electrode piece 11 , it can be exposed to the outside from the sealed portion of the container 15 . However, in general, it is preferable not to expose the sensor 15 to the outside of the container 15 , because re-melting and sealing is generally required, which complicates the structure and manufacturing process of the hydrogen gas concentration sensor 10 .
 また、本実施形態の水素ガス濃度センサ10は、環境温度に依存して検出感度が変化するので、当該環境温度による影響を除去すべく、線状の温度補償用第3電極片13が配設されている。この第3電極片13も電解質14に対して、第1電極片11及び第2電極片12と離隔するようにして配設されている。 Further, since the detection sensitivity of the hydrogen gas concentration sensor 10 of the present embodiment changes depending on the environmental temperature, the linear temperature compensating third electrode piece 13 is arranged to eliminate the influence of the environmental temperature. It is The third electrode piece 13 is also arranged with respect to the electrolyte 14 so as to be separated from the first electrode piece 11 and the second electrode piece 12 .
 また、第1電極片11、第2電極片12及び第3電極片13は、水素ガス濃度の検出に伴う起電力を測定すべく、容器15の密閉部と反対側の容器15の後端開口部より、容器15の外方に延在するようにして配設されている。 Also, the first electrode piece 11, the second electrode piece 12 and the third electrode piece 13 are connected to the rear end opening of the container 15 on the side opposite to the sealed portion of the container 15 in order to measure the electromotive force associated with the detection of the hydrogen gas concentration. It is arranged so as to extend outward from the container 15 from the part.
 第1電極片11は、水素ガスに対する検出電極として機能し、水素ガスと接触することによって、(原子状)水素の化学ポテンシャルが大きく変化する。第2電極片12は、水素ガスに対する基準電極として機能し、水素ガスと接触することによって、その化学ポテンシャルがほとんど変化しないか、変化するとしても極微小である。 The first electrode piece 11 functions as a detection electrode for hydrogen gas, and when it comes into contact with hydrogen gas, the chemical potential of (atomic) hydrogen changes greatly. The second electrode piece 12 functions as a reference electrode for hydrogen gas, and when it comes into contact with hydrogen gas, its chemical potential hardly changes or changes very little.
 第1電極片11は、相対的に化学ポテンシャルの高い第1電極材料から構成することができ、具体的にはH2(-)|50mol/m32SO4|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含む。 The first electrode piece 11 can be made of a first electrode material with a relatively high chemical potential, specifically H 2 (−)|50 mol/m 3 H 2 SO 4 |substance sample (+). It includes a first electrode material that exhibits a standard electromotive force value of 0.8 V or more in the constructed cell.
 上述した材料としては、白金、白金合金等の、相対的に水素ガスに対する吸着活性度の高い材料を挙げることができる。第1電極片11は、これら材料自身から構成することもできるが、これらの材料を所定の基体上に担持させて用いることができる。但し、本発明の範疇を逸脱せず、水素ガスに対する検出電極として機能する限り、任意の態様で使用することができる。 Examples of the above materials include materials with relatively high adsorption activity for hydrogen gas, such as platinum and platinum alloys. Although the first electrode piece 11 can be composed of these materials themselves, these materials can be used by carrying them on a predetermined substrate. However, it can be used in any manner as long as it functions as a detection electrode for hydrogen gas without departing from the scope of the present invention.
 また、上述した材料として、パラジウム、パラジウム合金等の、相対的に水素ガスに対する吸着活性度の高い材料から構成することもできる。上記同様に、第1電極片11は、これら材料自身から構成することもできるが、これらの材料を所定の基体上に担持させて用いることができる。但し、本発明の範疇を逸脱せず、水素ガスに対する検出電極として機能する限り、任意の態様で使用することができる。 In addition, as the material described above, it is also possible to use a material with relatively high adsorption activity for hydrogen gas, such as palladium or a palladium alloy. In the same manner as described above, the first electrode piece 11 can be made of these materials themselves, but these materials can also be used by carrying them on a predetermined substrate. However, it can be used in any manner as long as it functions as a detection electrode for hydrogen gas without departing from the scope of the present invention.
