WO2022070294A1 - 接合用金属ペースト及び接合方法 - Google Patents

接合用金属ペースト及び接合方法 Download PDF

Info

Publication number
WO2022070294A1
WO2022070294A1 PCT/JP2020/037105 JP2020037105W WO2022070294A1 WO 2022070294 A1 WO2022070294 A1 WO 2022070294A1 JP 2020037105 W JP2020037105 W JP 2020037105W WO 2022070294 A1 WO2022070294 A1 WO 2022070294A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
temperature
paste
joining
bonding
Prior art date
Application number
PCT/JP2020/037105
Other languages
English (en)
French (fr)
Inventor
圭一 遠藤
俊彦 上山
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to DE112020007642.3T priority Critical patent/DE112020007642T5/de
Priority to JP2020571890A priority patent/JP6845385B1/ja
Priority to PCT/JP2020/037105 priority patent/WO2022070294A1/ja
Priority to CN202080105648.9A priority patent/CN116325096A/zh
Priority to US18/024,840 priority patent/US20230311249A1/en
Publication of WO2022070294A1 publication Critical patent/WO2022070294A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/27312Continuous flow, e.g. using a microsyringe, a pump, a nozzle or extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2936Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29373Rhodium [Rh] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29376Ruthenium [Ru] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29378Iridium [Ir] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29388Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29493Coating material with a principal constituent of the material being a solid not provided for in groups H01L2224/294 - H01L2224/29491, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29494Coating material with a principal constituent of the material being a liquid not provided for in groups H01L2224/294 - H01L2224/29491
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83055Composition of the atmosphere being oxidating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • H01L2224/83204Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • H01L2224/83211Applying energy for connecting using a reflow oven with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]

