WO2022070466A1 - Method for instantaneously measuring battery performance - Google Patents

Method for instantaneously measuring battery performance Download PDF

Info

Publication number
WO2022070466A1
WO2022070466A1 PCT/JP2021/010041 JP2021010041W WO2022070466A1 WO 2022070466 A1 WO2022070466 A1 WO 2022070466A1 JP 2021010041 W JP2021010041 W JP 2021010041W WO 2022070466 A1 WO2022070466 A1 WO 2022070466A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
overvoltage
equation
current
battery performance
Prior art date
Application number
PCT/JP2021/010041
Other languages
French (fr)
Japanese (ja)
Inventor
浩実 高岡
英志 田畑
聡 比嘉
Original Assignee
ゴイク電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゴイク電池株式会社 filed Critical ゴイク電池株式会社
Priority to CN202180001117.XA priority Critical patent/CN114651184A/en
Publication of WO2022070466A1 publication Critical patent/WO2022070466A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices

Definitions

  • the present invention is a method for instantaneously measuring battery performance, which enables detection of a capacity, which is an index of battery performance, and a current charge ratio SOC (storage ratio) with respect to this capacity in a short time (specifically, in about 1 second). Regarding.
  • Patent Document 1 discloses an AC impedance method for calculating a performance ratio from a reference battery ratio because the dynamic internal resistance serves as a battery performance index.
  • Patent Document 2 and the like disclose a method for observing complex response characteristics according to a combination of an electrolyte and an electrode. As described above, many methods have been tried in the past, but all of them have various difficulties in practical use or implementation, and are limited to use for special purposes.
  • An object of the present invention is to provide a method for instantaneously measuring battery performance, which makes it possible to detect battery performance in a short time.
  • the method for instantaneously measuring battery performance obtains Vs and mobility ⁇ , which are the parameters of the battery, based on the step of measuring the electromotive force Vemf , which is the open circuit voltage of the battery, and the type of the battery. It is characterized by including a step, a step of calculating C * r corresponding to the charge ratio SOC based on the formula of Equation 1, and a step of calculating an SOC-dependent function value based on the formula of Equation 2. do.
  • the step of adding the overvoltage ⁇ V2 to calculate the current I 2 flowing when applied to the battery the step of obtaining the true overvoltage ⁇ 1 based on the equation of Equation 3
  • the step of obtaining the true overvoltage ⁇ 1 based on the equation of Equation 3. It is preferable to include a step of obtaining a true overvoltage ⁇ 2 .
  • the method for instantaneously measuring battery performance includes a step of measuring the true overvoltage ⁇ 1 and the true overvoltage ⁇ 2 and determining whether the operating state of the battery is normal or abnormal. Is preferable.
  • the method for instantaneously measuring battery performance it is preferable to include a step of calculating the battery performance coefficient K 00 based on the equation of Equation 5.
  • the true overvoltage ⁇ 1 and the true overvoltage ⁇ 2 are responded to as a current through an electrode reaction inside the battery, and the response time is the battery. It depends on the state, and it is preferable to include a step of calculating the battery performance coefficient K00 by incorporating the response time.
  • the performance of the battery can be detected in a short time.
  • FIG. 1 is an electrical equivalent circuit diagram inside a battery in an embodiment of the present invention.
  • FIG. 2 is a diagram showing an overvoltage-current characteristic in the embodiment according to the present invention.
  • a current I flows. It is a characteristic diagram which correlates the magnitude of the current by this ⁇ . This characteristic is generalized by the following equation from the electrode kinetics.
  • ⁇ 1 the current becomes I 1
  • the gradient at the operating point becomes the dynamic conductance
  • its reciprocal becomes the dynamic internal resistance (Dir).
  • the value obtained by multiplying this Dir by the current I 1 is the potential difference ⁇ V D1 .
  • FIG. 3 is a diagram showing the relationship between the internal resistance potential difference ⁇ V D and the overvoltage ⁇ V D with respect to the overvoltage ⁇ in the embodiment of the present invention. It is a graph of the relational expression of the following expression.
  • FIG. 4 is a diagram showing the relationship in the case of a cobalt acid-carbon battery showing the relationship between the storage ratio SOC, which is the ratio of the filling amount to the capacity, and the electromotive force Vemf in the embodiment according to the present invention. Numerical calculation is performed from experimental values and theoretical formulas according to the summary of the table.
  • FIG. 5 is a diagram showing the correlation between the mobility ⁇ depending on the electrode type and the electromotive force Vemf with respect to the charge ratio SOC.
  • the correlation depends on the electrode material.
  • an electrode material consisting of a positive electrode and a carbon negative electrode made of cobalt acid, manganese acid, nickel acid or the like alone or in combination is used.
  • the charge ratio SOC-electromotive force Vemf characteristic is basically due to the fact that the reaction mobility ⁇ in the Nernst equation differs depending on the material composition of the battery.
  • the table drawn in FIG. 5 is a list obtained by logic and experiment.
  • FIG. 6 is a flowchart showing a procedure for detecting the performance of a battery in a short time in the embodiment of the present invention.
  • the present invention has developed a method for solving a problem by the following procedure.
  • the chemical reaction inside the battery was analyzed by physical chemistry, and various factors were identified.
  • the battery will be described as being a secondary battery such as a lithium ion battery.
  • ⁇ V D is a potential obtained by multiplying the dynamic internal resistance caused by the reaction rate of the oxidation / reduction reaction at the electrode by a current, and is expressed by the following equation.
  • f F / (RT)
  • F Faraday constant [C / mol]
  • R air constant [J / mol / T]
  • T absolute temperature [K].
  • ⁇ VC is determined by the flow of cations caused by diffusion in the electrolyte, migration in a potential field, etc., and is expressed by the following equation under the formation of an ion double layer.
  • the voltage is the product of the inherent resistance of the electrolyte and the current.
  • FIG. 2 is a graph of the equation of several tens. This formula is a universal formula that involves an oxidation / reduction reaction and holds for a so-called chemical battery regardless of the type and size of the battery.
  • sinh ( ⁇ ⁇ f / 2) is a factor that determines the magnitude of excitation determined by the magnitude of overvoltage. It is dimensionless, and C * r in the equation of equation 13 is accumulated in the negative electrode. It indicates the molar concentration [mol / m 3 ], and therefore the dimension of I 0 is the molar concentration [mol / m 3 ].
  • Equation 13 The relationship between ⁇ and ⁇ (C * r (1-C * r ) is the equation of Equation 13, and the overvoltage ⁇ is limited in its range from the maximum current and the maximum applied voltage, and its value is ⁇ max . , The number 16 of the following equation holds.
  • the solutions at that time are C * r, max and C * r, min .
  • the C * r, max and C * r, min can be obtained by solving the two equations on the right side of the equation 16. That is, the transfer of the molar concentration from the positive electrode to the negative electrode in charging over time T is given by the equation number 17.
  • This change in C * r indicates the difference between the molar concentration of the negative electrode at the completion of charging and the molar concentration at the start, and indicates the transition ratio from the positive electrode to the negative electrode.
  • the transition ratio of the capacity Q changes according to the molar movement unit I 0 , and the product Q 0 becomes a capacity element, which is multiplied by the electrode specific constant K 00 . That is, the number 19 of the following equation is obtained.
  • K 00 is a unique coefficient determined by the materials of the positive electrode / negative electrode and their sizes, and as will be described below, the capacity is determined by the magnitude of this coefficient. That is, the capacity, which is the performance of the battery, depends on this K 00 , and if the initial K 00 becomes smaller, the performance deteriorates, and the performance depends on the degree of crystal fracture (reduction of the number of effective crystals) that determines K 00 .
  • SOH State of Health
  • the charging condition for the maximum capacity is the formula 20 of the following equation, and the capacity Q max at that time is given by the equation of the equation 21.
  • the capacity Q varies depending on the charging conditions, but when a certain overvoltage ⁇ max is given, the maximum capacity is obtained under the condition that the relationship with ⁇ min that determines the current value setting satisfies the number 20 and the value is from the number 21. can get. Since the I 0 value takes substantially the same value from the equation of Eq. 16 regardless of the battery, the maximum capacity Q max is given by the following equation.
  • K 00 is a direct numerical index indicating the performance of the electrode, and this numerical reduction indicates a reduction in capacity, and the comparison with the initial value is an index of battery soundness (SOH).
  • SOH means the current soundness if the standard is the initial value.
  • Equation 23 is a Nernst equation that introduces this coefficient.
  • Vemf is a battery voltage in a state where no current flows in and out of the battery from the outside, and is generally an open circuit voltage OCV (Open Circuit Voltage). Therefore, this measurement is a measured value with a voltmeter with high impedance.
  • OCV Open Circuit Voltage
  • Vs and the mobility ⁇ which are the parameters of the battery, are determined from FIG. 5 based on the battery type (S2).
  • is an eigenvalue determined by the electrode structure of the positive electrode, the mixing ratio in the case of multiple elements, and the crystal mulberry, and is determined experimentally.
  • SOC is generally displayed in%, and is an index of what percentage of electricity is currently stored with respect to the storage capacity. This is a% display of the concentration of the reducing agent stored in the negative electrode, that is, Cr * .
  • the overvoltage ⁇ V 2 is added to the electromotive force Vemf to calculate the current I 2 that flows when the overvoltage ⁇ V 2 is applied to the battery, and the true overvoltage ⁇ 2 is obtained based on the equation of Equation 4 (S6).
  • the overvoltage ⁇ is applied and the current I is measured.
  • the coefficient of C * r (1-C * r ) is different. Therefore, if the SOC is different, the ⁇ value needs to be changed if the current condition is fixed. On the contrary, multiple ⁇ s are used.
  • the battery performance coefficient K 00 can be derived by calculation from the set and current measurement values.
  • the equation of the current I for the overvoltage ⁇ is expressed by the equation 11.
  • the battery capacity is determined according to ⁇ min (charging current regulation) or ⁇ max (charging voltage regulation) as shown in the equation of Equation 21.
  • ⁇ max is determined by the following equation number 27 from the applied maximum set voltage V SUP of the device, and ⁇ min is a true overvoltage determined by the number 15 and the charging current ( K00 ⁇ I 0 ) .
  • Equation of Eq. 12 it consists of a reaction rate coefficient ⁇ (K red / K ox ) determined by the material of the electrode and S determined by the size of the electrode. If the maximum overvoltage ⁇ max of the application or ⁇ min for obtaining the current is known from the equation of the number 21, the remarkable effect that the capacity of the battery can be instantly and mechanically determined by setting the conditions is obtained.
  • the battery responds to the true overvoltages ⁇ 1 and ⁇ 2 as a current via an electrode reaction inside the battery, and the response time varies depending on the battery state, and the response time is incorporated to calculate the battery performance coefficient K00 . Since the equation of Eq. 8 converges to zero with the passage of time, it becomes the equation of Eq. 10.
  • the diagnosis is made even when the battery state is not stable, that is, the ions, cations, and anions in the electrolyte are still in a diffusion motion and are not in a stable state. It is characterized by elaborate ingenuity that makes it possible.
  • the response is on the order of milliseconds, but the fourth term is related to the diffusion of ions in the electrolyte contained in the battery, and the operation is stopped for a minute or so. Is the relaxation time of the time order.
  • the capacity Q as the battery performance and the current remaining charge (SOC) can be confirmed in a short time (within 1 second), so that the inspection process time in battery production can be shortened, the production equipment can be simplified, and the equipment can be confirmed. It is possible to check the performance during use in mounting, check the quality of used batteries, and promptly decide the treatment and processing that accompanies it, leading to the safety and security of battery use, leading to a wider range of battery adaptation, and the world. It will contribute to the development and improvement of human life and culture.
  • the present invention is a useful and indispensable measuring means at all stages related to batteries, such as equipment incorporating a battery, quality control in the battery production process, shipping inspection of a battery manufacturer, performance check at the time of acceptance by an equipment manufacturer, and the like. It will be applied and utilized as. In this way, it is conceivable that the product or system device is suitable for each of a wide variety of battery usage scenes, but the theory underlying the present invention and the method for developing the application of the theory are common and utilized. It is an embodiment of the device and the product according to the place (scene).

Abstract

[Problem] To provide a method for instantaneously measuring battery performance, the method enabling the detection of the performance of a battery in a short time. [Solution] Provided is a method for instantaneously measuring battery performance, the method being characterised by comprising: a step for measuring an electromotive force Vemf, i.e., the open voltage of a battery; a step for obtaining a parameter Vs and mobility α of the battery on the basis of the type of the battery; a step for calculating Cr* corresponding to the state of charge SOC on the basis of equation 1; and a step for calculating a SOC-dependent function value on the basis of equation 2.

Description

電池性能の瞬時計測方法Instant measurement method of battery performance
 本発明は、電池性能の指標である容量と、この容量に対する現在の充電比率SOC(蓄電比率)を、短時間で(具体的には1秒程度で)検知可能とする電池性能の瞬時計測方法に関する。 The present invention is a method for instantaneously measuring battery performance, which enables detection of a capacity, which is an index of battery performance, and a current charge ratio SOC (storage ratio) with respect to this capacity in a short time (specifically, in about 1 second). Regarding.
 従来、電池性能を検知するためには、満充電まで充電し、その後、完全放電までの積算電気量を計量し、その結果の数値を基準に、電池の良し悪しを評価する性能認識をしていたが、これらの一連の作業には数時間要している。 Conventionally, in order to detect battery performance, the battery is charged until it is fully charged, then the integrated amount of electricity until it is completely discharged is measured, and the performance recognition is performed to evaluate the quality of the battery based on the resulting numerical value. However, these series of operations take several hours.
 しかし、電池を使う立場で考えるに、性能認識は、電池を使用する機器の製造工程、及び搭載する電池の安全性・信頼性を担保する検査工程においても不可欠であり、次工程への重要な事前確認事項である。この性能認識を短時間で可能とすることは、物理的にも経済的にも極めて重要な課題であった。 However, from the standpoint of using batteries, performance recognition is indispensable in the manufacturing process of equipment that uses batteries and in the inspection process that ensures the safety and reliability of the installed batteries, and is important for the next process. This is a matter to be confirmed in advance. Making this performance recognition possible in a short time has been an extremely important issue both physically and economically.
特許第3752249号公報Japanese Patent No. 3752249 特許第3869838号公報Japanese Patent No. 3869838 特許第6589080号公報Japanese Patent No. 6589080
 特許文献1には、動的内部抵抗が電池性能指標となることから基準の電池に対する比率から性能比率を算出する交流インピーダンス法が開示されている。また、特許文献2等には、電解質と電極の組み合わせに応じた複素応答特性を観測する手法が開示されている。このように、過去、幾多の手法が試みられているが、いずれも、実用上あるいは実装上、様々な難点があり、特殊用途の使用にとどまっている。 Patent Document 1 discloses an AC impedance method for calculating a performance ratio from a reference battery ratio because the dynamic internal resistance serves as a battery performance index. Further, Patent Document 2 and the like disclose a method for observing complex response characteristics according to a combination of an electrolyte and an electrode. As described above, many methods have been tried in the past, but all of them have various difficulties in practical use or implementation, and are limited to use for special purposes.
 本発明の目的は、電池の性能を短時間で検知することを可能とする電池性能の瞬時計測方法を提供することである。 An object of the present invention is to provide a method for instantaneously measuring battery performance, which makes it possible to detect battery performance in a short time.
 本発明に係る電池性能の瞬時計測方法は、電池の開放電圧である起電力Vemfを計測する工程と、前記電池の種類に基づいて、該電池のパラメータであるV及び移動度αを求める工程と、数1の式に基づいて、充電比率SOCに対応するC を算出する工程と、数2の式に基づいて、SOC依存関数値を算出する工程と、を備えることを特徴とする。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
  
The method for instantaneously measuring battery performance according to the present invention obtains Vs and mobility α, which are the parameters of the battery, based on the step of measuring the electromotive force Vemf , which is the open circuit voltage of the battery, and the type of the battery. It is characterized by including a step, a step of calculating C * r corresponding to the charge ratio SOC based on the formula of Equation 1, and a step of calculating an SOC-dependent function value based on the formula of Equation 2. do.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 また、本発明に係る電池性能の瞬時計測方法において、前記起電力Vemfに対し過電圧ΔVを加算して前記電池に印加したときに流れる電流I1を算出する工程と、前記起電力Vemfに対し過電圧ΔV2を加算して前記電池に印加したときに流れる電流Iを算出する工程と、数3の式に基づいて、真の過電圧δを求める工程と、数4の式に基づいて、真の過電圧δを求める工程と、を備えることが好ましい。
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000009
Further, in the method for instantaneously measuring the battery performance according to the present invention, the step of adding the overvoltage ΔV1 to the electromotive force Vemf to calculate the current I1 flowing when the overvoltage ΔV1 is applied to the battery, and the electromotive force Vemf . On the other hand, the step of adding the overvoltage ΔV2 to calculate the current I 2 flowing when applied to the battery, the step of obtaining the true overvoltage δ 1 based on the equation of Equation 3, and the step of obtaining the true overvoltage δ 1 based on the equation of Equation 3. It is preferable to include a step of obtaining a true overvoltage δ 2 .
Figure JPOXMLDOC01-appb-M000008

Figure JPOXMLDOC01-appb-M000009
 また、本発明に係る電池性能の瞬時計測方法において、前記真の過電圧δ及び前記真の過電圧δを計測し、電池の動作状態が正常であるか異常であるかを判定する工程を備えることが好ましい。 Further, the method for instantaneously measuring battery performance according to the present invention includes a step of measuring the true overvoltage δ 1 and the true overvoltage δ 2 and determining whether the operating state of the battery is normal or abnormal. Is preferable.
 また、本発明に係る電池性能の瞬時計測方法において、数5の式に基づいて、電池性能係数K00を算出する工程を備えることが好ましい。
Figure JPOXMLDOC01-appb-M000010
Further, in the method for instantaneously measuring battery performance according to the present invention, it is preferable to include a step of calculating the battery performance coefficient K 00 based on the equation of Equation 5.
Figure JPOXMLDOC01-appb-M000010
 また、本発明に係る電池性能の瞬時計測方法において、前記真の過電圧δ及び前記真の過電圧δに対し、前記電池の内部では電極反応を介して電流として応答し、該応答時間は電池状態によって異なり、前記応答時間を組み入れて電池性能係数K00を算出する工程を備えることが好ましい。 Further, in the instantaneous measurement method of battery performance according to the present invention, the true overvoltage δ 1 and the true overvoltage δ 2 are responded to as a current through an electrode reaction inside the battery, and the response time is the battery. It depends on the state, and it is preferable to include a step of calculating the battery performance coefficient K00 by incorporating the response time.
 本発明によれば、電池の性能を短時間で検知することが出来る。 According to the present invention, the performance of the battery can be detected in a short time.
本発明に係る実施形態において、電池内部等価回路を示す図である。It is a figure which shows the battery internal equivalent circuit in embodiment which concerns on this invention. 本発明に係る実施形態において、過電圧―電流特性を示す図である。It is a figure which shows the overvoltage-current characteristic in the embodiment which concerns on this invention. 本発明に係る実施形態において、過電圧に対する内部抵抗電位差及び電池端子電圧関係を示す図である。It is a figure which shows the relationship between the internal resistance potential difference with respect to an overvoltage and the battery terminal voltage in the embodiment which concerns on this invention. 本発明に係る実施形態において、SOCと起電力の関係を示すコバルト酸-カーボン電池の場合の関係を示す図である。It is a figure which shows the relationship in the case of the cobalt acid-carbon battery which shows the relationship between SOC and electromotive force in the embodiment which concerns on this invention. 本発明に係る実施形態において、電極種に依る移動度αと充電比率SOCに対する起電力Vemfの相関関係を示す図である。In the embodiment of the present invention, it is a figure which shows the correlation of the electromotive force Vemf with respect to the mobility α and charge ratio SOC which depend on an electrode type. 本発明に係る実施形態において、電池の性能を短時間で検知する手順を示すフローチャートである。It is a flowchart which shows the procedure which detects the performance of a battery in a short time in embodiment which concerns on this invention.
 以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. In the following, similar elements are designated by the same reference numerals in all drawings, and duplicate description will be omitted. In addition, in the explanation in the text, the reference numerals described earlier shall be used as necessary.
 図1は、本発明に係る実施形態において、電池内部の電気等価回路図である。記号は、以下を意味する。V:電極端子間電圧、I:電流、η* eq:平衡電圧(=起電力Vemf),δ:過電圧、ΔV:電極反応抵抗に伴う電位差,ΔV:電解質中のカチオンの拡散・泳動に伴う電位差、R,C:等価抵抗、キャパシター。 FIG. 1 is an electrical equivalent circuit diagram inside a battery in an embodiment of the present invention. The symbols mean the following: V: Voltage between electrode terminals, I: Current, η * eq : Equilibrium voltage (= electromotive force Vemf ), δ: Overvoltage, ΔV D : Potential difference due to electrode reaction resistance, ΔVC : Diffusion / migration of cations in electrolyte Potential difference associated with, R, C: equivalent resistance, capacitor.
 図2は、本発明に係る実施形態において、過電圧-電流特性を示す図である。起電力Vemfにδだけの過電圧を印加すると電流Iが流れる。このδによる電流の大きさを関連付ける特性図である。この特性は電極反応論から次式で一般化される。
Figure JPOXMLDOC01-appb-I000011
 δの時、電流はIとなり、その動作点での勾配が動的コンダクタンスとなり、更にその逆数が動的内部抵抗(Dir)となる。このDirに電流Iを乗じた値が電位差ΔVD1である。
FIG. 2 is a diagram showing an overvoltage-current characteristic in the embodiment according to the present invention. When an overvoltage of only δ is applied to the electromotive force Vemf , a current I flows. It is a characteristic diagram which correlates the magnitude of the current by this δ. This characteristic is generalized by the following equation from the electrode kinetics.
Figure JPOXMLDOC01-appb-I000011
When δ 1 , the current becomes I 1 , the gradient at the operating point becomes the dynamic conductance, and its reciprocal becomes the dynamic internal resistance (Dir). The value obtained by multiplying this Dir by the current I 1 is the potential difference ΔV D1 .
 また、δの時、電流はIとなり、その動作点での勾配が動的コンダクタンスとなり、更にその逆数が動的内部抵抗(Dir)となる。このDirに電流Iを乗じた値が電位差ΔVD2である。 Further, when δ 2 , the current becomes I 2 , the gradient at the operating point becomes the dynamic conductance, and the reciprocal thereof becomes the dynamic internal resistance (Dir). The value obtained by multiplying this Dir by the current I 2 is the potential difference ΔV D2 .
 図3は、本発明に係る実施形態において、過電圧δに対する内部抵抗電位差ΔV及び過電圧ΔVの関係を示す図である。次式の関係式をグラフ化したものである。
Figure JPOXMLDOC01-appb-M000012
 
FIG. 3 is a diagram showing the relationship between the internal resistance potential difference ΔV D and the overvoltage ΔV D with respect to the overvoltage δ in the embodiment of the present invention. It is a graph of the relational expression of the following expression.
Figure JPOXMLDOC01-appb-M000012
 図4は、本発明に係る実施形態において、容量に対する充填量の比率である蓄電比率SOCと起電力Vemfの関係を示すコバルト酸-カーボン電池の場合の関係を示す図である。実験値と理論式から表のまとめにしたがって数値計算したものである。 FIG. 4 is a diagram showing the relationship in the case of a cobalt acid-carbon battery showing the relationship between the storage ratio SOC, which is the ratio of the filling amount to the capacity, and the electromotive force Vemf in the embodiment according to the present invention. Numerical calculation is performed from experimental values and theoretical formulas according to the summary of the table.
 図5は、電極種に依る移動度αと充電比率SOCに対する起電力Vemfの相関関係を示す図である。当該相関関係は、電極材料に依って異なる。コバルト酸、マンガン酸、ニッケル酸等の単独或は組み合わせによる正極とカーボンの負極という電極材料の構成が一般的である。充電比率SOC-起電力Vemf特性は基本的にはネルンストの式での反応移動度αが電池の材料構成によって異なる事による。図5に描かれる表は、論理と実験によって求めた一覧である。 FIG. 5 is a diagram showing the correlation between the mobility α depending on the electrode type and the electromotive force Vemf with respect to the charge ratio SOC. The correlation depends on the electrode material. Generally, an electrode material consisting of a positive electrode and a carbon negative electrode made of cobalt acid, manganese acid, nickel acid or the like alone or in combination is used. The charge ratio SOC-electromotive force Vemf characteristic is basically due to the fact that the reaction mobility α in the Nernst equation differs depending on the material composition of the battery. The table drawn in FIG. 5 is a list obtained by logic and experiment.
 図6は、本発明に係る実施形態において、電池の性能を短時間で検知する手順を示すフローチャートである。 FIG. 6 is a flowchart showing a procedure for detecting the performance of a battery in a short time in the embodiment of the present invention.
 本発明は、次の手順で課題解決のための手法を開発した。 The present invention has developed a method for solving a problem by the following procedure.
 第1の手順として、電池内部での化学反応を物理化学によって解析し、種々の因子を洗い出した。ここでは、電池は、リチウムイオン電池などの二次電池であるものとして説明する。 As the first procedure, the chemical reaction inside the battery was analyzed by physical chemistry, and various factors were identified. Here, the battery will be described as being a secondary battery such as a lithium ion battery.
 第2の手順として、電気等価回路網に置き換え、電気的計測可能な形式とした。 As the second procedure, it was replaced with an electrical equivalent circuit network and made into an electrically measurable format.
 第3の手順として、外部回路との応答特性および整合性について基礎実験を踏まえ確認の上、検知性能を決定づける因子について短時間で抽出し、同定を可能とする計測回路の構築に成功した。以下、その概要を示す。 As the third procedure, after confirming the response characteristics and consistency with the external circuit based on the basic experiment, the factors that determine the detection performance were extracted in a short time, and the measurement circuit that enables identification was successfully constructed. The outline is shown below.
 上記解析によって、電池内部等価回路は、図1に示す。 Based on the above analysis, the battery internal equivalent circuit is shown in FIG.
 図1に示される電気等価回路において、ΔVは、電極での酸化/還元反応の反応速度に起因する動的内部抵抗に電流を乗じた電位であり、次式で表される。
 
Figure JPOXMLDOC01-appb-M000013
 
ここで、f=F/(RT)、F: ファラデー定数[C/mol]、R:空気定数[J/mol/T]、T:絶対温度[K]
In the electrical equivalent circuit shown in FIG. 1, ΔV D is a potential obtained by multiplying the dynamic internal resistance caused by the reaction rate of the oxidation / reduction reaction at the electrode by a current, and is expressed by the following equation.

Figure JPOXMLDOC01-appb-M000013

Here, f = F / (RT), F: Faraday constant [C / mol], R: air constant [J / mol / T], T: absolute temperature [K].
なお、図1に示される等価回路において、電池の非動作時(充電も放電もしていない状態)では、電流は流れずに電池電圧は開放電圧(OCV)、略Vemfとなる。例えば、充電時には、このVemf(=η eq)より高い電圧の外部電源をつなぎ、電池に電流を流し込む事になる。 In the equivalent circuit shown in FIG. 1, when the battery is not operating (in a state where neither charging nor discharging is performed), no current flows and the battery voltage is an open circuit voltage (OCV), which is approximately Vemf . For example, at the time of charging, an external power source having a voltage higher than this Vemf (= η * eq ) is connected, and a current is passed through the battery.
しかし、この電流のために、電池内部には内部抵抗が発生、電流を掛け合わせた電位差が生じ、これを加えた分(数7)だけ余分に電圧をあげ、さらに、微小電圧δを加えないと電流は流れないことになる。図3は、実際に電池端子に印加される電圧V-η eq=ΔVを縦軸に、横軸に真の過電圧δとの関係をグラフ化している。与えた電圧が、電池にとっての実際過電圧に、いかほど寄与するかが数7の式の恒等式から算出される。 However, due to this current, an internal resistance is generated inside the battery, and a potential difference is generated by multiplying the current. And the current will not flow. FIG. 3 graphs the relationship between the voltage V−η * eq = ΔV actually applied to the battery terminal on the vertical axis and the true overvoltage δ on the horizontal axis. How much the applied voltage contributes to the actual overvoltage for the battery is calculated from the identity of Equation 7.
 電池を充電する過程においては、電池の起電力Vemfより高い電圧を印加し、始めて電池に充電電流が流れ充電される。しかし、実際に計測可能な電池端子間電圧Vは、電池内部の電池素子の持つ起電力Vemfに過電圧δを単純に加算されたものでなく、電流が流れることによる数6に示される反応抵抗による電位差が加算され数6の式となる。
ここでΔVは、計測可能であるが、その内容は電気化学理論に基づき解析的に算出され、いかなるで電池でも数6の式は、恒等的に成立する。ここで、ΔVは、過電圧(Over-Voltage),δは、真の過電圧(Intrinsic-excess-Voltage)と呼ばれる。
In the process of charging the battery, a voltage higher than the electromotive force Vemf of the battery is applied, and the charging current flows through the battery for the first time to be charged. However, the actually measurable voltage between the battery terminals V is not simply the addition of the overvoltage δ to the electromotive force Vemf of the battery element inside the battery, but the reaction resistance shown in Equation 6 due to the flow of current. The potential difference due to the above is added to obtain the equation of the number 6.
Here, ΔV is measurable, but its content is calculated analytically based on the electrochemical theory, and the equation of equation 6 holds uniformly in any battery. Here, ΔV is called an overvoltage (Over-Voltage), and δ is called a true overvoltage (Intinsic-excess-Voltage).
 図1に示される電気内部等価回路においてΔVは、電解質中の拡散、ポテンシャル場での泳動等に起因するカチオンの流れによって決まり、イオン二重層形成下、次式で表される。
Figure JPOXMLDOC01-appb-M000014
               
 電圧は電解質の固有の抵抗値と電流の積となる。
In the electric internal equivalent circuit shown in FIG. 1, ΔVC is determined by the flow of cations caused by diffusion in the electrolyte, migration in a potential field, etc., and is expressed by the following equation under the formation of an ion double layer.
Figure JPOXMLDOC01-appb-M000014

The voltage is the product of the inherent resistance of the electrolyte and the current.
 以上より、電池に印加される電圧Vは次式が成立する。
Figure JPOXMLDOC01-appb-M000015
 
  即ち、電池に起電力(η eq)+過電圧(δ)を印加すると電池反応が起こり、その反応抵抗に依る電圧ドロップΔV、電極界面に形成される電気二重層に依る電位差ΔVとの総和となる。
From the above, the following equation holds for the voltage V applied to the battery.
Figure JPOXMLDOC01-appb-M000015

That is, when an electromotive force (η * eq ) + overvoltage (δ) is applied to the battery, a battery reaction occurs, and the voltage drop ΔV D due to the reaction resistance and the potential difference ΔVC due to the electric double layer formed at the electrode interface. It becomes the sum.
 この内ΔVは、長期非動作からの計測時ではゼロであるから、計測立ち上がり時には次式が成立する。
Figure JPOXMLDOC01-appb-M000016
 この式は、過電圧ΔVは、真の過電圧δと、この過電圧によって発生する電流に伴う電圧ドロップ分を分離して数値化することを可能にする。従来は、過電圧ΔVを印加しても、それに対する電流の応答特性を明確にすることが不可能であった。数10の式をグラフ化すると図2となる。この式は、酸化/還元反応を伴う、所謂、化学電池に対して電池の種類、大きさに関わらず成立する普遍の式となる。
Of these, ΔVC is zero at the time of measurement from long - term non-operation, so the following equation holds at the start of measurement.
Figure JPOXMLDOC01-appb-M000016
This equation makes it possible for the overvoltage ΔV to separate and quantify the true overvoltage δ and the voltage drop associated with the current generated by this overvoltage. In the past, even if an overvoltage ΔV was applied, it was impossible to clarify the response characteristics of the current to it. FIG. 2 is a graph of the equation of several tens. This formula is a universal formula that involves an oxidation / reduction reaction and holds for a so-called chemical battery regardless of the type and size of the battery.
 上記で定義した過電圧δと電流Iの関係は次式の数11で表される。
 
Figure JPOXMLDOC01-appb-M000017
 
 
数11の式の素因数をまとめ、数12の式、数13の式を定義する。
 
Figure JPOXMLDOC01-appb-M000018
          
Figure JPOXMLDOC01-appb-M000019
 
00は、電池セルの固有な定数であり、電池の電極材料、構造によって決まり、次元は[C/mol]・[m/sec]・[m]=[C/sec]/[mol/m]、即ち、モル濃度あたりの電流となる。Iに関しては、sinh(δ×f/2)が過電圧の大きさによって決まる励起の大きさを決める因子で無次元、数13の式の中の、C は、負極に蓄積しているモル濃度[mol/m]を示し、従って、Iの次元はモル濃度[mol/m]となる。
The relationship between the overvoltage δ and the current I defined above is expressed by the number 11 in the following equation.

Figure JPOXMLDOC01-appb-M000017


The prime factors of the formula of the number 11 are summarized, and the formula of the number 12 and the formula of the number 13 are defined.

Figure JPOXMLDOC01-appb-M000018

Figure JPOXMLDOC01-appb-M000019

K 00 is a unique constant of the battery cell, determined by the electrode material and structure of the battery, and the dimensions are [C / mol], [m / sec], [m 2 ] = [C / sec] / [mol / m 3 ], that is, the current per molar concentration. Regarding I 0 , sinh (δ × f / 2) is a factor that determines the magnitude of excitation determined by the magnitude of overvoltage. It is dimensionless, and C * r in the equation of equation 13 is accumulated in the negative electrode. It indicates the molar concentration [mol / m 3 ], and therefore the dimension of I 0 is the molar concentration [mol / m 3 ].
 電池に蓄えることが出来る電気量である容量の時間積分となる。即ち、
 
Figure JPOXMLDOC01-appb-M000020
 
 定電流充電の場合、数13の式において、I0が一定であることは、その右辺が一定となる。あるC の時、過電圧δはIが一定値となるよう応じて変化する。C の取りうる範囲は0~1であり、関数√(C (1-C )は、C =0.5の時最大値0.5となる。この時のδ値が最小となり、一定値Iは 
 
Figure JPOXMLDOC01-appb-M000021
 
となる。
 
 δと√(C (1-C )の関係は数13の式であり、過電圧δは、最大電流及び最大印加電圧から、その範囲に制限がかかり、その値をδmaxとすると、次式の数16が成立する。
 
Figure JPOXMLDOC01-appb-M000022
その時の解がC r,max及びC r,minとなる。
このC r,max及びC r,minは、数16の右辺2式を解くことにより得られる。
 
Figure JPOXMLDOC01-appb-M000023
 
即ち、充電における正極から負極へ時間Tをかけてのモル濃度の移動は、次式の数17で与えられる。
Figure JPOXMLDOC01-appb-M000024
このC の変化は充電完了時の負極のモル濃度と開始時のモル濃度の差を示すもので、正極から負極への移行比率を示す。
It is a time integral of the capacity, which is the amount of electricity that can be stored in the battery. That is,

Figure JPOXMLDOC01-appb-M000020

In the case of constant current charging, in the equation of Equation 13, that I 0 is constant means that the right side thereof is constant. At a certain C * r , the overvoltage δ changes according to the constant value of I 0 . The range that C * r can take is 0 to 1, and the function √ (C * r (1-C * r ) has a maximum value of 0.5 when C * r = 0.5. δ at this time. The value is the minimum, and the constant value I 0 is

Figure JPOXMLDOC01-appb-M000021

Will be.

The relationship between δ and √ (C * r (1-C * r ) is the equation of Equation 13, and the overvoltage δ is limited in its range from the maximum current and the maximum applied voltage, and its value is δ max . , The number 16 of the following equation holds.

Figure JPOXMLDOC01-appb-M000022
The solutions at that time are C * r, max and C * r, min .
The C * r, max and C * r, min can be obtained by solving the two equations on the right side of the equation 16.

Figure JPOXMLDOC01-appb-M000023

That is, the transfer of the molar concentration from the positive electrode to the negative electrode in charging over time T is given by the equation number 17.
Figure JPOXMLDOC01-appb-M000024
This change in C * r indicates the difference between the molar concentration of the negative electrode at the completion of charging and the molar concentration at the start, and indicates the transition ratio from the positive electrode to the negative electrode.
容量Qは、モル移動単位Iに応じて移行比率が変わり、その積Qが容量要素となり、これに電極固有定数K00を乗じた値となる。即ち、次式の数19となる。K00は、正極/負極の材質、それらの大きさによって決まる固有の係数であり、以下説明するように、この係数の大小によって、容量は決定づけられる。即ち、電池の性能である容量は、このK00に依存し、初期のK00が小さくなれば、性能が劣化した状態となり、K00を決める結晶の破壊度(有効結晶個数の低減)によって性能のSOH(State of Health)が決まることになる。
Figure JPOXMLDOC01-appb-M000025
The transition ratio of the capacity Q changes according to the molar movement unit I 0 , and the product Q 0 becomes a capacity element, which is multiplied by the electrode specific constant K 00 . That is, the number 19 of the following equation is obtained. K 00 is a unique coefficient determined by the materials of the positive electrode / negative electrode and their sizes, and as will be described below, the capacity is determined by the magnitude of this coefficient. That is, the capacity, which is the performance of the battery, depends on this K 00 , and if the initial K 00 becomes smaller, the performance deteriorates, and the performance depends on the degree of crystal fracture (reduction of the number of effective crystals) that determines K 00 . SOH (State of Health) will be determined.
Figure JPOXMLDOC01-appb-M000025
 最大容量のための充電条件は次式の数20となり、その時の容量Qmaxは数21の式で与えられる。
 
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
容量Qは、充電条件によって異なるが、ある過電圧δmaxが与えられた時、電流値設定を決定づけるδminとの関係が数20を満たす条件下で最大容量が得られ、その値は数21から得られる。なお、I値は、数16の式から電池にかかわらず略同一値をとるから、最大容量Qmaxは、次式となる。
 
Figure JPOXMLDOC01-appb-M000028
 
The charging condition for the maximum capacity is the formula 20 of the following equation, and the capacity Q max at that time is given by the equation of the equation 21.

Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
The capacity Q varies depending on the charging conditions, but when a certain overvoltage δ max is given, the maximum capacity is obtained under the condition that the relationship with δ min that determines the current value setting satisfies the number 20 and the value is from the number 21. can get. Since the I 0 value takes substantially the same value from the equation of Eq. 16 regardless of the battery, the maximum capacity Q max is given by the following equation.

Figure JPOXMLDOC01-appb-M000028
 上記K00は電極の性能を示す直接的な数値指標となるもので、この数値低減が容量の低減を示し、初期との比較は電池健全度(SOH)の指標となる。SOHは、基準を初期値とすれば現在の健全度を意味する。 The above K 00 is a direct numerical index indicating the performance of the electrode, and this numerical reduction indicates a reduction in capacity, and the comparison with the initial value is an index of battery soundness (SOH). SOH means the current soundness if the standard is the initial value.
 SOCと起電力Vemfとの関係はネルンストの式より、次式の数17が成り立つ。ここで、式中αに関しては、酸化/還元反応速度の解析上、反応場の内外のGibbsポテンシャル差の活性度への影響度を示すもので、一般に移動度として定義づけられる係数である。数23は、この係数を導入したネルンスト式である。
Figure JPOXMLDOC01-appb-M000029
 
 また、過電圧δ-電流特性で重要な状態因数(SOC依存関数)は次式で導き出せる。
Figure JPOXMLDOC01-appb-M000030
 
 
コバルト酸(V=3.6V)、二元系(V=3.7V)、3元系(V=3.8V)、いずれも、SOC10%では、Vemfは3.45と固定される。この実験値から数23、及び数24の補正定数αを確定される。図5に描かれた表は、実験値を数24に当てはめ計算によって、移動度αを求めたものである。                          
As for the relationship between the SOC and the electromotive force Vemf , the number 17 of the following equation holds from the Nernst equation. Here, α in the formula indicates the degree of influence of the Gibbs potential difference inside and outside the reaction field on the activity in the analysis of the oxidation / reduction reaction rate, and is a coefficient generally defined as mobility. Equation 23 is a Nernst equation that introduces this coefficient.
Figure JPOXMLDOC01-appb-M000029

In addition, the state factor (SOC-dependent function) that is important for the overvoltage δ-current characteristic can be derived by the following equation.
Figure JPOXMLDOC01-appb-M000030


Lithium cobalt oxide (V s = 3.6 V), binary system (V s = 3.7 V), ternary system (V s = 3.8 V), both fixed at 3.45 at SOC 10%. Will be done. From this experimental value, the correction constants α of the equation 23 and the equation 24 are determined. In the table drawn in FIG. 5, the mobility α is obtained by applying the experimental values to the equation 24 and calculating.
 続いて、電池性能の瞬時計測方法の手法について説明する。 Next, the method of instantaneous measurement of battery performance will be explained.
 最初に電池の開放電圧である起電力Vemfを計測する(S1)。Vemfは、外部から電池への電流の入出が無い状態での電池電圧であり、一般に、解放電圧OCV(Open Circuit Voltage)である。従って、この計測はインピーダンスの高い電圧計での計測値となる。 First, measure the electromotive force Beamf, which is the open circuit voltage of the battery (S1). Vemf is a battery voltage in a state where no current flows in and out of the battery from the outside, and is generally an open circuit voltage OCV (Open Circuit Voltage). Therefore, this measurement is a measured value with a voltmeter with high impedance.
 次に、電池種のインプット情報として、電池の種類に基づいて、図5から該電池のパラメータであるV及び移動度αを確定する(S2)。ここで、αは、正極の電極構造、多元素の場合には、混合比率、結晶楮によって決まる固有値であり、実験により決定される。 Next, as the input information of the battery type, Vs and the mobility α, which are the parameters of the battery, are determined from FIG. 5 based on the battery type (S2). Here, α is an eigenvalue determined by the electrode structure of the positive electrode, the mixing ratio in the case of multiple elements, and the crystal mulberry, and is determined experimentally.
 次に、数23の式に基づいて、充電比率SOCに対応するC を算出する(S3)。SOCは、一般的に%で表示され、蓄電能力に対し、現在何%の電気量が蓄電されているかの指標となる。これは、負極に対し貯めこまれた還元剤の濃度、即ち、C を%表示したものとなる。 Next, Cr * corresponding to the charge ratio SOC is calculated based on the equation of Equation 23 (S3). SOC is generally displayed in%, and is an index of what percentage of electricity is currently stored with respect to the storage capacity. This is a% display of the concentration of the reducing agent stored in the negative electrode, that is, Cr * .
 計測値Vemfと、読み取り値α、Vsを使って算出されたSOCを、数24に代入しSOC依存関数値√(C (1-C )を算出する(S4)。 The SOC calculated using the measured value Emf and the readings α and Vs is substituted into the equation 24 to calculate the SOC-dependent function value √ (C * r (1-C * r ) (S4).
 短時間での性能検査では、まず、起電力測定を行い、数24の式を適応し、蓄電状態SOCすなわち、C を既知とし、この状態での、過電圧を印加して電流を計測し、電池の性能を確定することができる。 In the performance inspection in a short time, first, the electromotive force is measured, the equation of several 24 is applied, the storage state SOC, that is, Cr * is known, and the current is measured by applying the overvoltage in this state. , Battery performance can be determined.
 次いで、起電力Vemfに対し過電圧ΔVを加算して電池に印加したときに流れる電流Iを計測し、数3の式に基づいて、真の過電圧δを求める(S5)。 Next, the overvoltage ΔV 1 is added to the electromotive force V emf , the current I 1 flowing when applied to the battery is measured, and the true overvoltage δ 1 is obtained based on the equation of Equation 3 (S5).
 次いで、前記起電力Vemfに対し過電圧ΔVを加算して電池に印加したときに流れる電流Iを算出し、数4の式に基づいて、真の過電圧δを求める(S6)。
 なお、S5,S6の工程では、過電圧δを与え電流Iを計測するが、数11の式に示すように電流Iは、電池の容量を左右する固有な係数のほか蓄電状態即ちSOCによっても√(C (1-C )の係数が関わって異なる。従って計測値はSOCが異なれば電流条件を固定とすれば、δ値も変える必要が生じる。逆に、このδを複数個設定し、電流計測値から、演算によって、電池性能係数K00が誘導できる。
Next, the overvoltage ΔV 2 is added to the electromotive force Vemf to calculate the current I 2 that flows when the overvoltage ΔV 2 is applied to the battery, and the true overvoltage δ 2 is obtained based on the equation of Equation 4 (S6).
In the steps S5 and S6, the overvoltage δ is applied and the current I is measured. (The coefficient of C * r (1-C * r ) is different. Therefore, if the SOC is different, the δ value needs to be changed if the current condition is fixed. On the contrary, multiple δs are used. The battery performance coefficient K 00 can be derived by calculation from the set and current measurement values.
過電圧δに対する電流Iの式は数11で表される。この式を整理すると次式となり、
Figure JPOXMLDOC01-appb-M000031
 
つまり、SOC(=C ×100)が既知であれば、過電圧に応じ電流値は、上式で決定する。今、過電圧δを与えた時、電流がIである。過電圧δの時、電流がIである。これは、上式を、いずれも満たすから、次式が得られる。
 
Figure JPOXMLDOC01-appb-I000032
ここで、δ、δは、1に対し微小な値ですから、マクロラン展開から、次式となる。
Figure JPOXMLDOC01-appb-M000033
充電比率SOC、つまり、蓄積濃度密度C が分っていれば、たちどころに電池の性能定数K00が確定する。更に、このK00値から電池容量が、数21の式に示されるように、δmin(充電電流規制),或は、δmax(充電電圧規制)に応じ、容量は判明することになる。なお、ここでδmaxは、装置の印加最大設定電圧VSUPから次式数27によって決まり、δminは、数15及び,充電電流(K00・I)から決まる真の過電圧である。
Figure JPOXMLDOC01-appb-M000034
 
The equation of the current I for the overvoltage δ is expressed by the equation 11. When this formula is rearranged, it becomes the following formula.
Figure JPOXMLDOC01-appb-M000031

That is, if the SOC (= C * r × 100) is known, the current value is determined by the above equation according to the overvoltage. Now, when the overvoltage δ 1 is applied, the current is I 1 . When the overvoltage δ 2 is, the current is I 2 . Since this satisfies all of the above equations, the following equation is obtained.

Figure JPOXMLDOC01-appb-I000032
Here, since δ 1 and δ 2 are minute values with respect to 1, the following equation is obtained from the macrorun expansion.
Figure JPOXMLDOC01-appb-M000033
If the charge ratio SOC, that is, the accumulated concentration density C * r is known, the performance constant K 00 of the battery is immediately determined. Further, from this K00 value, the battery capacity is determined according to δ min (charging current regulation) or δ max (charging voltage regulation) as shown in the equation of Equation 21. Here, δ max is determined by the following equation number 27 from the applied maximum set voltage V SUP of the device, and δ min is a true overvoltage determined by the number 15 and the charging current ( K00 · I 0 ) .
Figure JPOXMLDOC01-appb-M000034
 そして、数5に基づいて、各種パラメータ(C ,I,I、δ、δ)を入力する(S7)。S7の工程により、K00が求められ、これにより、電池の性能評価値が確定される。 Then, various parameters (C * r , I 1 , I 2 , δ 1 , δ 2 ) are input based on the equation 5 (S7). By the step of S7, K00 is obtained, and the performance evaluation value of the battery is determined by this.
 数12の式に示されるように、電極の素材によって決まる反応速度係数√(Kred/Kox)と電極の大きさによって決まるSからなり、このK00が分かれば、容量は、数20、数21の式から、印加の最大過電圧δmaxあるいは電流を求めるδminが分かっていれば、その条件設定で瞬時に、機械的に電池の容量を判定することができるという顕著な効果を奏する。 As shown in the equation of Eq. 12, it consists of a reaction rate coefficient (K red / K ox ) determined by the material of the electrode and S determined by the size of the electrode. If the maximum overvoltage δ max of the application or δ min for obtaining the current is known from the equation of the number 21, the remarkable effect that the capacity of the battery can be instantly and mechanically determined by setting the conditions is obtained.
 真の過電圧δ及びδに対し、電池の内部では電極反応を介して電流として応答し、該応答時間は電池状態によって異なり、応答時間を組み入れて電池性能係数K00を算出する。数8の式は時間経過に伴いゼロに収斂するため、数10の式となる。上記応答時間を組み入れて電池性能係数K00を算出する際には、電池状態が落ち着かない、即ち、まだ、電解質中のイオン、カチオン、アニオンが拡散運動中で、安定状態にない時にも、診断可能となる工夫を凝らしたことを特徴としている。数9の式の右辺第3項までは、ミリ秒オーダーでのレスポンスであるが、第4項は電池内に封じ込められている電解質中のイオンの拡散に関わり、動作を止めてから分、或は、時間オーダーの緩和時間となる。 The battery responds to the true overvoltages δ 1 and δ 2 as a current via an electrode reaction inside the battery, and the response time varies depending on the battery state, and the response time is incorporated to calculate the battery performance coefficient K00 . Since the equation of Eq. 8 converges to zero with the passage of time, it becomes the equation of Eq. 10. When calculating the battery performance coefficient K 00 by incorporating the above response time, the diagnosis is made even when the battery state is not stable, that is, the ions, cations, and anions in the electrolyte are still in a diffusion motion and are not in a stable state. It is characterized by elaborate ingenuity that makes it possible. Up to the third term on the right side of the equation of equation 9, the response is on the order of milliseconds, but the fourth term is related to the diffusion of ions in the electrolyte contained in the battery, and the operation is stopped for a minute or so. Is the relaxation time of the time order.
 本発明によって、電池性能としての容量Qおよび現在の蓄電残量(SOC)を、短時間(1秒内)で確認できることから、電池生産での検査工程の時間短縮、生産設備の簡素化、機器実装での使用中の性能確認、更に、使用済み電池の良否確認、それに伴う処置・処理の速やかな決定が可能となり、電池使用の安全・安心につながり、電池の更なる広い適応につながり、世界人類の生活文化の発展向上に寄与するものとなる。 According to the present invention, the capacity Q as the battery performance and the current remaining charge (SOC) can be confirmed in a short time (within 1 second), so that the inspection process time in battery production can be shortened, the production equipment can be simplified, and the equipment can be confirmed. It is possible to check the performance during use in mounting, check the quality of used batteries, and promptly decide the treatment and processing that accompanies it, leading to the safety and security of battery use, leading to a wider range of battery adaptation, and the world. It will contribute to the development and improvement of human life and culture.
本発明は、電池を組み込んだ機器、電池の生産工程での品質管理、電池メーカの出荷検査、機器メーカの受け入れ時の性能チェック、等々、電池に関わる全てのステージで有用で、不可欠な計測手段として応用、活用されることとなる。このように、多岐にわたる電池利用のシーンそれぞれに適応した商品或は,システム装置の形態が考えられるが、本発明の基になる理論及びその理論の応用展開に関する手法は、共通であり、活用の場(シーン)に応じ装置、商品の実施形態となる。 The present invention is a useful and indispensable measuring means at all stages related to batteries, such as equipment incorporating a battery, quality control in the battery production process, shipping inspection of a battery manufacturer, performance check at the time of acceptance by an equipment manufacturer, and the like. It will be applied and utilized as. In this way, it is conceivable that the product or system device is suitable for each of a wide variety of battery usage scenes, but the theory underlying the present invention and the method for developing the application of the theory are common and utilized. It is an embodiment of the device and the product according to the place (scene).
 I 電流、I0 モル移動単位、I 電流、I 電流、K00 電池性能係数、Q 容量、Vemf 起電力、α 移動度、δ 過電圧、δ 過電圧、δ 過電圧、δmax 過電圧、ΔV 過電圧、ΔV 過電圧、ΔV 過電圧、ΔVn 電池端子電圧。 I current, I 0 molar transfer unit, I 1 current, I 2 current, K 00 battery performance coefficient, Q capacity, Vemf electromotive force, α mobility, δ overvoltage, δ 1 overvoltage, δ 2 overvoltage, δ max overvoltage, ΔV Overvoltage, ΔV 1 overvoltage, ΔV 2 overvoltage, ΔVn Battery terminal voltage.

Claims (5)

  1.  電池の開放電圧である起電力Vemfを計測する工程と、
    前記電池の種類に基づいて、該電池のパラメータであるV及び移動度αを求める工程と、
    数1の式に基づいて、充電比率SOCに対応するC を算出する工程と、
    数2の式に基づいて、SOC依存関数値を算出する工程と、
    を備えることを特徴とする電池性能の瞬時計測方法。
    Figure JPOXMLDOC01-appb-M000001
     
    Figure JPOXMLDOC01-appb-M000002
                                   
    The process of measuring the electromotive force Vemf , which is the open circuit voltage of the battery,
    A step of obtaining Vs and mobility α, which are the parameters of the battery, based on the type of the battery, and
    The process of calculating Cr * corresponding to the charge ratio SOC based on the formula of Equation 1 and
    The process of calculating the SOC-dependent function value based on the formula of Equation 2 and
    A method for instantly measuring battery performance, which is characterized by being equipped with.
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002
  2.  請求項1に記載の電池性能の瞬時計測方法において、
     前記起電力Vemfに対し過電圧ΔVを加算して前記電池に印加したときに流れる電流Iを算出する工程と、
     前記起電力Vemfに対し過電圧ΔVを加算して前記電池に印加したときに流れる電流Iを算出する工程と、
     数3の式に基づいて、真の過電圧δを求める工程と、
     数4の式に基づいて、真の過電圧δを求める工程と、
     を備えることを特徴とする瞬時計測方法。
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    In the method for instantaneously measuring battery performance according to claim 1,
    A step of adding an overvoltage ΔV 1 to the electromotive force V emf to calculate the current I 1 flowing when the overvoltage ΔV 1 is applied to the battery.
    A step of adding an overvoltage ΔV 2 to the electromotive force V emf to calculate the current I 2 flowing when applied to the battery, and a step of calculating the current I 2.
    The process of finding the true overvoltage δ 1 based on the equation of Eq. 3 and
    The process of finding the true overvoltage δ 2 based on the equation of Eq. 4 and
    An instantaneous measurement method characterized by being equipped with.
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
  3.  請求項2に記載の電池性能の瞬時計測方法において、
     前記真の過電圧δ及び前記真の過電圧δを計測し、電池の動作状態が正常であるか異常であるかを判定する工程を備えることを特徴とする電池性能の瞬時計測方法。
    In the method for instantaneously measuring battery performance according to claim 2.
    A method for instantaneously measuring battery performance, comprising a step of measuring the true overvoltage δ 1 and the true overvoltage δ 2 and determining whether the operating state of the battery is normal or abnormal.
  4.  請求項2または請求項3に記載の電池性能の瞬時計測方法において、
     数5の式に基づいて、電池性能係数K00を算出する工程を備えることを特徴とする電池性能の瞬時計測方法。
    Figure JPOXMLDOC01-appb-M000005
     
    In the method for instantaneously measuring battery performance according to claim 2 or 3.
    A method for instantaneously measuring battery performance, which comprises a step of calculating a battery performance coefficient K 00 based on the equation of the number 5.
    Figure JPOXMLDOC01-appb-M000005
  5.  請求項2から請求項4のいずれか1項に記載の電池性能の瞬時計測方法において、
     前記真の過電圧δ及び前記真の過電圧δに対し、前記電池の内部では電極反応を介して電流として応答し、該応答時間は電池状態によって異なり、前記応答時間を組み入れて電池性能係数K00を算出する工程を備えることを特徴とする電池性能の瞬時計測方法。
     
    The method for instantaneously measuring battery performance according to any one of claims 2 to 4.
    The true overvoltage δ 1 and the true overvoltage δ 2 are responded to as a current through an electrode reaction inside the battery, and the response time varies depending on the battery state. The response time is incorporated into the battery performance coefficient K. A method for instantaneously measuring battery performance, which comprises a step of calculating 00 .
PCT/JP2021/010041 2020-09-30 2021-03-12 Method for instantaneously measuring battery performance WO2022070466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180001117.XA CN114651184A (en) 2020-09-30 2021-03-12 Method for instantaneously measuring battery performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-165027 2020-09-30
JP2020165027A JP6839883B1 (en) 2020-09-30 2020-09-30 Instant measurement method of battery performance

Publications (1)

Publication Number Publication Date
WO2022070466A1 true WO2022070466A1 (en) 2022-04-07

Family

ID=74845234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010041 WO2022070466A1 (en) 2020-09-30 2021-03-12 Method for instantaneously measuring battery performance

Country Status (3)

Country Link
JP (1) JP6839883B1 (en)
CN (1) CN114651184A (en)
WO (1) WO2022070466A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752249B2 (en) * 2004-02-25 2006-03-08 テクノコアインターナショナル株式会社 Secondary battery charger
JP2017166874A (en) * 2016-03-14 2017-09-21 株式会社東芝 Storage battery evaluation device, storage battery, storage battery evaluation method, and program
JP6589080B1 (en) * 2019-01-15 2019-10-09 ゴイク電池株式会社 Deterioration degree of storage element and remaining storage capacity detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752249B2 (en) * 2004-02-25 2006-03-08 テクノコアインターナショナル株式会社 Secondary battery charger
JP2017166874A (en) * 2016-03-14 2017-09-21 株式会社東芝 Storage battery evaluation device, storage battery, storage battery evaluation method, and program
JP6589080B1 (en) * 2019-01-15 2019-10-09 ゴイク電池株式会社 Deterioration degree of storage element and remaining storage capacity detection device

Also Published As

Publication number Publication date
JP6839883B1 (en) 2021-03-10
JP2022056999A (en) 2022-04-11
CN114651184A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
Kindermann et al. Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements
US8531158B2 (en) Method and apparatus for assessing battery state of health
US8680815B2 (en) Method and apparatus for assessing battery state of health
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
CN105794021B (en) Method and apparatus for measuring transient state of charge using inlet/outlet potentials
US9395418B2 (en) System and method for determining the state of health of electrochemical battery cells
CN116502112B (en) New energy power supply test data management method and system
WO2020149288A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
EP2053414B1 (en) Method and apparatus for detecting internal information of secondary battery
EP3063820B1 (en) Apparatus and method for determining state of charge in a redox flow battery via limiting currents
CN112904218B (en) Battery health state estimation method based on standard sample and double-embedding decoupling
CN106997026B (en) Method and device for determining the residual capacity of a lead-acid battery
TWI579575B (en) Battery health detection method and its circuit
JP6589080B1 (en) Deterioration degree of storage element and remaining storage capacity detection device
JP2019158831A (en) Method for inspection, inspection device, and learning model
WO2022070466A1 (en) Method for instantaneously measuring battery performance
JP2023543747A (en) Battery diagnostic device and method
CN114200321A (en) Lithium ion battery variable-order equivalent circuit model modeling method
CN113238152A (en) Lithium battery self-discharge detection method
CN116754971A (en) Method, device and storage medium for detecting lithium precipitation of battery
CN114487852A (en) Power battery complementary energy detection method and device, computer equipment and storage medium
CN112684362A (en) Fault detection method, device and detection equipment for internal structure of storage battery
Jones et al. Direct measurement of internal temperatures of commercially-available 18650 lithium-ion batteries
R-Smith et al. Fast method for calibrated self-discharge measurement of lithium-ion batteries including temperature effects and comparison to modelling
JP7041848B2 (en) Deterioration determination method for lithium-ion secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874774

Country of ref document: EP

Kind code of ref document: A1