 なお、第1電極片11を白金系の材料から構成した場合は、水素分子を解離することから、第1電極片11に吸着した水素ガスの離脱が早く、燃料電池の制御用センサや医療薬液等に溶存する水素ガス濃度センサなど、応答性の早い水素ガス濃度センサの検出電極として適している。 When the first electrode piece 11 is made of a platinum-based material, the hydrogen molecules are dissociated, so that the hydrogen gas adsorbed on the first electrode piece 11 is quickly detached. It is suitable as a detection electrode for a hydrogen gas concentration sensor that responds quickly, such as a hydrogen gas concentration sensor dissolved in water.
 一方、第1電極片11をパラジウム系の材料から構成した場合は、水素分圧に応じた水素量を固溶するが、固溶水素は抜けづらいという性質があり、水素ガス検出後の回復に時間を要する。したがって、第1電極片11をパラジウム系の材料から構成した場合、当該第1電極片11はメモリ機能を有するので、例えばトランスオイルの劣化を確認するのに適した検出電極として適用できる。 On the other hand, when the first electrode piece 11 is made of a palladium-based material, the amount of hydrogen corresponding to the hydrogen partial pressure dissolves in solid solution, but the dissolved hydrogen is difficult to escape. It takes time. Therefore, when the first electrode piece 11 is made of a palladium-based material, the first electrode piece 11 has a memory function and can be applied as a detection electrode suitable for checking deterioration of transformer oil, for example.
 第2電極片12は、相対的に化学ポテンシャルの低い材料から構成することができ、具体的には、H2(-)|50mol/m32SO4|物質試料(+)で構成したセルの標準起電力値が0.8V未満の値を示す第2電極材料を含む。 The second electrode piece 12 can be made of a material with a relatively low chemical potential, specifically H 2 (−)|50 mol/m 3 H 2 SO 4 |material sample (+). The second electrode material exhibits a cell standard electromotive force value of less than 0.8V.
 上述した材料としては、タングステン、タングステン合金、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金及び有機導電材料などの、相対的に水素ガスに対する吸着活性度合いの低い材料を挙げることができる。但し、本発明の範疇を逸脱せず、水素ガスに対する基準電極として機能する限り、任意の態様で使用することができる。 The materials mentioned above include tungsten, tungsten alloys, nickel, nickel alloys, titanium, titanium alloys, copper, copper alloys, iron, iron alloys, aluminum, aluminum alloys and organic conductive materials, which have relatively high adsorption activity for hydrogen gas. Low degree materials can be mentioned. However, it can be used in any manner as long as it functions as a reference electrode for hydrogen gas without departing from the scope of the present invention.
 なお、第3電極片13は、温度補償用の電極片であり、水素ガス濃度センサ10の環境温度、すなわち検出電極である第1電極片11の環境温度変化を相殺するために配設されているものであるので、第1電極片11と同じ材料から構成することが好ましい。 The third electrode piece 13 is an electrode piece for temperature compensation, and is arranged to offset changes in the environmental temperature of the hydrogen gas concentration sensor 10, that is, the environmental temperature of the first electrode piece 11, which is the detection electrode. Therefore, it is preferable to use the same material as the first electrode piece 11 .
 また、電解質14は、燐タングステン酸などの、第1電極21及び第2電極22との密着性に優れた電解質から構成することができる。電解質14は、燐タングステンなどの電解質材料に加えてグラスウールなどの構造補強材を含むことができる。この場合、電解質14の強度を増大させることができるとともに、第1電極片11及び第2電極片12との密着性をさらに増大させることができる。 Further, the electrolyte 14 can be composed of an electrolyte having excellent adhesion to the first electrode 21 and the second electrode 22, such as phosphotungstic acid. Electrolyte 14 may include structural reinforcements such as glass wool in addition to electrolyte materials such as phosphotungsten. In this case, the strength of the electrolyte 14 can be increased, and the adhesion between the first electrode piece 11 and the second electrode piece 12 can be further increased.
