WO2022077680A1 - 波分复用结构 - Google Patents

波分复用结构 Download PDF

Info

Publication number
WO2022077680A1
WO2022077680A1 PCT/CN2020/128007 CN2020128007W WO2022077680A1 WO 2022077680 A1 WO2022077680 A1 WO 2022077680A1 CN 2020128007 W CN2020128007 W CN 2020128007W WO 2022077680 A1 WO2022077680 A1 WO 2022077680A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
light
reflected
shaped
wavelength division
Prior art date
Application number
PCT/CN2020/128007
Other languages
English (en)
French (fr)
Inventor
阮于华
Original Assignee
苏州易锐光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州易锐光电科技有限公司 filed Critical 苏州易锐光电科技有限公司
Priority to US17/632,804 priority Critical patent/US20220357517A1/en
Publication of WO2022077680A1 publication Critical patent/WO2022077680A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29389Bandpass filtering, e.g. 1x1 device rejecting or passing certain wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/023Catoptric systems, e.g. image erecting and reversing system for extending or folding an optical path, e.g. delay lines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29373Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion utilising a bulk dispersive element, e.g. prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements

Definitions

  • the present application relates to the field of optical technology, and in particular, to a wavelength division multiplexing structure.
  • wavelength division multiplexing In the field of optical communication, the function of wavelength division multiplexing (WDM) technology is to multiplex optical signals of different wavelengths into the same optical fiber at the transmitting end, and then re-separate the optical signals of different wavelengths at the receiving end. Save and make full use of optical fiber communication resources in the transmission process.
  • Optical wavelength division multiplexer has always been irreplaceable as the core device of optical wavelength division multiplexing technology. With the development of 5G technology, people's demand for communication data transmission capacity continues to increase, and the development of wavelength division multiplexing systems is also constantly innovating, from the original CWDM transmission system to the current CWDM, MWDM, LAN WDM, DWDM, etc.
  • Various wavelength division multiplexing systems are used together for common development at the same time, and its core device, wavelength division multiplexer, will also continue to develop in the future.
  • the wavelength division multiplexer mainly includes dielectric film optical wavelength division multiplexer, fiber taper optical wavelength division multiplexer and waveguide array grating wavelength division multiplexer.
  • the dielectric film optical wavelength division multiplexer uses an optical dielectric film to filter light to achieve light combination and separation, and realizes multi-wavelength combination and separation by cascading multiple filters. This wavelength division multiplexer technology is the oldest but is still widely used.
  • the optical fiber taper optical wavelength division multiplexer is based on the optical waveguide coupling theory, and couples light beams of different wavelengths from one of the two adjacent fibers into the other to achieve light combining and splitting.
  • the waveguide array grating wavelength division multiplexer utilizes integrated optical technology to divide light beams of different wavelengths into multiple coherent light beams in the medium and then combine to strengthen or weaken to achieve combined and split light. Because the bandwidth of the tapered WDM can not be very wide, and both the tapered WDM and the waveguide array grating wavelength division multiplexer have temperature stability problems, especially the temperature of the waveguide array grating wavelength division multiplexer. Drift seriously. So far, the dielectric film wavelength division multiplexer still has an absolute advantage in practical applications.
  • the wavelength division multiplexing adopts the cascade method; the second method is to use a plurality of dielectric diaphragms to spatially arrange the optical paths in order, and then separate or combine each wavelength in turn; the third method is to paste the medium of each wavelength on one side of the glass brick The diaphragm is folded back in the glass brick through the optical path and passes through the dielectric diaphragm to combine and demultiplex, that is, the Z-BLOCK scheme.
  • the miniaturization requirements of the wavelength division multiplexer are getting higher and higher, and it is even required to be integrated into other devices or small equipment.
  • the first one is bulky, the cost of a single channel is high, and the insertion loss is relatively high; the second one, the volume is smaller than the second one, but still relatively large; High, and the process is complicated.
  • the purpose of the present application is to provide a wavelength division multiplexing structure to solve the problems of large volume, high cost, high insertion loss or complex process of the three types of dielectric film optical wavelength division multiplexers in the prior art.
  • the application provides a wavelength division multiplexing structure, comprising: a first reflection surface; a second reflection surface; a plane where the first reflection surface is located intersects with a plane where the second reflection surface is located; a first optical filter , which is used to partially transmit and partially reflect the light incident on the first filter; wherein, the light transmitted by the first filter is light of the first wavelength; the second filter is used to reflect the incident light.
  • the light of the second optical filter is partially transmitted and partially reflected; wherein, the light transmitted by the second optical filter is light of the second wavelength; a preprocessing device, the preprocessing device is arranged on the second optical filter The side of the reflective surface away from the first filter, the preprocessing device is used to control the direction of the light input and output from the preprocessing device; the light incident on the first reflective surface passes through the first reflective surface in sequence.
  • a C-shaped or approximately C-shaped first C-shaped optical path is formed and incident on the first filter, and in the first C-shaped optical path,
  • the light incident on the first reflective surface and the light reflected by the second reflective surface form a straight line with different planes; the light incident on the pre-processing device passes through the pre-processing device and the second reflective surface in sequence to form a straight line.
  • the preprocessing optical path is incident on the first optical filter, and in the preprocessing optical path, light enters the optical path of the first optical filter from the second reflective surface, which is the same as that in the first C-shaped optical path.
  • the beneficial effect of this technical solution is that the specific spatial optical path composed of the preprocessing device, the two reflecting surfaces and the filter can realize the effect of demultiplexing the beam, and because the optical path is reversible, the effect of combining the beam can also be realized.
  • the light incident on the first reflective surface is reflected twice by the first reflective surface and the second reflective surface, and then the light with the transmitted wavelength of the first filter is transmitted through the first filter, and the two reflections form a C-shape. Or the first section of the C-shaped optical path that is approximately C-shaped, the light reflected by the second reflective surface and the incident light entering the first reflective surface will form a non-planar straight line.
  • the first filter reflects the light of its reflected wavelength back to the second reflecting surface.
  • the transmission mode of the light incident on the second reflecting surface is similar to the transmission mode of the original incident light in the first C-shaped optical path.
  • the second filter After two reflections on each reflective surface, the second filter enters the second filter, and then the light of the transmitted wavelength of the second filter is transmitted from the second filter. At the same time, the second filter reflects the light of the reflected wavelength to realize the The demultiplexing effect of the original incident light, wherein the two reflections of the two reflecting surfaces form a C-shaped or approximately C-shaped second C-shaped optical path. Since the optical path is reversible, the light of the first wavelength is input through the first filter along the reverse direction of the first C-shaped optical path, and the light of the second wavelength is input through the second filter along the reverse direction of the second C-shaped optical path.
  • the light of the two wavelengths will be synthesized and output from the input position of the original incident light to realize the effect of light multiplexing.
  • the high integration of the wavelength division multiplexing structure has the advantages of small size, low insertion loss and wide application; no processing is required for the two reflective surfaces, and the area where light enters or exits. Only two filters need to be set.
  • the core material does not need zoned coating, which solves the problem of complex material processing technology such as core devices requiring zoned coating, and reduces the processing difficulty and process requirements of materials, thereby reducing Cost;
  • a C-shaped or nearly C-shaped optical path is formed by two reflections on the two reflective surfaces, and its specific optical path can directly adapt to the light output requirements in the application environment of the same side of the incident light, which solves the problem of the existing Z-BLOCK In the solution, the common port cannot be distributed on the same side as other ports.
  • the wavelength division multiplexing structure also uses a preprocessing device to meet the light output requirements in application environments other than the light output on the same side of the incident light.
  • the preprocessing optical path Since the light in the preprocessing optical path is incident on the optical path of the first filter and the light incident in the first C-shaped optical path
  • the optical paths of the first filter overlap, so the light entering the pre-processing device can be demultiplexed, and the light of different wavelengths can be combined and emitted from the pre-processing device. It is distributed on the same side or different side as other ports.
  • the preprocessing device includes a prism, and the prism does not intersect the second C-shaped optical path.
  • the beneficial effect of the technical solution is that the prism technology is mature and widely used. In practical applications, the user can select a suitable prism to change the direction of the incident light to meet the needs in use.
  • the prism and the second reflecting surface have the same refractive index, and the first side surface of the prism and the second reflecting surface are attached together.
  • the beneficial effect of the technical solution is that when the refractive indices of the prism and the second reflecting surface are the same, light entering the second reflecting surface from the prism will not be reflected and deflected, which facilitates the user to adjust the direction of light entering the prism.
  • the preprocessing device further includes an attenuator, the attenuator is arranged between the prism and the second reflection surface, and the attenuator is used to control the output of the attenuator The light intensity of the light.
  • the beneficial effect of the technical solution is that the attenuator is used to control the illumination intensity of the light incident on the second reflection surface.
  • the attenuator includes a first polarizer, a second polarizer, and a liquid crystal material disposed between the first polarizer and the second polarizer.
  • the beneficial effect of the technical solution is that the attenuation function is realized by using two polarizers and a liquid crystal material, and the process is mature and easy to realize.
  • the attenuator uses an electro-absorbing material to achieve the function of attenuating light.
  • the beneficial effect of the technical solution is that the light attenuation function is realized by utilizing the special properties of the electro-absorbing material.
  • the attenuator is used to provide an optical switching function.
  • the beneficial effect of this technical solution is that when the ratio of the attenuator to attenuate the light reaches or is close to 100%, it can be considered that the preprocessing optical path is turned off.
  • the preprocessing device further includes a switchable optical device, the switchable optical device is disposed between the prism and the second reflective surface, and the switchable optical device reflects The state and the transmission state are switched to provide an optical switch function, so that the light of the pre-processing optical path or the light of the first C-shaped optical path is incident on the first optical filter.
  • the beneficial effect of the technical solution is that the switchable optical device is used to switch between the reflection state and the transmission state to realize the 1 ⁇ 2 optical switch function.
  • the transmission state the light of the preprocessing optical path is transmitted through the second reflection surface and output to the first filter.
  • the light sheet, in the reflection state the light of the first C-shaped optical path is reflected on the second reflection surface and output to the first filter sheet.
  • the preprocessing device further includes a refractive index changing device, the refractive index changing device is disposed between the prism and the second reflection surface, and the refractive index changing device adopts a variable refractive index device.
  • the refractive index material provides an optical switching function, so that the light of the pretreatment optical path or the light of the first C-shaped optical path is incident on the first optical filter.
  • the beneficial effect of this technical solution is that, through the change of the refractive index of the variable refractive index material, the light in the pretreatment optical path is totally reflected before entering the second reflective surface and will not enter the first filter, or the first filter
  • the light reflected by the first reflective surface in the C-shaped optical path directly passes through the second reflective surface and cannot be reflected to the first filter, so as to realize the 1 ⁇ 2 optical switch function, so that the light in the preprocessed optical path or the first segment C
  • the light of the shaped optical path is incident on the first filter.
  • the pre-processing device further includes a photodetector, and a light splitting film coated on the second side of the prism, the light splitting film is used to separate light incident on the light splitting film There are a first part and a second part, the first part is output to the first filter, and the second part is used as the input source of the photodetector.
