WO2022067823A1 - 一种上行功率控制方法及设备 - Google Patents

一种上行功率控制方法及设备 Download PDF

Info

Publication number
WO2022067823A1
WO2022067823A1 PCT/CN2020/119756 CN2020119756W WO2022067823A1 WO 2022067823 A1 WO2022067823 A1 WO 2022067823A1 CN 2020119756 W CN2020119756 W CN 2020119756W WO 2022067823 A1 WO2022067823 A1 WO 2022067823A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
power
terminal device
uplink
power parameter
Prior art date
Application number
PCT/CN2020/119756
Other languages
English (en)
French (fr)
Inventor
胡丹
张旭
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080105657.8A priority Critical patent/CN116235566A/zh
Priority to PCT/CN2020/119756 priority patent/WO2022067823A1/zh
Publication of WO2022067823A1 publication Critical patent/WO2022067823A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the embodiments of the present application relate to the technical field of electronic devices, and in particular, to an uplink power control method and device.
  • the method of uplink power control can be divided into two modes: closed-loop power control and power control.
  • Closed-loop power control means that a user terminal (User Equipment, UE) decides to increase or decrease the transmit signal power based on the link quality fed back by the base station.
  • the power control means that the UE decides the power of the transmitted signal by itself according to the fading condition of the received signal.
  • Uplink channels include Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel (PUSCH), Physical Random Access Channel (PRACH), and uplink signals include Sounding Reference Signal ( Sounding Reference Signal, SRS), etc.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • uplink signals include Sounding Reference Signal ( Sounding Reference Signal, SRS), etc.
  • SRS Sounding Reference Signal
  • the UE can determine the path loss to be compensated by using the path loss compensation factor ⁇ and the estimated value of the downlink path loss between the base station and the UE, and then It enables the UE to increase the transmit power, thereby ensuring the reliability of the base station's reception.
  • the transmission power of the terminal device determined according to the single-station measurement may cause serious interference between users.
  • the embodiments of the present application provide an uplink power control method, which can control the uplink transmit power of a terminal device and reduce interference to other terminal devices.
  • an embodiment of the present application provides a method for uplink power control.
  • the terminal device acquires the first power parameter, and determines the first transmit power according to the first power parameter, where the first power parameter includes at least one of the following: a power offset, and a path loss compensation factor. Afterwards, the terminal device may send the first uplink transmission using the first transmit power.
  • the terminal device after acquiring the first power parameters (power offset and path loss compensation factor), the terminal device can determine the first transmit power according to the power offset and the path loss compensation factor, so as to ensure that the first transmit power is not would be too large. Therefore, in the technical solution of the present application, when the terminal device uses the first transmit power to send the first uplink transmission, interference to other terminal devices is reduced.
  • the above-mentioned method for "the terminal device can acquire the first power parameter" includes: the terminal device can receive first indication information, where the first indication information is used to indicate the first power parameter .
  • the terminal device can acquire the first power parameter according to the first indication information.
  • the method further includes: the terminal device may acquire first information, where the first information is used to indicate a mapping relationship between the first indication information and the second power parameter. Afterwards, the terminal device may acquire the medium access control unit, where the medium access control unit is used to indicate the mapping relationship between the first indication information and the first power parameter.
  • the terminal device since the first information is used to indicate the mapping relationship between the first indication information and the second power parameter. Therefore, after the terminal device acquires the first information, what the terminal device stores is the mapping relationship between the first indication information and the second power parameter. Also, because the medium access control unit is used to indicate the mapping relationship between the first indication information and the first power parameter. Therefore, after the terminal device acquires the medium access control unit, what is stored in the terminal device is the mapping relationship between the first indication information and the first power parameter. In this way, when the terminal device acquires the first indication information, it can acquire the first power parameter according to the first indication information.
  • the method further includes: the terminal device may acquire second information, where the second information is used to enable the terminal device to update the power parameter.
  • acquiring the second information by the terminal device enables the terminal device to update the power parameter. That is, when the second power parameter is stored in the terminal device, the terminal device obtains the second information to enable the terminal device to update the second power parameter to the first power parameter. In this way, after the terminal acquires the medium access control unit, the terminal device can update the correspondence between the first indication information and the power parameter.
  • the method further includes: the terminal device sends the second uplink transmission and/or the third uplink transmission.
  • the method further includes: the terminal device may acquire the first path loss reference signal and the second path loss reference signal.
  • the second uplink transmission includes a first power headroom report determined from the first pathloss reference signal
  • the third uplink transmission includes a second power headroom report determined from the second pathloss reference signal.
  • an embodiment of the present application provides a method for uplink power control.
  • the network device may send the first power parameter to the terminal device, where the first power parameter includes at least one of the following: a power offset, and a path loss compensation factor. After that, the network device receives the first uplink transmission, and the transmit power of the first uplink transmission is determined according to the first power parameter.
  • the above method of "the network device can send the first power parameter to the terminal device” includes: the network device can send the first indication information to the terminal device, and the first indication information is used for A first power parameter is indicated.
  • the method further includes: the network device may send first information to the terminal device, where the first information is used to indicate the difference between the first indication information and the second power parameter Mapping relations. After that, the network device sends a media access control unit to the terminal device, where the media access control unit is used to indicate the mapping relationship between the first indication information and the first power parameter.
  • the method further includes: the network device sends second information, where the second information is used to enable the terminal device to update the power parameter.
  • the method further includes: the network device receives the second uplink transmission, and obtains one or more measurement values of the second uplink transmission;
  • the network device determines the first power parameter according to one or more measurement values of the second uplink transmission.
  • the network device when the network device receives the second uplink transmission sent by the terminal device, it can obtain the measurement value of the second uplink transmission (for example, the first measurement value A). At the same time, after the second uplink transmission sent by the terminal device is received by other network devices, other network devices can also obtain the measurement value of the second uplink transmission (for example, the first measurement value B), and send the second uplink transmission to the network device. 2. Measured value of upstream transmission. In this way, the network device can obtain the first measurement value A and the first measurement value B.
  • the first measurement value A is the same as the first measurement value B, or the first measurement value A and the first measurement value B are different.
  • the method further includes: the network device may acquire the measurement value of the second uplink transmission and the measurement value of the third uplink transmission, and according to the measurement value of the second uplink transmission and the measurement value of the third uplink transmission The measured value of the third uplink transmission determines the first power parameter; or, the network device acquires the transmit power of the second uplink transmission and the transmit power of the third uplink transmission, and according to the transmit power of the second uplink transmission and the transmit power of the third uplink transmission transmit power to determine the first power parameter; or, the network device obtains the first uplink path loss corresponding to the second uplink transmission and the second uplink path loss corresponding to the third uplink transmission, and determines the first uplink path loss according to the first uplink path loss and the second uplink path loss. loss, and determine the first power parameter.
  • the network device can determine the first power parameter by using different uplink transmission measurement values.
  • the measured value of the uplink transmission is the received power of the uplink shared channel; or, the measured value of the uplink transmission is the received power of the demodulation reference signal.
  • the method further includes: the network device may send the first path loss reference signal and the second path loss reference signal.
  • a terminal device in a third aspect, includes: an acquisition unit, a determination unit, and a transmission unit.
  • the obtaining unit is configured to obtain a first power parameter, where the first power parameter includes at least one of the following: a power offset, and a path loss compensation factor.
  • the determining unit determines the first transmit power according to the first power parameter.
  • a sending unit configured to send the first uplink transmission by using the first transmit power.
  • the obtaining unit is specifically configured to receive first indication information, where the first indication information is used to indicate the first power parameter; obtain the first information, where the first information is used to indicate The mapping relationship between the first indication information and the second power parameter; the medium access control unit is obtained, and the medium access control unit is used to indicate the mapping relationship between the first indication information and the first power parameter.
  • the obtaining unit is further configured to obtain second information, where the second information is used to enable the terminal device to update the power parameter.
  • the sending unit is further configured to send the second uplink transmission and/or the third uplink transmission.
  • the obtaining unit is further configured to obtain the first path loss reference signal and the second path loss reference signal; wherein, the second uplink transmission includes according to the first path loss reference signal The determined first power headroom report, and the third uplink transmission includes the second power headroom report determined according to the second path loss reference signal.
  • the terminal device may further include a storage unit, where the storage unit stores programs or instructions.
  • the processing unit executes the program or instruction
  • the terminal device described in the third aspect can execute the uplink power control method described in the first aspect.
  • a network device in a fourth aspect, includes a sending unit and a receiving unit.
  • the sending unit is configured to send a first power parameter to the terminal device, where the first power parameter includes at least one of the following: a power offset, and a path loss compensation factor.
  • the receiving unit is configured to receive the first uplink transmission, and the transmit power of the first uplink transmission is determined according to the first power parameter.
  • the sending unit is specifically configured to send first indication information to the terminal device, where the first indication information is used to indicate the first power parameter; and send the first information to the terminal device, The first information is used to indicate the mapping relationship between the first indication information and the second power parameter; the medium access control unit is sent to the terminal device, and the medium access control unit is used to indicate the relationship between the first indication information and the first power parameter mapping relationship.
  • the sending unit is further configured to send second information, where the second information is used to enable the terminal device to update the power parameter.
  • the above-mentioned network device further includes a determination unit.
  • the receiving unit is further configured to receive the second uplink transmission and obtain one or more measurement values of the second uplink transmission.
  • a determining unit configured to determine the first power parameter according to one or more measurement values of the second uplink transmission.
  • the receiving unit is further configured to acquire the measurement value of the second uplink transmission and the measurement value of the third uplink transmission.
  • the determining unit is further configured to determine the first power parameter according to the measurement value of the second uplink transmission and the measurement value of the third uplink transmission.
  • the receiving unit is further configured to acquire the transmit power of the second uplink transmission and the transmit power of the third uplink transmission.
  • the determining unit is further configured to determine the first power parameter according to the transmit power of the second uplink transmission and the transmit power of the third uplink transmission.
  • the receiving unit is further configured to acquire the first uplink path loss corresponding to the second uplink transmission and the second uplink path loss corresponding to the third uplink transmission.
  • the determining unit is further configured to determine the first power parameter according to the first uplink path loss and the second uplink path loss.
  • the measured value of the uplink transmission is the received power of the uplink shared channel; or, the measured value of the uplink transmission is the received power of the demodulation reference signal.
  • the sending unit is further configured to send the first path loss reference signal and the second path loss reference signal.
  • the network device may further include a storage unit, where the storage unit stores programs or instructions.
  • the processing unit executes the program or instruction
  • the terminal device described in the fourth aspect can execute the uplink power control method described in the first aspect.
  • an apparatus for controlling uplink power includes: a processor coupled with a memory, the memory is used for storing a computer program; the processor is used for executing the computer program stored in the memory, so that the upstream power control apparatus executes the first aspect or the second
  • the uplink power control method described in any one possible implementation manner in the aspect is provided.
  • the uplink power control apparatus described in the sixth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an input/output port.
  • the transceiver may be used for the uplink power control device to communicate with other uplink power control devices.
  • the uplink power control apparatus described in the fifth aspect may be a terminal device or a network device, or a chip (system) or other components or components provided inside the terminal device or the network device.
  • a computer-readable storage medium comprising: a computer program or instruction; when the computer program or instruction is run on a computer, the computer is made to execute any possible implementation of the first aspect or the second aspect The uplink power control method described in the method.
  • a computer program product comprising a computer program or instructions, when the computer program or instructions are run on a computer, the computer is made to execute any one of the possible implementations described in the first aspect or the second aspect. the uplink power control method.
  • FIG. 1 is a schematic diagram of uplink power control for single-cell measurement according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an uplink power control method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another uplink power control method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another uplink power control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another uplink power control method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram 1 of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram 1 of a network device according to an embodiment of the present application.
  • FIG. 11 is a second schematic structural diagram of a network device according to an embodiment of the present application.
  • A/B generally indicates that the related objects before and after are an “or” relationship.
  • A/B can be understood as A or B.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of this embodiment, unless otherwise specified, "plurality" means two or more.
  • references to the terms “comprising” and “having” in the description of this application, and any variations thereof, are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or modules is not limited to the listed steps or modules, but may optionally also include other unlisted steps or modules, or optionally also Other steps or modules inherent to these processes, methods, products or devices are included.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiment or design described in this application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary” or “such as” is intended to present concepts in a specific manner.
  • transmission reception point (transmission reception point, TRP) 1 provides services for UE1 and UE3
  • TRP2 provides services for UE2.
  • the UE uses the power parameter set number j (j is an integer greater than or equal to 0) to transmit the PUSCH on the uplink active part bandwidth (Bandwidth part) b of the carrier f of the serving cell (serving cell) c, and the power control adjustment state index value is 1
  • determining the transmit power P PUSCH,b,f,c (i,j,q d ,l) of the PUSCH at the transmission opportunity i can satisfy Formula 1.
  • P CMAX,f,c (i) is the maximum output power configured on the PUSCH transmission opportunity i on the carrier f of the serving cell c
  • P O_PUSCH,b,f,c (j) is the target power expected to be received by the serving cell value
  • is the value corresponding to the Subcarrier Size (SCS) configuration
  • ⁇ b,f,c (j) is the path loss compensation factor
  • PL b,f,c (q d ) is the estimated value of the downlink path loss
  • ⁇ TF,b,f,c (i) is the modulation and coding strategy (Modulation and Coding Scheme, MCS) related information
  • f b, f, c (i, l) is the PUSCH power control adjustment state on the PUSCH transmission opportunity i
  • PCMAX,f,c (i) is related to factors such as the transmission capability of the UE, the frequency domain resource allocation of the PUSCH, and the like.
  • P0 UE-specific part
  • P0 and ⁇ b, f, c (j) are power parameters.
  • the base station may configure multiple power parameter sets for the UE, and the power parameter sets include: power control set ID, P0, and ⁇ b,f,c (j).
  • the UE can acquire the power control parameters in the following two ways.
  • the UE can determine the power parameter set number j used for the current PUSCH transmission according to the current transmission mode and the value indicated by the Sounding Reference Signal Indication (SRI) field, and then determine the difference between P0 and ⁇ according to the power parameter set number j. value.
  • the base station configures multiple sets of power parameters for the UE, and configures the corresponding rules of power parameters and SRI for the UE, as well as the mapping relationship between the value of the SRI field and the set of power parameters, and the DCI for scheduling the PUSCH includes the SRI field
  • the UE may determine the power parameter set used by the UE to send the PUSCH according to the above mapping relationship and the value of the SRI field.
  • one SRI code bit corresponds to one power parameter set.
  • the SRI field configured by the base station for the UE is 2 bits, the SRI has four values of 00/01/10/11, and each value corresponds to a power parameter set (ID, P0, ⁇ ).
  • PL b,f,c (q d ) is an estimated downlink path loss calculated by the UE according to the path loss reference signal q d , and the estimated downlink path loss can be used as a path loss compensation value for uplink power control.
  • the downlink path loss estimate can be determined in the following three ways.
  • Mode 1 If the UE is not equipped with a PUSCH pathloss reference signal (PUSCH-pathlossReferenceRS), or before the UE configures the dedicated parameters, the UE uses a synchronization signal block (SSB) to calculate the estimated downlink path loss, and the SSB is used to obtain the estimated value of the downlink path loss.
  • PUSCH-pathlossReferenceRS PUSCH-pathlossReferenceRS
  • MIB Master information block
  • the UE uses the same path loss reference signal index value as the relevant PRACH transmission to calculate the downlink path loss estimate value.
  • RAR random access response
  • the RRC configuration information of the path loss reference signal includes: path loss reference signal ID and associated reference signal ID).
  • the base station can configure the association between multiple path loss reference signals and the SRI field for the UE, and the UE determines the reference signal corresponding to the value indicated by the SRI field according to the value indicated by the SRI field to determine the estimated value of the downlink path loss of the current PUSCH .
  • the estimated value of the downlink path loss can satisfy the following formula 2.
  • referenceSignalPower is the transmit power of the downlink reference signal configured by the high layer signaling
  • higher layer filtered RSRP0 is the received power of the reference signal after the high layer filtering received by the UE.
  • ReferenceSignalPower can be obtained in the following ways.
  • the ReferenceSignalPower can be configured through the synchronous broadcast signal block power ss-PBCH-BlockPower.
  • the referenceSignalPower can be configured through ss-PBCH-BlockPower and powerControlOffsetSS.
  • the powerControlOffsetSS is the difference between the transmission power of the CSI-RS and the transmission power of the SSB.
  • powerControlOffsetSS 0 if the UE is not configured with powerControlOffsetSS.
  • ⁇ TF ,b,f,c (i) The type of information that can be carried by PUSCH (for example, carrying uplink shared channel (UL-SCH) data information, or channel state information (Channel State Information, CSI) data information, etc. ), the location and quantity of physical resources occupied and other factors.
  • PUSCH for example, carrying uplink shared channel (UL-SCH) data information, or channel state information (Channel State Information, CSI) data information, etc.
  • f b, f, c (i, l) is notified by the base station through DCI signaling, which enables the base station to adjust the PUSCH transmit power in real time according to the current transmission channel state and scheduling situation.
  • UL CoMP refers to geographically separated multiple transmission points that jointly receive and combine data sent by one terminal (eg, PUSCH).
  • the multiple transmission points participating in the cooperation usually refer to the base stations of different cells.
  • the CoMP technology enables multiple cells to serve cell-edge UEs at the same time, so as to improve the coverage performance of edge UEs, thereby improving the spectral efficiency of cell-edge users.
  • FIG. 2 it is a schematic diagram of uplink multi-point coordinated transmission.
  • TRP1 provides services for UE1 and UE3
  • TRP2 provides services for UE2 and UE3, that is, TRP1 and TRP2 provide services for UE3 at the same time.
  • the power headroom refers to the difference between the maximum uplink transmit power of the UE and the current PUSCH transmit power. That is, the transmission power that the UE can use in addition to the transmission power used by the current PUSCH transmission.
  • the power headroom can be determined by the following two methods.
  • Method 1 The power headroom is determined based on the PUSCH, and the power headroom can satisfy the following formula 3.
  • PH type, b, f, c (i, j, q d , l) is the power headroom, and other parameters can be described in the parameters of formula 1, which will not be repeated here.
  • Method 2 The power headroom is determined based on SRS transmission.
  • the power headroom is a positive number, it means that the UE can transmit more data under the maximum power. If the power headroom is negative, it means that the UE's uplink transmission has exceeded the maximum allowable transmission power. That is to say, the power headroom can affect the scheduling of the base station, or the power headroom report can be used as a reference for the base station to allocate uplink RB resources.
  • a power headroom report can be triggered when any of the following five conditions are met.
  • Condition 1 The PHR disable timer (phr-ProhibitTimer) has expired or has expired, and the path loss change exceeds the PHR transmission power factor variable (phr-Tx-PowerFactorChange).
  • the path loss is any MAC used as a path loss reference since the last time the PHR was transmitted in the MAC entity when the media access control layer (Media access control, MAC) entity has uplink resources for new transmission. Pathloss of at least one active serving cell of the entity.
  • Condition 2 The PHR periodic timer (phr-PeriodicTimer) expires.
  • Condition 4 Activate the MAC entity of any configured uplink secondary cell (Secondary Cell, SCell).
  • Condition 5 Increase PSCell (Primary Secondary Cell, primary and secondary cells).
  • the transmission power of the terminal device determined according to the single-station measurement may cause serious interference between users.
  • the embodiment of the present application provides an uplink power control method.
  • FIG. 3 is a schematic structural diagram of a communication system to which the uplink power control method provided by the embodiment of the present application is applied.
  • the communication system includes network equipment and terminal equipment.
  • the network device includes a core network device 310 , a radio access network device 320 , and a radio access network device 330
  • the terminal device includes a user terminal 340 .
  • the radio access network device 320 and the radio access network device 330 may jointly provide services for the user terminal 340 .
  • the terminal equipment is connected with the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and has a function of wireless transmission and reception, or a chip or a chip system that can be provided in the device.
  • the network devices include but are not limited to: access points (APs) in wireless fidelity (WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., evolved Node B (evolved Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP) etc., it can also be 5G, such as a gNB in a new radio (NR) system, or a transmission point (TRP or TP), one
  • the core network device 310 and the radio access network device 320 may be independent and different physical devices, or the functions of the core network device 310 and the logical functions of the radio access network device 320 may be integrated in the same physical device.
  • the device may also be a physical device that integrates some functions of the core network device 310 and some functions of the radio access network device 320 .
  • the above-mentioned terminal equipment is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or a chip system that can be provided in the terminal.
  • the terminal equipment may also be referred to as user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, in-vehicle terminals, RSUs with terminal functions, etc.
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal Equipment
  • wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • transportation security Wireless terminals in (transportation safety) wireless terminals in smart cities, wireless terminals in smart homes, in-vehicle terminals, RSUs with terminal functions, etc.
  • the terminal device of the present application may also be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units, and the vehicle passes the built-in on-board module, on-board module,
  • the on-board component, on-board chip or on-board unit can implement the uplink power control method provided in this application.
  • FIG. 3 is only a simplified schematic diagram for easy understanding, and the communication system may further include other network devices and/or other terminal devices, which are not shown in FIG. 3 .
  • the uplink power control method provided by the embodiment of the present application will be described in detail below with reference to FIG. 4 to FIG. 7 .
  • FIG. 4 is a schematic flowchart of an uplink power control method provided by an embodiment of the present application.
  • the uplink power control method may include S401-S404.
  • the UE acquires a first power parameter.
  • the first power parameter includes at least one of the following: power offset P0, path loss compensation factor ⁇ .
  • the name of the first power parameter is also the power parameter, which is not limited in the embodiment of the present application.
  • the network device sends the first power parameter to the UE.
  • the UE receives the first power parameter sent by the network device.
  • the network device sends first indication information to the UE, where the first indication information is used to indicate the first power parameter.
  • the UE receives the first indication information to obtain the first power parameter.
  • the first indication information has the following two implementation manners.
  • the first indication information is a field in the DCI, and the DCI is used to schedule PUSCH transmission.
  • a field in the DCI may be an SRI field, or may be other fields in the DCI, which are not limited in this embodiment of the present application.
  • the embodiments of the present application are described below by taking the field in the DCI as an SRI field as an example.
  • the network device sends the correspondence between one value of the first indication information and at least two power parameters to the UE.
  • the first indication information includes: the power parameter, and the mapping relationship between the value of the SRI field and the power parameter; or, the mapping relationship between the value of the SRI field and the power parameter index; or, the value of the SRI field and The mapping relationship of the power parameter set index.
  • the set of power parameters includes the first power parameter.
  • the network device sends the correspondence between a value of the first indication information and a power parameter to the UE, and the network device uses the media access control unit to update the correspondence between the value of the first indication information and the power parameter, so that the UE Get the updated power parameters.
  • the network device before the network device sends the first power parameter to the UE, the network device sends the first information to the UE.
  • the first information is used to indicate the mapping relationship between the first indication information and the second power parameter, and the first information is a high layer parameter, or the first information is radio resource control RRC signaling.
  • the second power parameter includes at least one of the following: a power offset P0, and a path loss compensation factor.
  • the network device sends a media access control element (Media access control Control element, MAC CE) to the UE, where the MAC CE is used to indicate the mapping relationship between the first indication information and the first power parameter.
  • MAC CE Media access control Control element
  • the second power parameter is a power parameter in the case where the UE only accesses the primary serving cell.
  • the first power parameter is a power parameter when the UE simultaneously accesses the primary serving cell and the co-serving cell. Therefore, the first power parameter and the second power parameter are different.
  • the network device sends second information to the UE, where the second information is used to enable the UE to update the power parameter.
  • the network device sends second information to the UE, where the second information is used to enable the UE to update the power parameter.
  • the first indication information is CoMP configuration information for coordinated multi-point transmission.
  • the CoMP configuration information includes the first power parameter and reference signal information.
  • the first power parameter further includes a path loss reference signal.
  • the reference signal information includes at least one of the following information: sounding reference signal SRS time-frequency resources, SRS scrambling sequence, demodulation reference signal (Demodulation Reference Signal, DMRS) scrambling sequence and DMRS time-frequency resources.
  • the network device generates CoMP configuration information according to the first power parameter. After that, the network device sends the CoMP configuration information to the UE.
  • the first transmit power is determined by the first power parameter and the third power parameter. Therefore, in this embodiment of the present application, the network device further sends a third power parameter to the UE, where the third power parameter includes: PL b,f,c (q d ), ⁇ TF,b,f,c (i), f b,f,c (i,l), for the explanation of the third power parameter, please refer to the above formula 1 explanation, which will not be repeated here.
  • the network device when the network device sends the first power parameter to the UE, or before the network device sends the first power parameter to the UE, or after the network device sends the first power parameter to the UE, the network device sends the third power parameter to the UE , which is not limited in the embodiments of the present application.
  • the UE determines the first transmit power according to the first power parameter.
  • the UE receives first indication information from the network device, where the first indication information is used to indicate the first power parameter.
  • the UE acquires the first power parameter according to the first indication information. Afterwards, the UE determines the first transmit power according to the first power parameter.
  • the representation manner of the first indication information is the same as the representation manner of manner a in S501, that is, the first indication information is the SRI field.
  • the UE receives the SRI field from the network device, and obtains the first power parameter according to the corresponding relationship between the value indicated by the SRI field and the power parameter.
  • the UE when the first indication information is the SRI field, stores the mapping relationship between the value of the SRI field and the power parameter; or, the mapping relationship between the value of the SRI field and the power parameter index; or, The mapping relationship between the value of the SRI field and the index of the power parameter set.
  • the mapping relationship between the value of the SRI field and the power parameter stored in the UE; or, the mapping relationship between the value of the SRI field and the power parameter index; or, the mapping relationship between the value of the SRI field and the power parameter set index is It is configured by the RRC sent by the network device before the UE receives the first indication information from the network device.
  • the UE receives first information, where the first information is used to indicate a mapping relationship between the SRI and the second power parameter. That is, the UE stores the mapping relationship between the SRI and the second power parameter. Because the second power parameter is the power parameter in the case that the UE only accesses the primary serving cell. Therefore, when the first information is stored in the UE, it is indicated that the power parameter in the power parameter set stored in the UE is the second power parameter. That is, the UE may acquire the SRI field, and acquire the power parameter in the case where the UE only accesses the primary serving cell according to the value indicated by the SRI field.
  • the UE may acquire the SRI field, and determine the power parameter set and the second power parameter according to the SRI field. In this way, when the UE only accesses the primary serving cell, the second power parameter can be used to control the transmit power.
  • the UE receives the MAC CE sent by the network device, so that the updated first information is used to indicate the mapping relationship between the SRI and the first power parameter. That is, after the UE receives the MAC CE, the mapping relationship between the SRI field and the second power parameter stored in the UE is updated to the mapping relationship between the SRI field and the first power parameter.
  • P0 is a corresponding relationship of 6 decibel relative to one milliwatt (dBm).
  • the UE receives the MAC CE sent by the network device, and when the MAC CE is used to indicate that the value indicated by the SRI field is 00, P0 is 4dBm. That is to say, after the UE receives the MAC CE, when the UE stores the value indicated by the SRI field as 00, P0 is a corresponding relationship of 4dBm.
  • the UE when the UE accesses the primary serving cell and the co-serving cell at the same time, the UE obtains the SRI field, and can obtain the first power parameter according to the value indicated by the SRI field and the updated first information.
  • the first power parameter can be used to control the transmit power, so as to avoid using the second power parameter to control the transmit power, resulting in too high transmit power, which is harmful to other UEs. cause interference.
  • the UE acquires second information, where the second information is used to enable the UE to update the power parameter. That is to say, after the UE acquires the second information, the UE receives the MAC CE and causes the MAC to update the first information.
  • the actions performed by the UE include: (1) the UE receives the second information. (2) The UE receives the first information. (3) UE receives MAC CE. (4) The UE receives the first indication information. (5) The UE determines the first power parameter. The UE may execute (1) and/or (2) first (that is, the UE executes (1) first, and then executes (2); or the UE executes (2) first, and then executes (1); or the UE executes (1) at the same time. ) and (2)), and then execute (3), (4), (5) in sequence.
  • the representation manner of the first indication information is the same as the representation manner of manner b in S501, that is, the first indication information is CoMP configuration information.
  • the UE receives the CoMP configuration information from the network device, and obtains the first power parameter from the CoMP configuration information.
  • the first transmit power satisfies the following formula 4:
  • P PUSCH,b,f,c (i,j,q d ,l) is the transmission power (ie the first transmission power) of the PUSCH determined by the UE at the PUSCH transmission opportunity i
  • P O_CoMP,b,f,c ( j) (ie P0) is the target power value expected to be received by the serving cell
  • the UE sends the first uplink transmission by using the first transmit power.
  • the first transmit power determined by the technical solution of the present application is more accurate, that is, the first transmit power will not be too large. Therefore, the UE using the first transmit power to send the first uplink transmission will not cause interference to other UEs.
  • the network device receives the first uplink transmission.
  • the UE may determine the first transmit power according to the power offset and/or path loss compensation factor to ensure the first transmit power The power will not be too much. Therefore, in the technical solution of the present application, when the UE uses the first transmit power to send the first uplink transmission, the interference caused by other UEs is alleviated.
  • the network device includes a first network device and a second network device.
  • the embodiments of the present application will be described below by taking the first network device being TRP1 and the second network device being TRP2 as an example.
  • TRP1 is the network device of the primary serving cell of the UE
  • TRP2 is the network device of the cooperative serving cell of the UE.
  • the terminal before the network device sends the first power parameter to the UE, the terminal sends two uplink transmissions to the network device for implementing uplink power control on the UE. For example, taking the network devices as TRP1 and TRP2 as an example, the UE sends the second uplink transmission to TRP1, and the UE sends the third uplink transmission to TRP2.
  • the second uplink transmission is the same as the third uplink transmission, or the second uplink transmission is different from the third uplink transmission.
  • the uplink power control method may include S501-S508:
  • the UE sends the second uplink transmission to TRP1.
  • the second uplink transmission includes: SRS; or, the second uplink transmission is PUSCH; or, when the second uplink transmission is PUSCH, the PUSCH carries the first PHR, and the first power headroom report PHR includes the first maximum value reported by the UE transmit power.
  • the SRS includes: aperiodic SRS, semi-static SRS, and periodic SRS.
  • the UE sends the first PHR when sending the second uplink transmission to TRP1.
  • the fourth information includes: DCI, MAC CE, and radio resource control RRC signaling.
  • the UE receives third information sent by TRP1, where the third information is used to instruct the UE to send the second uplink transmission to TRP1. Afterwards, the UE sends a second uplink transmission to TRP1.
  • the UE sends the second uplink transmission to TRP1 without receiving the third information.
  • the second uplink transmission includes: periodic SRS and PUSCH.
  • the UE when sending the second uplink transmission to TRP1, the UE reports the transmit power of the second uplink transmission to TRP1.
  • the UE sends the third uplink transmission to TRP2.
  • the third uplink transmission further includes: SRS; or, the third uplink transmission is PUSCH; or, when the third uplink transmission is PUSCH, the PUSCH carries the second PHR, and the second PHR includes the maximum transmission power reported by the UE.
  • the SRS includes: aperiodic SRS, semi-static SRS, and periodic SRS.
  • the UE sends the second PHR only when the UE sends the third uplink transmission to the TRP2.
  • the second uplink transmission and the third uplink transmission may be the same or different, which is not limited in this embodiment of the present application.
  • both the second uplink transmission and the third uplink transmission are periodic SRS.
  • the second uplink transmission is periodic SRS
  • the third uplink transmission is PUSCH.
  • the UE receives the third information sent by TRP1, where the third information is further used to instruct the UE to send the third uplink transmission to TRP2. Afterwards, the UE sends a third uplink transmission to TRP2.
  • the UE sends the third uplink transmission to the TRP2 without receiving the third information.
  • the third uplink transmission includes: periodic SRS and PUSCH.
  • the UE when the UE sends the third uplink transmission to the TRP2, the UE reports the transmit power of the third uplink transmission to the TRP2.
  • TRP2 receives the third uplink transmission, and acquires the measurement value of the third uplink transmission.
  • the measured value is the uplink shared channel received power, or the reference signal received power (Reference Signal Received Power, RSRP). That is to say, TRP2 may acquire the uplink shared channel received power of the third uplink transmission, and may also acquire the second RSRP of the third uplink transmission.
  • RSRP Reference Signal Received Power
  • the RSRP is SRS-RSRP or DMRS-RSRP, which is not limited in this embodiment of the present application.
  • TRP2 acquires a second RSRP. After that, TRP2 sends a second RSRP to TRP1.
  • TRP2 acquires the transmit power of the third uplink transmission. After that, TRP2 sends the transmit power of the third uplink transmission to TRP1.
  • TRP2 acquires the transmit power of the second RSRP and the third uplink transmission.
  • TRP2 determines the second uplink path loss according to the second RSRP and the transmit power of the third uplink transmission, and sends the second uplink path loss to TRP1.
  • the second uplink path loss the transmit power of the third uplink transmission - the second RSRP.
  • TRP1 receives the second uplink transmission, and acquires the measurement value of the second uplink transmission.
  • TRP1 acquires the uplink shared channel received power of the second uplink transmission, or TRP1 acquires the first RSRP of the second uplink transmission.
  • the TRP1 determines the first power parameter in the following three ways.
  • TRP1 acquires the measurement value of the second uplink transmission and the measurement value of the third uplink transmission, and determines the first power parameter according to the measurement value of the second uplink transmission and the measurement value of the third uplink transmission.
  • TRP1 acquires the first RSRP and the second RSRP. TRP1 determines the first power parameter according to the difference between the first RSRP and the second RSRP.
  • the first uplink path loss and the second uplink path loss may be different, or the transmit power of the UE sending the second uplink transmission and the transmit power of the UE sending the third uplink transmission may be different, and the RSRP is affected by the uplink transmission. Loss and transmit power and other factors. Therefore, the first RSRP and the second RSRP may also be different.
  • TRP1 acquires the transmit power of the second uplink transmission and the transmit power of the third uplink transmission, and determines the first power parameter according to the transmit power of the second uplink transmission and the transmit power of the third uplink transmission.
  • TRP1 acquires the first uplink path loss corresponding to the second uplink transmission and the second uplink path loss corresponding to the third uplink transmission, and determines the first power parameter according to the first uplink path loss and the second uplink path loss.
  • TRP1 acquires the transmit power of the first RSRP and the second uplink transmission, and determines the first uplink path loss, the first uplink path loss-the transmit power of the second uplink transmission-the first RSRP. After that, TRP1 receives the second uplink path loss sent by TRP2. TRP1 determines the first power parameter according to the first uplink path loss and the second uplink path loss.
  • TRP1 sends the first power parameter to the UE.
  • the UE acquires the first power parameter.
  • the UE determines the first transmit power according to the first power parameter.
  • the UE sends the first uplink transmission by using the first transmit power.
  • the network device receives the second uplink transmission and or the third uplink transmission. Therefore, the network device may determine the first power parameters (power offset and path loss compensation factor) according to the uplink transmission. Therefore, after obtaining the first power parameter, the UE may determine the first transmit power according to the power offset and the path loss compensation factor, so as to ensure that the first transmit power is not too large. Therefore, in the technical solution of the present application, when the UE uses the first transmit power to send the first uplink transmission, it will not cause interference to other UEs.
  • the first power parameters power offset and path loss compensation factor
  • the terminal before the network device sends the first power parameter to the UE, the terminal sends an uplink transmission for implementing uplink power control on the UE. For example, taking the network devices as TRP1 and TRP2 as an example, before TRP1 sends the first power parameter to the UE, the UE sends a second uplink transmission, and both TRP1 and TRP2 receive the second uplink transmission.
  • the uplink power control method may further include S601-S607:
  • the UE sends the second uplink transmission.
  • the second uplink transmission includes: SRS; or, the second uplink transmission is PUSCH; or, when the second uplink transmission is PUSCH, the PUSCH carries the first PHR, and the first PHR includes the first maximum transmit power reported by the UE.
  • the SRS includes: aperiodic SRS, semi-static SRS, and periodic SRS.
  • the UE sends the first PHR only when the UE sends the second uplink transmission.
  • the UE receives the third information sent by TRP1, where the third information is further used to instruct the UE to send the second uplink transmission. Afterwards, the UE sends a second uplink transmission.
  • the UE sends the second uplink transmission without receiving the third information.
  • the second uplink transmission includes: periodic SRS and PUSCH.
  • the UE when the UE sends the second uplink transmission, it reports the transmit power of the second uplink transmission
  • TRP2 receives the second uplink transmission, and acquires the measurement value of the second uplink transmission.
  • TRP2 obtains the measurement value of the second uplink transmission. Afterwards, TRP2 sends the measurement value of the second uplink transmission to TRP1.
  • TRP1 receives the second uplink transmission, and acquires the measurement value of the second uplink transmission.
  • TRP1 receives the second uplink transmission sent by the UE, and obtains the measurement value of the second uplink transmission.
  • TRP1 receives the measurement value of the second uplink transmission sent by TRP2.
  • the measurement value of the second uplink transmission obtained by TRP1 and the measurement value of the second uplink transmission received by TRP1 and sent by TRP2 may be the same or different.
  • TRP1 determines the first power parameter according to the measurement value of the second uplink transmission obtained by TRP1 and the measurement value of the second uplink transmission received by TRP1 and sent by TRP2.
  • TRP1 sends the first power parameter to the UE.
  • the UE acquires the first power parameter.
  • the UE determines the first transmit power according to the first power parameter.
  • the UE sends the first uplink transmission by using the first transmit power.
  • TRP1 and TRP2 before the UE sends the uplink transmission, TRP1 and TRP2 send the path loss signal.
  • the uplink power control method may further include S701-S703.
  • TRP2 sends a second path loss reference signal.
  • the second path loss reference signal is the path loss reference signal of the second uplink path.
  • the second uplink path is the uplink path between the UE and TRP2.
  • TRP2 sends the second path loss reference signal to the UE.
  • TRP2 sends a second path loss reference signal to TRP1.
  • TRP1 sends a first path loss reference signal.
  • the first path loss reference signal is the path loss reference signal of the first uplink path.
  • the first uplink path is the uplink path between the UE and TRP1.
  • TRP1 receives the second path loss reference signal, and sends the first path loss reference signal and the second path loss reference signal to the UE.
  • TRP1 sends fourth information to the UE, where the fourth information is used to instruct the UE to transmit the PHR.
  • the fourth information includes: DCI, MAC CE, and RRC signaling.
  • the UE obtains the first path loss reference signal and the second path loss reference signal.
  • the UE obtains the first path loss reference signal sent by TRP1, and the UE obtains the second path loss reference signal sent by TRP2.
  • the UE obtains the first path loss reference signal and the second path loss reference signal sent by TRP1.
  • the UE determines the first PHR according to the first path loss reference signal; and the UE determines the second PHR according to the second path loss reference signal.
  • the UE obtains the first downlink path loss value of the first downlink path according to the first path loss reference signal, and determines the first PHR according to the first downlink path loss value.
  • the UE acquires the second downlink path loss value of the second downlink path according to the second path loss reference signal, and determines the second PHR according to the second downlink path loss value.
  • TRP1 in the above S501-S508, S601-S607, and S701-S703 is the network device in S401-S404 in the embodiment of the application. That is to say, the network devices in S401-S404 can all perform the actions performed by TRP1.
  • the uplink power control method provided by the embodiment of the present application has been described in detail above with reference to FIGS. 4-7 .
  • the terminal device provided by the embodiment of the present application is described in detail below with reference to FIG. 8 to FIG. 11 .
  • FIG. 8 is a first structural schematic diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device includes: an obtaining unit 801 , a determining unit 802 , and a sending unit 803 .
  • FIG. 8 only shows the main components of the uplink power control apparatus.
  • the terminal device can be applied to the communication system shown in FIG. 3 or FIG. 4 to perform the function of controlling the uplink power in the uplink power control methods shown in FIGS. 4-7 .
  • the obtaining unit 801 is configured to obtain a first power parameter, where the first power parameter includes at least one of the following: a power offset, and a path loss compensation factor.
  • the determining unit 802 is configured to determine the first transmit power according to the first power parameter.
  • the sending unit 803 is configured to send the first uplink transmission by using the first transmit power.
  • the obtaining unit 801 is specifically configured to receive first indication information, where the first indication information is used to indicate the first power parameter; obtain first information, where the first information is used to indicate the difference between the first indication information and the second power parameter. A mapping relationship; acquiring a media access control unit, where the media access control unit is used to indicate a mapping relationship between the first indication information and the first power parameter.
  • the obtaining unit 801 is further configured to obtain second information, where the second information is used to enable the terminal device to update the power parameter.
  • the sending unit 803 is further configured to send the second uplink transmission and/or the third uplink transmission.
  • the obtaining unit 801 is further configured to obtain the first path loss reference signal and the second path loss reference signal.
  • the second uplink transmission includes a first power headroom report determined from the first pathloss reference signal
  • the third uplink transmission includes a second power headroom report determined from the second pathloss reference signal.
  • the terminal device shown in FIG. 8 may further include a storage module (not shown in FIG. 8 ), and the storage module stores programs or instructions.
  • the determining unit 802 executes the program or instruction, the terminal device can perform the function of controlling the uplink power in the uplink power control methods shown in FIG. 4-FIG. 7 .
  • FIG. 9 is a second schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device may include a processor 901 .
  • the terminal device may further include a memory 902 and/or a transceiver 903 .
  • the processor 901 is coupled with the memory 902 and the transceiver 903, such as can be connected through a communication bus.
  • the processor 901 is the control center of the terminal device, which may be a processor or a general term for multiple processing elements.
  • the processor 901 is one or more central processing units (central processing units, CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more of the embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 901 may execute various functions of the terminal device by running or executing software programs stored in the memory 902 and calling data stored in the memory 902 .
  • the network device 1100 may also include multiple processors, for example, the processor 901 and the processor 904 shown in FIG. 9 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more communication devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 902 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 901.
  • the memory 902 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 901.
  • the processor 901. For the specific implementation, reference may be made to the above method embodiments, which will not be repeated here.
  • the memory 902 may be a read-only memory (ROM) or other type of static storage communication device that can store static information and instructions, a random access memory (RAM) or other type of static storage communication device that can store information. and other types of dynamic storage communication devices for instructions, which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or Other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage communication device, or capable of being used to carry or store desired in the form of instructions or data structures program code and any other medium that can be accessed by a computer, without limitation.
  • the memory 902 may be integrated with the processor 901, or may exist independently, and be coupled to the processor 901 through an input/output port (not shown in FIG. 9) of the terminal device, which is not specifically limited in this embodiment of the present application.
  • the transceiver 903 is used for communication with other terminal devices.
  • the terminal device is a terminal device, and the transceiver 903 may be used to communicate with a network device or communicate with another terminal device.
  • the terminal device is a network device, and the transceiver 903 may be used to communicate with the terminal device or communicate with another network device.
  • transceiver 903 may include a receiver and a transmitter (not shown separately in FIG. 9). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 903 may be integrated with the processor 901, or may exist independently, and be coupled to the processor 901 through an input/output port (not shown in FIG. 9 ) of the terminal device, to which this embodiment of the present application There is no specific limitation.
  • FIG. 10 is a first schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device includes: a sending unit 1001 , a receiving unit 1002 , and a determining unit 1003 .
  • FIG. 10 only shows the main components of the network device.
  • the network device can be applied to the communication system shown in FIG. 3 or FIG. 4 to perform the function of controlling the uplink power in the uplink power control methods shown in FIGS. 4-7 .
  • the sending unit 1001 is configured to send a first power parameter to a terminal device, where the first power parameter includes at least one of the following: a power offset, and a path loss compensation factor.
  • the receiving unit 1002 is configured to receive the first uplink transmission, where the transmit power of the first uplink transmission is determined according to the first power parameter.
  • the sending unit 1001 is specifically configured to send first indication information to the terminal device, where the first indication information is used to indicate the first power parameter; and send first information to the terminal device, where the first information is used to indicate the first indication information A mapping relationship with the second power parameter; sending a media access control unit to the terminal device, where the media access control unit is used to indicate the mapping relationship between the first indication information and the first power parameter.
  • the sending unit 1001 is further configured to send second information, where the second information is used to enable the terminal device to update the power parameter.
  • the receiving unit 1002 is further configured to receive the second uplink transmission, and obtain one or more measurement values of the second uplink transmission.
  • the determining unit 1003 is configured to determine the first power parameter according to one or more measurement values of the second uplink transmission.
  • the receiving unit 1002 is further configured to acquire the measurement value of the second uplink transmission and the measurement value of the third uplink transmission.
  • the determining unit 1003 is further configured to determine the first power parameter according to the measurement value of the second uplink transmission and the measurement value of the third uplink transmission.
  • the receiving unit 1002 is further configured to acquire the transmit power of the second uplink transmission and the transmit power of the third uplink transmission.
  • the determining unit 1003 is further configured to determine the first power parameter according to the transmit power of the second uplink transmission and the transmit power of the third uplink transmission.
  • the receiving unit 1002 is further configured to acquire the first uplink path loss corresponding to the second uplink transmission and the second uplink path loss corresponding to the third uplink transmission.
  • the determining unit 1003 is further configured to determine the first power parameter according to the first uplink path loss and the second uplink path loss.
  • the measured value of the uplink transmission is the received power of the uplink shared channel; or, the received power of the demodulation reference signal of the uplink transmission.
  • the sending unit 1001 is further configured to send the first path loss reference signal and the second path loss reference signal.
  • the network device shown in FIG. 10 may further include a storage module (not shown in FIG. 10 ), and the storage module stores programs or instructions.
  • the determining unit 1003 executes the program or instruction, the network device can perform the function of controlling the uplink power in the uplink power control method shown in FIG. 4-FIG. 7 .
  • FIG. 11 is a second schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device may be a terminal device or a network device, or may be a chip (system) or other components or assemblies that can be provided in the terminal device or the network device.
  • the network device may include a processor 1101 .
  • the network device may further include a memory 1102 and/or a transceiver 1103 .
  • the processor 1101 is coupled with the memory 1102 and the transceiver 1103, such as can be connected through a communication bus.
  • the processor 1101 is the control center of the network device, which may be one processor, or may be a general term for multiple processing elements.
  • the processor 1101 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 1101 may execute various functions of the network device by running or executing software programs stored in the memory 1102 and calling data stored in the memory 1102 .
  • the network device may also include multiple processors, for example, the processor 1101 and the processor 1104 shown in FIG. 11 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more communication devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1102 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1101. For the specific implementation, refer to the above method embodiments, which will not be repeated here.
  • the memory 1102 may be a read-only memory (ROM) or other type of static storage communication device that can store static information and instructions, a random access memory (RAM) or other type of static storage communication device that can store information and other types of dynamic storage communication devices for instructions, which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or Other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage communication device, or capable of being used to carry or store desired in the form of instructions or data structures program code and any other medium that can be accessed by a computer, without limitation.
  • the memory 1102 may be integrated with the processor 1101, or may exist independently, and be coupled to the processor 1101 through an input/output port (not shown in FIG. 11 ) of a network device, which is not specifically limited in this embodiment of the present application.
  • the transceiver 1103 is used for communication with other network devices.
  • the network device is a terminal device, and the transceiver 1103 may be used to communicate with the network device or communicate with another terminal device.
  • the network device is a network device, and the transceiver 1103 may be used to communicate with a terminal device or communicate with another network device.
  • the transceiver 1103 may include a receiver and a transmitter (not separately shown in FIG. 11 ). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 1103 may be integrated with the processor 1101, or may exist independently, and be coupled to the processor 1101 through an input/output port (not shown in FIG. 11) of a network device, to which this embodiment of the present application There is no specific limitation.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the conventional technology or the part of the technical solution.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种上行功率控制方法及设备,涉及通信技术领域,可以控制终端设备的上行发射功率,避免终端设备对其他的设备产生干扰。具体方案包括:终端设备可以获取第一功率参数,并根据第一功率参数,确定第一发射功率,该第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。之后,终端设备可以采用第一发射功率发送第一上行传输。

Description

一种上行功率控制方法及设备 技术领域
本申请实施例涉及电子设备技术领域,尤其涉及一种上行功率控制方法及设备。
背景技术
在TD-LTE通信***中,上行功率控制的方法可以分为闭环功率控制和功率控制两种方式。闭环功率控制是指用户终端(User Equipment,UE)通过基站反馈的链路质量来决定增加或者减小发射信号功率。而功率控制是指UE根据接收到的信号的衰落情况自行决定发射信号功率。
上行信道包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理上行控制信道(Physical Uplink Control Channel,PUSCH),物理随机接入信道(Physical Random Access Channel,PRACH),上行信号包括探测参考信号(Sounding Reference Signal,SRS)等。对于功率控制方式而言,上述四种上行信道/信号的功率控制方法原理相同,UE可以通过路径损耗补偿因子α和基站与UE之间的下行路径损耗估计值,确定需要补偿的路径损耗,进而使UE提高发射功率,从而保障基站接收的可靠性。
然而,当多个传输点(例如多个基站)协同为一个终端设备服务时,根据单站测量确定的终端设备的传输功率会导致用户间干扰严重。
发明内容
本申请实施例提供一种上行功率控制方法,可以控制终端设备的上行发射功率,减弱对其他终端设备的产生干扰。
第一方面,本申请实施例提供一种上行功率控制的方法。
终端设备获取第一功率参数,并根据第一功率参数,确定第一发射功率,该第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。之后,终端设备可以采用第一发射功率发送第一上行传输。
基于上述技术方案,终端设备在获取第一功率参数(功率偏移量和路径损耗补偿因子)之后,可以根据功率偏移量和路径损耗补偿因子确定第一发射功率,以保障第一发射功率不会过大。因此,本申请技术方案中终端设备采用第一发射功率发送第一上行传输时,减弱对其他终端设备产生干扰。
结合第一方面,在一种可能的设计方式中,上述“终端设备可以获取第一功率参数”的方法包括:终端设备可以接收第一指示信息,该第一指示信息用于指示第一功率参数。
这样一来,终端设备就可以根据第一指示信息获取第一功率参数。
结合第一方面,在另一种可能的设计方式中,该方法还包括:终端设备可以获取第一信息,第一信息用于指示第一指示信息与第二功率参数的映射关系。之后,终端设备可以获取媒体接入控制单元,该媒体接入控制单元用于指示第一指示信息与第一功率参数的映射关系。
可以理解的是,由于第一信息用于指示第一指示信息与第二功率参数的映射关系。因此,终端设备获取第一信息之后,该终端设备保存的是第一指示信息与第二功率参数的映射关系。又由于媒体接入控制单元用于指示第一指示信息与第一功率参数的映射关系。因此,当终端设备获取媒体接入控制单元后,终端设备中保存的是第一指示信息与第一功率参数的映射关系。这样一来,当终端设备获取第一指示信息时,可以根据第一指示信息获取第一功率参数。
结合第一方面,在另一种可能的设计方式中,该方法还包括:终端设备可以获取第二信息,第二信息用于使能终端设备更新功率参数。
可以理解的是,终端设备获取第二信息使能终端设备更新功率参数。也就是说,在终端设备中保存的是第二功率参数时,终端设备获取第二信息使能终端设备将第二功率参数更新为第一功率参数。这样一来,在终端获取媒体接入控制单元之后,终端设备可以更新第一指示信息与功率参数的对应关系。
结合第一方面,在另一种可能的设计方式中,该方法还包括:终端设备发送第二上行传输和/或第三上行传输。
结合第一方面,在另一种可能的设计方式中,该方法还包括:终端设备可以获取第一路损参考信号和第二路损参考信号。第二上行传输包括根据第一路损参考信号确定的第一功率余量报告,第三上行传输包括根据第二路损参考信号确定的第二功率余量报告。
第二方面,本申请实施例提供一种上行功率控制的方法。
网络设备可以向终端设备发送第一功率参数,第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。之后,网络设备接收第一上行传输,第一上行传输的发射功率是根据第一功率参数确定的。
结合第二方面,在一种可能的设计方式中,上述“网络设备可以向终端设备发送第一功率参数”的方法包括:网络设备可以向终端设备发送第一指示信息,第一指示信息用于指示第一功率参数。
结合第二方面,在另一种可能的设计方式中,该方法还包括:网络设备可以向终端设备发送第一信息,该第一信息用于指示第一指示信息与第二功率参数之间的映射关系。之后,网络设备向终端设备发送媒体接入控制单元,媒体接入控制单元用于指示第一指示信息与第一功率参数之间的映射关系。
结合第二方面,在另一种可能的设计方式中,该方法还包括:网络设备发送第二信息,第二信息用于使能终端设备更新功率参数。
结合第二方面,在另一种可能的设计方式中,该方法还包括:网络设备接收第二上行传输,并获取第二上行传输的一个或多个测量值;
网络设备根据第二上行传输的一个或多个测量值,确定第一功率参数。
需要说明的是,网络设备接收终端设备发送的第二上行传输时,可以获取到第二上行传输的测量值(例如第一测量值A)。同时,当终端设备发送的第二上行传输被其他的网络设备接收到后,其他网络设备也可以获取到第二上行传输的测量值(例如第一测量值B),并向网络设备发送该第二上行传输的测量值。这样一来,网络设备可以获取到第一测量值A和第一测量值B。
其中,第一测量值A与第一测量值B相同,或者,第一测量值A与第一测量值B不同。
结合第二方面,在另一种可能的设计方式中,该方法还包括:网络设备可以获取第二上行传输的测量值和第三上行传输的测量值,并根据第二上行传输的测量值和第三上行传输的测量值,确定第一功率参数;或者,网络设备获取第二上行传输的发射功率和第三上行传输的发射功率,并根据第二上行传输的发射功率和第三上行传输的发射功率,确定第一功率参数;或者,网络设备获取第二上行传输对应的第一上行路损和第三上行传输对应的第二上行路损,并根据第一上行路损和第二上行路损,确定第一功率参数。
这样一来,网络设备可以通过不同的上行传输的测量值,确定第一功率参数。
结合第二方面,在另一种可能的设计方式中,上行传输的测量值为上行共享信道接收功 率;或者,上行传输的测量值为解调参考信号接收功率。
结合第二方面,在另一种可能的设计方式中,该方法还包括:网络设备可以发送第一路损参考信号和第二路损参考信号。
此外,第二方面所述的上行功率控制方法的技术效果可以参考第一方面所述的上行功率控制方法的技术效果,此处不再赘述。
第三方面,提供一种终端设备。该终端设备包括:获取单元、确定单元、以及发送单元。其中,获取单元,用于获取第一功率参数,第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。确定单元,根据第一功率参数,确定第一发射功率。发送单元,用于采用第一发射功率发送第一上行传输。
结合第三方面,在另一种可能的设计方式中,获取单元,具体用于接收第一指示信息,第一指示信息用于指示第一功率参数;获取第一信息,第一信息用于指示第一指示信息与第二功率参数的映射关系;获取媒体接入控制单元,媒体接入控制单元用于指示第一指示信息与第一功率参数的映射关系。
结合第三方面,在另一种可能的设计方式中,获取单元,还用于获取第二信息,第二信息用于使能终端设备更新功率参数。
结合第三方面,在另一种可能的设计方式中,发送单元,还用于发送第二上行传输和/或第三上行传输。
结合第三方面,在另一种可能的设计方式中,获取单元,还用于获取第一路损参考信号和第二路损参考信号;其中,第二上行传输包括根据第一路损参考信号确定的第一功率余量报告,第三上行传输包括根据第二路损参考信号确定的第二功率余量报告。
结合第三方面,在另一种可能的设计方式中,终端设备还可以包括存储单元,该存储单元存储有程序或指令。当处理单元执行该程序或指令时,使得第三方面所述的终端设备可以执行第一方面所述的上行功率控制方法。
此外,第三方面所述的终端设备的技术效果可以参考第一方面所述的上行功率控制方法的技术效果,此处不再赘述。
第四方面,提供一种网络设备。该网络设备包括发送单元和接收单元。其中,发送单元,用于向终端设备发送第一功率参数,第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。接收单元,用于接收第一上行传输,第一上行传输的发射功率是根据第一功率参数确定的。
结合第四方面,在另一种可能的设计方式中,发送单元,具体用于向终端设备发送第一指示信息,第一指示信息用于指示第一功率参数;向终端设备发送第一信息,第一信息用于指示第一指示信息与第二功率参数之间的映射关系;向终端设备发送媒体接入控制单元,媒体接入控制单元用于指示第一指示信息与第一功率参数之间的映射关系。
结合第四方面,在另一种可能的设计方式中,发送单元,还用于发送第二信息,第二信息用于使能终端设备更新功率参数。
结合第四方面,在另一种可能的设计方式中,上述网络设备还包括确定单元。接收单元,还用于接收第二上行传输,并获取第二上行传输的一个或多个测量值。确定单元,用于根据第二上行传输的一个或多个测量值,确定第一功率参数。
结合第四方面,在另一种可能的设计方式中,接收单元,还用于获取第二上行传输的测量值和第三上行传输的测量值。确定单元,还用于根据第二上行传输的测量值和第三上行传输的测量值,确定第一功率参数。接收单元,还用于获取第二上行传输的发射功率和第三上 行传输的发射功率。确定单元,还用于根据第二上行传输的发射功率和第三上行传输的发射功率,确定第一功率参数。接收单元,还用于获取第二上行传输对应的第一上行路损和第三上行传输对应的第二上行路损。确定单元,还用于根据第一上行路损和第二上行路损,确定第一功率参数。
结合第四方面,在另一种可能的设计方式中,上行传输的测量值为上行共享信道接收功率;或者,上行传输的测量值为解调参考信号接收功率。
结合第四方面,在另一种可能的设计方式中,发送单元,还用于发送第一路损参考信号和第二路损参考信号。
结合第四方面,在另一种可能的设计方式中,网络设备还可以包括存储单元,该存储单元存储有程序或指令。当处理单元执行该程序或指令时,使得第四方面所述的终端设备可以执行第一方面所述的上行功率控制方法。
此外,第四方面所述的网络设备的技术效果可以参考第二方面所述的上行功率控制方法的技术效果,此处不再赘述。
第五方面,提供一种上行功率控制装置。该上行功率控制装置包括:处理器,该处理器与存储器耦合,存储器用于存储计算机程序;处理器用于执行存储器中存储的计算机程序,以使得该上行功率控制装置执行如第一方面或第二方面中任意一种可能的实现方式所述的上行功率控制方法。
在一种可能的设计中,第六方面所述的上行功率控制装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该上行功率控制装置与其他上行功率控制装置通信。
在本申请中,第五方面所述的上行功率控制装置可以为终端设备或网络设备,或者设置于终端设备或网络设备内部的芯片(***)或其他部件或组件。
此外,第五方面所述的上行功率控制装置的技术效果可以参考第一方面或第二方面中的任意一种实现方式所述的上行功率控制方法的技术效果,此处不再赘述。
第六方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面中任意一种可能的实现方式所述的上行功率控制方法。
第七方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面中任意一种可能的实现方式所述的上行功率控制方法。
附图说明
图1为本申请实施例提供的一种单小区测量的上行功率控制示意图;
图2为本申请实施例提供的一种通信***的架构示意图;
图3为本申请实施例提供的另一种通信***的架构示意图;
图4为本申请实施例提供的一种上行功率控制方法的流程示意图;
图5为本申请实施例提供的另一种上行功率控制方法的流程示意图;
图6为本申请实施例提供的另一种上行功率控制方法的流程示意图;
图7为本申请实施例提供的另一种上行功率控制方法的流程示意图;
图8为本申请实施例提供的一种终端设备的结构示意图一;
图9为本申请实施例提供的一种终端设备的结构示意图二;
图10为本申请实施例提供的一种网络设备的结构示意图一;
图11为本申请实施例提供的一种网络设备的结构示意图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中字符“/”,一般表示前后关联对象是一种“或者”的关系。例如,A/B可以理解为A或者B。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、***、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括其他没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
另外,在本申请实施例中,“示例性的”、或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、或者“例如”等词旨在以具体方式呈现概念。
为了便于理解本申请的技术方案,在对本申请实施例的一种上行功率控制方法进行详细介绍之前,先对常规技术进行介绍。
常规技术一、基于单小区测量的上行功率控制机制
如图1所示,为单小区测量的上行功率控制示意图。其中,发送接收点(transmission reception point,TRP)1为UE1和UE3提供服务,TRP2为UE2提供服务。
UE在服务小区(serving cell)c的载波f的上行激活部分带宽(Bandwidth part)b上采用功率参数集合编号j(j为大于等于0的整数)发送PUSCH,且功控调整状态索引值为l时,在发送时机i上确定PUSCH的发射功率P PUSCH,b,f,c(i,j,q d,l)可以满足公式一。
Figure PCTCN2020119756-appb-000001
其中,P CMAX,f,c(i)为服务小区c的载波f上PUSCH发送时机i上配置的最大输出功率,P O_PUSCH,b,f,c(j)为服务小区期望接收到的目标功率值,
Figure PCTCN2020119756-appb-000002
为服务小区c的载波f的上行激活部分带宽b上的PUSCH发送时机i上PUSCH占用的资源块(Resource Block,RB)数量,μ是子载波间隔(Subcarrier Size,SCS)配置对应的值,α b,f,c(j)为路径损耗补偿因子,PL b,f,c(q d)为下行路径损耗估计值,Δ TF,b,f,c(i)为与调制与编码策略(Modulation and Coding Scheme,MCS)相关的信息,f b,f,c(i,l)为服务小区c的载波f的上行激活部分带宽b上的PUSCH发送时机i上的PUSCH功率控制调整状态,l为0或者1。
需要说明的是,P CMAX,f,c(i)与UE的发送能力、PUSCH的频域资源分配等因素相关。
Figure PCTCN2020119756-appb-000003
是配置的服务小区c专用标称部分
Figure PCTCN2020119756-appb-000004
和UE专用部分
Figure PCTCN2020119756-appb-000005
(下面称为:P0)之和。
其中,P0和α b,f,c(j)均为功率参数。基站可以为UE配置多个功率参数集合,功率参数集合包括:功率控制集合ID、P0和α b,f,c(j)。
UE可以通过以下两种方式获取功率控制参数。
方式一、UE可以根据当前传输模式以及探测参考信号指示(Sounding Reference Signal Indication,SRI)字段指示的值确定当前PUSCH传输采用的功率参数集合编号j,进而根据功率参数集合编号j确定P0和α的取值。具体的,当基站为UE配置了多个功率参数集合,以及为UE配置功率参数与SRI的对应规则,以及SRI字段取值与功率参数集合之间的映射关系,并且调度PUSCH的DCI中包括SRI字段时,UE可以根据上述映射关系和SRI字段的取值,确定UE发送PUSCH采用的功率参数集合。
示例性的,一个SRI码位对应一个功率参数集合。基站为UE配置的SRI字段为2比特,该SRI有00/01/10/11四个取值,每个取值对应一个功率参数集合(ID,P0,α)。
方式二、当基站为UE配置多个功率参数集合,且调度PUSCH的DCI中不包括SRI字段时,默认功率参数集合编号j为2。UE根据编号最小的功率参数集合获取功率参数P0和α。
PL b,f,c(q d)是UE根据路损参考信号q d计算得到的下行路径损耗估计值,该下行路径损耗估计值可以作为上行功率控制的路径损耗补偿值。下行路径损耗估计值可以通过以下三种方式确定。
方式一、如果UE没有配PUSCH路损参考信号(PUSCH-pathlossReferenceRS),或者在UE配置专用参数之前,UE利用同步信号块(synchronization signal block,SSB)计算下行路径损耗估计值,该SSB用于获取主信息块(Master information block,MIB)。
方式二、如果PUSCH传输是由随机接入响应(random access response,RAR)上行(Uplink,UL)grant调度的,UE采用和相关的PRACH传输相同的路损参考信号索引值来计算下行路径损耗估计值。
方式三、当配置了多个路损参考信号(例如SSB或信道状态指示参考信号(Channel State Information Reference Signal,CSI-RS)),路损参考信号的RRC配置信息包括:路损参考信号ID和关联的参考信号ID)。之后,基站可以为UE配置多个路损参考信号和SRI字段之间的关联关系,UE根据SRI字段指示的值,确定与SRI字段指示的值对应的参考信号确定当前PUSCH的下行路径损耗估计值。
下行路径损耗估计值可以满足下述公式二。
PL b,f,c(q d)=referenceSignalPower-higher layer filtered RSRP0   公式二
其中,referenceSignalPower为高层信令配置的下行参考信号的发射功率,higher layer filtered RSRP0为UE端接收到的经过高层滤波后的参考信号接收功率。
referenceSignalPower可以通过以下方式获取。
方式一、如果UE没有配置接收周期CSI-RS,则ReferenceSignalPower可以通过同步广播信号块功率ss-PBCH-BlockPower进行配置。
方式二、如果UE配置了接收周期CSI-RS,则referenceSignalPower可以通ss-PBCH-BlockPower和powerControlOffsetSS配置。其中,powerControlOffsetSS为CSI-RS的传输功率与SSB的传输功率之间的差值。
若UE没有被配置powerControlOffsetSS,则powerControlOffsetSS=0。
Δ TF,b,f,c(i)可以由PUSCH承载的信息类型(例如承载上行共享信道(Uplink Shared Channel,UL-SCH)数据信息,或者信道状态信息(Channel State Information,CSI)数据信息等)、占 用的物理资源位置、数量等因素确定。
f b,f,c(i,l)是由基站下发DCI信令通知的,可以使得基站根据当前传输的信道状态、调度情况实时调整PUSCH发射功率。
常规技术二、上行多点协同传输(Uplink Coordinated multi-point,UL CoMP)
UL CoMP是指地理位置上分离的多个传输点,联合接收并合并一个终端发送的数据(例如PUSCH)。参与协作的多个传输点通常指不同小区的基站。CoMP技术使能多个小区同时为小区边缘UE服务,以提高边缘UE的覆盖性能,进而提升小区边缘用户的频谱效率。
示例性的,如图二所示,为上行多点协同传输的示意图。其中,TRP1为UE1和UE3提供服务,TRP2为UE2和UE3提供服务,也就是说,TRP1和TRP2同时为UE3提供服务。
常规技术三、功率余量报告(Power headroom report,PHR)
功率余量是指UE的最大上行发射功率与当前PUSCH传输功率之间的差值。也就是说,除了当前PUSCH传输所使用的传输功率之外,UE可以使用的传输功率。功率余量可以通过以下两种方法确定。
方法一、功率余量是基于PUSCH确定的,功率余量可以满足下述公式三。
Figure PCTCN2020119756-appb-000006
其中,PH type,b,f,c(i,j,q d,l)为功率余量,其他参数可以参数上对于公式一中参数的说明,此处不再赘述。
方法二、功率余量是基于SRS传输确定的。
需要说明的是,若功率余量为正数,则说明UE在最大功率下还能传输更多数据。如果功率余量为负,则说明UE的上行传输已经超过了允许的最大传输功率。也就是说,功率余量可以影响基站的调度,或者说功率余量报告可以作为基站分配上行RB资源的参考依据。
满足以下五个条件中任一条件,均可触发功率余量报告。
条件一、PHR禁用定时器(phr-ProhibitTimer)过期或已过期,并且路损改变超过PHR传输功率因子变量(phr-Tx-PowerFactorChange)。其中,该路损是当媒体接入控制层(Media access control,MAC)实体具有用于新传输的上行资源时,自上次在该MAC实体中传输PHR以来,用作路径丢失参考的任何MAC实体的至少一个激活的服务小区的路损。
条件二、PHR周期性定时器(phr-PeriodicTimer)过期。
条件三、上次配置或重配置PHR功能,但该动作不能禁用PHR功能。
条件四、激活任何配置的上行辅小区(Secondary Cell,SCell)的MAC实体。
条件五、增加PSCell(Primary Secondary Cell,主辅小区)。
当多个传输点(例如多个基站)协同为一个终端设备服务时,根据单站测量确定的终端设备传输功率会导致用户间干扰严重。
当多个传输点(例如多个基站)协同为一个终端设备服务时,为了减弱终端设备的传输功率对其他用户的干扰,本申请实施例提供了一种上行功率控制方法。
为便于理解本申请实施例,首先以图3中示出的通信***为例详细说明适用于本申请实施例的通信***。示例性地,图3为本申请实施例提供的上行功率控制方法所适用的一种通信***的架构示意图。
如图3所示,该通信***包括网络设备和终端设备。网络设备包括核心网设备310、无线接入网设备320、以及无线接入网设备330,终端设备包括用户终端340。其中,无线接入网设备320和无线接入网设备330可以共同为用户终端340提供服务。终端设备通过无线的 方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。
其中,上述网络设备为位于上述通信***的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片***。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)***中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
需要说明的是,核心网设备310与无线接入网设备320可以是独立的不同的物理设备,也可以是将核心网设备310的功能与无线接入网设备320的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备310的功能和部分的无线接入网设备320的功能。
上述终端设备为接入上述通信***,且具有无线收发功能的终端或可设置于该终端的芯片或芯片***。该终端设备也可以称为用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的上行功率控制方法。
应当指出的是,本申请实施例中的方案还可以应用于其他通信***中,相应的名称也可以用其他通信***中的对应功能的名称进行替代。
应理解,图3仅为便于理解而示例的简化示意图,该通信***中还可以包括其他网络设备,和/或,其他终端设备,图3中未予以画出。
下面将结合图4-图7对本申请实施例提供的上行功率控制方法进行具体阐述。
示例性地,图4为本申请实施例提供的上行功率控制方法的流程示意图。如图4所示,该上行功率控制方法可以包括S401-S404。
S401、UE获取第一功率参数。
其中,第一功率参数包括以下至少一项:功率偏移量P0,路径损耗补偿因子α。在本申请实施例中,第一功率参数的名称还为功率参数,本申请实施例对此不作限定。
示例性的,网络设备向UE发送第一功率参数。UE接收网络设备发送的第一功率参数。例如,网络设备向UE发送第一指示信息,该第一指示信息用于指示第一功率参数。UE接收该第一指示信息,以获取第一功率参数。
在本申请实施例中,第一指示信息有以下两种实现方式。
方式a、该第一指示信息为DCI中的字段,DCI用于调度PUSCH传输。
需要说明的是,DCI中的字段可以为SRI字段,也可以为DCI中的其他的字段,本申请实施例对此不作限定。以下以DCI中的字段为SRI字段为例,对本申请实施例进行说明。
在方式a中,网络设备将第一指示信息的一个取值与至少两个功率参数的对应关系发送给UE。其中,第一指示信息包括:功率参数,以及,SRI字段的取值与功率参数之间的映射关系;或者,SRI字段的取值与功率参数索引的映射关系;或者,SRI字段的取值和功率参数集合索引的映射关系。功率参数集合包括第一功率参数。
方式a1、网络设备将第一指示信息的一个取值与一个功率参数的对应关系发送给UE,网络设备利用媒体接入控制单元更新第一指示信息的取值与功率参数的对应关系,使得UE获取更新后的功率参数。
示例性的,在网络设备向UE发送第一功率参数之前,网络设备向UE发送第一信息。其中,该第一信息用于指示第一指示信息与第二功率参数之间的映射关系,第一信息为高层参数,或者,第一信息为无线资源控制RRC信令。第二功率参数包括以下至少一项:功率偏移量P0,路径损耗补偿因子。
之后,网络设备向UE发送媒体接入控制单元(Media access control Control element,MAC CE),该MAC CE用于指示第一指示信息与第一功率参数之间的映射关系。
需要说明的是,第二功率参数是UE只接入主服务小区的情况下的功率参数。第一功率参数是UE同时接入主服务小区和协同服务小区的情况下的功率参数。因此,第一功率参数和第二功率参数不同。
可选的,在网络设备向UE发送MAC CE之前,网络设备向UE发送第二信息,第二信息用于使能所述UE更新功率参数。
可选的,在网络设备向UE发送第一功率参数之前,网络设备向UE发送第二信息,第二信息用于使能所述UE更新功率参数。
方式b、该第一指示信息为多点协同传输CoMP配置信息。
其中,CoMP配置信息包括第一功率参数和参考信号信息。在方式b中,第一功率参数还包括路径损耗参考信号。参考信号信息包括以下至少一种信息:探测参考信号SRS时频资源、SRS扰码序列、解调参考信号(Demodulation Reference Signal,DMRS)扰码序列和DMRS时频资源。
一种可能的实现方式,网络设备根据第一功率参数生成CoMP配置信息。之后,网络设备向UE发送该CoMP配置信息。
需要说明的是,根据公式一可知,第一发射功率由第一功率参数和第三功率参数确定。因此,在本申请实施例中,网络设备还向UE发送第三功率参数,第三功率参数包括:
Figure PCTCN2020119756-appb-000007
PL b,f,c(q d)、Δ TF,b,f,c(i)、f b,f,c(i,l),具体对于第三功率参数的解释,可以参考上述对于公式一的解释,此处不再赘述。具体的,网络设备在向UE发送第一功率参数时,或者,网络设备在向UE发送第一功率参数之前,或者,网络设备在向UE发送第一功率参数之后,向UE发送第三功率参数,本申请实施例对此不作限定。
S402、UE根据第一功率参数,确定第一发射功率。
一种可能的实现方式,UE接收来自网络设备的第一指示信息,该第一指示信息用于指示第一功率参数。UE根据第一指示信息,获取第一功率参数。之后,UE根据第一功率参数确定第一发射功率。
一种可能的设计中,第一指示信息的表示方式与S501中方式a的表示方式相同,即第一指示信息为SRI字段。UE接收来自网络设备的SRI字段,并根据SRI字段指示的值与功率参数之间的对应关系,获取第一功率参数。
需要说明的是,第一指示信息为SRI字段的情况下,UE保存有SRI字段的取值与功率参数之间的映射关系;或者,SRI字段的取值与功率参数索引的映射关系;或者,SRI字段的取值和功率参数集合索引的映射关系。UE中保存的SRI字段的取值与功率参数之间的映射关系;或者,SRI字段的取值与功率参数索引的映射关系;或者,SRI字段的取值和功率参数集合索引的映射关系,是在UE接收来自网络设备的第一指示信息之前,由网络设备发送的RRC配置的。
在一些实施例中,UE接收第一信息,第一信息用于指示SRI与第二功率参数之间的映射关系。也就是说,UE中保存有SRI与第二功率参数之间的映射关系。由于第二功率参数是UE只接入主服务小区的情况下的功率参数。因此,UE中保存有第一信息时,说明UE中保存的功率参数集合中功率参数为第二功率参数。也就是说,UE可以获取SRI字段,并根据SRI字段指示的值获取UE只接入主服务小区的情况下的功率参数。
可以理解的是,当UE只接入主服务小区时,UE可以获取SRI字段,并根据SRI字段确定功率参数集合和第二功率参数。这样一来,UE在只接入主服务小区的情况下,可以使用第二功率参数控制发射功率。
可选的,若UE保存有第一信息,在UE获取SRI字段之前,UE接收网络设备发送的MAC CE,使得更新后的第一信息用于指示SRI与第一功率参数之间的映射关系。也就是说,在UE接收MAC CE之后,UE中保存的SRI字段与第二功率参数的映射关系,更新为SRI字段与第一功率参数的映射关系。
示例性的,UE中保存有SRI字段指示的值为00时,P0为6分贝毫瓦(decibel relative to one milliwatt,dBm)的对应关系。UE接收网络设备发送的MAC CE,MAC CE用于指示SRI字段指示的值为00时,P0为4dBm。也就是说,在UE接收MAC CE之后,UE保存有SRI字段指示的值为00时,P0为4dBm的对应关系。
可以理解的是,当UE同时接入主服务小区和协同服务小区时,UE获取SRI字段,可以根据SRI字段指示的值,以及更新后的第一信息,获取第一功率参数。这样一来,UE在同时接入主服务小区和协同服务小区的情况下,可以使用第一功率参数控制发射功率,从而避免使用第二功率参数控制发射功率,导致发射功率过高,对其他UE产生干扰。
可选的,在UE获取MAC CE之前,UE获取第二信息,第二信息用于使能UE更新功率参数。也就是说,UE获取第二信息之后,UE接收MAC CE,使MAC更新第一信息。
需要说明的是,在本申请实施例中,当UE中保存有第一信息时,UE执行的动作包括:(1)UE接收第二信息。(2)UE接收第一信息。(3)UE接收MAC CE。(4)UE接收第一指示信息。(5)UE确定第一功率参数。其中,UE可以先执行(1)和/或(2)(即UE先执行(1),再执行(2);或者UE先执行(2),再执行(1);或者UE同时执行(1)和(2)),之后依次执行(3)、(4)、(5)。
另一种可能的设计中,第一指示信息的表示方式与S501中方式b的表示方式相同,即第一指示信息为CoMP配置信息。UE接收来自网络设备的CoMP配置信息,并从CoMP配置信息中获取第一功率参数。
在本申请实施例中,第一发射功率满足下述公式四:
Figure PCTCN2020119756-appb-000008
其中,P PUSCH,b,f,c(i,j,q d,l)为UE在PUSCH发送时机i上确定PUSCH的发射功率(即第一发射功率),P O_CoMP,b,f,c(j)(即P0)为服务小区期望接收到的目标功率值,P PUSCH,b,f,c(i,j,q d,l)、
Figure PCTCN2020119756-appb-000009
α b,f,c(j)(即α)、PL b,f,c(q d)、Δ TF,b,f,c(i)、f b,f,c(i,l)可以参考对于公式一的说明,此处不再赘述。
可以理解的是,由于P0和α是由网络设备根据UE同时接入主服务小区和协同服务小区这一情况确定的。因此,相较于由常规技术一的技术方案确定的发射功率,本申请技术方案的第一发射功率更为准确。
S403、UE采用第一发射功率发送第一上行传输。
可以理解的是,由于相较于常规技术一的技术方案确定的发射功率,通过本申请技术方案确定的第一发射功率更为准确,即第一发射功率不会过大。因此,UE采用第一发射功率发送第一上行传输不会对其他UE产生干扰。
S404、网络设备接收第一上行传输。
基于上述技术方案,UE在获取第一功率参数:功率偏移量和/或路径损耗补偿因子之后,可以根据功率偏移量和/或路径损耗补偿因子确定第一发射功率,以保障第一发射功率不会过大。因此,本申请技术方案中UE采用第一发射功率发送第一上行传输时,减轻其他UE产生的干扰。
在本申请实施例中,网络设备包括第一网络设备和第二网络设备。以下以第一网络设备是TRP1,第二网络设备是TRP2为例,对本申请实施例进行说明。其中,TRP1是UE的主服务小区的网络设备,TRP2是UE的协同服务小区的网络设备。
在一些实施例中,在网络设备向UE发送第一功率参数之前,终端向网络设备发送两个上行传输,用于实现对UE的上行功率控制。例如,以网络设备为TRP1和TRP2为例,UE向TRP1发送第二上行传输,UE向TRP2发送第三上行传输。其中,第二上行传输与第三上行传输相同,或者,第二上行传输与第三上行传输不同。
以下以TRP1向UE发送第一功率参数之前,UE向TRP1发送第二上行传输,UE向TRP2发送第三上行传输为例,对本申请实施例提供的一种上行功率控制方法进行说明。如图5所示,该上行功率控制方法可以包括S501-S508:
S501、UE向TRP1发送第二上行传输。
其中,第二上行传输包括:SRS;或者,第二上行传输为PUSCH;或者,第二上行传输为PUSCH时,PUSCH承载第一PHR,第一功率余量报告PHR中包括UE上报的第一最大发射功率。其中,SRS包括:非周期SRS、半静态SRS、周期SRS。
需要说明的是,UE接收第四信息之后,UE向TRP1发送第二上行传输时发送第一PHR。该第四信息包括:DCI、MAC CE、无线资源控制RRC信令。
一种可能的实现方式,UE接收TRP1发送的第三信息,该第三信息用于指示UE向TRP1发送第二上行传输。之后,UE向TRP1发送第二上行传输。
另一种可能的实现方式,UE在没有接收第三信息的情况下,向TRP1发送第二上行传输。在该情况下,第二上行传输包括:周期SRS、PUSCH。
可选的,UE向TRP1发送第二上行传输时,向TRP1上报第二上行传输的发射功率。
S502、UE向TRP2发送第三上行传输。
可选的,第三上行传输还包括:SRS;或者,第三上行传输为PUSCH;或者,第三上行传输为PUSCH时,PUSCH承载第二PHR,第二PHR中包括UE上报的最大传输功率。其中,SRS包括:非周期SRS、半静态SRS、周期SRS。
需要说明的是,UE接收第四信息之后,UE向TRP2发送第三上行传输时才发送第二PHR。
需要说明的是,第二上行传输和第三上行传输可以相同,也可以不同,本申请实施例对此不作限定。例如,第二上行传输和第三上行传输均为周期SRS。又例如,第二上行传输为周期SRS,第三上行传输为PUSCH。
一种可能的实现方式,UE接收TRP1发送的第三信息,该第三信息还用于指示UE向TRP2发送第三上行传输。之后,UE向TRP2发送第三上行传输。
另一种可能的实现方式,UE在没有接收第三信息的情况下,向TRP2发送第三上行传输。在该情况下,第三上行传输包括:周期SRS、PUSCH。
可选的,UE向TRP2发送第三上行传输时,向TRP2上报第三上行传输的发射功率。
S503、TRP2接收第三上行传输,并获取第三上行传输的测量值。
其中,测量值为上行共享信道接收功率,或者,参考信号接收功率(Reference Signal Received Power,RSRP)。也就是说,TRP2可以获取第三上行传输的上行共享信道接收功率,也可以获取第三上行传输的第二RSRP。以下以第三上行传输为测量值为第二RSRP为例,对本申请实施例进行说明。
在本申请实施例中,RSRP为SRS-RSRP或者DMRS-RSRP,本申请实施例对此不作限定。
一种可能的设计中,TRP2获取第二RSRP。之后,TRP2向TRP1发送第二RSRP。
另一种可能的设计中,TRP2获取第三上行传输的发射功率。之后,TRP2向TRP1发送第三上行传输的发射功率。
另一种可能的设计中,TRP2获取第二RSRP和第三上行传输的发射功率。TRP2根据第二RSRP和第三上行传输的发射功率,确定第二上行路损,并向TRP1发送第二上行路损。第二上行路损=第三上行传输的发射功率-第二RSRP。
S504、TRP1接收第二上行传输,并获取第二上行传输的测量值。
一种可能的实现方式,TRP1获取第二上行传输的上行共享信道接收功率,或者TRP1获取第二上行传输的第一RSRP。
需要说明的是,在UE发送第二上行传输和第三上行传输之后,TRP1通过以下三种方式确定第一功率参数。
方式一、TRP1获取第二上行传输的测量值和第三上行传输的测量值,并根据第二上行传输的测量值和第三上行传输的测量值,确定第一功率参数。
示例性的,TRP1获取第一RSRP和第二RSRP。TRP1根据第一RSRP和第二RSRP之间的差值,确定第一功率参数。
需要说明的是,由于第一上行路损和第二上行路损可能不相同,或者UE发送第二上行传输的发射功率与UE发送第三上行传输的发射功率可能不相同,且RSRP受上行路损和发射功率等因素的影响。因此,第一RSRP和第二RSRP也可能不相同。
方式二、TRP1获取第二上行传输的发射功率和第三上行传输的发射功率,并根据第二上行传输的发射功率和第三上行传输的发射功率,确定第一功率参数。
方式三、TRP1获取第二上行传输对应的第一上行路损和第三上行传输对应的第二上行路损,并根据第一上行路损和第二上行路损,确定第一功率参数。
示例性的,TRP1获取第一RSRP和第二上行传输的发射功率,并确定第一上行路损,第一上行路损-第二上行传输的发射功率-第一RSRP。之后,TRP1接收TRP2发送的第二上行路损。TRP1根据第一上行路损和第二上行路损,确定第一功率参数。
S505、TRP1向UE发送第一功率参数。
S506、UE获取第一功率参数。
S507、UE根据第一功率参数,确定第一发射功率。
S508、UE采用第一发射功率发送第一上行传输。
需要说明的是,对于S505-S508的说明,可以参考上述S401-S404的描述,此处不再赘述。
基于上述技术方案,由于网络设备接收到第二上行传输和或第三上行传输。因此,网络设备可以根据上行传输确定第一功率参数(功率偏移量和路径损耗补偿因子)。因此,UE在获取第一功率参数之后,可以根据功率偏移量和路径损耗补偿因子确定第一发射功率,以保障第一发射功率不会过大。因此,本申请技术方案中UE采用第一发射功率发送第一上行传输时,不会对其他UE产生干扰。
在另一些实施例中,在网络设备向UE发送第一功率参数之前,终端发送一个上行传输,用于实现对UE的上行功率控制。例如,以网络设备为TRP1和TRP2为例,在TRP1向UE发送第一功率参数之前,UE发送一个第二上行传输,TRP1和TRP2均接收到第二上行传输。
以下以TRP1向UE发送第一功率参数之前,UE发送一个第二上行传输,TRP1和TRP2均接收到第二上行传输为例,对本申请实施例提供的一种上行功率控制方法进行说明。如图6所示,该上行功率控制方法还可以包括S601-S607:
S601、UE发送第二上行传输。
其中,第二上行传输包括:SRS;或者,第二上行传输为PUSCH;或者,第二上行传输为PUSCH时,PUSCH承载第一PHR,第一PHR中包括UE上报的第一最大发射功率。其中,SRS包括:非周期SRS、半静态SRS、周期SRS。
需要说明的是,UE接收第四信息之后,UE发送第二上行传输时才发送第一PHR。
一种可能的实现方式,UE接收TRP1发送的第三信息,该第三信息还用于指示UE发送第二上行传输。之后,UE发送第二上行传输。
另一种可能的实现方式,UE在没有接收第三信息的情况下,发送第二上行传输。在该情况下,第二上行传输包括:周期SRS、PUSCH。
可选的,UE发送第二上行传输时,上报第二上行传输的发射功率
S602、TRP2接收第二上行传输,并获取第二上行传输的测量值。
一种可能的设计中,TRP2获取第二上行传输的测量值。之后,TRP2向TRP1发送第二上行传输的测量值。
S603、TRP1接收第二上行传输,并获取第二上行传输的测量值。
一种可能的实现方式,TRP1接收UE发送第二上行传输,并获取第二上行传输的测量值。
一种可能的设计中,TRP1接收TRP2发送的第二上行传输的测量值。
需要说明的是,TRP1获取的第二上行传输的测量值和TRP1接收的由TRP2发送的第二上行传输的测量值可以相同,也可以不同。
可选的,TRP1根据TRP1获取的第二上行传输的测量值,和TRP1接收的由TRP2发送的第二上行传输的测量值,确定第一功率参数。
S604、TRP1向UE发送第一功率参数。
S605、UE获取第一功率参数。
S606、UE根据第一功率参数,确定第一发射功率。
S607、UE采用第一发射功率发送第一上行传输。
需要说明的是,对于S604-S607的说明,可以参考上述S401-S404的描述,此处不再赘述。
可选的,在UE发送上行传输之前,TRP1和TRP2发送路损信号。示例性的,如图7所示,在S501和S502之前,或者在S601之前,该上行功率控制方法还可以包括S701-S703。
S701、TRP2发送第二路损参考信号。
其中,第二路损参考信号为第二上行路径的路损参考信号。第二上行路径是UE与TRP2之间的上行路径。
一种可能的设计中,TRP2向UE发送第二路损参考信号。
另一种可能的设计中,TRP2向TRP1发送第二路损参考信号。
S702、TRP1发送第一路损参考信号。
其中,第一路损参考信号为第一上行路径的路损参考信号。第一上行路径是UE与TRP1之间的上行路径。
可选的,TRP1接收第二路损参考信号,并向UE发送第一路损参考信号和第二路损参考信号。
可选的,TRP1向UE发送第四信息,第四信息用于指示UE发射PHR。该第四信息包括:DCI、MAC CE、RRC信令。
S703、UE获取第一路损参考信号和第二路损参考信号。
一种可能的实现方式,UE获取TRP1发送的第一路损参考信号,UE获取TRP2发送的第二路损参考信号。
另一种可能的实现方式,UE获取TRP1发送的第一路损参考信号和第二路损参考信号。
可选的,在UE获取第一路损参考信号和第二路损参考信号之后,UE根据第一路损参考信号,确定第一PHR;UE根据第二路损参考信号,确定第二PHR。
一种可能的实现方式,UE根据第一路损参考信号获取第一下行路径的第一下行路损值,并根据第一下行路损值,确定第一PHR。UE根据第二路损参考信号获取第二下行路径的第二下行路损值,并根据第二下行路损值,确定第二PHR。
需要说明的是,上述S501-S508,S601-S607,S701-S703中的TRP1为本申请实施例中S401-S404中的网络设备。也就是说,S401-S404中的网络设备均可以执行TRP1所执行的动作。
以上结合图4-图7详细说明了本申请实施例提供的上行功率控制方法。以下结合图8-图11详细说明本申请实施例提供的终端设备。
示例性地,图8是本申请实施例提供的终端设备的结构示意图一。如图8所示,终端设备包括:获取单元801、确定单元802、以及发送单元803。为了便于说明,图8仅示出了该上行功率控制装置的主要部件。
在一种可能的设计方案中,终端设备可适用于图3或图4所示出的通信***中,执行图4-图7所示的上行功率控制方法中控制上行功率的功能。
其中,获取单元801,用于获取第一功率参数,第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。确定单元802,用于根据第一功率参数,确定第一发射功率。发送单元803,用于采用第一发射功率发送第一上行传输。
可选的,获取单元801,具体用于接收第一指示信息,第一指示信息用于指示第一功率参数;获取第一信息,第一信息用于指示第一指示信息与第二功率参数的映射关系;获取媒体接入控制单元,媒体接入控制单元用于指示第一指示信息与第一功率参数的映射关系。
可选的,获取单元801,还用于获取第二信息,第二信息用于使能终端设备更新功率参数。
可选的,发送单元803,还用于发送第二上行传输和/或第三上行传输。
可选的,获取单元801,还用于获取第一路损参考信号和第二路损参考信号。第二上行传输包括根据第一路损参考信号确定的第一功率余量报告,第三上行传输包括根据第二路损参考信号确定的第二功率余量报告。
可选地,图8所示的终端设备还可以包括存储模块(图8中未示出),该存储模块存储有程序或指令。当确定单元802执行该程序或指令时,使得终端设备可以执行图4-图7所示的上行功率控制方法中控制上行功率的功能。
此外,终端设备的技术效果,可以分别参考图4-图7所示的上行功率控制方法的技术效果,此处不再赘述。
示例性地,图9为本申请实施例提供的终端设备的结构示意图二。如图9所示,终端设备可以包括处理器901。可选地,终端设备还可以包括存储器902和/或收发器903。其中,处理器901与存储器902和收发器903耦合,如可以通过通信总线连接。
下面结合图9对终端设备的各个构成部件进行具体的介绍:
其中,处理器901是终端设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器901是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器901可以通过运行或执行存储在存储器902内的软件程序,以及调用存储在存储器902内的数据,执行终端设备的各种功能。
在具体实现中,作为一种实施例,网络设备1100也可以包括多个处理器,例如图9中所示的处理器901和处理器904。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器902用于存储执行本申请方案的软件程序,并由处理器901来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器902可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器902可以和处理器901集成在一起,也可以独立存在,并通过终端设备的输入/输出端口(图9中未示出)与处理器901耦合,本申请实施例对此不作具体限定。
收发器903,用于与其他终端设备之间的通信。例如,终端设备为终端设备,收发器903 可以用于与网络设备通信,或者与另一个终端设备通信。又例如,终端设备为网络设备,收发器903可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器903可以包括接收器和发送器(图9中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器903可以和处理器901集成在一起,也可以独立存在,并通过终端设备的输入/输出端口(图9中未示出)与处理器901耦合,本申请实施例对此不作具体限定。
示例性地,图10是本申请实施例提供的网络设备的结构示意图一。如图10所示,网络设备包括:发送单元1001、接收单元1002、以及确定单元1003。为了便于说明,图10仅示出了该网络设备的主要部件。
在一种可能的设计方案中,网络设备可适用于图3或图4所示出的通信***中,执行图4-图7所示的上行功率控制方法中控制上行功率的功能。
其中,发送单元1001,用于向终端设备发送第一功率参数,第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子。接收单元1002,用于接收第一上行传输,第一上行传输的发射功率是根据第一功率参数确定的。
可选的,发送单元1001,具体用于向终端设备发送第一指示信息,第一指示信息用于指示第一功率参数;向终端设备发送第一信息,第一信息用于指示第一指示信息与第二功率参数之间的映射关系;向终端设备发送媒体接入控制单元,媒体接入控制单元用于指示第一指示信息与第一功率参数之间的映射关系。
可选的,发送单元1001,还用于发送第二信息,第二信息用于使能终端设备更新功率参数。
可选的,接收单元1002,还用于接收第二上行传输,并获取第二上行传输的一个或多个测量值。确定单元1003,用于根据第二上行传输的一个或多个测量值,确定第一功率参数。
可选的,接收单元1002,还用于获取第二上行传输的测量值和第三上行传输的测量值。确定单元1003,还用于根据第二上行传输的测量值和第三上行传输的测量值,确定第一功率参数。接收单元1002,还用于获取第二上行传输的发射功率和第三上行传输的发射功率。确定单元1003,还用于根据第二上行传输的发射功率和第三上行传输的发射功率,确定第一功率参数。接收单元1002,还用于获取第二上行传输对应的第一上行路损和第三上行传输对应的第二上行路损。确定单元1003,还用于根据第一上行路损和第二上行路损,确定第一功率参数。
可选的,上行传输的测量值为上行共享信道接收功率;或者,上行传输的解调参考信号接收功率。
可选的,发送单元1001,还用于发送第一路损参考信号和第二路损参考信号。
可选地,图10所示的网络设备还可以包括存储模块(图10中未示出),该存储模块存储有程序或指令。当确定单元1003执行该程序或指令时,使得网络设备可以执行图4-图7所示的上行功率控制方法中控制上行功率的功能。
此外,网络设备的技术效果,可以分别参考图4-图7所示的上行功率控制方法的技术效果,此处不再赘述。
示例性地,图11为本申请实施例提供的网络设备的结构示意图二。该网络设备可以是终端设备或网络设备,也可以是可设置于终端设备或网络设备的芯片(***)或其他部件或组件。如图11所示,网络设备可以包括处理器1101。可选地,网络设备还可以包括存储器1102和/或收发器1103。其中,处理器1101与存储器1102和收发器1103耦合,如可以通过通信 总线连接。
下面结合图11对网络设备的各个构成部件进行具体的介绍:
其中,处理器1101是网络设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1101是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1101可以通过运行或执行存储在存储器1102内的软件程序,以及调用存储在存储器1102内的数据,执行网络设备的各种功能。
在具体实现中,作为一种实施例,网络设备也可以包括多个处理器,例如图11中所示的处理器1101和处理器1104。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1102用于存储执行本申请方案的软件程序,并由处理器1101来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器1102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1102可以和处理器1101集成在一起,也可以独立存在,并通过网络设备的输入/输出端口(图11中未示出)与处理器1101耦合,本申请实施例对此不作具体限定。
收发器1103,用于与其他网络设备之间的通信。例如,网络设备为终端设备,收发器1103可以用于与网络设备通信,或者与另一个终端设备通信。又例如,网络设备为网络设备,收发器1103可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器1103可以包括接收器和发送器(图11中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1103可以和处理器1101集成在一起,也可以独立存在,并通过网络设备的输入/输出端口(图11中未示出)与处理器1101耦合,本申请实施例对此不作具体限定。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。 通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对常规技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种上行功率控制方法,其特征在于,所述方法包括:
    所述终端设备获取第一功率参数,所述第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子;
    所述终端设备根据所述第一功率参数,确定第一发射功率;
    所述终端设备采用所述第一发射功率发送第一上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备获取第一功率参数,包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于指示所述第一功率参数;
    在所述终端设备接收所述第一指示信息之前,所述方法还包括:
    所述终端设备获取第一信息,所述第一信息用于指示所述第一指示信息与第二功率参数的映射关系;
    所述终端设备获取媒体接入控制单元,所述媒体接入控制单元用于指示所述第一指示信息与所述第一功率参数的映射关系。
  3. 根据权利要求2所述的方法,其特征在于,在所述终端设备获取所述媒体接入控制单元之前,所述方法还包括:
    所述终端设备获取第二信息,所述第二信息用于使能所述终端设备更新功率参数。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,在所述终端设备获取第一功率参数之前,所述方法还包括:
    所述终端设备发送第二上行传输和/或第三上行传输。
  5. 根据权利要求4所述的方法,其特征在于,在所述终端设备发送第二上行传输和/或第三上行传输之前,所述方法还包括:
    所述终端设备获取第一路损参考信号和第二路损参考信号;
    所述第二上行传输包括根据所述第一路损参考信号确定的第一功率余量报告,所述第三上行传输包括根据所述第二路损参考信号确定的第二功率余量报告。
  6. 一种上行功率控制方法,其特征在于,所述方法包括:
    所述网络设备向终端设备发送第一功率参数,所述第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子;
    所述网络设备接收第一上行传输,所述第一上行传输的发射功率是根据所述第一功率参数确定的。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备向所述终端设备发送第一功率参数,包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一功率参数;
    在所述网络设备向所述终端设备发送第一功率参数之前,所述方法还包括:
    所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述第一指示信息与第二功率参数之间的映射关系;
    所述网络设备向所述终端设备发送媒体接入控制单元,所述媒体接入控制单元用于指示所述第一指示信息与所述第一功率参数之间的映射关系。
  8. 根据权利要求7所述的方法,其特征在于,在所述网络设备向所述终端设备发送第一功率参数之前,所述方法还包括:
    所述网络设备发送第二信息,所述第二信息用于使能所述终端设备更新功率参数。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,在所述网络设备向所述终端设备发送第一功率参数之前,所述方法还包括:
    所述网络设备接收第二上行传输,并获取第二上行传输的一个或多个测量值;
    所述网络设备根据所述第二上行传输的一个或多个测量值,确定所述第一功率参数。
  10. 根据权利要求6-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取所述第二上行传输的测量值和第三上行传输的测量值;所述网络设备根据所述第二上行传输的测量值和第三上行传输的测量值,确定所述第一功率参数;
    或者,所述网络设备获取所述第二上行传输的发射功率和所述第三上行传输的发射功率;所述网络设备根据所述第二上行传输的发射功率和所述第三上行传输的发射功率,确定第一功率参数;
    或者,网络设备获取所述第二上行传输对应的第一上行路损和所述第三上行传输对应的第二上行路损;所述网络根据所述第一上行路损和所述第二上行路损,确定所述第一功率参数。
  11. 根据权利要求9或10所述的方法,其特征在于,上行传输的测量值为上行共享信道接收功率;或者,
    上行传输的测量值为解调参考信号接收功率。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,在所述网络设备接收第二上行传输之前,所述方法还包括:
    所述网络设备发送第一路损参考信号和第二路损参考信号。
  13. 一种终端设备,其特征在于,所述终端设备包括:
    获取单元,用于获取第一功率参数,所述第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子;
    确定单元,根据所述第一功率参数,确定第一发射功率;
    发送单元,用于采用所述第一发射功率发送第一上行传输。
  14. 根据权利要求13所述的终端设备,其特征在于,所述获取单元,具体用于
    接收第一指示信息,所述第一指示信息用于指示所述第一功率参数;
    获取第一信息,所述第一信息用于指示所述第一指示信息与第二功率参数的映射关系;
    获取媒体接入控制单元,所述媒体接入控制单元用于指示所述第一指示信息与所述第一功率参数的映射关系。
  15. 根据权利要求14所述的终端设备,其特征在于,所述获取单元,还用于
    获取第二信息,所述第二信息用于使能所述终端设备更新功率参数。
  16. 根据权利要求13-15中任一项所述的终端设备,其特征在于,
    所述发送单元,还用于发送第二上行传输和/或第三上行传输。
  17. 根据权利要求16所述的终端设备,其特征在于,所述获取单元,还用于
    获取第一路损参考信号和第二路损参考信号;
    所述第二上行传输包括根据所述第一路损参考信号确定的第一功率余量报告,所述第三上行传输包括根据所述第二路损参考信号确定的第二功率余量报告。
  18. 一种网络设备,其特征在于,所述网络设备包括:
    发送单元,用于向终端设备发送第一功率参数,所述第一功率参数包括以下至少一项:功率偏移量,路径损耗补偿因子;
    接收单元,用于接收第一上行传输,所述第一上行传输的发射功率是根据所述第一功率 参数确定的。
  19. 根据权利要求18所述的网络设备,其特征在于,所述发送单元,具体用于
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一功率参数;
    向所述终端设备发送第一信息,所述第一信息用于指示所述第一指示信息与第二功率参数之间的映射关系;
    向所述终端设备发送媒体接入控制单元,所述媒体接入控制单元用于指示所述第一指示信息与所述第一功率参数之间的映射关系。
  20. 根据权利要求19所述的网络设备,其特征在于,
    所述发送单元,还用于发送第二信息,所述第二信息用于使能所述终端设备更新功率参数。
  21. 根据权利要求18-20中任一项所述的网络设备,其特征在于,
    所述接收单元,还用于接收第二上行传输,并获取所述第二上行传输的一个或多个测量值;
    确定单元,用于根据所述第二上行传输的一个或多个测量值,确定所述第一功率参数。
  22. 根据权利要求18-20中任一项所述的网络设备,其特征在于,
    所述接收单元,还用于获取所述第二上行传输的测量值和第三上行传输的测量值;
    所述确定单元,还用于根据第二上行传输的测量值和第三上行传输的测量值,确定所述第一功率参数;
    所述接收单元,还用于获取所述第二上行传输的发射功率和所述第三上行传输的发射功率;
    所述确定单元,还用于根据所述第二上行传输的发射功率和所述第三上行传输的发射功率,确定第一功率参数;
    所述接收单元,还用于获取所述第二上行传输对应的第一上行路损和所述第三上行传输对应的第二上行路损;
    所述确定单元,还用于根据所述第一上行路损和所述第二上行路损,确定所述第一功率参数。
  23. 根据权利要求21或22所述的网络设备,其特征在于,上行传输的测量值为上行共享信道接收功率,或者,
    上行传输的测量值为解调参考信号接收功率。
  24. 根据权利要求21-23中任一项所述的网络设备,其特征在于,
    所述发送单元,还用于发送第一路损参考信号和第二路损参考信号。
  25. 一种上行功率控制装置,其特征在于,所述上行功率控制装置包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得所述上行功率控制装置执行如权利要求1-12中任一项所述的上行功率控制方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-12中任一项所述的上行功率控制方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-12中任一项 所述的上行功率控制方法。
PCT/CN2020/119756 2020-09-30 2020-09-30 一种上行功率控制方法及设备 WO2022067823A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105657.8A CN116235566A (zh) 2020-09-30 2020-09-30 一种上行功率控制方法及设备
PCT/CN2020/119756 WO2022067823A1 (zh) 2020-09-30 2020-09-30 一种上行功率控制方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119756 WO2022067823A1 (zh) 2020-09-30 2020-09-30 一种上行功率控制方法及设备

Publications (1)

Publication Number Publication Date
WO2022067823A1 true WO2022067823A1 (zh) 2022-04-07

Family

ID=80951167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119756 WO2022067823A1 (zh) 2020-09-30 2020-09-30 一种上行功率控制方法及设备

Country Status (2)

Country Link
CN (1) CN116235566A (zh)
WO (1) WO2022067823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032396A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 通信方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323841A (zh) * 2014-08-01 2016-02-10 电信科学技术研究院 一种d2d传输功率控制方法及装置
CN110139351A (zh) * 2018-02-08 2019-08-16 ***通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
US20190387479A1 (en) * 2017-03-24 2019-12-19 Huawei Technologies Co., Ltd. Systems and Method of Power Control for Uplink Transmissions
US20200059867A1 (en) * 2017-03-22 2020-02-20 Idac Holdings, Inc. Methods for performing power control in new radio (nr) systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527958B (zh) * 2009-04-09 2014-09-10 中兴通讯股份有限公司 发射功率的确定方法、基站及终端
CN101662824B (zh) * 2009-09-11 2014-08-27 北京邮电大学 协作多点***、用户设备和上行功率控制方法
CN102076062B (zh) * 2009-11-20 2015-03-11 华为技术有限公司 上行发送功率控制参数的获取方法、基站和用户设备
US10187859B2 (en) * 2011-02-14 2019-01-22 Qualcomm Incorporated Power control and user multiplexing for heterogeneous network coordinated multipoint operations
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
CN111294912B (zh) * 2017-06-29 2023-07-14 Oppo广东移动通信有限公司 用于传输信号的方法、终端设备和网络设备
US11368270B2 (en) * 2017-10-27 2022-06-21 Guangdong OPPO Mobile Telecommunications, Corp., Ltd. Data transmission method, terminal device and network device
BR112020010070A2 (pt) * 2017-11-23 2020-11-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de transmissão de sinal, dispositivo terminal, e meio legível por computador não transitório

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323841A (zh) * 2014-08-01 2016-02-10 电信科学技术研究院 一种d2d传输功率控制方法及装置
US20200059867A1 (en) * 2017-03-22 2020-02-20 Idac Holdings, Inc. Methods for performing power control in new radio (nr) systems
US20190387479A1 (en) * 2017-03-24 2019-12-19 Huawei Technologies Co., Ltd. Systems and Method of Power Control for Uplink Transmissions
CN110139351A (zh) * 2018-02-08 2019-08-16 ***通信有限公司研究院 一种功率控制方法及装置、设备、存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "On Power Control Processes for Multi Beam Transmission in NR", 3GPP DRAFT; R1-1705515 ON POWER CONTROL PROCESSES FOR MULTI BEAM TRANSMISSION IN NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051243644 *
INTERDIGITAL INC.: "On Power Control Processes for Multi Beam Transmission in NR", 3GPP DRAFT; R1-1708361 ON POWER CONTROL PROCESSES FOR MULTI BEAM TRANSMISSION IN NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051273554 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032396A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 通信方法与装置

Also Published As

Publication number Publication date
CN116235566A (zh) 2023-06-06
CN116235566A8 (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US11317355B2 (en) System and method for wireless power control
US11805486B2 (en) Method and apparatus for controlling transmission power in wireless communication system
CN111386734B (zh) 通信方法、通信装置和***
US11812390B2 (en) Uplink power control for 5G systems
US20210235386A1 (en) Signal transmission method, related device, and system
US9894621B2 (en) Power headroom reporting accounting
KR102326416B1 (ko) 무선 통신 시스템에서 단말의 송신 전력 제어 방법 및 장치
US9900872B2 (en) Systems and methods for adaptive transmissions in wireless network
US11184887B2 (en) Transmission method, network device, and terminal
WO2019101204A1 (zh) 一种功率控制的方法、装置及***
US11147029B2 (en) Method and device for controlling transmission power of terminal in beamforming system
CN106851809B (zh) 确定功率的方法及用户设备
WO2017173920A1 (zh) 一种功率控制方法及设备
US11765663B2 (en) Method and device for controlling transmission power in wireless communication system
CN110832914B (zh) 上行功率控制方法及装置
US20220030527A1 (en) Method and device for controlling transmission power of terminal in beamforming system
WO2020030117A1 (zh) 功率控制参数的确定方法及装置、存储介质、电子设备
WO2022067823A1 (zh) 一种上行功率控制方法及设备
WO2021037639A1 (en) Power control
US20170055227A1 (en) Method for controlling power of carrier signal, user equipment, and base station
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2019096316A1 (zh) 通信方法、通信装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080105657.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955843

Country of ref document: EP

Kind code of ref document: A1