 容器15は、第1電極片11及び第2電極片12との絶縁を担保すべく、ガラスや樹脂、セラミックス等から構成することが好ましい。 The container 15 is preferably made of glass, resin, ceramics, or the like in order to ensure insulation between the first electrode piece 11 and the second electrode piece 12 .
 なお、容器15を金属等の電気伝導性の材料から構成した場合は、第1電極片11を樹脂やセラミック被覆等して容器15と絶縁することが好ましい。 When the container 15 is made of an electrically conductive material such as metal, it is preferable to insulate the first electrode piece 11 from the container 15 by coating it with resin or ceramic.
 本実施形態の水素ガス濃度センサ10によれば、第1電極片11及び第2電極片12と、これら電極片が離隔して配設された電解質14と、第1電極片11、第2電極片12及び電解質14を収容する容器15と、を備え、第1電極片11は、H2(-)|50mol/m32SO4|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含み、第2電極片12は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第2電極材料を含み、第1電極片11は、電解質14を貫通し、端部が容器15から外部に露出している。 According to the hydrogen gas concentration sensor 10 of this embodiment, the first electrode piece 11 and the second electrode piece 12, the electrolyte 14 in which these electrode pieces are separated, the first electrode piece 11 and the second electrode a container 15 containing a piece 12 and an electrolyte 14, wherein the first electrode piece 11 is a standard electromotive force of a cell composed of H 2 (−)|50 mol/m 3 H 2 SO 4 |substance sample (+) A first electrode material having a value of 0.8 V or more is included, and the second electrode piece 12 includes a second electrode material having a standard electromotive force value of less than 0.8 V in a cell with the same configuration. , the first electrode piece 11 penetrates the electrolyte 14 and has an end exposed outside from the container 15 .
 したがって、溶存する水素ガス濃度を検出するためには、水素ガス濃度センサ10の容器15から露出した第1電極片11を、溶存水素ガスを含む液体中に浸漬させればよい。この際に、容器15の先端部分が液体中に浸漬しても、電解質14自体は容器15内に収容され、密封されているので、液体に浸漬されることがない。すなわち、水素ガス濃度センサ10は、液体中に浸漬された検出電極である第1電極片11と基準電極である第2電極片12とによって、液体中に溶存した水素ガス濃度を検出することができる。同様に、高温高湿度環境下や化学工業などの特殊ガスの中の水素ガス濃度を検出することができる。 Therefore, in order to detect the dissolved hydrogen gas concentration, the first electrode piece 11 exposed from the container 15 of the hydrogen gas concentration sensor 10 should be immersed in a liquid containing dissolved hydrogen gas. At this time, even if the tip portion of the container 15 is immersed in the liquid, the electrolyte 14 itself is housed and sealed in the container 15 and is therefore not immersed in the liquid. That is, the hydrogen gas concentration sensor 10 can detect the concentration of hydrogen gas dissolved in the liquid by means of the first electrode piece 11, which is the detection electrode, and the second electrode piece 12, which is the reference electrode, both of which are immersed in the liquid. can. Similarly, it is possible to detect the concentration of hydrogen gas in special gases such as those used in high-temperature, high-humidity environments or in the chemical industry.
 このように、本実施形態の水素ガス濃度センサ10によれば、その先端部を液体中に浸漬させ、検出電極である第1電極片11を当該液体中に浸漬すれば足りる。したがって、従来のシール型水素ガス濃度センサのように、少なくとも検出電極である第1電極を外皮から露出させて液体中に浸漬させ、電解質を外皮によって液体からシールする必要がない。すなわち、極めてシンプルな構成で、水素ガス濃度を検出することができる。 Thus, according to the hydrogen gas concentration sensor 10 of this embodiment, it is sufficient to immerse the tip portion in the liquid and immerse the first electrode piece 11 as the detection electrode in the liquid. Therefore, unlike the conventional sealed hydrogen gas concentration sensor, it is not necessary to expose at least the first electrode, which is the detection electrode, from the outer skin and immerse it in the liquid, and to seal the electrolyte from the liquid with the outer skin. That is, the hydrogen gas concentration can be detected with an extremely simple configuration.