  • the beneficial effect of the technical solution lies in that the light splitting film is used for light splitting to detect the parameters of the light incident on the light splitting film.
  • the wavelength division multiplexing structure further includes a third filter to an Nth filter, where N is an integer greater than 2; when N is an odd number: the 2P-1th filter The reflected light, after being reflected by the second reflecting surface and the first reflecting surface in turn, forms a C-shaped or approximately C-shaped 2P segment C-shaped optical path and enters the 2P filter; P is a positive integer, and 2P+1 ⁇ N; the second P filter is used to partially transmit and partially reflect the light incident on the second P filter; wherein, the light transmitted by the second P filter is of the 2P wavelength Light; the light reflected by the 2P filter, after being reflected by the first reflective surface and the second reflective surface in turn, forms a C-shaped or approximately C-shaped 2P+1 segment C-shaped optical path and is incident The 2P+1 filter; the 2P+1 filter is used to partially transmit and partially reflect the light incident on the 2P+1 filter; wherein, the 2P+1 filter The transmitted light is the light of the 2P+1 wavelength; when N is an even
  • the beneficial effect of the technical solution is that more filters are added, so that the original incident light is reflected by a certain filter to re-enter one of the two reflective surfaces, and is reflected twice by the two reflective surfaces before entering the next one.
  • the filter can transmit and separate the different wavelengths of the original incident light one by one, so as to realize the effect of demultiplexing the light. Since the optical path is reversible, the light of each wavelength is input from its corresponding filter in the opposite direction of the optical path of the transmitted wavelength, and these wavelengths will be synthesized and output from the input position of the original incident light, realizing the effect of multiplexing of light.
  • the light reflected by the filters with odd numbers such as the first filter, the third filter, the fifth filter, etc.
  • the numbers of the optical filter, the fourth optical filter, the sixth optical filter, etc. are even-numbered filters, and the numbers of the second optical filter, the fourth optical filter, the sixth optical filter, etc. are the even-numbered filters.
  • the light reflected by the sheet is reflected twice by the first reflecting surface and the second reflecting surface and then enters the third filter, the fifth filter, the seventh filter and other filters with odd numbers, respectively.
  • the first reflection surface and the second reflection surface are perpendicular to each other; when N is an odd number, the first filter, the third filter to the third filter The centers of the N filters are sequentially connected to form a first connection line, and the centers of the second filter, the fourth filter to the N-1th filter are sequentially connected to form a second connection line, and the The first connection line and the second connection line are two straight lines parallel to each other; when N is an even number, the first filter, the third filter to the N-1th filter The centers of the filters are connected in sequence to form a third connection line, the second filter, the fourth filter to the center of the Nth filter are connected in sequence to form a fourth connection line, and the third connection line The fourth connecting line is two straight lines parallel to each other.
  • the beneficial effect of this technical solution is that the arrangement of light input and output ports can realize both line array arrangement integration and area array arrangement integration, and the port density and compactness are higher than the existing Z-BLOCK solution.
  • all odd-numbered filters can be changed to total reflection films, or all even-numbered filters can be changed to total reflection films, so as to realize line array arrangement and integration of output ports.
  • the wavelength division multiplexing structure further includes a first transmission surface; the light incident on the first transmission surface is transmitted through the first transmission surface and reflected by the first reflection surface in sequence. and after being reflected by the second reflective surface, the first filter is incident.
  • the beneficial effect of the technical solution is that the original incident light can be transmitted through the first transmission surface before entering the first reflection surface according to the requirements in practical applications.
  • the wavelength division multiplexing structure further includes a second transmission surface; the first filter is disposed on a side of the second transmission surface away from the second reflection surface; The light of the first reflection surface is reflected by the first reflection surface, reflected by the second reflection surface, and transmitted by the second transmission surface in sequence, and then enters the first filter.
  • the beneficial effect of the technical solution is that the light can be transmitted through the second transmission surface before the light enters the first filter according to the requirements in practical applications.
  • the wavelength division multiplexing structure further includes a third transmission surface; the first filter is disposed on a side of the third transmission surface away from the second reflection surface; The light of the third transmission surface is transmitted through the third transmission surface, reflected by the first reflection surface, reflected by the second reflection surface, and transmitted by the third transmission surface in sequence, and then enters the first filter. light sheet.
  • the beneficial effect of this technical solution is that the original incident light can be transmitted through the third transmission surface before entering the first reflection surface, and the light can be transmitted through the third transmission surface before entering the first filter according to the requirements in practical applications.
  • the first reflection surface, the second reflection surface and the third transmission surface are three side surfaces of a triangular prism; wherein, the three side edges of the triangular prism are parallel to each other .
  • the beneficial effect of the technical solution is that a triangular prism including a first reflection surface, a second reflection surface and a third transmission surface is used to provide the wavelength division multiplexing function of light, and an innovative triangular prism optical path structure is used to realize the wavelength division of the prior art.
  • the multiplexer combines the foldback transmission of the split optical path.
  • the first reflection surface and the second reflection surface are perpendicular to each other.
  • the beneficial effect of this technical solution is that when the two reflective surfaces are perpendicular to each other, the light incident on the first reflective surface and the light reflected by the second reflective surface are parallel to each other, which facilitates the arrangement of multiple filters in the form of patches on the third on the lens surface.
  • the cross section of the triangular prism in the direction perpendicular to the side edges is an isosceles right triangle.
  • a plane perpendicular to the side edges is taken as the first plane, the light incident on the first reflecting surface is not parallel to the side edges, and the light incident on the first reflecting surface is in the The acute angle formed between the projection on the first plane and the first reflecting surface is 45°.
  • the beneficial effect of this technical solution is that when the acute angle formed between the projection of the light incident on the first reflective surface on the first plane and the first reflective surface is 45°, the light incident on the first reflective surface will not appear on the first reflective surface.
  • the incident angle of the first reflective surface and the incident angle of the light reflected by the first reflective surface on the second reflective surface are both 45°, which is beneficial to realize the total reflection of light in practical applications.
  • 1 is a schematic structural diagram of a wavelength division multiplexing structure provided by an embodiment of the present application.
  • FIG. 2 is a side view of a wavelength division multiplexing structure provided by an embodiment of the present application.
  • 3 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • FIG. 4 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • FIG. 5 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • FIG. 6 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of an optical path of a wavelength division multiplexing structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of incident light and outgoing light of a wavelength division multiplexing structure provided by an embodiment of the present application.
  • FIG. 9 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application.
  • FIG. 10 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • 11 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • FIG. 12 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • 13 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side provided by an embodiment of the present application;
  • FIG. 14 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • 15 is a schematic structural diagram of a wavelength division multiplexing structure provided by an embodiment of the present application.
  • 16 is a side view of a wavelength division multiplexing structure provided by an embodiment of the present application.
  • 17 is a side view of a wavelength division multiplexing structure in which incident light exits on the same side according to an embodiment of the present application;
  • 19 is a side view of an attenuator provided by an embodiment of the present application.
  • 20 is a side view of a wavelength division multiplexing structure with an optical switch provided by an embodiment of the present application
  • 21 is a side view of a wavelength division multiplexing structure with an optical switch provided by an embodiment of the present application.
  • FIG. 22 is a side view of a wavelength division multiplexing structure with a spectroscopic detection function provided by an embodiment of the present application.
  • an embodiment of the present application provides a wavelength division multiplexing structure, and the wavelength division multiplexing structure includes a first reflection surface 301, a second reflection surface 302, a first filter 401, a second filter Light sheet 402 and pre-processing means (not shown in Figure 1).
  • the first reflective surface 301 is used for reflecting light incident on the first reflective surface 301
  • the second reflective surface 302 is used for reflecting light incident on the second reflective surface 302 .
  • the first reflection surface 301 may be a reflection mirror, preferably a total reflection mirror.
  • the second reflecting surface 302 may be a reflecting mirror, preferably a total reflecting mirror.
  • the plane where the first reflection surface 301 is located intersects with the plane where the second reflection surface 302 is located. That is to say, the first reflection surface 301 and the second reflection surface 302 are not parallel to each other.
  • the first reflection surface 301 and the second reflection surface 302 may intersect and form an intersection line as shown in FIGS. 3 to 5 , or they may be in different positions. The state of intersection is shown in Figure 6.
  • the angle formed by the first reflection surface 301 and the second reflection surface 302 may be an acute angle, as shown in FIG. 3 ; the angle formed by the first reflection surface 301 and the second reflection surface 302 may be a right angle, as shown in FIG. 4 ; The angle formed by the first reflection surface 301 and the second reflection surface 302 may be an obtuse angle, as shown in FIG. 5 .
  • the included angle formed by the first reflection surface 301 and the second reflection surface 302 is preferably a right angle, and at this time, the first reflection surface 301 and the second reflection surface 302 are perpendicular to each other, as shown in FIG. 4 .
  • the two reflecting surfaces are perpendicular to each other, the light incident on the first reflecting surface 301 and the light reflected by the second reflecting surface 302 are perpendicular to the intersection of the planes where the two reflecting surfaces are located and are parallel to each other.
  • the first filter 401 is used to partially transmit and partially reflect the light incident on the first filter 401 ; wherein, the light transmitted by the first filter 401 is light of a first wavelength.
  • Partial transmission and partial reflection refer to partial transmission and partial reflection, or partial transmission and remaining partial reflection.
  • the second filter 402 is used to partially transmit and partially reflect the light incident on the second filter 402 ; wherein, the light transmitted by the second filter 402 is light of the second wavelength.
  • the preprocessing device is disposed on the side of the second reflective surface 302 away from the first optical filter 401 , and the preprocessing device is used to control the direction of the light input and output by the preprocessing device.
  • the light incident on the first reflecting surface 301 forms a C-shaped or approximately C-shaped first segment after being reflected by the first reflecting surface 301 and the second reflecting surface 302 in turn.
  • the C-shaped optical path is incident on the first filter 401, and in the first C-shaped optical path, the light incident on the first reflecting surface 301 and the light reflected by the second reflecting surface 302 form different surfaces straight line, as shown in Figure 7.
  • the light incident on the first reflective surface 301 is reflected twice by the first reflective surface 301 and the second reflective surface 302 , then enters the first optical filter 401 , and is transmitted through the first optical filter 401 to exit the first optical filter
  • the light of the transmission wavelength of 401 is the light of the first wavelength.
  • the light incident on the pre-processing device after passing through the pre-processing device and the second reflecting surface 302 in sequence, forms a pre-processing optical path and is incident on the first filter 401, and in the pre-processing device In the processing optical path, the light enters the first filter 401 from the second reflection surface 302, and the light in the first C-shaped optical path enters the first filter from the second reflection surface 302.
  • the optical paths of the sheet 401 overlap.
  • the preprocessing device may include, for example, the prism 100 in FIG. 2 .
  • the structure formed by the first reflective surface 301, the second reflective surface 302 and at least one optical filter is first introduced below, and the part about the preprocessing device will be introduced later.
  • the light reflected by the first filter 401 is sequentially reflected by the second reflecting surface 302 and then reflected by the first reflecting surface 301 to form a C-shaped or approximately C-shaped second segment C forming an optical path and incident on the second filter 402 .
  • the first optical filter 401 reflects the light of its reflected wavelength back to the second reflecting surface 302.
  • the transmission mode of the light incident on the second reflecting surface 302 is similar to the transmission mode of the original incident light in the first C-shaped optical path.
  • the second filter 402 After being reflected twice by the two reflective surfaces, the second filter 402 enters the second filter 402 , and then the light of the transmission wavelength of the second filter 402 is transmitted from the second filter 402 , and at the same time, the second filter 402 reflects the wavelength. It realizes the wave splitting effect of the original incident light, wherein the two reflections of the two reflecting surfaces form a C-shaped or approximately C-shaped second C-shaped optical path.
  • the light of the first wavelength is input through the first filter 401 along the opposite direction of the first C-shaped optical path
  • the light of the second wavelength is input through the second filter 402 along the second C-shaped optical path. If the input is in the opposite direction, the two wavelengths of light will be synthesized and output from the input position of the original incident light to achieve the effect of light multiplexing.
  • the high integration of the wavelength division multiplexing structure has the advantages of small size, low insertion loss and wide application; no processing is required for the two reflective surfaces, and the area where light enters or exits. Only two filters need to be set.
  • the core material does not need zoned coating, which solves the problem of complex material processing technology such as core devices requiring zoned coating, and reduces the processing difficulty and process requirements of materials, thereby reducing Cost;
  • a C-shaped or nearly C-shaped optical path is formed by two reflections on the two reflective surfaces, and its specific optical path can directly adapt to the light output requirements in the application environment of the same side of the incident light, which solves the problem of the existing Z-BLOCK In the solution, the common port cannot be distributed on the same side as other ports.
  • the wavelength division multiplexing structure may further include a third filter 403 to an Nth filter, where N is an integer greater than 2. That is, the value of N can be 3, 4, 6, 10, 11 or other integers greater than 2. The cases where N is odd and even are discussed separately below.
  • the light reflected by the 2P-1 filter is sequentially reflected by the second reflective surface 302 and then reflected by the first reflective surface 301 to form a C-shaped or approximately C-shaped 2P segment C-shaped optical path and enter the 2P Filter;
  • P is a positive integer, and 2P+1 ⁇ N;
  • the second P filter is used to partially transmit and partially reflect the light incident on the second P filter; wherein, the light transmitted by the second P filter is light of the second P wavelength; the second P filter The light reflected by the filter, after being reflected by the first reflecting surface 301 and the second reflecting surface 302 in turn, forms a C-shaped or approximately C-shaped 2P+1 segment C-shaped optical path and enters the 2P+1 filter;
  • the 2P+1 filter is used to partially transmit and partially reflect the light incident on the 2P+1 filter; wherein, the light transmitted by the 2P+1 filter is the 2P+1 wavelength of light.
  • N 3
  • P 1
  • the light reflected by the first filter 401 is reflected by the second reflection surface 302 and reflected by the first reflection surface 301 to form a C-shaped or approximately C-shaped second C-shaped optical path and enter the second filter 402;
  • the second filter 402 is used to partially transmit and partially reflect the light incident on the second filter 402; wherein, the light transmitted by the second filter 402 is light of the second wavelength; the second filter 402 reflects The light reflected by the first reflecting surface 301 and the second reflecting surface 302 forms a C-shaped or approximately C-shaped third C-shaped optical path and enters the third filter 403;
  • the third filter 403 is used to partially transmit and partially reflect the light incident on the third filter 403 ; wherein, the light transmitted by the third filter 403 is light of a third wavelength.
  • N is 7.
  • P can be 1, 2 and 3.
  • the above scheme is:
  • the light reflected by the first filter 401 is reflected by the second reflection surface 302 and reflected by the first reflection surface 301 to form a C-shaped or approximately C-shaped second C-shaped optical path and enter the second filter 402;
  • the second filter 402 is used to partially transmit and partially reflect the light incident on the second filter 402; wherein, the light transmitted by the second filter 402 is light of the second wavelength; the second filter 402 reflects The light reflected by the first reflecting surface 301 and the second reflecting surface 302 forms a C-shaped or approximately C-shaped third C-shaped optical path and enters the third filter 403;
  • the third filter 403 is used to partially transmit and partially reflect the light incident on the third filter 403; wherein, the light transmitted by the third filter 403 is light of the third wavelength; the third filter 403 reflects The light reflected by the second reflecting surface 302 and the first reflecting surface 301 forms a C-shaped or approximately C-shaped fourth C-shaped optical path and enters the fourth filter 404;
  • the fourth filter 404 is used to partially transmit and partially reflect the light incident on the fourth filter 404; wherein, the light transmitted by the fourth filter 404 is light of the fourth wavelength; the fourth filter 404 reflects After the light is reflected by the first reflecting surface 301 and the second reflecting surface 302, a C-shaped or approximately C-shaped fifth C-shaped optical path is formed and incident on the fifth optical filter 405;
  • the fifth filter 405 is used to partially transmit and partially reflect the light incident on the fifth filter 405; wherein, the light transmitted by the fifth filter 405 is light of the fifth wavelength; the fifth filter 405 reflects After the light is reflected by the second reflecting surface 302 and the first reflecting surface 301, a C-shaped or approximately C-shaped sixth C-shaped optical path is formed and incident on the sixth optical filter 406;
  • the sixth filter 406 is used to partially transmit and partially reflect the light incident on the sixth filter 406; wherein, the light transmitted by the sixth filter 406 is light of the sixth wavelength; the sixth filter 406 reflects After the light is reflected by the first reflecting surface 301 and the second reflecting surface 302, a C-shaped or approximately C-shaped seventh segment C-shaped optical path is formed and incident on the seventh optical filter (not shown);
  • the seventh optical filter is used to partially transmit and partially reflect the light incident on the seventh optical filter; wherein, the light transmitted by the seventh optical filter is light of the seventh wavelength.
  • the light reflected by the 2Q filter is sequentially reflected by the first reflective surface 301 and then reflected by the second reflective surface 302 to form a C-shaped or approximately C-shaped 2Q+1 segment C-shaped optical path and enter the 2Q +1 filter;
  • Q is a positive integer, and 2Q+2 ⁇ N;
  • the 2Q+1 filter is used to partially transmit and partially reflect the light incident on the 2Q+1 filter; wherein, the light transmitted by the 2Q+1 filter is the 2Q+1 wavelength of light; the light reflected by the 2Q+1 filter is sequentially reflected by the second reflective surface 302 and then reflected by the first reflective surface 301 to form a C-shaped or approximately C-shaped 2Q+2 Section C-shaped optical path and incident on the 2Q+2 filter;
  • the 2Q+2 filter is used to partially transmit and partially reflect the light incident on the 2Q+2 filter; wherein, the light transmitted by the 2Q+2 filter is the 2Q+2 wavelength of light.
  • N 4
  • P 1
  • the light reflected by the second filter 402 is reflected by the first reflection surface 301 and reflected by the second reflection surface 302 to form a C-shaped or approximately C-shaped third C-shaped optical path and enter the third filter 403;
  • the third filter 403 is used to partially transmit and partially reflect the light incident on the third filter 403; wherein, the light transmitted by the third filter 403 is light of the third wavelength; the third filter 403 reflects The light reflected by the second reflecting surface 302 and the first reflecting surface 301 forms a C-shaped or approximately C-shaped fourth C-shaped optical path and enters the fourth filter 404;
  • the fourth filter 404 is used to partially transmit and partially reflect the light incident on the fourth filter 404 ; wherein, the light transmitted by the fourth filter 404 is light of a fourth wavelength.
  • N is 6.
  • P can be 1 and 2.
  • the light reflected by the second filter 402 is reflected by the first reflection surface 301 and reflected by the second reflection surface 302 to form a C-shaped or approximately C-shaped third C-shaped optical path and enter the third filter 403;
  • the third filter 403 is used to partially transmit and partially reflect the light incident on the third filter 403; wherein, the light transmitted by the third filter 403 is light of the third wavelength; the third filter 403 reflects The light reflected by the second reflecting surface 302 and the first reflecting surface 301 forms a C-shaped or approximately C-shaped fourth C-shaped optical path and enters the fourth filter 404;
  • the fourth filter 404 is used to partially transmit and partially reflect the light incident on the fourth filter 404; wherein, the light transmitted by the fourth filter 404 is light of the fourth wavelength; the fourth filter 404 reflects After the light is reflected by the first reflecting surface 301 and the second reflecting surface 302, a C-shaped or approximately C-shaped fifth C-shaped optical path is formed and incident on the fifth optical filter 405;
  • the fifth filter 405 is used to partially transmit and partially reflect the light incident on the fifth filter 405; wherein, the light transmitted by the fifth filter 405 is light of the fifth wavelength; the fifth filter 405 reflects After the light is reflected by the second reflecting surface 302 and the first reflecting surface 301, a C-shaped or approximately C-shaped sixth C-shaped optical path is formed and incident on the sixth optical filter 406;
  • the sixth optical filter 406 is used to partially transmit and partially reflect the light incident on the sixth optical filter 406 ; wherein, the light transmitted by the sixth optical filter 406 is light of a sixth wavelength.
  • the original incident light is reflected by a certain filter and re-enters one of the two reflective surfaces, and is reflected twice by the two reflective surfaces before entering the next filter.
  • the different wavelengths of the original incident light are transmitted and separated one by one to achieve the effect of demultiplexing the light. Since the optical path is reversible, the light of each wavelength is input from its corresponding filter in the opposite direction of the optical path of the transmitted wavelength, and these wavelengths will be synthesized and output from the input position of the original incident light, realizing the effect of multiplexing of light. For example, referring to FIG.
  • the light reflected by the filters with odd numbers such as the first filter 401 , the third filter 403 and the fifth filter 405 passes through the second reflection surface 302 and the first reflection surface.
  • the second filter 402, the fourth filter 404, the sixth filter 406 and other filters whose numbers are even numbers are respectively incident, and the second filter 402, the fourth filter
  • the light reflected by the even-numbered filters 404 and 404 is reflected twice by the first reflecting surface 301 and the second reflecting surface 302 and then enters the third filter 403 and the fifth filter 405 respectively.
  • the numbers are odd-numbered. filter.
  • the first reflection surface 301 and the second reflection surface 302 may be perpendicular to each other; when N is an odd number, the first filter 401 and the third filter 403 to the center of the Nth filter are sequentially connected to form a first connection line, and the second filter 402, the fourth filter 404 to the center of the N-1th filter are sequentially connected to form a first connection line.
  • Two connecting lines, and the first connecting line and the second connecting line are two straight lines parallel to each other; when N is an even number, the first filter 401, the third filter 403 to The centers of the N-1th filter are connected in sequence to form a third connection line, and the second filter 402, the fourth filter 404 to the center of the Nth filter are connected in sequence to form a third connection line.
  • Four connecting lines, and the third connecting line and the fourth connecting line are two straight lines parallel to each other. Therefore, the arrangement of light input and output ports can realize both line array arrangement integration and area array arrangement integration, and the port density and compactness are higher than the existing Z-BLOCK solution.
  • N is 6, an even number
  • the centers of the first filter 401, the third filter 403, and the fifth filter 405 are connected in sequence to form a third connection line 801, and the second filter 402
  • the centers of the fourth filter 404 and the sixth filter 406 are sequentially connected to form a fourth connection line 802
  • the third connection line 801 and the fourth connection line 802 are two straight lines parallel to each other.
  • all the odd-numbered filters that is, the filters that form the first connection line or the third connection line
  • all the even-numbered filters that is, the filters that form the second connection line
  • the wavelength division multiplexing structure may further include a first transmission surface 501 ; light incident on the first transmission surface 501 is transmitted through the first transmission surface 501 in sequence , After being reflected by the first reflecting surface 301 and reflecting by the second reflecting surface 302 , incident on the first filter 401 . Therefore, the original incident light can be transmitted through the first transmission surface 501 before it enters the first reflection surface 301 according to the requirements in practical applications.
  • the wavelength division multiplexing structure may further include a second transmission surface 502 ; the first optical filter 401 is disposed on the second transmission surface 502 away from the second transmission surface 502 .
  • One side of the two reflecting surfaces 302; the light incident on the first reflecting surface 301 is sequentially reflected by the first reflecting surface 301, reflected by the second reflecting surface 302, and transmitted by the second transmitting surface 502, and then incident the first filter 401 . Therefore, the light can be transmitted through the second transmission surface 502 before entering the first optical filter 401 according to the requirements in practical applications.
  • the plurality of filters may be arranged on the side of the second transmission surface 502 away from the second reflection surface 302 , and each filter can be disposed on the side of the second transmission surface 502 away from the second reflection surface 302
  • the sheet is previously transmitted through the second transmission surface 502 .
  • the wavelength division multiplexing structure may further include a third transmission surface 503 ; the first filter 401 is disposed on the third transmission surface 503 away from the third transmission surface 503 .
  • the first filter 401 is incident. Therefore, the original incident light can be transmitted through the third transmission surface 503 before entering the first reflection surface 301 , and the light can be transmitted through the third transmission surface 503 before the light enters the first filter 401 .
  • the plurality of filters may be arranged on the side of the third transmission surface 503 away from the second reflection surface 302, and the original incident light is incident on the first reflection surface.
  • the face 301 is transmitted through the third transmissive face 503 before, and the light is transmitted through the third transmissive face 503 before it enters each filter.
  • the first reflection surface 301 , the second reflection surface 302 and the third transmission surface 503 may be three side surfaces of a triangular prism; wherein the The three side edges of the triangular prism are parallel to each other. Therefore, a triangular prism including the first reflection surface 301, the second reflection surface 302 and the third transmission surface 503 is used to provide the wavelength division multiplexing function of light, and an innovative triangular prism optical path structure is used to realize the wavelength division multiplexing of the prior art.
  • the foldback transmission of the combined and split optical path wherein, the incident light incident on the third transmission surface 503 of the triangular prism is transmitted once into the interior of the prism, and will be transmitted again through the third transmission surface 503 before entering the filter after being reflected twice.
  • the cross section of the triangular prism in the direction perpendicular to the side edge 601 may be an isosceles right triangle. Therefore, the effect of combining and demultiplexing the light beam is realized by using a specific space optical path composed of an isosceles right-angle prism and a filter.
  • the plane perpendicular to the side edge 601 is the first plane 701 (when the top and bottom surfaces of the isosceles right-angled prism are both perpendicular to In the case of a side edge, the first plane 701 may be the top surface or the bottom surface of an isosceles right angle triangular prism), the light incident on the first reflective surface 301 is not parallel to the side edge 601, and the light incident on the first reflective surface 301 The acute angle formed between the projection on the first plane 701 and the first reflection surface 301 is 45°.
  • the filter has certain requirements on the incident angle of the light incident on the filter. After the incident angle is determined, the clip between the first reflective surface 301 and the second reflective surface 302 can be The angle is set to an appropriate angle to match the incident angle requirements of the filter.
  • the incident light may be incident at an angle whose plane is parallel to the bisector of the right angle and forms a certain oblique angle with the side edge 601 .
  • the inclination angle may be an angle commonly used in the optical communication industry, such as 8° or 13.5°, but the inclination angle cannot be 90°, that is, the incident light cannot be incident from a direction perpendicular to the third transmission surface 503 .
  • the outgoing light in the first C-shaped optical path will be offset by a certain length from the incident light in the direction along the side edge 601 of the triangular prism, and the outgoing angle and the incident angle are equal in magnitude and symmetrical in direction, and Since the first reflection surface 301 and the second reflection surface 302 are perpendicular to each other, the outgoing lights transmitted by all the filters are parallel to each other, and the projections of these outgoing lights and the original incident light on the first plane 701 are parallel to each other.
  • the optical filter in the embodiment of the present application may be a dielectric film optical filter.
  • the first filter 401 to the Nth filter are all dielectric film filters.
  • the wavelength division multiplexing structure is extremely scalable, and according to the requirements in practical applications, the preprocessing device can be used to meet the light output requirements in application environments other than the light output on the same side of the incident light.
  • the preprocessing device can It is used to destroy the reflection generated by the second reflection surface 302 . Since the optical path of the light entering the first filter in the pretreatment optical path coincides with the optical path of the light entering the first filter in the first C-shaped optical path, the light entering the preprocessing device can be demultiplexed, and different wavelengths can be separated. The light is combined and emitted from the preprocessing device.
  • the pre-processing device can adopt different structures to change the transmission direction of the incident light, so as to flexibly meet the requirements of emitting light on the same side or different sides of the incident light.
  • the preprocessing device may include a prism 100, and the prism 100 does not intersect the second C-shaped optical path.
  • the prism technology is mature and widely used. In practical applications, the user can select a suitable prism 100 to change the direction of incident light to meet the needs in use.
  • the preprocessing device may include one or more prisms 100, such as a triangular prism, a quadratic prism, a penta prism or other prisms.
  • the prism 100 is a triangular prism, it may be a right-angled triangular prism, preferably an isosceles right-angled triangular prism.
  • the prism 100 only intersects the first C-shaped optical path, so that the light in the preprocessing optical path is transmitted to the first filter 401 from the intersection of the first C-shaped optical path and the second reflecting surface 302,
  • the prism 100 does not intersect with the second C-shaped optical path, the third C-shaped optical path, and other C-shaped optical paths except the first C-shaped optical path. Since the prism 100 and the second reflecting surface 302 are arranged separately, the user can replace the appropriate prism according to the optical path requirements in practical applications.
  • the above-mentioned prism 100 is convenient to take, easy to replace, and simple to process.
  • the refractive indices of the prism 100 and the second reflecting surface 302 may be the same, and the first side surface 101 of the prism 100 and the second reflecting surface 302 are attached together, such as shown in Figure 2.
  • the refractive indices of the prism 100 and the second reflecting surface 302 are the same, the light entering the second reflecting surface 302 from the prism 100 will not be reflected, which is convenient for the user to adjust the direction of the light entering the prism 100, so that the light entering the prism 100 passes through the second reflecting surface 302.
  • the reflection surface 302 is incident on the first filter 401 .
  • first side 101 and the second reflective surface 302 of the prism 100 can be adsorbed together by optical glue, or glued together, and the prism 100 and the second reflective surface 302 can also be fixed on the prism 100 and the second reflective surface 302 by a fixing device. Together.
  • the prism 100 can be a right-angled triangular prism, and the non-right-angled side surfaces of the right-angled triangular prism are used as the first side 101 and the second reflective surface 302 to fit together.
  • the processing device is transmitted from the prism 100 to the second reflective surface 302 after incident.
  • a right-angled side surface of the prism 100 is used as the first side surface 101 and the second reflective surface 302 is attached together, as shown in FIG. 16 , at this time, the light is also incident on the preprocessing device from the different side of the outgoing light. After being reflected once in the prism 100 , it is transmitted to the second reflecting surface 302 .
  • the embodiments of the present application may further include other prisms to meet the optical path requirements of incident light and outgoing light in specific application scenarios.
  • the preprocessing device includes two prisms, and the function of emitting light on the same side of the incident light is realized by combining the prisms.
  • the preprocessing device may further include an attenuator 200 , and the attenuator 200 is disposed between the prism 100 and the second reflection surface 302 , and the attenuator 200 is The attenuator 200 is used to control the illumination intensity of the light output by the attenuator 200 . Accordingly, the light intensity of the light incident on the second reflection surface 302 is controlled by the attenuator 200 .
  • the attenuator 200 may include a first polarizer 201 , a second polarizer 202 and a liquid crystal disposed between the first polarizer 201 and the second polarizer 202 Materials 203. Therefore, the attenuation function is realized by using two polarizers and a liquid crystal material, and the process is mature and easy to realize.
  • the attenuator 200 can use an electro-absorbing material to realize the function of light attenuation.
  • Electro-absorbing material is a kind of absorbing material with unique properties artificially produced by using the Stark effect of quantum confinement. The main performance is that the absorption edge is steep, the thermal stability is good, and when a suitable reverse electric field is applied, the exciton absorption peak obviously moves to the long wave direction, and the absorption spectrum can be reversibly restored after the external electric field is cancelled.
  • This material is achieved by designing the composition and thickness and period number of the wells and barriers of the multiple quantum well structure, commonly referred to as "band engineering".
  • the light attenuation function is realized by utilizing the special properties of the electro-absorbing material.
  • the attenuator 200 may be used to provide an optical switch function. For example, when the ratio of the attenuated light by the attenuator 200 reaches or is close to 100%, it can be considered that the preprocessing light path is turned off.
  • the preprocessing device may further include a switchable optical device 204 , and the switchable optical device 204 is disposed between the prism 100 and the second reflection surface 302 , the switchable optical device 204 is switched between a reflective state and a transmissive state to provide an optical switch function, so that the light of the preprocessing optical path or the light of the first C-shaped optical path is incident on the first filter 401.
  • the 1 ⁇ 2 optical switch function is realized by the switchable optical device 204 switching between the reflective state and the transmissive state.
  • the switchable optical device 204 When the switchable optical device 204 is in the transmissive state, the light of the preprocessing optical path is transmitted through the second reflective surface 302 and output to In the first optical filter 401 , when the switchable optical device 204 is in a reflective state, the light of the first C-shaped optical path is reflected on the second reflective surface 302 and output to the first optical filter 401 .
  • the switchable optical device 204 is, for example, the switchable optical device in "Light Plate Convertible Between Reflection and Transmittance" disclosed in Patent CN1189224A.
  • the preprocessing device may further include a variable refractive index device 205 , and the variable refractive index device 205 is disposed between the prism 100 and the second reflection surface 302 , the variable refractive index device 205 uses a variable refractive index material to provide an optical switch function, so that the light of the preprocessing optical path or the light of the first C-shaped optical path is incident on the first filter 401 .
  • variable refractive index material lower than the prism 100 and continue to decrease until the light in the pretreatment optical path is totally reflected before entering the second reflecting surface 302 and will not be incident on the first filter 401, or the variable refractive index is made
  • the refractive index of the material is equal to the refractive index of the second reflective surface 302, so that the light reflected by the first reflective surface 301 in the first C-shaped optical path is directly emitted through the second reflective surface 302 and cannot be reflected to the first filter 401,
  • the 1 ⁇ 2 optical switch function is realized, so that the light of the preprocessing optical path or the light of the first C-shaped optical path is incident on the first optical filter 401 .
  • the refractive index of the variable refractive index material when the refractive index of the variable refractive index material is higher than the refractive index of the second reflecting surface 302, a small part of the light reflected by the first reflecting surface 301 in the first C-shaped optical path will be reflected by the second reflecting surface. 302 reflection, if the reflected light is not enough to affect the use requirements of the optical path being turned off, it is also possible to have a small amount of reflected light.
  • the refractive index is equal to or higher than the refractive index of the second reflective surface 302, depending on the specification requirements of the optical switch for turning off.
  • the pre-processing device further includes a photodetector 206 and a light-splitting film 103 coated on the second side 102 of the prism 100 , the light-splitting film 103 is used for The light incident on the beam splitting film 103 is divided into a first part and a second part, the first part is output to the second reflection surface 302 , and the second part is used as an input source of the photodetector 206 .
  • the spectroscopic film 103 is used for light splitting to detect a parameter of the light incident on the spectroscopic film 103, for example, a power parameter.
  • the second side 102 of the prism 100 may be the same as the first side 101 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种波分复用结构,包括:第一反射面(301);第二反射面(302);第一滤光片(401);第二滤光片(402);预处理装置;入射第一反射面(301)的光形成C形或近似C形的第一段C形光路并入射第一滤光片(401),且第二反射面(302)反射的光会与入射进入第一反射面(301)的入射光形成异面直线;入射预处理装置的光形成预处理光路并入射第一滤光片(401),且在预处理光路中与第一段C形光路中光从第二反射面(302)入射第一滤光片(401)的光路重合;第一滤光片(401)反射的光,通过第二反射面(302)反射、第一反射面(301)反射后,形成第二段C形光路并入射第二滤光片(402)。利用预处理装置、两个反射面和滤光片组成的特定空间光路实现对光束的合分波效果,体积小,***损耗低,降低成本,公共端能与其他各端口分布在同侧或异侧。

Description

波分复用结构
本申请要求了申请日为2020年10月12日,申请号为202011084852.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,尤其涉及波分复用结构。
背景技术
在光通信领域,光波分复用(WDM)技术的功能就是在发送端将不同波长的光信号复用进同一根光纤传输,在接收端再将不同波长的光信号重新分离出来,从而在光传输过程中节约和充分利用光纤通信资源。光波分复用器作为光波分复用技术的核心器件一直是无可替代的。随着5G技术的发展,人们对通信数据传输容量的需求不断增加,波分复用***的发展也在不断地推陈出新,从原有CWDM传输***,到现在的CWDM、MWDM、LAN WDM、DWDM等各种波分复用***同时并用共同发展,其核心器件波分复用器也必将在未来的一段时间里不断地向前发展。
波分复用器主要有介质膜光波分复用器、光纤拉锥光波分复用器和波导阵列光栅波分复用器。介质膜光波分复用器采用光学介质薄膜进行滤光实现合分光,通过多个滤光片级联实现多波长的合分光,这种波分复用器技术最为久远但目前仍然在广泛采用。光纤拉锥光波分复用器基于光波导耦合理论,将不同波长的光束从两根靠近的光纤中的一根耦合进另一根实现合分光。波导阵列光栅波分复用器利用集成光学技术让不同波长的光束在介质中分成多束相干光传输后合成加强或减弱实现合分光。由于拉锥波分复用器带宽无法做到很宽,而且拉锥波分复用器和波导阵列光栅波分复用器均存在温度稳定性问题,尤其是波导阵列光栅波分复用器温漂严重。所以到目前为止介质膜波分复用器仍然在实际应用中占有绝对优势。
在介质膜光波分复用器中,通常有三种形式的波分复用器,第一种是普通三端口的波分复用器,每个波分复用器分出某一特定波长,多波长波分复用采用级联方式;第二种是采用多个介质膜片按照光路顺序空间排列,然后依次分出或者合入各个波长;第三种方式是在玻璃砖一侧贴各个波长的介质膜片,通过光路在玻璃砖中折返通过介质膜片合分波,即Z-BLOCK方案。随着应用需求的不断发展更新,对波分复用器的小型化要求越来越高,甚至要求能够集成到其 他器件或者小型设备中。上述三种介质膜光波分复用器中,第一种体积大,单一通道成本高,***损耗也比较高;第二种,体积比第二种小但是仍然比较大;第三种方案原材料成本较高,工艺复杂。
发明内容
本申请的目的在于提供波分复用结构,解决现有技术的三种介质膜光波分复用器存在体积大、成本高、***损耗高或者工艺复杂的问题。
本申请的目的采用以下技术方案实现:
本申请提供了一种波分复用结构,包括:第一反射面;第二反射面;所述第一反射面所在的平面和所述第二反射面所在的平面相交;第一滤光片,用于对入射所述第一滤光片的光进行部分透射、部分反射;其中,所述第一滤光片透射的光是第一波长的光;第二滤光片,用于对入射所述第二滤光片的光进行部分透射、部分反射;其中,所述第二滤光片透射的光是第二波长的光;预处理装置,所述预处理装置设置于所述第二反射面远离所述第一滤光片的一侧,所述预处理装置用于控制所述预处理装置输入、输出的光的方向;入射所述第一反射面的光,依次通过所述第一反射面反射、所述第二反射面反射后,形成C形或近似C形的第一段C形光路并入射所述第一滤光片,且在所述第一段C形光路中,入射所述第一反射面的光和所述第二反射面反射的光形成异面直线;入射所述预处理装置的光,依次通过所述预处理装置、所述第二反射面后,形成预处理光路并入射所述第一滤光片,且在所述预处理光路中光从所述第二反射面入射所述第一滤光片的光路,与所述第一段C形光路中光从所述第二反射面入射所述第一滤光片的光路重合;所述第一滤光片反射的光,依次通过所述第二反射面反射、所述第一反射面反射后,形成C形或近似C形的第二段C形光路并入射所述第二滤光片。该技术方案的有益效果在于,利用预处理装置、两个反射面和滤光片组成的特定空间光路实现对光束的分波效果,而由于光路可逆,也可实现光束的合波效果。入射进入第一反射面的光,通过第一反射面、第二反射面的两次反射后,通过第一滤光片透射出第一滤光片的透射波长的光,两次反射形成C形或近似C形的第一段C形光路,第二反射面反射的光会与入射进入第一反射面的入射光形成异面直线。同时第一滤光片将其反射波长的光反射回第二反射面,此时入射第二反射面的光的传输方式与原入射光在第一段C形光路中传输的方式相似,经过两个反射面的两次反射后入射第二滤波片,再从第二滤光片透射出第二滤光片的透射波长的光,同时第二滤光片将其反射波长的光反射,实现对原入射光的分波效果,其中两个反射面的两次反射形成C形或近似C形的第二段C形光路。由于光路可逆,将第一波长的光通过第一滤光片沿第一段C 形光路的反方向输入、将第二波长的光通过第二滤光片沿第二段C形光路的反方向输入,则这两个波长的光将从原入射光的输入位置合成输出,实现对光的合波复用效果。相对于3端口波分复用器件,该波分复用结构的高集成度存在显著的体积小、***损耗低和应用广泛的优势;对于两个反射面不需处理,光线入射或者出射的区域仅需设置两个滤光片即可,对于常规应用,核心材料不需要分区镀膜,解决了核心器件需要分区镀膜等材料加工工艺复杂的问题,减省了材料的加工难度和工艺要求,从而降低成本;另外,通过两个反射面两次反射形成C形或近似C形的光路,其特定的光路能够直接适应在入射光同侧出光应用环境下的出光要求,解决了现有的Z-BLOCK方案中公共端不能与其他各端口分布在同一侧的问题。该波分复用结构还利用预处理装置实现入射光同侧出光以外的应用环境下的出光要求,由于预处理光路中光入射第一滤光片的光路和第一段C形光路中光入射第一滤光片的光路重合,因此能够对入射预处理装置的光进行分波,以及对不同波长的光进行合波并从预处理装置出光,由此可以根据实际应用中的需求使得公共端与其他各端口分布在同侧或者异侧。
在一些可选的实施方式中,所述预处理装置包括棱镜,且所述棱镜与所述第二段C形光路不相交。该技术方案的有益效果在于,棱镜工艺成熟,应用广泛,在实际应用中用户可以选择合适的棱镜改变入射光的方向,满足使用中的需求。
在一些可选的实施方式中,所述棱镜和所述第二反射面的折射率相同,所述棱镜的第一侧面和所述第二反射面贴合在一起。该技术方案的有益效果在于,当棱镜和第二反射面的折射率相同时,光从棱镜入射第二反射面不会发生反射和偏折,便于用户调整光入射棱镜的方向。
在一些可选的实施方式中,所述预处理装置还包括衰减器,所述衰减器设置于所述棱镜和所述第二反射面之间,所述衰减器用于控制所述衰减器输出的光的光照强度。该技术方案的有益效果在于,利用衰减器控制入射第二反射面的光的光照强度。
在一些可选的实施方式中,所述衰减器包括第一偏光片、第二偏光片以及设置于所述第一偏光片和所述第二偏光片之间的液晶材料。该技术方案的有益效果在于,使用两个偏光片和液晶材料实现衰减功能,工艺成熟,容易实现。
在一些可选的实施方式中,所述衰减器使用电吸收材料实现光的衰减功能。该技术方案的有益效果在于,利用电吸收材料的特殊性质实现光的衰减功能。
在一些可选的实施方式中,所述衰减器用于提供光开关功能。该技术方案的有益效果在于,当衰减器使光被衰减的比例达到或者接近100%时,可以视为关断了预处理光路。
在一些可选的实施方式中,所述预处理装置还包括可转换光学装置,所述可转换光学装置 设置于所述棱镜和所述第二反射面之间,所述可转换光学装置在反射状态和透射状态之间转换以提供光开关功能,使所述预处理光路的光或者所述第一段C形光路的光入射所述第一滤光片。该技术方案的有益效果在于,通过可转换光学装置在反射状态和透射状态之间转换实现1×2光开关功能,透射状态时预处理光路的光透射通过第二反射面并输出至第一滤光片,反射状态时第一段C形光路的光在第二反射面发生反射并输出至第一滤光片。
在一些可选的实施方式中,所述预处理装置还包括变折射率装置,所述变折射率装置设置于所述棱镜和所述第二反射面之间,所述变折射率装置采用变折射率材料提供光开关功能,以使所述预处理光路的光或者所述第一段C形光路的光入射所述第一滤光片。该技术方案的有益效果在于,通过变折射率材料的折射率的变化,使得预处理光路中的光在入射第二反射面之前发生全反射而不会入射第一滤光片,或者使得第一段C形光路中第一反射面反射的光直接穿过第二反射面射出而无法反射至第一滤光片,从而实现1×2光开关功能,使得预处理光路的光或者第一段C形光路的光入射第一滤光片。
在一些可选的实施方式中,所述预处理装置还包括光电探测器,以及镀在所述棱镜的第二侧面上的分光膜,所述分光膜用于将入射所述分光膜的光分为第一部分和第二部分,所述第一部分输出至第一滤光片,所述第二部分作为所述光电探测器的输入源。该技术方案的有益效果在于,利用分光膜进行分光,以检测入射分光膜的光的参数。
在一些可选的实施方式中,所述波分复用结构还包括第三滤光片至第N滤光片,N是大于2的整数;当N是奇数时:第2P-1滤光片反射的光,依次通过所述第二反射面反射、所述第一反射面反射后,形成C形或近似C形的第2P段C形光路并入射第2P滤光片;P是正整数,且2P+1≤N;所述第2P滤光片用于对入射所述第2P滤光片的光进行部分透射、部分反射;其中,所述第2P滤光片透射的光是第2P波长的光;所述第2P滤光片反射的光,依次通过所述第一反射面反射、所述第二反射面反射后,形成C形或近似C形的第2P+1段C形光路并入射第2P+1滤光片;所述第2P+1滤光片用于对入射所述第2P+1滤光片的光进行部分透射、部分反射;其中,所述第2P+1滤光片透射的光是第2P+1波长的光;当N是偶数时:第2Q滤光片反射的光,依次通过所述第一反射面反射、所述第二反射面反射后,形成C形或近似C形的第2Q+1段C形光路并入射第2Q+1滤光片;Q是正整数,且2Q+2≤N;所述第2Q+1滤光片用于对入射所述第2Q+1滤光片的光进行部分透射、部分反射;其中,所述第2Q+1滤光片透射的光是第2Q+1波长的光;所述第2Q+1滤光片反射的光,依次通过所述第二反射面反射、所述第一反射面反射后,形成C形或近似C形的第2Q+2段C形光路并入射第2Q+2滤光 片;所述第2Q+2滤光片用于对入射所述第2Q+2滤光片的光进行部分透射、部分反射;其中,所述第2Q+2滤光片透射的光是第2Q+2波长的光。该技术方案的有益效果在于,增加更多滤光片,使原入射光通过某一滤光片的反射再次入射两个反射面中的一个,通过两个反射面两次反射后再入射下一滤光片,逐次实现将原入射光的不同波长逐一透射分出,实现对光的分波效果。由于光路可逆,将各个波长的光分别从其对应的滤光片沿透射波长光路的反方向输入,则这些波长将从原入射光的输入位置合成输出,实现对光的合波复用效果。其中,第一滤光片、第三滤光片、第五滤光片等编号是奇数位的滤光片反射的光通过第二反射面、第一反射面两次反射后分别入射第二滤光片、第四滤光片、第六滤光片等编号是偶数位的滤光片,并且第二滤光片、第四滤光片、第六滤光片等编号是偶数位的滤光片反射的光通过第一反射面、第二反射面两次反射后分别入射第三滤光片、第五滤光片、第七滤光片等编号是奇数位的滤光片。
在一些可选的实施方式中,所述第一反射面和所述第二反射面相互垂直;当N是奇数时,所述第一滤光片、所述第三滤光片至所述第N滤光片的中心依次连接形成第一连线,所述第二滤光片、所述第四滤光片至第N-1滤光片的中心依次连接形成第二连线,且所述第一连线与所述第二连线是相互平行的两条直线;当N是偶数时,所述第一滤光片、所述第三滤光片至所述第N-1滤光片的中心依次连接形成第三连线,所述第二滤光片、所述第四滤光片至所述第N滤光片的中心依次连接形成第四连线,且所述第三连线与所述第四连线是相互平行的两条直线。该技术方案的有益效果在于,光的输入输出端口排列既可以实现线阵列排列集成也可以实现面阵列排列集成,其端口密集紧凑程度高于现有的Z-BLOCK方案。例如可以将全部奇数滤光片改成全反射膜片,或者将全部偶数滤光片改成全反射膜片,则实现输出端口线阵列排列集成。
在一些可选的实施方式中,所述波分复用结构还包括第一透射面;入射所述第一透射面的光,依次通过所述第一透射面透射、所述第一反射面反射、所述第二反射面反射后,入射所述第一滤光片。该技术方案的有益效果在于,可以根据实际应用中的需求,在原入射光入射第一反射面之前通过第一透射面透射。
在一些可选的实施方式中,所述波分复用结构还包括第二透射面;所述第一滤光片设置于所述第二透射面远离所述第二反射面的一侧;入射所述第一反射面的光,依次通过所述第一反射面反射、所述第二反射面反射、所述第二透射面透射后,入射所述第一滤光片。该技术方案的有益效果在于,可以根据实际应用中的需求,在光入射第一滤光片之前通过第二透射面透射。
在一些可选的实施方式中,所述波分复用结构还包括第三透射面;所述第一滤光片设置于 所述第三透射面远离所述第二反射面的一侧;入射所述第三透射面的光,依次通过所述第三透射面透射、所述第一反射面反射、所述第二反射面反射、所述第三透射面透射后,入射所述第一滤光片。该技术方案的有益效果在于,可以根据实际应用中的需求,在原入射光入射第一反射面之前通过第三透射面透射,在光入射第一滤光片之前通过第三透射面透射。
在一些可选的实施方式中,所述第一反射面、所述第二反射面和所述第三透射面是一个三棱镜中的三个侧面;其中,所述三棱镜的三个侧棱相互平行。该技术方案的有益效果在于,使用一个包含第一反射面、第二反射面和第三透射面的三棱镜来提供光的波分复用功能,采用创新的三棱镜光路结构实现现有技术的波分复用器合分光光路的折返传输。
在一些可选的实施方式中,所述第一反射面和所述第二反射面相互垂直。该技术方案的有益效果在于,当两个反射面相互垂直时,入射第一反射面的光和第二反射面反射的光相互平行,便于将多个滤光片以贴片形式设置在第三透镜面上。
在一些可选的实施方式中,所述三棱镜在垂直于侧棱的方向的截面是等腰直角三角形。该技术方案的有益效果在于,利用等腰直角三棱镜和介质膜滤光片组成的特定空间光路实现对光束的合分波效果。
在一些可选的实施方式中,以垂直于侧棱的平面为第一平面,入射所述第一反射面的光不与侧棱相互平行,且入射所述第一反射面的光在所述第一平面上的投影与所述第一反射面之间形成的锐角是45°。该技术方案的有益效果在于,当入射第一反射面的光在第一平面上的投影与第一反射面之间形成的锐角是45°时,入射第一反射面的光在第一反射面的入射角和第一反射面反射的光在第二反射面的入射角都是45°,在实际应用中有利于实现光的全反射。
附图说明
下面结合附图和实施例对本申请进一步说明。
图1是本申请实施例提供的一种波分复用结构的结构示意图;
图2是本申请实施例提供的一种波分复用结构的侧视图;
图3是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图4是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图5是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图6是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图7是本申请实施例提供的一种波分复用结构的光路示意图;
图8是本申请实施例提供的一种波分复用结构的入射光和出射光的示意图;
图9是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图10是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图11是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图12是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图13是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图14是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图15是本申请实施例提供的一种波分复用结构的结构示意图;
图16是本申请实施例提供的一种波分复用结构的侧视图;
图17是本申请实施例提供的一种入射光同侧出光的波分复用结构的侧视图;
图18是本申请实施例提供的一种带衰减功能的波分复用结构的侧视图;
图19是本申请实施例提供的一种衰减器的侧视图;
图20是本申请实施例提供的一种带光开关的波分复用结构的侧视图;
图21是本申请实施例提供的一种带光开关的波分复用结构的侧视图;
图22是本申请实施例提供的一种具有分光检测功能的波分复用结构的侧视图。
具体实施方式
下面,结合附图以及具体实施方式,对本申请做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
参见图1和图2,本申请实施例提供了一种波分复用结构,该波分复用结构包括第一反射面301、第二反射面302、第一滤光片401、第二滤光片402和预处理装置(图1中未示出)。
第一反射面301用于对入射第一反射面301的光进行反射,第二反射面302用于对入射第二反射面302的光进行反射。第一反射面301可以是反射镜,优选是全反射镜。第二反射面302可以是反射镜,优选是全反射镜。
所述第一反射面301所在的平面和所述第二反射面302所在的平面相交。也就是说,第一反射面301和第二反射面302并不相互平行,第一反射面301和第二反射面302可以相交并形成交线如图3至图5所示,也可以处于不相交的状态如图6所示。
第一反射面301和第二反射面302形成的夹角可以是锐角,如图3所示;第一反射面301和第二反射面302形成的夹角可以是直角,如图4所示;第一反射面301和第二反射面302形成的夹角可以是钝角,如图5所示。
所述第一反射面301和所述第二反射面302形成的夹角优选是直角,此时第一反射面301 和第二反射面302相互垂直,如图4所示。当两个反射面相互垂直时,垂直于两个反射面所在平面的交线且入射第一反射面301的光和第二反射面302反射的光相互平行。
第一滤光片401用于对入射所述第一滤光片401的光进行部分透射、部分反射;其中,所述第一滤光片401透射的光是第一波长的光。部分透射、部分反射是指一部分透射、一部分反射,或者一部分透射、其余部分反射。
第二滤光片402用于对入射所述第二滤光片402的光进行部分透射、部分反射;其中,所述第二滤光片402透射的光是第二波长的光。
预处理装置设置于所述第二反射面302远离所述第一滤光片401的一侧,所述预处理装置用于控制所述预处理装置输入、输出的光的方向。
参见图3至图6,入射所述第一反射面301的光,依次通过所述第一反射面301反射、所述第二反射面302反射后,形成C形或近似C形的第一段C形光路并入射所述第一滤光片401,且在所述第一段C形光路中,入射所述第一反射面301的光和所述第二反射面302反射的光形成异面直线,如图7所示。入射进入第一反射面301的光,通过第一反射面301、第二反射面302的两次反射后,入射第一滤光片401,通过第一滤光片401透射出第一滤光片401的透射波长的光,即第一波长的光。
参见图2,入射所述预处理装置的光,依次通过所述预处理装置、所述第二反射面302后,形成预处理光路并入射所述第一滤光片401,且在所述预处理光路中光从所述第二反射面302入射所述第一滤光片401的光路,与所述第一段C形光路中光从所述第二反射面302入射所述第一滤光片401的光路重合。其中,预处理装置例如可以包括图2中的棱镜100。下文首先介绍第一反射面301、第二反射面302和至少一个滤光片形成的结构,关于预处理装置的部分将在后文中进行介绍。
继续参见图7,所述第一滤光片401反射的光,依次通过所述第二反射面302反射、所述第一反射面301反射后,形成C形或近似C形的第二段C形光路并入射所述第二滤光片402。第一滤光片401将其反射波长的光反射回第二反射面302,此时入射第二反射面302的光的传输方式与原入射光在第一段C形光路中传输的方式相似,经过两个反射面的两次反射后入射第二滤波片402,再从第二滤光片402透射出第二滤光片402的透射波长的光,同时第二滤光片402将其反射波长的光反射,实现对原入射光的分波效果,其中两个反射面的两次反射形成C形或近似C形的第二段C形光路。
由此,利用两个反射面和滤光片组成的特定空间光路实现对光束的分波效果,而由于光路 可逆,也可实现光束的合波效果。具体而言,将第一波长的光通过第一滤光片401沿第一段C形光路的反方向输入、将第二波长的光通过第二滤光片402沿第二段C形光路的反方向输入,则这两个波长的光将从原入射光的输入位置合成输出,实现对光的合波复用效果。
相对于3端口波分复用器件,该波分复用结构的高集成度存在显著的体积小、***损耗低和应用广泛的优势;对于两个反射面不需处理,光线入射或者出射的区域仅需设置两个滤光片即可,对于常规应用,核心材料不需要分区镀膜,解决了核心器件需要分区镀膜等材料加工工艺复杂的问题,减省了材料的加工难度和工艺要求,从而降低成本;另外,通过两个反射面两次反射形成C形或近似C形的光路,其特定的光路能够直接适应在入射光同侧出光应用环境下的出光要求,解决了现有的Z-BLOCK方案中公共端不能与其他各端口分布在同一侧的问题。
在一些可选的实施方式中,所述波分复用结构还可以包括第三滤光片403至第N滤光片,N是大于2的整数。也就是说,N的取值可以是3、4、6、10、11或者其他大于2的整数。下面对N是奇数和偶数的情况分开讨论。
第一种情况,当N是奇数时:
第2P-1滤光片反射的光,依次通过所述第二反射面302反射、所述第一反射面301反射后,形成C形或近似C形的第2P段C形光路并入射第2P滤光片;P是正整数,且2P+1≤N;
所述第2P滤光片用于对入射所述第2P滤光片的光进行部分透射、部分反射;其中,所述第2P滤光片透射的光是第2P波长的光;所述第2P滤光片反射的光,依次通过所述第一反射面301反射、所述第二反射面302反射后,形成C形或近似C形的第2P+1段C形光路并入射第2P+1滤光片;
所述第2P+1滤光片用于对入射所述第2P+1滤光片的光进行部分透射、部分反射;其中,所述第2P+1滤光片透射的光是第2P+1波长的光。
N例如是3,此时P的取值只有1,则上述方案即:
第一滤光片401反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第二段C形光路并入射第二滤光片402;
第二滤光片402用于对入射第二滤光片402的光进行部分透射、部分反射;其中,第二滤光片402透射的光是第二波长的光;第二滤光片402反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第三段C形光路并入射第三滤光片403;
第三滤光片403用于对入射第三滤光片403的光进行部分透射、部分反射;其中,第三滤光片403透射的光是第三波长的光。
N例如是7,此时P的取值可以是1、2和3,则上述方案即:
第一滤光片401反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第二段C形光路并入射第二滤光片402;
第二滤光片402用于对入射第二滤光片402的光进行部分透射、部分反射;其中,第二滤光片402透射的光是第二波长的光;第二滤光片402反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第三段C形光路并入射第三滤光片403;
第三滤光片403用于对入射第三滤光片403的光进行部分透射、部分反射;其中,第三滤光片403透射的光是第三波长的光;第三滤光片403反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第四段C形光路并入射第四滤光片404;
第四滤光片404用于对入射第四滤光片404的光进行部分透射、部分反射;其中,第四滤光片404透射的光是第四波长的光;第四滤光片404反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第五段C形光路并入射第五滤光片405;
第五滤光片405用于对入射第五滤光片405的光进行部分透射、部分反射;其中,第五滤光片405透射的光是第五波长的光;第五滤光片405反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第六段C形光路并入射第六滤光片406;
第六滤光片406用于对入射第六滤光片406的光进行部分透射、部分反射;其中,第六滤光片406透射的光是第六波长的光;第六滤光片406反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第七段C形光路并入射第七滤光片(未示出);
第七滤光片用于对入射第七滤光片的光进行部分透射、部分反射;其中,第七滤光片透射的光是第七波长的光。
第二种情况,当N是偶数时:
第2Q滤光片反射的光,依次通过所述第一反射面301反射、所述第二反射面302反射后,形成C形或近似C形的第2Q+1段C形光路并入射第2Q+1滤光片;Q是正整数,且2Q+2≤N;
所述第2Q+1滤光片用于对入射所述第2Q+1滤光片的光进行部分透射、部分反射;其中,所述第2Q+1滤光片透射的光是第2Q+1波长的光;所述第2Q+1滤光片反射的光,依次通过所述第二反射面302反射、所述第一反射面301反射后,形成C形或近似C形的第2Q+2段C形光路并入射第2Q+2滤光片;
所述第2Q+2滤光片用于对入射所述第2Q+2滤光片的光进行部分透射、部分反射;其中, 所述第2Q+2滤光片透射的光是第2Q+2波长的光。
N例如是4,此时P的取值只有1,则上述方案即:
第二滤光片402反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第三段C形光路并入射第三滤光片403;
第三滤光片403用于对入射第三滤光片403的光进行部分透射、部分反射;其中,第三滤光片403透射的光是第三波长的光;第三滤光片403反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第四段C形光路并入射第四滤光片404;
第四滤光片404用于对入射第四滤光片404的光进行部分透射、部分反射;其中,第四滤光片404透射的光是第四波长的光。
N例如是6,此时P的取值可以是1和2,则上述方案即:
第二滤光片402反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第三段C形光路并入射第三滤光片403;
第三滤光片403用于对入射第三滤光片403的光进行部分透射、部分反射;其中,第三滤光片403透射的光是第三波长的光;第三滤光片403反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第四段C形光路并入射第四滤光片404;
第四滤光片404用于对入射第四滤光片404的光进行部分透射、部分反射;其中,第四滤光片404透射的光是第四波长的光;第四滤光片404反射的光,通过第一反射面301反射、第二反射面302反射后,形成C形或近似C形的第五段C形光路并入射第五滤光片405;
第五滤光片405用于对入射第五滤光片405的光进行部分透射、部分反射;其中,第五滤光片405透射的光是第五波长的光;第五滤光片405反射的光,通过第二反射面302反射、第一反射面301反射后,形成C形或近似C形的第六段C形光路并入射第六滤光片406;
第六滤光片406用于对入射第六滤光片406的光进行部分透射、部分反射;其中,第六滤光片406透射的光是第六波长的光。
由此,增加更多滤光片,使原入射光通过某一滤光片的反射再次入射两个反射面中的一个,通过两个反射面两次反射后再入射下一滤光片,逐次实现将原入射光的不同波长逐一透射分出,实现对光的分波效果。由于光路可逆,将各个波长的光分别从其对应的滤光片沿透射波长光路的反方向输入,则这些波长将从原入射光的输入位置合成输出,实现对光的合波复用效果。示例性地参见图7,第一滤光片401、第三滤光片403、第五滤光片405等编号是奇数位的滤光片反射的光通过第二反射面302、第一反射面301两次反射后分别入射第二滤光片402、第四 滤光片404、第六滤光片406等编号是偶数位的滤光片,并且第二滤光片402、第四滤光片404等编号是偶数位的滤光片反射的光通过第一反射面301、第二反射面302两次反射后分别入射第三滤光片403、第五滤光片405等编号是奇数位的滤光片。
在一些可选的实施方式中,所述第一反射面301和所述第二反射面302可以相互垂直;当N是奇数时,所述第一滤光片401、所述第三滤光片403至所述第N滤光片的中心依次连接形成第一连线,所述第二滤光片402、所述第四滤光片404至第N-1滤光片的中心依次连接形成第二连线,且所述第一连线与所述第二连线是相互平行的两条直线;当N是偶数时,所述第一滤光片401、所述第三滤光片403至所述第N-1滤光片的中心依次连接形成第三连线,所述第二滤光片402、所述第四滤光片404至所述第N滤光片的中心依次连接形成第四连线,且所述第三连线与所述第四连线是相互平行的两条直线。由此,光的输入输出端口排列既可以实现线阵列排列集成也可以实现面阵列排列集成,其端口密集紧凑程度高于现有的Z-BLOCK方案。示例性地参见图8,N是6,偶数,第一滤光片401、第三滤光片403、第五滤光片405的中心依次连接形成第三连线801,第二滤光片402、第四滤光片404、第六滤光片406的中心依次连接形成第四连线802,第三连线801与第四连线802是相互平行的两条直线。在具体实施中,可以将全部奇数滤光片(即形成第一连线或者第三连线的滤光片)改成全反射膜片,或者将全部偶数滤光片(即形成第二连线或者第四连线的滤光片)改成全反射膜片,则实现输出端口线阵列排列集成。在一些可选的实施方式中,参见图9,所述波分复用结构还可以包括第一透射面501;入射所述第一透射面501的光,依次通过所述第一透射面501透射、所述第一反射面301反射、所述第二反射面302反射后,入射所述第一滤光片401。由此,可以根据实际应用中的需求,在原入射光入射第一反射面301之前通过第一透射面501透射。
在一些可选的实施方式中,参见图10,所述波分复用结构还可以包括第二透射面502;所述第一滤光片401设置于所述第二透射面502远离所述第二反射面302的一侧;入射所述第一反射面301的光,依次通过所述第一反射面301反射、所述第二反射面302反射、所述第二透射面502透射后,入射所述第一滤光片401。由此,可以根据实际应用中的需求,在光入射第一滤光片401之前通过第二透射面502透射。当波分复用结构中包含多个滤光片时,多个滤光片可以都设置于所述第二透射面502远离所述第二反射面302的一侧,在光入射每个滤光片之前通过第二透射面502透射。其中,优选是将多个滤光片以贴片形式设置在第二透射面502上。
在一些可选的实施方式中,参见图11,所述波分复用结构还可以包括第三透射面503;所述第一滤光片401设置于所述第三透射面503远离所述第二反射面302的一侧;入射所述第三 透射面503的光,依次通过所述第三透射面503透射、所述第一反射面301反射、所述第二反射面302反射、所述第三透射面503透射后,入射所述第一滤光片401。由此,可以根据实际应用中的需求,在原入射光入射第一反射面301之前通过第三透射面503透射,在光入射第一滤光片401之前通过第三透射面503透射。当波分复用结构中包含多个滤光片时,多个滤光片可以都设置于所述第三透射面503远离所述第二反射面302的一侧,在原入射光入射第一反射面301之前通过第三透射面503透射,在光入射每个滤光片之前通过第三透射面503透射。其中,优选是将多个滤光片以贴片形式设置在第三透射面503上。
在一些可选的实施方式中,参见图12,所述第一反射面301、所述第二反射面302和所述第三透射面503可以是一个三棱镜中的三个侧面;其中,所述三棱镜的三个侧棱相互平行。由此,使用一个包含第一反射面301、第二反射面302和第三透射面503的三棱镜来提供光的波分复用功能,采用创新的三棱镜光路结构实现现有技术的波分复用器合分光光路的折返传输。其中,入射光入射到三棱镜的第三透射面503透射一次进入棱镜内部,在经两次反射后进入滤光片之前会经过第三透射面503再次透射。
在一些可选的实施方式中,参见图13,所述三棱镜在垂直于侧棱601的方向的截面可以是等腰直角三角形。由此,利用等腰直角三棱镜和滤光片组成的特定空间光路实现对光束的合分波效果。
在上述实施方式的一个实际应用中,参见图7、图8、图14和图15,以垂直于侧棱601的平面为第一平面701(当等腰直角三棱镜的顶面和底面都垂直于侧棱时,第一平面701可以是等腰直角三棱镜的顶面或者底面),入射所述第一反射面301的光不与侧棱601相互平行,且入射所述第一反射面301的光在所述第一平面701上的投影与所述第一反射面301之间形成的锐角是45°。由此,当入射第一反射面301的光在第一平面701上的投影与第一反射面301之间形成的锐角是45°时,第一反射面301反射的光在第一平面701上的投影与第二反射面302之间形成的锐角也是45°,在实际应用中有利于实现光的全反射。在具体实施中,滤光片对入射到滤光片的光在入射角上是有一定要求的,在确定这个入射角之后,可以将第一反射面301和第二反射面302之间的夹角设置为合适角度,来配合滤光片的入射角要求。
参见图7和图8,入射光可以以异面平行于直角的平分面并与侧棱601成一定倾斜角的角度入射。其中,倾斜角可以是光通讯行业中常用的角度,例如是8°或者13.5°,但该倾斜角不能是90°,即入射光不能从垂直于第三透射面503的方向入射。由于入射光为倾斜入射,所以第一段C形光路中出射光会与入射光在沿三棱镜的侧棱601方向上存在一定长度的偏移, 同时出射角与入射角大小相等且方向对称,且由于第一反射面301和第二反射面302相互垂直,因此所有滤光片透射出的出射光相互平行,这些出射光和原入射光在第一平面701的投影两两之间相互平行。
本申请实施例中的滤光片可以是介质膜滤光片。在一个实际应用中,第一滤光片401至第N滤光片都是介质膜滤光片。
本申请实施例中,该波分复用结构可扩展性极强,还可以根据实际应用中的需求,利用预处理装置实现入射光同侧出光以外的应用环境下的出光要求,预处理装置可以用于破坏第二反射面302发生的反射。由于预处理光路中光入射第一滤光片的光路和第一段C形光路中光入射第一滤光片的光路重合,因此能够对入射预处理装置的光进行分波,以及对不同波长的光进行合波并从预处理装置出光。预处理装置可以采用不同的结构来改变入射光的传输方向,从而灵活地满足在入射光同侧或异侧出光的要求。
在一些可选的实施方式中,所述预处理装置可以包括棱镜100,且所述棱镜100与所述第二段C形光路不相交。棱镜工艺成熟,应用广泛,在实际应用中用户可以选择合适的棱镜100改变入射光的方向,满足使用中的需求。所述预处理装置可以包括一个或多个棱镜100,棱镜100例如是三棱镜、四棱镜、五棱镜或者其他棱镜。当棱镜100是三棱镜时,其可以是直角三棱镜,优选是等腰直角三棱镜。需要注意的是,棱镜100只与第一段C形光路相交,以使预处理光路中的光从第一段C形光路与第二反射面302的交点处透射至第一滤光片401,棱镜100与第二段C形光路、第三段C形光路等除第一段C形光路以外的C形光路均不相交。由于棱镜100和第二反射面302分开设置,因此用户可以根据实际应用中的光路需求更换合适的棱镜。相比于在第二反射面302上贴增减反射率的膜层的方式,上述棱镜100取用方便,便于更换,工艺简单。
在一些可选的实施方式中,所述棱镜100和所述第二反射面302的折射率可以相同,所述棱镜100的第一侧面101和所述第二反射面302贴合在一起,如图2所示。当棱镜100和第二反射面302的折射率相同时,光从棱镜100入射第二反射面302不会发生反射,便于用户调整光入射棱镜100的方向,从而使光入射棱镜100后通过第二反射面302入射第一滤光片401。在具体实施中,棱镜100的第一侧面101和第二反射面302可以采用光胶吸附在一起,或者采用胶水贴合在一起,还可以通过固定装置将棱镜100和第二反射面302固定在一起。
在一个实际应用中,棱镜100可以是直角三棱镜,且直角三棱镜的非直角侧面作为第一侧面101与第二反射面302贴合在一起,如图2所示,光从出射光异侧入射预处理装置,入射后 从棱镜100透射至第二反射面302。在另一个实际应用中,棱镜100的一个直角侧面作为第一侧面101与第二反射面302贴合在一起,如图16所示,此时光也是从出射光异侧入射预处理装置,入射后在棱镜100中经过一次反射后透射至第二反射面302。
在另一个实际应用中,本申请实施例还可以包括其他棱镜,以满足具体应用场景中入射光和出射光的光路需求。参见图17,预处理装置包括两个棱镜,通过棱镜组合实现在入射光同侧出光的功能。
在一些可选的实施方式中,参见图18,所述预处理装置还可以包括衰减器200,所述衰减器200设置于所述棱镜100和所述第二反射面302之间,所述衰减器200用于控制所述衰减器200输出的光的光照强度。由此,利用衰减器200控制入射第二反射面302的光的光照强度。
在一个实际应用中,参见图19,所述衰减器200可以包括第一偏光片201、第二偏光片202以及设置于所述第一偏光片201和所述第二偏光片202之间的液晶材料203。由此,使用两个偏光片和液晶材料实现衰减功能,工艺成熟,容易实现。
在另一个实际应用中,所述衰减器200可以使用电吸收材料实现光的衰减功能。电吸收材料是利用量子限制的斯塔克效应,人为制作出的一种性能独特的吸收材料。主要表现为吸收边陡峭,热稳定性良好,而且外加合适的反向电场时,激子吸收峰会明显的向长波方向移动,外电场取消后吸收光谱又能可逆的还原。这种材料是通过设计多量子阱结构的阱和垒的组分和厚度以及周期数来实现的,即通常所说的“能带工程”。由此,利用电吸收材料的特殊性质实现光的衰减功能。
在一些可选的实施方式中,所述衰减器200可以用于提供光开关功能。例如,当衰减器200使光被衰减的比例达到或者接近100%时,可以视为关断了预处理光路。
在一些可选的实施方式中,参见图20,所述预处理装置还可以包括可转换光学装置204,所述可转换光学装置204设置于所述棱镜100和所述第二反射面302之间,所述可转换光学装置204在反射状态和透射状态之间转换以提供光开关功能,使所述预处理光路的光或者所述第一段C形光路的光入射所述第一滤光片401。由此,通过可转换光学装置204在反射状态和透射状态之间转换实现1×2光开关功能,可转换光学装置204处于透射状态时预处理光路的光透射通过第二反射面302并输出至第一滤光片401,可转换光学装置204处于反射状态时第一段C形光路的光在第二反射面302发生反射并输出至第一滤光片401。在具体实施中,可转换光学装置204例如是专利CN1189224A公开的《可在反射和透射状态之间转换的光板》中的可转换光学装置。
在一些可选的实施方式中,参见图21,所述预处理装置还可以包括变折射率装置205,所述变折射率装置205设置于所述棱镜100和所述第二反射面302之间,所述变折射率装置205采用变折射率材料提供光开关功能,以使所述预处理光路的光或者所述第一段C形光路的光入射所述第一滤光片401。使变折射率材料的折射率低于棱镜100并继续降低,直到预处理光路中的光在入射第二反射面302之前发生全反射而不会入射第一滤光片401,或者使变折射率材料的折射率等于第二反射面302的折射率从而使第一段C形光路中第一反射面301反射的光直接穿过第二反射面302射出而无法反射至第一滤光片401,从而实现1×2光开关功能,使得预处理光路的光或者第一段C形光路的光入射第一滤光片401。需要注意的是,当变折射率材料的折射率高于第二反射面302的折射率时,第一段C形光路中第一反射面301反射的光会有少部分光线被第二反射面302反射,如果反射的光不足以影响光路被关断的使用需求,那存在少量反射光也是可以的,也就是说,第一段C形光路被关断的条件可以放宽至变折射率材料的折射率等于或高于第二反射面302的折射率,具体取决于光开关的关断技术指标要求。
在一些可选的实施方式中,参见图22,所述预处理装置还包括光电探测器206,以及镀在所述棱镜100的第二侧面102上的分光膜103,所述分光膜103用于将入射所述分光膜103的光分为第一部分和第二部分,所述第一部分输出至所述第二反射面302,所述第二部分作为所述光电探测器206的输入源。由此,利用分光膜103进行分光,以检测入射分光膜103的光的参数,例如是功率参数。其中,棱镜100的第二侧面102可以和第一侧面101相同。
本申请从使用目的上,效能上,进步及新颖性等观点进行阐述,其设置有的实用进步性,已符合专利法所强调的功能增进及使用要件,本申请以上的说明及附图,仅为本申请的较佳实施例而已,并非以此局限本申请,因此,凡一切与本申请构造,装置,特征等近似、雷同的,即凡依本申请专利申请范围所作的等同替换或修饰等,皆应属本申请的专利申请保护的范围之内。

Claims (19)

  1. 一种波分复用结构,其特征在于,包括:
    第一反射面;
    第二反射面;所述第一反射面所在的平面和所述第二反射面所在的平面相交;
    第一滤光片,用于对入射所述第一滤光片的光进行部分透射、部分反射;其中,所述第一滤光片透射的光是第一波长的光;
    第二滤光片,用于对入射所述第二滤光片的光进行部分透射、部分反射;其中,所述第二滤光片透射的光是第二波长的光;
    预处理装置,所述预处理装置设置于所述第二反射面远离所述第一滤光片的一侧,所述预处理装置用于控制所述预处理装置输入、输出的光的方向;
    入射所述第一反射面的光,依次通过所述第一反射面反射、所述第二反射面反射后,形成C形或近似C形的第一段C形光路并入射所述第一滤光片,且在所述第一段C形光路中,入射所述第一反射面的光和所述第二反射面反射的光形成异面直线;
    入射所述预处理装置的光,依次通过所述预处理装置、所述第二反射面后,形成预处理光路并入射所述第一滤光片,且在所述预处理光路中光从所述第二反射面入射所述第一滤光片的光路,与所述第一段C形光路中光从所述第二反射面入射所述第一滤光片的光路重合;
    所述第一滤光片反射的光,依次通过所述第二反射面反射、所述第一反射面反射后,形成C形或近似C形的第二段C形光路并入射所述第二滤光片。
  2. 根据权利要求1所述的波分复用结构,其特征在于,所述预处理装置包括棱镜,且所述棱镜与所述第二段C形光路不相交。
  3. 根据权利要求2所述的波分复用结构,其特征在于,所述棱镜和所述第二反射面的折射率相同,所述棱镜的第一侧面和所述第二反射面贴合在一起。
  4. 根据权利要求2所述的波分复用结构,其特征在于,所述预处理装置还包括衰减器,所述衰减器设置于所述棱镜和所述第二反射面之间,所述衰减器用于控制所述衰减器输出的光的光照强度。
  5. 根据权利要求4所述的波分复用结构,其特征在于,所述衰减器包括第一偏光片、第二偏光片以及设置于所述第一偏光片和所述第二偏光片之间的液晶材料。
  6. 根据权利要求4所述的波分复用结构,其特征在于,所述衰减器使用电吸收材料实现光的衰减功能。
  7. 根据权利要求4所述的波分复用结构,其特征在于,所述衰减器用于提供光开关功能。
  8. 根据权利要求2所述的波分复用结构,其特征在于,所述预处理装置还包括可转换光学装置,所述可转换光学装置设置于所述棱镜和所述第二反射面之间,所述可转换光学装置在反射状态和透射状态之间转换以提供光开关功能,使所述预处理光路的光或者所述第一段C形光路的光入射所述第一滤光片。
  9. 根据权利要求2所述的波分复用结构,其特征在于,所述预处理装置还包括变折射率装置,所述变折射率装置设置于所述棱镜和所述第二反射面之间,所述变折射率装置采用变折射率材料提供光开关功能,以使所述预处理光路的光或者所述第一段C形光路的光入射所述第一滤光片。
  10. 根据权利要求2所述的波分复用结构,其特征在于,所述预处理装置还包括光电探测器,以及镀在所述棱镜的第二侧面上的分光膜,所述分光膜用于将入射所述分光膜的光分为第一部分和第二部分,所述第一部分输出至所述第二反射面,所述第二部分作为所述光电探测器的输入源。
  11. 根据权利要求1所述的波分复用结构,其特征在于,所述波分复用结构还包括第三滤光片至第N滤光片,N是大于2的整数;
    当N是奇数时:
    第2P-1滤光片反射的光,依次通过所述第二反射面反射、所述第一反射面反射后,形成C形或近似C形的第2P段C形光路并入射第2P滤光片;P是正整数,且2P+1≤N;
    所述第2P滤光片用于对入射所述第2P滤光片的光进行部分透射、部分反射;其中,所述第2P滤光片透射的光是第2P波长的光;
    所述第2P滤光片反射的光,依次通过所述第一反射面反射、所述第二反射面反射后,形成C形或近似C形的第2P+1段C形光路并入射第2P+1滤光片;
    所述第2P+1滤光片用于对入射所述第2P+1滤光片的光进行部分透射、部分反射;其中,所述第2P+1滤光片透射的光是第2P+1波长的光;
    当N是偶数时:
    第2Q滤光片反射的光,依次通过所述第一反射面反射、所述第二反射面反射后,形成C形或近似C形的第2Q+1段C形光路并入射第2Q+1滤光片;Q是正整数,且2Q+2≤N;
    所述第2Q+1滤光片用于对入射所述第2Q+1滤光片的光进行部分透射、部分反射;其中,所述第2Q+1滤光片透射的光是第2Q+1波长的光;
    所述第2Q+1滤光片反射的光,依次通过所述第二反射面反射、所述第一反射面反射后, 形成C形或近似C形的第2Q+2段C形光路并入射第2Q+2滤光片;
    所述第2Q+2滤光片用于对入射所述第2Q+2滤光片的光进行部分透射、部分反射;其中,所述第2Q+2滤光片透射的光是第2Q+2波长的光。
  12. 根据权利要求11所述的波分复用结构,其特征在于,所述第一反射面和所述第二反射面相互垂直;
    当N是奇数时,所述第一滤光片、所述第三滤光片至所述第N滤光片的中心依次连接形成第一连线,所述第二滤光片、所述第四滤光片至第N-1滤光片的中心依次连接形成第二连线,且所述第一连线与所述第二连线是相互平行的两条直线;
    当N是偶数时,所述第一滤光片、所述第三滤光片至所述第N-1滤光片的中心依次连接形成第三连线,所述第二滤光片、所述第四滤光片至所述第N滤光片的中心依次连接形成第四连线,且所述第三连线与所述第四连线是相互平行的两条直线。
  13. 根据权利要求1所述的波分复用结构,其特征在于,所述波分复用结构还包括第一透射面;
    入射所述第一透射面的光,依次通过所述第一透射面透射、所述第一反射面反射、所述第二反射面反射后,入射所述第一滤光片。
  14. 根据权利要求1所述的波分复用结构,其特征在于,所述波分复用结构还包括第二透射面;
    所述第一滤光片设置于所述第二透射面远离所述第二反射面的一侧;
    入射所述第一反射面的光,依次通过所述第一反射面反射、所述第二反射面反射、所述第二透射面透射后,入射所述第一滤光片。
  15. 根据权利要求1所述的波分复用结构,其特征在于,所述波分复用结构还包括第三透射面;
    所述第一滤光片设置于所述第三透射面远离所述第二反射面的一侧;
    入射所述第三透射面的光,依次通过所述第三透射面透射、所述第一反射面反射、所述第二反射面反射、所述第三透射面透射后,入射所述第一滤光片。
  16. 根据权利要求15所述的波分复用结构,其特征在于,所述第一反射面、所述第二反射面和所述第三透射面是一个三棱镜中的三个侧面;其中,所述三棱镜的三个侧棱相互平行。
  17. 根据权利要求16所述的波分复用结构,其特征在于,所述第一反射面和所述第二反射面相互垂直。
  18. 根据权利要求17所述的波分复用结构,其特征在于,所述三棱镜在垂直于侧棱的方向的截面是等腰直角三角形。
  19. 根据权利要求18所述的波分复用结构,其特征在于,以垂直于侧棱的平面为第一平面,入射所述第一反射面的光不与侧棱相互平行,且入射所述第一反射面的光在所述第一平面上的投影与所述第一反射面之间形成的锐角是45°。
PCT/CN2020/128007 2020-10-12 2020-11-11 波分复用结构 WO2022077680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/632,804 US20220357517A1 (en) 2020-10-12 2020-11-11 Wavelength division multiplexing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011084852.5 2020-10-12
CN202011084852.5A CN112327415A (zh) 2020-10-12 2020-10-12 波分复用结构

Publications (1)

Publication Number Publication Date
WO2022077680A1 true WO2022077680A1 (zh) 2022-04-21

Family

ID=74314715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128007 WO2022077680A1 (zh) 2020-10-12 2020-11-11 波分复用结构

Country Status (3)

Country Link
US (1) US20220357517A1 (zh)
CN (1) CN112327415A (zh)
WO (1) WO2022077680A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013477A (ja) * 1999-06-28 2001-01-19 Yazaki Corp 液晶光減衰器
CN1444070A (zh) * 2003-04-15 2003-09-24 北京邮电大学 一种高速可扩展的光开关
US20100290128A1 (en) * 2009-05-13 2010-11-18 Mitsubishi Electric Corporation Optical module
US7843644B1 (en) * 2007-02-01 2010-11-30 Alliance Fiber Optic Products, Inc. Compact free-space WDM device with one-sided input/output ports
CN103703405A (zh) * 2012-01-30 2014-04-02 华为技术有限公司 波长选择开关的方法和装置
CN105425338A (zh) * 2015-11-10 2016-03-23 武汉电信器件有限公司 一种波分复用/解复用组件
US9401773B1 (en) * 2015-03-04 2016-07-26 Alliance Fiber Optic Products, Inc. Compact multi-channel WDM devices for high-speed data communications
CN110582711A (zh) * 2017-02-02 2019-12-17 联盟光纤制品公司 具有多个准直器组的波分复用光学组件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948229A (en) * 1988-03-18 1990-08-14 The United States Of America As Represented By The Secretary Of The Air Force Optical switches using ferroelectric liquid crystals
EP0422661A3 (en) * 1989-10-13 1992-07-01 Mitsubishi Rayon Co., Ltd Polarization forming optical device and polarization beam splitter
US6271968B1 (en) * 1998-11-30 2001-08-07 National Research Council Of Canada Cut-off filters
JP5495889B2 (ja) * 2010-03-29 2014-05-21 三菱電機株式会社 光合分波器、及びその製造方法
CN102684794A (zh) * 2012-06-06 2012-09-19 苏州旭创科技有限公司 应用于高速并行长距离传输的新型波分复用解复用光组件
CN106019484A (zh) * 2015-12-30 2016-10-12 杭州埃戈光电科技有限公司 可集成于cfp和cfp2标准高速收发器的波分复用器
CN206892397U (zh) * 2017-01-12 2018-01-16 中国计量大学 一种低损耗型多通道波分复用器
KR20200100066A (ko) * 2017-12-20 2020-08-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 스택 및 편광 빔 스플리터
CN209728234U (zh) * 2019-03-29 2019-12-03 中国计量大学 一种紧凑型波分复用器
WO2021026143A1 (en) * 2019-08-06 2021-02-11 Hi Llc Systems and methods having an optical magnetometer array with beam splitters
CN213581439U (zh) * 2020-10-12 2021-06-29 易锐光电科技(安徽)有限公司 波分复用结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013477A (ja) * 1999-06-28 2001-01-19 Yazaki Corp 液晶光減衰器
CN1444070A (zh) * 2003-04-15 2003-09-24 北京邮电大学 一种高速可扩展的光开关
US7843644B1 (en) * 2007-02-01 2010-11-30 Alliance Fiber Optic Products, Inc. Compact free-space WDM device with one-sided input/output ports
US20100290128A1 (en) * 2009-05-13 2010-11-18 Mitsubishi Electric Corporation Optical module
CN103703405A (zh) * 2012-01-30 2014-04-02 华为技术有限公司 波长选择开关的方法和装置
US9401773B1 (en) * 2015-03-04 2016-07-26 Alliance Fiber Optic Products, Inc. Compact multi-channel WDM devices for high-speed data communications
CN105425338A (zh) * 2015-11-10 2016-03-23 武汉电信器件有限公司 一种波分复用/解复用组件
CN110582711A (zh) * 2017-02-02 2019-12-17 联盟光纤制品公司 具有多个准直器组的波分复用光学组件

Also Published As

Publication number Publication date
US20220357517A1 (en) 2022-11-10
CN112327415A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US9939592B2 (en) Micro single-fiber bidirectional optical transceiver module of the same wavelength
US6215923B1 (en) Optical interleaver
US7433557B2 (en) Tunable optical add/drop multiplexer
CA1241560A (en) Optical multiplexer and demultiplexer
CA2237319C (en) Device for focusing light through an optical component
US6643064B2 (en) Optical signal interleaver
CA2265236A1 (en) Polarizing beam splitter/combiner
CA2270733A1 (en) Optical attenuator
US8649637B2 (en) Polarization interference optical interleaver
CN104460009B (zh) 一种合波器
CN204331200U (zh) 微型同波长单芯双向光收发模块
CN213581439U (zh) 波分复用结构
WO2022077680A1 (zh) 波分复用结构
CN105182473B (zh) 一种波长选择光阻塞器
CN109814284B (zh) 一种超微型光环行器
JP3672093B2 (ja) 光スイッチ
US7046874B2 (en) Integrated optical-power adjustable WDM
JPH05203830A (ja) 光合分波器
US6608719B1 (en) Comb wavelength division multiplexer
US8619216B1 (en) Optical wavelength filter
CN112578503A (zh) 一种多波长信号共纤同传的***
JP2002196192A (ja) ラインモニタ
JP2004240215A (ja) 光通信デバイスおよび光通信システム
CN2563591Y (zh) 光路混合器件
CN115469403B (zh) 具有隔离功能的滤光分光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957458

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20957458

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.10.2023)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/10/2023)