Definitions

  • the present invention relates to a joining material capable of forming a metal joining layer with reduced voids at the ends between the joining member and the joining member, and a joining method using the joining material.
  • a paste is applied by using nano-sized silver particles and micron-sized silver particles in combination and using a sintering aid and a phosphoric acid ester-based additive in combination. It was disclosed that voids in the metal layer formed at the time of sintering can be reduced.
  • the problem to be solved in the present invention is a bonding paste capable of reducing the generation of voids at the ends and forming a uniform bonding layer even when the bonding area is large, and a bonding method using the paste. It was decided to provide.
  • the first invention disclosed in the present specification is a metal paste for bonding containing metal nanoparticles (A) having at least an average number of primary particle diameters of 10 to 100 nm, and the paste is placed in a nitrogen atmosphere 3 Accumulation of weight loss value when the temperature rises from 40 ° C to 100 ° C, assuming that the cumulative value of weight loss (L 700 ) is 100 when the temperature is raised from 40 ° C to 700 ° C at a temperature rise rate of ° C / min.
  • the value (L 100 ) is 75 or less, the cumulative value of the weight loss value (L 150 ) when the temperature is raised from 40 ° C to 150 ° C is 90 or more, and the weight is reduced when the temperature is raised from 40 ° C to 200 ° C.
  • a metal paste for joining having a cumulative value (L 200 ) of 98 or more.
  • the second invention is the metal paste for joining in the first invention, in which the cumulative value (L 200 ) of the weight loss value when the temperature is raised from 40 ° C. to 200 ° C. is 99.9 or less.
  • the total amount of the bonding metal paste containing the metal particles containing the metal nanoparticles (A), the solvent, the dispersant and the like is added.
  • the temperature is 100% by mass and the firing temperature is Tb (° C.)
  • the amount of the solvent having a boiling point or decomposition temperature of Tb-50 (° C.) or more and Tb + 50 (° C.) or less is 5% by mass or more and 10% by mass or less. It is a metal paste for joining.
  • a fourth invention is a bonding metal containing an additive such as a metal particle containing metal nanoparticles (A), a solvent, and a dispersant in the bonding metal paste according to any one of the first to third inventions.
  • a metal paste for bonding containing 1.5% by mass or less of components whose boiling point or decomposition temperature is higher than the firing temperature Tb + 50 (° C.) when the total amount of the paste is 100% by mass and the firing temperature is Tb (° C.). be.
  • a fifth invention is a bonding metal paste containing metal particles containing metal nanoparticles (A) having at least an average number of primary particle diameters of 10 to 100 nm.
  • the contained metal particles have a shrinkage rate of 1.5% measured in a thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C to 250 ° C at a heating rate of 3 ° C / min.
  • the following metal paste for joining is a bonding metal paste containing metal particles containing metal nanoparticles (A) having at least an average number of primary particle diameters of 10 to 100 nm.
  • the contained metal particles have a shrinkage rate of 1.5% measured in a thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C to 250 ° C at a heating rate of 3 ° C / min.
  • the shrinkage rate measured by thermomechanical analysis performed while raising the temperature of the metal particles used from 30 ° C. to 200 ° C. is 0.5%.
  • the shrinkage rate measured by thermomechanical analysis performed while raising the temperature of the metal particles used from 30 ° C. to 175 ° C. is 0. .3% or less of metal paste for joining.
  • the eighth invention is a metal particle having an average particle diameter (D 50 ) of 1.0 to 5.0 ⁇ m in terms of volume measured by a laser diffraction type particle size distribution device in any one of the first to seventh inventions.
  • the ninth invention is a metal paste for bonding in which the weight mixing ratio of the metal nanoparticles (A) and the metal particles (B) is 0.25 or less in (A) / (B) in the eighth invention.
  • a tenth invention is a method for joining two members to be joined, wherein a step of applying the metal paste for joining described in any one of the first to ninth inventions to the members to be joined, on the coating film.
  • the temperature is raised to a sintering temperature of 200 to 350 ° C. after placing, and the joint is held at the sintering temperature for less than 2 hours.
  • It is a joining method including a step of forming a metal joining layer.
  • the eleventh invention is the joining method described in the tenth invention, which comprises a step of applying a metal paste for joining and then drying at a temperature of 50 to 150 ° C.
  • the twelfth invention is the joining method in the tenth or eleventh invention, in which the rate of temperature rise from room temperature to the sintering temperature is 1.5 to 10 ° C. per minute.
  • the thirteenth invention is the joining method in which the area (joining area) to which the metal paste for joining is applied is 9 mm 2 or more in any one of the tenth to the twelfth inventions.
  • the generation of voids at the ends can be reduced to form a uniform bonding layer, and a bonded body having high bonding strength can be formed. Can be done.
  • the metal paste for joining is composed of specific metal particles, a solvent, and an additive component that complements the properties.
  • the metal nanoparticles used in the present invention in addition to those already commercially available by the applicant, commercially available particles or particles described in the literature can be adopted as long as they comply with the gist of the present invention.
  • a method for producing nanoparticles particles produced by either a wet method or a dry method can be adopted as long as the particle size range and properties specified in the present invention are satisfied.
  • the average primary particle diameter is 10 to 100 nm, preferably 15 to 80 nm, and more preferably. It is 20 to 60 nm, more preferably 20 to 40 nm.
  • the number average particle diameter is also referred to as a number average value of the primary particle diameter. It is preferable that an organic material coating (capping layer) for suppressing natural sintering is formed on the surface of the particles. As the particle size becomes finer, the melting temperature of the metal nanoparticles becomes lower, which is preferable because the formation temperature of the bonded body can be lowered. However, if it is too small, a thick capping layer must be formed in order to avoid sintering at room temperature, which is not preferable.
  • a thick capping layer is formed, it is easy to disperse between the particles and it is easy to obtain a monodisperse, but in order to remove the capping layer and proceed with the sintering of the metal, it is necessary to treat it at a high temperature. This is not preferable because organic substances may remain in the metal layer, which may cause a decrease in bonding strength and a decrease in conductivity. In addition, if the monodisperse is too large, it becomes difficult to recover the particles, which may cause a decrease in productivity.
  • the capping layer is preferably a substance having low temperature decomposability that can be removed at the formation temperature of the metal layer in order to form high bonding strength. If a substance having a large molecular weight is used, a firing residue will remain on the sintered layer, which is not preferable. Therefore, it is preferable to avoid polymers and polymer substances.
  • the organic substance forming the capping layer is preferably a substance having a boiling point of at least the sintering temperature or less, and preferably a substance having a boiling point of 300 ° C. or lower, preferably 250 ° C. or lower.
  • organic compounds include carboxylic acids, dicarboxylic acids, unsaturated fatty acids, or amines, thiols, and sulfides having 12 or less carbon atoms, but carboxylic acids and dicarboxylic acids are particularly preferable.
  • Unsaturated fatty acids and amines Specifically, octanoic acid, heptanic acid, hexanoic acid, pentanoic acid, butanoic acid, propanoic acid, oxalic acid, malonic acid, ethylmalonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, and sveric acid. , Sorbic acid, malonic acid, hexylamine, octylamine and the like.
  • the organic matter coating amount is 0.1% by mass or more and 10% by mass or less, preferably 0.5% by mass or more and 5% by mass or less, more preferably 1.0% by mass or more and 3.0 with respect to the metal nanoparticles (powder). It should be mass% or less.
  • the shrinkage of the particles with respect to heating is small.
  • the shrinkage rate measured in thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C to 250 ° C at a rate of 3 ° C / min is 1.5% or less. It is preferably 1.0% or less, preferably 0.75% or less. It is preferable that the shrinkage rate measured by thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C. to 200 ° C. at a rate of 3 ° C. per minute is 0.5% or less. ..
  • the shrinkage rate measured by thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C. to 175 ° C. at a rate of 3 ° C. per minute is 0.3% or less. ..
  • the metal used in the metal nanoparticles is not particularly limited as long as it can be used for joining members. Both precious metals and base metals can be used. Examples of the noble metal include silver, gold, ruthenium, rhodium, palladium, iridium, platinum and the like. Considering the availability, silver, gold and the like can be preferably used. From a cost perspective, silver is particularly preferred. Examples of the base metal include copper, aluminum, iron, nickel and the like. Here, the metal that can be used may be a single metal or an alloy.
  • Metal particles In the present invention, when metal particles are used in combination, commercially available metal particles can be adopted.
  • the particles at this time may be those produced by the wet method or those produced by the dry method.
  • the metal particles used in the present invention include metal particles having a cumulative 50% particle diameter ( D50 particle diameter) of 1.0 to 5.0 ⁇ m in terms of volume measured by a laser diffraction type particle size distribution device.
  • D50 particle diameter cumulative 50% particle diameter
  • the metal paste coating film
  • the metal nanoparticles are sintered and the metal particles are connected to each other to form a metal bonding layer.
  • the D50 particle diameter of the metal particles is preferably 1.2 to 3.0 ⁇ m, more preferably 1.4 to 2.0 ⁇ m. ..
  • the metal particles may also be coated with an organic compound in order to improve dispersibility, and at that time, it is preferable to coat the metal particles with an organic compound having 20 or less carbon atoms.
  • organic compounds include oleic acid and stearic acid. It is preferable that the amount of the coated organic substance is as small as that for the metal nanoparticles because the adverse effect on the metal layer can be suppressed. Specifically, it is preferably 5.0% by mass or less, preferably 3.0% by mass or less.
  • the shrinkage of the particles with respect to heating is small.
  • the metal nanoparticles are mixed. It is preferable to have similar properties.
  • a thermal machine in which a mixture of metal nanoparticles and metal particles is heated at a rate of 3 ° C. per minute from 30 ° C. to 250 ° C. while being pressurized at 0.1 MPa in a nitrogen atmosphere.
  • the shrinkage rate measured in the analysis is preferably 1.5% or less, preferably 1.0% or less, and more preferably 0.75% or less.
  • the shrinkage rate measured by thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C. to 200 ° C. at a rate of 3 ° C. per minute is 0.5% or less. .. It is preferable that the shrinkage rate measured by thermomechanical analysis performed while pressurizing at 0.1 MPa in a nitrogen atmosphere and raising the temperature from 30 ° C. to 175 ° C. at a rate of 3 ° C. per minute is 0.3% or less. ..
  • the metal used for the metal particles is not particularly limited as long as it can be used for joining members. Both precious metals and base metals can be used. Examples of the noble metal include silver, gold, ruthenium, rhodium, palladium, iridium, platinum and the like. Considering the availability, silver, gold and the like can be preferably used. From a cost perspective, silver is particularly preferred. Examples of the base metal include copper, aluminum, iron, nickel and the like.
  • the metal that can be used may be a single metal or an alloy.
  • the same metal as the metal nanoparticles may be adopted, or another metal may be adopted.
  • the weight mixing ratio of the metal nanoparticles (A) and the metal particles (B) is preferably 0.25 or less in (A) / (B). Further, the ratio of the metal nanoparticles or the mixture of the metal nanoparticles and the metal particles in the metal paste for bonding is preferably 90% by mass or more.
  • solvent As the solvent used in the present invention, it is preferable to use a solvent having a property of volatilizing at a temperature lower than the firing temperature. Volatilization may be evaporation by boiling or decomposition. Specifically, it is preferable to use one having a boiling point or a decomposition temperature of 300 ° C. or lower.
  • the solvent used in the present invention may be a polar solvent or a non-polar solvent under the condition that it does not affect sintering or the like, but if compatibility with other components is taken into consideration, the solvent may be used. , It is more appropriate to choose a polar solvent.
  • a plurality of solvents can be mixed and used for the purpose of adjusting the boiling point, viscosity, evaporation rate, etc. of the metal paste.
  • the solvent that can be mixed here when the solvent is a polar solvent, the following solvents can be exemplified.
  • the present inventors can adjust the rate at which the metal layer is formed and can appropriately form the metal layer by appropriately adjusting the boiling point (or decomposition temperature) at the time of selecting the mixture of the solvent. I found that. Specifically, by mixing a plurality of solvents having different boiling points, the cumulative value of the weight loss amount assuming each stage of firing measured in a nitrogen atmosphere is set within a specific range, which is generated during firing. It is possible to prevent the gas component generated during volatilization and decomposition of the solvent, additives, and organic substances constituting the surface of the metal particles from remaining more than necessary.
  • solvent composition by boiling point In the present invention, what is important is that in the above-mentioned solvent candidates, the boiling points of the solvents are classified for each layer, and by combining them, the timing of boiling and decomposition of the solvent is not performed at once in the metal layer formation stage. , It is to be divided into several stages. By doing so, it becomes possible to alleviate the shrinkage of the metal layer due to sintering progressing too much at one time.
  • the boiling point or decomposition temperature is set to the median value (temperature to be sintered: Tb), and the boiling point or decomposition point is set to (sintering).
  • Tb temperature to be sintered
  • Sintering temperature to be determined
  • the boiling point or decomposition temperature is (temperature to be sintered: Tb). It was found that it is appropriate that the component ( SB ) higher than + 50 ° C. exceeds 0% by mass and is 1.5% by mass or less.
  • Tb firing temperature
  • the range of SA is in the range of 200 to 300 ° C.
  • the boiling point or decomposition temperature is set. It means that the composition of the paste is determined by the components of 200 ° C. or higher and 300 ° C. or lower and the components higher than 300 ° C.
  • the presence of an organic substance having a high boiling point or carbon derived from the organic substance is allowed in the metal layer. It is presumed that the presence of this organic substance having a high boiling point has a function of suppressing the sintering of the metal component after desorption of the surface coating during sintering from proceeding too much at one time. However, if there are too many such substances, they interfere with the sintering of the particles and adversely affect the bonding strength, which is not appropriate.
  • a solvent compounding when the firing temperature is set to 250 ° C. will be illustrated.
  • the firing temperature (Tb) is set to 250 ° C.
  • the boundary temperature of the boiling point or the decomposition temperature is 300 ° C.
  • the solvent is composed of a solvent having a boiling point or decomposition temperature of 200 to 300 ° C. and a solvent having a temperature higher than 300 ° C. Will be mixed.
  • a solvent having a median value of (temperature to be sintered: Tb) and a boiling point or decomposition point of (temperature to be sintered: Tb) ⁇ 50 ° C. is particularly in the initial stage of bonding layer formation. It is presumed that it has a function to quickly remove organic substances that protect the surface from the particle surface. Since the boiling point or the decomposition point is low, it is necessary to mix a large amount in the solvent constituting the paste, and it is appropriate to make the composition at least 5% by mass or more and 10% by mass or less of the total mass. ..
  • the boiling point or decomposition temperature is Tb-50 (° C) or higher and Tb + 50 (. ° C) It is preferable that the temperature is in the region below.
  • the firing temperature is 250 ° C.
  • the bonding strength and fine voids can appear in a well-balanced manner.
  • the firing temperature is Tb (° C.)
  • the boiling point or decomposition temperature is Tb-50. It is preferable that the amount of the solvent having a temperature of (° C.) or more and Tb + 50 (° C.) or less is 5% by mass or more and 10% by mass or less.
  • a component having a boiling point or a decomposition temperature higher than the firing temperature Tb + 50 (° C.) is contained in an amount of more than 0% by mass and 1.5% by mass or less.
  • the firing temperature Tb may be set to a value in the range of 200 to 300 ° C.
  • a solvent (SB) having a boiling point or decomposition temperature higher than 300 ° C. (Tb + 50 ° C.) when the firing temperature (Tb) is set to 250 ° C. Telsolve MTPH (boiling point (nominal value): 308 to 318 ° C., manufactured by Nippon Telpen Chemical Co., Ltd.) and SOLPLUSD540 (boiling point: 700 ° C.).
  • Tb + 50 ° C. when the firing temperature (Tb) is set to 250 ° C.
  • Telsolve MTPH bioiling point (nominal value): 308 to 318 ° C., manufactured by Nippon Telpen Chemical Co., Ltd.
  • SOLPLUSD540 bioiling point: 700 ° C.
  • the measurement start temperature is set to 25 ° C.
  • the temperature is raised from 25 ° C. at a rate of 3 ° C./min, and the temperature when the loss on ignition reaches 95% is defined as the boiling point of the substance. If the loss on ignition is less than 95% even after raising the temperature to 700 ° C, the boiling point of the substance is considered to be 700 ° C for convenience.
  • a solvent with a boiling point or decomposition temperature higher than 300 ° C (baking temperature 250 ° C + 50 ° C) is added more than necessary, it will hinder firing and may generate unsintered parts. be. According to the findings of the inventors, such a solvent exceeds 0% by mass and is 2.5% by mass or less, preferably 1.5% by mass or less, more preferably 1.0% by mass or less, still more preferably 0% by mass. It is better to use 5% by mass or less.
  • the amount of solvent higher than 300 ° C (baking temperature 250 ° C + 50 ° C) and the composition ratio of the solvent below 300 ° C (baking temperature 250 ° C + 50 ° C) are higher than 300 ° C (baking temperature 250 ° C + 50 ° C).
  • the amount of 300 ° C (baking temperature 250 ° C + 50 ° C) or less is greater than 9 (the composition of the solvent having a higher temperature than (baking temperature 250 ° C + 50 ° C) is 10% or less of the total solvent). It is preferable to do so.
  • the content of the solvent having a boiling point or a decomposition temperature of 230 ° C. or higher and 300 ° C. or lower in the joint material occupies 50% or more of the mass of the total solvent in the joint material.
  • the content of the solvent having a boiling point or a decomposition temperature of more than 300 ° C. in the bonding material is preferably an amount that occupies 35% or less of the mass of the total solvent in the bonding material.
  • the lower limit is preferably 2%, more preferably 3%.
  • the content of the solvent having a boiling point or a decomposition temperature of 400 ° C. or higher in the bonding material is preferably an amount that occupies 6% or less of the mass of the total solvent in the bonding material.
  • the lower limit is preferably 3%. It is preferable to satisfy the regulation of any one of the above contents, and it is more preferable to satisfy the regulation of all contents.
  • the weight loss of the metal paste at 40-700 ° C. is the sum of the solvents, additives and organics that make up the surface of the particles.
  • the weight loss after heat treatment at a temperature much higher than the heat treatment temperature (up to 300 ° C.) in the paste of the present invention is used as a reference for the temperature at which flame-retardant or flame-retardant substances in the paste can be removed. This is because the purpose is to calculate the amount that can be removed as an organic substance in the paste by using the above as a reference. If the temperature is higher than this temperature, the metal is sintered, and the organic matter remains incorporated in the metal layer, which is not suitable because it is not useful.
  • the amount of weight loss is also referred to as a weight loss value.
  • TG / DTA device 10 ⁇ 1 mmg of the bonding material is weighed on a measuring alumina pan ( ⁇ 0.5 mm) using TG / DTA (TG / DTA6300) manufactured by SII, and 200 mL is used.
  • a method of calculating by raising the temperature from 40 ° C. to 700 ° C. at a heating rate of 3 ° C./min under a nitrogen atmosphere of / min can be mentioned.
  • the weight loss of the metal paste in the present invention at 40 to 100 ° C. in nitrogen is 25 or more and 75 or less, preferably 30 or more and 70 or less, more preferably, when the cumulative weight loss at 40 to 700 ° C. is 100. Is 60 or less, more preferably 50 or less. If this value is larger than 70, it means that the solvent is desorbed from the paste at once in the low temperature region, which is not preferable because it causes non-uniformity of sintering.
  • the metal nanoparticles and the metal particles are covered by the thermal expansion of the member to be joined due to the temperature rise and the shrinkage of the coating film formed of the bonding material in opposite directions. It is preferable because it contributes to the good formation of the metal layer by suppressing the decrease in the contact points with the joining member.
  • the weight loss of the metal paste in the present invention at 40 to 150 ° C. in nitrogen is 90 or more, preferably 93 or more, more preferably 95 or more, when the cumulative weight loss at 40 to 700 ° C. is 100. be. If this value is low, there are many components that are difficult to decompose and desorb in the paste, which may affect the formation of the metal layer, which is not preferable.
  • the weight loss of the metal paste in the present invention at 40 to 200 ° C. in nitrogen is 95 or more, preferably 98 or more, assuming that the cumulative weight loss amount L 700 at 40 to 700 ° C. is 100. If this value is low, there are many components that are difficult to decompose and desorb in the paste, which may affect the formation of the metal layer, which is not preferable. If this value exceeds 99.9, the sintering of particles may proceed locally when the firing temperature is set to 200 to 300 ° C., which is not preferable.
  • additives can be added to the paste of the present invention within an appropriate range within a range that does not affect the sinterability and the bonding strength of the paste.
  • dispersants such as acid-based dispersants and phosphoric acid ester-based dispersants
  • sintering accelerators such as glass frits, antioxidants, viscosity regulators, organic binders (for example, resin binders), inorganic binders, and pH. Examples include regulators, buffers, defoamers, leveling agents, and volatilization inhibitors.
  • the content of the additive in the bonding material is preferably 0.1% by mass or less.
  • the metal paste of the present invention can be produced by kneading metal nanoparticles, a solvent, and other optional components by a known method.
  • the kneading method is not particularly limited, and for example, each component is prepared individually, and in any order, ultrasonic dispersion, disper, three-roll mill, ball mill, bead mill, twin-screw kneader, or revolution type stirrer, etc.
  • a metal paste for joining can be produced.
  • the joining according to the present invention is a method of joining two members to be joined using the embodiment of the joining material of the present invention, and by this method, a uniform joining layer can be formed up to the end, and the joining strength can be formed. It is possible to obtain a bonded body having a high value and a sufficiently reduced amount of voids in the metal bonded layer.
  • the embodiment of the joining method of the present invention includes a coating film forming step, a placing step, and a sintering step, and other pre-drying steps and the like may be carried out. Hereinafter, each of these steps will be described.
  • the metal paste for joining of the present invention is applied to one of the members to be joined by a printing method such as screen printing, metal mask printing, or inkjet printing to form a coating film.
  • a printing method such as screen printing, metal mask printing, or inkjet printing to form a coating film.
  • the viscosity of the paste or ink can be adjusted as appropriate.
  • An example of the one of the members to be joined is a substrate.
  • a metal substrate such as a copper substrate, an alloy substrate of copper and some metal (for example, W (tungsten) or Mo (molybdenum)), or a ceramic in which a copper plate is sandwiched between SiN (silicon nitride) or AlN (aluminum nitride).
  • the joining method of the present invention can be applied to a laminated substrate in which these are laminated.
  • the portion to which the joining material of the member to be joined is applied may be plated with metal. From the viewpoint of the bonding compatibility with the metal component in the coating film, the type of metal in the metal plating of one of the members to be bonded may be the same as the constituent metal of the metal component in the bonding material.
  • the other member to be joined is placed on the coating film formed on the one member to be joined.
  • the other member to be joined include semiconductor devices such as Si chips and SiC chips, and substrates similar to those mentioned as examples of one member to be joined. Further, it is also possible to prepare by applying the paste on the back surface of the Si chip, the SiC chip or the IC chip without applying the paste to the substrate.
  • the portion of the other member to be joined that comes into contact with the coating film may be plated with metal.
  • the type of metal in the metal plating of the other member to be bonded is the same as the constituent metal of the metal component in the bonding material.
  • the embodiment of the joining method of the present invention can be suitably applied to joining a large-area semiconductor element.
  • the area of the bonded surface of the semiconductor element (the surface in contact with the coating film or the metal bonding layer formed from the coating film; the coating film is usually formed so as to cover the entire bottom surface of the semiconductor element) is 9 mm 2 or more.
  • the embodiment of the joining method of the present invention is suitable, more suitable when the area of the bonded surface is 25 mm 2 or more, and particularly suitable when the area of the bonded surface is 36 to 400 mm 2 . be.
  • pre-drying step Before or after mounting the other member to be bonded on the coating film for the purpose of removing excess organic components when the coating film on which the other member to be bonded is placed is heated and sintered. Before or after the setting step), a pre-drying step of pre-drying the coating film may be carried out.
  • the pre-drying is intended to remove a part of the solvent from the coating film, and is dried under conditions that the solvent volatilizes and the metal nanoparticles do not substantially cause sintering. Therefore, pre-drying is preferably carried out by heating the coating film at 60 to 150 ° C. Drying by this heating may be performed under atmospheric pressure, or may be performed under reduced pressure or vacuum.
  • the pre-drying step can be carried out by raising the temperature to the sintering temperature.
  • a metal that is easily oxidized is contained as a component of the substrate or metal particles (for example, it is assumed that copper or a copper alloy is used as the metal of the substrate or metal particles), it is not suitable from the viewpoint of antioxidant prevention. It is preferable to carry out in an active atmosphere.
  • the coating film sandwiched between the two members to be bonded is heated from room temperature to 200 at a heating rate of 1.5 ° C./min to 10 ° C./min.
  • the temperature is raised to a sintering temperature of about 350 ° C., and the sintering temperature is maintained for 1 minute or more and less than 2 hours to form a metal bonding layer from the coating film.
  • This metal bonding layer has excellent bonding strength and few voids. Therefore, by this sintering, the two members to be joined can be joined firmly and with high reliability.
  • the rate of temperature rise when heating to the sintering temperature in the sintering step is 2 ° C./min to 6 ° C./min from the viewpoint of forming a bonded body having a metal bonded layer having high bonding strength and few voids. It is preferably at 2.5 ° C./min to 4 ° C./min. Further, at such a rate of temperature rise, the temperature rise to the sintering temperature can also serve as the pre-drying step.
  • the sintering temperature is preferably 220 to 300 ° C. from the viewpoint of the bonding strength and cost of the formed metal bonding layer.
  • the time for holding at the sintering temperature is preferably 1 to 90 minutes from the viewpoint of the bonding strength and cost of the formed metal bonding layer.
  • the sintering step may be carried out in an air atmosphere or an inert atmosphere such as a nitrogen atmosphere, but in particular, a metal that is easily oxidized as a component of the substrate or metal particles is contained as a constituent component.
  • a metal that is easily oxidized as a component of the substrate or metal particles is contained as a constituent component.
  • the sintering step Is more preferably carried out in a nitrogen atmosphere.
  • the metal layer formed after sintering is a dense metal layer in which voids are not visible in the macro region, but it has voids with a very small diameter in the X-ray transmission image. Is confirmed. Normally, it is preferable that the number of voids is as small as possible, but the paste according to the present invention can obtain high bonding strength when voids having a small particle size are present to some extent. However, too many voids may adversely affect the fatigue life at the joint, which is not preferable.
  • the occupancy ratio of the void calculated from the X-ray transmission image is preferably 10% or less, preferably 5% or less, and more preferably 3% or less.
  • a silver nitrate aqueous solution prepared by dissolving 33.8 g of silver nitrate crystals (manufactured by Wako Pure Chemical Industries, Ltd.) in 180 g of water was prepared as a silver salt aqueous solution, and the temperature of this silver salt aqueous solution was adjusted to 60 ° C. 0.00008 g (1 ppm in terms of copper with respect to silver) of copper nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the silver salt aqueous solution.
  • the addition of copper nitrate trihydrate was carried out by adding an aqueous solution obtained by diluting an aqueous solution of copper nitrate trihydrate having a high concentration to some extent so as to add the target amount of copper.
  • the above-mentioned silver salt aqueous solution was added to the above-mentioned reducing agent solution all at once, mixed, and the reduction reaction was started while stirring. About 10 seconds after the start of this reduction reaction, the color change of the slurry as the reaction solution was completed, and after aging for 10 minutes while stirring, the stirring was finished and solid-liquid separation by suction filtration was performed to obtain the obtained product.
  • the solid was washed with pure water and vacuum dried at 40 ° C. for 12 hours to give a dry powder of silver nanoparticles (coated with hexaneic acid). The proportion of silver in the silver nanoparticles was calculated to be 97% by mass from the weight after removing the caproic acid by heating. Further, when the average primary particle diameter of the silver nanoparticles was determined by a transmission electron microscope (TEM), it was 17 nm.
  • TEM transmission electron microscope
  • Metal particles As metal particles, AG-3-60 (manufactured by DOWA Hightech Co., Ltd.), which is silver particles having an average primary particle diameter of 800 nm measured by a scanning electron microscope, was prepared.
  • the share strength of the bonded body obtained above was measured as shown in FIG. Specifically, the bonded body is composed of a copper substrate 3, a silver bonding layer 2 formed on the copper substrate 3, and a Si element 1 formed on the copper substrate 3 and bonded to the copper substrate 3 by the silver bonding layer 2. .. From the side surface of the Si element 1, set the share tool 4 to 5 mm / min, apply a force in the horizontal direction of the copper substrate 3, divide the force at the time of breaking by the area of the bottom surface of the Si element 1, and divide the bonded body. The share strength was calculated. The above test was performed so that the lower end of the share tool 4 touched a position 50 ⁇ m in height from the copper substrate 3.
  • FIG. 2 is a result of photographing a joint portion formed by using the metal paste for joining in Example 3 with a micro focus X-ray transmission device.
  • FIG. 3 is a result of photographing a joint portion formed by using the metal paste for joining in Comparative Example 4 with a micro focus X-ray transmission device. After that, the void rate was determined. The share strength and void ratio of the obtained particles are also shown in Table 1.
  • ⁇ Preparation of metal paste for joining (Example 6 and Comparative Example 8)> (Preparation of metal nanoparticles) Put 3400g of water in a 5L reaction tank and 3000m from the nozzle provided at the bottom of this reaction tank. After removing dissolved oxygen by flowing nitrogen into the water in the reaction vessel at a flow rate of L / min for 600 seconds, nitrogen is supplied into the reaction vessel at a flow rate of 3000 mL / min from the upper part of the reaction vessel to fill the inside of the reaction vessel with nitrogen. The temperature of the water in the reaction vessel was adjusted to 60 ° C. while stirring with a stirring rod equipped with a stirring blade provided in the reaction vessel while creating an atmosphere.
  • a silver nitrate aqueous solution prepared by dissolving 33.8 g of silver nitrate crystals (manufactured by Wako Pure Chemical Industries, Ltd.) in 180 g of water was prepared as a silver salt aqueous solution, and the temperature of this silver salt aqueous solution was adjusted to 60 ° C. 0.00008 g (1 ppm in terms of copper with respect to silver) of copper nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the silver salt aqueous solution.
  • the addition of copper nitrate trihydrate was carried out by adding an aqueous solution obtained by diluting an aqueous solution of copper nitrate trihydrate having a high concentration to some extent so as to add the target amount of copper.
  • the above-mentioned silver salt aqueous solution was added to the above-mentioned reducing agent solution all at once, mixed, and the reduction reaction was started while stirring. About 10 seconds after the start of this reduction reaction, the color change of the slurry as the reaction solution was completed, and after aging for 10 minutes while stirring, the stirring was finished and solid-liquid separation by suction filtration was performed to obtain the obtained product.
  • the solid was washed with pure water and vacuum dried at 40 ° C. for 12 hours to give a dry powder of fine silver particles (coated with hexaxic acid).
  • the ratio of silver in the silver fine particles was calculated to be 97% by weight from the weight after removing the caproic acid by heating. Further, when the average primary particle diameter of the silver fine particles was determined by a transmission electron microscope (TEM), it was 17 nm.
  • TEM transmission electron microscope
  • Metal particles As the metal particles, AG-3-60 (manufactured by DOWA Hightech Co., Ltd.), which is a silver particle having an average primary particle diameter of 800 nm obtained by a scanning electron micrograph (SEM image), was prepared. For comparison, AG-2-1C (manufactured by DOWA Hightech Co., Ltd.) having an average primary particle size of 300 nm obtained by a scanning electron micrograph (SEM image) was prepared.
  • the revolution speed of the container of the kneading and defoaming machine was 1400 rpm, and the rotation speed was 700 rpm.
  • each of the agitated silver particles is placed in a cylindrical container having an inner diameter of 5 mm with the upper end open, and a load of 2000 N is applied over 20 seconds to form a 3.5-3.7 mm thick cylindrical sample with a diameter of 5 mm. bottom.
  • thermomechanical analysis under the following conditions.
  • Manufacturer SII (Seiko Instruments Inc.) Model number: TMA / SS6200 Temperature rise rate: 3 ° C / min Measurement temperature: 30-700 ° C Measured load: 700mN (Probe area: ⁇ 3mm, equivalent to 0.1MPa) Measurement atmosphere: Nitrogen was flowed through a thermomechanical analyzer at a flow rate of 200 mL / min.
  • Example 1 and Comparative Example 1 prepared above was applied to a copper substrate having a size of 30 mm ⁇ 30 mm (thickness 1 mm) with a metal mask (opening 13.5 mm ⁇ 13.5 mm, thickness 150 ⁇ m).
  • a 13 mm ⁇ 13 mm (thickness 0.3 mm) Si element having a square bottom surface was placed on the coating film of each bonding material formed on the copper substrate. This was heated from 25 ° C. to 250 ° C. at 3 ° C./min in an N2 atmosphere, and calcined at that temperature for 60 minutes without pressure to form a silver bonded layer, and a bonded body was obtained.
  • C-SAMD-9500 manufactured by sonoscan
  • the void ratio in the region A when the bonding material of Example 6 was used was 8.1%, and the void ratio in the region A when the bonding material of Comparative Example 1 was used was 45.2%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

接合面積が大きい場合であっても端部におけるボイドの発生を低減し、均一性のある接合層を形成できる接合ペーストおよび該ペーストを用いた接合方法を提供する。一次粒子径の個数平均値が10~100nmである金属ナノ粒子(A)を含む接合用金属ペーストであって、ペーストを窒素雰囲気中3℃/分の昇温速度で40℃から700℃まで昇温したときにおける、減量値の累積値(L700)を100としたとき、40℃から100℃まで昇温したときにおける減量値の累積値(L100)が75以下であり、40℃から150℃まで昇温したときにおける減量値の累積値(L150)が90以上であって、40℃から200℃まで昇温したときにおける減量値の累積値(L200)が98以上である、接合用金属ペーストを提供する。

Description

接合用金属ペースト及び接合方法
 本発明は、被接合部材との間における端部のボイドが低減された金属接合層を形成可能な接合材及びその接合材を使用した接合方法に関する。
 従来、銅基板などの基板上に半導体チップなどの電子部品を搭載した半導体装置では、電子部品が半田により基板上に固定されていたが、近年では、人体や環境などへの負荷を考慮して、従来の鉛を含む半田から鉛フリー半田への移行がなされている。
 また、このような半導体装置において、基板上への実装密度を大きくするために電子部品が小型化されていることから、これらを駆動する電流密度は大きくなる傾向にある。その結果として、電子部品の稼働時の発熱も大きくなる。また、半導体素子として、広く使用されていたSi素子よりも低損失で優れた特性のSiC素子を使用することが検討されている。このSiC素子を基板上に搭載した半導体装置では、動作温度が200℃を超える場合もある。このような高温環境にさらされ得る半導体装置の製造においては、電子部品を基板上に固定する半田として、融点が高い高温はんだを使用する必要があるが、このような高温はんだは鉛フリー化が困難である。
 こうした趨勢の中、本出願人らはナノ銀粒子をペースト内に含ませ、その構成を適切に制御することによって、環境負荷物質である鉛を用いなくとも、高い接合強度を有するとともに、低温での処理でありながらも、高温耐久性に優れる接合方法を提供できる旨を今までに開示してきた。(特許文献1及び2)
特開2015-004105号公報 特開2015-225842号公報
 特許文献1および2において開示している技術として、ナノサイズの銀粒子およびミクロンサイズの銀粒子を併用し、焼結助剤や、リン酸エステル系の添加剤を併用することによって、ペーストを塗布し焼結させた際に形成される金属層中のボイドを低減させることが出来る旨開示を行った。
 ところが、発明者らの直近の検討によれば、こうした構成を適正化したペーストであっても、特に大面積での接合を行う場合において、端部で接着不良を生じてしまう場合があることがわかってきた。端部の接合不良により生じた空隙部分に水分などが浸入した場合には、その部分から緩やかな酸化が生じてしまう危険性があることが推定されることから、接合面積がたとえ大きくても接着不良を生じないペーストの構成とすることが強く望まれている。
 そこで本発明において解決すべき課題としては、接合面積が大きい場合であっても端部におけるボイドの発生を低減し、均一性のある接合層を形成できる接合ペーストおよび該ペーストを用いた接合方法の提供と定めた。
 本発明者はこれらの問題を解決するために、鋭意検討を行ったところ、ペーストについては添加する成分だけではなく、添加した結果形成されるペーストが示す性質を適切な条件とすれば、上記の課題が解決できうることを見いだし、本件発明を完成させた。
 すなわち、本明細書が開示する第1の発明は、少なくとも一次粒子径の個数平均値が10~100nmである金属ナノ粒子(A)を含む接合用金属ペーストであって、ペーストを窒素雰囲気中3℃/分の昇温速度で40℃から700℃まで昇温したときにおける、減量値の累積値(L700)を100としたとき、40℃から100℃まで昇温したときにおける減量値の累積値(L100)が75以下であり、40℃から150℃まで昇温したときにおける減量値の累積値(L150)が90以上であって、40℃から200℃まで昇温したときにおける減量値の累積値(L200)が98以上である、接合用金属ペーストである。
 第2の発明は、第1の発明において、40℃から200℃まで昇温したときにおける減量値の累積値(L200)が99.9以下の接合用金属ペーストである。
 第3の発明は、第1または第2の発明に記載した接合用金属ペーストにおいて、金属ナノ粒子(A)を含んだ金属粒子、溶剤、分散剤などの添加剤を含む接合用金属ペースト全量を100質量%としたとき、焼成温度Tb(℃)としたとき、沸点もしくは分解温度がTb-50(℃)以上Tb+50(℃)以下である溶剤が、5質量%以上10質量%以下である、接合用金属ペーストである。
 第4の発明は、第1ないし第3のいずれかの発明に記載した接合用金属ペーストにおいて、金属ナノ粒子(A)を含んだ金属粒子、溶剤、分散剤などの添加剤を含む接合用金属ペースト全量を100質量%としたとき、焼成温度Tb(℃)としたとき、沸点もしくは分解温度が焼成温度Tb+50(℃)よりも高い成分を1.5質量%以下含有する、接合用金属ペーストである。
 第5の発明は、接合用金属ペーストにおいて、少なくとも一次粒子径の個数平均値が10~100nmである金属ナノ粒子(A)を含んだ金属粒子を含む接合用金属ペーストであって、当該ペーストに含まれる金属粒子は窒素雰囲気中0.1MPaで加圧しながら、3℃/分の昇温速度で30℃から250℃まで昇温しながら行う熱機械分析において計測される収縮率が1.5%以下の接合用金属ペーストである。
 第6の発明は、第5の発明に記載の接合用金属ペーストにおいて、使用される金属粒子の30℃から200℃まで昇温しながら行う熱機械分析において計測される収縮率が0.5%以下の接合用金属ペーストである。
 第7の発明は、第5もしくは第6の発明に記載の接合用金属ペーストにおいて、使用される金属粒子の30℃から175℃まで昇温しながら行う熱機械分析において計測される収縮率が0.3%以下の接合用金属ペーストである。
 第8の発明は、第1ないし第7のいずれかの発明において、さらにレーザー回折型粒度分布装置により計測される体積換算の平均粒子径(D50)1.0~5.0μmの金属粒子(B)を含む、接合用金属ペーストである。
 第9の発明は、第8の発明において、金属ナノ粒子(A)と金属粒子(B)の重量混合比は(A)/(B)で0.25以下の接合用金属ペーストである。
 第10の発明は、2つの被接合部材の接合方法であって、被接合部材に第1ないし第9のいずれかの発明に記載された接合用金属ペーストを塗布する工程、該塗膜上に他方の前記ペーストの塗布された被接合物をもう一方の被接合部材に戴置する工程、戴置後に200~350℃の焼結温度まで昇温し、焼結温度で2時間未満保持して、金属接合層を形成する工程を備えた接合方法である。
 第11の発明は、第10の発明に記載された接合方法であって、接合用金属ペーストを塗布した後に、50~150℃の温度で乾燥する工程を備えた接合方法である。
 第12の発明は、第10もしくは第11の発明において、焼結温度までの室温からの昇温速度が毎分1.5~10℃である、接合方法である。
 第13の発明は、第10ないし第12のいずれかの発明において、接合用金属ペーストを塗布する面積(接合面積)が9mm以上である、接合方法である。
 本発明によれば、接合面積が大きい場合であっても端部におけるボイドの発生を低減して、均一性のある接合層を形成することができ、高い接合強度を有した接合体を形成することが出来る。
接合体のシェア強度の測定の様子を示す概略図である。 実施例3における接合用金属ペーストを用いて形成した接合部を、マイクロフォーカスX線透過装置で撮影した結果である。 比較例4における接合用金属ペーストを用いて形成した接合部を、マイクロフォーカスX線透過装置で撮影した結果である。
 本発明にかかる接合用金属ペーストおよび接合方法について説明する。
<接合用金属ペースト>
 接合用金属ペーストは、特定の金属粒子、溶剤、および特性を補完する添加成分から構成される。
[金属ナノ粒子]
 本発明で利用される金属ナノ粒子は、出願人が既に市販しているものの他、本願発明の趣旨に従うものであれば、市販の粒子や、文献に記載された粒子を採用することができる。ナノ粒子を作成する方法は、本発明で指定した粒子径範囲と性質を満足するのであれば、湿式法や乾式法のいずれの方法により作成された粒子を採用することが可能である。本発明の趣旨に従う金属ナノ粒子としては、平均一次粒子径(透過型電子顕微鏡写真、走査型電子顕微鏡写真から算出される数平均粒子径)が10~100nm、好ましくは15~80nm、一層好ましくは20~60nm、より一層好ましくは、20~40nmである。該数平均粒子径のことを一次粒子径の個数平均値ともいう。粒子の表面には、自然焼結を抑制するための有機物被覆(キャッピング層)が形成されていることが好ましい。粒子径が細かくなることで、金属ナノ粒子の溶融温度が低くなるので、接合体の形成温度を低くすることができるため好ましい。ただし、あまりにも小さい場合には、常温での焼結を避けるために厚いキャッピング層を形成させなければならなくなるので好ましくない。厚いキャッピング層を形成してしまうと、粒子間の分散はさせやすく単分散なものが得られやすくなるが、キャッピング層を除去し、金属の焼結を進行させるためには高温での処理が必要になったり、金属層の中に有機物が残存してしまい接合強度の低下や導電率の低下の原因にもなったりするので好ましくない。また、単分散になりすぎると、粒子の回収が難しくなるので生産性が低下する原因にもなる。
 キャッピング層は、金属層の形成温度において除去できるような低温分解性を有する物質であることが高い接合強度を形成するには好ましい。分子量の大きい物質としてしまうと、焼結層に焼成残渣が残存してしまうことになり好ましくないため、ポリマーや高分子物質は避けるのがよい。キャッピング層を形成する有機物としては、少なくとも焼結温度以下の沸点を有する物質であることが好ましく、沸点が300℃以下、好ましくは250℃以下である物質とするのがよい。かような有機化合物の例としては、炭素数が12以下のカルボン酸、ジカルボン酸、不飽和脂肪酸、あるいはアミン類、チオール類、スルフィド類が例示できるが、特に好ましいのはカルボン酸、ジカルボン酸、不飽和脂肪酸、アミン類である。具体的には、オクタン酸、ヘプタン酸、ヘキサン酸、ペンタン酸、ブタン酸、プロパン酸、シュウ酸、マロン酸、エチルマロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ソルビン酸、マレイン酸、ヘキシルアミン、オクチルアミン等を挙げることができる。
 表面を被覆する有機物の量が多くなると、焼成温度が高くなってしまうこと、焼成膜中に不純物が残存することがあるので不適切である。有機物被覆量は金属ナノ粒子(粉末)に対し、0.1質量%以上10質量%以下、好ましくは0.5質量%以上5質量%以下、一層好ましくは1.0質量%以上、3.0質量%以下とするのがよい。
 また、粒子の加熱に対する収縮が小さいものであることが好ましい。具体的には、窒素雰囲気下、0.1MPaで加圧しながら、30℃から250℃まで3℃/分の速度で昇温しながら行う熱機械分析において計測される収縮率が1.5%以下、好ましくは1.0%以下、好ましくは0.75%以下であることが好ましい。窒素雰囲気下、0.1MPaで加圧しながら、30℃から200℃まで毎分3℃の速度で昇温しながら行う熱機械分析において計測される収縮率が0.5%以下であることが好ましい。窒素雰囲気下、0.1MPaで加圧しながら、30℃から175℃まで毎分3℃の速度で昇温しながら行う熱機械分析において計測される収縮率が0.3%以下であることが好ましい。
 金属ナノ粒子で用いられる金属は、部材の接合に使用可能なものであれば特に限定されない。貴金属及び卑金属のいずれも使用することができる。貴金属としては、例えば、銀、金、ルテニウム、ロジウム、パラジウム、イリジウム、白金等を挙げることができる。入手の容易さを考慮すれば、銀や金などが好適に利用されうる。コスト面から見れば、特に好ましいのは銀である。卑金属としては、例えば、銅、アルミニウム、鉄、ニッケル等を挙げることができる。ここで、使用されうる金属は単金属でもよいし、合金であってもよい。
[金属粒子]
 本発明において、金属粒子を併用する場合には、市販の金属粒子を採用することが可能である。この際の粒子は湿式法で作成したものであっても、乾式法で作成されたもののいずれでもかまわない。本発明で利用される金属粒子としては、レーザー回折型粒度分布装置で計測される体積換算の累積50%粒子径(D50粒子径)が1.0~5.0μmである金属粒子を含む。金属ペースト(の塗膜)の焼結時には、金属ナノ粒子が焼結して、金属粒子を連結するようにして、金属接合層が形成される。この際金属接合層にボイドが形成されにくくするためには、金属粒子のD50粒子径は1.2~3.0μmであることが好ましく、1.4~2.0μmであることがより好ましい。
 この金属粒子についても、分散性向上などのため有機化合物で被覆されていてもよく、その際に、金属粒子を炭素数20以下の有機化合物にて被覆するのが好ましい。そのような有機化合物の例としては、オレイン酸やステアリン酸が挙げられる。被覆している有機物の量は、金属ナノ粒子に対するものと同じく少ない方が金属層への悪影響を抑制できるので好ましい。具体的には5.0質量%以下、好ましくは3.0質量%以下であるものがよい。
 また、粒子の加熱に対する収縮が小さいものであることが好ましいことは金属ナノ粒子の説明で述べたとおりであるが、金属粒子を併用する場合においては、金属ナノ粒子と金属粒子を混合した後に、同様の性質を有することが好ましい。具体的には、金属ナノ粒子と金属粒子を混合させた混合物について、窒素雰囲気下、0.1MPaで加圧しながら、30℃から250℃まで毎分3℃の速度で昇温しながら行う熱機械分析において計測される収縮率が1.5%以下、好ましくは1.0%以下、一層好ましくは0.75%以下であることが好ましい。窒素雰囲気下、0.1MPaで加圧しながら、30℃から200℃まで毎分3℃の速度で昇温しながら行う熱機械分析において計測される収縮率が0.5%以下であることが好ましい。窒素雰囲気下、0.1MPaで加圧しながら、30℃から175℃まで毎分3℃の速度で昇温しながら行う熱機械分析において計測される収縮率が0.3%以下であることが好ましい。
 金属粒子で用いられる金属は、部材の接合に使用可能なものであれば特に限定されない。貴金属及び卑金属のいずれも使用することができる。貴金属としては、例えば、銀、金、ルテニウム、ロジウム、パラジウム、イリジウム、白金等を挙げることができる。入手の容易さを考慮すれば、銀や金などが好適に利用されうる。コスト面から見れば、特に好ましいのは銀である。卑金属としては、例えば、銅、アルミニウム、鉄、ニッケル等を挙げることができる。ここで、使用されうる金属は単金属でもよいし、合金であってもよい。ここで、金属ナノ粒子と同じ金属を採用してもよいし、別の金属を採用しても差し支えない。
 金属ナノ粒子に加えて、金属粒子を追加する場合、金属ナノ粒子(A)と金属粒子(B)の重量混合比は(A)/(B)で0.25以下であるのが好ましい。また、接合用金属ペースト中における、金属ナノ粒子又は金属ナノ粒子と金属粒子との混合物の割合は90質量%以上であるのが好ましい。
[溶媒]
 本発明で使用される溶媒は、焼成温度よりも低い温度で揮散する性質を有するものを用いるとよい。揮散は沸騰による蒸発であっても、分解であってもよい。具体的には沸点もしくは分解温度が300℃以下のものを採用することが好ましい。
 本発明で使用される溶媒は、焼結などに影響を及ぼさないという条件において、極性溶媒であっても、非極性溶媒であってもよいが、他の成分との相溶性等を考慮すれば、極性溶媒を選択する方が適当である。
 ここで用いられる溶媒としては、金属ペーストにおける沸点や粘度、蒸発速度の調整などの目的で、複数の溶媒を混合し使用することが出来る。ここで混合できうる溶媒として、溶媒を極性溶媒とする場合には、次のような溶媒が例示できる。水;ターピネオール、テキサノール、フェノキシプロパノール、1-オクタノール、1-デカノール、1-ドデカノール、1-テトラデカノール、テルソルブMTPH(日本テルペン化学株式会社製)、ジヒドロターピニルオキシエタノール(日本テルペン化学株式会社製)、テルソルブTOE-100(日本テルペン化学株式会社製)、テルソルブDTO-210(日本テルペン化学株式会社製)等のモノアルコール;3-メチル-1,3-ブタンジオール、2-エチル-1,3-ヘキサンジオール(オクタンジオール)、ヘキシルジグリコール、2-エチルヘキシルグリコール、ジブチルジグリコール、グリセリン、ジヒドロキシターピネオール、3-メチルブタン-1,2,3-トリオール(イソプレントリオールA(IPTL-A)、日本テルペン化学株式会社製)、2-メチルブタン-1,3,4-トリオール(イソプレントリオールB(IPTL-B)、日本テルペン化学株式会社製)等のポリオール;ブチルカルビトール、ジエチレングリコールモノブチルエーテル、ターピニルメチルエーテル(日本テルペン化学株式会社製)、ジヒドロターピニルメチルエーテル(日本テルペン化学株式会社製)等のエーテル化合物;ブチルカルビトールアセテート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート;1-メチルピロリジノン、ピリジン等の含窒素環状化合物;γ―ブチロラクトン、メトキシブチルアセテート、メトキシプロピルアセテート、乳酸エチル、3-ヒドロキシ-3-メチルブチルアセテート、ジヒドロターピニルアセテート、テルソルブIPG-2Ac(日本テルペン化学株式会社製)、テルソルブTHA-90(日本テルペン化学株式会社製)、テルソルブTHA-70(日本テルペン化学株式会社製)等のエステル化合物;などが例示できる。
 本発明者らは、この溶媒の混合選択時において、沸点(もしくは分解温度)を適切に調整すれば、金属層が形成される速度を調整することが出来るとともに、金属層を適切に構成できうることを知見した。具体的には、沸点の異なる溶剤を複数混合することにより、窒素雰囲気中で計測される焼成の各段階を想定した重量減少量の累積値を特定の範囲とすることで、焼成中に発生する溶剤や添加物、金属粒子の表面を構成する有機物の揮発や分解時に発生するガス成分が必要以上に残存することを避けることが出来るというものである。
[沸点別の溶剤構成]
 本発明において、重要なのは上述した溶剤候補において、その溶剤の沸点を階層ごとに分類し、それらを組み合わせることにより、金属層の形成段階において溶剤の沸騰や分解のタイミングを一度に行わせるのではなく、数段階に分けて行わせることにある。そうすることによって、焼結による金属層の収縮が一度に進みすぎることを緩和することが可能となる。
 発明者の検討によれば、本発明に従うペーストの構成を大きく分ければ、沸点もしくは分解温度が(焼結させようとする温度:Tb)を中央値とし、沸点もしくは分解点が(焼結させようとする温度)±50℃の溶剤(S)と(焼結させようとする温度:Tb)+50℃以上である溶剤もしくは難分解性の有機物(後掲の表1では一括して溶剤というカテゴリーに含めており、一括して成分Sともいう。)をともに含む構成とすることが適当であって、(焼結させようとする温度)を中央値とし、沸点もしくは分解点が(焼結させようとする温度:Tb)±50℃の溶剤(S)は、ペースト全体における割合が5質量%以上10質量%以下とし、沸点もしくは分解温度が(焼結させようとする温度:Tb)+50℃よりも高い成分(S)は0質量%を上回り1.5質量%以下とすることが適当であることが判明した。具体的な例で示すと、焼成温度(Tb)を250℃(後述の実施例、比較例)と設定する場合にはSの範囲は200~300℃の範囲であり、沸点もしくは分解温度が200℃以上300℃以下の成分と300℃よりも高い成分でペーストの配合を決定することを意味する。すなわち、本発明においては、金属層中に沸点の高い有機物もしくは有機物由来の炭素の存在を許容する。この沸点の高い有機物の存在は、焼結中表面被覆物が脱離した後の金属成分の焼結が一度に進みすぎるのを抑制する働きがあると推定される。しかし、あまりにもかような物質が多すぎると、粒子の焼結を妨害し、接合強度に悪影響を及ぼすことから適当ではない。
 具体例として、特に焼成温度を250℃に設定した場合における溶剤配合について例示する。焼成温度(Tb)を250℃と設定した場合における、沸点もしくは分解温度の境界温度は300℃であり、溶媒の構成としては沸点もしくは分解温度が200~300℃の溶剤と300℃よりも高い溶剤を混合することになる。このとき、沸点もしくは分解温度が200~300℃の溶剤(S)としては、1-デカノール(沸点(公称値):233℃)、3-メチルブタン-1,2,3-トリオール(イソプレントリオールA(IPTL-A))(沸点(公称値):255℃、日本テルペン化学株式会社製)、2-メチルブタン-1,3,4-トリオール(イソプレントリオールB(IPTL-B))(沸点(公称値):278℃、日本テルペン化学株式会社製)及びジエチレングリコール(沸点(公称値):245℃)が挙げられる。ここで、(焼結させようとする温度:Tb)を中央値とし、沸点もしくは分解点が(焼結させようとする温度:Tb)±50℃の溶剤は、特に接合層形成の初期段階における、粒子表面からの表面を保護する有機物除去の際に素早く取り除く働きがあると推定している。沸点もしくは分解点も低いことから、とりわけペーストを構成する溶剤の中では多く配合しなければならず、少なくとも全体の質量のうちの5質量%以上10質量%以下の構成とするのが適当である。こうした溶剤は粘度も小さいため、あまりにも量を増やしすぎるとインク状になってしまうため、目的の形状に塗布が行いにくくなるので適当ではない。発明者らの知見によれば、塗布焼成後の微細ボイドを適正なものとするためには、焼成温度をTb(℃)としたとき、沸点若しくは分解温度がTb-50(℃)以上Tb+50(℃)以下の領域にあるようにするのが好ましい。具体例を挙げると、焼成温度が250℃の場合では沸点もしくは分解温度が250℃~300℃のものを添加すると、接合強度と微細なボイドがバランスよく出現することが出来るようになるので好ましい。金属ナノ粒子を含んだ金属粒子、溶剤、分散剤などの添加剤を含む接合用金属ペースト全量を100質量%としたとき、焼成温度Tb(℃)としたとき、沸点もしくは分解温度がTb-50(℃)以上Tb+50(℃)以下である溶剤が5質量%以上10質量%以下であるのが好ましい。沸点もしくは分解温度が焼成温度Tb+50(℃)よりも高い成分を、0質量%を上回り1.5質量%以下含有するのが好ましい。焼成温度Tbは200~300℃の範囲内の値に設定してもよい。
 焼成温度(Tb)を250℃に設定した場合の、300℃(Tb+50℃)よりも高い沸点もしくは分解温度を有する溶剤(S)の例としては、テルソルブMTPH(沸点(公称値):308~318℃、日本テルペン化学株式会社製)及びSOLPLUSD540(沸点:700℃)といったものがあげられる。ここでいう沸点もしくは分解温度に関しては、メーカーのSDS等の記載数値のほか、自らTG/DTAなどで算出した値を使用することが可能である。その際には、測定開始温度は25℃とし、25℃から3℃/分の速度で昇温させていき、熱減量が95%となったときの温度を、その物質の沸点とする。700℃まで昇温しても熱減量が95%に満たない場合は、その物質の沸点は便宜的に700℃とみなすこととした。
 あまりにもかような物質が多すぎると、粒子の焼結を妨害し、接合強度に悪影響を及ぼすことから適当ではない。こうした300℃(焼成温度250℃+50℃)を上回る沸点もしくは分解温度の溶剤は必要以上に添加すれば焼成の妨げになり、未焼結の部分が発生してしまうおそれがあるので注意が必要である。発明者らの知見によれば、こうした溶剤は0質量%を上回り、且つ2.5質量%以下、好ましくは1.5質量%以下、更に好ましくは1.0質量%以下、一層好ましくは0.5質量%以下とするのが良い。300℃(焼成温度250℃+50℃)よりも高温の溶剤の量と300℃(焼成温度250℃+50℃)以下の溶剤の構成比は、300℃(焼成温度250℃+50℃)よりも高温の溶剤が1に対し、300℃(焼成温度250℃+50℃)以下が9よりも多い量((焼成温度250℃+50℃)よりも高温の溶剤の構成が溶剤全体の中で10%以下)とすることが好ましい。
 前記接合材中の、沸点もしくは分解温度が230℃以上300℃以下である溶剤の含有量が、前記接合材中の全溶剤の質量のうち50%以上を占める量であるのが好ましい。前記接合材中の、沸点もしくは分解温度が300℃を上回る溶剤の含有量が、前記接合材中の全溶剤の質量のうち35%以下を占める量であるのが好ましい。下限は2%が好ましく、3%がより好ましい。前記接合材中の、沸点もしくは分解温度が400℃以上である溶剤の含有量が、前記接合材中の全溶剤の質量のうち6%以下を占める量であるのが好ましい。下限は3%が好ましい。上記いずれか一つの含有量の規定を満たすのが好ましく、全ての含有量の規定を満たすのがより好ましい。
[700℃における重量減少量の累積値L700
 40~700℃における金属ペーストの重量減少は、ペーストを構成する溶媒、添加物および粒子の表面を構成する有機物の総和である。本発明のペーストにおける熱処理温度(最大で300℃)よりもはるかに高温での熱処理後の重量減少量を基準としているのは、ペースト中における難燃もしくは難分解性の物質をも除去されうる温度を基準とすることにより、ペースト中の有機物として除去可能な量を算出することを目的としたためである。この温度よりも高温としてしまうと、金属の焼結が進み、金属層中に有機物が取り込まれたままになり、用を足さなくなるので適当ではない。以降、重量減少量のことを減量値ともいう。
 重量減少は、たとえばペーストを準備し、40℃で十分加熱した後重量測定を行い、庫内温度を700℃に設定し、窒素で置換された電気炉中に戴置して十分に加熱してから炉から取り出した後、重量を再度測定して700℃の熱処理前後の重量減少から算出する方法や、市販のTG/DTA装置を使用して算出する方法があるが、後者の方が所望の昇温速度を得られるだけでなく、途中の100℃における減少量や150℃における減少量を一度に算出できるので適当である。TG/DTA装置を用いて測定する方法の一例としては、SII社製TG/DTA(TG/DTA6300)を用いて、測定用アルミナパン(φ0.5mm)に接合材を10±1mmg計量し、200mL/分の窒素雰囲気下で40℃から700℃までを昇温速度3℃/分で昇温させることにより算出する方法があげられる。
[100℃における重量減少量の累積値L100
 本発明における金属ペーストは窒素中における40~100℃における重量減少量は40~700℃における重量減少量累積値L700を100とした場合、25以上75以下、好ましくは30以上70以下、一層好ましくは60以下、より一層好ましくは50以下である。この値が70よりも大きい値を示すと、低温領域においてペーストから一挙に溶剤が脱離することを示すため、焼結の不均一化の原因にもなるので好ましくない。また、溶剤等の非金属成分の一定量が残存することによって、昇温による被接合部材の熱膨張と、接合材で形成された塗膜の収縮という反対方向の動きによる、金属ナノ粒子と被接合部材との接点の減少が抑制されることにより、金属層の良好な形成に寄与するため好ましい。
[150℃における重量減少量の累積値L150
 本発明における金属ペーストは窒素中における40~150℃における重量減少量は40~700℃における重量減少量累積値L700を100とした場合、90以上、好ましくは93以上、一層好ましくは95以上である。この値が低い場合には、ペースト中に難分解、難脱離性成分が多く金属層の形成に影響をする場合があるため好ましくない。
[200℃における重量減少量の累積値L200
 本発明における金属ペーストは窒素中における40~200℃における重量減少量は40~700℃における重量減少量累積値L700を100とした場合、95以上、好ましくは98以上である。この値が低い場合には、ペースト中に難分解、難脱離性成分が多く金属層の形成に影響をする場合があるため好ましくない。この値が99.9を上回ると、焼成温度を200~300℃に設定していた場合に、粒子の焼結が局所的に進行してしまう場合があり好ましくない。
[その他の添加物質]
 ペーストにおける焼結性や接合強度へ影響を及ぼさない範囲内で、本発明のペーストには公知の添加物を適正な範囲内で添加することが出来る。具体的には、酸系分散剤やリン酸エステル系分散剤などの分散剤、ガラスフリットなどの焼結促進剤、酸化防止剤、粘度調整剤、有機バインダー(例えば樹脂バインダー)、無機バインダー、pH調整剤、緩衝剤、消泡剤、レベリング剤、揮発抑制剤が挙げられる。添加剤の接合材における含有量は、0.1質量%以下とすることが好ましい。
<金属ペーストの製造方法>
 本発明の金属ペーストは、金属ナノ粒子と溶剤、更に他の任意成分を公知の方法で混練することで、製造することができる。混練の方法は特に制限されるものではなく、例えば、各成分を個別に用意し、任意の順で、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、又は公転式攪拌機などで混練することによって、接合用金属ペーストを製造することができる。
<接合方法>
 本発明による接合は、本発明の接合材の実施の形態を用いて2つの被接合部材を接合する方法であり、この方法により、端部まで均一な接合層を形成することができ、接合強度が高くかつ金属接合層のボイド量が十分に低減された接合体を得ることができる。本発明の接合方法の実施の形態は、塗膜形成工程と、載置工程と、焼結工程とを有し、その他予備乾燥工程等を実施してもよい。以下、これら各工程について説明する。
[塗膜形成工程]
 本工程では、一方の被接合部材に本発明の接合用金属ペーストをスクリーン印刷、メタルマスク印刷、インクジェット印刷といった印刷法などにより塗布して塗膜を形成する。選択された印刷方法により、ペーストやインクの粘度は適宜調整されうる。前記一方の被接合部材の例としては、基板が挙げられる。基板としては、銅基板などの金属基板、銅と何らかの金属(例えばW(タングステン)やMo(モリブデン))との合金基板、銅板をSiN(窒化珪素)やAlN(窒化アルミニウム)などに挟んだセラミック基板、更にPET(ポリエチレンテレフタレート)基板などのプラスチック基板、場合によってプリント配線基板などが挙げられる。さらにこれらを積層した積層基板も、本発明の接合方法を適用することが出来る。被接合部材の接合材が塗布される個所は、金属でメッキされていてもよい。塗膜中の金属成分との接合相性の観点からは、前記一方の被接合部材の金属メッキにおける金属の種類は、接合材における金属成分の構成金属と同じとすることも出来る。
[載置工程]
 続いて、前記の一方の被接合部材上に形成された塗膜の上に、他方の被接合部材を載置する。この他方の被接合部材の例としては、SiチップやSiCチップなどの半導体素子、一方の被接合部材の例として挙げたのと同様の基板が挙げられる。また、基板にはペーストは塗布せず、SiチップやSiCチップやICチップの裏面にペーストを塗布して準備することも出来る。
 また、他方の被接合部材の塗膜と接する個所(被接合面)は、金属でメッキされていてもよい。塗膜中の金属成分との接合相性の観点からは、前記他方の被接合部材の金属メッキにおける金属の種類は、接合材における金属成分の構成金属と同様であることが好ましい。また塗膜上に被接合部材を載置する際には、2つの被接合部材の間に、被接合物の自重の以外に塗膜を圧縮する方向の外部から圧力をかけることは妨げないが、チップや基板などが外部圧力により破壊されない程度の圧力とすることが肝要である。
 また本発明の接合方法の実施の形態は、大面積の半導体素子の接合に好適に適用することができる。特に半導体素子の被接合面(塗膜ないしこれから形成される金属接合層と接触する面。塗膜は通常半導体素子の底面全面をカバーするように形成される)の面積が9mm以上である場合に、本発明の接合方法の実施の形態が好適であり、被接合面の面積が25mm以上である場合により好適であり、特に被接合面の面積が36~400mmである場合に好適である。
[予備乾燥工程]
 他方の被接合部材が載置された塗膜を加熱して焼結する際に、余分な有機成分を除去する目的で、塗膜上に他方の被接合部材を載置する前又は後に(載置工程の前又は後に)、塗膜を予備乾燥する予備乾燥工程を実施してもよい。予備乾燥は塗膜から溶剤の一部を除去することを目的としており、溶剤が揮発し、かつ金属ナノ粒子が焼結を実質的に起こさないような条件で乾燥する。このため、予備乾燥は塗膜を60~150℃で加熱することによって実施することが好ましい。この加熱による乾燥は大気圧下で行ってもよいし、減圧ないし真空下で行ってもよい。また、次に説明する焼結工程において、焼結温度までの昇温速度が7℃/分以下であれば、焼結温度までの昇温をもって予備乾燥工程を実施することができる。基板や金属粒子の成分として酸化されやすい金属が構成成分として含まれている(例えば、銅や銅合金が基板の金属や、金属粒子として使用することを想定する)場合、酸化防止の観点から不活性雰囲気中で実施することが好ましい。
[焼結工程]
 載置工程を実施して必要に応じて予備乾燥工程を実施した後、2つの被接合部材にサンドイッチされた塗膜を1.5℃/分~10℃/分の昇温速度で室温から200~350℃の焼結温度まで昇温し、その焼結温度で1分以上2時間未満の時間保持して、前記塗膜から金属接合層を形成する。この金属接合層は、接合強度に優れ、またボイドが少ない。従ってこの焼結により、2つの被接合部材を強固に、高い信頼性をもって接合することができる。
 焼結工程における焼結温度まで加熱する際の昇温速度は、高い接合強度を有し、ボイドの少ない金属接合層を有する接合体を形成する観点から、2℃/分~6℃/分であることが好ましく、2.5℃/分~4℃/分であることがより好ましい。またこのような昇温速度であれば、焼結温度までの昇温をもって予備乾燥工程を兼ねることができる。
 焼結温度は、形成される金属接合層の接合強度やコストの観点から、220~300℃であることが好ましい。焼結温度で保持する時間は、形成される金属接合層の接合強度やコストの観点から、1~90分であることが好ましい。また、焼結温度までの昇温及びその焼結温度での保持の際に、被接合部材間に塗膜を圧縮する方向の圧力を加える必要はないが、より緻密な焼結膜を形成させる目的で、印加圧力5MPa以下の圧力を加えることは妨げない。
 また、焼結工程は大気雰囲気中で実施しても窒素雰囲気などの不活性雰囲気中で実施してもよいが、特に基板や金属粒子の成分として酸化されやすい金属が構成成分として含まれている(例えば、銅や銅合金が基板の金属や、金属粒子として使用することを想定する)場合、酸化防止の観点から不活性雰囲気中で実施することが好ましく、更にコストの観点から、焼結工程を窒素雰囲気中で実施することがより好ましい。
 焼結後に形成される金属層は、マクロ領域でみれば、ボイドは視認されない緻密な金属層となっているが、X線透過像でみれば、ごく微少な径のボイドを有していることが確認される。通常ボイドは可能な限り少ないことが好ましいとされていたが、本発明に従うペーストはむしろ小粒子径のボイドがある程度は存在している方が、高い接合強度を得ることが出来るようになる。とはいうものの、ボイドが多すぎると接合部における疲労寿命に悪影響を及ぼす可能性があるため好ましくない。X線透過像で算出されるボイドの占有割合は、10%以下であるのがよく、好ましくは5%以下、一層好ましくは3%以下であるのがよい。
 以下、本発明を実施例及び比較例を用いてより詳細に説明するが、本発明はこれらにより何ら限定されるものではない。
<接合用金属ペースト(実施例1~5、比較例1~7)の調製>
[金属ナノ粒子の調製]
 5Lの反応槽に水3400gを入れ、この反応槽の下部に設けたノズルから3000mL/分の流量で窒素を反応槽内の水中に600秒間流して溶存酸素を除去した後、反応槽の上部から3000mL/分の流量で窒素を反応槽中に供給して反応槽内を窒素雰囲気にするとともに、反応槽内に設けた撹拌羽根付き撹拌棒により撹拌しながら、反応槽内の水の温度が60℃になるように調整した。この反応槽内の水に28質量%のアンモニアを含むアンモニア水7gを添加した後、1分間撹拌して均一な溶液にした。この反応槽内の溶液に有機化合物として飽和脂肪酸であるヘキサン酸(和光純薬工業株式会社製)45.5g(銀に対するモル比は1.98)を添加して4分間撹拌して溶解した後、還元剤として50質量%のヒドラジン水和物(大塚化学株式会社製)23.9g(銀に対して4.82当量)を添加して、還元剤溶液とした。
 また、硝酸銀の結晶(和光純薬工業株式会社製)33.8gを水180gに溶解した硝酸銀水溶液を銀塩水溶液として用意し、この銀塩水溶液の温度が60℃になるように調整し、この銀塩水溶液に硝酸銅三水和物(和光純薬工業株式会社製)0.00008g(銀に対して銅換算で1ppm)を添加した。なお、硝酸銅三水和物の添加は、ある程度高濃度の硝酸銅三水和物の水溶液を希釈した水溶液を狙いの銅の添加量になるように添加することによって行った。
 次に、上記の銀塩水溶液を上記の還元剤溶液に一挙に添加して混合して、攪拌しながら還元反応を開始させた。この還元反応の開始から約10秒で反応液であるスラリーの色の変化が終了し、攪拌しながら10分間熟成させた後、攪拌を終了し、吸引濾過による固液分離を行い、得られた固形物を純水で洗浄し、40℃で12時間真空乾燥して、(ヘキサン酸で被覆された)銀ナノ粒子の乾燥粉末を得た。なお、この銀ナノ粒子中の銀の割合は、加熱によりヘキサン酸を除去した後の重量から、97質量%であることが算出された。また、この銀ナノ粒子の平均一次粒子径を透過型電子顕微鏡(TEM)により求めたところ、17nmであった。
[金属粒子]
 金属粒子として、走査型電子顕微鏡により測定した平均一次粒子径が800nmの銀粒子であるAG-3-60(DOWAハイテック株式会社製)を用意した。
[接合用金属ペーストの調製]
 下記表1に記載の金属成分及び非金属成分を表1に記載の配合割合(質量%)で混練して、実施例1~5及び比較例1~7の接合材を調製した。表1では、非金属成分を溶剤として記載している。
[接合強度及びボイドの評価用接合体の作製]
 上記で調製した実施例1~5及び比較例1~7の各接合材を10mm×10mm(厚さ1mm)の銅基板にメタルマスク(開口部2.5mm×2.5mm、厚さ70μm)で塗布した。銅基板上に形成された各接合材の塗膜上に、2mm×2mm(厚さ0.3mm)の、底面(被接合面)が正方形形状のSi素子を載置して、0.47Nの力を1秒かけた。これをN雰囲気中で、25℃から250℃まで3℃/分で昇温させ、250℃で60分間、焼成して銀接合層を形成し、接合体を得た。
[接合体のシェア強度の評価]
 SERIES4000(DAGE社製)を用い、図1に示すようにして、上記で得られた接合体のシェア強度を測定した。具体的には、接合体は、銅基板3と、その上に形成された銀接合層2と、その上に形成され銀接合層2により銅基板3と接合しているSi素子1とからなる。このSi素子1の側面から、シェアツール4で5mm/minに設定して銅基板3の水平方向に力をかけ、破断したときの力をSi素子1の底面の面積で割って、接合体のシェア強度を求めた。なお、銅基板3から高さ50μmの位置に、シェアツール4の下端が当たるようにして上記試験を行った。
[ボイド評価]
 各接合体のSi素子-銀接合層-銅基板の接合部を、マイクロフォーカスX線透視装置(SMX-16LT、島津製作所製)で、撮影した。得られた画像を画像処理ソフト(商品名:ペイントショップ)で2値化した。図2は、実施例3における接合用金属ペーストを用いて形成した接合部を、マイクロフォーカスX線透過装置で撮影した結果である。図3は、比較例4における接合用金属ペーストを用いて形成した接合部を、マイクロフォーカスX線透過装置で撮影した結果である。その後、ボイド率を決定した。得られた粒子のシェア強度およびボイド率は表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
<接合用金属ペースト(実施例6及び比較例8)の調製>
(金属ナノ粒子の調製)
 5Lの反応槽に水3400gを入れ、この反応槽の下部に設けたノズルから3000m
L/分の流量で窒素を反応槽内の水中に600秒間流して溶存酸素を除去した後、反応槽の上部から3000mL/分の流量で窒素を反応槽中に供給して反応槽内を窒素雰囲気にするとともに、反応槽内に設けた撹拌羽根付き撹拌棒により撹拌しながら、反応槽内の水の温度が60℃になるように調整した。この反応槽内の水に28重量%のアンモニアを含むアンモニア水7gを添加した後、1分間撹拌して均一な溶液にした。この反応槽内の溶液に有機化合物として飽和脂肪酸であるヘキサン酸(和光純薬工業株式会社製)45.5g(銀に対するモル比は1.98)を添加して4分間撹拌して溶解した後、還元剤として50重量%のヒドラジン水和物(大塚化学株式会社製)23.9g(銀に対して4.82当量)を添加して、還元剤溶液とした。
 また、硝酸銀の結晶(和光純薬工業株式会社製)33.8gを水180gに溶解した硝
酸銀水溶液を銀塩水溶液として用意し、この銀塩水溶液の温度が60℃になるように調整し、この銀塩水溶液に硝酸銅三水和物(和光純薬工業株式会社製)0.00008g(銀に対して銅換算で1ppm)を添加した。なお、硝酸銅三水和物の添加は、ある程度高濃度の硝酸銅三水和物の水溶液を希釈した水溶液を狙いの銅の添加量になるように添加することによって行った。
 次に、上記の銀塩水溶液を上記の還元剤溶液に一挙に添加して混合して、攪拌しながら
還元反応を開始させた。この還元反応の開始から約10秒で反応液であるスラリーの色の変化が終了し、攪拌しながら10分間熟成させた後、攪拌を終了し、吸引濾過による固液分離を行い、得られた固形物を純水で洗浄し、40℃で12時間真空乾燥して、(ヘキサン酸で被覆された)銀微粒子の乾燥粉末を得た。なお、この銀微粒子中の銀の割合は、加熱によりヘキサン酸を除去した後の重量から、97重量%であることが算出された。また、この銀微粒子の平均一次粒子径を透過型電子顕微鏡(TEM)により求めたところ、17nmであった。
[金属粒子]
 金属粒子として、走査型電子顕微鏡写真(SEM像)により求めた平均一次粒子径が800nmの銀粒子であるAG-3-60(DOWAハイテック株式会社製)を用意した。また比較として、走査型電子顕微鏡写真(SEM像)により求めた平均一次粒子径が300nmであるAG-2-1C(DOWAハイテック株式会社製)を用意した。
[接合用金属ペーストの調製]
 下記表1に記載の銀粒子及び溶剤、並びにその他の成分を表1に記載の配合割合(質量
%)で混練して、実施例1及び比較例1の接合材を調製した。
[金属粒子の熱機械分析]
 銀微粒子及びAG-3-60を、表1の実施例1についてのこれらの銀粒子の配合割合と同じ質量割合(20:72=21.7:78.3)で、合計100g計量した。また銀微粒子及びAG-2-1Cを、表1の比較例1についてのこれらの銀粒子の配合割合と同じ質量割合(20:72=21.7:78.3)で、合計100g計量した。
 それぞれについて、計量後、へらで撹拌し、混練脱泡機で30秒撹拌した。混練脱泡機の容器の公転速度は1400rpm、自転速度は700rpmとした。
 撹拌された銀粒子を、上端が解放された内径5mmの円筒型容器にそれぞれ0.5g入れ、2000Nの荷重を20秒かけてφ5mmで3.5~3.7mm厚の円柱状のサンプルを成形した。
 得られた各サンプルについて、以下の条件で熱機械分析を行った。
メーカー:SII(セイコーインスツルメンツ株式会社)
型番:TMA/SS6200
昇温速度:3℃/min
測定温度:30~700℃
測定荷重:700mN(プローブ面積:φ3mmなので0.1MPa相当)
測定雰囲気:窒素を熱機械分析装置内に200mL/minの流量で流した。
[評価用接合体の作製]
 上記で調製した実施例1及び比較例1の各接合材を30mm×30mm(厚さ1mm)の銅基板にメタルマスク(開口部13.5mm×13.5mm、厚さ150μm)で塗布した。銅基板上に形成された各接合材の塗膜上に、13mm×13mm(厚さ0.3mm)の、底面が正方形形状のSi素子を載置した。これをN雰囲気中で25℃から250℃まで3℃/分で昇温させ、当該温度で60分間、無加圧で焼成して銀接合層を形成し、接合体を得た。
<ボイド評価>
 各接合体のSi素子-銀接合層-銅基板の接合部を、超音波顕微鏡(C-SAMD-9500、sonoscan社製)で、プローブ(トランスデューサー)として50MHzのものを用いてSi素子側から撮影した。得られた画像を画像処理ソフト(商品名:ペイントショップ)で2値化した後、Si素子の銀接合層と接触する面における、その輪郭を構成する辺からの距離が接触面の中心から前記辺までの距離の20%以内の領域A、すなわちSi素子の各辺から1.3mm以内の領域における、前記銀接合層との間にボイドが生じている面積割合を求めた。黒い部位はボイドなしと判断し、白い部位はボイドありと判断した。
 実施例6の接合材を用いた場合の領域Aにおけるボイド率は8.1%であり、比較例1の接合材を用いた場合の領域Aにおけるボイド率は45.2%であった。
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1.  一次粒子径の個数平均値が10~100nmである金属ナノ粒子(A)を含む接合用金属ペーストであって、ペーストを窒素雰囲気中3℃/分の昇温速度で40℃から700℃まで昇温したときにおける、減量値の累積値(L700)を100としたとき、40℃から100℃まで昇温したときにおける減量値の累積値(L100)が75以下であり、40℃から150℃まで昇温したときにおける減量値の累積値(L150)が90以上であって、40℃から200℃まで昇温したときにおける減量値の累積値(L200)が98以上である、接合用金属ペースト。
  2.  40℃から200℃まで昇温したときにおける減量値の累積値(L200)が99.9以下の請求項1に記載の接合用金属ペースト。
  3.  金属ナノ粒子(A)を含んだ金属粒子、溶剤、分散剤などの添加剤を含む接合用金属ペースト全量を100質量%としたとき、焼成温度Tb(℃)としたとき、沸点もしくは分解温度がTb-50(℃)以上Tb+50(℃)以下である溶剤が、5質量%以上10質量%以下である、請求項1または2に記載の接合用金属ペースト。
  4.  金属ナノ粒子(A)を含んだ金属粒子、溶剤、分散剤などの添加剤を含む接合用金属ペースト全量を100質量%としたとき、焼成温度Tb(℃)としたとき、沸点もしくは分解温度が焼成温度Tb+50(℃)よりも高い成分を1.5質量%以下含有する、請求項1ないし3のいずれかに記載の接合用金属ペースト。
  5.  一次粒子径の個数平均値が10~100nmである金属ナノ粒子(A)を含んだ金属粒子を含む接合用金属ペーストであって、当該ペーストに含まれる金属粒子は窒素雰囲気中0.1MPaで加圧しながら、3℃/分の昇温速度で30℃から250℃まで昇温しながら行う熱機械分析において計測される収縮率が1.5%以下である、接合用金属ペースト。
  6.  金属粒子の30℃から200℃まで昇温しながら行う熱機械分析において計測される収縮率が0.5%以下である、請求項5に記載の接合用金属ペースト。
  7.  金属粒子の30℃から175℃まで昇温しながら行う熱機械分析において計測される収縮率が0.3%以下である、請求項5または6に記載の接合用金属ペースト。
  8.  レーザー回折型粒度分布装置により計測される体積換算の平均粒子径(D50)1.0~5.0μmの金属粒子(B)を含む、請求項1ないし7のいずれかに記載の接合用金属ペースト。
  9.  金属ナノ粒子(A)と金属粒子(B)の重量混合比は(A)/(B)で0.25以下である、請求項8に記載の接合用金属ペースト。
  10.  2つの被接合部材の接合方法であって、被接合部材に請求項1ないし9のいずれかに記載された接合用金属ペーストを塗布する工程、該塗膜上に他方の前記ペーストの塗布された被接合物をもう一方の被接合部材に戴置する工程、戴置後に200~350℃の焼結温度まで昇温し、焼結温度で2時間未満保持して、金属接合層を形成する工程を備えた接合方法。
  11.  接合用金属ペーストを塗布した後に、50~150℃の温度で乾燥する工程を備えた請求項10に記載の接合方法。
  12.  焼結温度までの室温からの昇温速度が毎分1.5~10℃である、請求項10または11に記載の接合方法。
  13.  接合用金属ペーストを塗布する面積(接合面積)が9mm以上である、請求項10ないし12のいずれかに記載の接合方法。
PCT/JP2020/037105 2020-09-30 2020-09-30 接合用金属ペースト及び接合方法 WO2022070294A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112020007642.3T DE112020007642T5 (de) 2020-09-30 2020-09-30 Metallpaste zum verbinden und verbindungsverfahren
JP2020571890A JP6845385B1 (ja) 2020-09-30 2020-09-30 接合用金属ペースト及び接合方法
PCT/JP2020/037105 WO2022070294A1 (ja) 2020-09-30 2020-09-30 接合用金属ペースト及び接合方法
CN202080105648.9A CN116325096A (zh) 2020-09-30 2020-09-30 接合用金属糊剂和接合方法
US18/024,840 US20230311249A1 (en) 2020-09-30 2020-09-30 Metal paste for bonding and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037105 WO2022070294A1 (ja) 2020-09-30 2020-09-30 接合用金属ペースト及び接合方法

Publications (1)

Publication Number Publication Date
WO2022070294A1 true WO2022070294A1 (ja) 2022-04-07

Family

ID=74860728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037105 WO2022070294A1 (ja) 2020-09-30 2020-09-30 接合用金属ペースト及び接合方法

Country Status (5)

Country Link
US (1) US20230311249A1 (ja)
JP (1) JP6845385B1 (ja)
CN (1) CN116325096A (ja)
DE (1) DE112020007642T5 (ja)
WO (1) WO2022070294A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053449A (ja) * 2008-08-27 2010-03-11 Wc Heraeus Gmbh 無圧力の低温焼結プロセス用の金属ペーストの多孔度の制御
JP5976684B2 (ja) * 2012-01-20 2016-08-24 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070775A (ja) * 2008-09-16 2010-04-02 Mitsubishi Materials Corp Snを含有する粉末の製造方法及びSnを含有する粉末並びに該Snを含有する粉末を用いたはんだ用ペースト
JP5661273B2 (ja) * 2008-11-26 2015-01-28 三ツ星ベルト株式会社 金属コロイド粒子及びそのペースト並びにその製造方法
JP5824201B2 (ja) * 2009-09-11 2015-11-25 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6118192B2 (ja) 2013-06-21 2017-04-19 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6373066B2 (ja) 2014-05-30 2018-08-15 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6422289B2 (ja) * 2014-09-30 2018-11-14 日鉄ケミカル&マテリアル株式会社 ニッケル粒子組成物、接合材及び接合方法
JP6988831B2 (ja) * 2017-01-11 2022-01-05 昭和電工マテリアルズ株式会社 無加圧接合用銅ペースト、接合体、及び半導体装置
JP6782416B2 (ja) * 2017-03-15 2020-11-11 昭和電工マテリアルズ株式会社 接合用銅ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP6566177B1 (ja) * 2018-03-01 2019-08-28 住友ベークライト株式会社 ペースト状接着剤組成物及び半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053449A (ja) * 2008-08-27 2010-03-11 Wc Heraeus Gmbh 無圧力の低温焼結プロセス用の金属ペーストの多孔度の制御
JP5976684B2 (ja) * 2012-01-20 2016-08-24 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法

Also Published As

Publication number Publication date
JP6845385B1 (ja) 2021-03-17
US20230311249A1 (en) 2023-10-05
CN116325096A (zh) 2023-06-23
JPWO2022070294A1 (ja) 2022-04-07
DE112020007642T5 (de) 2023-07-13

Similar Documents

Publication Publication Date Title
JP4928639B2 (ja) 接合材およびそれを用いた接合方法
JP6214600B2 (ja) 接合材料および接合体
EP2581156A1 (en) Low-temperature-sinterable bonding material, and bonding method using the bonding material
EP2990142B1 (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
TW201830411A (zh) 接合材料及使用其之接合方法
WO2016152214A1 (ja) 銅粉及びそれを含む導電性組成物
JP7210842B2 (ja) 接合体の製造方法、焼結銅ピラー形成用銅ペースト、及び接合用ピラー付部材
KR20210068468A (ko) 접합 재료용 입자 및 그 제조 방법, 접합용 페이스트 및 그 조제 방법, 그리고 접합체의 제조 방법
WO2022070294A1 (ja) 接合用金属ペースト及び接合方法
JP6831416B2 (ja) 接合材及び接合方法
JP6900150B2 (ja) 接合材およびそれを用いた接合方法
JP2021099906A (ja) 銀ペースト、及び、接合体の製造方法
KR102354209B1 (ko) 접합재 및 그것을 사용한 접합 방법
JP2020164894A (ja) 接合材、接合材の製造方法、接合方法、半導体装置
CN110582362A (zh) 接合材料及使用该接合材料的接合体
JP6677231B2 (ja) 電子部品の接合方法および接合体の製造方法
JP6831417B2 (ja) 接合用金属ペースト及びそれを用いた接合方法
JP2022049054A (ja) 導電体作製方法、金属ペースト及び導電体
WO2021060126A1 (ja) 接合材、接合材の製造方法、接合方法及び半導体装置
JP2016093830A (ja) 無残渣型継手形成用Agナノペースト
EP4306234A1 (en) Sintering paste and method for producing a sintering paste
JP2022003161A (ja) 接合材、接合材の製造方法及び接合方法
JP2021138991A (ja) 接合材、接合材の製造方法及び接合方法
JP2021102808A (ja) 接合材、及び物品
JP2021188071A (ja) 接合材、接合材の製造方法及び接合方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571890

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956222

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20956222

Country of ref document: EP

Kind code of ref document: A1