 なお、本実施形態の水素ガス濃度センサ10の水素濃度は、第1電極片11及び第2電極片12間に発生する起電力によって検出することになるが、当該起電力は以下の関係式に基づいて生成される。 The hydrogen concentration of the hydrogen gas concentration sensor 10 of this embodiment is detected by the electromotive force generated between the first electrode piece 11 and the second electrode piece 12. The electromotive force is expressed by the following relational expression. generated based on
Figure JPOXMLDOC01-appb-M000001
ここで、Fはファラデー定数、EはEMF値、
Figure JPOXMLDOC01-appb-M000002
はそれぞれ金属、水素ガスに対する原子状の水素の電気化学ポテンシャルである。端子〔I〕、〔II〕は同種の銅線のため電子の電気化学ポテンシャルは、
Figure JPOXMLDOC01-appb-M000003
となる。また、静電ポテンシャルφと起電力Eとの関係
Figure JPOXMLDOC01-appb-M000004
を用いた。ここで、φIは第1の電極の静電ポテンシャルを表し、φIIは第2の電極の静電ポテンシャルを表す。
 なお、第3電極片13による温度補償は、
Figure JPOXMLDOC01-appb-M000005
(ε:吸着エネルギー、k:ボルツマン定数、T:温度、n:水素濃度)
で表され、このE値を上述のEMF値から差し引くことにより実行することができる。但し、水素濃度が1%を超えるような濃度(nが0.01以上)の場合は、上記E値は極めて小さい値となるので、温度補償は考慮する必要はなく、第3電極片13自体も省略することができる。
Figure JPOXMLDOC01-appb-M000001
where F is the Faraday constant, E is the EMF value,
Figure JPOXMLDOC01-appb-M000002
are the electrochemical potentials of atomic hydrogen relative to metal and hydrogen gas, respectively. Since the terminals [I] and [II] are copper wires of the same type, the electrochemical potential of electrons is
Figure JPOXMLDOC01-appb-M000003
becomes. Also, the relationship between the electrostatic potential φ and the electromotive force E
Figure JPOXMLDOC01-appb-M000004
was used. where φI represents the electrostatic potential of the first electrode and φII represents the electrostatic potential of the second electrode.
The temperature compensation by the third electrode piece 13 is
Figure JPOXMLDOC01-appb-M000005
(ε: adsorption energy, k: Boltzmann constant, T: temperature, n: hydrogen concentration)
and can be done by subtracting this E value from the EMF value above. However, when the hydrogen concentration exceeds 1% (n is 0.01 or more), the E value becomes a very small value, so temperature compensation does not need to be considered, and the third electrode piece 13 itself can also be omitted.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these.
 図1に示す水素ガス濃度センサ10を準備し、簡易的に水素ガスの検出試験を実施した。なお、第1電極片11は直径0.2mmの白金線及びパラジウム線を使用し、第2電極片12は直径0.2mmのタングステン線を使用した。また、簡略化のために第3電極片13は省略した。 A hydrogen gas concentration sensor 10 shown in FIG. 1 was prepared, and a simple hydrogen gas detection test was carried out. A platinum wire and a palladium wire with a diameter of 0.2 mm were used for the first electrode piece 11, and a tungsten wire with a diameter of 0.2 mm was used for the second electrode piece 12. Also, the third electrode piece 13 is omitted for simplification.
 次いで、第1電極片11及び第2電極片12を燐タングステン酸セシウムからなる電解質14に0.2mmの間隔をあけて配設し、さらに、第1電極片11,第2電極片12及び電解質14を、直径6mm及び長さ25mmのガラス管15内に収納して配設し、当該ガラス管15の先端部より、第1電極片11を3mmの長さで露出させるとともに溶融封止した。なお、露出部分は根元部分で切断してもよい。電解質と電極の配置にも特別な制約はない。 Next, the first electrode piece 11 and the second electrode piece 12 are arranged on the electrolyte 14 made of cesium phosphotungstate with a gap of 0.2 mm. 14 was housed in a glass tube 15 having a diameter of 6 mm and a length of 25 mm, and the first electrode piece 11 was exposed with a length of 3 mm from the tip of the glass tube 15 and melt-sealed. Note that the exposed portion may be cut off at the root portion. There are also no special restrictions on the arrangement of the electrolyte and electrodes.
 次いで、図1に示すように、ガラス管15の後端側から第1電極片11及び第2電極片12を露出させ、水素ガス濃度の検出による起電力を計測できるようにした。なお、この計測部分は、湿度などから保護するように、シールすることが望ましい。 Next, as shown in FIG. 1, the first electrode piece 11 and the second electrode piece 12 were exposed from the rear end side of the glass tube 15 so that the electromotive force could be measured by detecting the hydrogen gas concentration. In addition, it is desirable to seal this measuring portion so as to protect it from humidity and the like.
 図2は、第1電極片11として白金線を用いた場合の検出電圧(V)であり、図3は、第1電極片11としてパラジウム線を用いた場合の検出電圧(V)である。 2 shows the detected voltage (V) when a platinum wire is used as the first electrode piece 11, and FIG. 3 shows the detected voltage (V) when a palladium wire is used as the first electrode piece 11. FIG.
 なお、水素ガス濃度はガラス容器15が挿入できるような開口が形成された密閉容器内に水素ガスを充填して容器内の水素濃度を調整し、検出起電力はガラス管15の後端開口部において計測した。 The hydrogen gas concentration was adjusted by filling hydrogen gas into a sealed container having an opening for inserting the glass container 15, and the detected electromotive force was measured at the rear end opening of the glass tube 15. Measured at
 図2に示すように、第1電極片11として白金線を用いた場合は、水素ガスを検出することにより、検出電圧が0.4Vから0.03Vまで減少するが、水素ガスとの接触を遮断すると、直ちに起電力が回復して0.4Vにまで回復することが分かる。すなわち、水素ガスの離脱が早く、応答性の早い水素ガス濃度センサの検出電極として適していることが分かる。なお、燃料電池制御センサを想定し温度85℃の測定結果とした。 As shown in FIG. 2, when a platinum wire is used as the first electrode piece 11, the detection voltage decreases from 0.4 V to 0.03 V by detecting hydrogen gas. It can be seen that the electromotive force immediately recovers to 0.4 V when the voltage is cut off. That is, it can be seen that hydrogen gas desorbs quickly and is suitable as a detection electrode for a hydrogen gas concentration sensor with fast response. Assuming a fuel cell control sensor, the measurement result was obtained at a temperature of 85°C.
 事例では、水素ガスに対する応答性の比較のため、水素濃度10%とした。なお、第1電極片11として白金線を用いた測定は、EMF型水素センサの特徴であるセンサの自発起電力の値はエレクトロメーターによりガラス管15の後端開口部において計測した。 In the example, the hydrogen concentration was set to 10% to compare the responsiveness to hydrogen gas. In the measurement using the platinum wire as the first electrode piece 11, the value of the spontaneous electromotive force of the sensor, which is a feature of the EMF type hydrogen sensor, was measured at the rear end opening of the glass tube 15 with an electrometer.
 一方、図3に示すように、第1電極片11としてパラジウム線を用いた場合は、水素ガスを1200秒の処で検出すると、検出電圧が0.15Vから0.1Vまで減少し水素濃度に応じた検出電圧値となる。水素ガスを3000秒の処で除去しても元の出力値(0.15V)に戻るためには3000秒(50分)以上を要することが分かる。すなわち、メモリ機能を有し、例えばトランスオイルの劣化を確認するのに適していることが分かる。なお、室温での利用を想定し温度20℃の測定結果とした。 On the other hand, as shown in FIG. 3, when a palladium wire is used as the first electrode piece 11, when hydrogen gas is detected at 1200 seconds, the detected voltage decreases from 0.15 V to 0.1 V, and the hydrogen concentration The corresponding detection voltage value is obtained. It can be seen that even if the hydrogen gas is removed at 3000 seconds, it takes 3000 seconds (50 minutes) or more to return to the original output value (0.15 V). That is, it has a memory function and is suitable for checking the deterioration of transformer oil, for example. In addition, the measurement results at a temperature of 20° C. were assumed to be used at room temperature.
 次いで、第1電極片11として同一の白金線を用い、ガラス容器15が挿入できるような開口が形成された密閉容器内に水素ガスを充填してその濃度を温度85℃で水素濃度を0~40体積%まで変化させ、その際の検出電圧を計測した。なお、検出電圧はガラス管15の後端開口部において計測した。測定は上述のエレクトロメーターを用いた。 Next, using the same platinum wire as the first electrode piece 11, hydrogen gas is filled in a sealed container having an opening for inserting the glass container 15, and the hydrogen concentration is adjusted to 0 to 0 at a temperature of 85 ° C. It was changed to 40% by volume, and the detected voltage at that time was measured. The detected voltage was measured at the rear end opening of the glass tube 15 . The above-mentioned electrometer was used for the measurement.
 図4に示すように、第1電極片11として白金線を用いた場合は、水素ガス濃度の上昇につれて検出電圧が減少することが分かる。すなわち、図1に示す構成の水素ガス濃度センサ10が水素ガス濃度を検出することができ、センサとして機能することが分かる。したがって、図1に示す水素ガス濃度センサ10をオイルなどの液体に適用し、これら液体中に溶存した水素ガスの濃度の検出に適用できることが分かる。 As shown in FIG. 4, when a platinum wire is used as the first electrode piece 11, it can be seen that the detected voltage decreases as the hydrogen gas concentration increases. That is, it can be seen that the hydrogen gas concentration sensor 10 configured as shown in FIG. 1 can detect the hydrogen gas concentration and functions as a sensor. Therefore, it can be seen that the hydrogen gas concentration sensor 10 shown in FIG. 1 can be applied to liquids such as oil to detect the concentration of hydrogen gas dissolved in these liquids.
 次いで、第1電極片11として同一のパラジウム線を用い、ガラス容器15が挿入できるような開口が形成された密閉容器内に水素ガスを充填してその濃度を温度20℃で水素濃度を0~20体積%まで変化させ、その際の検出電圧を計測した。なお、検出電圧はガラス管15の後端開口部において計測した。測定は上述のエレクトロメーターを用いた。 Next, using the same palladium wire as the first electrode piece 11, hydrogen gas is filled in a sealed container having an opening for inserting the glass container 15, and the hydrogen concentration is adjusted to 0 to 0 at a temperature of 20 ° C. It was changed to 20% by volume, and the detection voltage at that time was measured. The detected voltage was measured at the rear end opening of the glass tube 15 . The above-mentioned electrometer was used for the measurement.
 図5に示すように、第1電極片11としてパラジウム線を用いた場合は、そのメモリ機能を維持しながら、水素ガス濃度の上昇につれて検出電圧も上昇することが分かる。すなわち、図1に示す構成の水素ガス濃度センサ10が水素ガス濃度を検出することができ、センサとして機能することが分かる。したがって、図1に示す水素ガス濃度センサ10をオイルなどの液体に適用し、これら液体中に溶存した水素ガスの濃度の検出に適用できることが分かる。 As shown in FIG. 5, when a palladium wire is used as the first electrode piece 11, the detection voltage increases as the hydrogen gas concentration increases while maintaining its memory function. That is, it can be seen that the hydrogen gas concentration sensor 10 configured as shown in FIG. 1 can detect the hydrogen gas concentration and functions as a sensor. Therefore, it can be seen that the hydrogen gas concentration sensor 10 shown in FIG. 1 can be applied to liquids such as oil to detect the concentration of hydrogen gas dissolved in these liquids.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 10 水素ガス濃度センサ
 11 第1電極片
 12 第2電極片
 13 第3電極片
 14 電解質
 15 容器
10 hydrogen gas concentration sensor 11 first electrode piece 12 second electrode piece 13 third electrode piece 14 electrolyte 15 container

Claims (5)

  1.  第1電極片及び第2電極片と、これら電極片が離隔して配設された電解質と、前記第1電極片、前記第2電極片及び前記電解質を収容する容器と、を備え、
     前記第1電極片は、H2(-)|50mol/m32SO4|物質試料(+)で構成したセルの標準起電力値が0.8V以上の値を示す第1電極材料を含み、
     前記第2電極は、同構成でのセルでの標準起電力値が0.8V未満の値を示す第2電極材料を含み、
     前記第1電極片は、前記電解質を貫通し、端部が前記容器から外部に露出していることを特徴とする、水素ガス濃度センサ。
    a first electrode piece and a second electrode piece, an electrolyte in which the electrode pieces are spaced apart, and a container for housing the first electrode piece, the second electrode piece and the electrolyte,
    The first electrode piece is made of a first electrode material exhibiting a standard electromotive force value of 0.8 V or more in a cell composed of H 2 (−)|50 mol/m 3 H 2 SO 4 | material sample (+). including
    The second electrode includes a second electrode material that exhibits a standard electromotive force value of less than 0.8 V in a cell with the same configuration,
    The hydrogen gas concentration sensor, wherein the first electrode piece penetrates the electrolyte and has an end exposed outside from the container.
  2.  前記第1電極材料は、白金、白金合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、請求項1に記載の水素ガス濃度センサ。 The hydrogen gas concentration sensor according to claim 1, wherein the first electrode material includes at least one of platinum, platinum alloys, and materials containing these.
  3.  前記第1電極材料は、パラジウム、パラジウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、請求項1に記載の水素ガス濃度センサ。 The hydrogen gas concentration sensor according to claim 1, wherein the first electrode material includes at least one of palladium, a palladium alloy, and materials containing these.
  4.  前記第2電極材料は、タングステン、タングステン合金、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金及びこれらを含む材料の少なくとも1つを含むことを特徴とする、請求項1に記載の水素ガス濃度センサ。 The second electrode material includes at least one of tungsten, tungsten alloys, nickel, nickel alloys, titanium, titanium alloys, copper, copper alloys, iron, iron alloys, aluminum, aluminum alloys, and materials containing these. The hydrogen gas concentration sensor according to claim 1, wherein:
  5.  前記容器内に収容され、前記電解質に配設された温度補償用の第3電極片を備えることを特徴とする、請求項1に記載の水素ガス濃度センサ。 The hydrogen gas concentration sensor according to claim 1, further comprising a temperature-compensating third electrode piece housed in the container and disposed on the electrolyte.
PCT/JP2022/021641 2021-06-09 2022-05-26 Hydrogen gas concentration sensor WO2022259883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022558163A JPWO2022259883A1 (en) 2021-06-09 2022-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096965 2021-06-09
JP2021-096965 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022259883A1 true WO2022259883A1 (en) 2022-12-15

Family

ID=84425999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021641 WO2022259883A1 (en) 2021-06-09 2022-05-26 Hydrogen gas concentration sensor

Country Status (2)

Country Link
JP (1) JPWO2022259883A1 (en)
WO (1) WO2022259883A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090472A1 (en) * 2022-10-27 2024-05-02 株式会社新潟Tlo Hydrogen gas concentration sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080957A1 (en) * 2004-02-19 2005-09-01 Niigata Tlo Corporation Hydrogen gas sensor
JP2007047124A (en) * 2005-08-12 2007-02-22 Niigata Tlo:Kk Hydrogen gas sensor
JP2008196903A (en) * 2007-02-09 2008-08-28 Niigata Univ Hydrogen quantity sensor
JP2009243962A (en) * 2008-03-28 2009-10-22 Niigata Univ Hydrogen gas sensor
JP2010230620A (en) * 2009-03-30 2010-10-14 Niigata Univ High concentration hydrogen gas sensor
WO2011145150A1 (en) * 2010-05-21 2011-11-24 国立大学法人新潟大学 Hydrogen gas sensor
JP2012163506A (en) * 2011-02-09 2012-08-30 Gunze Ltd In-oil hydrogen detection sensor
JP2017044576A (en) * 2015-08-26 2017-03-02 国立研究開発法人産業技術総合研究所 Gas sensor and method of detecting gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080957A1 (en) * 2004-02-19 2005-09-01 Niigata Tlo Corporation Hydrogen gas sensor
JP2007047124A (en) * 2005-08-12 2007-02-22 Niigata Tlo:Kk Hydrogen gas sensor
JP2008196903A (en) * 2007-02-09 2008-08-28 Niigata Univ Hydrogen quantity sensor
JP2009243962A (en) * 2008-03-28 2009-10-22 Niigata Univ Hydrogen gas sensor
JP2010230620A (en) * 2009-03-30 2010-10-14 Niigata Univ High concentration hydrogen gas sensor
WO2011145150A1 (en) * 2010-05-21 2011-11-24 国立大学法人新潟大学 Hydrogen gas sensor
JP2012163506A (en) * 2011-02-09 2012-08-30 Gunze Ltd In-oil hydrogen detection sensor
JP2017044576A (en) * 2015-08-26 2017-03-02 国立研究開発法人産業技術総合研究所 Gas sensor and method of detecting gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090472A1 (en) * 2022-10-27 2024-05-02 株式会社新潟Tlo Hydrogen gas concentration sensor

Also Published As

Publication number Publication date
JPWO2022259883A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US5667653A (en) Electrochemical sensor
JPS6055777B2 (en) Combustible sensor
JPH0618480A (en) Method and device for detecting nox
Shen et al. Exhaling‐driven hydroelectric nanogenerators for stand‐alone nonmechanical breath analyzing
WO2022259883A1 (en) Hydrogen gas concentration sensor
JPS6122260B2 (en)
EP1502100A2 (en) Chloramine amperometric sensor
JP6952578B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
JP4538640B2 (en) Hydrogen sensor
JP7131365B2 (en) gas sensor
WO2022079925A1 (en) Fuel cell hydrogen gas concentration sensor
US5908546A (en) Detection of hydrogen chloride
WO2024090472A1 (en) Hydrogen gas concentration sensor
JP4124536B2 (en) Hydrogen sensor
CA2260563C (en) Hydrogen sensor using a solid hydrogen ion conducting electrolyte
US3711394A (en) Continuous oxygen monitoring of liquid metals
US5556534A (en) Electrochemical oxygen and PH sensors employing fluoride based solid-state electrolytes
JP4606413B2 (en) Electrochemical sensor
EP0096117B1 (en) Analyzer for chemical oxidizing or reducing agents
Zhang et al. A thermodynamic approach to calculate the yttria-stabilized zirconia pH sensor potential
Adhi et al. Electrochemical impedance analysis on solid electrolyte oxygen sensor with gas and liquid reference electrodes for liquid LBE
US20060254908A1 (en) Electrochemical solid electrolyte sensor for the detection of oxygen, hydrocarbons and moisture in vacuum environments
KR20060120013A (en) Electrochemical sensor
JP4686726B2 (en) Hydrogen sensor
JP2019132756A (en) Gas concentration detection method and gas concentration detection device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022558163

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE