WO2022070813A1 - Antibacterial material - Google Patents

Antibacterial material Download PDF

Info

Publication number
WO2022070813A1
WO2022070813A1 PCT/JP2021/033011 JP2021033011W WO2022070813A1 WO 2022070813 A1 WO2022070813 A1 WO 2022070813A1 JP 2021033011 W JP2021033011 W JP 2021033011W WO 2022070813 A1 WO2022070813 A1 WO 2022070813A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial material
carboxylic acid
antibacterial
unsaturated carboxylic
polymer
Prior art date
Application number
PCT/JP2021/033011
Other languages
French (fr)
Japanese (ja)
Inventor
善光 生駒
晃樹 岩田
将啓 中村
優奈 川角
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022070813A1 publication Critical patent/WO2022070813A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers

Definitions

  • This disclosure relates to antibacterial materials, and more particularly to antibacterial materials containing antibacterial substances.
  • Patent Document 1 by adding a specific surface hardness improver, a specific antibacterial agent, and a specific alkyl ketene dimer to the polycarbonate resin in combination, the surface hardness and the hue are particularly not impaired without impairing various properties of the polycarbonate resin. It is disclosed that a polycarbonate resin composition having excellent (transparency), antibacterial property, and solvent resistance can be obtained.
  • the subject of the present disclosure is to provide an antibacterial material whose antibacterial performance is easily maintained.
  • the antibacterial material according to one aspect of the present disclosure contains a self-healing material whose elasticity decreases when a stimulus is applied and whose elasticity increases when the stimulus is removed, and an antibacterial substance.
  • antibacterial materials are used in many products such as water-related products used in bathrooms and toilets, floor coating materials, air conditioners, and electrical appliances such as washing machines.
  • antibacterial materials are often applied to products that come into contact with human hands.
  • the inventor got the idea that even if the antibacterial material is scratched, if the scratch is easily repaired, it will be easier to maintain the antibacterial performance of the antibacterial material for a long period of time. As a result of research and development in order to realize such an antibacterial material, the present disclosure has been completed.
  • the antibacterial material according to the present embodiment contains a self-healing material whose elasticity decreases when a stimulus is applied and whose elasticity increases when the stimulus is removed, and an antibacterial substance.
  • the antibacterial material contains a self-healing material
  • the elasticity decreases when a stimulus is applied, so that plastic deformation is likely to occur. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be easily repaired. Subsequently, if the stimulus is removed from the antibacterial material, the elasticity increases and the original state can be restored. Therefore, even if the antibacterial material is scratched, the scratch can be easily repaired, so that the antibacterial performance of the antibacterial material can be easily maintained for a long period of time.
  • the stimulus given to the antibacterial material includes, for example, at least one selected from the group consisting of heat, pressure, liquid, gas and light.
  • the stimulus is not limited to the above.
  • the stimulus is selected depending on the self-healing material in the antibacterial material. That is, it can be said that the stimulus is a load specified for each self-healing material, which can reduce the elasticity of the self-healing material by being applied to the self-healing material. Further, the self-healing material can be said to be a material in which elasticity is reduced by applying a specific load, and elasticity is restored when this load is removed after the load is applied.
  • the self-healing material preferably has a resin skeleton and a dynamic bond that crosslinks the resin skeleton.
  • Dynamic binding is a binding that can be reversibly dissociated and recombined in response to a stimulus.
  • the self-repairing material has a resin skeleton and a dynamic bond
  • the dynamic bond dissociates when a stimulus is applied, so that the crosslink density of the resin skeleton decreases, and the elasticity of the self-repairing material tends to decrease. Therefore, the self-repairing property of the self-repairing material is likely to be exhibited.
  • Dynamic binding includes, for example, at least one selected from the group consisting of reversible covalent bonds, non-covalent coupling bonds, and coordinate bonds.
  • the dynamic binding is particularly likely to be reversibly dissociated and recombined by stimulation, so that the antibacterial material is likely to have good self-healing properties.
  • dynamic bonds for example, metal coordination bonds, electrostatic interactions, hydrogen bonds, donor acceptor interactions, host-guest interactions, ⁇ - ⁇ interactions, imine bonds, acyl bonds, disulfide bonds, etc. Examples thereof include a deal alder bond and a boronic acid ester bond.
  • the dissociation temperature of the dynamic bond is preferably higher than 30 ° C.
  • the dissociation temperature is a temperature at which the dynamic bond begins to be broken when the temperature rises.
  • the dissociation temperature of the dynamic bond may be a known literature value, and specifically, the dissociation temperature of the ester bond is according to The Malaysian Journal of Analytical Sciences, Vol 18 No. 2 (2014): 444-455. 180 ° C, the dissociation temperature of the imine bond is 40 ° C according to Macromolecules 2016, 49, 17, 6277-6284, and the dissociation temperature of the deal alder bond is according to the Journal of the Japan Rubber Association, Vol.
  • the dissociation temperature of the metal coordination bond between the carboxylate group and the sodium ion is according to Shinichi Yano, supervised by Eisaku Hirasawa, "Ionomer Ionized Polymer Material", February 2009, CMC Publishing, Chapter 4. It is 50 ° C.
  • the dissociation temperature can also be said to be the temperature at which the state of the antibacterial material begins to change as the temperature of the antibacterial material rises. When the dissociation temperature is higher than 30 ° C., the antibacterial material can be less likely to be deformed in the environment where the antibacterial material is used.
  • the antibacterial material changes from the first state to the second state when a stimulus is given, and changes from the second state to the first state when the stimulus is removed.
  • the second state is a state in which the storage elastic modulus is lower than that in the first state.
  • the antibacterial material may be directly changed from the first state to the second state, and the second state is passed through a state (transition state) that is neither the first state nor the second state. It may change to a state.
  • the antibacterial material may change directly from the second state to the first state, or may change from the second state to the first state via a transition state.
  • the storage elastic modulus in the first state is preferably 1 GPa or more.
  • the storage elastic modulus in the second state is preferably 10 MPa or less.
  • the antibacterial material tends to have high hardness and strength, and it is also possible to realize that the pencil hardness of the antibacterial material is 3H or more. Further, in the second state, the antibacterial material is particularly liable to be plastically deformed, so that large and deep scratches are liable to be repaired.
  • the temperature at which the second state is reached when the antibacterial material in the first state is heated from 25 ° C to raise the temperature is in the range of 100 ° C to 200 ° C. Is preferable. That is, when the storage elastic modulus in the second state is 10 MPa or less, the storage elastic modulus of the antibacterial material decreases to 10 MPa when the temperature of the antibacterial material is raised from 25 ° C.
  • the temperature reached is preferably in the range of 100 ° C to 200 ° C. In this case, in an environment where the antibacterial material is used, the storage elastic modulus of the antibacterial material is unlikely to be excessively lowered, and the antibacterial material tends to maintain high hardness. Further, in heating the antibacterial material to change it to the second state, it is not necessary to heat the antibacterial material to an excessively high temperature, which facilitates the work of repairing the antibacterial material.
  • the self-healing material contains a metal ion (C), and the metal ion (C) crosslinks the resin skeleton to form a dynamic bond.
  • the dynamic bond is a coordination bond (metal coordination bond) via a metal ion (C).
  • the resin skeleton has a coordinating functional group, and a plurality of coordinating functional groups coordinate to the metal ion (C) to form a dynamic bond.
  • the coordinating functional group is a functional group that can be coordinated to the metal ion (C). The combination of the metal ion (C) and the coordinating functional group can be appropriately selected so that a coordination bond can be formed.
  • the metal ion (C) is classified as a hard acid or an intermediate acid according to the HSAB rule. In this case, high hardness and good chemical resistance in the unstimulated state are likely to be realized. This is because the carboxylate group is a hard base, and therefore, when the metal ion (C) is a hard acid or an intermediate acid, the affinity between the carboxylate group and the metal ion (C) is good, and the metal ion (C) is arranged. It is considered that this is because a coordinate bond is easily formed. It is particularly preferred that the metal ion (C) is classified as a hard acid. In this case, a high storage elastic modulus is more likely to be realized in the unstimulated state.
  • the metal ion (C) preferably contains at least one selected from the group consisting of alkali metal ions and alkaline earth metal ions.
  • the high hardness and good chemical resistance of the antibacterial material in the unstimulated state and the good deformability of the antibacterial material in the stimulated state are particularly easy to be realized.
  • the metal ion (C) contains an alkali metal ion, it is easy to realize good deformability of the antibacterial material in a state of being stimulated.
  • High hardness and good chemical resistance of antibacterial materials in the unstimulated state are likely to be realized because alkali metal ions and alkaline earth metal ions have relatively large ionic radii, so they are coordinating functional groups.
  • the metal ion (C) preferably contains at least one of a sodium ion and a zinc ion. It is particularly preferable that the metal ion (C) contains sodium ion, which is classified as a hard acid and is an alkali metal.
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid is, for example, It is 1 mol% or more and 100 mol% or less. It is preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid is 1 mol% or more and 20 mol% or less. It is more preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is 1 mol% or more and 10 mol% or less.
  • a low storage elastic modulus of the antibacterial material under the stimulus is particularly easy to be realized, and a scratch or the like is particularly easy to be repaired under the stimulus.
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is more than 10 mol% and 100 mol% or less.
  • the high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized, the antibacterial material is likely to have high hardness in the unstimulated state, and the antibacterial material is likely to have high hardness. May have chemical resistance.
  • the ratio of the metal ion (C) to the coordinating functional group is the ratio of the metal ion (C) to the coordinating functional group in the stable coordination structure formed by the coordinating functional group and the metal ion (C). It is preferable that it is close to. In this case, the number density of the crosslinked structure becomes particularly high, and a high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized.
  • the metal ion (C) is a sodium ion
  • a stable coordination structure (six coordination structure) is formed by coordinating one carboxylate group and two carboxyl groups to sodium. Therefore, the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is preferably close to 33 mol%, for example, 5 mol% or more and 40 mol% or less. preferable.
  • the metal ion (C) is a zinc ion
  • a stable coordination structure (four-coordination structure) is formed by coordinating two carboxylate groups to one zinc ion, but in reality, it is formed.
  • a six-coordinated structure in which two carboxylate groups and one carboxyl group are coordinated to one zinc ion is also mixed. Therefore, the ratio of the metal ion (C) to the unsaturated carboxylic acid is preferably close to 35 mol%, and is preferably 5 mol% or more and 40 mol% or less, for example.
  • the glossiness of the antibacterial material may be 10 GU or more and 1000 GU or less at an incident angle of 60 °.
  • the glossiness is defined by JIS K5600-4-7.
  • a gloss checker model number IG-331 manufactured by HORIBA, Ltd. can be used.
  • the antibacterial material tends to have high antibacterial performance.
  • the scratches on the antibacterial material are easily repaired as described above, so that the high glossiness of the antibacterial material is restored. Therefore, the antibacterial performance of the antibacterial material is easily maintained. In other words, if an antibacterial material having a glossiness of 10 GU or more and 1000 GU or less at an incident angle of 60 ° is produced, the antibacterial performance of the antibacterial material can be easily maintained.
  • the L * of the antibacterial material according to CIE1976L * a * b * color space may be 0 or more and 20 or less.
  • L * is specified by JIS Z8781-4.
  • the scratches are particularly noticeable when the antibacterial material is scratched, but as described above, the scratches are easily repaired even if the antibacterial material is scratched.
  • the appearance of the antibacterial material is easily maintained. In other words, if an antibacterial material having an L * of 0 or more and 20 or less is produced, the appearance of the antibacterial material can be easily maintained.
  • a black coloring material may be blended with the antibacterial material.
  • the black coloring material is at least one material selected from the group consisting of carbon-based black pigments such as carbon black, lamp black, and bone black, and oxide-based black pigments such as iron oxide and composite oxides of copper and chromium. contains.
  • the glossiness and color that the antibacterial material can have are not limited to the above, and the antibacterial material may have an appropriate glossiness and an appropriate color.
  • the first embodiment in the case where the resin skeleton in the self-repairing material contains the polymer (A) of the polymerizable compound (a) and the second embodiment in the case where the resin skeleton contains the polymer (B) will be described.
  • the composition of the self-healing material is not limited to these, and an appropriate material having self-healing property can be used.
  • the resin skeleton contains the polymer (A) of the polymerizable compound (a), and the polymerizable compound (a) contains an unsaturated carboxylic acid (a1). Therefore, in the present embodiment, a coordinating functional group derived from the unsaturated carboxylic acid (a1), specifically, at least one of a carboxyl group and a carboxylate group is used in the self-healing material. It is possible to generate dynamic binding and develop self-repairing property.
  • a composition (X) containing the polymerizable compound (a) is prepared, the composition (X) is molded into an appropriate shape, and then the polymerizable compound is formed. It is produced by curing (a) by polymerizing it.
  • the polymer (A) of the polymerizable compound (a) is preferably a macromolecule, and there are a plurality of coordinating functional groups in the skeleton of the polymer (A). Using this coordinating functional group, a plurality of dynamic bonds can be formed in the polymer (A). Therefore, in a state where no stimulus is given (for example, in the first state), a strong three-dimensional network structure is formed in the antibacterial material, so that the elastic modulus and the hardness are less likely to decrease. Therefore, even if a force is applied to the antibacterial material, it can be made difficult to be deformed. Further, in a state where no stimulus is given, the solvent resistance is unlikely to decrease.
  • the dynamic bond dissociates, which lowers the crosslink density in the self-healing material and facilitates macroscopic flow in the antibacterial material. Therefore, when a force is applied to the antibacterial material, it tends to be plastically deformed. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be repaired. In addition, if the antibacterial material is applied to applications that require adhesiveness, good adhesiveness is ensured in the unstimulated state, and when stimulus is applied, the adhesiveness is lowered and peeling is likely to occur. You can also do it.
  • the polymerizable compound (a) contains a component (a0) having a solubility parameter value range (range) of 2.0 or less in a proportion of 50 mol% or more and 100 mol% or less, and this component (a0) is contained. It preferably contains at least an unsaturated carboxylic acid (a1). In this case, the dispersibility of the unsaturated carboxylic acid (a1) in the composition (X) is high. Therefore, the coordinating functional group derived from the unsaturated carboxylic acid (a1) can be well dispersed in the antibacterial material produced from the composition (X). Therefore, the crosslinked structure by dynamic bonding may be well dispersed and present in the antibacterial material.
  • the antibacterial material can have a strong structure, and it can be realized that the storage elastic modulus of the antibacterial material in the first state is 1 GPa or more. Further, when a stimulus is applied, the dynamic bonds dispersed in the antibacterial material are dissociated, so that the molecular chains constituting the resin skeleton are easily moved and the antibacterial material is easily plastically deformed. Thereby, it is possible to realize that the storage elastic modulus of the antibacterial material in the second state is 10 MPa or less.
  • the polymerizable compound (a) preferably contains an unsaturated carboxylic acid (a1).
  • the unsaturated carboxylic acid (a1) preferably has one polymerizable unsaturated group in one molecule. In this case, it is particularly easy to realize that the storage elastic modulus of the antibacterial material in the second state is 10 MPa or less.
  • the unsaturated carboxylic acid (a1) preferably contains at least one of methacrylic acid (solubility parameter 10.73) and acrylic acid (solubility parameter 11.08). In this case, it is particularly easy to realize a high storage elastic modulus of the antibacterial material in the unstimulated state and a low storage elastic modulus of the antibacterial material in the stimulated state.
  • the compound that the unsaturated carboxylic acid (a1) can contain is not limited to the above.
  • the component (a0) may contain only the unsaturated carboxylic acid (a1), but may contain a compound other than the unsaturated carboxylic acid (a1).
  • the proportion of the compound other than the unsaturated carboxylic acid (a1) in the component (a0) can be adjusted, thereby not stimulating the antibacterial material.
  • the storage elastic modulus in the state and the storage elastic modulus in the state of being stimulated can be adjusted. Further, various physical properties of the antibacterial material can be adjusted by a compound other than the unsaturated carboxylic acid (a1).
  • the polymerizable compound (a) may further contain an unsaturated carboxylic acid ester (a2).
  • the unsaturated carboxylic acid ester (a2) can enhance the hydrophobicity of the antibacterial material, which makes it easy to impart water resistance to the antibacterial material.
  • the component (a0) may contain an unsaturated carboxylic acid ester (a2).
  • the unsaturated carboxylic acid ester (a2) can have a solubility parameter close to that of the unsaturated carboxylic acid (a1), so that it is given the high storage modulus and irritation of the antibacterial material in the unstimulated state.
  • the low storage modulus of the antibacterial material in the presence is particularly easy to achieve.
  • the unsaturated carboxylic acid ester (a2) preferably has one polymerizable unsaturated group in one molecule.
  • the storage elastic modulus of the antibacterial material under the stimulus is 10 MPa or less.
  • the unsaturated carboxylic acid (a1) contains at least one of acrylic acid and methacrylic acid
  • the unsaturated carboxylic acid ester (a2) contains at least one of acrylic acid ester and methacrylic acid ester. preferable.
  • a high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized. It is presumed that this is because the main clavicle of the polymer of the component (a0) tends to be rigid.
  • the unsaturated carboxylic acid ester (a2) may be, for example, methyl methacrylate (solubility parameter 9.5), ethyl methacrylate (solubility parameter 9.0), butyl methacrylate (solubility parameter 8.8), methyl acrylate (solubility parameter 8.8). 10), contains at least one compound selected from the group consisting of ethyl acrylate (solubility parameter 9.5), propyl acrylate (solubility parameter 9.0), butyl acrylate (solubility parameter 9.0) and the like. do.
  • the unsaturated carboxylic acid ester (a2) preferably contains at least one compound selected from the group consisting of methyl methacrylate, ethyl methacrylate, methyl acrylate and ethyl acrylate.
  • a high storage elastic modulus of the antibacterial material in the unstimulated state and a low storage elastic modulus of the antibacterial material in the stimulated state are particularly likely to be realized.
  • the compound that can be contained in the unsaturated carboxylic acid ester (a2) is not limited to the above.
  • the component (a0) contains an unsaturated carboxylic acid (a1) and an unsaturated carboxylic acid ester (a2)
  • the unsaturated carboxylic acid with respect to the total of the unsaturated carboxylic acid (a1) and the unsaturated carboxylic acid ester (a2).
  • the ratio of the acid ester (a2) is preferably 50 mol% or more and 99 mol% or less. In this case, when this ratio is 50 mol% or more, the antibacterial material tends to have particularly high water resistance. When this ratio is 99 mol% or less, high storage viscoelasticity of the antibacterial material in the unstimulated state and low storage viscoelasticity of the antibacterial material in the stimulated state are realized. Cheap.
  • This ratio is more preferably 70 mol% or more, further preferably 80 mol% or more, and particularly preferably 85 mol% or more. Further, this ratio is more preferably 95 mol% or less, and particularly preferably 90 mol% or less.
  • the unsaturated carboxylic acid is used.
  • the ratio of the acid ester (a2) may be 50 mol% or less.
  • the ratio of the component (a0) to the polymerizable compound (a) is preferably 50 mol% or more. In this case, it is easy to realize a high storage elastic modulus in the state where the antibacterial material is not stimulated and a low storage elastic modulus in the state where the stimulation is applied. This ratio is more preferably 80 mol% or more, and further preferably 95 mol% or more. It is also preferable that the polymerizable compound (a) contains only the component (a0).
  • the component (a3) may be, for example, an unsaturated carboxylic acid contained in the above component (a0).
  • a3 may be, for example, an unsaturated carboxylic acid contained in the above component (a0).
  • a1 unsaturated carboxylic acid esters other than unsaturated carboxylic acid esters (a2) contained in component (a0), and unsaturated compounds other than the above. do.
  • the component (a3) is styrene (solubility parameter 8.7), lauryl methacrylate (solubility parameter 8.2), stearyl methacrylate (solubility parameter 7.8), ethylene (solubility parameter 8.0), ethylene terephthalate (solubility parameter 8.0). It contains at least one compound selected from the group consisting of solubility 10.7), isoprene (solubility parameter 8.2) and the like.
  • the range of the solubility parameter value of the component (a0) is preferably 2.0 or less. That is, when the component (a0) contains a plurality of kinds of compounds, the absolute value of the difference in the solubility parameter between the compound having the maximum solubility parameter and the compound having the minimum solubility parameter in the component (a0). Is preferably 2.0 or less.
  • the component (a0) may contain only a single compound, or may contain only a plurality of types of compounds having the same solubility parameter. In these cases, the range of the solubility parameter of the component (a0) is 0.
  • the compound contained in the component (a0) is selected so that the ratio of the component (a0) is maximized.
  • the polymerizable compound (a) contains a plurality of types of compounds, whether each compound is contained in the component (a0) or the component (a3) is determined by the solubility parameter of each compound and the polymerizable compound. It is determined by the ratio to (a). Therefore, the compound that can be contained in the component (a0) is not limited to the above description alone, and the compound that can be contained in the component (a3) is not limited to the above description alone. That is, even if the same compound is used, it may be contained in the component (a0) or may be contained in the component (a3) depending on the composition of the polymerizable compound (a).
  • the polymerizable compound (a) has a solubility parameter of 1 than that of compound ⁇ , which is an unsaturated carboxylic acid
  • compound ⁇ which is an unsaturated carboxylic acid ester having a solubility parameter 1.5 larger than that of compound ⁇
  • compound ⁇ . .5 It is assumed that the compound ⁇ , which is a small unsaturated carboxylic acid ester, is contained.
  • the ratio of the component (a0) is When the compound contained in the component (a0) is selected so as to be maximum, the component (a0) contains the compound ⁇ and the compound ⁇ , and the component (a3) contains the compound ⁇ .
  • the unsaturated carboxylic acid (a1) is composed of compound ⁇
  • the unsaturated carboxylic acid ester (a2) is composed of compound ⁇ .
  • the range of the solubility parameter value of the component (a0) is 1.5, and the ratio of the component (a0) is 99% by mass. Further, if the ratio of the compound ⁇ is 40% by mass, the ratio of the compound ⁇ is 1% by mass, and the ratio of the compound ⁇ is 59% by mass, the component (a0) is included in the component (a0) so as to maximize the ratio of the component (a0).
  • the component (a0) contains the compound ⁇ and the compound ⁇ , and the component (a3) contains the compound ⁇ .
  • the unsaturated carboxylic acid (a1) is composed of compound ⁇
  • the unsaturated carboxylic acid ester (a2) is composed of compound ⁇ .
  • the range of the solubility parameter value of the component (a0) is 1.5, and the ratio of the component (a0) is 99% by mass.
  • the ratio of the compound ⁇ and the ratio of the compound ⁇ are the same, it may be considered that the component (a0) contains the compound ⁇ and the compound ⁇ and the component (a3) contains the compound ⁇ , or the component (a3) may be contained. It may be considered that a0) contains the compound ⁇ and the compound ⁇ and the component (a3) contains the compound ⁇ .
  • the self-healing material preferably contains a metal ion (C).
  • the metal ion (C) can crosslink the polymer (A) to form a dynamic bond (metal coordination bond) by coordinating the coordinating functional group in the polymer (A).
  • the metal ion (C) is not particularly limited as long as the coordinating functional group of the polymer (A) can be coordinated.
  • the details of the metal ion (C) are as described above.
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is, for example, 1 mol% or more and 100 mol% or less.
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is 1 mol% or more and 20 mol% or less. It is more preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is 1 mol% or more and 10 mol% or less. In this case, it becomes particularly easy to realize a low storage elastic modulus of the antibacterial material in a state where the antibacterial material is given a stimulus, and it becomes particularly easy to repair a scratch or the like in a state where the antibacterial material is given a stimulus.
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is more than 10 mol% and 100 mol% or less.
  • the high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized, the antibacterial material is likely to have high hardness in the unstimulated state, and the antibacterial material is likely to have high hardness. May have chemical resistance.
  • the metal ion (C) is a sodium ion
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is preferably close to 33 mol%, for example, 5 mol% or more and 40 mol% or less. Is preferable.
  • the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is preferably close to 35 mol%, for example, 5 mol% or more and 40 mol% or less. Is preferable.
  • the antibacterial material may contain additives other than the above.
  • the antibacterial material may contain a coloring material, a plasticizer, an antibacterial agent, a flame retardant, an antioxidant, a metal deactivating agent, an ultraviolet protective agent, an antistatic agent, a filler and the like.
  • the resin skeleton contains the polymer (B), and the molecules contained in the polymer (B) are crosslinked by a dynamic bond.
  • the self-repairing property of the self-repairing material is likely to be exhibited.
  • the polymer (B) in the resin skeleton preferably contains a first polymer (B1) and a second polymer (B2). It is preferable that the weight average molecular weight of the first polymer (B1) is 20,000 or less and the weight average molecular weight of the second polymer (B2) is 30,000 or more.
  • the first polymer (B1) and the second polymer (B2) are reversibly dissociated and bound in response to a stimulus by dynamic binding.
  • the first polymer (B1) in the state where the antibacterial material is not stimulated (for example, the first state), the first polymer (B1) is constrained in the antibacterial material, so that the first polymer (B1) having a low molecular weight (for example) has a low molecular weight.
  • the decrease in elastic modulus and the decrease in hardness due to B1) are unlikely to occur, and therefore, even if a force is applied to the antibacterial material, it can be less likely to be deformed. Further, in a state where the antibacterial material is not stimulated, the decrease in solvent resistance due to the low molecular weight first polymer (B1) is unlikely to occur. On the other hand, when a stimulus is given to the antibacterial material, the dynamic bond is dissociated, so that the low molecular weight first polymer (B1) is not restrained and the first polymer (B1) moves in the antibacterial material. It becomes easier to play a role as a plasticizer, and a macroscopic flow is likely to occur in the antibacterial material.
  • the antibacterial material when a force is applied to the antibacterial material, it tends to be plastically deformed. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be repaired. In addition, if the antibacterial material is applied to applications that require adhesiveness, good adhesiveness is ensured in the unstimulated state, and when stimulus is applied, the adhesiveness is lowered and peeling is likely to occur. You can also do it. However, since the antibacterial material also contains a second polymer (B2) having a weight average molecular weight of 30,000 or more, even if the antibacterial material is stimulated and the restraint of the first polymer (B1) is relaxed, it is antibacterial.
  • B2 second polymer having a weight average molecular weight of 30,000 or more
  • the second polymer (B2) is difficult to move in the sex material, so that the antibacterial material is not excessively deformed. Therefore, even if the antibacterial material is deformed, it is unlikely that the shape will be far from the original shape. When the stimulus is removed from the antibacterial material, the dynamic binding is recombined to make it less likely to deform. Therefore, the repaired state of the antibacterial material is maintained.
  • the dynamic bond can be dissociated by applying heat to the antibacterial material to raise the temperature, and the heat is stopped to lower the temperature of the antibacterial material. You can rejoin the dynamic join with.
  • the present disclosure is not bound by this theory. Further, the change in the state of the antibacterial material due to the dissociation and recombination of the dynamic bond may not be clear, that is, the state of the antibacterial material may gradually change in response to the stimulus.
  • the difference in hardness of the antibacterial material between the unstimulated state (for example, the first state) and the stimulated state (for example, the second state) is large. Prone.
  • the antibacterial material tends to have high hardness when not stimulated, and the antibacterial material tends to be plastically deformed when stimulated, for example, the antibacterial material has large and deep scratches. Even if it is attached, the scratch is easy to repair. For example, even a scratch having a depth of about 100 ⁇ m can be easily repaired.
  • the glass transition temperature of the first polymer (B1) is preferably lower than the dissociation temperature of the dynamic bond.
  • the temperature of the first polymer (B1) has already exceeded the glass transition temperature. B1) is particularly easy to move. Therefore, when the temperature of the antibacterial material becomes equal to or higher than the dissociation temperature, the antibacterial material is easily deformed rapidly, and the scratches on the antibacterial material are particularly easily repaired.
  • the glass transition temperature of the first polymer (B1) is higher than 30 ° C. In this case, since the first polymer (B1) does not easily move in the environment where the antibacterial material is used, the antibacterial material tends to have high hardness and good chemical resistance. It is particularly preferable that both the glass transition temperature and the dissociation temperature of the first polymer (B1) are higher than 30 ° C.
  • the glass transition temperature of the second polymer (B2) is preferably higher than the dissociation temperature of the dynamic bond.
  • the temperature of the second polymer (B2) does not reach the glass transition temperature, so that the second polymer (B2) is among the antibacterial materials. ) Is particularly difficult to move, so that excessive deformation of the antibacterial material is particularly unlikely to occur.
  • the dissociation temperature is preferably 30 ° C. or higher and 200 ° C. or lower.
  • the dissociation temperature is more preferably 50 ° C. or higher and 180 ° C. or lower, and further preferably 80 ° C. or higher and 180 ° C. or lower.
  • the antibacterial material tends to maintain a high elasticity even in a harsh environment such as outdoors, which is easily affected by drastic temperature fluctuations and moisture, and when the antibacterial material is stimulated by heat, the antibacterial material becomes It tends to reduce elasticity.
  • the glass transition temperature of the first polymer (B1) is preferably 30 ° C. or higher and lower than the dissociation temperature.
  • the glass transition temperature of the first polymer (B1) is more preferably 40 ° C. or higher, and even more preferably 50 ° C. or higher.
  • the glass transition temperature of the second polymer (B2) is preferably 10 ° C. or higher and 100 ° C. or higher higher than the dissociation temperature.
  • the glass transition temperature of the second polymer (B2) is more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher.
  • the upper limit of the glass transition temperature of the second polymer (B2) is not specified, but in reality, the glass transition temperature is 250 ° C. or lower.
  • the dissociation temperature can be adjusted by selecting the type of dynamic bond. Further, the glass transition temperature of each of the first polymer (B1) and the second polymer (B2) is the type of the monomer constituting each of the first polymer (B1) and the second polymer (B2), respectively. It can be adjusted by the degree of branching and cross-linking.
  • the temperature is determined by differential scanning calorimetry (DSC) of the first polymer (B1), the second polymer (B2), and the antibacterial material, respectively.
  • DSC differential scanning calorimetry
  • the measurement conditions are from 30 ° C to 230 ° C
  • the temperature rise rate is 5 ° C / min
  • the glass transition is obtained from the DSC curve obtained by this.
  • the temperature can be specified.
  • the first polymer (B1) and the second polymer (B2) will be described more specifically.
  • the structures of the first polymer (B1) and the second polymer (B2) are not particularly limited as long as they can be applied to the molding material.
  • the dynamic bond includes at least one selected from the group consisting of, for example, a reversible covalent bond, a non-covalent bond bond, and a coordinate bond.
  • a reversible covalent bond when the dynamic bond is a reversible covalent bond, a strong crosslinked structure is likely to be formed in the antibacterial material in the state where the dynamic bond is bonded, so that the antibacterial material has solvent resistance and water resistance.
  • Cheap examples include ester bonds, imine bonds, acyl bonds, disulfide bonds, deal alder bonds, boronic acid ester bonds, and the like.
  • the ratio of the first polymer (B1) to the total of the first polymer (B1) and the second polymer (B2) is preferably 10% by mass or more and 50% by mass or less.
  • the ratio of the first polymer (B1) is more preferably 15% by mass or more and 40% by mass or less, and further preferably 20% by mass or more and 30% by mass or less.
  • the weight average molecular weight of the first polymer (B1) is 20000 or less, the antibacterial material in the state of being stimulated is easily deformed.
  • the weight average molecular weight is preferably 15,000 or less, and more preferably 10,000 or less. Further, the weight average molecular weight is preferably 3000 or more, and in this case, a strong crosslinked structure by dynamic bonding is likely to be formed in a state where the antibacterial material is not stimulated, so that the antibacterial material is solvent resistant. Easy to have properties and water resistance.
  • the weight average molecular weight is more preferably 5000 or more, and further preferably 7000 or more.
  • the first polymer (B1) becomes particularly easy to be fixed in a state where the antibacterial material is not stimulated, so that the antibacterial material becomes easy to be fixed.
  • Solvent resistance and water resistance are particularly easy to obtain.
  • the weight average molecular weight of the second polymer (B2) is 30,000 or more, the antibacterial material in the first state tends to have high hardness and good chemical resistance, and is stimulated. Excessive deformation of the antibacterial material in the state is likely to be suppressed.
  • the weight average molecular weight is more preferably 40,000 or more, and further preferably 50,000 or more. Further, the weight average molecular weight is, for example, 1,000,000 or less, 500,000 or less, or 100,000 or less, but is not limited thereto.
  • the weight average molecular weights of the first polymer (B1) and the second polymer (B2) are the measurement results of the first polymer (B1) and the second polymer (B2) by gel permeation chromatography. Is obtained from the molecular weight distribution curve obtained by calibrating with the calibration line obtained using the standard material.
  • the conditions for gel permeation chromatography are, for example, column: TSKgel SuperHZ1000, TSKgel, SuperHZ2000, TSKgel, SuperHZ3000, measurement temperature: 40 ° C., sample flow rate: 0.8 mL / min, sample concentration: 1% by mass, injection amount: 40 ⁇ L. , Detector: Differential refractometer detector.
  • the self-healing material further contains a metal ion (C), and each of the first polymer (B1) and the second polymer (B2) is a polymer of a monomer component containing an ethylenically unsaturated compound.
  • a metal ion C
  • each of the first polymer (B1) and the second polymer (B2) is a polymer of a monomer component containing an ethylenically unsaturated compound.
  • the first polymer (B1) is, for example, a polymer having a coordinating functional group.
  • the coordinating functional group is, for example, at least one of a carboxyl group and a carboxylate group.
  • the first polymer (B1) is preferably a polymer of the monomer component (b1) containing an unsaturated carboxylic acid (b11).
  • the first polymer (B1) can have at least one of a carboxyl group derived from an unsaturated carboxylic acid (b11) and a carboxylate group as a coordinating functional group.
  • the unsaturated carboxylic acid (b11) contains, for example, at least one of acrylic acid and methacrylic acid.
  • the monomer component (b1) may contain only an unsaturated carboxylic acid (b11).
  • the monomer component (b1) may further contain an unsaturated carboxylic acid ester (b12).
  • an unsaturated carboxylic acid ester (b12) is derived from, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, lauryl methacrylate, stearyl methacrylate and the like. Contains at least one compound selected from the group.
  • the monomer component (b1) may contain an unsaturated compound (b13) other than the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid ester (b12).
  • the unsaturated compound (b13) contains a compound having a vinyl group other than, for example, an unsaturated carboxylic acid (b11) and an unsaturated carboxylic acid ester (b12), and more specifically, from, for example, styrene, isoprene, ethylene and the like. Contains at least one compound selected from the group.
  • the ratio of the unsaturated carboxylic acid (b11) to the monomer component (b1) is preferably 1 mol% or more.
  • the proportion of unsaturated carboxylic acid (b11) may be 100 mol%. That is, the monomer component (b1) may contain only an unsaturated carboxylic acid (b11).
  • the proportion of the unsaturated carboxylic acid (b11) is more preferably 1 mol% or more and 50 mol% or less, and further preferably 10 mol% or more and 30 mol% or less.
  • the monomer component (b1) contains an unsaturated carboxylic acid (b11) and an unsaturated carboxylic acid ester (b12), with respect to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid ester (b12).
  • the proportion of the unsaturated carboxylic acid ester (b12) is preferably 50 mol% or more and 99 mol% or less. In this case, when this ratio is 50 mol% or more, the antibacterial material tends to have particularly high water resistance. When this ratio is 99 mol% or less, the high hardness of the antibacterial material in the non-irritated state and the good chemical resistance and the good deformation of the antibacterial material in the irritated state are obtained.
  • This ratio is more preferably 80 mol% or more and 95 mol% or less, and particularly preferably 85 mol% or more and 90 mol% or less.
  • the proportion of unsaturated carboxylic acid ester (b12) may be 50 mol% or less.
  • the first polymer (B1) is prepared by, for example, polymerizing the monomer component (b1) in the presence of a polymerization initiator by an appropriate method.
  • the polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator.
  • the photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like.
  • the thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
  • the second polymer (B2) is preferably a polymer of the monomer component (b2) containing an unsaturated carboxylic acid (b21).
  • the second polymer (B2) can have at least one of a carboxyl group and a carboxylate group derived from the unsaturated carboxylic acid (b21) as the coordinating functional group.
  • the unsaturated carboxylic acid (b21) contains, for example, at least one of acrylic acid and methacrylic acid.
  • the monomer component (b2) may further contain an unsaturated carboxylic acid ester (b22).
  • an unsaturated carboxylic acid ester (b22) is derived from, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, lauryl methacrylate, stearyl methacrylate and the like. Contains at least one compound selected from the group.
  • the monomer component (b2) may contain an unsaturated compound (a23) other than the unsaturated carboxylic acid (b21) and the unsaturated carboxylic acid ester (b22).
  • the unsaturated compound (a23) contains, for example, a compound having a vinyl group other than the unsaturated carboxylic acid (b21) and the unsaturated carboxylic acid ester (b22), and more specifically, it is composed of, for example, styrene, isoprene, ethylene and the like. Contains at least one compound selected from the group.
  • the ratio of the unsaturated carboxylic acid (b21) to the monomer component (b2) is preferably 1 mol% or more.
  • the proportion of unsaturated carboxylic acid (b21) may be 100 mol%. That is, the monomer component (b2) may contain only an unsaturated carboxylic acid (b21).
  • the proportion of the unsaturated carboxylic acid (b21) is more preferably 1 mol% or more and 50 mol% or less, and further preferably 10 mol% or more and 30 mol% or less.
  • the monomer component (b2) contains an unsaturated carboxylic acid (b21) and an unsaturated carboxylic acid ester (b22), with respect to the total of the unsaturated carboxylic acid (b21) and the unsaturated carboxylic acid ester (b22).
  • the ratio of the unsaturated carboxylic acid ester (b22) is preferably 50 mol% or more and 99 mol% or less. In this case, when this ratio is 50 mol% or more, the antibacterial material tends to have particularly high water resistance. When this ratio is 99 mol% or less, the high hardness of the antibacterial material in the non-irritated state and the good chemical resistance and the good deformation of the antibacterial material in the irritated state are obtained.
  • This ratio is more preferably 80 mol% or more and 95 mol% or less, and particularly preferably 85 mol% or more and 90 mol% or less.
  • the proportion of unsaturated carboxylic acid ester (b22) may be 50 mol% or less.
  • the second polymer (B2) in order for the second polymer (B2) to have a higher molecular weight and a higher glass transition temperature than the first polymer (B1), it is necessary to determine the ratio of the unsaturated carboxylic acid (b11) to the monomer component (b1). However, it is preferable that the ratio of the unsaturated carboxylic acid (b21) to the monomer component (b2) is lower. Further, when the weight average molecular weight of the second polymer (B2) is 30,000 or more, the monomer component so that the glass transition temperature of the second polymer (B2) becomes higher than the dissociation temperature of the dynamic bond. It is preferable that the composition of (b2) is determined.
  • the second polymer (B2) is prepared by, for example, polymerizing the monomer component (b2) in the presence of a polymerization initiator by an appropriate method.
  • the polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator.
  • the photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like.
  • the thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
  • the metal ion (C) can form a dynamic bond (metal coordination bond) by bridging between the polymers (B) by coordinating the coordinating functional group in the polymer (B). ..
  • the metal ion (C) is not particularly limited as long as the coordinating functional groups of each of the first polymer (B1) and the second polymer (B2) can be coordinated. The details of the metal ion (C) are as described above.
  • the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is, for example, 1 mol% or more and 100 mol% or less.
  • the proportion of the metal ion (C) is preferably 1 mol% or more and 20 mol% or less, and more preferably 1 mol% or more and 10 mol% or less. In this case, it is particularly easy to realize good deformation of the antibacterial material when the antibacterial material is stimulated, and it is particularly easy to repair scratches and the like when the antibacterial material is stimulated. .. It is also preferable that the ratio of the metal ion (C) is more than 10 mol% and 100 mol% or less.
  • the antibacterial material in a non-irritated state can be particularly easily realized, and the antibacterial material can have chemical resistance.
  • the metal ion (C) is a sodium ion
  • the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is preferably close to 33 mol%, for example, 5. It is preferably mol% or more and 40 mol% or less.
  • the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is preferably close to 35 mol%. For example, it is preferably 5 mol% or more and 40 mol% or less.
  • the antibacterial material may contain additives other than the self-healing material and the antibacterial substance.
  • the antibacterial material may contain a coloring material, a plasticizer, an antibacterial agent, a flame retardant, an antioxidant, a metal deactivating agent, an ultraviolet protective agent, an antistatic agent, a filler and the like.
  • Antibacterial substances can include any substance having antibacterial properties.
  • antibacterial substances include crystalline sodium ammonium aluminosilicate, silver-substituted zeolite, silver / zinc zeolite, silver zeolite, zirconium phosphate / silver oxide, zirconium phosphate / silver oxide / zinc oxide, titanium phosphate, zinc oxide and oxidation.
  • Titanium gel mixture, Titanium silver phosphate-supported gel and zinc oxide mixture silver-supported silicon dioxide, silver oxide, ammonium polyphosphate, sodium phosphate, silver chloride, silver, zinc oxide, copper compound, metallic copper, tetraamine copper ion .
  • Organic synthetic antibacterial agents such as -2-methylpropanammonium sulphonic acid copolymer and polyhexamethylene piguanide hyrod chloride and zinc oxide formulations; triclocarban, triclocarban and naridixic acid formulations, and phenylamides.
  • Carvanilide such as system compounds; amphoteric surfactants such as alkylamide propyldimethyl ⁇ -hydroxyammonium salt, polyoxyethylene (dimethylamino) ethylene (dimethylimino) ethylene chloride; polymethacrylic acid, polyacrylic acid salt and zinc sulfate.
  • carboxylic acids such as 1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthylidine-3-carboxylic acid; polyhydric alcohol compounds, etc.
  • Alcohol benzalconium chloride, organosilicone tetraammonium salt, N-polyoxyalkylene-N, N, N-trialkyleneammonium salt, alkyldaniumammonium carboxylate, alkyldimethylammonium salt, alkyldimethylbenzalconium salt , Alkyl quaternary ammonium salt, N, N, N, N-tetraalkyl quaternary ammonium salt, cetyltrimethylammonium chloride, dialkyl quaternary ammonium salt, tetraalkyl quaternary ammonium salt, octadecyldimethylammonium chloride, didecyldimethylammonium chloride , 3- (methoxysily
  • Phenols such as pentaerythretail diphosphate; Amino acids such as N-alkylyl-L-silver copper glutamate; N, N-dimethyl-N'-(fluorodichloromethylthio) -N "-phenylsulfami Do, etc., sulfamide; zincpition, etc., pyridine; 2,4,5,6-tetrachloroisophthalonitrile, etc., nitrile; acrylonitrile / acrylic acid copolymer crosslinked product, acrylonitrile-copper sulfide complex, acrylamide / diallylamine hydrochloride It can contain at least one selected from the group consisting of polymers such as salt copolymers and methacrylate copolymers; and other substances such as fluable sulfates.
  • polymers such as salt copolymers and methacrylate copolymers
  • other substances such as fluable sulfates.
  • the antibacterial substance preferably contains at least one of a heavy metal ion and a quaternary ammonium ion.
  • Heavy metal ions are easily dispersed and retained in the antibacterial material by binding to a coordinating functional group such as a carboxyl group, and therefore elution of the antibacterial substance from the antibacterial material is appropriately suppressed. Therefore, the antibacterial material tends to have particularly good antibacterial performance.
  • the heavy metal ion contains at least one of silver ion and copper ion. In this case, the antibacterial material tends to have particularly good antibacterial performance.
  • the antibacterial material can contain heavy metal ions.
  • the quaternary ammonium ion is also easily dispersed and retained in the antibacterial material by binding to a coordinating functional group such as a carboxyl group, and therefore the elution of the antibacterial substance from the antibacterial material is appropriately suppressed. Will be done. Therefore, the antibacterial material tends to have particularly good antibacterial performance.
  • a quaternary ammonium salt in the antibacterial material, the above-mentioned quaternary ammonium ion can be contained in the antibacterial material.
  • the quaternary ammonium ion is, for example, the above-mentioned benzalkonium chloride, organic silicone quaternary ammonium salt, N-polyoxyalkylene-N, N, N-trialkylene ammonium salt, alkyldanillon ammonium carboxylate, alkyldimethylammonium.
  • Alkyldimethylbenzalconium salt Alkyltetraammonium salt, N, N, N, N-Tetraalkyltetraammonium salt, Cetyltrimethylammonium chloride, Dialkyltetraammonium salt, Tetraalkyltetraammonium salt, Octadecyldimethyl Ammonium chloride, didecyldimethylammonium chloride, 3- (methoxysilyl) -propyloctadecyldimethylammonium chloride, benzalconium chloride / polyhydric alcohol compound, alkyltrimethylammonium dibutyphosphate, dicyanamide diethylenetramine / chloride It contains at least one selected from the group consisting of ammonium condensates, dicyanamide polyalkylenetriamine, ammonium chloride polycondensates and the like.
  • the percentage of the antibacterial substance to the whole antibacterial material is, for example, 0.001% by mass or more and 10% by mass or less, although it depends on the type of the antibacterial substance. When this percentage is 0.001% by mass or more, the antibacterial performance of the antibacterial material is particularly easy to be maintained. When this percentage is 10% by mass or less, the physical properties of the antibacterial material are not easily impaired by the antibacterial substance. This percentage is more preferably 0.005 or more, and even more preferably 0.01 or more. Further, this percentage is more preferably 5 or less, and even more preferably 1 or less.
  • the antibacterial material can be produced by an appropriate method.
  • the polymerizable compound (A) containing a) is prepared.
  • the composition (X) is prepared by mixing a polymerizable compound (a), a metal ion (C), a polymerization initiator, an antibacterial substance, and an arbitrary additive.
  • the polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator.
  • the photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like.
  • the thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
  • the unsaturated carboxylic acid (a1) and the metal ion (C) are mixed with at least one of the metal ions (C). It may be neutralized in portions, followed by the rest of the ingredients.
  • an unsaturated carboxylic acid (a1) and a compound containing a metal ion (C) are mixed.
  • compounds containing the metal ion (C) include salts of the metal ion (C) and saturated fatty acids, hydroxides of the metal ion (C), carbonates of the metal ion (C), and metal ion (C).
  • saturated fatty acids include acetic acid, formic acid, propionic acid, butyric acid, stearic acid and the like.
  • a salt of an unsaturated carboxylic acid (a1) and a metal ion (C) for example, sodium methacrylate
  • the unsaturated carboxylic acid in the composition (X) may be neutralized with at least a part of the metal ion (C).
  • the composition (X) is molded into an appropriate shape and cured by polymerizing the polymerizable compound (a).
  • the composition (X) may be molded into an appropriate shape using a mold, or may be molded into a film shape by applying the composition (X). ..
  • the polymer is polymerized by a method according to the type of the polymerization initiator in the composition (X).
  • the composition (X) is irradiated with light, and when the polymerization initiator is a thermal radical polymerization initiator, the composition (X) is heated to obtain a polymerizable compound ( a) is polymerized.
  • the specific conditions for polymerizing the polymerizable compound (a) are appropriately determined according to the type of the component in the polymerizable compound (a).
  • the monomer component constituting the polymer (B) is used.
  • the polymer (B) is synthesized by polymerizing in the presence of a polymerization initiator by an appropriate method.
  • the monomer component (b1) is polymerized by an appropriate method in the presence of a polymerization initiator. This synthesizes the first polymer (B1), and for example, the monomer component (b2) is polymerized by an appropriate method in the presence of a polymerization initiator to synthesize the second polymer (B2).
  • the polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator.
  • the photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like.
  • the thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
  • composition (X) is prepared by melt-kneading a polymer (B), a metal ion (C), an antibacterial substance, and an arbitrary additive.
  • An antibacterial material can be manufactured by molding the composition (X).
  • Examples of the method for molding the composition (X) include a method in which the composition (X) is placed in a mold having a desired size and pressed while being heated. It is also possible to mold the composition (X) into a desired shape by an injection molding method. When the composition (X) is liquid due to the inclusion of a solvent, the composition (X) is applied to some object and then the solvent in the composition (X) is volatilized to form a film. Antibacterial materials can also be made.
  • the method for molding the composition (X) is not limited to the above.
  • composition was prepared by mixing the raw materials shown in Tables 1 and 2. When blending a metal ion compound (sodium acetate, zinc acetate or sodium methacrylate), first mix the metal ion compound with an unsaturated carboxylic acid (methacrylic acid and acrylic acid), and then add the remaining components. Formulated.
  • the thermal radical polymerization initiator shown in Tables 1 and 2 is bis peroxydicarbonate (4-t-butyl-2-cyclohexane-1-yl).
  • the "molar ratio ((a2) :( a1): (C))" in Tables 1 and 2 indicates the unsaturated carboxylic acid ester (a2) and the unsaturated carboxylic acid contained in the component (a0) in the composition. (A1) and the molar ratio of the metal ion (C).
  • the storage elastic modulus of the sample was measured under the conditions of atmospheric atmosphere, atmospheric pressure, and humidity of 65%.
  • a viscoelasticity measuring device (DMS6220, manufactured by Hitachi High-Technologies Corporation) is used as the measuring device, the measurement mode is bending (double-sided beam), the measurement temperature range is from 25 ° C to 200 ° C, and the temperature rise rate is 10 ° C. It was measured under the condition of / minute.
  • the relationship curve between the stored viscoelasticity and the temperature was obtained. From this relational curve, the storage elastic modulus at 25 ° C. (standard temperature) and the storage elastic modulus at 160 ° C. were read. The results are shown in Tables 1 and 2.
  • a self-repairing material having a resin skeleton containing a polymer of a polymerizable compound containing an unsaturated carboxylic acid An example of a self-repairing material according to the first embodiment is shown as a reference example. Of the following, it is particularly preferable that the self-healing materials of Reference Examples A to J are applied to the antibacterial material.
  • composition A composition was prepared by mixing the raw materials shown in Tables 3 and 4. When blending a metal ion compound (sodium acetate, zinc acetate or sodium methacrylate), first mix the metal ion compound with an unsaturated carboxylic acid (methacrylic acid and acrylic acid), and then add the remaining components. Formulated.
  • the thermal radical polymerization initiator shown in Tables 3 and 4 is bis peroxydicarbonate (4-t-butyl 2-cyclohexane-1-yl).
  • the "molar ratio ((a2) :( a1): (C))" in Tables 3 and 4 refers to the unsaturated carboxylic acid ester (a2) and the unsaturated carboxylic acid contained in the component (a0) in the composition.
  • the storage elastic modulus of the sample was measured under the conditions of atmospheric atmosphere, atmospheric pressure, and humidity of 65%.
  • a viscoelasticity measuring device (DMS6220, manufactured by Hitachi High-Technologies Corporation) is used as the measuring device, the measurement mode is bending (double-sided beam), the measurement temperature range is from 25 ° C to 200 ° C, and the temperature rise rate is 10 ° C. It was measured under the condition of / minute. As a result, the relationship curve between the stored viscoelasticity and the temperature was obtained.
  • the results for Reference Example A are shown in FIG. 1, the results for Reference Example B are shown in B in FIG. 2, and the results for Reference Example C are shown in C in FIG.
  • FIG. 3 The vertical axis of FIG. 3 indicates the glass transition temperature, and the numerical value on the horizontal axis indicates the ratio (mol%) of sodium ions to the unsaturated carboxylic acid.
  • the glass transition temperature increased as the sodium ion ratio increased until the sodium ion ratio reached about 30 mol%. It is presumed that this is because the higher the proportion of sodium ions, the higher the number density of the coordination structures in the self-healing material, and the more rigid the self-healing material. As the proportion of sodium ions increased, the glass transition temperature became less likely to change. This is because the number of sodium ions increased in excess of the ratio for the sodium ions and the coordinating functional group to form a stable coordinating structure, so that the number density of the coordinating structure increased even if the sodium ions were increased. It is presumed that this is because it has disappeared.
  • Infrared spectroscopy (IR) of self-healing materials was also performed. The results are shown in FIG. In A, B, C and D in FIG. 4, the ratio of sodium ion to the total amount of substance of unsaturated carboxylic acid ester and unsaturated carboxylic acid in the composition is 0 mol%, 2 mol%, 4 mol% and The IR spectrum when it is 5 mol% is shown. According to this result, the absorption peak corresponding to the ionic bond between the carboxylate group and the sodium ion at around 1580 cm -1 in the IR spectrum is the ratio of sodium ions until the ratio of sodium ions reaches about 30 mol%. Increased as the value increased.
  • a self-healing material having a resin skeleton containing a polymer An example of a self-healing material according to the second embodiment is shown as a reference example. Of the following, it is particularly preferable that the self-healing materials of Reference Examples 1 to 6 are applied to the antibacterial material.
  • composition A composition was prepared by kneading the raw materials shown in Table 5 under the conditions of a temperature of 230 ° C., a treatment time of 15 minutes, and a rotation speed of 30 rpm using a laboplast mill manufactured by Toyo Seiki Co., Ltd. ..
  • -Polymer A1 A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:79:11. Weight average molecular weight 18,000. Glass transition temperature 79 ° C.
  • -Polymer A2 A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:30:60. Weight average molecular weight 17,000. Glass transition temperature 45 ° C.
  • -Polymer A3 A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:30:60.
  • Weight average molecular weight 9500 Glass transition temperature 37 ° C. -Polymer B1: A copolymer of methacrylic acid and methyl methacrylate having a molar ratio of 10:90. Weight average molecular weight 50,000. Glass transition temperature 119 ° C. -Polymer B2: A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:79:11. Weight average molecular weight 48,000. Glass transition temperature 86 ° C.
  • the glass transition temperature of each polymer can be obtained by using a differential scanning calorimetry device (DSC3500, manufactured by Netch Co., Ltd.) as a measuring device in a temperature range of 30 ° C. to 230 ° C. and a heating rate of 5 ° C./min. It was identified from the DSC curve.
  • DSC3500 differential scanning calorimetry device
  • the dissociation temperature in Table 5 indicates the dissociation temperature between the polymer (B) and the polymer (B) in each composition. This dissociation temperature is a literature value of the dissociation temperature of the metal coordination bond between the carboxylate group and the sodium ion.
  • the antibacterial material according to the first aspect of the present disclosure has a self-healing property in which elasticity decreases when a stimulus is applied and elasticity increases when the stimulus is removed. Contains materials and antibacterial substances.
  • the antibacterial material contains a self-healing material
  • the elasticity decreases and plastic deformation is likely to occur. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be easily repaired. Subsequently, if the stimulus is removed from the antibacterial material, the elasticity increases and the original state can be restored. Therefore, even if the antibacterial material is scratched, the scratch can be easily repaired, so that the antibacterial performance of the antibacterial material can be easily maintained for a long period of time.
  • the antibacterial material according to the second aspect of the present disclosure comprises at least one selected from the group consisting of heat, pressure, liquid, gas and light in the first aspect.
  • the antibacterial material can be easily repaired by utilizing the stimulus.
  • the antibacterial material according to the third aspect of the present disclosure changes from the first state to the second state when a stimulus is applied, and the stimulus is removed. It changes from the second state to the first state, and the storage elastic modulus in the first state is 1 GPa or more, and the storage elastic modulus in the second state is 10 MPa or less.
  • the antibacterial material tends to have high hardness and strength in the first state, and the antibacterial material is particularly prone to plastic deformation in the second state, so that even if a large and deep scratch is made, it is repaired.
  • Cheap the antibacterial material
  • the antibacterial material according to the fourth aspect of the present disclosure is the second aspect when the stimulus contains heat and the temperature of the antibacterial material in the first state is heated from 25 ° C. in the third aspect.
  • the temperature at which the above state is reached is in the range of 100 ° C to 200 ° C.
  • the storage elastic modulus of the antibacterial material does not easily decrease excessively, and the antibacterial material tends to maintain high hardness. Further, in heating the antibacterial material to change it to the second state, it is not necessary to heat the antibacterial material excessively, which facilitates the work of repairing the antibacterial material.
  • the antibacterial material according to the fifth aspect of the present disclosure is, in any one of the first to the fourth aspects, the self-healing material crosslinks the resin skeleton and the resin skeleton and reversibly responds to a stimulus. It has a dynamic bond that dissociates and recombines.
  • the self-repairing property of the self-repairing material can be expressed by the dynamic binding.
  • the antibacterial material according to the sixth aspect of the present disclosure comprises at least one selected from the group consisting of a reversible covalent bond, a non-covalent interaction bond, and a coordinate bond in the fifth aspect. include.
  • the dynamic binding is particularly liable to be reversibly dissociated and recombined by the stimulus, so that the antibacterial material tends to have good self-repairing property.
  • the antibacterial material according to the seventh aspect of the present disclosure contains heat as a stimulus, and the dissociation temperature of the dynamic bond is higher than 30 ° C.
  • the antibacterial material can be less likely to be deformed in an environment where the antibacterial material is used.
  • the resin skeleton contains the polymer (A) of the polymerizable compound (a), and the polymerizable compound ( a) contains an unsaturated carboxylic acid (a1).
  • At least one of the carboxyl group and the carboxylate group, which are coordinating functional groups derived from the unsaturated carboxylic acid (a1), is utilized to form a dynamic bond in the self-repairing material. It can be generated and self-repairing.
  • the antibacterial material according to the ninth aspect of the present disclosure is, in the eighth aspect, the polymerizable compound (a) contains 50 mol% of the component (a0) having a solubility parameter value range of 2.0 or less. It is contained in a proportion of 100 mol% or less, and the component (a0) contains at least an unsaturated carboxylic acid (a1).
  • the antibacterial material can have a strong structure, and when a stimulus is applied, the antibacterial material is easily plastically deformed.
  • the component (a0) further contains an unsaturated carboxylic acid ester (a2).
  • the hydrophobicity of the antibacterial material can be enhanced, and therefore it becomes easy to impart water resistance to the antibacterial material.
  • the antibacterial material according to the eleventh aspect of the present disclosure is the unsaturated carboxylic acid ester (a2) with respect to the sum of the unsaturated carboxylic acid (a1) and the unsaturated carboxylic acid ester (a2) in the tenth aspect.
  • the ratio is 50 mol% or more and 99 mol% or less.
  • the antibacterial material tends to have particularly high water resistance, and has high storage viscoelasticity in the unstimulated state and low storage viscoelasticity in the stimulating state. Is easy to realize.
  • the unsaturated carboxylic acid (a1) contains at least one of acrylic acid and methacrylic acid, and the unsaturated carboxylic acid.
  • the acid ester (a2) contains at least one of an acrylic acid ester and a methacrylic acid ester.
  • a high storage elastic modulus is particularly likely to be realized in a state where no stimulus is given.
  • the resin skeleton contains the polymer (B) and is contained in the polymer (B).
  • the molecules are cross-linked by dynamic bonds.
  • the self-repairing property of the self-repairing material is likely to be exhibited by cross-linking the molecules contained in the polymer (B) by a dynamic bond.
  • the polymer (B) contains a first polymer (B1) and a second polymer (B2).
  • the weight average molecular weight of the one polymer (B1) is 20,000 or less, and the weight average molecular weight of the second polymer (B2) is 30,000 or more.
  • the antibacterial material in a state where no stimulus is applied, can be less likely to be deformed even when a force is applied, and the solvent resistance is less likely to be deteriorated.
  • a force it is easily plastically deformed, and the antibacterial material can be easily deformed to repair the wound.
  • the stimulus contains heat, and the glass transition temperature of the first polymer (B1) is lower than the dissociation temperature of the dynamic bond. ..
  • the antibacterial material when the temperature of the antibacterial material becomes higher than the dissociation temperature, the antibacterial material is easily deformed quickly, so that the scratches on the antibacterial material are particularly easily repaired.
  • the stimulus contains heat
  • the glass transition temperature of the second polymer (B2) is the dissociation of the dynamic bond. Higher than the temperature.
  • the self-healing material contains a metal ion (C), and the metal ion (C) is a metal ion (C). , Crosslink the resin skeleton to form a dynamic bond.
  • a dynamic bond can be formed by a metal coordination bond by a metal ion, so that a good self-repairing performance can be easily exhibited in an antibacterial material.
  • the resin skeleton has a structure derived from an unsaturated carboxylic acid, and the ratio of the metal ion (C) to the unsaturated carboxylic acid. Is 1 mol% or more and 20 mol% or less.
  • the eighteenth aspect it becomes particularly easy to realize a low storage elastic modulus in a state where a stimulus is given, and it becomes particularly easy to repair a wound or the like in a state where a stimulus is given.
  • the metal ion (C) is selected from the group consisting of an alkali metal ion and an alkaline earth metal ion. Contains at least one.
  • high hardness and good chemical resistance of the antibacterial material in a non-stimulated state and good deformability in a stimulated state are particularly easy to be realized.
  • the antibacterial substance contains at least one of a heavy metal ion and a quaternary ammonium ion. ..
  • the antibacterial material is particularly likely to have good antibacterial performance.
  • the antibacterial substance contains a heavy metal ion, and the heavy metal ion contains at least one of a silver ion and a copper ion. do.
  • the antibacterial material tends to have particularly good antibacterial performance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present disclosure provides an antibacterial material that easily maintains antibacterial performance. The antibacterial material according to the present disclosure comprises a self-repairing material and an antibacterial substance. The self-repairing material exhibits a decrease in elasticity with the application of a stimulus, and an increase in elasticity when the stimulus is removed.

Description

抗菌性材料Antibacterial material
 本開示は、抗菌性材料に関し、詳しくは抗菌性物質を含有する抗菌性材料に関する。 This disclosure relates to antibacterial materials, and more particularly to antibacterial materials containing antibacterial substances.
 特許文献1には、ポリカーボネート樹脂に特定の表面硬度向上剤、特定の抗菌剤、及び特定のアルキルケテンダイマーを併用添加することにより、ポリカーボネート樹脂の諸特性を損なうことなく、特に、表面硬度、色相(透明性)、抗菌性、耐溶剤性に優れたポリカーボネート樹脂組成物が得られることが、開示されている。 In Patent Document 1, by adding a specific surface hardness improver, a specific antibacterial agent, and a specific alkyl ketene dimer to the polycarbonate resin in combination, the surface hardness and the hue are particularly not impaired without impairing various properties of the polycarbonate resin. It is disclosed that a polycarbonate resin composition having excellent (transparency), antibacterial property, and solvent resistance can be obtained.
特開2014-227534号公報Japanese Unexamined Patent Publication No. 2014-227534
 本開示の課題は、抗菌性能が維持されやすい抗菌性材料を提供することである。 The subject of the present disclosure is to provide an antibacterial material whose antibacterial performance is easily maintained.
 本開示の一態様に係る抗菌性材料は、刺激が与えられることで弾性が下がり、かつ前記刺激が除かれることで弾性が上がる自己修復性材料と、抗菌性物質とを含有する。 The antibacterial material according to one aspect of the present disclosure contains a self-healing material whose elasticity decreases when a stimulus is applied and whose elasticity increases when the stimulus is removed, and an antibacterial substance.
参考例Aについての、自己修復性材料の、貯蔵弾性率-温度の関係曲線を示すグラフである。It is a graph which shows the relationship curve of the storage elastic modulus-temperature of the self-healing material about Reference Example A. 参考例B及びCについての、自己修復性材料の、貯蔵弾性率-温度の関係曲線を示すグラフである。It is a graph which shows the relationship curve of the storage elastic modulus-temperature of the self-healing material for Reference Examples B and C. 組成物中の金属イオンの割合と自己修復性材料のガラス転移温度との関係を示すグラフである。It is a graph which shows the relationship between the ratio of a metal ion in a composition, and the glass transition temperature of a self-healing material. 組成物中の金属イオンの割合が異なる試料についての、IRスペクトルのチャートである。6 is a chart of IR spectra for samples having different proportions of metal ions in the composition.
 1.概要
 まず、発明者が本開示に至った経緯の概略について説明する。
1. 1. Outline First, an outline of the circumstances leading to the present disclosure by the inventor will be described.
 衛生観念の高まりから、抗菌性を有する材料は、浴室、トイレなどで用いられる水廻り製品、床のコーティング材料、エアコンディショナー、洗濯機などの電化製品といった、多くの製品に利用されている。特に、人の手に触れる製品に抗菌性を有する材料を適用することが多くなっている。 Due to the growing idea of hygiene, antibacterial materials are used in many products such as water-related products used in bathrooms and toilets, floor coating materials, air conditioners, and electrical appliances such as washing machines. In particular, antibacterial materials are often applied to products that come into contact with human hands.
 しかし、発明者による独自の研究から得られた知見によると、抗菌性を有する材料に傷が付くと材料の抗菌性能が低下してしまう。傷が付きにくいように材料の表面の硬度を高めたとしても、傷が付いてしまえば、それ以後は抗菌性能が低下してしまう。人の手に触れる製品は傷が付いてしまう機会が多く、そのため長期間にわたって抗菌性能を維持することは難しい。 However, according to the knowledge obtained from the original research by the inventor, if the antibacterial material is scratched, the antibacterial performance of the material deteriorates. Even if the hardness of the surface of the material is increased so that it is not easily scratched, if it is scratched, the antibacterial performance will deteriorate thereafter. Products that come into contact with human hands are often scratched, which makes it difficult to maintain antibacterial performance over a long period of time.
 そこで、発明者は、抗菌性材料にたとえ傷がついても、この傷が修復されやすければ、抗菌性材料の抗菌性能を長期間維持しやすくなるとの着想を得た。かかる抗菌性材料を実現すべく、発明者は研究開発を行った結果、本開示の完成に至った。 Therefore, the inventor got the idea that even if the antibacterial material is scratched, if the scratch is easily repaired, it will be easier to maintain the antibacterial performance of the antibacterial material for a long period of time. As a result of research and development in order to realize such an antibacterial material, the present disclosure has been completed.
 以下、本開示の実施形態について説明する。なお本開示は下記の実施形態に限られない。下記の実施形態は、本開示の様々な実施形態の一部に過ぎず、本開示の目的を達成できれば設計に応じて種々の変更が可能である。 Hereinafter, embodiments of the present disclosure will be described. The present disclosure is not limited to the following embodiments. The following embodiments are only a part of various embodiments of the present disclosure, and various modifications can be made according to the design as long as the object of the present disclosure can be achieved.
 本実施形態に係る抗菌性材料は、刺激が与えられることで弾性が下がり、かつ刺激が除かれることで弾性が上がる自己修復性材料と、抗菌性物質とを含有する。 The antibacterial material according to the present embodiment contains a self-healing material whose elasticity decreases when a stimulus is applied and whose elasticity increases when the stimulus is removed, and an antibacterial substance.
 本実施形態によれば、抗菌性材料は、自己修復性材料を含むので、刺激が与えられると弾性が下がることで塑性変形しやすくなる。そのため、抗菌性材料が傷付けられても、抗菌性材料に刺激を与えれば、抗菌性材料を容易に変形させて傷を修復しやすい。続いて、抗菌性材料から刺激を除けば、弾性が上がることで、元の状態に復帰できる。このため、抗菌性材料に傷が付いても、傷を容易に修復することができ、そのため抗菌性材料の抗菌性能が長期にわたって維持されやすくなる。 According to the present embodiment, since the antibacterial material contains a self-healing material, the elasticity decreases when a stimulus is applied, so that plastic deformation is likely to occur. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be easily repaired. Subsequently, if the stimulus is removed from the antibacterial material, the elasticity increases and the original state can be restored. Therefore, even if the antibacterial material is scratched, the scratch can be easily repaired, so that the antibacterial performance of the antibacterial material can be easily maintained for a long period of time.
 なお、傷によって抗菌性能が下がる理由は十分には明らかにされていないが、抗菌性材料に付着した菌に傷を通じて酸素が供給されやすくなることで、菌の成長が促進されることが、理由の一つであると推察される。 The reason why the antibacterial performance is lowered by the wound is not fully clarified, but the reason is that the growth of the bacteria is promoted by facilitating the supply of oxygen through the wound to the bacteria adhering to the antibacterial material. It is presumed to be one of.
 抗菌性材料に与えられる刺激は、例えば熱、圧力、液体、ガス及び光からなる群から選択される少なくとも一種を含む。なお、刺激は前記のみには制限されない。刺激は、抗菌性材料における自己修復性材料に応じて選択される。すなわち、刺激とは、自己修復性材料に与えられることで自己修復性材料の弾性を低減させることができる、自己修復性材料ごとに特定される負荷といえる。また、自己修復性材料とは、特定の負荷が与えられることで弾性が低減し、負荷が与えられた後にこの負荷が除かれると弾性が復元する材料といえる。 The stimulus given to the antibacterial material includes, for example, at least one selected from the group consisting of heat, pressure, liquid, gas and light. The stimulus is not limited to the above. The stimulus is selected depending on the self-healing material in the antibacterial material. That is, it can be said that the stimulus is a load specified for each self-healing material, which can reduce the elasticity of the self-healing material by being applied to the self-healing material. Further, the self-healing material can be said to be a material in which elasticity is reduced by applying a specific load, and elasticity is restored when this load is removed after the load is applied.
 自己修復性材料は、樹脂骨格と、樹脂骨格を架橋する動的結合とを有することが好ましい。動的結合とは、刺激に応じて可逆的に解離及び再結合しうる結合である。自己修復性材料が樹脂骨格と動的結合とを有すると、刺激が与えられた場合に動的結合が解離することで樹脂骨格の架橋密度が下がり、自己修復性材料の弾性が下がりやすい。そのため、自己修復性材料の自己修復性が発現しやすい。動的結合は、例えば可逆共有結合、非共有相互作用による結合、及び配位結合よりなる群から選択される少なくとも一種を含む。この場合、刺激によって動的結合が特に可逆的に解離及び再結合しやすく、そのため抗菌性材料が良好な自己修復性を有しやすい。具体的には、動的結合として、例えば金属配位結合、静電相互作用、水素結合、ドナーアクセプター相互作用、ホストゲスト相互作用、π-π相互作用、イミン結合、アシル結合、ジスルフィド結合、ディールスアルダー結合、及びボロン酸エステル結合等が、挙げられる。 The self-healing material preferably has a resin skeleton and a dynamic bond that crosslinks the resin skeleton. Dynamic binding is a binding that can be reversibly dissociated and recombined in response to a stimulus. When the self-repairing material has a resin skeleton and a dynamic bond, the dynamic bond dissociates when a stimulus is applied, so that the crosslink density of the resin skeleton decreases, and the elasticity of the self-repairing material tends to decrease. Therefore, the self-repairing property of the self-repairing material is likely to be exhibited. Dynamic binding includes, for example, at least one selected from the group consisting of reversible covalent bonds, non-covalent coupling bonds, and coordinate bonds. In this case, the dynamic binding is particularly likely to be reversibly dissociated and recombined by stimulation, so that the antibacterial material is likely to have good self-healing properties. Specifically, as dynamic bonds, for example, metal coordination bonds, electrostatic interactions, hydrogen bonds, donor acceptor interactions, host-guest interactions, π-π interactions, imine bonds, acyl bonds, disulfide bonds, etc. Examples thereof include a deal alder bond and a boronic acid ester bond.
 動的結合が熱に応じて可逆的に解離及び再結合する場合、すなわち刺激が熱を含む場合は、動的結合の解離温度は、30℃よりも高いことが好ましい。なお、解離温度とは、温度上昇時に動的結合が切断され始める温度である。動的結合の解離温度は既に知られた文献値であってよく、具体的には、エステル結合の解離温度はThe Malaysian Journal of Analytical Sciences, Vol 18 No 2 (2014): 444 - 455によれば180℃、イミン結合の解離温度はMacromolecules2016, 49, 17, 6277-6284によれば40℃、ディールスアルダー結合の解離温度は日本ゴム協会誌 第85巻 第8号(2012)P255-259によれば100℃である。また、カルボキシレート基とナトリウムイオンとの金属配位結合の解離温度は、矢野紳一 平沢栄作監修、「アイオノマー・イオン性高分子材料」、2009年2月、シーエムシー出版、第4章によると、50℃である。解離温度は、抗菌性材料が温度上昇によって抗菌性材料の状態が変化し始める温度ともいえる。解離温度が30℃よりも高いと、抗菌性材料が使用される環境下では抗菌性材料を変形しにくくできる。 When the dynamic bond is reversibly dissociated and recombined in response to heat, that is, when the stimulus contains heat, the dissociation temperature of the dynamic bond is preferably higher than 30 ° C. The dissociation temperature is a temperature at which the dynamic bond begins to be broken when the temperature rises. The dissociation temperature of the dynamic bond may be a known literature value, and specifically, the dissociation temperature of the ester bond is according to The Malaysian Journal of Analytical Sciences, Vol 18 No. 2 (2014): 444-455. 180 ° C, the dissociation temperature of the imine bond is 40 ° C according to Macromolecules 2016, 49, 17, 6277-6284, and the dissociation temperature of the deal alder bond is according to the Journal of the Japan Rubber Association, Vol. 85, No. 8 (2012) P255-259. It is 100 ° C. The dissociation temperature of the metal coordination bond between the carboxylate group and the sodium ion is according to Shinichi Yano, supervised by Eisaku Hirasawa, "Ionomer Ionized Polymer Material", February 2009, CMC Publishing, Chapter 4. It is 50 ° C. The dissociation temperature can also be said to be the temperature at which the state of the antibacterial material begins to change as the temperature of the antibacterial material rises. When the dissociation temperature is higher than 30 ° C., the antibacterial material can be less likely to be deformed in the environment where the antibacterial material is used.
 抗菌性材料は、刺激が与えられることで第一の状態から第二の状態へ変化し、かつ刺激が除かれることで第二の状態から第一の状態へ変化することが好ましい。第二の状態は、第一の状態よりも貯蔵弾性率が低い状態である。なお、抗菌性材料は第一の状態から第二の状態へ直接変化してもよく、第一の状態から、第一の状態でも第二の状態でもない状態(遷移状態)を経て第二の状態に変化してもよい。同様に、抗菌性材料は第二の状態から第一の状態へ直接変化してもよく、第二の状態から、遷移状態を経て第一の状態に変化してもよい。第一の状態での貯蔵弾性率は1GPa以上であることが好ましい。第二の状態での貯蔵弾性率は10MPa以下であることが好ましい。この場合、第一の状態では抗菌性材料は高い硬度及び強度を有しやすく、抗菌性材料の鉛筆硬度が3H以上であることを実現することも可能である。また、第二の状態では抗菌性材料は特に塑性変形しやすく、そのため大きく深い傷が修復されやすい。 It is preferable that the antibacterial material changes from the first state to the second state when a stimulus is given, and changes from the second state to the first state when the stimulus is removed. The second state is a state in which the storage elastic modulus is lower than that in the first state. The antibacterial material may be directly changed from the first state to the second state, and the second state is passed through a state (transition state) that is neither the first state nor the second state. It may change to a state. Similarly, the antibacterial material may change directly from the second state to the first state, or may change from the second state to the first state via a transition state. The storage elastic modulus in the first state is preferably 1 GPa or more. The storage elastic modulus in the second state is preferably 10 MPa or less. In this case, in the first state, the antibacterial material tends to have high hardness and strength, and it is also possible to realize that the pencil hardness of the antibacterial material is 3H or more. Further, in the second state, the antibacterial material is particularly liable to be plastically deformed, so that large and deep scratches are liable to be repaired.
 刺激が熱を含む場合に、第一の状態にある抗菌性材料を25℃から加熱して昇温させた場合に第二の状態になる温度は、100℃から200℃の範囲内にあることが好ましい。すなわち、第二の状態での貯蔵弾性率が10MPa以下である場合には、抗菌性材料を25℃から加熱して昇温させた場合に、抗菌性材料の貯蔵弾性率が低下して10MPaに達する温度は、100℃から200℃の範囲内にあることが好ましい。この場合、抗菌性材料が使用される環境下において、抗菌性材料の貯蔵弾性率が過度に低下しにくく、抗菌性材料が高い硬度を維持しやすい。また、抗菌性材料を第二の状態に変化させるために加熱するに当たって、抗菌性材料を過度に高温にする必要がなく、そのため抗菌性材料の修復の作業がしやすくなる。 When the stimulus contains heat, the temperature at which the second state is reached when the antibacterial material in the first state is heated from 25 ° C to raise the temperature is in the range of 100 ° C to 200 ° C. Is preferable. That is, when the storage elastic modulus in the second state is 10 MPa or less, the storage elastic modulus of the antibacterial material decreases to 10 MPa when the temperature of the antibacterial material is raised from 25 ° C. The temperature reached is preferably in the range of 100 ° C to 200 ° C. In this case, in an environment where the antibacterial material is used, the storage elastic modulus of the antibacterial material is unlikely to be excessively lowered, and the antibacterial material tends to maintain high hardness. Further, in heating the antibacterial material to change it to the second state, it is not necessary to heat the antibacterial material to an excessively high temperature, which facilitates the work of repairing the antibacterial material.
 自己修復性材料は、金属イオン(C)を含有し、金属イオン(C)は、樹脂骨格を架橋して動的結合を形成することも好ましい。この場合、例えば動的結合は金属イオン(C)を介した配位結合(金属配位結合)である。すなわち、例えば樹脂骨格は配位性官能基を有し、複数の配位性官能基が金属イオン(C)に配位することで、動的結合が形成される。配位性官能基とは金属イオン(C)に配位可能な官能基である。金属イオン(C)と配位性官能基との組み合わせは、配位結合が形成可能なように適宜選択されうる。 It is also preferable that the self-healing material contains a metal ion (C), and the metal ion (C) crosslinks the resin skeleton to form a dynamic bond. In this case, for example, the dynamic bond is a coordination bond (metal coordination bond) via a metal ion (C). That is, for example, the resin skeleton has a coordinating functional group, and a plurality of coordinating functional groups coordinate to the metal ion (C) to form a dynamic bond. The coordinating functional group is a functional group that can be coordinated to the metal ion (C). The combination of the metal ion (C) and the coordinating functional group can be appropriately selected so that a coordination bond can be formed.
 配位性官能基がカルボキシル基とカルボキシレート基とのうち少なくとも一方である場合、金属イオン(C)がHSAB則による硬い酸又は中間の酸に分類されることが好ましい。この場合、刺激が与えられていない状態における高い硬度及び良好な耐薬品性が実現されやすい。これは、カルボキシレート基が硬い塩基であることから、金属イオン(C)が硬い酸又は中間の酸である場合にはカルボキシレート基と金属イオン(C)との親和性が良好であり、配位結合が形成されやすいためであると、考えられる。金属イオン(C)が硬い酸に分類されることが特に好ましい。この場合、刺激が与えられていない状態における高い貯蔵弾性率がより実現されやすい。 When the coordinating functional group is at least one of a carboxyl group and a carboxylate group, it is preferable that the metal ion (C) is classified as a hard acid or an intermediate acid according to the HSAB rule. In this case, high hardness and good chemical resistance in the unstimulated state are likely to be realized. This is because the carboxylate group is a hard base, and therefore, when the metal ion (C) is a hard acid or an intermediate acid, the affinity between the carboxylate group and the metal ion (C) is good, and the metal ion (C) is arranged. It is considered that this is because a coordinate bond is easily formed. It is particularly preferred that the metal ion (C) is classified as a hard acid. In this case, a high storage elastic modulus is more likely to be realized in the unstimulated state.
 金属イオン(C)は、特にアルカリ金属イオンとアルカリ土類金属イオンとからなる群から選択される少なくとも一種を含むことが好ましい。この場合、刺激が与えられていない状態における抗菌性材料の高い硬度及び良好な耐薬品性と、刺激が与えられている状態における抗菌性材料の良好な変形されやすさとが、特に実現されやすい。金属イオン(C)がアルカリ金属イオンを含有する場合は、刺激が与えられている状態における抗菌性材料の良好な変形されやすさが実現されやすい。刺激が与えられていない状態における抗菌性材料の高い硬度及び良好な耐薬品性が実現されやすいのは、アルカリ金属イオンとアルカリ土類金属イオンはイオン半径が比較的大きいため、配位性官能基が配位しやすく、そのため架橋構造が形成されやすいからであると推察される。また、刺激が与えられている状態における抗菌性材料の良好な変形のされやすさが実現されやすいのは、アルカリ金属イオン及びアルカリ土類金属イオン、特にアルカリ金属イオンは、高温で吸水しやすいことから、刺激が熱と水又は水蒸気とを含む場合に配位結合の解離が生じ易くなるからであると推察される。 The metal ion (C) preferably contains at least one selected from the group consisting of alkali metal ions and alkaline earth metal ions. In this case, the high hardness and good chemical resistance of the antibacterial material in the unstimulated state and the good deformability of the antibacterial material in the stimulated state are particularly easy to be realized. When the metal ion (C) contains an alkali metal ion, it is easy to realize good deformability of the antibacterial material in a state of being stimulated. High hardness and good chemical resistance of antibacterial materials in the unstimulated state are likely to be realized because alkali metal ions and alkaline earth metal ions have relatively large ionic radii, so they are coordinating functional groups. It is presumed that this is because it is easy to coordinate and therefore a crosslinked structure is easily formed. In addition, it is easy to realize good deformation of antibacterial materials under stimulus because alkali metal ions and alkaline earth metal ions, especially alkali metal ions, easily absorb water at high temperatures. Therefore, it is inferred that the dissociation of the coordination bond is likely to occur when the stimulus contains heat and water or water vapor.
 具体的には、金属イオン(C)は、ナトリウムイオンと亜鉛イオンとのうち少なくとも一方を含有することが好ましい。金属イオン(C)が、硬い酸に分類されかつアルカリ金属であるナトリウムイオンを含有すれば、特に好ましい。 Specifically, the metal ion (C) preferably contains at least one of a sodium ion and a zinc ion. It is particularly preferable that the metal ion (C) contains sodium ion, which is classified as a hard acid and is an alkali metal.
 樹脂骨格が不飽和カルボン酸に由来する構造を有する場合、すなわち樹脂骨格が不飽和カルボン酸に由来する配位性官能基を有する場合、不飽和カルボン酸に対する金属イオン(C)の割合は、例えば1モル%以上100モル%以下である。不飽和カルボン酸に対する金属イオン(C)の割合が1モル%以上20モル%以下であれば好ましい。不飽和カルボン酸(a1)に対する金属イオン(C)の割合が、1モル%以上10モル%以下であれば更に好ましい。この場合、刺激が与えられている状態での抗菌性材料の低い貯蔵弾性率が特に実現されやすくなり、刺激が与えられている状態で特に傷などが修復されやすくなる。不飽和カルボン酸(a1)に対する金属イオン(C)の割合が、10モル%超100モル%以下であることも好ましい。この場合、刺激が与えられていない状態での抗菌性材料の高い貯蔵弾性率が特に実現されやすく、刺激が与えられてない状態で抗菌性材料が高い硬度を有しやすくなり、かつ抗菌性材料が耐薬品性を有しうる。 When the resin skeleton has a structure derived from an unsaturated carboxylic acid, that is, when the resin skeleton has a coordinating functional group derived from an unsaturated carboxylic acid, the ratio of the metal ion (C) to the unsaturated carboxylic acid is, for example, It is 1 mol% or more and 100 mol% or less. It is preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid is 1 mol% or more and 20 mol% or less. It is more preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is 1 mol% or more and 10 mol% or less. In this case, a low storage elastic modulus of the antibacterial material under the stimulus is particularly easy to be realized, and a scratch or the like is particularly easy to be repaired under the stimulus. It is also preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is more than 10 mol% and 100 mol% or less. In this case, the high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized, the antibacterial material is likely to have high hardness in the unstimulated state, and the antibacterial material is likely to have high hardness. May have chemical resistance.
 配位性官能基に対する金属イオン(C)の割合は、配位性官能基と金属イオン(C)とで形成される安定な配位構造における配位性官能基に対する金属イオン(C)の割合に近いことが好ましい。この場合、架橋構造の数密度が特に高くなり、刺激が与えられていない状態における抗菌性材料の高い貯蔵弾性率が特に実現されやすい。 The ratio of the metal ion (C) to the coordinating functional group is the ratio of the metal ion (C) to the coordinating functional group in the stable coordination structure formed by the coordinating functional group and the metal ion (C). It is preferable that it is close to. In this case, the number density of the crosslinked structure becomes particularly high, and a high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized.
 例えば金属イオン(C)がナトリウムイオンである場合、ナトリウムに一つのカルボキシレート基と二つのカルボキシル基とが配位することで安定した配位構造(六配位構造)が形成される。そのため不飽和カルボン酸(b11)と不飽和カルボン酸(b21)との合計に対する金属イオン(C)の割合は33モル%に近いことが好ましく、例えば5モル%以上40モル%以下であることが好ましい。 For example, when the metal ion (C) is a sodium ion, a stable coordination structure (six coordination structure) is formed by coordinating one carboxylate group and two carboxyl groups to sodium. Therefore, the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is preferably close to 33 mol%, for example, 5 mol% or more and 40 mol% or less. preferable.
 金属イオン(C)が亜鉛イオンである場合には、一つの亜鉛イオンに二つのカルボキシレート基が配位することで安定した配位構造(四配位構造)が形成されるが、実際には一つの亜鉛イオンに二つのカルボキシレート基と一つのカルボキシル基とが配位した六配位構造も混在する。そのため不飽和カルボン酸に対する金属イオン(C)の割合は35モル%に近いことが好ましく、例えば5モル%以上40モル%以下であることが好ましい。 When the metal ion (C) is a zinc ion, a stable coordination structure (four-coordination structure) is formed by coordinating two carboxylate groups to one zinc ion, but in reality, it is formed. A six-coordinated structure in which two carboxylate groups and one carboxyl group are coordinated to one zinc ion is also mixed. Therefore, the ratio of the metal ion (C) to the unsaturated carboxylic acid is preferably close to 35 mol%, and is preferably 5 mol% or more and 40 mol% or less, for example.
 抗菌性材料の光沢度は、入射角60°で10GU以上1000GU以下であってもよい。光沢度は、JIS K5600-4-7により規定される。光沢度を測定するための測定装置として、例えば堀場製作所製のグロスチェッカー(型番IG-331)を用いることができる。抗菌性材料の光沢度が高いと、抗菌性材料は高い抗菌性能を有しやすい。また、抗菌性材料に傷がついた場合に光沢度が低下して抗菌性能が低下しても、上述のとおり抗菌性材料の傷は修復されやすいため、抗菌性材料の高い光沢度を回復させやすく、そのため抗菌性材料の抗菌性能が良好に保たれやすい。言い換えると、光沢度が入射角60°で10GU以上1000GU以下の抗菌性材料を作製すれば抗菌性材料の抗菌性能が良好に保たれやすい。 The glossiness of the antibacterial material may be 10 GU or more and 1000 GU or less at an incident angle of 60 °. The glossiness is defined by JIS K5600-4-7. As a measuring device for measuring the glossiness, for example, a gloss checker (model number IG-331) manufactured by HORIBA, Ltd. can be used. When the glossiness of the antibacterial material is high, the antibacterial material tends to have high antibacterial performance. Further, even if the antibacterial material is scratched and the glossiness is lowered and the antibacterial performance is lowered, the scratches on the antibacterial material are easily repaired as described above, so that the high glossiness of the antibacterial material is restored. Therefore, the antibacterial performance of the antibacterial material is easily maintained. In other words, if an antibacterial material having a glossiness of 10 GU or more and 1000 GU or less at an incident angle of 60 ° is produced, the antibacterial performance of the antibacterial material can be easily maintained.
 抗菌性材料の、CIE1976L***色空間(CIELAB)によるL*が0以上20以下であってもよい。L*はJIS Z8781-4により規定される。抗菌性材料のL*が0以上20以下である場合、抗菌性材料に傷がついた場合に傷が特に目立ちやすくなるが、上述のとおり抗菌性材料に傷がついても傷が修復されやすいため、抗菌性材料の外観が良好に保たれやすい。言い換えると、L*が0以上20以下の抗菌性材料を作製すれば抗菌性材料の外観が良好に保たれやすい。抗菌性材料のL*を調整するためには、例えば抗菌性材料に黒色の着色材を配合すればよい。黒色の着色材は、例えばカーボンブラック、ランプブラック、ボーンブラックといった炭素系黒色顔料、酸化鉄、銅とクロムの複合酸化物といった酸化物系黒色顔料などからなる群から選択される少なくとも一種の材料を含有する。 The L * of the antibacterial material according to CIE1976L * a * b * color space (CIELAB) may be 0 or more and 20 or less. L * is specified by JIS Z8781-4. When the L * of the antibacterial material is 0 or more and 20 or less, the scratches are particularly noticeable when the antibacterial material is scratched, but as described above, the scratches are easily repaired even if the antibacterial material is scratched. , The appearance of the antibacterial material is easily maintained. In other words, if an antibacterial material having an L * of 0 or more and 20 or less is produced, the appearance of the antibacterial material can be easily maintained. In order to adjust the L * of the antibacterial material, for example, a black coloring material may be blended with the antibacterial material. The black coloring material is at least one material selected from the group consisting of carbon-based black pigments such as carbon black, lamp black, and bone black, and oxide-based black pigments such as iron oxide and composite oxides of copper and chromium. contains.
 なお、抗菌性材料の有しうる光沢度及び色は上記に限られず、抗菌性材料は適宜の光沢度及び適宜の色を有してよい。 The glossiness and color that the antibacterial material can have are not limited to the above, and the antibacterial material may have an appropriate glossiness and an appropriate color.
 以下、自己修復性材料における樹脂骨格が重合性化合物(a)の重合体(A)を含む場合の第一実施形態と、樹脂骨格が高分子(B)を含む場合の第二実施形態について説明する。ただし、自己修復性材料の構成はこれらには限られず、自己修復性を有する適宜の材料が使用されうる。 Hereinafter, the first embodiment in the case where the resin skeleton in the self-repairing material contains the polymer (A) of the polymerizable compound (a) and the second embodiment in the case where the resin skeleton contains the polymer (B) will be described. do. However, the composition of the self-healing material is not limited to these, and an appropriate material having self-healing property can be used.
 2.第一実施形態
 第一実施形態では、樹脂骨格は、重合性化合物(a)の重合体(A)を含み、重合性化合物(a)は、不飽和カルボン酸(a1)を含有する。このため、本実施形態では、不飽和カルボン酸(a1)に由来する配位性官能基、具体的にはカルボキシル基とカルボキシレート基とのうち少なくとも一方を利用して、自己修復性材料内に動的結合を生じさせ、自己修復性を発現させることができる。
2. 2. First Embodiment In the first embodiment, the resin skeleton contains the polymer (A) of the polymerizable compound (a), and the polymerizable compound (a) contains an unsaturated carboxylic acid (a1). Therefore, in the present embodiment, a coordinating functional group derived from the unsaturated carboxylic acid (a1), specifically, at least one of a carboxyl group and a carboxylate group is used in the self-healing material. It is possible to generate dynamic binding and develop self-repairing property.
 このような樹脂骨格を有する抗菌性材料は、例えば重合性化合物(a)を含有する組成物(X)を調製し、この組成物(X)を適宜の形状に成形してから、重合性化合物(a)を重合させることで硬化させることで、作製される。 For the antibacterial material having such a resin skeleton, for example, a composition (X) containing the polymerizable compound (a) is prepared, the composition (X) is molded into an appropriate shape, and then the polymerizable compound is formed. It is produced by curing (a) by polymerizing it.
 本実施形態では、重合性化合物(a)の重合体(A)は、好ましくは巨大分子であり、重合体(A)の骨格中に複数の配位性官能基がある。この配位性官能基を利用して、重合体(A)内で複数の動的結合が形成されうる。このため、刺激が与えられない状態(例えば第一の状態)では、抗菌性材料中で強固な三次元網目構造が形成されることで、弾性率の低下及び硬さの低下が生じにくく、このため抗菌性材料に力が加えられても変形しにくくできる。さらに、刺激が与えられていない状態では、耐溶剤性の低下も生じ難い。一方、刺激が与えられると、動的結合が解離することで、自己修復性材料における架橋密度が低くなり、抗菌性材料内に巨視的な流動が生じやすくなる。このため、抗菌性材料に力を加えられると塑性変形しやすくなる。このため、抗菌性材料が傷付けられても、抗菌性材料に刺激を与えれば、抗菌性材料を容易に変形させて傷を修復することができる。また、抗菌性材料を接着性が必要な用途に適用すれば、刺激が与えられていない状態では良好な接着性を確保し、刺激が与えられると接着性を低下させて剥離を生じさせやすくすることもできる。 In the present embodiment, the polymer (A) of the polymerizable compound (a) is preferably a macromolecule, and there are a plurality of coordinating functional groups in the skeleton of the polymer (A). Using this coordinating functional group, a plurality of dynamic bonds can be formed in the polymer (A). Therefore, in a state where no stimulus is given (for example, in the first state), a strong three-dimensional network structure is formed in the antibacterial material, so that the elastic modulus and the hardness are less likely to decrease. Therefore, even if a force is applied to the antibacterial material, it can be made difficult to be deformed. Further, in a state where no stimulus is given, the solvent resistance is unlikely to decrease. On the other hand, when a stimulus is applied, the dynamic bond dissociates, which lowers the crosslink density in the self-healing material and facilitates macroscopic flow in the antibacterial material. Therefore, when a force is applied to the antibacterial material, it tends to be plastically deformed. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be repaired. In addition, if the antibacterial material is applied to applications that require adhesiveness, good adhesiveness is ensured in the unstimulated state, and when stimulus is applied, the adhesiveness is lowered and peeling is likely to occur. You can also do it.
 重合性化合物(a)は、溶解度パラメータの値の範囲(レンジ)が2.0以内である成分(a0)を、50モル%以上100モル%以下の割合で含有し、この成分(a0)が少なくとも不飽和カルボン酸(a1)を含有することが好ましい。この場合、組成物(X)中での不飽和カルボン酸(a1)の分散性は高い。このため組成物(X)から作製される抗菌性材料中には不飽和カルボン酸(a1)に由来する配位性官能基が良好に分散しうる。このため、動的結合による架橋構造が、抗菌性材料中に良好に分散して存在しうる。そのため、抗菌性材料は強固な構造を有することができ、第一の状態にある抗菌性材料の貯蔵弾性率が1GPa以上であることも実現しうる。また、刺激が与えられると抗菌性材料中に分散する動的結合が解離することで、樹脂骨格を構成する分子鎖が良好に移動しやすくなり、抗菌性材料が塑性変形しやすくなる。これにより、第二の状態にある抗菌性材料の貯蔵弾性率が10MPa以下であることも実現しうる。 The polymerizable compound (a) contains a component (a0) having a solubility parameter value range (range) of 2.0 or less in a proportion of 50 mol% or more and 100 mol% or less, and this component (a0) is contained. It preferably contains at least an unsaturated carboxylic acid (a1). In this case, the dispersibility of the unsaturated carboxylic acid (a1) in the composition (X) is high. Therefore, the coordinating functional group derived from the unsaturated carboxylic acid (a1) can be well dispersed in the antibacterial material produced from the composition (X). Therefore, the crosslinked structure by dynamic bonding may be well dispersed and present in the antibacterial material. Therefore, the antibacterial material can have a strong structure, and it can be realized that the storage elastic modulus of the antibacterial material in the first state is 1 GPa or more. Further, when a stimulus is applied, the dynamic bonds dispersed in the antibacterial material are dissociated, so that the molecular chains constituting the resin skeleton are easily moved and the antibacterial material is easily plastically deformed. Thereby, it is possible to realize that the storage elastic modulus of the antibacterial material in the second state is 10 MPa or less.
 本実施形態の構成について、更に詳しく説明する。 The configuration of this embodiment will be described in more detail.
 上述のとおり、重合性化合物(a)は不飽和カルボン酸(a1)を含有することが好ましい。不飽和カルボン酸(a1)は、一分子中に一つの重合性不飽和基を有することが好ましい。この場合、第二の状態にある抗菌性材料の貯蔵弾性率が10MPa以下であることが特に実現しやすい。不飽和カルボン酸(a1)は、メタクリル酸(溶解度パラメータ10.73)とアクリル酸(溶解度パラメータ11.08)とのうち少なくとも一方を含有することが好ましい。この場合、刺激が与えられていない状態での抗菌性材料の高い貯蔵弾性率と刺激が与えられている状態での抗菌性材料の低い貯蔵弾性率とが特に実現されやすい。なお、不飽和カルボン酸(a1)が含みうる化合物は前記のみには制限されない。 As described above, the polymerizable compound (a) preferably contains an unsaturated carboxylic acid (a1). The unsaturated carboxylic acid (a1) preferably has one polymerizable unsaturated group in one molecule. In this case, it is particularly easy to realize that the storage elastic modulus of the antibacterial material in the second state is 10 MPa or less. The unsaturated carboxylic acid (a1) preferably contains at least one of methacrylic acid (solubility parameter 10.73) and acrylic acid (solubility parameter 11.08). In this case, it is particularly easy to realize a high storage elastic modulus of the antibacterial material in the unstimulated state and a low storage elastic modulus of the antibacterial material in the stimulated state. The compound that the unsaturated carboxylic acid (a1) can contain is not limited to the above.
 成分(a0)は、不飽和カルボン酸(a1)のみを含有してもよいが、不飽和カルボン酸(a1)以外の化合物を含有してもよい。成分(a0)中の不飽和カルボン酸(a1)以外の化合物の割合を調整することによって、抗菌性材料中の架橋構造の数密度を調整でき、これにより抗菌性材料の刺激が与えられていない状態での貯蔵弾性率及び刺激が与えられている状態での貯蔵弾性率を調整できる。また、不飽和カルボン酸(a1)以外の化合物によって、抗菌性材料の種々の物性を調整することもできる。 The component (a0) may contain only the unsaturated carboxylic acid (a1), but may contain a compound other than the unsaturated carboxylic acid (a1). By adjusting the proportion of the compound other than the unsaturated carboxylic acid (a1) in the component (a0), the number density of the crosslinked structure in the antibacterial material can be adjusted, thereby not stimulating the antibacterial material. The storage elastic modulus in the state and the storage elastic modulus in the state of being stimulated can be adjusted. Further, various physical properties of the antibacterial material can be adjusted by a compound other than the unsaturated carboxylic acid (a1).
 重合性化合物(a)は、不飽和カルボン酸エステル(a2)を更に含有してもよい。不飽和カルボン酸エステル(a2)は抗菌性材料の疎水性を高めることができ、このため抗菌性材料に耐水性を付与しやすくなる。重合性化合物(a)が成分(a0)を含有する場合、成分(a0)が不飽和カルボン酸エステル(a2)を含有してもよい。不飽和カルボン酸エステル(a2)は不飽和カルボン酸(a1)と近い溶解度パラメータを有することができ、そのため刺激が与えられていない状態での抗菌性材料の高い貯蔵弾性率と刺激が与えられている状態での抗菌性材料の低い貯蔵弾性率とが特に実現されやすい。 The polymerizable compound (a) may further contain an unsaturated carboxylic acid ester (a2). The unsaturated carboxylic acid ester (a2) can enhance the hydrophobicity of the antibacterial material, which makes it easy to impart water resistance to the antibacterial material. When the polymerizable compound (a) contains the component (a0), the component (a0) may contain an unsaturated carboxylic acid ester (a2). The unsaturated carboxylic acid ester (a2) can have a solubility parameter close to that of the unsaturated carboxylic acid (a1), so that it is given the high storage modulus and irritation of the antibacterial material in the unstimulated state. The low storage modulus of the antibacterial material in the presence is particularly easy to achieve.
 不飽和カルボン酸エステル(a2)は、一分子中に一つの重合性不飽和基を有することが好ましい。この場合、刺激が与えられている状態での抗菌性材料の貯蔵弾性率が10MPa以下であることが特に実現しやすい。不飽和カルボン酸(a1)がアクリル酸とメタクリル酸とのうち少なくとも一方を含有し、かつ不飽和カルボン酸エステル(a2)がアクリル酸エステルとメタクリル酸エステルとのうち少なくとも一方を含有することが、好ましい。この場合、刺激が与えられていない状態での抗菌性材料の高い貯蔵弾性率が特に実現されやすい。これは、成分(a0)の重合体の主鎖骨格が剛直になりやすいためであると推察される。 The unsaturated carboxylic acid ester (a2) preferably has one polymerizable unsaturated group in one molecule. In this case, it is particularly easy to realize that the storage elastic modulus of the antibacterial material under the stimulus is 10 MPa or less. The unsaturated carboxylic acid (a1) contains at least one of acrylic acid and methacrylic acid, and the unsaturated carboxylic acid ester (a2) contains at least one of acrylic acid ester and methacrylic acid ester. preferable. In this case, a high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized. It is presumed that this is because the main clavicle of the polymer of the component (a0) tends to be rigid.
 不飽和カルボン酸エステル(a2)は、例えばメタクリル酸メチル(溶解度パラメータ9.5)、メタクリル酸エチル(溶解度パラメータ9.0)、メタクリル酸ブチル(溶解度パラメータ8.8)、アクリル酸メチル(溶解度パラメータ10)、アクリル酸エチル(溶解度パラメータ9.5)、アクリル酸プロピル(溶解度パラメータ9.0)、及びアクリル酸ブチル(溶解度パラメータ9.0)などからなる群から選択される少なくとも一種の化合物を含有する。不飽和カルボン酸エステル(a2)は、特にメタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル及びアクリル酸エチルからなる群から選択される少なくとも一種の化合物を含有することが好ましい。この場合、刺激が与えられてない状態での抗菌性材料の高い貯蔵弾性率と刺激が与えられている状態での抗菌性材料の低い貯蔵弾性率とが特に実現されやすい。なお、不飽和カルボン酸エステル(a2)が含みうる化合物は前記のみには制限されない。 The unsaturated carboxylic acid ester (a2) may be, for example, methyl methacrylate (solubility parameter 9.5), ethyl methacrylate (solubility parameter 9.0), butyl methacrylate (solubility parameter 8.8), methyl acrylate (solubility parameter 8.8). 10), contains at least one compound selected from the group consisting of ethyl acrylate (solubility parameter 9.5), propyl acrylate (solubility parameter 9.0), butyl acrylate (solubility parameter 9.0) and the like. do. The unsaturated carboxylic acid ester (a2) preferably contains at least one compound selected from the group consisting of methyl methacrylate, ethyl methacrylate, methyl acrylate and ethyl acrylate. In this case, a high storage elastic modulus of the antibacterial material in the unstimulated state and a low storage elastic modulus of the antibacterial material in the stimulated state are particularly likely to be realized. The compound that can be contained in the unsaturated carboxylic acid ester (a2) is not limited to the above.
 成分(a0)が不飽和カルボン酸(a1)と不飽和カルボン酸エステル(a2)とを含有する場合、不飽和カルボン酸(a1)と不飽和カルボン酸エステル(a2)との合計に対する不飽和カルボン酸エステル(a2)の割合が50モル%以上99モル%以下であることが好ましい。この場合、この割合が50モル%以上であると、抗菌性材料は特に高い耐水性を有しやすい。この割合が99モル%以下であると、刺激が与えられてない状態での抗菌性材料の高い貯蔵粘弾性と刺激が与えられている状態での抗菌性材料の低い貯蔵粘弾性とが実現されやすい。この割合は70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、85モル%以上であれば特に好ましい。また、この割合は95モル%以下であればより好ましく、90モル%以下であれば特に好ましい。なお、刺激が与えられていない状態での抗菌性材料の貯蔵粘弾性の向上と刺激が与えられている状態での抗菌性材料の貯蔵粘弾性の低下とを重視する場合には、不飽和カルボン酸エステル(a2)の割合は50モル%以下であってもよい。 When the component (a0) contains an unsaturated carboxylic acid (a1) and an unsaturated carboxylic acid ester (a2), the unsaturated carboxylic acid with respect to the total of the unsaturated carboxylic acid (a1) and the unsaturated carboxylic acid ester (a2). The ratio of the acid ester (a2) is preferably 50 mol% or more and 99 mol% or less. In this case, when this ratio is 50 mol% or more, the antibacterial material tends to have particularly high water resistance. When this ratio is 99 mol% or less, high storage viscoelasticity of the antibacterial material in the unstimulated state and low storage viscoelasticity of the antibacterial material in the stimulated state are realized. Cheap. This ratio is more preferably 70 mol% or more, further preferably 80 mol% or more, and particularly preferably 85 mol% or more. Further, this ratio is more preferably 95 mol% or less, and particularly preferably 90 mol% or less. In addition, when emphasis is placed on the improvement of the storage viscoelasticity of the antibacterial material in the unstimulated state and the decrease in the storage viscoelasticity of the antibacterial material in the state of being stimulated, the unsaturated carboxylic acid is used. The ratio of the acid ester (a2) may be 50 mol% or less.
 重合性化合物(a)に対する成分(a0)の割合は50モル%以上であることが好ましい。この場合、抗菌性材料の刺激が与えられてない状態での高い貯蔵弾性率と刺激が与えられている状態での低い貯蔵弾性率とが実現されやすい。この割合は80モル%以上であることがより好ましく、95モル%以上であれば更に好ましい。重合性化合物(a)が成分(a0)のみを含有することも好ましい。 The ratio of the component (a0) to the polymerizable compound (a) is preferably 50 mol% or more. In this case, it is easy to realize a high storage elastic modulus in the state where the antibacterial material is not stimulated and a low storage elastic modulus in the state where the stimulation is applied. This ratio is more preferably 80 mol% or more, and further preferably 95 mol% or more. It is also preferable that the polymerizable compound (a) contains only the component (a0).
 重合性化合物(a)が成分(a0)以外の成分(以下、成分(a3)という)を含有する場合、この成分(a3)は、例えば上記の成分(a0)に含まれる不飽和カルボン酸(a1)以外のアクリル酸、成分(a0)に含まれる不飽和カルボン酸エステル(a2)以外の不飽和カルボン酸エステル、及び前記以外の不飽和化合物からなる群から選択される少なくとも一種の化合物を含有する。例えば成分(a3)は、スチレン(溶解度パラメータ8.7)、メタクリル酸ラウリル(溶解度パラメータ8.2)、メタクリル酸ステアリル(溶解度パラメータ7.8)、エチレン(溶解度パラメータ8.0)、エチレンテレフタレート(溶解度10.7)、イソプレン(溶解度パラメータ8.2)などからなる群から選択される少なくとも一種の化合物を含有する。 When the polymerizable compound (a) contains a component other than the component (a0) (hereinafter referred to as the component (a3)), the component (a3) may be, for example, an unsaturated carboxylic acid contained in the above component (a0). Contains at least one compound selected from the group consisting of acrylic acids other than a1), unsaturated carboxylic acid esters other than unsaturated carboxylic acid esters (a2) contained in component (a0), and unsaturated compounds other than the above. do. For example, the component (a3) is styrene (solubility parameter 8.7), lauryl methacrylate (solubility parameter 8.2), stearyl methacrylate (solubility parameter 7.8), ethylene (solubility parameter 8.0), ethylene terephthalate (solubility parameter 8.0). It contains at least one compound selected from the group consisting of solubility 10.7), isoprene (solubility parameter 8.2) and the like.
 成分(a0)の溶解度パラメータの値の範囲は2.0以内であることが好ましい。すなわち、成分(a0)が複数種の化合物を含有する場合は、成分(a0)中の最大の溶解度パラメータを有する化合物と、最小の溶解度パラメータを有する化合物との間の溶解度パラメータの差の絶対値は、2.0以下であることが好ましい。なお、成分(a0)は、単一の化合物のみを含有してもよく、同一の溶解度パラメータを有する複数種の化合物のみを含有してもよい。これらの場合、成分(a0)の溶解度パラメータの範囲は0である。重合性化合物(a)中の化合物のうち、成分(a0)に含まれる化合物は、成分(a0)の割合が最大になるように選択される。このため、重合性化合物(a)が複数種の化合物を含有する場合、各化合物が成分(a0)と成分(a3)とのうちいずれに含まれるかは、各化合物の溶解度パラメータ及び重合性化合物(a)に対する割合によって決まる。そのため、成分(a0)が含みうる化合物は上記説明のみには制限されず、また成分(a3)が含みうる化合物も上記説明のみには制限されない。すなわち、同じ化合物であっても、重合性化合物(a)の組成によっては、成分(a0)に含まれる場合もあれば、成分(a3)に含まれる場合もある。例えば仮に、重合性化合物(a)が、不飽和カルボン酸である化合物α、化合物αよりも溶解度パラメータが1.5大きい不飽和カルボン酸エステルである化合物β、及び化合物αよりも溶解度パラメータが1.5小さい不飽和カルボン酸エステルである化合物γのみを含有する場合を想定する。この場合、重合性化合物(a)に対して、化合物αの割合が40質量%、化合物βの割合が59質量%、化合物γの割合が1質量%であれば、成分(a0)の割合が最大になるように成分(a0)に含まれる化合物が選択されると、成分(a0)は化合物α及び化合物βを含有し、かつ成分(a3)は化合物γを含有する。この場合、不飽和カルボン酸(a1)は化合物αからなり、かつ不飽和カルボン酸エステル(a2)は化合物βからなる。この場合の成分(a0)の溶解度パラメータの値の範囲は1.5であり、成分(a0)の割合は99質量%である。また、化合物αの割合が40質量%、化合物βの割合が1質量%、化合物γの割合が59質量%であれば、成分(a0)の割合が最大になるように成分(a0)に含まれる化合物が選択されると、成分(a0)が化合物α及び化合物γを含有し、かつ成分(a3)が化合物βを含有する。この場合、不飽和カルボン酸(a1)は化合物αからなり、かつ不飽和カルボン酸エステル(a2)は化合物γからなる。この場合の成分(a0)の溶解度パラメータの値の範囲は1.5であり、成分(a0)の割合は99質量%である。化合物βの割合と化合物γの割合とが同じである場合には、成分(a0)が化合物α及び化合物βを含有しかつ成分(a3)が化合物γを含有するとみなしてもよいし、成分(a0)が化合物α及び化合物γを含有しかつ成分(a3)が化合物βを含有するとみなしてもよい。 The range of the solubility parameter value of the component (a0) is preferably 2.0 or less. That is, when the component (a0) contains a plurality of kinds of compounds, the absolute value of the difference in the solubility parameter between the compound having the maximum solubility parameter and the compound having the minimum solubility parameter in the component (a0). Is preferably 2.0 or less. The component (a0) may contain only a single compound, or may contain only a plurality of types of compounds having the same solubility parameter. In these cases, the range of the solubility parameter of the component (a0) is 0. Among the compounds in the polymerizable compound (a), the compound contained in the component (a0) is selected so that the ratio of the component (a0) is maximized. Therefore, when the polymerizable compound (a) contains a plurality of types of compounds, whether each compound is contained in the component (a0) or the component (a3) is determined by the solubility parameter of each compound and the polymerizable compound. It is determined by the ratio to (a). Therefore, the compound that can be contained in the component (a0) is not limited to the above description alone, and the compound that can be contained in the component (a3) is not limited to the above description alone. That is, even if the same compound is used, it may be contained in the component (a0) or may be contained in the component (a3) depending on the composition of the polymerizable compound (a). For example, suppose that the polymerizable compound (a) has a solubility parameter of 1 than that of compound α, which is an unsaturated carboxylic acid, compound β, which is an unsaturated carboxylic acid ester having a solubility parameter 1.5 larger than that of compound α, and compound α. .5 It is assumed that the compound γ, which is a small unsaturated carboxylic acid ester, is contained. In this case, if the ratio of the compound α is 40% by mass, the ratio of the compound β is 59% by mass, and the ratio of the compound γ is 1% by mass with respect to the polymerizable compound (a), the ratio of the component (a0) is When the compound contained in the component (a0) is selected so as to be maximum, the component (a0) contains the compound α and the compound β, and the component (a3) contains the compound γ. In this case, the unsaturated carboxylic acid (a1) is composed of compound α, and the unsaturated carboxylic acid ester (a2) is composed of compound β. In this case, the range of the solubility parameter value of the component (a0) is 1.5, and the ratio of the component (a0) is 99% by mass. Further, if the ratio of the compound α is 40% by mass, the ratio of the compound β is 1% by mass, and the ratio of the compound γ is 59% by mass, the component (a0) is included in the component (a0) so as to maximize the ratio of the component (a0). When a compound is selected, the component (a0) contains the compound α and the compound γ, and the component (a3) contains the compound β. In this case, the unsaturated carboxylic acid (a1) is composed of compound α, and the unsaturated carboxylic acid ester (a2) is composed of compound γ. In this case, the range of the solubility parameter value of the component (a0) is 1.5, and the ratio of the component (a0) is 99% by mass. When the ratio of the compound β and the ratio of the compound γ are the same, it may be considered that the component (a0) contains the compound α and the compound β and the component (a3) contains the compound γ, or the component (a3) may be contained. It may be considered that a0) contains the compound α and the compound γ and the component (a3) contains the compound β.
 第一実施形態では、自己修復性材料は金属イオン(C)を含有することが好ましい。金属イオン(C)は、重合体(A)における配位性官能基が配位することで、重合体(A)を架橋して動的結合(金属配位結合)を形成することができる。金属イオン(C)は、重合体(A)が有する配位性官能基が配位できるのであれば、特に制限はない。金属イオン(C)の詳細は、既に説明したとおりである。第一実施形態では、不飽和カルボン酸(a1)に対する金属イオン(C)の割合は、例えば1モル%以上100モル%以下である。不飽和カルボン酸(a1)に対する金属イオン(C)の割合が1モル%以上20モル%以下であれば好ましい。不飽和カルボン酸(a1)に対する金属イオン(C)の割合が、1モル%以上10モル%以下であれば更に好ましい。この場合、刺激が与えられている状態での抗菌性材料の低い貯蔵弾性率が特に実現されやすくなり、抗菌性材料に刺激が与えられている状態で特に傷などが修復されやすくなる。不飽和カルボン酸(a1)に対する金属イオン(C)の割合が、10モル%超100モル%以下であることも好ましい。この場合、刺激が与えられていない状態での抗菌性材料の高い貯蔵弾性率が特に実現されやすく、刺激が与えられてない状態で抗菌性材料が高い硬度を有しやすくなり、かつ抗菌性材料が耐薬品性を有しうる。また、金属イオン(C)がナトリウムイオンである場合、不飽和カルボン酸(a1)に対する金属イオン(C)の割合は33モル%に近いことが好ましく、例えば5モル%以上40モル%以下であることが好ましい。金属イオン(C)が亜鉛イオンである場合には、不飽和カルボン酸(a1)に対する金属イオン(C)の割合は35モル%に近いことが好ましく、例えば5モル%以上40モル%以下であることが好ましい。 In the first embodiment, the self-healing material preferably contains a metal ion (C). The metal ion (C) can crosslink the polymer (A) to form a dynamic bond (metal coordination bond) by coordinating the coordinating functional group in the polymer (A). The metal ion (C) is not particularly limited as long as the coordinating functional group of the polymer (A) can be coordinated. The details of the metal ion (C) are as described above. In the first embodiment, the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is, for example, 1 mol% or more and 100 mol% or less. It is preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is 1 mol% or more and 20 mol% or less. It is more preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is 1 mol% or more and 10 mol% or less. In this case, it becomes particularly easy to realize a low storage elastic modulus of the antibacterial material in a state where the antibacterial material is given a stimulus, and it becomes particularly easy to repair a scratch or the like in a state where the antibacterial material is given a stimulus. It is also preferable that the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is more than 10 mol% and 100 mol% or less. In this case, the high storage elastic modulus of the antibacterial material in the unstimulated state is particularly likely to be realized, the antibacterial material is likely to have high hardness in the unstimulated state, and the antibacterial material is likely to have high hardness. May have chemical resistance. When the metal ion (C) is a sodium ion, the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is preferably close to 33 mol%, for example, 5 mol% or more and 40 mol% or less. Is preferable. When the metal ion (C) is a zinc ion, the ratio of the metal ion (C) to the unsaturated carboxylic acid (a1) is preferably close to 35 mol%, for example, 5 mol% or more and 40 mol% or less. Is preferable.
 抗菌性材料は、上記以外の添加剤を含有してもよい。例えば抗菌性材料は、着色材、可塑剤、抗菌剤、難燃剤、酸化防止剤、金属不活性化剤、紫外線保護剤、帯電防止剤、フィラー等を含有してもよい。 The antibacterial material may contain additives other than the above. For example, the antibacterial material may contain a coloring material, a plasticizer, an antibacterial agent, a flame retardant, an antioxidant, a metal deactivating agent, an ultraviolet protective agent, an antistatic agent, a filler and the like.
 3.第二実施形態
 第二実施形態では、樹脂骨格は、高分子(B)を含有し、高分子(B)に含まれる分子間が動的結合で架橋されている。このように高分子(B)に含まれる分子間が動的結合によって架橋されることで、自己修復性材料の自己修復性が発現しやすい。
3. 3. Second Embodiment In the second embodiment, the resin skeleton contains the polymer (B), and the molecules contained in the polymer (B) are crosslinked by a dynamic bond. By cross-linking the molecules contained in the polymer (B) by dynamic bonds in this way, the self-repairing property of the self-repairing material is likely to be exhibited.
 樹脂骨格中の高分子(B)は、第一高分子(B1)と第二高分子(B2)とを含有することが好ましい。第一高分子(B1)の重量平均分子量が20000以下であり、かつ第二高分子(B2)の重量平均分子量が30000以上であることが好ましい。この場合、第一高分子(B1)と第二高分子(B2)とは、動的結合によって、刺激に応じて可逆的に解離及び結合する。この場合、抗菌性材料に刺激が与えられていない状態(例えば第一の状態)では、抗菌性材料中で第一高分子(B1)が拘束されることで、分子量の低い第一高分子(B1)に起因する弾性率の低下及び硬さの低下が生じにくく、このため抗菌性材料に力が加えられても変形しにくくできる。さらに、抗菌性材料に刺激が与えられていない状態では、分子量の低い第一高分子(B1)に起因する耐溶剤性の低下も生じ難い。一方、抗菌性材料に刺激が与えられると、動的結合が解離することで、低分子量の第一高分子(B1)が拘束されなくなり、抗菌性材料内で第一高分子(B1)が動きやすくなって可塑剤的な役割を果たすようになり、抗菌性材料内に巨視的な流動が生じやすくなる。このため、抗菌性材料に力を加えられると塑性変形しやすくなる。このため、抗菌性材料が傷付けられても、抗菌性材料に刺激を与えれば、抗菌性材料を容易に変形させて傷を修復することができる。また、抗菌性材料を接着性が必要な用途に適用すれば、刺激が与えられていない状態では良好な接着性を確保し、刺激が与えられると接着性を低下させて剥離を生じさせやすくすることもできる。ただし、抗菌性材料は、重量平均分子量が30000以上の第二高分子(B2)も含むため、抗菌性材料に刺激が与えられて第一高分子(B1)の拘束が緩められても、抗菌性材料中で第二高分子(B2)は移動しにくく、そのため抗菌性材料は過度には変形しにくくなる。このため、抗菌性材料が変形しても元の形状からかけ離れた形状になってしまうような事態は起こりにくい。抗菌性材料から刺激を除けば、動的結合が再結合することで変形しにくくなる。このため、抗菌性材料が修復された状態が維持される。 The polymer (B) in the resin skeleton preferably contains a first polymer (B1) and a second polymer (B2). It is preferable that the weight average molecular weight of the first polymer (B1) is 20,000 or less and the weight average molecular weight of the second polymer (B2) is 30,000 or more. In this case, the first polymer (B1) and the second polymer (B2) are reversibly dissociated and bound in response to a stimulus by dynamic binding. In this case, in the state where the antibacterial material is not stimulated (for example, the first state), the first polymer (B1) is constrained in the antibacterial material, so that the first polymer (B1) having a low molecular weight (for example) has a low molecular weight. The decrease in elastic modulus and the decrease in hardness due to B1) are unlikely to occur, and therefore, even if a force is applied to the antibacterial material, it can be less likely to be deformed. Further, in a state where the antibacterial material is not stimulated, the decrease in solvent resistance due to the low molecular weight first polymer (B1) is unlikely to occur. On the other hand, when a stimulus is given to the antibacterial material, the dynamic bond is dissociated, so that the low molecular weight first polymer (B1) is not restrained and the first polymer (B1) moves in the antibacterial material. It becomes easier to play a role as a plasticizer, and a macroscopic flow is likely to occur in the antibacterial material. Therefore, when a force is applied to the antibacterial material, it tends to be plastically deformed. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be repaired. In addition, if the antibacterial material is applied to applications that require adhesiveness, good adhesiveness is ensured in the unstimulated state, and when stimulus is applied, the adhesiveness is lowered and peeling is likely to occur. You can also do it. However, since the antibacterial material also contains a second polymer (B2) having a weight average molecular weight of 30,000 or more, even if the antibacterial material is stimulated and the restraint of the first polymer (B1) is relaxed, it is antibacterial. The second polymer (B2) is difficult to move in the sex material, so that the antibacterial material is not excessively deformed. Therefore, even if the antibacterial material is deformed, it is unlikely that the shape will be far from the original shape. When the stimulus is removed from the antibacterial material, the dynamic binding is recombined to make it less likely to deform. Therefore, the repaired state of the antibacterial material is maintained.
 例えば刺激が熱である場合には、抗菌性材料に熱を加えて温度を上昇させることで、動的結合を解離させることができ、熱を与えるのをやめて抗菌性材料の温度を低下させることで、動的結合を再結合させることができる。 For example, when the stimulus is heat, the dynamic bond can be dissociated by applying heat to the antibacterial material to raise the temperature, and the heat is stopped to lower the temperature of the antibacterial material. You can rejoin the dynamic join with.
 なお、動的結合と抗菌性材料の状態の変化との関係に関する上記の理論は、合理的に導き出されたものであるが、本開示はこの理論に拘束されるものではない。また、動的結合の解離及び再結合による抗菌性材料の状態の変化は明確でなくてもよく、すなわち抗菌性材料の状態は刺激に応じて徐々に変化してもよい。 Although the above theory regarding the relationship between the dynamic binding and the change in the state of the antibacterial material is reasonably derived, the present disclosure is not bound by this theory. Further, the change in the state of the antibacterial material due to the dissociation and recombination of the dynamic bond may not be clear, that is, the state of the antibacterial material may gradually change in response to the stimulus.
 本実施形態では、上記により、刺激が与えられていない状態(例えば第一の状態)と刺激が与えられている状態(例えば第二の状態)との間の抗菌性材料の硬度の差が大きくなりやすい。これにより、刺激が与えられていない状態では抗菌性材料は高い硬度を有しやすく、刺激が与えられている状態では抗菌性材料は塑性変形しやすくなって、例えば抗菌性材料に大きく深い傷が付けられていても傷が修復されやすい。例えば深さ100μm程度の傷であっても修復されやすくなる。 In the present embodiment, due to the above, the difference in hardness of the antibacterial material between the unstimulated state (for example, the first state) and the stimulated state (for example, the second state) is large. Prone. As a result, the antibacterial material tends to have high hardness when not stimulated, and the antibacterial material tends to be plastically deformed when stimulated, for example, the antibacterial material has large and deep scratches. Even if it is attached, the scratch is easy to repair. For example, even a scratch having a depth of about 100 μm can be easily repaired.
 刺激が熱を含む場合、第一高分子(B1)のガラス転移温度は、動的結合の解離温度よりも低いことが好ましい。この場合、抗菌性材料の温度が上昇して解離温度に達した時点では、第一高分子(B1)の温度が既にガラス転移温度を超えているため、抗菌性材料中で第一高分子(B1)が特に移動しやすくなる。このため、抗菌性材料の温度が解離温度以上になると、抗菌性材料が速やかに変形しやすくなることで、抗菌性材料の傷が特に修復されやすくなる。 When the stimulus involves heat, the glass transition temperature of the first polymer (B1) is preferably lower than the dissociation temperature of the dynamic bond. In this case, when the temperature of the antibacterial material rises and reaches the dissociation temperature, the temperature of the first polymer (B1) has already exceeded the glass transition temperature. B1) is particularly easy to move. Therefore, when the temperature of the antibacterial material becomes equal to or higher than the dissociation temperature, the antibacterial material is easily deformed rapidly, and the scratches on the antibacterial material are particularly easily repaired.
 第一高分子(B1)のガラス転移温度が30℃より高いことも好ましい。この場合、抗菌性材料が使用される環境下では第一高分子(B1)が移動しにくいため、抗菌性材料が高い硬度及び良好な耐薬品性を有しやすい。第一高分子(B1)のガラス転移温度と解離温度とがいずれも30℃より高ければ特に好ましい。 It is also preferable that the glass transition temperature of the first polymer (B1) is higher than 30 ° C. In this case, since the first polymer (B1) does not easily move in the environment where the antibacterial material is used, the antibacterial material tends to have high hardness and good chemical resistance. It is particularly preferable that both the glass transition temperature and the dissociation temperature of the first polymer (B1) are higher than 30 ° C.
 刺激が熱を含む場合、第二高分子(B2)のガラス転移温度は、動的結合の解離温度よりも高いことが好ましい。この場合、抗菌性材料の温度が上昇して解離温度に達した時点では、第二高分子(B2)の温度はガラス転移温度に達していないため、抗菌性材料中では第二高分子(B2)は特に移動しにくく、そのため抗菌性材料の過度な変形が特に生じにくくなる。 When the stimulus involves heat, the glass transition temperature of the second polymer (B2) is preferably higher than the dissociation temperature of the dynamic bond. In this case, when the temperature of the antibacterial material rises and reaches the dissociation temperature, the temperature of the second polymer (B2) does not reach the glass transition temperature, so that the second polymer (B2) is among the antibacterial materials. ) Is particularly difficult to move, so that excessive deformation of the antibacterial material is particularly unlikely to occur.
 より具体的には、解離温度は30℃以上200℃以下であることが好ましい。この場合、抗菌性材料が使用される環境下では抗菌性材料を変形しにくくし、かつ抗菌性材料の温度を上げることで抗菌性材料を変形しやすくできる。解離温度は50℃以上180℃以下であればより好ましく、80℃以上180℃以下であれば更に好ましい。これらの場合、温度の激しい変動や水分による影響を受けやすい屋外などの厳しい環境でも、抗菌性材料が弾性の高い状態を保ちやすく、かつ抗菌性材料に熱による刺激が与えられると抗菌性材料の弾性を低下させやすい。 More specifically, the dissociation temperature is preferably 30 ° C. or higher and 200 ° C. or lower. In this case, in an environment where the antibacterial material is used, the antibacterial material is less likely to be deformed, and the antibacterial material can be easily deformed by raising the temperature of the antibacterial material. The dissociation temperature is more preferably 50 ° C. or higher and 180 ° C. or lower, and further preferably 80 ° C. or higher and 180 ° C. or lower. In these cases, the antibacterial material tends to maintain a high elasticity even in a harsh environment such as outdoors, which is easily affected by drastic temperature fluctuations and moisture, and when the antibacterial material is stimulated by heat, the antibacterial material becomes It tends to reduce elasticity.
 第一高分子(B1)のガラス転移温度は、30℃以上、解離温度未満であることが好ましい。第一高分子(B1)のガラス転移温度は、40℃以上であればより好ましく、50℃以上であれば更に好ましい。 The glass transition temperature of the first polymer (B1) is preferably 30 ° C. or higher and lower than the dissociation temperature. The glass transition temperature of the first polymer (B1) is more preferably 40 ° C. or higher, and even more preferably 50 ° C. or higher.
 第二高分子(B2)のガラス転移温度は、解離温度よりも10℃以上高く、かつ100℃以上であることが好ましい。第二高分子(B2)のガラス転移温度は、120℃以上であればより好ましく、150℃以上であれば更に好ましい。第二高分子(B2)のガラス転移温度の上限は規定されないが、現実的にはガラス転移温度は250℃以下である。 The glass transition temperature of the second polymer (B2) is preferably 10 ° C. or higher and 100 ° C. or higher higher than the dissociation temperature. The glass transition temperature of the second polymer (B2) is more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher. The upper limit of the glass transition temperature of the second polymer (B2) is not specified, but in reality, the glass transition temperature is 250 ° C. or lower.
 なお、解離温度は動的結合の種類を選択することで調整できる。また、第一高分子(B1)及び第二高分子(B2)の各々のガラス転移温度は、第一高分子(B1)及び第二高分子(B2)の各々を構成するモノマーの種類、各々の分岐及び架橋の程度などによって調整できる。 The dissociation temperature can be adjusted by selecting the type of dynamic bond. Further, the glass transition temperature of each of the first polymer (B1) and the second polymer (B2) is the type of the monomer constituting each of the first polymer (B1) and the second polymer (B2), respectively. It can be adjusted by the degree of branching and cross-linking.
 第一高分子(B1)単独のガラス転移温度、第二高分子(B2)単独のガラス転移温度、及び抗菌性材料中の第一高分子(B1)及び第二高分子(B2)のガラス転移温度は、それぞれ第一高分子(B1)、第二高分子(B2)、及び抗菌性材料の、示差走査熱量分析(DSC)によって求められる。例えば測定装置として示差走査熱量測定装置(DSC3500、ネッチ社製)を用い、測定条件は30℃から230℃まで、昇温速度は5℃/分とし、これにより得られたDSC曲線から、ガラス転移温度を特定できる。 The glass transition temperature of the first polymer (B1) alone, the glass transition temperature of the second polymer (B2) alone, and the glass transition of the first polymer (B1) and the second polymer (B2) in the antibacterial material. The temperature is determined by differential scanning calorimetry (DSC) of the first polymer (B1), the second polymer (B2), and the antibacterial material, respectively. For example, using a differential scanning calorimetry device (DSC3500, manufactured by Netch Co., Ltd.) as a measuring device, the measurement conditions are from 30 ° C to 230 ° C, the temperature rise rate is 5 ° C / min, and the glass transition is obtained from the DSC curve obtained by this. The temperature can be specified.
 第一高分子(B1)及び第二高分子(B2)について、より具体的に説明する。 The first polymer (B1) and the second polymer (B2) will be described more specifically.
 第一高分子(B1)及び第二高分子(B2)の構造は、成形用材料に適用できるのであれば特に制限はない。 The structures of the first polymer (B1) and the second polymer (B2) are not particularly limited as long as they can be applied to the molding material.
 また、動的結合は、上述のとおり、例えば可逆共有結合、非共有相互作用による結合、及び配位結合よりなる群から選択される少なくとも一種を含む。特に動的結合が可逆共有結合であると、動的結合が結合している状態では抗菌性材料中に強固な架橋構造が形成されやすく、そのため抗菌性材料が耐溶剤性及び耐水性を有しやすい。可逆共有結合の例として、エステル結合、イミン結合、アシル結合、ジスルフィド結合、ディールスアルダー結合、及びボロン酸エステル結合、等が挙げられる。 Further, as described above, the dynamic bond includes at least one selected from the group consisting of, for example, a reversible covalent bond, a non-covalent bond bond, and a coordinate bond. In particular, when the dynamic bond is a reversible covalent bond, a strong crosslinked structure is likely to be formed in the antibacterial material in the state where the dynamic bond is bonded, so that the antibacterial material has solvent resistance and water resistance. Cheap. Examples of reversible covalent bonds include ester bonds, imine bonds, acyl bonds, disulfide bonds, deal alder bonds, boronic acid ester bonds, and the like.
 第一高分子(B1)と第二高分子(B2)との合計に対する第一高分子(B1)の割合は10質量%以上50質量%以下であることが好ましい。第一高分子(B1)が5質量%以上であれば刺激が与えられている状態において抗菌性材料を特に変形させやすく、傷の修復が特に容易になる。第一高分子(B1)が50質量%以下であれば、第二の状態において抗菌性材料の過度な変形が特に生じにくくなる。第一高分子(B1)の割合は15質量%以上40質量%以下であればより好ましく、20質量%以上30質量%以下であれば更に好ましい。 The ratio of the first polymer (B1) to the total of the first polymer (B1) and the second polymer (B2) is preferably 10% by mass or more and 50% by mass or less. When the first polymer (B1) is 5% by mass or more, the antibacterial material is particularly easily deformed in a state of being stimulated, and the wound is particularly easily repaired. When the first polymer (B1) is 50% by mass or less, excessive deformation of the antibacterial material is particularly unlikely to occur in the second state. The ratio of the first polymer (B1) is more preferably 15% by mass or more and 40% by mass or less, and further preferably 20% by mass or more and 30% by mass or less.
 第一高分子(B1)の重量平均分子量が20000以下であれば、刺激が与えられている状態にある抗菌性材料が変形しやすい。この重量平均分子量は、15000以下であることが好ましく、10000以下であれば更に好ましい。また、この重量平均分子量は3000以上であることが好ましく、この場合、抗菌性材料に刺激が与えられていない状態において動的結合による強固な架橋構造が形成されやすく、そのため抗菌性材料が耐溶剤性及び耐水性を有しやすい。この重量平均分子量は5000以上であればより好ましく、7000以上であれば更に好ましい。これらの場合、自己修復性材料内で結合点が十分に確保されやすくなり、抗菌性材料に刺激が与えられてない状態で第一高分子(B1)が特に固定されやすくなって、抗菌性材料の耐溶剤性及び耐水性が特に得られやすい。 If the weight average molecular weight of the first polymer (B1) is 20000 or less, the antibacterial material in the state of being stimulated is easily deformed. The weight average molecular weight is preferably 15,000 or less, and more preferably 10,000 or less. Further, the weight average molecular weight is preferably 3000 or more, and in this case, a strong crosslinked structure by dynamic bonding is likely to be formed in a state where the antibacterial material is not stimulated, so that the antibacterial material is solvent resistant. Easy to have properties and water resistance. The weight average molecular weight is more preferably 5000 or more, and further preferably 7000 or more. In these cases, it becomes easy to sufficiently secure a bond point in the self-healing material, and the first polymer (B1) becomes particularly easy to be fixed in a state where the antibacterial material is not stimulated, so that the antibacterial material becomes easy to be fixed. Solvent resistance and water resistance are particularly easy to obtain.
 また、第二高分子(B2)の重量平均分子量が30000以上であれば、第一の状態にある抗菌性材料が高い硬度及び良好な耐薬品性を有しやすく、かつ刺激が与えられている状態にある抗菌性材料の過度な変形が抑制されやすい。この重量平均分子量は、40000以上であればより好ましく、50000以上であれば更に好ましい。また、この重量平均分子量は例えば1000000以下、500000以下、又は100000以下であるが、これに制限されない。 Further, when the weight average molecular weight of the second polymer (B2) is 30,000 or more, the antibacterial material in the first state tends to have high hardness and good chemical resistance, and is stimulated. Excessive deformation of the antibacterial material in the state is likely to be suppressed. The weight average molecular weight is more preferably 40,000 or more, and further preferably 50,000 or more. Further, the weight average molecular weight is, for example, 1,000,000 or less, 500,000 or less, or 100,000 or less, but is not limited thereto.
 なお、第一高分子(B1)及び第二高分子(B2)の各々の重量平均分子量は、ゲルパーミエーションクロマトグラフィによる第一高分子(B1)及び第二高分子(B2)の各々の測定結果を、標準物質を用いて得られた検量線で較正することで得られる分子量分布曲線から、求められる。ゲルパーミエーションクロマトグラフィの条件は、例えばカラム:TSKgel SuperHZ1000、TSKgel、SuperHZ2000、TSKgel、SuperHZ3000、測定温度:40℃、試料の流速:0.8mL/min、試料の濃度:1質量%、注入量:40μL、検出器:示差屈折率検出器、である。 The weight average molecular weights of the first polymer (B1) and the second polymer (B2) are the measurement results of the first polymer (B1) and the second polymer (B2) by gel permeation chromatography. Is obtained from the molecular weight distribution curve obtained by calibrating with the calibration line obtained using the standard material. The conditions for gel permeation chromatography are, for example, column: TSKgel SuperHZ1000, TSKgel, SuperHZ2000, TSKgel, SuperHZ3000, measurement temperature: 40 ° C., sample flow rate: 0.8 mL / min, sample concentration: 1% by mass, injection amount: 40 μL. , Detector: Differential refractometer detector.
 以下、自己修復性材料が更に金属イオン(C)を含有し、かつ第一高分子(B1)及び第二高分子(B2)の各々がエチレン性不飽和化合物を含む単量体成分の重合体である場合の、自己修復性材料及び抗菌性材料のより具体的な例について説明する。 Hereinafter, the self-healing material further contains a metal ion (C), and each of the first polymer (B1) and the second polymer (B2) is a polymer of a monomer component containing an ethylenically unsaturated compound. A more specific example of the self-healing material and the antibacterial material will be described.
 第一高分子(B1)は、例えば配位性官能基を有する重合体である。配位性官能基は、例えばカルボキシル基とカルボキシレート基とのうち少なくとも一方である。 The first polymer (B1) is, for example, a polymer having a coordinating functional group. The coordinating functional group is, for example, at least one of a carboxyl group and a carboxylate group.
 第一高分子(B1)は、不飽和カルボン酸(b11)を含む単量体成分(b1)の重合体であることが好ましい。この場合、第一高分子(B1)は、配位性官能基として、不飽和カルボン酸(b11)に由来するカルボキシル基とカルボキシレート基とのうち少なくとも一方を有することができる。不飽和カルボン酸(b11)は、例えばアクリル酸とメタクリル酸とのうち少なくとも一方を含む。単量体成分(b1)は、不飽和カルボン酸(b11)のみを含有してもよい。 The first polymer (B1) is preferably a polymer of the monomer component (b1) containing an unsaturated carboxylic acid (b11). In this case, the first polymer (B1) can have at least one of a carboxyl group derived from an unsaturated carboxylic acid (b11) and a carboxylate group as a coordinating functional group. The unsaturated carboxylic acid (b11) contains, for example, at least one of acrylic acid and methacrylic acid. The monomer component (b1) may contain only an unsaturated carboxylic acid (b11).
 単量体成分(b1)は、不飽和カルボン酸エステル(b12)を更に含有してもよい。この場合、第一の状態にある抗菌性材料の高い硬度及び良好な耐薬品性が実現されやすい。これは、第一高分子(B1)の主鎖骨格が剛直になりやすいためであると推察される。不飽和カルボン酸エステル(b12)は、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、及びアクリル酸ブチル、メタクリル酸ラウリル、及びメタクリル酸ステアリルなどからなる群から選択される少なくとも一種の化合物を含有する。 The monomer component (b1) may further contain an unsaturated carboxylic acid ester (b12). In this case, high hardness and good chemical resistance of the antibacterial material in the first state are likely to be realized. It is presumed that this is because the main clavicle of the first polymer (B1) tends to be rigid. The unsaturated carboxylic acid ester (b12) is derived from, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, lauryl methacrylate, stearyl methacrylate and the like. Contains at least one compound selected from the group.
 単量体成分(b1)は、不飽和カルボン酸(b11)及び不飽和カルボン酸エステル(b12)以外の不飽和化合物(b13)を含有してもよい。不飽和化合物(b13)は、例えば不飽和カルボン酸(b11)及び不飽和カルボン酸エステル(b12)以外の、ビニル基を有する化合物を含有し、より具体的には例えばスチレン、イソプレン及びエチレンなどからなる群から選択される少なくとも一種の化合物を含有する。 The monomer component (b1) may contain an unsaturated compound (b13) other than the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid ester (b12). The unsaturated compound (b13) contains a compound having a vinyl group other than, for example, an unsaturated carboxylic acid (b11) and an unsaturated carboxylic acid ester (b12), and more specifically, from, for example, styrene, isoprene, ethylene and the like. Contains at least one compound selected from the group.
 単量体成分(b1)に対する不飽和カルボン酸(b11)の割合は1モル%以上であることが好ましい。この場合、第一の状態では自己修復性材料中で高分子(B)間の結合が生じやすくなり、抗菌性材料が高い硬度及び良好な耐薬品性を有しやすくなる。不飽和カルボン酸(b11)の割合は100モル%であってもよい。すなわち、単量体成分(b1)は不飽和カルボン酸(b11)のみを含有してもよい。不飽和カルボン酸(b11)の割合は1モル%以上50モル%以下であればより好ましく、10モル%以上30モル%以下であれば更に好ましい。 The ratio of the unsaturated carboxylic acid (b11) to the monomer component (b1) is preferably 1 mol% or more. In this case, in the first state, the bond between the polymers (B) is likely to occur in the self-healing material, and the antibacterial material is likely to have high hardness and good chemical resistance. The proportion of unsaturated carboxylic acid (b11) may be 100 mol%. That is, the monomer component (b1) may contain only an unsaturated carboxylic acid (b11). The proportion of the unsaturated carboxylic acid (b11) is more preferably 1 mol% or more and 50 mol% or less, and further preferably 10 mol% or more and 30 mol% or less.
 単量体成分(b1)が不飽和カルボン酸(b11)と不飽和カルボン酸エステル(b12)とを含有する場合、不飽和カルボン酸(b11)と不飽和カルボン酸エステル(b12)との合計に対する不飽和カルボン酸エステル(b12)の割合が50モル%以上99モル%以下であることが好ましい。この場合、この割合が50モル%以上であると、抗菌性材料は特に高い耐水性を有しやすい。この割合が99モル%以下であると、刺激が与えられていない状態での抗菌性材料の高い硬度及び良好な耐薬品性と刺激が与えられている状態での抗菌性材料の良好な変形のしやすさとが実現されやすい。この割合は80モル%以上95モル%以下であればより好ましく、85モル%以上90モル%以下であれば特に好ましい。なお、刺激が与えられていない状態での抗菌性材料の高い硬度及び良好な耐薬品性と刺激が与えられている状態での抗菌性材料の良好な変形のしやすさとを特に重視する場合には、不飽和カルボン酸エステル(b12)の割合は50モル%以下であってもよい。 When the monomer component (b1) contains an unsaturated carboxylic acid (b11) and an unsaturated carboxylic acid ester (b12), with respect to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid ester (b12). The proportion of the unsaturated carboxylic acid ester (b12) is preferably 50 mol% or more and 99 mol% or less. In this case, when this ratio is 50 mol% or more, the antibacterial material tends to have particularly high water resistance. When this ratio is 99 mol% or less, the high hardness of the antibacterial material in the non-irritated state and the good chemical resistance and the good deformation of the antibacterial material in the irritated state are obtained. Ease of use is easy to realize. This ratio is more preferably 80 mol% or more and 95 mol% or less, and particularly preferably 85 mol% or more and 90 mol% or less. In addition, when the high hardness and good chemical resistance of the antibacterial material in the unstimulated state and the good deformability of the antibacterial material in the stimulated state are particularly emphasized. The proportion of unsaturated carboxylic acid ester (b12) may be 50 mol% or less.
 第一高分子(B1)は、例えば単量体成分(b1)を、重合開始剤の存在下、適宜の方法で重合させることで調製される。重合開始剤は、例えば光ラジカル重合開始剤と熱ラジカル重合開始剤とのうち少なくとも一方を含有する。光ラジカル重合開始剤は、例えばアルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等を含有できる。熱ラジカル重合開始剤は、例えば有機過酸化物系のラジカル重合開始剤を含有できる。 The first polymer (B1) is prepared by, for example, polymerizing the monomer component (b1) in the presence of a polymerization initiator by an appropriate method. The polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator. The photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like. The thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
 第二高分子(B2)は、不飽和カルボン酸(b21)を含む単量体成分(b2)の重合体であることが好ましい。この場合、第二高分子(B2)は、配位性官能基として、不飽和カルボン酸(b21)に由来するカルボキシル基とカルボキシレート基とのうち少なくとも一方を有することができる。不飽和カルボン酸(b21)は、例えばアクリル酸とメタクリル酸とのうち少なくとも一方を含む。 The second polymer (B2) is preferably a polymer of the monomer component (b2) containing an unsaturated carboxylic acid (b21). In this case, the second polymer (B2) can have at least one of a carboxyl group and a carboxylate group derived from the unsaturated carboxylic acid (b21) as the coordinating functional group. The unsaturated carboxylic acid (b21) contains, for example, at least one of acrylic acid and methacrylic acid.
 単量体成分(b2)は、不飽和カルボン酸エステル(b22)を更に含有してもよい。この場合、第一の状態にある抗菌性材料の高い硬度及び良好な耐薬品性が実現されやすい。これは、第二高分子(B2)の主鎖骨格が剛直になりやすいためであると推察される。不飽和カルボン酸エステル(b22)は、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、及びアクリル酸ブチル、メタクリル酸ラウリル、及びメタクリル酸ステアリルなどからなる群から選択される少なくとも一種の化合物を含有する。 The monomer component (b2) may further contain an unsaturated carboxylic acid ester (b22). In this case, high hardness and good chemical resistance of the antibacterial material in the first state are likely to be realized. It is presumed that this is because the main clavicle of the second polymer (B2) tends to be rigid. The unsaturated carboxylic acid ester (b22) is derived from, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, lauryl methacrylate, stearyl methacrylate and the like. Contains at least one compound selected from the group.
 単量体成分(b2)は、不飽和カルボン酸(b21)及び不飽和カルボン酸エステル(b22)以外の不飽和化合物(a23)を含有してもよい。不飽和化合物(a23)は、例えば不飽和カルボン酸(b21)及び不飽和カルボン酸エステル(b22)以外のビニル基を有する化合物を含有し、より具体的には例えばスチレン、イソプレン及びエチレンなどからなる群から選択される少なくとも一種の化合物を含有する。 The monomer component (b2) may contain an unsaturated compound (a23) other than the unsaturated carboxylic acid (b21) and the unsaturated carboxylic acid ester (b22). The unsaturated compound (a23) contains, for example, a compound having a vinyl group other than the unsaturated carboxylic acid (b21) and the unsaturated carboxylic acid ester (b22), and more specifically, it is composed of, for example, styrene, isoprene, ethylene and the like. Contains at least one compound selected from the group.
 単量体成分(b2)に対する不飽和カルボン酸(b21)の割合は1モル%以上であることが好ましい。この場合、刺激が与えられていない状態では自己修復性材料中で高分子(B)間の動的結合による結合が生じやすくなり、抗菌性材料が高い硬度及び良好な耐薬品性を有しやすくなる。不飽和カルボン酸(b21)の割合は100モル%であってもよい。すなわち、単量体成分(b2)は不飽和カルボン酸(b21)のみを含有してもよい。不飽和カルボン酸(b21)の割合は1モル%以上50モル%以下であればより好ましく、10モル%以上30モル%以下であれば更に好ましい。 The ratio of the unsaturated carboxylic acid (b21) to the monomer component (b2) is preferably 1 mol% or more. In this case, in the unstimulated state, the self-healing material tends to have a bond due to dynamic bonding between the polymers (B), and the antibacterial material tends to have high hardness and good chemical resistance. Become. The proportion of unsaturated carboxylic acid (b21) may be 100 mol%. That is, the monomer component (b2) may contain only an unsaturated carboxylic acid (b21). The proportion of the unsaturated carboxylic acid (b21) is more preferably 1 mol% or more and 50 mol% or less, and further preferably 10 mol% or more and 30 mol% or less.
 単量体成分(b2)が不飽和カルボン酸(b21)と不飽和カルボン酸エステル(b22)とを含有する場合、不飽和カルボン酸(b21)と不飽和カルボン酸エステル(b22)との合計に対する不飽和カルボン酸エステル(b22)の割合が50モル%以上99モル%以下であることが好ましい。この場合、この割合が50モル%以上であると、抗菌性材料は特に高い耐水性を有しやすい。この割合が99モル%以下であると、刺激が与えられていない状態での抗菌性材料の高い硬度及び良好な耐薬品性と刺激が与えられている状態での抗菌性材料の良好な変形のしやすさとが実現されやすい。この割合は80モル%以上95モル%以下であればより好ましく、85モル%以上90モル%以下であれば特に好ましい。なお、刺激が与えられていない状態での抗菌性材料の高い硬度及び良好な耐薬品性と刺激が与えられている状態での抗菌性材料の良好な変形のしやすさとを特に重視する場合には、不飽和カルボン酸エステル(b22)の割合は50モル%以下であってもよい。 When the monomer component (b2) contains an unsaturated carboxylic acid (b21) and an unsaturated carboxylic acid ester (b22), with respect to the total of the unsaturated carboxylic acid (b21) and the unsaturated carboxylic acid ester (b22). The ratio of the unsaturated carboxylic acid ester (b22) is preferably 50 mol% or more and 99 mol% or less. In this case, when this ratio is 50 mol% or more, the antibacterial material tends to have particularly high water resistance. When this ratio is 99 mol% or less, the high hardness of the antibacterial material in the non-irritated state and the good chemical resistance and the good deformation of the antibacterial material in the irritated state are obtained. Ease of use is easy to realize. This ratio is more preferably 80 mol% or more and 95 mol% or less, and particularly preferably 85 mol% or more and 90 mol% or less. In addition, when the high hardness and good chemical resistance of the antibacterial material in the unstimulated state and the good deformability of the antibacterial material in the stimulated state are particularly emphasized. The proportion of unsaturated carboxylic acid ester (b22) may be 50 mol% or less.
 なお、第二高分子(B2)が第一高分子(B1)より大きい分子量と高いガラス転移温度とを有するためには、単量体成分(b1)に対する不飽和カルボン酸(b11)の割合よりも、単量体成分(b2)に対する不飽和カルボン酸(b21)の割合の方が、低いことが好ましい。また、第二高分子(B2)の重量平均分子量が30000以上である場合に、第二高分子(B2)のガラス転移温度が動的結合の解離温度よりも高くなるように、単量体成分(b2)の組成が決定されることが好ましい。 In addition, in order for the second polymer (B2) to have a higher molecular weight and a higher glass transition temperature than the first polymer (B1), it is necessary to determine the ratio of the unsaturated carboxylic acid (b11) to the monomer component (b1). However, it is preferable that the ratio of the unsaturated carboxylic acid (b21) to the monomer component (b2) is lower. Further, when the weight average molecular weight of the second polymer (B2) is 30,000 or more, the monomer component so that the glass transition temperature of the second polymer (B2) becomes higher than the dissociation temperature of the dynamic bond. It is preferable that the composition of (b2) is determined.
 第二高分子(B2)は、例えば単量体成分(b2)を、重合開始剤の存在下、適宜の方法で重合させることで調製される。重合開始剤は、例えば光ラジカル重合開始剤と熱ラジカル重合開始剤とのうち少なくとも一方を含有する。光ラジカル重合開始剤は、例えばアルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等を含有できる。熱ラジカル重合開始剤は、例えば有機過酸化物系のラジカル重合開始剤を含有できる。 The second polymer (B2) is prepared by, for example, polymerizing the monomer component (b2) in the presence of a polymerization initiator by an appropriate method. The polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator. The photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like. The thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
 金属イオン(C)は、高分子(B)における配位性官能基が配位することで、高分子(B)間を架橋して動的結合(金属配位結合)を形成することができる。金属イオン(C)は、第一高分子(B1)及び第二高分子(B2)の各々が有する配位性官能基が配位できるのであれば、特に制限はない。金属イオン(C)の詳細は、既に説明したとおりである。 The metal ion (C) can form a dynamic bond (metal coordination bond) by bridging between the polymers (B) by coordinating the coordinating functional group in the polymer (B). .. The metal ion (C) is not particularly limited as long as the coordinating functional groups of each of the first polymer (B1) and the second polymer (B2) can be coordinated. The details of the metal ion (C) are as described above.
 不飽和カルボン酸(b11)と不飽和カルボン酸(b21)との合計に対する金属イオン(C)の割合は、例えば1モル%以上100モル%以下である。金属イオン(C)の割合が、1モル%以上20モル%以下であることが好ましく、1モル%以上10モル%以下であることが更に好ましい。この場合、刺激が与えられている状態での抗菌性材料の良好な変形のされやすさが特に実現されやすくなり、抗菌性材料に刺激が与えられている状態で特に傷などが修復されやすくなる。金属イオン(C)の割合が、10モル%超100モル%以下であることも好ましい。この場合、刺激が与えられていない状態での抗菌性材料の高い硬度及び良好な耐薬品性が特に実現されやすくなり、かつ抗菌性材料が耐薬品性を有しうる。金属イオン(C)がナトリウムイオンである場合、不飽和カルボン酸(b11)と不飽和カルボン酸(b21)との合計に対する金属イオン(C)の割合は33モル%に近いことが好ましく、例えば5モル%以上40モル%以下であることが好ましい。金属イオン(C)が亜鉛イオンである場合には、不飽和カルボン酸(b11)と不飽和カルボン酸(b21)との合計に対する金属イオン(C)の割合は35モル%に近いことが好ましく、例えば5モル%以上40モル%以下であることが好ましい。 The ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is, for example, 1 mol% or more and 100 mol% or less. The proportion of the metal ion (C) is preferably 1 mol% or more and 20 mol% or less, and more preferably 1 mol% or more and 10 mol% or less. In this case, it is particularly easy to realize good deformation of the antibacterial material when the antibacterial material is stimulated, and it is particularly easy to repair scratches and the like when the antibacterial material is stimulated. .. It is also preferable that the ratio of the metal ion (C) is more than 10 mol% and 100 mol% or less. In this case, high hardness and good chemical resistance of the antibacterial material in a non-irritated state can be particularly easily realized, and the antibacterial material can have chemical resistance. When the metal ion (C) is a sodium ion, the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is preferably close to 33 mol%, for example, 5. It is preferably mol% or more and 40 mol% or less. When the metal ion (C) is a zinc ion, the ratio of the metal ion (C) to the total of the unsaturated carboxylic acid (b11) and the unsaturated carboxylic acid (b21) is preferably close to 35 mol%. For example, it is preferably 5 mol% or more and 40 mol% or less.
 抗菌性材料は、自己修復性材料及び抗菌性物質以外の添加剤を含有してもよい。例えば抗菌性材料は、着色材、可塑剤、抗菌剤、難燃剤、酸化防止剤、金属不活性化剤、紫外線保護剤、帯電防止剤、フィラー等を含有してもよい。 The antibacterial material may contain additives other than the self-healing material and the antibacterial substance. For example, the antibacterial material may contain a coloring material, a plasticizer, an antibacterial agent, a flame retardant, an antioxidant, a metal deactivating agent, an ultraviolet protective agent, an antistatic agent, a filler and the like.
 4.抗菌性物質
 抗菌性物質は、抗菌性を有するあらゆる物質を含みうる。例えば、抗菌性物質は、結晶性アルミノケイ酸ナトリウム、銀置換ゼオライト、銀・亜鉛ゼオライト、銀ゼオライト、リン酸ジルコニウム・酸化銀、リン酸ジルコニウム・酸化銀・酸化亜鉛、リン酸チタン、酸化亜鉛及び酸化チタンのゲル混合物、リン酸チタン銀担持ゲルと酸化亜鉛の混合物、銀担持二酸化ケイ素、酸化銀、ポリリン酸アンモニウム、リン酸ナトリウム、塩化銀、銀、酸化亜鉛、銅化合物、金属銅、テトラアミン銅イオン、リン酸系・ガラス、及び金属酸化物を含む親水性アミノシリコンポリマーなどの、金属塩;ピグアナイド、グルコン酸クロルヘキシジン、グルコン酸クロルヘキシジン・ポロクトオラミン、ポリヘキサメチレンピグアナイド塩酸塩、クロルヘキシジン、2-アクリルアミド-2-メチルプロパンスルフォン酸共重合物、及びポリヘキサメチレンピグアナイドハイロドクロライドと酸化亜鉛配合物などの、有機系合成抗菌剤;トリクロカルバン、トリクロカルバンとナリジクス酸の配合物、及びフェニルアミド系化合物などの、カーバニリド;アルキルアミドプロピルジメチルβ-ヒドロキシアンモニウム塩・ポリオキシエチレン(ジメチルアミノ)エチレン(ジメチルイミノ)エチレンクロライドなどの、両性界面活性剤;ポリメタクリル酸、ポリアクリル酸塩と硫酸亜鉛の配合物、及びナリジクスサン(1-エチル-1,4-ジハイドロ-7-メチル-4-オキソ-1,8-ナフチリジン-3-カルボン酸などの、カルボン酸;多価アルコール系化合物などの、アルコール;塩化ベンザルコニウム、有機シリコーン第四アンモニウム塩、N-ポリオキシアルキレン-N,N,N-トリアルキレンアンモニウム塩、アルキルダニョンアンモニウム・カルボン酸塩、アルキルジメチルアンモニウム塩、アルキルジメチルベンザルコニウム塩、アルキル第四アンモニウム塩、N,N,N,N-テトラアルキル第四アンモニウム塩、セチルトリメチルアンモニウムクロライド、ジアルキル第四アンモニウム塩、テトラアルキル第四アンモニウム塩、オクタデシルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、3-(メトキシシリル)-プロピルオクタデシルジメチルアンモニウムクロライド、塩化ベンザルコニウムクロライド・多価アルコール系化合物、アルキルトリメチルアンモニウムジブチリン酸塩、ジシアンアミドジエチレントラミン・塩化アンモニウム縮合物、及びジシアンアミドポリアルキレントリアミン・塩化アンモニウム重縮合体などの、第四級アンモニウム塩;アルキレンビスフェノールナトリウム塩、パラクロールメタキシレノール、及びビス(2.6-ジ-t-ブチル-4-メチルフェノール)ペンタエリスリテールジフォスフェートなどの、フェノール;N-アルキロイル-L-グルタミン酸銀銅などの、アミノ酸;N,N-ジメチル-N’-(フルオロジクロロメチルチオ)-N”-フェニルスルファミドなどの、スルファミド;ジンクピチオンなどの、ピリジン;2,4,5,6-テトラクロロイソフタロニトリルなどの、ニトリル;アクリロニトリル・アクリル酸共重合物架橋物、アクリロニトリル硫化銅複合体、アクリルアミド・ジアリルアミン塩酸塩共重合体、及びメタクリレート共重合体などの、ポリマー;並びに硫酸フルアブルなどの、その他の物質、などからなる群から選択される、少なくとも一種を、含有できる。
4. Antibacterial substances Antibacterial substances can include any substance having antibacterial properties. For example, antibacterial substances include crystalline sodium ammonium aluminosilicate, silver-substituted zeolite, silver / zinc zeolite, silver zeolite, zirconium phosphate / silver oxide, zirconium phosphate / silver oxide / zinc oxide, titanium phosphate, zinc oxide and oxidation. Titanium gel mixture, Titanium silver phosphate-supported gel and zinc oxide mixture, silver-supported silicon dioxide, silver oxide, ammonium polyphosphate, sodium phosphate, silver chloride, silver, zinc oxide, copper compound, metallic copper, tetraamine copper ion . Organic synthetic antibacterial agents such as -2-methylpropanammonium sulphonic acid copolymer and polyhexamethylene piguanide hyrod chloride and zinc oxide formulations; triclocarban, triclocarban and naridixic acid formulations, and phenylamides. Carvanilide, such as system compounds; amphoteric surfactants such as alkylamide propyldimethylβ-hydroxyammonium salt, polyoxyethylene (dimethylamino) ethylene (dimethylimino) ethylene chloride; polymethacrylic acid, polyacrylic acid salt and zinc sulfate. And carboxylic acids such as 1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthylidine-3-carboxylic acid; polyhydric alcohol compounds, etc. Alcohol; benzalconium chloride, organosilicone tetraammonium salt, N-polyoxyalkylene-N, N, N-trialkyleneammonium salt, alkyldaniumammonium carboxylate, alkyldimethylammonium salt, alkyldimethylbenzalconium salt , Alkyl quaternary ammonium salt, N, N, N, N-tetraalkyl quaternary ammonium salt, cetyltrimethylammonium chloride, dialkyl quaternary ammonium salt, tetraalkyl quaternary ammonium salt, octadecyldimethylammonium chloride, didecyldimethylammonium chloride , 3- (methoxysilyl) -propyloctadecyldimethylammonium chloride, benzalconium chloride / polyhydric alcohol compound, alkyltrimethylammonium dibutyphosphate, dicyanamide diethylenetramin / ammonium chloride Quartz ammonium salts such as um condensates and dicyanamide polyalkylenetriamine / ammonium chloride polycondensates; alkylenebisphenol sodium salts, parachlormethoxylenol, and bis (2.6-di-t-butyl-4). -Methylphenol) Phenols such as pentaerythretail diphosphate; Amino acids such as N-alkylyl-L-silver copper glutamate; N, N-dimethyl-N'-(fluorodichloromethylthio) -N "-phenylsulfami Do, etc., sulfamide; zincpition, etc., pyridine; 2,4,5,6-tetrachloroisophthalonitrile, etc., nitrile; acrylonitrile / acrylic acid copolymer crosslinked product, acrylonitrile-copper sulfide complex, acrylamide / diallylamine hydrochloride It can contain at least one selected from the group consisting of polymers such as salt copolymers and methacrylate copolymers; and other substances such as fluable sulfates.
 抗菌性物質は、重金属イオンと第四級アンモニウムイオンとのうち、少なくとも一方を含有することが好ましい。重金属イオンは、カルボキシル基などの配位性官能基と結合することで、抗菌性材料中に分散して保持されやすく、かつそのため抗菌性材料からの抗菌性物質の溶出が適度に抑制される。このため、抗菌性材料が良好な抗菌性能を特に有しやすい。重金属イオンが、銀イオンと銅イオンとのうち少なくとも一方を含有することが好ましい。この場合、抗菌性材料が特に良好な抗菌性能を有しやすい。例えば抗菌性材料に銀塩、銅塩などの重金属塩を含有させることで、抗菌性材料に重金属イオンを含有させることができる。 The antibacterial substance preferably contains at least one of a heavy metal ion and a quaternary ammonium ion. Heavy metal ions are easily dispersed and retained in the antibacterial material by binding to a coordinating functional group such as a carboxyl group, and therefore elution of the antibacterial substance from the antibacterial material is appropriately suppressed. Therefore, the antibacterial material tends to have particularly good antibacterial performance. It is preferable that the heavy metal ion contains at least one of silver ion and copper ion. In this case, the antibacterial material tends to have particularly good antibacterial performance. For example, by incorporating a heavy metal salt such as a silver salt or a copper salt into the antibacterial material, the antibacterial material can contain heavy metal ions.
 第四級アンモニウムイオンも、カルボキシル基などの配位性官能基と結合することで、抗菌性材料中に分散して保持されやすく、かつそのため抗菌性材料からの抗菌性物質の溶出が適度に抑制される。このため、抗菌性材料が良好な抗菌性能を特に有しやすい。例えば抗菌性材料に第四級アンモニウム塩を含有させることによって、抗菌性材料に上記の第四級アンモニウムイオンを含有させることができる。第四級アンモニウムイオンは、例えば上記の塩化ベンザルコニウム、有機シリコーン第四アンモニウム塩、N-ポリオキシアルキレン-N,N,N-トリアルキレンアンモニウム塩、アルキルダニョンアンモニウム・カルボン酸塩、アルキルジメチルアンモニウム塩、アルキルジメチルベンザルコニウム塩、アルキル第四アンモニウム塩、N,N,N,N-テトラアルキル第四アンモニウム塩、セチルトリメチルアンモニウムクロライド、ジアルキル第四アンモニウム塩、テトラアルキル第四アンモニウム塩、オクタデシルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、3-(メトキシシリル)-プロピルオクタデシルジメチルアンモニウムクロライド、塩化ベンザルコニウムクロライド・多価アルコール系化合物、アルキルトリメチルアンモニウムジブチリン酸塩、ジシアンアミドジエチレントラミン・塩化アンモニウム縮合物、及びジシアンアミドポリアルキレントリアミン・塩化アンモニウム重縮合体などからなる群から選択される少なくとも一種を含有する。 The quaternary ammonium ion is also easily dispersed and retained in the antibacterial material by binding to a coordinating functional group such as a carboxyl group, and therefore the elution of the antibacterial substance from the antibacterial material is appropriately suppressed. Will be done. Therefore, the antibacterial material tends to have particularly good antibacterial performance. For example, by incorporating a quaternary ammonium salt in the antibacterial material, the above-mentioned quaternary ammonium ion can be contained in the antibacterial material. The quaternary ammonium ion is, for example, the above-mentioned benzalkonium chloride, organic silicone quaternary ammonium salt, N-polyoxyalkylene-N, N, N-trialkylene ammonium salt, alkyldanillon ammonium carboxylate, alkyldimethylammonium. Salt, Alkyldimethylbenzalconium salt, Alkyltetraammonium salt, N, N, N, N-Tetraalkyltetraammonium salt, Cetyltrimethylammonium chloride, Dialkyltetraammonium salt, Tetraalkyltetraammonium salt, Octadecyldimethyl Ammonium chloride, didecyldimethylammonium chloride, 3- (methoxysilyl) -propyloctadecyldimethylammonium chloride, benzalconium chloride / polyhydric alcohol compound, alkyltrimethylammonium dibutyphosphate, dicyanamide diethylenetramine / chloride It contains at least one selected from the group consisting of ammonium condensates, dicyanamide polyalkylenetriamine, ammonium chloride polycondensates and the like.
 抗菌性材料全体に対する抗菌性物質の百分比は、抗菌性物質の種類にもよるが、例えば0.001質量%以上10質量%以下である。この百分比が0.001質量%以上であれば抗菌性材料の抗菌性能が特に維持されやすい。この百分比が10質量%以下であれば抗菌性材料の物性が抗菌性物質によって損なわれにくい。この百分比は0.005以上であればより好ましく、0.01以上であれば更に好ましい。また、この百分比は、5以下であればより好ましく、1以下であれば更に好ましい。 The percentage of the antibacterial substance to the whole antibacterial material is, for example, 0.001% by mass or more and 10% by mass or less, although it depends on the type of the antibacterial substance. When this percentage is 0.001% by mass or more, the antibacterial performance of the antibacterial material is particularly easy to be maintained. When this percentage is 10% by mass or less, the physical properties of the antibacterial material are not easily impaired by the antibacterial substance. This percentage is more preferably 0.005 or more, and even more preferably 0.01 or more. Further, this percentage is more preferably 5 or less, and even more preferably 1 or less.
 5.抗菌性材料の製造方法
 抗菌性材料は、適宜の方法で製造できる。
5. Method for Producing Antibacterial Material The antibacterial material can be produced by an appropriate method.
 例えば第一実施形態のように樹脂骨格が重合性化合物(a)の重合体(A)を含み、重合性化合物(a)が不飽和カルボン酸(a1)を含有する場合は、重合性化合物(a)を含有する組成物(X)を調製する。 For example, when the resin skeleton contains the polymer (A) of the polymerizable compound (a) and the polymerizable compound (a) contains the unsaturated carboxylic acid (a1) as in the first embodiment, the polymerizable compound ( A composition (X) containing a) is prepared.
 例えば重合性化合物(a)と、金属イオン(C)と、重合開始剤と、抗菌性物質と、任意の添加剤とを、混合することで、組成物(X)を調製する。 For example, the composition (X) is prepared by mixing a polymerizable compound (a), a metal ion (C), a polymerization initiator, an antibacterial substance, and an arbitrary additive.
 重合開始剤は、例えば光ラジカル重合開始剤と熱ラジカル重合開始剤とのうち少なくとも一方を含有する。光ラジカル重合開始剤は、例えばアルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等を含有できる。熱ラジカル重合開始剤は、例えば有機過酸化物系のラジカル重合開始剤を含有できる。 The polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator. The photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like. The thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
 組成物(X)を調製するにあたり、まず不飽和カルボン酸(a1)と金属イオン(C)とを混合することで不飽和カルボン酸(a1)の少なくとも一部を金属イオン(C)の少なくとも一部で中和し、続いて、残りの成分を配合してもよい。不飽和カルボン酸(a1)を中和するに当たっては、例えば不飽和カルボン酸(a1)と金属イオン(C)を含む化合物とを混合する。金属イオン(C)を含む化合物の例は、金属イオン(C)と飽和脂肪酸との塩、金属イオン(C)の水酸化物、金属イオン(C)の炭酸塩、及び金属イオン(C)の炭酸水素塩等を含む。飽和脂肪酸の例は、酢酸、ギ酸、プロピオン酸、酪酸、及びステアリン酸等を含む。また、組成物(X)中に、不飽和カルボン酸(a1)と金属イオン(C)との塩(例えばメタクリル酸ナトリウムなど)を配合することで、組成物(X)中で不飽和カルボン酸(a1)の少なくとも一部を金属イオン(C)の少なくとも一部で中和してもよい。 In preparing the composition (X), first, by mixing the unsaturated carboxylic acid (a1) and the metal ion (C), at least a part of the unsaturated carboxylic acid (a1) is mixed with at least one of the metal ions (C). It may be neutralized in portions, followed by the rest of the ingredients. In neutralizing the unsaturated carboxylic acid (a1), for example, an unsaturated carboxylic acid (a1) and a compound containing a metal ion (C) are mixed. Examples of compounds containing the metal ion (C) include salts of the metal ion (C) and saturated fatty acids, hydroxides of the metal ion (C), carbonates of the metal ion (C), and metal ion (C). Contains hydrogen carbonate and the like. Examples of saturated fatty acids include acetic acid, formic acid, propionic acid, butyric acid, stearic acid and the like. Further, by blending a salt of an unsaturated carboxylic acid (a1) and a metal ion (C) (for example, sodium methacrylate) in the composition (X), the unsaturated carboxylic acid in the composition (X). At least a part of (a1) may be neutralized with at least a part of the metal ion (C).
 組成物(X)から抗菌性材料を作製する場合には、例えば組成物(X)を適宜の形状に成形し、重合性化合物(a)を重合させることで硬化させる。組成物(X)を成形するに当たっては、金型を用いて組成物(X)を適宜の形状に成形してもよく、組成物(X)を塗布することで膜状に成形してもよい。重合性化合物(a)を重合させるにあたっては、組成物(X)中の重合開始剤の種類に応じた方法で重合させる。重合開始剤が光ラジカル重合開始剤である場合には組成物(X)に光を照射し、熱ラジカル重合開始剤である場合には組成物(X)を加熱することで、重合性化合物(a)を重合させる。重合性化合物(a)を重合させるための具体的な条件は、重合性化合物(a)中の成分の種類に応じて適宜決定される。 When an antibacterial material is produced from the composition (X), for example, the composition (X) is molded into an appropriate shape and cured by polymerizing the polymerizable compound (a). In molding the composition (X), the composition (X) may be molded into an appropriate shape using a mold, or may be molded into a film shape by applying the composition (X). .. In polymerizing the polymerizable compound (a), the polymer is polymerized by a method according to the type of the polymerization initiator in the composition (X). When the polymerization initiator is a photoradical polymerization initiator, the composition (X) is irradiated with light, and when the polymerization initiator is a thermal radical polymerization initiator, the composition (X) is heated to obtain a polymerizable compound ( a) is polymerized. The specific conditions for polymerizing the polymerizable compound (a) are appropriately determined according to the type of the component in the polymerizable compound (a).
 第二実施形態のように樹脂骨格が高分子(B)を含有し、高分子(B)間が動的結合で架橋されている場合、高分子(B)を構成する単量体成分を、重合開始剤の存在下、適宜の方法で重合させることで高分子(B)を合成する。高分子(B)が第一高分子(B1)及び第二高分子(B2)を含有する場合は、例えば単量体成分(b1)を、重合開始剤の存在下、適宜の方法で重合させることで第一高分子(B1)を合成し、例えば単量体成分(b2)を、重合開始剤の存在下、適宜の方法で重合させることで第二高分子(B2)を合成する。重合開始剤は、例えば光ラジカル重合開始剤と熱ラジカル重合開始剤とのうち少なくとも一方を含有する。光ラジカル重合開始剤は、例えばアルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等を含有できる。熱ラジカル重合開始剤は、例えば有機過酸化物系のラジカル重合開始剤を含有できる。 When the resin skeleton contains the polymer (B) and the polymers (B) are crosslinked by a dynamic bond as in the second embodiment, the monomer component constituting the polymer (B) is used. The polymer (B) is synthesized by polymerizing in the presence of a polymerization initiator by an appropriate method. When the polymer (B) contains the first polymer (B1) and the second polymer (B2), for example, the monomer component (b1) is polymerized by an appropriate method in the presence of a polymerization initiator. This synthesizes the first polymer (B1), and for example, the monomer component (b2) is polymerized by an appropriate method in the presence of a polymerization initiator to synthesize the second polymer (B2). The polymerization initiator contains, for example, at least one of a photoradical polymerization initiator and a thermal radical polymerization initiator. The photoradical polymerization initiator may contain, for example, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and the like. The thermal radical polymerization initiator may contain, for example, an organic peroxide-based radical polymerization initiator.
 例えば高分子(B)と、金属イオン(C)と、抗菌性物質と、任意の添加剤とを、溶融混練することで、組成物(X)を調製する。 For example, the composition (X) is prepared by melt-kneading a polymer (B), a metal ion (C), an antibacterial substance, and an arbitrary additive.
 組成物(X)を成形することで抗菌性材料を製造できる。組成物(X)を成形する方法としては、例えば、組成物(X)を所望の大きさの型枠にいれ、加熱しながらプレスすることで成形する方法が、挙げられる。また、組成物(X)を射出成形法で所望の形状に成形することも可能である。組成物(X)が溶剤を含むことで液状である場合には、組成物(X)を何らかの対象物に塗布してから、組成物(X)中の溶剤を揮発させることで、フィルム状の抗菌性材料を作製することもできる。なお、組成物(X)を成形する方法は前記のみには制限されない。 An antibacterial material can be manufactured by molding the composition (X). Examples of the method for molding the composition (X) include a method in which the composition (X) is placed in a mold having a desired size and pressed while being heated. It is also possible to mold the composition (X) into a desired shape by an injection molding method. When the composition (X) is liquid due to the inclusion of a solvent, the composition (X) is applied to some object and then the solvent in the composition (X) is volatilized to form a film. Antibacterial materials can also be made. The method for molding the composition (X) is not limited to the above.
 以下、本開示に係る実施形態の具体的な実施例について説明する。なお、本開示に係る実施形態は、下記の実施例のみには制限されない。 Hereinafter, specific examples of the embodiments according to the present disclosure will be described. The embodiments according to the present disclosure are not limited to the following examples.
 1.組成物の調製
 表1及び表2に示す原料を混合することで、組成物を調製した。金属イオンの化合物(酢酸ナトリウム、酢酸亜鉛又はメタクリル酸ナトリウム)を配合する場合には、まず金属イオンの化合物と不飽和カルボン酸(メタクリル酸及びアクリル酸)とを混合してから、残りの成分を配合した。なお、表1及び2に示す熱ラジカル重合開始剤は、ペルオキシ二炭酸ビス(4-t-ブチル-2-シクロヘキサン-1-イル)である。
1. 1. Preparation of composition A composition was prepared by mixing the raw materials shown in Tables 1 and 2. When blending a metal ion compound (sodium acetate, zinc acetate or sodium methacrylate), first mix the metal ion compound with an unsaturated carboxylic acid (methacrylic acid and acrylic acid), and then add the remaining components. Formulated. The thermal radical polymerization initiator shown in Tables 1 and 2 is bis peroxydicarbonate (4-t-butyl-2-cyclohexane-1-yl).
 なお、表1及び2中の「モル比((a2):(a1):(C))」は、組成物における成分(a0)に含まれる不飽和カルボン酸エステル(a2)及び不飽和カルボン酸(a1)、並びに金属イオン(C)の、モル比である。 The "molar ratio ((a2) :( a1): (C))" in Tables 1 and 2 indicates the unsaturated carboxylic acid ester (a2) and the unsaturated carboxylic acid contained in the component (a0) in the composition. (A1) and the molar ratio of the metal ion (C).
 2.サンプルの作製
 二枚のステンレス板を間隔をあけて配置し、ステンレス板の間の隙間をシリコンゴムで囲むことで、ステンレス板の間に板状の空間を形成した。この空間内に組成物を充填し、この状態で組成物を70℃で2時間加熱した後、更に90℃で1時間加熱した。これにより組成物を硬化させて、30mm×30mm×2mmの寸法のサンプルを作製した。
2. 2. Preparation of sample Two stainless steel plates were placed at intervals, and the gap between the stainless steel plates was surrounded by silicone rubber to form a plate-like space between the stainless steel plates. The composition was filled in this space, and the composition was heated at 70 ° C. for 2 hours in this state, and then further heated at 90 ° C. for 1 hour. As a result, the composition was cured to prepare a sample having dimensions of 30 mm × 30 mm × 2 mm.
 3.抗菌性能(初期)評価
 10個/mLの濃度のカビ胞子懸濁液を用意した。サンプルの上に0.5mLのカビ胞子懸濁液を載せてから、サンプルを24℃、98%RHの恒温恒湿槽に1週間入れた。サンプルを目視で観察し、サンプル上に明らかにカビが発生したと認められる場合を「C」、サンプル上にわずかにカビが発生した認められる場合を「B」、サンプル上にカビが認められない場合を「A」と、評価した。
3. 3. Antibacterial performance (initial) evaluation A mold spore suspension having a concentration of 104 cells / mL was prepared. After placing 0.5 mL of mold spore suspension on the sample, the sample was placed in a constant temperature and humidity chamber at 24 ° C. and 98% RH for 1 week. By visually observing the sample, "C" is when mold is clearly found on the sample, "B" is when slight mold is found on the sample, and no mold is found on the sample. The case was evaluated as "A".
 4.傷修復試験
 サンプルの表面上で三矢社製の紙やすり#100を手動で10往復させながら擦りつけることでサンプルに傷を付けた。傷を付けた部分の、レーザー顕微鏡を備える表面粗さ計による測定結果から求められた算術平均粗さRaは5.4μmであった。続いて、サンプルをハンドプレスで、200℃に加熱しながら約3.92MPa(40kgf/cm2)のプレス圧を10分間加えた。続いて、サンプルの表面を目視で観察した。その結果、傷が認められない場合を「良」、傷が認められる場合を「不良」と評価した。
4. Scratch repair test The sample was scratched by rubbing the sandpaper # 100 manufactured by Mitsuya Co., Ltd. on the surface of the sample while manually reciprocating 10 times. The arithmetic average roughness Ra obtained from the measurement results of the scratched portion by a surface roughness meter equipped with a laser microscope was 5.4 μm. Subsequently, the sample was heated to 200 ° C. with a hand press and a press pressure of about 3.92 MPa (40 kgf / cm 2 ) was applied for 10 minutes. Subsequently, the surface of the sample was visually observed. As a result, the case where no scratch was found was evaluated as "good", and the case where no scratch was found was evaluated as "bad".
 5.抗菌性能(傷修復試験後)評価
 上記「4.傷修復試験」の後のサンプルに対し、上記の「3.抗菌性能(初期)評価」と同じ試験を行った。
5. Evaluation of antibacterial performance (after wound repair test) The same test as in "3. Antibacterial performance (initial) evaluation" above was performed on the sample after "4. Scratch repair test" above.
 6.貯蔵弾性率の測定
 大気雰囲気中、大気圧下、湿度65%の条件下での、サンプルの貯蔵弾性率を測定した。測定にあたっては、測定装置として粘弾性測定装置(DMS6220、日立ハイテクノロジーズ社製)を用い、測定モードは曲げ(両持ち梁)、測定温度範囲は25℃から200℃まで、昇温速度は10℃/分の条件で、測定した。これにより、貯蔵粘弾性と温度との関係曲線を得た。この関係曲線から、25℃(標準状態)での貯蔵弾性率と、160℃での貯蔵弾性率とを読み取った。その結果を表1及び2に示す。
6. Measurement of storage elastic modulus The storage elastic modulus of the sample was measured under the conditions of atmospheric atmosphere, atmospheric pressure, and humidity of 65%. In the measurement, a viscoelasticity measuring device (DMS6220, manufactured by Hitachi High-Technologies Corporation) is used as the measuring device, the measurement mode is bending (double-sided beam), the measurement temperature range is from 25 ° C to 200 ° C, and the temperature rise rate is 10 ° C. It was measured under the condition of / minute. As a result, the relationship curve between the stored viscoelasticity and the temperature was obtained. From this relational curve, the storage elastic modulus at 25 ° C. (standard temperature) and the storage elastic modulus at 160 ° C. were read. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [参考例]
 以下、本開示に係る実施形態における抗菌性材料に適用可能な自己修復性材料の具体例を、参考例として示す。
[Reference example]
Hereinafter, specific examples of the self-healing material applicable to the antibacterial material in the embodiment according to the present disclosure are shown as reference examples.
 1.不飽和カルボン酸を含有する重合性化合物の重合体を含む樹脂骨格を備える自己修復性材料
 第一実施形態に係る自己修復性材料の例を、参考例として示す。下記のうち、特に参考例A~Jの自己修復性材料が、抗菌性材料に適用されることが好ましい。
1. 1. A self-repairing material having a resin skeleton containing a polymer of a polymerizable compound containing an unsaturated carboxylic acid An example of a self-repairing material according to the first embodiment is shown as a reference example. Of the following, it is particularly preferable that the self-healing materials of Reference Examples A to J are applied to the antibacterial material.
 (1)組成物の調製
 表3及び表4に示す原料を混合することで、組成物を調製した。金属イオンの化合物(酢酸ナトリウム、酢酸亜鉛又はメタクリル酸ナトリウム)を配合する場合には、まず金属イオンの化合物と不飽和カルボン酸(メタクリル酸及びアクリル酸)とを混合してから、残りの成分を配合した。なお、表3及び表4に示す熱ラジカル重合開始剤は、ペルオキシ二炭酸ビス(4-t-ブチル2シクロヘキサン-1-イル)である。
(1) Preparation of composition A composition was prepared by mixing the raw materials shown in Tables 3 and 4. When blending a metal ion compound (sodium acetate, zinc acetate or sodium methacrylate), first mix the metal ion compound with an unsaturated carboxylic acid (methacrylic acid and acrylic acid), and then add the remaining components. Formulated. The thermal radical polymerization initiator shown in Tables 3 and 4 is bis peroxydicarbonate (4-t-butyl 2-cyclohexane-1-yl).
 なお、表3及び表4中の「モル比((a2):(a1):(C))」は、組成物における成分(a0)に含まれる不飽和カルボン酸エステル(a2)及び不飽和カルボン酸(a1)、並びに金属イオン(C)の、モル比である。 The "molar ratio ((a2) :( a1): (C))" in Tables 3 and 4 refers to the unsaturated carboxylic acid ester (a2) and the unsaturated carboxylic acid contained in the component (a0) in the composition. The molar ratio of the acid (a1) and the metal ion (C).
 (2)自己修復性材料の作製
 二枚のステンレス板を間隔をあけて配置し、ステンレス板の間の隙間をシリコンゴムで囲むことで、ステンレス板の間に板状の空間を形成した。この空間内に組成物を充填し、この状態で組成物を70℃で2時間加熱した後、更に90℃で1時間加熱した。これにより組成物を硬化させて、80mm×70mm×2mmの寸法のサンプルを作製した。
(2) Preparation of self-healing material By arranging two stainless steel plates at intervals and surrounding the gap between the stainless steel plates with silicon rubber, a plate-like space was formed between the stainless steel plates. The composition was filled in this space, and the composition was heated at 70 ° C. for 2 hours in this state, and then further heated at 90 ° C. for 1 hour. As a result, the composition was cured to prepare a sample having dimensions of 80 mm × 70 mm × 2 mm.
 なお、不飽和カルボン酸を配合しなかった参考例Lでは、酢酸ナトリウムが溶けきらず、サンプルが著しく不均一になってしまったため、下記の評価試験は行わなかった。 In Reference Example L in which the unsaturated carboxylic acid was not blended, the sodium acetate was not completely dissolved and the sample became extremely non-uniform, so the following evaluation test was not performed.
 (3)貯蔵弾性率の測定
 大気雰囲気中、大気圧下、湿度65%の条件下での、サンプルの貯蔵弾性率を測定した。測定にあたっては、測定装置として粘弾性測定装置(DMS6220、日立ハイテクノロジーズ社製)を用い、測定モードは曲げ(両持ち梁)、測定温度範囲は25℃から200℃まで、昇温速度は10℃/分の条件で、測定した。これにより、貯蔵粘弾性と温度との関係曲線を得た。参考例Aについての結果を図1に、参考例Bについての結果を図2中のBに、参考例Cについての結果を図2中のCに、それぞれ示す。
(3) Measurement of storage elastic modulus The storage elastic modulus of the sample was measured under the conditions of atmospheric atmosphere, atmospheric pressure, and humidity of 65%. In the measurement, a viscoelasticity measuring device (DMS6220, manufactured by Hitachi High-Technologies Corporation) is used as the measuring device, the measurement mode is bending (double-sided beam), the measurement temperature range is from 25 ° C to 200 ° C, and the temperature rise rate is 10 ° C. It was measured under the condition of / minute. As a result, the relationship curve between the stored viscoelasticity and the temperature was obtained. The results for Reference Example A are shown in FIG. 1, the results for Reference Example B are shown in B in FIG. 2, and the results for Reference Example C are shown in C in FIG.
 この関係曲線から、25℃(標準状態)での貯蔵弾性率と、160℃での貯蔵弾性率とを読み取った。また、昇温時に貯蔵弾性率が10MPaに到達する温度を読み取った。その結果を表3及び表4に示す。なお、参考例Cでは、160℃になっても貯蔵弾性率は44MPaまでしか低下せず、10MPaには到達しなかった。 From this relational curve, the storage elastic modulus at 25 ° C (standard temperature) and the storage elastic modulus at 160 ° C were read. Moreover, the temperature at which the storage elastic modulus reaches 10 MPa at the time of raising the temperature was read. The results are shown in Tables 3 and 4. In Reference Example C, the storage elastic modulus decreased only to 44 MPa and did not reach 10 MPa even at 160 ° C.
 (4)硬度測定
 標準状態でのサンプルの鉛筆硬度を、JIS K5600に基づいて測定した。その結果を表3及び表4に示す。
(4) Hardness measurement The pencil hardness of the sample in the standard state was measured based on JIS K5600. The results are shown in Tables 3 and 4.
 (5)修復性1
 標準状態においてサンプルの表面にカッターナイフで長さ30mmの傷を付けてから、サンプルをハンドプレスで、200℃に加熱しながら約3.92MPa(40kgf/cm2)のプレス圧を10分間加えた。続いて、成形体の表面を目視で観察した。その結果、傷が認められなくなった場合を「A」、傷が認められる場合を「B」と評価した。その結果を表3及び表4に示す。
(5) Repairability 1
After scratching the surface of the sample with a cutter knife to a length of 30 mm in the standard state, a press pressure of about 3.92 MPa (40 kgf / cm 2 ) was applied for 10 minutes while heating the sample to 200 ° C. with a hand press. .. Subsequently, the surface of the molded product was visually observed. As a result, the case where no scratches were found was evaluated as "A", and the case where no scratches were found was evaluated as "B". The results are shown in Tables 3 and 4.
 (6)修復性2
 標準状態においてサンプルの表面にカッターナイフで長さ30mmの傷を付けてから、成形体をアイロンで、180℃に加熱しながら約0.0196MPa(0.2kgf/cm2)のプレス圧を1分間加えた。続いて、サンプルの表面を目視で観察した。その結果、傷が認められなくなった場合を「A」、傷が認められる場合を「B」と評価した。その結果を表3及び表4に示す。
(6) Repairability 2
After scratching the surface of the sample with a cutter knife to a length of 30 mm in the standard state, press pressure of about 0.0196 MPa (0.2 kgf / cm 2 ) for 1 minute while heating the molded product to 180 ° C with an iron. added. Subsequently, the surface of the sample was visually observed. As a result, the case where no scratches were found was evaluated as "A", and the case where no scratches were found was evaluated as "B". The results are shown in Tables 3 and 4.
 (7)修復性3
 サンプルの表面の初期の光沢度を測定した。その結果、いずれの参考例においても、光沢度は10GU以上であった。
(7) Repairability 3
The initial gloss on the surface of the sample was measured. As a result, the glossiness was 10 GU or more in all the reference examples.
 続いて、サンプルの表面上で三矢社製の紙やすり#100を手動で10往復させながら擦りつけてから、表面の光沢度を測定した。その結果、いずれの参考例においても、光沢度は10GU未満であった。 Subsequently, sandpaper # 100 manufactured by Mitsuya Co., Ltd. was rubbed on the surface of the sample while manually reciprocating 10 times, and then the glossiness of the surface was measured. As a result, the glossiness was less than 10 GU in all the reference examples.
 続いて、サンプルをハンドプレスで、200℃に加熱しながら約3.92MPa(40kgf/cm2)のプレス圧を10分間加えてから、表面の光沢度を測定した。その結果、光沢度が10GU以上である場合を「A」、光沢度が10GU未満である場合を「B」と、評価した。その結果を表3及び表4に示す。 Subsequently, the sample was heated to 200 ° C. with a hand press, and a press pressure of about 3.92 MPa (40 kgf / cm 2 ) was applied for 10 minutes, and then the glossiness of the surface was measured. As a result, the case where the glossiness was 10 GU or more was evaluated as "A", and the case where the glossiness was less than 10 GU was evaluated as "B". The results are shown in Tables 3 and 4.
 (8)耐薬品性
 サンプルを25℃のアセトン中に3時間浸漬した。これにより生じたサンプルの重量減少率が10質量%以下である場合を「A」、10質量%超20質量%以下である場合を「B」、20質量%超である場合を「C」と、評価した。その結果を表3及び表4に示す。
(8) Chemical resistance The sample was immersed in acetone at 25 ° C. for 3 hours. When the weight loss rate of the sample produced by this is 10% by mass or less, it is referred to as "A", when it is more than 10% by mass and 20% by mass or less, it is referred to as "B", and when it is more than 20% by mass, it is referred to as "C". ,evaluated. The results are shown in Tables 3 and 4.
 (9)耐水性
 サンプルを80℃の熱水に96時間浸漬した。この処理によるサンプルの重量増加率が5質量%未満の場合を「A」、5質量%以上10質量%未満の場合を「B」、10質量%以上である場合を「C」と、評価した。その結果を表3及び表4に示す。
(9) The water resistant sample was immersed in hot water at 80 ° C. for 96 hours. When the weight increase rate of the sample by this treatment was less than 5% by mass, it was evaluated as "A", when it was 5% by mass or more and less than 10% by mass, it was evaluated as "B", and when it was 10% by mass or more, it was evaluated as "C". .. The results are shown in Tables 3 and 4.
 (10)ガラス転移温度
 サンプルの動的粘弾性測定を行った。粘弾性測定装置(DMS6220、日立ハイテクノロジーズ社製)を用い、測定モードは曲げ(両持ち梁)、測定温度範囲は25℃から200℃まで、昇温速度は10℃/分の条件で、測定した。これにより得られたtanδと温度との関係曲線におけるピーク位置の温度をガラス転移温度とみなした。その結果を表4及び5に示す。なお、参考例Kでは25℃から200℃までの間にガラス転移温度は認められず、ガラス転移温度は25℃未満であると判断される。
(10) Glass transition temperature The dynamic viscoelasticity of the sample was measured. Using a viscoelasticity measuring device (DMS6220, manufactured by Hitachi High-Technologies Corporation), the measurement mode is bending (double-sided beam), the measurement temperature range is from 25 ° C to 200 ° C, and the temperature rise rate is 10 ° C / min. bottom. The temperature at the peak position in the relationship curve between tan δ and temperature obtained by this was regarded as the glass transition temperature. The results are shown in Tables 4 and 5. In Reference Example K, no glass transition temperature was observed between 25 ° C and 200 ° C, and it is judged that the glass transition temperature is less than 25 ° C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (11)金属イオンの割合と、ガラス転移温度及びIRピークとの関係
 参考例Cを基準にして、組成物中のナトリウムイオンの割合を変化させた場合の、自己修復性材料のガラス転移温度の変化を調査した。ガラス転移温度の測定にあたり、自己修復性材料の示差走査熱量分析(DSC)を行った。測定装置として示差走査熱量測定装置(DSC3500、ネッチ社製)を用い、測定条件は30℃から230℃まで、昇温速度は5℃/分とした。これにより得られたDSC曲線から、ガラス転移温度を特定した。
(11) Relationship between the ratio of metal ions and the glass transition temperature and IR peak The glass transition temperature of the self-healing material when the ratio of sodium ions in the composition is changed based on Reference Example C. Investigated the changes. In measuring the glass transition temperature, differential scanning calorimetry (DSC) of the self-healing material was performed. A differential scanning calorimetry device (DSC3500, manufactured by Netch Co., Ltd.) was used as the measuring device, and the measuring conditions were from 30 ° C. to 230 ° C. and the temperature rising rate was 5 ° C./min. From the DSC curve obtained by this, the glass transition temperature was specified.
 この結果を図3に示す。図3の縦軸はガラス転移温度を、横軸の数値は不飽和カルボン酸に対するナトリウムイオンの割合(モル%)を、それぞれ示す。 This result is shown in Fig. 3. The vertical axis of FIG. 3 indicates the glass transition temperature, and the numerical value on the horizontal axis indicates the ratio (mol%) of sodium ions to the unsaturated carboxylic acid.
 図3に示すように、ナトリウムイオンの割合が30モル%程度になるまでは、ナトリウムイオンの割合が高くなるほど、ガラス転移温度が上昇した。これは、ナトリウムイオンの割合が高くなることで、自己修復性材料中の配位構造の数密度が高くなり、自己修復性材料がより剛直になったためであると推察される。ナトリウムイオンの割合が更に高くなると、ガラス転移温度は変化しにくくなった。これは、ナトリウムイオンと配位性官能基とが安定した配位構造を構成するための比率を超えてナトリウムイオンが多くなったために、ナトリウムイオンを増やしても配位構造の数密度が増大しなくなったためであると推察される。 As shown in FIG. 3, the glass transition temperature increased as the sodium ion ratio increased until the sodium ion ratio reached about 30 mol%. It is presumed that this is because the higher the proportion of sodium ions, the higher the number density of the coordination structures in the self-healing material, and the more rigid the self-healing material. As the proportion of sodium ions increased, the glass transition temperature became less likely to change. This is because the number of sodium ions increased in excess of the ratio for the sodium ions and the coordinating functional group to form a stable coordinating structure, so that the number density of the coordinating structure increased even if the sodium ions were increased. It is presumed that this is because it has disappeared.
 また、自己修復性材料の赤外吸光分析(IR)を行った。その結果を図4に示す。図4中のA、B、C及びDは、それぞれ組成物中の不飽和カルボン酸エステルと不飽和カルボン酸の総物質量に対するナトリウムイオンの割合が0モル%、2モル%、4モル%及び5モル%である場合のIRスペクトルを示す。この結果によると、IRスペクトルにおける、1580cm-1辺りにあるカルボキシレート基とナトリウムイオンとのイオン結合に対応する吸収ピークは、ナトリウムイオンの割合が30モル%程度になるまでは、ナトリウムイオンの割合が高くなるほど増大した。 Infrared spectroscopy (IR) of self-healing materials was also performed. The results are shown in FIG. In A, B, C and D in FIG. 4, the ratio of sodium ion to the total amount of substance of unsaturated carboxylic acid ester and unsaturated carboxylic acid in the composition is 0 mol%, 2 mol%, 4 mol% and The IR spectrum when it is 5 mol% is shown. According to this result, the absorption peak corresponding to the ionic bond between the carboxylate group and the sodium ion at around 1580 cm -1 in the IR spectrum is the ratio of sodium ions until the ratio of sodium ions reaches about 30 mol%. Increased as the value increased.
 これらの結果から、自己修復性材料中には、金属イオンと配位性官能基とによる架橋構造が形成され、架橋構造の数密度は金属イオンの割合に依存すると、判断できる。 From these results, it can be judged that a crosslinked structure consisting of metal ions and coordinating functional groups is formed in the self-healing material, and the number density of the crosslinked structure depends on the proportion of metal ions.
 2.高分子を含有する樹脂骨格を備える自己修復性材料
 第二実施形態に係る自己修復性材料の例を、参考例として示す。下記のうち、特に参考例1~6の自己修復性材料が、抗菌性材料に適用されることが好ましい。
2. 2. A self-healing material having a resin skeleton containing a polymer An example of a self-healing material according to the second embodiment is shown as a reference example. Of the following, it is particularly preferable that the self-healing materials of Reference Examples 1 to 6 are applied to the antibacterial material.
 (1)組成物の調製
 表5に示す原料を、東洋精機社製のラボプラストミルを用い、温度230℃、処理時間15分、回転速度30rpmの条件で混練することで、組成物を調製した。
(1) Preparation of composition A composition was prepared by kneading the raw materials shown in Table 5 under the conditions of a temperature of 230 ° C., a treatment time of 15 minutes, and a rotation speed of 30 rpm using a laboplast mill manufactured by Toyo Seiki Co., Ltd. ..
 表5中の高分子の詳細は次のとおりである。
-高分子A1:メタクリル酸とメタクリル酸メチルとメタクリル酸ブチルとの、モル比10:79:11の共重合体。重量平均分子量18000。ガラス転移温度79℃。
-高分子A2:メタクリル酸とメタクリル酸メチルとメタクリル酸ブチルとの、モル比10:30:60の共重合体。重量平均分子量17000。ガラス転移温度45℃。
-高分子A3:メタクリル酸とメタクリル酸メチルとメタクリル酸ブチルとの、モル比10:30:60の共重合体。重量平均分子量9500。ガラス転移温度37℃。
-高分子B1:メタクリル酸とメタクリル酸メチルとの、モル比10:90の共重合体。重量平均分子量50000。ガラス転移温度119℃。
-高分子B2:メタクリル酸とメタクリル酸メチルとメタクリル酸ブチルとの、モル比10:79:11の共重合体。重量平均分子量48000。ガラス転移温度86℃。
The details of the macromolecules in Table 5 are as follows.
-Polymer A1: A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:79:11. Weight average molecular weight 18,000. Glass transition temperature 79 ° C.
-Polymer A2: A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:30:60. Weight average molecular weight 17,000. Glass transition temperature 45 ° C.
-Polymer A3: A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:30:60. Weight average molecular weight 9500. Glass transition temperature 37 ° C.
-Polymer B1: A copolymer of methacrylic acid and methyl methacrylate having a molar ratio of 10:90. Weight average molecular weight 50,000. Glass transition temperature 119 ° C.
-Polymer B2: A copolymer of methacrylic acid, methyl methacrylate and butyl methacrylate having a molar ratio of 10:79:11. Weight average molecular weight 48,000. Glass transition temperature 86 ° C.
 なお、各高分子のガラス転移温度は、測定装置として示差走査熱量測定装置(DSC3500、ネッチ社製)を用い、温度範囲30℃から230℃まで、昇温速度5℃/分の条件で得られたDSC曲線から、特定した。 The glass transition temperature of each polymer can be obtained by using a differential scanning calorimetry device (DSC3500, manufactured by Netch Co., Ltd.) as a measuring device in a temperature range of 30 ° C. to 230 ° C. and a heating rate of 5 ° C./min. It was identified from the DSC curve.
 また、表5中の解離温度は、各組成物における高分子(B)と高分子(B)との解離温度を示す。この解離温度は、カルボキシレート基とナトリウムイオンとの金属配位結合の解離温度の文献値である。 The dissociation temperature in Table 5 indicates the dissociation temperature between the polymer (B) and the polymer (B) in each composition. This dissociation temperature is a literature value of the dissociation temperature of the metal coordination bond between the carboxylate group and the sodium ion.
 (2)自己修復性材料の作製
 組成物を、東洋精機社製のハンドトゥルーダ(登録商標)で成形して、80×70×2mmの寸法の自己修復性材料のサンプルを作製した。
(2) Preparation of Self-Repairing Material The composition was molded with a hand truda (registered trademark) manufactured by Toyo Seiki Co., Ltd. to prepare a sample of the self-repairing material having dimensions of 80 × 70 × 2 mm.
 (3)耐薬品性
 サンプルを25℃のアセトン中に3時間浸漬した。これにより生じたサンプルの重量減少率が30質量%以下である場合を「A」、30質量%以上である場合を「B」と、評価した。その結果を表5に示す。
(3) Chemical resistance The sample was immersed in acetone at 25 ° C. for 3 hours. The case where the weight loss rate of the sample produced by this was 30% by mass or less was evaluated as "A", and the case where the weight reduction rate was 30% by mass or more was evaluated as "B". The results are shown in Table 5.
 (4)修復性
 サンプルの表面にカッターナイフで長さ30mmの傷を付けてから、サンプルをアイロンで、180℃に加熱しながら約0.0196MPa(0.2kgf/cm2)のプレス圧を1分間加えた。続いて、サンプルの表面を目視で観察した。その結果、傷が認められなくなった場合を「A」、傷が認められる場合を「B」と評価した。また、アイロンで加熱する温度を75℃にした場合についても、同様に評価した。その結果を表5に示す。
(4) Repairability After scratching the surface of the sample with a cutter knife to a length of 30 mm, apply a press pressure of about 0.0196 MPa (0.2 kgf / cm 2 ) while heating the sample to 180 ° C with an iron. Added for minutes. Subsequently, the surface of the sample was visually observed. As a result, the case where no scratches were found was evaluated as "A", and the case where no scratches were found was evaluated as "B". Further, the case where the temperature of heating with an iron was set to 75 ° C. was also evaluated in the same manner. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記の実施形態及び実施例から明らかなように、本開示の第一の態様に係る抗菌性材料は、刺激が与えられることで弾性が下がり、かつ刺激が除かれることで弾性が上がる自己修復性材料と、抗菌性物質とを含有する。 As is clear from the above embodiments and examples, the antibacterial material according to the first aspect of the present disclosure has a self-healing property in which elasticity decreases when a stimulus is applied and elasticity increases when the stimulus is removed. Contains materials and antibacterial substances.
 第一の態様によると、抗菌性材料は、自己修復性材料を含むので、刺激が与えられると弾性が下がることで塑性変形しやすくなる。そのため、抗菌性材料が傷付けられても、抗菌性材料に刺激を与えれば、抗菌性材料を容易に変形させて傷を修復しやすい。続いて、抗菌性材料から刺激を除けば、弾性が上がることで、元の状態に復帰できる。このため、抗菌性材料に傷が付いても、傷を容易に修復することができ、そのため抗菌性材料の抗菌性能が長期にわたって維持されやすくなる。 According to the first aspect, since the antibacterial material contains a self-healing material, when a stimulus is applied, the elasticity decreases and plastic deformation is likely to occur. Therefore, even if the antibacterial material is damaged, if the antibacterial material is stimulated, the antibacterial material can be easily deformed and the wound can be easily repaired. Subsequently, if the stimulus is removed from the antibacterial material, the elasticity increases and the original state can be restored. Therefore, even if the antibacterial material is scratched, the scratch can be easily repaired, so that the antibacterial performance of the antibacterial material can be easily maintained for a long period of time.
 本開示の第二の態様に係る抗菌性材料は、第一の態様において、刺激は、熱、圧力、液体、ガス及び光からなる群から選択される少なくとも一種を含む。 The antibacterial material according to the second aspect of the present disclosure comprises at least one selected from the group consisting of heat, pressure, liquid, gas and light in the first aspect.
 第二の態様によると、刺激を利用して、抗菌性材料を容易に修復しうる。 According to the second aspect, the antibacterial material can be easily repaired by utilizing the stimulus.
 本開示の第三の態様に係る抗菌性材料は、第一又は第二の態様において、刺激が与えられることで第一の状態から第二の状態へ変化し、かつ刺激が除かれることで第二の状態から第一の状態へ変化し、第一の状態での貯蔵弾性率は1GPa以上であり、第二の状態での貯蔵弾性率は10MPa以下である。 In the first or second aspect, the antibacterial material according to the third aspect of the present disclosure changes from the first state to the second state when a stimulus is applied, and the stimulus is removed. It changes from the second state to the first state, and the storage elastic modulus in the first state is 1 GPa or more, and the storage elastic modulus in the second state is 10 MPa or less.
 第三の態様によると、第一の状態では抗菌性材料は高い硬度及び強度を有しやすく、かつ第二の状態では抗菌性材料は特に塑性変形しやすく、そのため大きく深い傷がついても修復されやすい。 According to the third aspect, the antibacterial material tends to have high hardness and strength in the first state, and the antibacterial material is particularly prone to plastic deformation in the second state, so that even if a large and deep scratch is made, it is repaired. Cheap.
 本開示の第四の態様に係る抗菌性材料は、第三の態様において、刺激は熱を含み、第一の状態にある抗菌性材料を25℃から加熱して昇温させた場合に第二の状態になる温度は、100℃から200℃の範囲内にある。 The antibacterial material according to the fourth aspect of the present disclosure is the second aspect when the stimulus contains heat and the temperature of the antibacterial material in the first state is heated from 25 ° C. in the third aspect. The temperature at which the above state is reached is in the range of 100 ° C to 200 ° C.
 第四の態様によると、抗菌性材料が使用される環境下において、抗菌性材料の貯蔵弾性率が過度に低下しにくく、抗菌性材料が高い硬度を維持しやすい。さらに、抗菌性材料を第二の状態に変化させるために加熱するに当たって、抗菌性材料を過度に高温にする必要がなく、そのため抗菌性材料の修復の作業がしやすくなる。 According to the fourth aspect, in an environment where the antibacterial material is used, the storage elastic modulus of the antibacterial material does not easily decrease excessively, and the antibacterial material tends to maintain high hardness. Further, in heating the antibacterial material to change it to the second state, it is not necessary to heat the antibacterial material excessively, which facilitates the work of repairing the antibacterial material.
 本開示の第五の態様に係る抗菌性材料は、第一から第四のいずれか一の態様において、自己修復性材料は、樹脂骨格と、樹脂骨格を架橋し、刺激に応じて可逆的に解離及び再結合する動的結合とを有する。 The antibacterial material according to the fifth aspect of the present disclosure is, in any one of the first to the fourth aspects, the self-healing material crosslinks the resin skeleton and the resin skeleton and reversibly responds to a stimulus. It has a dynamic bond that dissociates and recombines.
 第五の態様によると、動的結合によって自己修復性材料の自己修復性が発現できる。 According to the fifth aspect, the self-repairing property of the self-repairing material can be expressed by the dynamic binding.
 本開示の第六の態様に係る抗菌性材料は、第五の態様において、動的結合は、可逆共有結合、非共有相互作用による結合、及び配位結合よりなる群から選択される少なくとも一種を含む。 The antibacterial material according to the sixth aspect of the present disclosure comprises at least one selected from the group consisting of a reversible covalent bond, a non-covalent interaction bond, and a coordinate bond in the fifth aspect. include.
 第六の態様によると、刺激によって動的結合が特に可逆的に解離及び再結合しやすく、そのため抗菌性材料が良好な自己修復性を有しやすい。 According to the sixth aspect, the dynamic binding is particularly liable to be reversibly dissociated and recombined by the stimulus, so that the antibacterial material tends to have good self-repairing property.
 本開示の第七の態様に係る抗菌性材料は、第五又は第六の態様において、刺激が熱を含み、動的結合の解離温度は、30℃よりも高い。 In the fifth or sixth aspect, the antibacterial material according to the seventh aspect of the present disclosure contains heat as a stimulus, and the dissociation temperature of the dynamic bond is higher than 30 ° C.
 第七の態様によると、抗菌性材料が使用される環境下では抗菌性材料を変形しにくくできる。 According to the seventh aspect, the antibacterial material can be less likely to be deformed in an environment where the antibacterial material is used.
 本開示の第八の態様に係る抗菌性材料は、第五から第七のいずれか一の態様において、樹脂骨格は、重合性化合物(a)の重合体(A)を含み、重合性化合物(a)は、不飽和カルボン酸(a1)を含有する。 In the antibacterial material according to the eighth aspect of the present disclosure, in any one of the fifth to seventh aspects, the resin skeleton contains the polymer (A) of the polymerizable compound (a), and the polymerizable compound ( a) contains an unsaturated carboxylic acid (a1).
 第八の態様によると、不飽和カルボン酸(a1)に由来する配位性官能基であるカルボキシル基とカルボキシレート基とのうち少なくとも一方を利用して、自己修復性材料内に動的結合を生じさせ、自己修復性を発現させることができる。 According to the eighth aspect, at least one of the carboxyl group and the carboxylate group, which are coordinating functional groups derived from the unsaturated carboxylic acid (a1), is utilized to form a dynamic bond in the self-repairing material. It can be generated and self-repairing.
 本開示の第九の態様に係る抗菌性材料は、第八の態様において、重合性化合物(a)は、溶解度パラメータの値の範囲が2.0以内である成分(a0)を、50モル%以上100モル%以下の割合で含有し、成分(a0)は、少なくとも不飽和カルボン酸(a1)を含有する。 The antibacterial material according to the ninth aspect of the present disclosure is, in the eighth aspect, the polymerizable compound (a) contains 50 mol% of the component (a0) having a solubility parameter value range of 2.0 or less. It is contained in a proportion of 100 mol% or less, and the component (a0) contains at least an unsaturated carboxylic acid (a1).
 第九の態様によると、抗菌性材料は強固な構造を有することができ、かつ刺激が与えられると抗菌性材料が塑性変形しやすくなる。 According to the ninth aspect, the antibacterial material can have a strong structure, and when a stimulus is applied, the antibacterial material is easily plastically deformed.
 本開示の第十の態様に係る抗菌性材料は、第九の態様において、成分(a0)は、不飽和カルボン酸エステル(a2)を更に含有する。 In the ninth aspect of the antibacterial material according to the tenth aspect of the present disclosure, the component (a0) further contains an unsaturated carboxylic acid ester (a2).
 第十の態様によると、抗菌性材料の疎水性を高めることができ、このため抗菌性材料に耐水性を付与しやすくなる。 According to the tenth aspect, the hydrophobicity of the antibacterial material can be enhanced, and therefore it becomes easy to impart water resistance to the antibacterial material.
 本開示の第十一の態様に係る抗菌性材料は、第十の態様において、不飽和カルボン酸(a1)と不飽和カルボン酸エステル(a2)との合計に対する不飽和カルボン酸エステル(a2)の割合は50モル%以上99モル%以下である。 The antibacterial material according to the eleventh aspect of the present disclosure is the unsaturated carboxylic acid ester (a2) with respect to the sum of the unsaturated carboxylic acid (a1) and the unsaturated carboxylic acid ester (a2) in the tenth aspect. The ratio is 50 mol% or more and 99 mol% or less.
 第十一の態様によると、抗菌性材料は特に高い耐水性を有しやすく、かつ刺激が与えられてない状態での高い貯蔵粘弾性と刺激が与えられている状態での低い貯蔵粘弾性とが実現されやすい。 According to the eleventh aspect, the antibacterial material tends to have particularly high water resistance, and has high storage viscoelasticity in the unstimulated state and low storage viscoelasticity in the stimulating state. Is easy to realize.
 本開示の第十二の態様に係る抗菌性材料は、第十又は第十一の態様において、不飽和カルボン酸(a1)はアクリル酸とメタクリル酸とのうち少なくとも一方を含有し、不飽和カルボン酸エステル(a2)はアクリル酸エステルとメタクリル酸エステルとのうち少なくとも一方を含有する。 In the tenth or eleventh aspect of the antibacterial material according to the twelfth aspect of the present disclosure, the unsaturated carboxylic acid (a1) contains at least one of acrylic acid and methacrylic acid, and the unsaturated carboxylic acid. The acid ester (a2) contains at least one of an acrylic acid ester and a methacrylic acid ester.
 第十二の態様によると、刺激が与えられていない状態での高い貯蔵弾性率が特に実現されやすい。 According to the twelfth aspect, a high storage elastic modulus is particularly likely to be realized in a state where no stimulus is given.
 本開示の第十三の態様に係る抗菌性材料は、第五から第十二のいずれか一の態様において、樹脂骨格は、高分子(B)を含有し、高分子(B)に含まれる分子間が動的結合で架橋されている。 In any one of the fifth to twelfth aspects of the antibacterial material according to the thirteenth aspect of the present disclosure, the resin skeleton contains the polymer (B) and is contained in the polymer (B). The molecules are cross-linked by dynamic bonds.
 第十三の態様によれば、高分子(B)に含まれる分子間が動的結合によって架橋されることで、自己修復性材料の自己修復性が発現しやすい。 According to the thirteenth aspect, the self-repairing property of the self-repairing material is likely to be exhibited by cross-linking the molecules contained in the polymer (B) by a dynamic bond.
 本開示の第十四の態様に係る抗菌性材料は、第十三の態様において、高分子(B)は、第一高分子(B1)と第二高分子(B2)とを含有し、第一高分子(B1)の重量平均分子量が20000以下であり、第二高分子(B2)の重量平均分子量が30000以上である。 In the thirteenth aspect of the antibacterial material according to the fourteenth aspect of the present disclosure, the polymer (B) contains a first polymer (B1) and a second polymer (B2). The weight average molecular weight of the one polymer (B1) is 20,000 or less, and the weight average molecular weight of the second polymer (B2) is 30,000 or more.
 第十四の態様によると、刺激が与えられていない状態では抗菌性材料に力が加えられても変形しにくくでき、かつ耐溶剤性の低下も生じ難く、刺激が与えられると抗菌性材料に力を加えられた場合に塑性変形しやすくなり、抗菌性材料を容易に変形させて傷を修復することができる。 According to the fourteenth aspect, in a state where no stimulus is applied, the antibacterial material can be less likely to be deformed even when a force is applied, and the solvent resistance is less likely to be deteriorated. When a force is applied, it is easily plastically deformed, and the antibacterial material can be easily deformed to repair the wound.
 本開示の第十五の態様に係る抗菌性材料は、第十四の態様において、刺激が熱を含み、第一高分子(B1)のガラス転移温度は、動的結合の解離温度よりも低い。 In the fourteenth aspect of the antibacterial material according to the fifteenth aspect of the present disclosure, the stimulus contains heat, and the glass transition temperature of the first polymer (B1) is lower than the dissociation temperature of the dynamic bond. ..
 第十五の態様によると、抗菌性材料の温度が解離温度以上になると、抗菌性材料が速やかに変形しやすくなることで、抗菌性材料の傷が特に修復されやすくなる。 According to the fifteenth aspect, when the temperature of the antibacterial material becomes higher than the dissociation temperature, the antibacterial material is easily deformed quickly, so that the scratches on the antibacterial material are particularly easily repaired.
 本開示の第十六の態様に係る抗菌性材料は、第十四又は第十五の態様において、刺激が熱を含み、第二高分子(B2)のガラス転移温度は、動的結合の解離温度よりも高い。 In the fourteenth or fifteenth aspect of the antibacterial material according to the sixteenth aspect of the present disclosure, the stimulus contains heat, and the glass transition temperature of the second polymer (B2) is the dissociation of the dynamic bond. Higher than the temperature.
 第十六の態様によると、抗菌性材料の温度が上昇しても、抗菌性材料の過度な変形が特に生じにくくなる。 According to the sixteenth aspect, even if the temperature of the antibacterial material rises, excessive deformation of the antibacterial material is particularly unlikely to occur.
 本開示の第十七の態様に係る抗菌性材料は、第五から第十六のいずれか一の態様において、自己修復性材料は、金属イオン(C)を含有し、金属イオン(C)は、樹脂骨格を架橋して動的結合を形成する。 In the antibacterial material according to the seventeenth aspect of the present disclosure, in any one of the fifth to sixteenth aspects, the self-healing material contains a metal ion (C), and the metal ion (C) is a metal ion (C). , Crosslink the resin skeleton to form a dynamic bond.
 第十七の態様によると、金属イオンによる金属配位結合によって動的結合を形成できることで、抗菌性材料に良好な自己修復性能が発現しやすくなる。 According to the seventeenth aspect, a dynamic bond can be formed by a metal coordination bond by a metal ion, so that a good self-repairing performance can be easily exhibited in an antibacterial material.
 本開示の第十八の態様に係る抗菌性材料は、第十七の態様において、樹脂骨格は、不飽和カルボン酸に由来する構造を有し、不飽和カルボン酸に対する金属イオン(C)の割合は1モル%以上20モル%以下である。 In the seventeenth aspect of the antibacterial material according to the eighteenth aspect of the present disclosure, the resin skeleton has a structure derived from an unsaturated carboxylic acid, and the ratio of the metal ion (C) to the unsaturated carboxylic acid. Is 1 mol% or more and 20 mol% or less.
 第十八の態様によると、刺激が与えられている状態での低い貯蔵弾性率が特に実現されやすくなり、刺激が与えられている状態で特に傷などが修復されやすくなる。 According to the eighteenth aspect, it becomes particularly easy to realize a low storage elastic modulus in a state where a stimulus is given, and it becomes particularly easy to repair a wound or the like in a state where a stimulus is given.
 本開示の第十九の態様に係る抗菌性材料は、第十七又は第十八の態様において、金属イオン(C)は、アルカリ金属イオンとアルカリ土類金属イオンとからなる群から選択される少なくとも一種を含有する。 In the seventeenth or eighteenth aspect of the antibacterial material according to the nineteenth aspect of the present disclosure, the metal ion (C) is selected from the group consisting of an alkali metal ion and an alkaline earth metal ion. Contains at least one.
 第十九の態様によると、抗菌性材料の刺激が与えられていない状態における高い硬度及び良好な耐薬品性と、刺激が与えられている状態における良好な変形されやすさとが特に実現されやすい。 According to the nineteenth aspect, high hardness and good chemical resistance of the antibacterial material in a non-stimulated state and good deformability in a stimulated state are particularly easy to be realized.
 本開示の第二十の態様に係る抗菌性材料は、第一から第十九のいずれか一の態様において、抗菌性物質は、重金属イオンと第四級アンモニウムイオンとのうち少なくとも一方を含有する。 The antibacterial material according to the twenty-second aspect of the present disclosure, in any one of the first to nineteenth aspects, the antibacterial substance contains at least one of a heavy metal ion and a quaternary ammonium ion. ..
 第二十の態様によると、抗菌性材料が良好な抗菌性能を特に有しやすい。 According to the twentieth aspect, the antibacterial material is particularly likely to have good antibacterial performance.
 本開示の第二十一の態様に係る抗菌性材料は、第二十の態様において、抗菌性物質は、重金属イオンを含有し、重金属イオンは、銀イオンと銅イオンとのうち少なくとも一方を含有する。 In the twenty-second aspect of the antibacterial material according to the twenty-first aspect of the present disclosure, the antibacterial substance contains a heavy metal ion, and the heavy metal ion contains at least one of a silver ion and a copper ion. do.
 第二十一の態様によると、抗菌性材料が特に良好な抗菌性能を有しやすい。 According to the twenty-first aspect, the antibacterial material tends to have particularly good antibacterial performance.

Claims (21)

  1. 刺激が与えられることで弾性が下がり、かつ前記刺激が除かれることで弾性が上がる自己修復性材料と、
    抗菌性物質とを含有する、
    抗菌性材料。
    A self-healing material whose elasticity decreases when a stimulus is applied and whose elasticity increases when the stimulus is removed.
    Contains antibacterial substances,
    Antibacterial material.
  2. 前記刺激は、熱、圧力、液体、ガス及び光からなる群から選択される少なくとも一種を含む、
    請求項1に記載の抗菌性材料。
    The stimulus comprises at least one selected from the group consisting of heat, pressure, liquid, gas and light.
    The antibacterial material according to claim 1.
  3. 前記刺激が与えられることで第一の状態から第二の状態へ変化し、かつ前記刺激が除かれることで前記第二の状態から前記第一の状態へ変化し、
    前記第一の状態での貯蔵弾性率は1GPa以上であり、
    前記第二の状態での貯蔵弾性率は10MPa以下である、
    請求項1又は2に記載の抗菌性材料。
    When the stimulus is given, it changes from the first state to the second state, and when the stimulus is removed, it changes from the second state to the first state.
    The storage elastic modulus in the first state is 1 GPa or more, and the storage elastic modulus is 1 GPa or more.
    The storage elastic modulus in the second state is 10 MPa or less.
    The antibacterial material according to claim 1 or 2.
  4. 前記刺激は熱を含み、
    前記第一の状態にある前記抗菌性材料を25℃から加熱して昇温させた場合に前記第二の状態になる温度は、100℃から200℃の範囲内にある、
    請求項3に記載の抗菌性材料。
    The stimulus contains heat and
    When the antibacterial material in the first state is heated from 25 ° C. and heated, the temperature at which the second state is reached is in the range of 100 ° C. to 200 ° C.
    The antibacterial material according to claim 3.
  5. 前記自己修復性材料は、樹脂骨格と、前記樹脂骨格を架橋し、前記刺激に応じて可逆的に解離及び再結合する動的結合とを有する、
    請求項1から4のいずれか一項に記載の抗菌性材料。
    The self-healing material has a resin skeleton and a dynamic bond that crosslinks the resin skeleton and reversibly dissociates and recombines in response to the stimulus.
    The antibacterial material according to any one of claims 1 to 4.
  6. 前記動的結合は、可逆共有結合、非共有相互作用による結合、及び配位結合よりなる群から選択される少なくとも一種を含む、
    請求項5に記載の抗菌性材料。
    The dynamic bond comprises at least one selected from the group consisting of reversible covalent bonds, non-covalent bonds, and coordinate bonds.
    The antibacterial material according to claim 5.
  7. 前記刺激が熱を含み、
    前記動的結合の解離温度は、30℃よりも高い、
    請求項5又は6に記載の抗菌性材料。
    The stimulus contains heat
    The dissociation temperature of the dynamic bond is higher than 30 ° C.
    The antibacterial material according to claim 5 or 6.
  8. 前記樹脂骨格は、重合性化合物(a)の重合体(A)を含み、
    前記重合性化合物(a)は、不飽和カルボン酸(a1)を含有する、
    請求項5から7のいずれか一項に記載の抗菌性材料。
    The resin skeleton contains the polymer (A) of the polymerizable compound (a).
    The polymerizable compound (a) contains an unsaturated carboxylic acid (a1).
    The antibacterial material according to any one of claims 5 to 7.
  9. 前記重合性化合物(a)は、溶解度パラメータの値の範囲が2.0以内である成分(a0)を、50モル%以上100モル%以下の割合で含有し、
    前記成分(a0)は、少なくとも前記不飽和カルボン酸(a1)を含有する、
    請求項8に記載の抗菌性材料。
    The polymerizable compound (a) contains the component (a0) having a solubility parameter value range of 2.0 or less in a proportion of 50 mol% or more and 100 mol% or less.
    The component (a0) contains at least the unsaturated carboxylic acid (a1).
    The antibacterial material according to claim 8.
  10. 前記成分(a0)は、不飽和カルボン酸エステル(a2)を更に含有する、
    請求項9に記載の抗菌性材料。
    The component (a0) further contains an unsaturated carboxylic acid ester (a2).
    The antibacterial material according to claim 9.
  11. 前記不飽和カルボン酸(a1)と前記不飽和カルボン酸エステル(a2)との合計に対する前記不飽和カルボン酸エステル(a2)の割合は50モル%以上99モル%以下である、
    請求項10に記載の抗菌性材料。
    The ratio of the unsaturated carboxylic acid ester (a2) to the total of the unsaturated carboxylic acid (a1) and the unsaturated carboxylic acid ester (a2) is 50 mol% or more and 99 mol% or less.
    The antibacterial material according to claim 10.
  12. 前記不飽和カルボン酸(a1)はアクリル酸とメタクリル酸とのうち少なくとも一方を含有し、
    前記不飽和カルボン酸エステル(a2)はアクリル酸エステルとメタクリル酸エステルとのうち少なくとも一方を含有する、
    請求項10又は11に記載の抗菌性材料。
    The unsaturated carboxylic acid (a1) contains at least one of acrylic acid and methacrylic acid.
    The unsaturated carboxylic acid ester (a2) contains at least one of an acrylic acid ester and a methacrylic acid ester.
    The antibacterial material according to claim 10 or 11.
  13. 前記樹脂骨格は、高分子(B)を含有し、前記高分子(B)に含まれる分子間が前記動的結合で架橋されている、
    請求項5から12のいずれか一項に記載の抗菌性材料。
    The resin skeleton contains a polymer (B), and the molecules contained in the polymer (B) are crosslinked by the dynamic bond.
    The antibacterial material according to any one of claims 5 to 12.
  14. 前記高分子(B)は、第一高分子(B1)と第二高分子(B2)とを含有し、
    前記第一高分子(B1)の重量平均分子量が20000以下であり、
    前記第二高分子(B2)の重量平均分子量が30000以上である、
    請求項13に記載の抗菌性材料。
    The polymer (B) contains a first polymer (B1) and a second polymer (B2).
    The weight average molecular weight of the first polymer (B1) is 20000 or less, and the weight average molecular weight is 20000 or less.
    The weight average molecular weight of the second polymer (B2) is 30,000 or more.
    The antibacterial material according to claim 13.
  15. 前記刺激が熱を含み、
    前記第一高分子(B1)のガラス転移温度は、前記動的結合の解離温度よりも低い、
    請求項14に記載の抗菌性材料。
    The stimulus contains heat
    The glass transition temperature of the first polymer (B1) is lower than the dissociation temperature of the dynamic bond.
    The antibacterial material according to claim 14.
  16. 前記刺激が熱を含み、
    前記第二高分子(B2)のガラス転移温度は、前記動的結合の解離温度よりも高い、
    請求項14又は15に記載の抗菌性材料。
    The stimulus contains heat
    The glass transition temperature of the second polymer (B2) is higher than the dissociation temperature of the dynamic bond.
    The antibacterial material according to claim 14 or 15.
  17. 前記自己修復性材料は、金属イオン(C)を含有し、
    前記金属イオン(C)は、前記樹脂骨格を架橋して前記動的結合を形成する、
    請求項5から16のいずれか一項に記載の抗菌性材料。
    The self-healing material contains metal ions (C) and
    The metal ion (C) crosslinks the resin skeleton to form the dynamic bond.
    The antibacterial material according to any one of claims 5 to 16.
  18. 前記樹脂骨格は、不飽和カルボン酸に由来する構造を有し、
    前記不飽和カルボン酸に対する前記金属イオン(C)の割合は1モル%以上20モル%以下である、
    請求項17に記載の抗菌性材料。
    The resin skeleton has a structure derived from an unsaturated carboxylic acid and has a structure.
    The ratio of the metal ion (C) to the unsaturated carboxylic acid is 1 mol% or more and 20 mol% or less.
    The antibacterial material according to claim 17.
  19. 前記金属イオン(C)は、アルカリ金属イオンとアルカリ土類金属イオンとからなる群から選択される少なくとも一種を含有する、
    請求項17又は18に記載の抗菌性材料。
    The metal ion (C) contains at least one selected from the group consisting of alkali metal ions and alkaline earth metal ions.
    The antibacterial material according to claim 17 or 18.
  20. 前記抗菌性物質は、重金属イオンと第四級アンモニウムイオンとのうち少なくとも一方を含有する、
    請求項1から19のいずれか一項に記載の抗菌性材料。
    The antibacterial substance contains at least one of a heavy metal ion and a quaternary ammonium ion.
    The antibacterial material according to any one of claims 1 to 19.
  21. 前記抗菌性物質は、前記重金属イオンを含有し、前記重金属イオンは、銀イオンと銅イオンとのうち少なくとも一方を含有する、
    請求項20に記載の抗菌性材料。
    The antibacterial substance contains the heavy metal ion, and the heavy metal ion contains at least one of silver ion and copper ion.
    The antibacterial material according to claim 20.
PCT/JP2021/033011 2020-09-29 2021-09-08 Antibacterial material WO2022070813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164073 2020-09-29
JP2020164073 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070813A1 true WO2022070813A1 (en) 2022-04-07

Family

ID=80950211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033011 WO2022070813A1 (en) 2020-09-29 2021-09-08 Antibacterial material

Country Status (1)

Country Link
WO (1) WO2022070813A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181207A (en) * 2013-03-19 2014-09-29 Toray Advanced Film Co Ltd Self-repairing film
JP2015516994A (en) * 2012-03-07 2015-06-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Bio-inspired methods for obtaining multifunctional dynamic nanocomposites
CN109749095A (en) * 2018-12-19 2019-05-14 武汉理工大学 A kind of chitosan derivatives self-healing hydrogel and its preparation method and application
KR102085442B1 (en) * 2018-08-30 2020-03-05 서울과학기술대학교 산학협력단 Adhesive, self-healable, stretchable materials and composites
JP2020100718A (en) * 2018-12-21 2020-07-02 国立大学法人 東京大学 Dynamically crosslinked elastomer
CN111363166A (en) * 2018-12-25 2020-07-03 天津科技大学 High-strength self-repairing antibacterial hydrogel and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516994A (en) * 2012-03-07 2015-06-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Bio-inspired methods for obtaining multifunctional dynamic nanocomposites
JP2014181207A (en) * 2013-03-19 2014-09-29 Toray Advanced Film Co Ltd Self-repairing film
KR102085442B1 (en) * 2018-08-30 2020-03-05 서울과학기술대학교 산학협력단 Adhesive, self-healable, stretchable materials and composites
CN109749095A (en) * 2018-12-19 2019-05-14 武汉理工大学 A kind of chitosan derivatives self-healing hydrogel and its preparation method and application
JP2020100718A (en) * 2018-12-21 2020-07-02 国立大学法人 東京大学 Dynamically crosslinked elastomer
CN111363166A (en) * 2018-12-25 2020-07-03 天津科技大学 High-strength self-repairing antibacterial hydrogel and preparation method thereof

Similar Documents

Publication Publication Date Title
Vouvoudi et al. Dynamic mechanical properties of dental nanofilled light-cured resin composites: Effect of food-simulating liquids
TWI582163B (en) Polycarbonate blend and method of producing the same
CN109721922A (en) A kind of bathroom high glaze antibacterial flame-retardant AS/MS composite material and preparation method
WO2022070813A1 (en) Antibacterial material
EP1944344B1 (en) Resin composition for plastic coating and plastic coating using the same
WO2016181742A1 (en) Radical-curable composition and cured product thereof
TW201224014A (en) UV-reflecting compositions
JP2021070728A (en) Polymerizable composition, molding and composite member
JPS5938253A (en) Light-diffusing acrylic resin molding
JP2021070729A (en) Resin composition and molding
JPH08269387A (en) Thermosetting coating composition
JP2016069518A (en) Emulsion composition for coating
JP2006321729A (en) Hair cosmetic composition
WO2022172446A1 (en) Polymerizable composition, molded body, and composite member
CN108300087B (en) Water-based paint composition
JP2019081850A (en) Acrylic resin composition
JP2019081851A (en) Acrylic resin composition
JPH03221566A (en) Heat-curable antifogging agent composition
JP2003055617A5 (en) Paint composition and coated article containing low-staining agent
JPS5938982B2 (en) Methacrylic resin composition with excellent antistatic properties
JP3375684B2 (en) Powder processing composition
JP2009179691A (en) Method for producing methacrylic resin composition
JPH08253654A (en) Heat curatable coating composition
CN116462807A (en) Formula of silica gel, preparation method of silica gel, shower outlet net and shower
WO2020085201A1 (en) Method for producing artificial skin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP