WO2019101204A1 - 一种功率控制的方法、装置及*** - Google Patents

一种功率控制的方法、装置及*** Download PDF

Info

Publication number
WO2019101204A1
WO2019101204A1 PCT/CN2018/117540 CN2018117540W WO2019101204A1 WO 2019101204 A1 WO2019101204 A1 WO 2019101204A1 CN 2018117540 W CN2018117540 W CN 2018117540W WO 2019101204 A1 WO2019101204 A1 WO 2019101204A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
power control
closed loop
time unit
Prior art date
Application number
PCT/CN2018/117540
Other languages
English (en)
French (fr)
Inventor
纪刘榴
任海豹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019101204A1 publication Critical patent/WO2019101204A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, device, and system for power control.
  • the closed loop power control technology refers to a process in which a base station adjusts the signal transmission power of a terminal device according to the quality of the received signal after receiving the signal transmitted by the terminal device. Specifically, the base station notifies the terminal device to adjust the signal transmission power by transmitting transmission power control (TPC) information to the terminal device.
  • TPC transmission power control
  • the terminal device determines the signal transmission power according to the power spectral density of the signal transmission power and the bandwidth of the PUSCH. Specifically, the terminal device may be based on the following manner. Determine the signal transmission power on the PUSCH:
  • P PUSCH,c (i) is the signal transmission power of the terminal equipment on carrier c and slot i
  • P CMAX,c (i) is the maximum transmission power of the terminal equipment on carrier c and slot i
  • M PUSCH , c (i) is the carrier c, the bandwidth of the PUSCH on the slot i
  • P O_PUSCH, c (i) is the nominal power spectral density of the terminal device on the carrier c, the slot i, used to identify the base station expects to receive
  • ⁇ c (j) is the path loss compensation factor corresponding to the scheduling transmission mode j.
  • PL c is path loss, used to compensate path loss in signal transmission
  • ⁇ TF, c (i) is the modulation mode and code rate of the data
  • the related power offset of the beared signal content (such as whether there is uplink control information or the size of the uplink control information)
  • f c (i) is a closed loop power control parameter.
  • LTE closed loop power control comprises the absolute mode and accumulation mode, wherein in the absolute mode, f c (i) is the value indicated by the TPC; in accumulation mode, f c (i) is the f c (i -1) The accumulated value of the value indicated by the TPC.
  • the above power control mode is not applicable to the scenario of beam switching, and there is a need for a power control method in a communication system suitable for multi-beam transmission.
  • Embodiments of the present application provide a method, apparatus, and system for power control, in order to provide a power control method in a communication system suitable for multi-beam transmission.
  • a method for power control provided by an embodiment of the present application includes:
  • the network device sends the first configuration information to the terminal device, and after receiving the first configuration information from the network device, the terminal device determines, according to the first information, a transmit power of the signal in the first time unit, where the first configuration information is used.
  • a configuration of the first time unit, and the first configuration information includes first information, the first information indicating first resource information of the first signal.
  • the network device since the transmit power of the signal in the first time unit can be determined according to the first information, the network device does not need to add additional signaling to indicate how to determine the transmit power of the signal in the first time unit, and thus Compared with technology, it helps to reduce the overhead of signaling.
  • the first signal is a path loss measurement signal, or a synchronization signal (SS), or a channel state information reference signal (CSI-RS), or a sounding reference signal (sounding reference signal, SRS).
  • SS synchronization signal
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • one manner of determining a transmit power of a signal in the first time unit according to the first information is:
  • the terminal device receives second configuration information from the network device, the second configuration information is used for configuration of the second time unit, and the second configuration information includes second information, the second information indicating second resource information of the first signal; The first information and the second information determine a transmit power of a signal at the first time unit.
  • the transmit power of the signal in the first time unit may be determined according to the first information and the second information in the following manner. :
  • the terminal device determines that the first closed loop power control parameter is 0, or the first closed loop power control parameter is a configuration function includes a function of a first closed loop power control adjustment value, the first closed loop power control parameter is used to determine a transmit power of a signal of the first time unit; and the signal at the first time unit is determined according to the first closed loop power control parameter Transmit power.
  • the terminal device determines that the first closed loop power control parameter is the second closed loop power control parameter and the first configuration information. Included as a function of a first closed loop power control adjustment value, the first closed loop power control parameter is used to determine a transmit power of a signal of the first time unit, and the second closed loop power control parameter is used to determine a transmit power of a signal of the second time unit; The transmit power of the signal at the first time unit is determined based on the first closed loop power control parameter.
  • Another method for determining a transmit power of a signal in the first time unit according to the first information in the embodiment of the present application is:
  • the terminal device receives second configuration information from the network device, the second configuration information is used for configuration of the second time unit, and the second configuration information includes second information, where the second information indicates second resource information of the first signal;
  • the terminal device receives third configuration information from the network device, the third configuration information indicates third resource information of the second signal and is used for configuration of at least two time units; and the second signal has the same or similar spatial information as the first signal relationship;
  • the terminal device determines that the first closed loop power control parameter is a function of the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information,
  • the first closed loop power control parameter is used to determine the transmit power of the signal of the first time unit
  • the second closed loop power control parameter is used to determine the transmit power of the signal of the second time unit; and determined according to the first closed loop power control parameter The transmit power of the signal of a unit of time.
  • Another manner of determining, according to the first information, the transmit power of the signal in the first time unit in the embodiment of the present application is:
  • the terminal device receives third configuration information from the network device, the third configuration information indicating third resource information of the second signal and configured to include at least two time units of the first time unit, the second signal and the first signal having The same or similar spatial information relationship;
  • the terminal device determines that the first closed loop power control parameter is 0, or the first closed loop power control parameter is the first configuration information, where a first closed loop power control adjustment function, the first closed loop power control parameter is used to determine a transmit power of a signal of the first time unit; and determine a transmit power of the signal at the first time unit according to the first closed loop power control parameter .
  • the terminal device determines that the second closed loop power control parameter is 0, and the second closed loop power control parameter is used to determine a transmit power of the signal of the second time unit.
  • Another manner of determining, according to the first information, the transmit power of the signal in the first time unit in the embodiment of the present application is:
  • the terminal device receives third configuration information from the network device, the third configuration information indicating third resource information of the second signal and configured to include at least two time units of the first time unit, the second signal and the first signal having The same or similar spatial information relationship;
  • the terminal device determines that the first closed loop power control parameter is the second closed loop power control parameter and the first information included in the first configuration information. a function of the closed loop power control adjustment value, the first closed loop power control parameter is used to determine the transmit power of the signal of the first time unit, and the second closed loop power control parameter is used to determine the transmit power of the signal of the second time unit; and according to the first A closed loop power control parameter that determines the transmit power of the signal at the first time unit.
  • the first condition includes: the received power change value of the signal is not within the set threshold range, and/or the resource information of the signal is different;
  • the resource information of the signal includes a resource identifier (such as a resource identifier (ID), a sequence identifier, a time-frequency pattern, a time domain resource location, a frequency domain resource location, a time domain period, a frequency domain period, and a time domain offset.
  • a resource identifier such as a resource identifier (ID), a sequence identifier, a time-frequency pattern, a time domain resource location, a frequency domain resource location, a time domain period, a frequency domain period, and a time domain offset.
  • the second time unit is each of the first m time units of the first time unit, and m is an integer greater than or equal to 1.
  • the second condition includes: the received power change value of the signal is within a set threshold range, and/or the resource information of the signal is the same;
  • the resource information of the signal includes a resource identifier (such as a resource ID), a sequence identifier, a time-frequency pattern, a time domain resource location, a frequency domain resource location, a time domain period, a frequency domain period, a time domain offset, an antenna port number, and an antenna.
  • a resource identifier such as a resource ID
  • sequence identifier such as a time-frequency pattern
  • a time domain resource location such as a resource ID
  • a frequency domain resource location such as a time domain resource location
  • a time domain period such as a frequency domain resource location
  • a frequency domain period such as a frequency domain
  • a time domain offset such as a time domain offset
  • the second time unit is one of the first m time units of the first time unit, and m is an integer greater than or equal to 1.
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device determines the first closed loop power control parameter by using the second signal, or the indication information is used to indicate the determination of the transmit power of the signal.
  • the terminal device determines, according to the indication information, that the first closed loop power control parameter is determined by using the second signal.
  • the terminal device may be further defined to determine the first closed loop power control parameter by using the second signal.
  • the terminal device sends a signal to the network device according to the transmit power of the signal.
  • the above technical solution helps the network device to meet the power requirement in the signal transmitted by the receiving terminal device based on the signal transmission power.
  • the power requirement may be that when the signal arrives at the network device, the received power of the signal of the network device needs to meet the demodulation threshold; if the signal is an interference signal, the power requirement may be when the signal arrives at the network device.
  • the signal receiving power of the network equipment needs to meet the interference threshold value to avoid the interference signal from causing strong interference to the useful signal.
  • the terminal device generates a power headroom report (PHR) according to the transmit power of the signal, and sends the PHR to the network device; after receiving the PHR from the terminal device, the network device performs corresponding power control according to the PHR. .
  • PHR power headroom report
  • the first closed loop power control parameter involved in the first aspect or any possible implementation manner of the first aspect is a function of the first closed loop power control adjustment value included in the first configuration information, where The first closed loop power control adjustment value included in one configuration information is an independent variable of the function, and the first closed loop power control parameter is a function value of a function of the first closed loop power control adjustment value.
  • the function of the first closed loop power adjustment value involved in the first aspect of the present application or any possible implementation manner of the first aspect may be a first closed loop power adjustment value, or may be a first closed loop power adjustment value.
  • linear weighting means that the first closed-loop power adjustment value can be multiplied by a certain coefficient, and the value of the specific coefficient can be notified by the network device to the terminal device, for example, according to a pre-configured algorithm, and the terminal device is determined and
  • the above-mentioned coefficients are predefined, which is not limited by the embodiment of the present application.
  • the first closed loop power control parameter involved in the first aspect or any possible implementation manner of the first aspect of the present application is the second closed loop power control parameter and the first closed loop power control included in the first configuration information.
  • a function of adjusting a value wherein the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information are independent variables of the function
  • the first closed loop power control parameter is a second closed loop power control parameter and first configuration information
  • the function of the second closed loop power control parameter and the first closed loop power adjustment value involved in the first aspect of the present application or any possible implementation manner of the first aspect may be the second closed loop power control parameter and the first closed loop power.
  • the sum of the adjustment values may also be a weighted summation of the second closed loop power control parameter and the first closed loop power adjustment value, wherein the weighting refers to the second closed loop power control parameter, and the first closed loop power adjustment value may be multiplied by some
  • the value of the specific coefficient may be notified by the network device to the terminal device.
  • the network device may notify the terminal device after determining according to a pre-configured algorithm, and may also pre-define the foregoing coefficient, which is not limited in this embodiment of the present application.
  • the second information and the first signal involved in the first aspect or the first implementation of the first aspect of the present application have the same or similar spatial information relationship, and may include the antenna port corresponding to the second signal.
  • the antenna port corresponding to the first signal has a quasi co-located (QCL) relationship, the quasi co-location relationship includes at least a quasi co-location relationship with respect to the spatial parameter; and/or, the second signal corresponds to the first signal
  • QCL quasi co-located
  • the spatial filtering is the same or similar, such as the terminal device or the network device transmitting and/or receiving the same or similar spatial filtering parameters for the first signal and the second signal.
  • the spatial filtering parameters may include one or more of beamforming parameters, precoding matrices, analog beam weights, and the like.
  • the embodiment of the present application further provides a communication apparatus for performing any of the possible technical solutions provided by the first aspect or the first aspect.
  • the communication device described above includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform a corresponding function of the terminal device in the above method. For example, the transmit power of the signal at the first time unit is determined based on the first information.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, receiving first configuration information from a network device.
  • the communication device may further include one or more memories for coupling with the processor, which store program instructions and/or data necessary for the network device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the communication device may be a smart terminal or a wearable device or the like, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above communication device includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for operating a computer program in the memory, such that the communication device performs the first aspect or any of the possible implementations of the first aspect The method that the terminal device completes.
  • the communication device described above includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the network device in the above method.
  • the first configuration information is determined.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions.
  • the first configuration information is sent to the terminal device.
  • the communication device may further include one or more memories for coupling with the processor, which store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the communication device may be a base station, a gNB or a transmission reception point (TRP), etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the communication device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above communication device includes a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for executing a computer program in a memory, such that the apparatus performs the network device in any of the possible implementations of the first aspect or the first aspect The method of completion.
  • a communication system comprising the above terminal device and a network device.
  • a fourth aspect a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or the possible implementation of any of the first aspects.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the first aspect or the first aspect described above Possible methods in the implementation.
  • the method for determining power and/or power margin in a multi-beam scenario is applicable to the power control or power headroom reporting in a multi-beam scenario, for example, for a new generation.
  • Power control or power headroom reporting of a new radio access technology (NR) system is applicable to the power control or power headroom reporting in a multi-beam scenario, for example, for a new generation.
  • Power control or power headroom reporting of a new radio access technology (NR) system NR
  • FIG. 1 is a schematic diagram of a network architecture that may be applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for power control according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as a long term evolution (LTE) system, a worldwide interoperability for microwave access (WiMAX) communication system, and a fifth generation in the future.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th Generation
  • NR Universal Terrestrial Radio Access
  • 6G 6th Generation
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
  • the subscript such as W1 may be a non-subscript form such as W1, and the meaning to be expressed is consistent when the difference is not emphasized.
  • the mark P0 and PO will have mixed scenes, where 0 and O can also appear in the following form, and the meaning of the expression is consistent when the difference is not emphasized.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the device can adjust the weight of the antenna array, and perform spatial energy aggregation on the transmitted signal and the received signal, that is, spatially filtering the signal. It is commonly referred to as beamforming technology (which includes digital beamforming techniques such as precoding).
  • beamforming technology which includes digital beamforming techniques such as precoding.
  • the adjustment of the weight of the antenna array can be performed by adjusting the phase of the phase shifter and adjusting the weight of the digital precoding.
  • the resulting weight array can also be referred to as a spatial filtering parameter.
  • the embodiments of the present application are applicable to the scenario of the beam switching technology.
  • the beam switching may refer to switching of a single beam, and may also refer to switching of a beam group.
  • the embodiments of the present application can be applied to a traditional typical network or to a UE-centric network in the future.
  • the UE-centric network introduces a non-cell network architecture, that is, deploys a large number of small stations in a specific area to form a hyper cell, and each station is a transmission point of the Hyper cell ( Transmission Point, TP) or TRP, and connected to a centralized controller.
  • TP Transmission Point
  • TRP Transmission Point
  • the network side device selects a new sub-cluster (sub-cluster) for the UE to serve, thereby avoiding true cell handover and achieving continuity of the UE service.
  • the network side device includes a wireless network device.
  • different base stations may be base stations with different identifiers, or may be base stations deployed in different geographical locations with the same identifier.
  • the base station, or the baseband chip should support the method provided by the embodiment of the present application before deployment, because the base station does not know whether it will involve the scenario applied by the embodiment of the present application before the base station is deployed. It can be understood that the foregoing base station with different identifiers may be a base station identifier, or may be a cell identifier or other identifier.
  • the scenario in the embodiment of the present application is described by taking the scenario of the NR network in the wireless communication network as an example. It should be noted that the solution in the embodiment of the present application may also be applied to other wireless communication networks, and the corresponding names may also be used in other scenarios. The name of the corresponding function in the wireless communication network is replaced.
  • the beam beam can be understood as a spatial resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the transmitting or receiving precoding vector can be identified by index information.
  • the energy transmission directivity may refer to a signal having a better received power after receiving the precoding process through the precoding vector in a certain spatial position, such as satisfying a reception demodulation signal to noise ratio, etc.; Directivity may also mean that the same signals transmitted from different spatial locations are received by the precoding vector with different received power.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • one communication device can use one or more of a plurality of different precoding vectors at the same time, ie, one or more beams can be formed at the same time.
  • the information of the beam can be identified by the index information.
  • the index information may correspond to a resource identifier (identity, ID) of the terminal device (such as the user equipment UE).
  • ID resource identifier
  • the index information may correspond to the configured CSI-RS ID or resource, or may be correspondingly configured.
  • the ID or resource of the upstream SRS may also be index information of a signal or channel display or implicit bearer carried by the beam, for example, the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • the communication system 100 includes a network device 102 and a terminal device 106.
  • the network device 102 can be configured with multiple antennas, and the terminal device can also be configured with multiple antennas.
  • the communication system may also include a network device 104, which may also be configured with multiple antennas.
  • network device 102 or network device 104 may also include multiple components (eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.) associated with signal transmission and reception.
  • multiple components eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.
  • the network device is a device with a wireless transceiver function or a chip that can be disposed on the device, and the device includes, but is not limited to, an evolved Node B (eNB) and a radio network controller (RNC).
  • AP access point
  • WIFI wireless fidelity
  • TRP transmission point
  • TRP Transmission point
  • TP Transmission point
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in the 5G system
  • it may be a network node constituting a gNB or a transmission point,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • both the network device 102 and the network device 104 can communicate with a plurality of terminal devices, such as the terminal device 106 shown in the figures.
  • Network device 102 and network device 104 can communicate with any number of terminal devices similar to terminal device 106. It should be understood, however, that the terminal device in communication with the network device 102 and the terminal device in communication with the network device 104 may be the same or different.
  • the terminal device 106 shown in FIG. 1 can simultaneously communicate with the network device 102 and the network device 104, but this only shows one possible scenario, in some scenarios, the terminal device may only be associated with the network device 102 or the network device 104 communication, this application does not limit this.
  • FIG. 1 is merely a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices or may also include other terminal devices, which are not shown in FIG.
  • At least one node sends a signal to other nodes, and the purpose of power control is to make the signal sent by at least one node in the network reach the other nodes, and the power can meet the requirements of the system.
  • the node here may refer to a base station, a user equipment, and the like.
  • the power control can be such that the signal power transmitted by one user meets certain power requirements when it arrives at another user.
  • the power control may be such that the signal power transmitted by the user satisfies the power requirement of the base station when it arrives at the base station.
  • the power control may be used to ensure that the signal sent by the base station reaches the power requirement of the user equipment when reaching the user equipment.
  • the power demand in the power control may refer to the power requirement of reaching a node. For example, if the signal is a useful signal to the node, the node needs to meet the demodulation threshold for the power of the received signal, and the demand is the received signal. The power should not be too low, otherwise it will not be correctly received and demodulated. Or, for example, if the signal is a non-useful signal to the node, such as an interference signal, the node needs to meet the interference threshold value for the power of the received signal, and the demand is that the power of the received signal should not be too high. Otherwise, the signal causes strong interference to the useful signal of the node.
  • Power control can occur between one node and another node. For example, the power of one user equipment to another user equipment in a D2D scenario satisfies a certain signal to interference plus noise ratio (SINR); Between multiple nodes and one node, such as uplink in LTE, power control is to allow at least one user equipment in the network to reach the power of the base station, satisfying the signal to interference and noise ratio SINR requirement of the base station; or may occur in multiple nodes. Between multiple nodes, such as in a time division duplex (TDD) network system, there may be both uplink and downlink scheduling in the system (such as dynamic TDD technology in a 5G network). At this time, power control can be used. Many-to-many power requirements for multiple user equipments, multiple base stations in a network.
  • TDD time division duplex
  • the design of the power control is to control the signal transmission power of the nodes in the network, so that the received power of the signal satisfies the reception requirements.
  • the reception requirement may be the power requirement, the SINR requirement, or the like described above, or a singal-noise ratio (SNR) requirement.
  • SNR, SINR, IoT (interference over thermal), RSRP (reference signal received power), and received power of the signal can all be regarded as target parameters in the power control link. These parameters are not They are completely equivalent, but they are related to each other. For example, SINR and RSRP are not completely equal, but in the case of the same interference level, the higher the RSRP, the better the SINR of the signal.
  • the power control in this paper does not limit the target control parameters of the algorithm in practice. But in general, the base station can determine the parameters of the power control by comparing whether the statistical signal SINR converges to the target SINR.
  • the power control margin is the power difference between the node's ability to reach the maximum transmit power and the power at which the node sends a signal.
  • the power difference here refers to the meaning of the difference between the powers in the broad sense, and does not mean that the two powers are subtracted.
  • the power difference can be obtained by subtracting the linear value of the signal transmission power from the linear value of the maximum power, or decibel (dB) of the signal transmission power by the decibel (dB) value of the maximum power.
  • the value is obtained, in which case it is equivalent to the linear value of the maximum power divided by the linear value of the signal transmission power and then converted to the dB value, which is also called the power difference. Accordingly, the description of the formula appearing in the present application is for explaining the physical meaning of the power difference, and the formula itself can also be transformed between the subtraction of the dB value, the division of the linear value, the subtraction of the linear value, and the like.
  • the PH value can be positive, 0, and negative, and its value can be quantized.
  • the PH value is quantized to different quantization levels according to a certain quantization interval.
  • the power headroom report is sent to other nodes by the above-mentioned node that sends the signal.
  • the user equipment calculates, generates, and transmits a PHR, and the PH value is received, calculated, and applied by the base station.
  • the user equipment triggers the PHR when the trigger condition is met.
  • the UE obtains the PH value, and transmits the PH value to the PHR corresponding cell, and then sends the PHR through the carried channel.
  • the PHR cell in LTE is a type of MAC cell, and the channel carried is PUSCH.
  • the base station After receiving the PHR, the base station will be able to obtain PH information and the like in the PHR.
  • the base station can use the PH information to perform the power management process. For example, when the base station receives the PH of the user equipment is small (the PH is negative, it can also be said to be PH is small), which means that the maximum transmit power that the user equipment can support is already difficult or unable to support the transmission of the current signal.
  • the base station may adjust the resources allocated to the user equipment by using an algorithm, such as reducing the bandwidth of the signal sent by the user equipment, or the base station may adjust the transmission power of the user equipment, such as reducing the power of the signal transmitted by the user equipment (the specific means is
  • the user equipment is enabled to transmit a signal to prevent the actual transmission power density caused by the excessive power requirement due to excessive transmission power demand being lower than the power density required by the base station, resulting in deterioration of the signal quality.
  • PH power control.
  • various optimization algorithms can be designed based on the physical meaning of PH to optimize system performance.
  • the physical flow of the above PHR is not limited to the LTE network.
  • the process can also be extended, scaled, and embedded into other networks, such as 5G networks.
  • PC power control
  • PHR power headroom reporting process
  • the relevant formulas in the Power Control and Power Headroom reports are for various upstream signals or channel designs.
  • LTE including PUSCH, PUCCH and SRS
  • 5G correspondingly for uplink data channel, control channel, reference signal for demodulation, reference signal for channel reference, random access channel, etc.
  • the resource granularity calculated by the relevant formula is a resource set, and the resource set contains more than one minimum resource granularity.
  • the set of resources may be one or more of a system frame, a radio frame, a frame, a subframe, a time slot, a half slot, a minislot, a symbol, a symbol set, and the like in the perspective of the time domain.
  • the frequency domain it may be one or more of a carrier, a system bandwidth, a partial bandwidth, a bandwidth part, a sub-band, a resource block, a sub-carrier, a serving cell, and the like.
  • the granularity for the formula can be the scheduling granularity of a channel or signal.
  • a node transmits or receives signals through multiple antennas, which will be referred to as multiple-input multiple-output (MIMO).
  • MIMO multiple-input multiple-output
  • a node can adjust the MIMO transmission and reception scheme, such as adjusting the weight of the transmitting antenna, assigning different signals to different antennas, etc., and can obtain gains such as diversity and multiplexing, thereby improving system capacity and increasing system reliability.
  • massive MIMO massive MIMO
  • the wavelength of the signal is shorter, such as only the millimeter level, the corresponding antenna size will also be reduced, and the nodes in the network have the ability to configure a large-scale antenna array.
  • M-MIMO M-MIMO
  • a node can configure dozens, hundreds, or even more antenna elements. These antenna arrays can be formed into antenna arrays according to a certain arrangement, such as linear arrangement, circular arrangement, and the like.
  • the antenna gain can be obtained by adjusting the weight on the antenna array, so that the transmitted or received signal exhibits an uneven energy distribution in space.
  • the signal can be made to have an energy concentration effect in a part of the direction in space. This effect can be called beamforming. At this point the signal forms a beam in space.
  • the space here may be an angular distribution in the horizontal direction, an angular distribution in the vertical direction, and the like.
  • the antenna gain is often high, resulting in significant beam directivity of the signal. Between different beams, there will be higher isolation and they will experience different channel conditions. When two nodes use beam for communication, using different beams under different conditions may cause a large change in received power, which varies from a few dB to a dozen dB. In the power control technology of LTE, the condition of such a beam is not considered.
  • multiple power control parameters can be flexibly used for power calculation, so that in different scenarios, the terminal device can calculate the requirements according to different parameters to meet the requirements of these different scenarios.
  • a beam transmission may be used between a network device and a terminal device.
  • a beam is a physical resource. In some communication systems, it may be indexed as some pilot resources and/or time-frequency resources.
  • the physical meaning of the beam is that when transmitting or receiving signals, multiple antenna technologies can be used for transmission and reception.
  • Transmission nodes such as network devices and terminal devices can perform weight processing on multiple antennas, so that the transmitted and received signals are certain.
  • the non-uniform distribution of energy in the spatial direction causes a certain concentration of signal energy, and the aggregation of such energy can be referred to as a beam.
  • a beam can be understood as a spatial resource and can refer to a transmit or receive precoding vector with energy transmission directivity. And, the transmitting or receiving precoding vector can be identified by index information.
  • the energy transmission directivity may refer to a signal having a better received power after receiving the precoding process through the precoding vector in a certain spatial position, such as satisfying a reception demodulation signal to noise ratio, etc.; Directivity may also mean that the same signals transmitted from different spatial locations are received by the precoding vector with different received power.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • one communication device can use one or more of a plurality of different precoding vectors at the same time, ie, one or more beams can be formed at the same time.
  • the information of the beam can be identified by the index information.
  • the index information may correspond to a resource identifier (ID) of the terminal device.
  • the index information may correspond to a configured channel state information reference signal (CSI-RS) ID.
  • the resource may also correspond to the ID or resource of the configured uplink sounding reference signal (SRS).
  • the index information may also be index information of a signal or channel display or implicit bearer carried by the beam, for example, the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • the beam pair beam pair may include a transmit beam at the transmitting end and a receive beam at the receiving end, or also referred to as an uplink beam or a downlink beam.
  • the beam pair may include a gNB Tx beam transmission beam or a UE Rx beam reception beam, or a UE Tx beam transmission beam or a gNB Rx beam reception beam.
  • the beam may be switched between the network device and the terminal device. Especially when the quality of one beam is degraded, other beams may be switched for communication to ensure communication quality.
  • the terminal device can measure the PL according to the plurality of pilots and write it as PL(k), where k is a value corresponding to the measurement resource.
  • the measurement resources are corresponding to the beam.
  • the network device usually notifies the beam used by the terminal device during transmission, and the beam may include a transmit beam, a receive beam, and the like. Therefore, when receiving the indication information of such a beam, the terminal device can clearly know what measurement resource should be used for measurement, and then perform power calculation. However, when the terminal device does not receive such a beam indication, how the terminal device obtains the PL(k) of the calculated power or power margin from the plurality of PL(k) is an urgent problem to be solved.
  • a time unit which is a unit in a time domain of a resource for transmitting a signal, for example, a time unit may be a slot, a mini-slot, a half-slot, a system frame, a radio frame, a frame, a sub-slot.
  • a time unit may be a slot, a mini-slot, a half-slot, a system frame, a radio frame, a frame, a sub-slot.
  • the control parameter is 0;
  • the second time unit is a time slot (im), and m is an integer greater than or equal to 1, in which case the value of i is an integer greater than or equal to 1.
  • the second time unit involved in the various embodiments of the present application is before the first time unit, for example, the first time unit is the time slot j, and the second time unit may be the time slot (j-1), or Is a time slot (jn), where j is an integer greater than or equal to 0, and n is an integer greater than or equal to 1.
  • the resource information of the signal may include a resource identifier, a sequence identifier, a time-frequency pattern, a time domain resource location, a frequency domain resource location, a time domain period, a frequency domain period, a time domain offset, an antenna port number, an antenna port number, and One or more of the antenna port group number, the quasi-co-location indication identifier of the antenna port, the time domain identifier, the frequency domain identifier, and the like.
  • the resource identifiers can be distinguished by specific numbers, such as resource identifiers 0, 1, 2, etc., respectively, representing different resources.
  • the sequence identification may be an initialization ID of the sequence, such as a cell ID, a user-specific ID, a dedicated ID of a channel or signal, and the like.
  • the time domain identifier refers to the identity of the signal in the time domain, such as the identity of the signal represented by the time domain OFDM symbol position in the time domain.
  • the time domain offset may refer to a subframe offset, a slot offset, etc. of the signal within the time domain unit.
  • the quasi-co-location indication identifier of the antenna port may be used to indicate the quasi-co-location information between the antenna ports, and the indication of the quasi-co-location indication domain is an indication identifier, optionally, the
  • the indication field can be embodied in the form of a bit.
  • the resource information of the SS may include one or more of a sequence of a synchronization signal, a seed of a sequence, a time domain resource location (such as a time domain symbol location), a frequency domain resource location, and the like; the resource information of the CSI-RS may include a CSI.
  • -RS resource identifier such as sequence scrambling identifier
  • time domain resource location such as sequence scrambling identifier
  • frequency domain resource location such as CSI-RS in each physical resource block (physical resource block, PRB) (the number of REs occupied by each port)
  • frequency band of CSI-RS such as CSI-RS of wideband, CSI-RS of partial bandwidth
  • resource mapping of CSI-RS such as CSI-RS in one time slot
  • Mapped time domain symbols and frequency domain RE Mapped time domain symbols and frequency domain RE
  • time domain configuration of CSI-RS including CSI-RS period and slot offset, etc.
  • number of ports resource ID, CSI-RS relative to physical downlink shared channel (physical Downstream shared channel (PDSCH) power offset, time domain behavior (such as period, semi-static), plus One or more of the scrambling ID
  • Closed loop power control parameters refer to the parameters of closed loop power control in power control technology.
  • open loop power control parameters and/or closed loop power control parameters may generally be included.
  • the parameter controlled by the closed loop power control technology is a closed loop power control parameter.
  • the closed-loop power control adjustment value can be used to adjust the closed-loop power control parameters in the closed-loop power control technology.
  • the determination of the closed-loop power control parameters is determined based on the closed-loop power control adjustment values.
  • the configuration information refers to configuration information used for one or more of receiving, measuring, transmitting, and the like of the terminal device.
  • the two signals have the same or similar spatial information relationship, and the antenna port corresponding to the second signal has a quasi co-located (QCL) relationship with the antenna port corresponding to the first signal, and the quasi-co-location relationship is at least Including a quasi-co-location relationship with respect to spatial parameters; and/or, the second signal is the same or similar to the spatial filtering corresponding to the first signal, such as the terminal device or the network device adopting the same or similar spatial filtering on the first signal and the second signal Parameters are sent and/or received.
  • the spatial filtering parameters may include one or more of beamforming parameters, precoding matrices, analog beam weights, and the like.
  • the quasi co-located (QCL) relationship between the two antenna ports means that the channel large-scale parameter of one antenna port can be obtained by another antenna port to obtain a large-scale parameter of the channel.
  • Large-scale parameters may include average gain, average delay, delay spread, Doppler shift, Doppler spread, spatial parameters ( One or more of the spatial parameter, or spatial Rx parameters.
  • the spatial parameters may include an Angle of Arrival (AOA), a Dominant AoA, an Average AoA, an Angle of departure (AOD), a channel correlation matrix, and an angle of arrival power.
  • AOA Angle of Arrival
  • Dominant AoA Dominant AoA
  • Average AoA Average AoA
  • AOD Angle of departure
  • channel correlation matrix channel correlation matrix
  • angle of arrival power Angle spread spectrum, average firing angle (Average AoD), power angle spread spectrum of departure angle, transmit channel correlation, receive channel correlation, transmit beamforming, receive beamforming, spatial channel correlation, spatial filter, or space
  • “Multiple” means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character “/” generally indicates that the contextual object is an "or” relationship.
  • “At least one” means one or more; “at least one of A and B”, similar to "A and/or B", describing the association of associated objects, indicating that there may be three relationships, for example, A and B. At least one of them may indicate that A exists separately, and A and B exist simultaneously, and B cases exist separately.
  • Signals may include physical channels, physical signals, and the like.
  • the physical channel may refer to an uplink channel and/or a downlink physical channel.
  • the signal can include a physical signal.
  • the physical signal may include a reference signal and/or a synchronization signal, and the like.
  • the sync signal block essentially refers to a signal containing a sync signal, which may also include a broadcast channel.
  • the signal itself is carried by some physical resources.
  • a resource may refer to one or more of a time domain resource, a frequency domain resource, a code domain resource, and an airspace resource.
  • the network device in order to be compatible with the existing power control mode, the network device usually indicates whether the terminal device closed-loop power control parameter is set to zero or accumulated by adding additional signaling.
  • the embodiment of the present application provides a method for power control to be applied to power control or power headroom reporting in an NR system. It can be understood that the method provided by the embodiment of the present application can also be applied to other systems, and is not limited to the multi-beam transmission system mentioned in this application.
  • the embodiments of the present application can be applied to network devices and network devices (such as macro base stations and micro base stations), network devices and terminal devices, terminal devices and terminal devices (such as device-to-device D2D, and in-vehicle devices to other devices V2X communication).
  • Communication the communication between the network device and the terminal device is taken as an example, but is not limited thereto, and may be collectively referred to as communication between the transmitting end and the receiving end.
  • the uplink may refer to the terminal device as the transmitting end, the network device as the receiving end, and the downlink device may refer to the network device as the transmitting end and the terminal device as the receiving end.
  • the uplink may refer to one transmission direction
  • the downlink may refer to another transmission direction opposite to the uplink.
  • a schematic flowchart of a method for power control according to an embodiment of the present application includes the following steps:
  • Step 201 The network device sends the first configuration information to the terminal device, where the first configuration information is used for configuration of the first time unit, and the first configuration information includes first information, where the first information is used to indicate the first signal. First resource information.
  • Step 202 The terminal device receives the first configuration information from the network device, and determines the transmit power of the signal in the first time unit according to the first information.
  • the terminal device may determine, according to the first information, the transmit power of the signal of the first time unit, and send a signaling to the terminal device by using the network device to indicate that the terminal device determines the transmit of the signal of the first time unit. Compared to power, it helps to reduce signaling overhead.
  • the first signal in the embodiment of the present application may be an SS
  • the SS involved in the embodiment of the present application may refer to a primary synchronization signal (PSS) and/or a secondary synchronization signal (SSS). Or one or more of a synchronization signal and a PBCH block (SSB).
  • the terminal device may obtain the first configuration information sent by the network device by using a blind detection mode, where the first configuration information may be sent to the terminal device by using a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the terminal device may obtain the first configuration information by means of the network device notification, where the first configuration information may be through high layer signaling, such as radio resource control (RRC) signaling, or physical layer signaling, as follows:
  • RRC radio resource control
  • DCI downlink control information
  • the terminal device may obtain the first configuration information by means of a blind check and a network device notification, where part of the first configuration information, such as a time domain symbol position, is sent to the terminal device through the PBCH, and another part of the first configuration information is transmitted through the network device.
  • the manner of the notification is sent to the terminal device, and the specific part of the first configuration information may be sent to the terminal device by using high layer signaling, such as RRC signaling, or physical layer signaling, such as DCI.
  • the terminal device obtains the first configuration information by using any one of the foregoing manners, which is not limited in this embodiment.
  • the first signal in the embodiment of the present application may also be a signal for uplink beam indication, such as a reference signal CSI-RS for channel measurement, or a reference signal SRS for channel sounding, and a reference signal for demodulation.
  • a reference signal CSI-RS for channel measurement
  • SRS reference signal for channel sounding
  • a reference signal for demodulation for demodulation.
  • DMRS demodulation reference signal
  • the signal CSI-RS used for channel measurement may be a non-zero power signal CSI-RS for channel measurement.
  • the reference signal for channel sounding may be a non-zero power reference signal for channel sounding.
  • the reference signal DMRS for demodulation may be a solution for one or more of a PDSCH, a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH), and a PUSCH. Adjusted reference signals, etc.
  • the first configuration information may be sent to the terminal device by using high layer signaling, such as RRC signaling, and/or physical layer signaling DCI.
  • high layer signaling such as RRC signaling, and/or physical layer signaling DCI.
  • the first signal may be one or more of an uplink signal, such as an SRS, or a DMRS for the PUSCH, or a DMRS for the PUCCH;
  • the first signal may be an uplink signal or a downlink signal, such as SRS, or DMRS for PUSCH, DMRS for PUCCH, CSI-RS, DMRS for PDSCH, and PDCCH for PDCCH.
  • SRS SRS
  • DMRS for PUSCH DMRS for PUCCH
  • CSI-RS CSI-RS
  • DMRS for PDSCH CSI-RS
  • PDCCH for PDCCH.
  • the corresponding relationship means that the uplink beam and the downlink beam may have similar channel space characteristics, and therefore, another spatial information may be obtained by knowing one of the spatial information.
  • the first signal may also be a physical channel, such as one or more of a physical downlink data channel PDSCH, a physical downlink control channel PDCCH, a physical uplink data channel PUSCH, or a physical uplink control channel PUCCH.
  • the first configuration information may indicate resource information of the physical channel, such as a resource identifier indicating the physical channel.
  • the first signal in the embodiment of the present application may also be a path loss measurement signal.
  • the path loss measurement signal may be an SS, a CSI-RS, a DMRS, or a time-frequency tracking signal (TRS). Wait.
  • the network device may indicate, by using the path loss measurement signal indication, which signal the terminal device uses as the path loss measurement signal, for example,
  • the path loss measurement signal indication includes a signal type. For example, if the signal type is SS, the terminal device uses SS as the path loss measurement signal.
  • the path loss measurement signal is SS
  • the terminal device directly uses the SS for the first time unit configuration.
  • the configuration information is used as the first configuration information, and the method for obtaining the first configuration information is similar to the method for obtaining the first configuration information when the first signal is the SS, and details are not described herein again.
  • the terminal device uses the CSI-RS as the path loss measurement signal.
  • the path loss measurement signal is the CSI-RS signal
  • the terminal device can directly use the CSI-RS for the first time unit configuration.
  • the configuration information is used as the first configuration information, and the manner of obtaining the first configuration information is similar to the manner in which the first configuration information is obtained when the first signal is a CSI-RS, and details are not described herein again.
  • Manner 1 The terminal device directly determines the transmit power of the signal of the first time unit according to the first information.
  • the terminal device determines the transmit power of the signal according to whether the configuration information of the signal of the first time unit is a reference configuration information set.
  • the reference configuration set is pre-defined or sent by the network device to the terminal device.
  • the reference configuration set has a corresponding relationship with a method of determining a transmit power of a signal.
  • a set of beam resources is predefined or indicated to the terminal device.
  • the beam resource set includes N beams, where N is an integer greater than or equal to 1.
  • the set of beam resources has a corresponding relationship with a method of determining closed loop power control parameters.
  • the first method for determining the closed loop power control parameter may be determining that the first closed loop power control parameter is a function of the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information (eg, the second closed loop power control parameter and
  • the first configuration information includes a sum of first closed loop power control adjustment values, or a weighted sum, wherein the second closed loop power control parameter is used to determine a transmit power of a signal of the second time unit; and the second determined closed loop power control parameter
  • the method may be determining that the first closed loop power control parameter is 0, or the first closed loop power control adjustment value included in the first configuration information.
  • the beam resource set has a corresponding relationship with the first method of determining a closed loop power control parameter or the second method of determining a closed loop power control parameter.
  • the set of beam resources has a corresponding relationship with the first method of determining closed loop power control parameters.
  • the method of determining the closed loop power control parameter is applied.
  • the second method of determining the closed loop power control parameter is applied.
  • the network device notifies the terminal device power control parameter set or the predefined power control parameter set.
  • the power control parameter set may be a set of [P O , ⁇ ], where P O is a nominal power spectral density and ⁇ is a path loss compensation factor, if the power control parameter set includes a J group [P O , ⁇ ]
  • the network device notifies the terminal device or a subset of the predefined J groups [P O , ⁇ ].
  • the power control parameter set may be a set of P O. If the power control parameter set includes J group P O , the network device notifies the terminal device or a subset of the predefined J group P O .
  • the set of power control parameters may also be a collection of other one or more power control parameters.
  • the subset has a corresponding relationship with a method of determining closed loop power control parameters.
  • the subset has a corresponding relationship with the first method of determining closed loop power control parameters.
  • the method for determining the closed loop power control parameter may be: determining a first closed loop power control parameter as a function of the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information, where the second closed loop power control parameter is used
  • the method for determining the transmit power of the signal of the second time unit; the second method of determining the closed loop power control parameter may be determining that the first closed loop power control parameter is 0, or the first closed loop power control adjustment value included in the first configuration information.
  • the manner of determining the transmission power of the signal of the first time unit is similar or different, and is not limited herein.
  • the second time unit is preceded by the first time unit, for example, the first time unit is time slot j, and the second time unit may be time slot (j-1) or time slot (jn). Where j is an integer greater than or equal to 0, and n is an integer greater than or equal to 1.
  • the relationship between the second time unit and the first time unit also satisfies the second time unit before the first time unit, The description will not be repeated during the introduction.
  • the power of the signal transmission power can be determined based on the following manners:
  • P PUSCH,c (i) is the transmit power of the signal of the terminal device on the carrier c, the time unit i (such as the time slot i, the subframe i);
  • P CMAX,c (i) is the terminal device on the carrier c, Maximum transmit power on time unit i;
  • M PUSCH,c (i) is carrier c, bandwidth of PUSCH on time unit i;
  • P O_PUSCH,c (i) is power spectral density of terminal equipment on carrier c, time unit i
  • the nominal power spectral density is used to identify the reference power level of the signal that the base station expects to receive;
  • n is related to the scheduling delay. If the control message sent by the network device in the time unit (in) is the scheduling time unit i, then n refers to the time from when the control message is received to when the control message takes effect.
  • the bandwidth of the PUSCH in the embodiment of the present application is used to indicate the number of resource blocks (RBs) occupied by the uplink transmission signal in the frequency domain, and may also represent the total frequency band occupied by the uplink transmission signal in the frequency domain.
  • the path loss compensation factor ⁇ also referred to as alpha
  • the network device is configured to the terminal device for semi-static transmission, for non-based scheduling information transmission, for random access phase
  • the preamble information is transmitted to the terminal device for P O and alpha based on one or more of the dynamically scheduled transmissions.
  • Multiple sets of P O , ⁇ values can also be configured for nominal power spectral density and path loss factor based on dynamic scheduled transmission.
  • the formula for determining the transmission power of the signal of the above PUSCH is only an example, and it can be understood that the transmission power of the signal is related to one or more of the influence factors on the right side of the formula, or is the influence factor on the right side of the formula.
  • the impact factor may include channel bandwidth, reference power, offset parameters of a specific channel or signal format, offset of information content carried by the channel, maximum transmit power, path loss, path loss compensation factor, closed loop power control parameter, channel Or one or more of the offset parameters of the signal transmission mode, and the like.
  • Manner 2 The terminal device receives the second configuration information from the network device, the second configuration information is used for the configuration of the second time unit, and the second configuration information includes the second information, where the second information indicates the second resource information of the first signal. And determining the transmit power of the signal of the first time unit based on the first information and the second information.
  • the second method for determining the closed loop power control parameter may be applied.
  • the determining the second determined closed loop power control parameter includes: determining that the first closed loop power control parameter is 0, determining that the first closed loop power control parameter is a function of the first closed loop power control adjustment value included in the first configuration information, or Determining that the second closed loop power control parameter is one or more of zero.
  • the first closed loop power control parameter is used to determine a transmit power of a signal of the first time unit; and determine a transmit power of the signal according to the first closed loop power control parameter.
  • the second closed loop power control parameter is used to determine the transmit power of the signal of the second time unit.
  • the first condition may include one or more of different resource information of the signal, or the received power change value of the signal is not within the set threshold range.
  • the resource information of the signal may include a resource identifier (also referred to as a resource ID), a sequence identifier, a time-frequency pattern, a time domain resource location, a frequency domain resource location, a time domain period, a frequency domain period, a time domain offset, and an antenna port.
  • the number, the antenna port number, the quasi-co-location indication identifier, the time domain identifier, and the frequency domain identifier of the antenna port are different, and the resource information of the signal refers to at least one parameter different from the resource information of the signal.
  • the time domain identifier may refer to a time domain symbol location
  • the frequency domain identifier may refer to a frequency domain location identifier.
  • the first signal corresponding to the first resource information is different from the resource ID of the first signal corresponding to the second resource information, the first signal corresponding to the first resource information and the first signal corresponding to the second resource information are satisfied.
  • First condition if the resource ID of the first signal corresponding to the first resource information is different from the resource ID of the first signal corresponding to the second resource information, the first signal corresponding to the first resource information and the first signal corresponding to the second resource information are satisfied.
  • the first resource is The first signal corresponding to the information and the first signal corresponding to the second resource information meet the first condition, where each OFDM symbol position corresponds to one beam resource, and each first signal corresponds to a different beam resource, for example, the first signal is SS SS1 corresponds to beam resource 1, and SS2 corresponds to beam resource 2.
  • the SS1 corresponding OFDM symbol position is different from the OFDM symbol position corresponding to SS2.
  • the first signal corresponding to the first resource information corresponds to the second resource information.
  • the first signal satisfies the first condition, where the frequency domain identifier corresponds to one beam resource, and each first signal corresponds to a different beam resource, for example, the first signal is a CSI-RS, the CSI-RS1 corresponds to a beam resource 1, and the CSI-RS2 corresponds to For the beam resource 2, the frequency domain identifier corresponding to the CSI-RS1 is different from the frequency domain identifier corresponding to the CSI-RS2.
  • the frequency domain identifier may be an identifier of a frequency domain location where the signal is located, such as an identifier of a resource block (RB) location.
  • the beam resource refers to the spatial differentiation of resources, that is, the spatial information corresponding to different beam resources is different.
  • the beam resource may be one or more of the following, or may be other resources or represented by other resources (ie, corresponding to other resources), and is not limited herein:
  • Logical number A logical number may correspond to dynamically changing transmit and receive beam pairs. It can be a reduced mapping of CSI-RS resource number/antenna port number. That is to say, the network device may use a large number of CSI-RS resources/antenna ports in total, but for a certain terminal device, the CSI-RS resources/antenna ports it measures and uses are only a subset, so the ratio can be adopted. Directly indicating that the CSI-RS resource/antenna port is reduced in a manner to indicate the CSI-RS used before the terminal device, thereby indicating the corresponding beam of the terminal device.
  • Beam pair link (BPL) number Refers to an indication of the transmit and receive beam pairs.
  • the terminal device is informed of the corresponding beam by indicating the previously used/measured CSI-RS resource number/antenna port number.
  • Synchronization signal block time index SS block time index. That is, the time number of the SS block received by the terminal device. Can be used to inform the terminal device of the corresponding beam.
  • the first signal corresponding to the first resource information and the first signal corresponding to the second resource information satisfy the received power change value of the signal is not within a set threshold, for example, the terminal device receives the first signal corresponding to the first resource information.
  • the difference between the received power of the signal and the received signal of the first signal corresponding to the second resource information received by the terminal device is X. If the threshold range is set to [a, b], where X is not in the threshold range [a, b]
  • the value of a and b may be defined in advance, or may be determined by the network device according to a pre-configured algorithm, which is not limited in this embodiment of the present application.
  • the value of the received power of the signal in the embodiment of the present application may be a difference between the received power of the signal, or a ratio of the received power of the signal, and may be a value obtained by taking the ratio of the received power of the signal.
  • the threshold range set above corresponds to the first method for determining the closed loop power control parameter, and further, the set threshold range may also correspond to the method of the second closed loop power control, when the set threshold range is compared with the second closed loop power control
  • the method corresponds to the first signal corresponding to the first resource information and the first signal corresponding to the second resource information
  • the first signal corresponding to the first resource information is used.
  • the first signal corresponding to the second resource information satisfies the first condition.
  • the first condition may further change, at least one of a mapping relationship between the measurement resource and the beam resource, P O , and ⁇ , for example, the first signal corresponding to the first resource information and the second resource information
  • the mapping relationship between the measurement resource and the beam resource of the first signal corresponding to the first resource information is different from the mapping relationship between the measurement resource and the beam resource of the first signal corresponding to the second resource information, and the first corresponding to the first resource information and a second P O P O resource information corresponding to the first signal, different signals, different [alpha] [alpha] of the first signal, the first resource information corresponding to the first signal, a second resource corresponding to at least one, the first
  • the first signal corresponding to the first information and the first signal corresponding to the second resource information satisfy the first condition.
  • the measurement resource refers to a resource used to measure path loss, such as a signal resource identifier, a time-frequency pattern, a frequency domain resource location, a time domain resource location, a frequency domain period, a time domain period, or One or more of the time domain offsets, and the beam resources refer to the spatial differentiation of resources, that is, the spatial information corresponding to different beam resources is different.
  • the second time unit is each of the first m time units of the first time unit, and m is a positive integer greater than or equal to 1.
  • the m value may be pre-defined or notified by the network device. For example, if the m value is 1, the second time unit is the previous time unit of the first time unit, or the m value is greater than or equal to 2 positive integers. Then, in the first m time units of the first time unit, the first signal corresponding to the first resource information and the first signal corresponding to the first resource information satisfy the first condition.
  • the method for determining the closed loop power control parameter may be applied.
  • the first method for determining the closed loop power control parameter is to determine that the first closed loop power control parameter is a function of the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information (eg, the first closed loop power)
  • the control parameter is a sum of the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information, or a weighted sum.
  • the first closed loop power control parameter is used to determine the transmit power of the signal of the first time unit
  • the second closed loop power control parameter is used to determine the transmit power of the signal of the second time unit; and determined according to the first closed loop power control parameter. The transmit power of the signal at the first time unit.
  • the second condition may include one or more of the same resource information of the signal, or the received power change value of the signal being within a set threshold range.
  • the resource information of the signal may include a resource identifier, a sequence identifier, a time-frequency pattern, a time domain resource location, a frequency domain resource location, a time domain period, a frequency domain period, a time domain offset, an antenna port number, an antenna port number, and an antenna port.
  • the same resource information of the signal means that the resource information of the signal includes the same parameters.
  • the resource information of the signal includes the resource identifier and the time-frequency pattern
  • the resource identifier of the first signal corresponding to the first resource information is the same as the resource identifier of the first signal corresponding to the second resource information
  • the first resource information corresponds to the first
  • the terminal device determines that the first signal corresponding to the first resource information and the first signal corresponding to the second resource information satisfy the second condition.
  • the terminal device determines whether the first signal corresponding to the first resource information and the first signal corresponding to the second resource information meet the second condition, and the resource information of the signal includes
  • the resource identifier and the time-frequency pattern are used, the manner in which the terminal device determines whether the first signal corresponding to the first resource information and the first signal corresponding to the second resource information meet the second condition is similar, and details are not described herein again.
  • the difference between the signal receiving power of the first signal corresponding to the first resource information and the signal receiving power of the first signal corresponding to the second resource information received by the terminal device is Y, if the threshold range is set to [ c, d], wherein Y is within the threshold range [c, d], the first signal corresponding to the first resource information and the first signal corresponding to the second resource information satisfy the second condition.
  • the value of c and/or d may be defined in advance, or may be determined by a network device according to a pre-configured algorithm, which is not limited in this embodiment of the present application.
  • the value of the received power of the signal in the embodiment of the present application may be a difference between the received power of the signal, or a ratio of the received power of the signal, and may be a value obtained by taking the ratio of the received power of the signal.
  • the threshold range here and the corresponding threshold range when describing the first condition may be the same or different, and are not limited herein.
  • the threshold range may also be a threshold, that is, a relationship with the threshold is satisfied, such as less than (or equal to) the threshold, and the second condition is satisfied.
  • the threshold range may also be a threshold, that is, the relationship with the threshold is satisfied, such as greater than (or equal to) the threshold, and the first condition is satisfied.
  • the threshold corresponding to the first condition and the threshold corresponding to the second condition may be the same or different, and are not limited herein.
  • the second condition may also be that the mapping relationship between the measurement resource and the beam resource, P O , and ⁇ are unchanged.
  • the first information corresponding to the first resource information and the first information corresponding to the second resource information are simultaneously satisfied.
  • the mapping relationship between the measurement resource and the beam resource of the first signal corresponding to the first resource information is the same as the mapping relationship between the measurement resource and the beam resource of the first signal corresponding to the second resource information, and the P of the first signal corresponding to the first resource information P O O the same with the first signal corresponding to a second resource information, and the same ⁇ ⁇ a first signal corresponding to the first resource information and the resource information of the first signal corresponding to the second case, the first resource information
  • the first signal corresponding to the first signal and the second resource information satisfies the first condition.
  • the measurement resource refers to a resource used to measure path loss, such as a signal resource identifier, a time-frequency pattern, a frequency domain resource location, a time domain resource location, a frequency domain period, a time domain period, and a time period for performing path loss measurement.
  • a resource used to measure path loss such as a signal resource identifier, a time-frequency pattern, a frequency domain resource location, a time domain resource location, a frequency domain period, a time domain period, and a time period for performing path loss measurement.
  • the beam resource refers to the spatial differentiation of resources, that is, the spatial information corresponding to different beam resources is different.
  • the second time unit is one of the first m time units of the first time unit, and m is a positive integer greater than or equal to 1.
  • the m value may be pre-defined or notified by the network device. For example, if the m value is 1, the second time unit is the previous time unit of the first time unit, or the m value is greater than or equal to 2 positive integers.
  • the second time unit is a time unit of the first m time units of the first time unit, and the specific time unit of the first m time units of the first time unit is determined by the following manner: In the previous time unit of the first time unit, if the first signal corresponding to the first resource information and the first signal corresponding to the second resource information satisfy the second condition, the second time unit is the previous one of the first time unit a time unit, if the first signal corresponding to the first resource information and the first signal corresponding to the second resource information do not satisfy the second condition, continue to determine the first two time units of the first time unit, if the first resource information corresponds to the first The first signal corresponding to the signal and the second resource information satisfies the second condition, and the second time unit is the first two time units of the first time unit, if the first resource letter If the first signal corresponding to the first signal and the first signal corresponding to the second resource information do not satisfy the second condition, continue to determine the first three time units of the first time unit until the first m time units in the first
  • the transmit power of a signal can be determined based on the following methods:
  • M SRS,c represents the bandwidth of the frequency domain resource used for transmitting the SRS
  • P O_SRS,c (k) represents the nominal (or reference) power of the SRS (which may also be referred to as a power density reference value), including the cell of the SRS.
  • k 0 or 1
  • ⁇ SRS,c denotes the path loss adjustment factor of the SRS (or Compensation factor)
  • PL c represents the path loss
  • f SRS,c (i) is the closed-loop power control parameter.
  • the c in the embodiment of the present application is used to indicate that the parameter corresponds to the serving cell c, or the carrier component c, or is used for the transmission point c (eg, the DMRS pilot group 1 is the transmission point 1, and the DMRS pilot group 2 is the transmission point). 2, can be known through the QCL instructions).
  • i is used to represent time unit i, such as subframe i, slot i.
  • the second time unit may be a time slot (ik), k is a positive integer greater than or equal to 1, and the first signal corresponding to the first resource information and the first corresponding to the second resource information
  • f SRS,c (i) f SRS,c (ik)+ ⁇ (in)
  • f SRS,c (ik) is the second closed-loop power control parameter
  • ⁇ (in) is the first The closed-loop power control adjustment value
  • the value of k and n is greater than or equal to 1 positive integer.
  • the formula for determining the transmission power of the signal of the above SRS is only an example, and it can be understood that the transmission power of the signal is related to one or more of the influence factors on the right side of the formula, or is the influence factor on the right side of the formula.
  • the impact factor may include channel bandwidth, reference power, offset parameters of a specific channel or signal format, offset of information content carried by the channel, maximum transmit power, path loss, path loss compensation factor, closed loop power control parameter, channel Or one or more of the offset parameters of the signal transmission mode, and the like.
  • the terminal device receives second configuration information from the network device, where the second configuration information is used for configuration of the second time unit, and the second configuration information includes second information, where the second information indicates the second resource of the first signal Information; receiving third configuration information from the network device, wherein the third configuration information indicates third resource information of the second signal and is configured for at least two time units; the second signal is the same or similar to the first signal a spatial information relationship; when the at least two time units include the first time unit and the second time unit, determining that the first closed loop power control parameter is the second closed loop power control parameter and the first closed loop power control adjustment value included in the first configuration information a function, the first closed loop power control parameter is used to determine a transmit power of a signal of a first time unit, and the second closed loop power control parameter is used to determine a transmit power of a signal of the second time unit; and according to the first closed loop power Control parameters that determine the transmit power of the signal at the first time unit.
  • the first signal is a CSI-RS
  • the second signal is an SS
  • the SS has the same or similar spatial information relationship with the CSI-RS.
  • the spatial information relationship may include that the CSI-RS is the same as or similar to the spatial filtering corresponding to the SS, and/or the antenna port corresponding to the CSI-RS has a QCL relationship with the antenna port corresponding to the SS, and the QCL relationship includes at least a spatial parameter.
  • the QCL relationship When the at least two time units include the second time unit and the first time unit, the beam corresponding to the first resource information and the beam corresponding to the second resource information have similar channel characteristics.
  • the terminal device receives third configuration information from the network device, the third configuration information indicates third resource information of the second signal, and is configured to include at least two time units of the first time unit, the second signal and the A signal has the same or similar spatial information relationship. And receiving fourth configuration information from the network device, the fourth configuration information indicating fourth resource information of the second signal and configured to include at least two time units of the second time unit; the second signal corresponding to the third resource information And determining, when the second signal corresponding to the fourth resource information meets the first condition, that the first closed loop power control parameter is 0, or a function of the first closed loop power control adjustment value included in the first configuration information, where the first closed loop power control parameter is used Determining a transmit power of a signal of the first time unit; and determining a transmit power of the signal at the first time unit according to the first closed loop power control parameter.
  • the at least two time units including the first time unit and the at least two time units including the second time unit are different time units, for example, at least two times including the first time unit.
  • the unit includes a time unit 1, a time unit 2, a time unit 3, and a time unit 4, wherein the time unit 1 is a first time unit, and at least two time units including the second time unit include a time unit 5, a time unit 6, and a time unit 7 and time unit 8, wherein time unit 5 is a second time unit, then time unit 1, time unit 2, time unit 3, time unit 4, time unit 5, time unit 6, time unit 7 and time unit 8 are different Time unit.
  • the first condition in the fourth mode is similar to the first condition in the second mode, and is only the description of the first signal in the second mode, and the second signal in the fourth mode is described, and details are not described herein again.
  • the terminal device receives the third configuration information from the network device, where the third configuration information indicates the third resource information of the second signal and is used to configure the at least two time units of the first time unit, the second signal Has the same or similar spatial information relationship with the first signal.
  • the fourth configuration information indicating fourth resource information of the second signal and configured to include at least two time units of the second time unit; the second signal corresponding to the third resource information And determining, by the second closed-loop power control parameter, a function of the second closed-loop power control parameter and the first closed-loop power control adjustment value included in the first configuration information, where the second signal corresponding to the fourth resource information satisfies the second condition,
  • a closed loop power control parameter is used to determine the transmit power of the signal of the first time unit
  • a second closed loop power control parameter is used to determine the transmit power of the signal of the second time unit. The transmit power of the signal at the first time unit is then determined based on the first closed loop power control parameter.
  • the same or similar spatial information relationship may include that the second signal is the same or similar to the spatial filtering corresponding to the first signal, and/or the antenna port corresponding to the second signal has a QCL relationship with the antenna port corresponding to the first signal.
  • the QCL relationship includes at least a QCL relationship with respect to spatial parameters.
  • the second condition in the fifth method is similar to the second condition in the second method.
  • the second condition is described by the second condition
  • the fifth method is the description for the second signal. No longer.
  • the terminal device determines the first closed loop power control parameter according to the second signal, and in order to facilitate the terminal device to determine to use the second signal to determine the first closed loop power control parameter, optionally, the network device sends the terminal to the terminal.
  • the device transmits indication information for the determination of the closed loop power control parameter or for the determination of the transmit power of the signal.
  • the second signal is predefined as a signal for determining a closed loop power control parameter.
  • the function of the first closed loop power control adjustment value involved in the first mode, the second mode, the third mode, the fourth mode, and the fifth mode in the embodiment of the present application may be the first closed loop power adjustment value, or may be the first closed loop power adjustment value.
  • the above-mentioned coefficients may be predefined, which is not limited by the embodiment of the present application.
  • the functions of the second closed loop power control parameter and the first closed loop power adjustment value involved in the first mode, the second mode, the third mode, the fourth mode, and the fifth mode in the embodiment of the present application may be the second closed loop power control parameter and the first closed loop.
  • the sum of the power adjustment values may also be a weighted summation of the second closed loop power control parameter and the first closed loop power adjustment value, etc., wherein the weighting refers to the second closed loop power control parameter, and the first closed loop power adjustment value may be multiplied by A certain coefficient, the value of the specific coefficient may be notified by the network device to the terminal device.
  • the network device may notify the terminal device after determining according to a pre-configured algorithm, and may also pre-define the foregoing coefficient, which is not limited in this embodiment of the present application.
  • the first closed loop power control adjustment value of the embodiment of the present application may be indicated by a TPC, where a specific TPC may indicate an index number, where the index number corresponds to a closed loop power control adjustment value, for example, an index number and a closed loop power.
  • Table 1 The correspondence between the control adjustment values is shown in Table 1.
  • the TPC indicates 1, and in specific implementation, the TPC may be a separate DCI domain, or a domain jointly encoded by the TPC and other indication information, for example,
  • the TPC may be jointly indicated with an SRS transmission request and/or a beam indication (a beam indication is used to indicate spatial information of the signal) of the network device.
  • a TPC, SRS transmission request, and/or may be obtained. Multiple information such as beam indication.
  • the domain containing the TPC indication may be in a DCI carrying downlink related scheduling information, in a DCI carrying uplink related scheduling information, or in a DCI for scheduling multiple users.
  • the transmitting power of the signal can be determined by using the mode at a certain time.
  • mode 2 can also be used to determine the transmit power of the signal. This is not limited here.
  • the method 2 and the method 4 and the method 5 are used in combination, after the first signal corresponding to the first resource information and the second signal corresponding to the second resource information are determined to satisfy the second condition, and then further based on the fourth method. And the fifth signal corresponding to the third resource information and the second signal corresponding to the fourth resource information satisfying the first condition or the second condition.
  • the second method for determining the closed loop power control parameter may be directly applied.
  • the method further includes: determining, according to the fourth mode and the fifth mode, the third resource information, Whether the second signal corresponding to the second signal and the fourth resource information satisfies the first condition or the second condition, and if it is determined that the second signal corresponding to the third resource information and the second signal corresponding to the fourth resource information meet the first condition at the same time, The second method for determining the closed loop power control parameter may be directly applied.
  • the second method for determining the closed loop power control parameter may be specifically described in the first method.
  • the terminal device when the terminal device needs to send a signal to the network device in the first time unit, the terminal may send a signal to the network device according to the transmit power of the signal determined by the embodiment of the present application.
  • the terminal device determines the PHR according to the transmit power of the signal, and sends the PHR to the network device.
  • the PHR may be carried in a media control control unit (MAC CE) and sent to the terminal device.
  • MAC CE media control control unit
  • the PHR in the embodiment of the present application refers to the PH report
  • the PH refers to the power difference between the maximum transmit power that the terminal device can reach and the transmit power actually used when transmitting the signal.
  • the power difference here refers to Is the meaning of the difference between the powers in a broad sense, for example, the power difference may be the difference between the decibel (dB) value of the maximum transmit power and the dB value of the transmit power actually used when transmitting the signal, which may be the maximum transmit power
  • the difference between the linear value (such as the value in watts in milliwatts) and the linear value of the actual transmitted power used to transmit the signal. It can also be the linear value of the maximum transmitted power divided by the actual value of the transmitted signal.
  • the dB value obtained by converting the value obtained after the linear value of the transmitted power.
  • the network device After receiving the PHR, the network device will be able to obtain the power headroom (PH) information in the PHR.
  • the network device can perform power control and/or resource scheduling and the like according to the PH information. For example, when the PH received by the network device from the terminal device is small (the PH is negative may also be referred to as PH is small), indicating that the terminal device can support the maximum transmit power, it is difficult or impossible to support the transmission of the current signal. It is.
  • the network device may adjust the resources allocated to the terminal device by using an algorithm, such as reducing the bandwidth of the signal sent by the terminal device, or the network device may adjust the transmission power of the terminal device, such as reducing the signal transmission power of the terminal device.
  • the terminal device can transmit a signal to prevent the actual transmission power density caused by the excessive power requirement due to excessive transmission power demand being lower than the power density required by the network device, resulting in deterioration of the signal quality.
  • the above is only an example of the application of PH in power control.
  • the network device can also design various optimization algorithms according to the PH to optimize the performance of the communication.
  • the communication method of the embodiment of the present application is described in detail above with reference to FIG. 2 .
  • the communication device of the embodiment of the present application will be described in detail below with reference to FIGS. 3 to 5.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be adapted to the functions of the terminal device in the method embodiment of the power control shown in FIG. 2 in the system shown in FIG. 1.
  • FIG. 3 shows only the main components of the terminal device.
  • the terminal device 30 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing method embodiments, such as And determining, according to the received first information included in the first configuration information from the network device, a transmit power of the signal in the first time unit, and the like.
  • the memory is mainly used to store software programs and data, such as storing the first configuration information described in the above embodiments and the like.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 3 shows only one memory and one processor for ease of illustration. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 3 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transceiving function can be regarded as the transceiving unit 301 of the terminal device 30, for example, for supporting the terminal device to perform the receiving function and the transmitting function as described in part in FIG.
  • the processor having the processing function is regarded as the processing unit 302 of the terminal device 30.
  • the terminal device 30 includes a transceiver unit 301 and a processing unit 302.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 301 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 301 is regarded as a sending unit, that is, the transceiver unit 301 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the processing unit 302 can be configured to execute the instructions stored in the memory to control the transceiver unit 301 to receive signals and/or transmit signals to complete the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 301 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application, which may be a schematic structural diagram of a base station.
  • the base station can be applied to the function of the network device in the method embodiment of the power control shown in FIG. 2 in the system shown in FIG.
  • the base station 40 can include one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBUs) (also referred to as digital units, DUs). 402.
  • RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
  • the RRU 401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the first configuration information described in the foregoing embodiment to the terminal device.
  • the BBU 402 portion is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 401 and the BBU 402 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 402 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 402 can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 402 may be configured by one or more boards, and multiple boards may jointly support a single access indication radio access network (such as an LTE network), or may support different access systems respectively. Radio access network (such as LTE network, 4G network or other network).
  • the BBU 402 also includes a memory 4021 and a processor 4022 for storing the necessary instructions and data.
  • the memory 4021 stores the first configuration information and the like in the above embodiment.
  • the processor 4022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 5 shows a schematic structural diagram of a communication device 500.
  • the communication device 500 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 500 can be a chip, a network device (such as a base station), a terminal device or other network device, and the like.
  • the communication device 500 includes one or more processors 501.
  • the processor 501 can be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • the communication device may include a transceiver unit for implementing input (reception) and output (transmission) of signals.
  • the communication device can be a chip, and the transceiver unit can be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for a terminal or base station or other network device.
  • the communication device may be a terminal or a base station or other network device
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 500 includes one or more of the processors 501, and the one or more processors 601 can implement the method of the network device or the terminal device in the embodiment shown in FIG. 2.
  • the communication device 500 includes means for receiving first configuration information, and means for determining the transmit power of the signal.
  • the means for determining the transmit power of the signal and the function for receiving the first configuration information may be implemented by one or more components.
  • the transmit power of the signal can be determined by one or more processors, and the first configuration information can be received through a transceiver, or an input/output circuit, or an interface of the chip.
  • the first configuration information refer to the related description in the foregoing method embodiments.
  • the communication device 500 includes means for receiving first configuration information, and means for determining the transmit power of the signal.
  • the first configuration information and how to determine the transmit power of the signal can be referred to the related description in the foregoing method embodiments.
  • the first configuration information may be received, for example, by a transceiver, or an input/output circuit, or an interface of a chip, and the transmit power of the signal is determined by one or more processors.
  • processor 501 can implement other functions in addition to the method of the embodiment shown in FIG. 2.
  • the processor 501 may also include instructions 503 that may be executed on the processor such that the communication device 500 performs the methods described in the above method embodiments.
  • the communication device 500 can also include circuitry that can implement the functionality of the network device or terminal device in the foregoing method embodiments.
  • the communication device 500 can include one or more memories 502 having instructions 504 stored thereon that can be executed on the processor such that the communication device 500 executes The method described in the above method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the one or more memories 502 may store the configuration information described in the above embodiments, or related parameters or tables or the like involved in the above embodiments.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 500 may further include a transceiver unit 505 and an antenna 506.
  • the processor 501 may be referred to as a processing unit to control a communication device (terminal or base station).
  • the transceiver unit 505 can be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 506.
  • the application also provides a communication system comprising one or more of the aforementioned network devices, and one or more terminal devices.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware (such as circuitry), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard disk.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率控制的方法、装置及***,涉及通信技术领域,其中该方法包括:终端设备在接收到网络设备的第一配置信息,根据第一配置信息包括的第一信息,确定在第一时间单元的信号的发射功率。通过上述技术方案,网络设备无需增加额外的信令来指示终端设备确定第一时间单元的信号的发射功率,有助于降低信令的开销。

Description

一种功率控制的方法、装置及***
本申请中要求在2017年11月27日提交中国专利局、申请号为201711206357.5、申请名称为“一种功率控制的方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种功率控制的方法、装置及***。
背景技术
长期演进(long term evolution,LTE)中,闭环功控技术指的是基站在接收到终端设备发送的信号后,根据接收到的信号的质量来对终端设备的信号发射功率进行调整的过程。具体的,基站是通过向终端设备发送传输功率控制(transmit power control,TPC)信息,来通知终端设备调整信号发射功率的。
例如,LTE中对于物理上行共享信道(physical uplink shared channel,PUSCH)来说,终端设备是根据信号发射功率的功率谱密度和PUSCH的带宽来确定信号发射功率的,具体的,可以基于下列方式来确定PUSCH上的信号发射功率:
Figure PCTCN2018117540-appb-000001
其中,P PUSCH,c(i)为终端设备在载波c、时隙i上的信号发射功率;P CMAX,c(i)为终端设备在载波c、时隙i上的最大发射功率;M PUSCH,c(i)为载波c、时隙i上PUSCH的带宽;P O_PUSCH,c(i)为终端设备在载波c、时隙i上的标称功率谱密度,用于标识基站期望接收到的信号的基准功率水平;α c(j)为调度传输方式j对应的路径损耗补偿因子,例如j=0对应的调度传输方式为半静态调度方式,j=1对应的调度传输方式为动态调度方式,j=2对应的调度传输方式为动态调度方式随机接入等;PL c为路径损耗,用于补偿信号传输中的路径损耗;Δ TF,c(i)为与数据的调制方式、码率、承载的信号内容(如是否有上行控制信息、上行控制信息的大小)等相关的功率偏移;f c(i)为闭环功率控制参数。
当终端设备接收到基站发送的TPC后,可以根据TPC来调整f c(i),从而实现对终端设备的信号发射功率的调整。具体的,LTE中的闭环功控包括绝对模式和累加模式,其中在绝对模式下,f c(i)即为TPC指示的值;在累加模式下,f c(i)即为f c(i-1)与TPC指示的值的累加值。
然而,上述功率控制的方式不适用于波束切换的场景,亟需一种适用于多波束传输的通信***中的功率控制方法。
发明内容
本申请实施例提供了一种功率控制的方法、装置及***,以期提供一种适用于多波束传输的通信***中的功率控制方法。
第一方面,本申请实施例提供的一种功率控制的方法,包括:
网络设备向终端设备发送第一配置信息,终端设备在接收到来自网络设备的第一配置 信息后,根据第一信息确定在第一时间单元的信号的发射功率,其中,第一配置信息用于第一时间单元的配置,且第一配置信息包括第一信息,第一信息指示第一信号的第一资源信息。
本申请实施例中由于能够根据第一信息确定在第一时间单元的信号的发射功率,网络设备无需增加额外的信令来指示如何确定在第一时间单元的信号的发射功率,因此与现有技术中相比,有助于降低信令的开销。
可选的,第一信号为路径损耗测量信号、或者同步信号(synchronization signal,SS)、或者信道状态信息参考信号(channel state information reference signal,CSI-RS)、或者探测参考信号(sounding reference signal,SRS)。通过上述技术方案,未引入新的信号,有助于降低实现的复杂度。
可选的,本申请实施例中根据第一信息确定在第一时间单元的信号的发射功率的一种方式为:
终端设备接收来自网络设备的第二配置信息,第二配置信息用于第二时间单元的配置,且第二配置信息包括第二信息,第二信息指示第一信号的第二资源信息;然后根据第一信息和第二信息确定在第一时间单元的信号的发射功率。通过上述技术方案有助于降低对网络设备的配置的复杂度。
基于上述根据第一信息确定在第一时间单元的信号的发射功率的一种方式,本申请实施例中可以根据第一信息和第二信息按照下列方式确定在第一时间单元的信号的发射功率:
可选的,第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件时,终端设备确定第一闭环功率控制参数为0、或者第一闭环功率控制参数为第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率;根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
可选的,第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件时,终端设备确定第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
可选的,本申请实施例中根据第一信息确定在第一时间单元的信号的发射功率的另一种方式为:
终端设备接收来自网络设备的第二配置信息,第二配置信息用于第二时间单元的配置,且第二配置信息包括第二信息,第二信息指示第一信号的第二资源信息;
终端设备接收来自网络设备的第三配置信息,第三配置信息指示第二信号的第三资源信息且用于至少两个时间单元的配置;第二信号与第一信号具有相同或相近的空间信息关系;
至少两个时间单元包括第一时间单元和第二时间单元时,终端设备确定第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;并根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
可选的,本申请实施例中根据第一信息确定在第一时间单元的信号的发射功率的再一种方式为:
终端设备接收来自网络设备的第三配置信息,第三配置信息指示第二信号的第三资源信息且用于包括第一时间单元的至少两个时间单元的配置,第二信号与第一信号具有相同或相近的空间信息关系;
终端设备接收来自网络设备的第四配置信息,第四配置信息指示第二信号的第四资源信息且用于包括第二时间单元的至少两个时间单元的配置;
第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第一条件时,终端设备确定第一闭环功率控制参数为0、或者第一闭环功率控制参数为第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率;并根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
可选的,终端设备确定第二闭环功率控制参数为0,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率。
可选的,本申请实施例中根据第一信息确定在第一时间单元的信号的发射功率的还一种方式为:
终端设备接收来自网络设备的第三配置信息,第三配置信息指示第二信号的第三资源信息且用于包括第一时间单元的至少两个时间单元的配置,第二信号与第一信号具有相同或相近的空间信息关系;
终端设备接收来自网络设备的第四配置信息,第四配置信息指示第二信号的第四资源信息且用于包括第二时间单元的至少两个时间单元的配置;
第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第二条件时,终端设备确定第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;并根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
可选的,第一条件包括:信号的接收功率变化值不在设定的阈值范围内,和/或,信号的资源信息不同;
其中,信号的资源信息包括的资源标识(如资源标识(identification,ID))、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口组号、天线端口所在的准共址指示标识、时域标识、频域标识中的至少一个不同。
可选的,第二时间单元为第一时间单元前m个时间单元中的每一个,m为大于等于1的整数。
可选的,第二条件包括:信号的接收功率变化值在设定的阈值范围内,和/或信号的资源信息相同;
其中,信号的资源信息包括资源标识(如资源ID)、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口组号、天线端口所在的准共址指示标识、时域标识、频域标识中的一个或多个。
可选的,第二时间单元为第一时间单元前m个时间单元中的一个,m为大于等于1的整数。
可选的,网络设备向终端设备发送指示信息,其中,指示信息用于指示终端设备使用第二信号确定第一闭环功率控制参数,或者指示信息用于指示所述信号的发射功率的确定。终端设备在接收到来自网络设备的指示信息后,根据所述指示信息确定使用第二信号确定第一闭环功率控制参数。
需要说明的是,在本申请实施例中还可以预先定义终端设备使用第二信号确定第一闭环功率控制参数。
可选的,终端设备根据信号的发射功率,向网络设备发送信号。通过上述技术方案有助于网络设备在接收终端设备基于信号的发射功率发送的信号能够满足功率的需求。例如若信号为有用信号,功率的需求可以为信号到达网络设备时,网络设备的信号的接收功率需要满足解调门限值;若信号为干扰信号,功率的需求可以为信号到达网络设备时,网络设备的信号接收功率需要满足干扰门限值的需求,来避免干扰信号对有用信号造成较强的干扰。
可选的,终端设备根据信号的发射功率,生成功率余量报告(power headroom report,PHR),并向网络设备发送PHR;网络设备在接收到来自终端设备的PHR后,根据PHR进行相应功率控制。
可选的,本申请实施例第一方面或第一方面任一可能的实现方式中所涉及的第一闭环功率控制参数为第一配置信息包括的第一闭环功率控制调整值的函数,其中第一配置信息包括的第一闭环功率控制调整值为函数的自变量,第一闭环功率控制参数为第一闭环功率控制调整值的函数的函数值。例如,本申请实施例第一方面或第一方面任一可能的实现方式中所涉及的第一闭环功率调整值的函数可以为第一闭环功率调整值,也可以为第一闭环功率调整值的线性加权等,其中线性加权指的是在第一闭环功率调整值可以乘以某个系数,具体系数的值可以由网络设备通知终端设备,比如根据预先配置的算法确定并告知终端设备,也可以预定义上述系数,本申请实施例对此不作限定。
可选的,本申请实施例第一方面或第一方面任一可能的实现方式中所涉及的第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数,其中第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值为函数的自变量,第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数的函数值。例如本申请实施例第一方面或第一方面任一可能的实现方式中所涉及的第二闭环功率控制参数和第一闭环功率调整值的函数可以为第二闭环功率控制参数和第一闭环功率调整值之和,也可以为第二闭环功率控制参数和第一闭环功率调整值的加权求和等,其中加权指的是在第二闭环功率控制参数、第一闭环功率调整值可以乘以某个系数,具体系数的值可以由网络设备通知终端设备,比如网络设备根据预先配置的算法确定后通知终端设备,也可以预定义上述系数,本申请实施例对此不作限定。
可选的,本申请实施例第一方面或第一方面任一可能的实现方式中所涉及的第二信号和第一信号具有相同或相近的空间信息关系可以包括第二信号对应的天线端口与第一信号对应的天线端口具有准共址(quasi co-located,QCL)关系,所述准共址关系至少包括关于空间参数的准共址关系;和/或,第二信号与第一信号对应的空间滤波相同或相近,如终端设备或网络设备对第一信号和第二信号采用相同或相近的空间滤波参数进行发送和/或接收。所述空间滤波参数可以包含波束成型参数、预编码矩阵、模拟波束权值等中的一项或多项。
第二方面,本申请实施例还提供了一种通信装置,用于执行第一方面或第一方面提供的任意可能的技术方案。
在一种可能的设计中,上述通信装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述通信装置执行上述方法中终端设备相应的功能。例如,根据第一信息确定在第一时间单元的信号的发射功率。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,接收来自网络设备的第一配置信息。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述通信装置可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该通信装置执行第一方面或第一方面中任一种可能实现方式中终端设备完成的方法。
在一种可能的设计中,上述通信装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中网络设备相应的功能。例如,确定第一配置信息。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,向终端设备发送第一配置信息。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述通信装置可以为基站,gNB或传输点(transmission reception point,TRP)等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述通信装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中网络设备完成的方法。
第三方面,提供了一种通信***,该通信***包括上述终端设备和网络设备。
第四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中的方法。
通过本申请实施例提供的方法,可以提供一种适用于多波束场景下功率和/或功率余量 确定方法,适用于多波束场景下的功率控制或功率余量上报,比如,适用于新一代无线接入技术(new radio access technology,NR)***的功率控制或功率余量上报。
附图说明
图1为本申请实施例可能适用的网络架构的示意图;
图2为本申请实施例功率控制的方法的流程示意图;
图3为本申请实施例通信装置的示意图;
图4为本申请实施例通信装置的示意图;
图5为本申请实施例通信装置的示意图。
具体实施方式
下面结合附图,对本申请中的技术方案进行相应的描述。
本申请实施例的技术方案可以应用于各种通信***,例如:长期演进(long term evolution,LTE)***,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***,未来的第五代(5th Generation,5G)***,如NR***,及未来的通信***,如6G***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。有时候标记P0和PO会有混用的场景,其中0和O也可以以下标的形式出现,在不强调其区别时,其表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案适用于多天线传输的场景。在多天线传输的场景中,设备可以调整天线阵列的权值,对发送信号、接收信号进行空间上的能量的聚集,也就是对信号进行空间上的滤波。一般称为波束成型技术(其中包括数字波束成型技术,如预编码)。其中,这种天线阵列权值的调整,可以通过调整移相器的相位、调整数字预编码的权值进行。形成的权值阵列也可以称为是空间滤波参数。在传输过程中,如果变化了权值阵列,在物理上体现为波束的调整、切换。本申请实施例适用于这种波束切换技术 的场景。其中,波束切换可以指的是单个波束的切换,也可以指的是波束组的切换。
本申请实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP)或TRP,并与一个集中控制器(controller)相连。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的sub-cluster(子簇)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备。
本申请实施例中不同基站可以为具有不同的标识的基站,也可以为具有相同的标识的被部署在不同地理位置的基站。由于在基站被部署前,基站并不会知道其是否会涉及本申请实施例所应用的场景,因而,基站,或基带芯片,都应在部署前就支持本申请实施例所提供的方法。可以理解的是,前述具有不同标识的基站可以为基站标识,也可以为小区标识或者而其他标识。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例中,波束beam可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,所述能量传输指向性可以指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
可选地,同一通信设备(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。
针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个或多个波束。波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置终端设备(如用户设备UE)的资源标识(identity,ID),比如,所述索引信息可以对应配置的CSI-RS的ID或者资源,也可以对应配置的上行SRS的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。图1示出了适用于本申请实施例的通信方法的通信***的示意图。如图1所示,该通信***100包括网络设备102和终端设备106,网络设备102可配置有多个天线,终端设备也可配置有多个天线。可选地,该通信***还可包括网络设备104,网络设备104也可配置有多个天线。
应理解,网络设备102或网络设备104还可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器或解复用器等)。
其中,网络设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、 基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
在该通信***100中,网络设备102和网络设备104均可以与多个终端设备(例如图中示出的终端设备106)通信。网络设备102和网络设备104可以与类似于终端设备106的任意数目的终端设备通信。但应理解,与网络设备102通信的终端设备和与网络设备104通信的终端设备可以是相同的,也可以是不同的。图1中示出的终端设备106可同时与网络设备102和网络设备104通信,但这仅示出了一种可能的场景,在某些场景中,终端设备可能仅与网络设备102或网络设备104通信,本申请对此不做限定。
应理解,图1仅为便于理解而示例的简化示意图,该通信***中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了提高***性能,链路自适应、功率控制等常常是通信***中重要的管理功能。在通信网络中,至少一个节点向其他节点发送信号,而功率控制的目的,是使得网络中,由至少一个节点发送的信号,到达其他节点的时候,功率能够满足***的需求。
这里的节点,可以是指基站、用户设备等等。如,功率控制可以是,使得一个用户发送的信号功率,在到达另一个用户的时候,满足一定的功率要求。或者如,功率控制 可以是,使得用户发送的信号功率,在到达基站的时候,满足基站的功率要求。或者如,可以通过功率控制,使得基站发送的信号,到达用户设备的时候,满足用户设备的功率需求。
功率控制中的功率需求,可以是指到达一个节点的功率需求,如,若信号对该节点是有用信号,则该节点对接收信号的功率有需要满足解调门限的需求,该需求为接收信号的功率应不能太低,否则导致无法正确接收、解调。或者,如,若该信号对该节点是非有用信号,如为干扰信号,则该节点对该接收信号的功率有需要满足干扰门限值的需求,该需求为该接收信号的功率应不能太高,否则导致该信号对该节点的有用信号造成较强的干扰。
功率控制可以发生在一个节点与另一个节点之间,如D2D场景为了一个用户设备到另一个用户设备的功率满足一定的信号干扰噪声比(signal to interference plus noise ratio,SINR);也可以发生在多个节点与一个节点之间,如LTE中的上行,功率控制是为了让网络中的至少一个用户设备,到达基站的功率,满足基站的信号干扰噪声比SINR需求;也可以发生在多个节点到多个节点之间,如在时分双工(time division duplex,TDD)网络制式中,***中可能同时存在上行和下行调度(如5G网络中的动态TDD技术),此时功率控制可以用来关系网络中的多个用户设备、多个基站的多对多的功率要求。
功率控制的设计,是控制网络中节点的信号发送功率,使得该信号的接收功率,满足接收要求。这里,接收要求可以是上文所述的功率要求、SINR要求等,或者是信噪比(singal-noise ratio,SNR)要求。SNR、SINR、IoT(interference over thermal,干扰比热)、RSRP(reference signal received power,参考信号接收功率)、信号的接收功率等,都可以看成是功率控制环节中的目标参数,这些参数不完全等价,但是是互相联系的。如,SINR和RSRP不完全相等,但在干扰水平相同的情况下,RSRP越高,意味着信号的SINR越好。本文中的功率控制,并不限定实际中算法的目标控制参数。但一般地,基站可以通过比较统计上的信号SINR是否收敛到目标SINR,来确定功率控制的参数。
功率余量(PH,power headroom)报告PHR,也是功率控制环节中的一环。功率控制余量是指节点能够达到最大发射功率和节点发送一个信号的功率之间的功率差。这里的功率差是指广义上的功率之间的差距的含义,并不是指一定要是两个功率相减得到。实际中,该功率差可以由所述的最大功率的线性值减去信号发送功率的线性值得到,或者是由所述的最大功率的分贝(dB)值减去信号发送功率的分贝(dB)值得到,这样的话则等效于所述的最大功率的线性值除以信号发送功率的线性值的结果再转换为dB值,这种情况也称为功率差。因此相应地,在本申请中出现的公式的描述,是为了说明功率差这一物理含义,公式本身也可以在dB值的减法、线性值的除法、线性值的减法等之间变换。
PH值可以是正数、0、负数,它的取值可以进行量化,如根据一定的量化区间,将PH值量化到不同的量化等级上。
功率余量报告是由上述的发送信号的节点,发送给其他节点的。以LTE网络为例,用户设备计算、生成和发送PHR,由基站接收、计算和应用该PH值。在LTE中,用户设备在满足了触发条件下,将触发PHR,满足上报条件时,UE获取PH值,并将PH值传递到PHR对应信元中,然后将该PHR通过承载的信道发送出去。LTE中PHR信元为一种MAC信元,承载的信道为PUSCH。
基站在收到PHR后,将可以得到PHR中的PH信息等。基站可以利用PH信息,来进 行功率管理的流程。如,当基站收到用户设备的PH较小时(PH为负数也可称为是PH较小),意味着用户设备能够支持的最大发射功率,已经很难、或者不能支撑发送当前的信号了。这时,基站可通过算法,调整给用户设备分配的资源,如减小用户设备发送信号的带宽,或者,基站可以调整用户设备的发送功率,如降低用户设备的发送信号功率(具体的手段在实施例中),使得用户设备能够发送信号,防止因为发送功率需求过大而最大功率不够所导致的实际发送功率密度低于基站所需求的功率密度,造成信号的质量变差。这里是一个在功率控制中应用PH的例子,实际***中,可基于PH的物理含义,设计各类优化算法,来优化***的性能。
上述PHR的物理流程不限于LTE网络。该流程也可以扩展、缩减、嵌入到其他网络中,如5G网络。
为了简化后面的陈述,这里讲功率控制称为PC,将功率余量报告流程等称为PHR。在广义上,PC和PHR都是功率控制中的部分流程。PC主要是用于直接控制终端设备的发送功率,PHR是来间接控制终端设备的发送功率、资源等。
功率控制和功率余量报告中的相关公式针对各种上行信号或信道设计。在LTE中,包括PUSCH、PUCCH和SRS,在5G中,可以对应地针对上行数据信道、控制信道、用于解调的参考信号、用于信道参测的参考信号、随机接入的信道等等。相关公式所计算的资源粒度,是一个资源集合,资源集合内包含了一个以上的最小资源粒度。资源集合在时域的角度上可以是***帧、无线帧、帧、子帧、时隙、半时隙、迷你时隙、符号、符号集合等中的一项或多项。在频域的角度上可以是载波、***带宽、部分带宽、带宽部分、子带、资源块、子载波、服务小区等中的一项或多项。一般地,公式针对的粒度可以是一个信道或信号的调度粒度。
在现代通信***中,多天线技术被广泛应用,如在LTE、5G NR、WIFI等网络中。一个节点通过多天线发送或者接收信号,后文简称多输入多输出(multiple-input multiple-output,MIMO)。在MIMO***中,节点通过调整MIMO发送、接收方案,如调整发送天线的权值,分配不同的信号到不同的天线上等,可以获取分集、复用等增益,提高***容量、增加***可靠性。随着MIMO技术的发展,大规模MIMO(massive MIMO,M-MIMO)的应用,能够进一步提高***性能。在高频的频段,信号的波长较短,如只有毫米级,对应的天线尺寸也会缩减,这,网络中的节点就有了配置大规模的天线阵列的能力。在M-MIMO中,节点可配置几十个、上百个甚至更多的天线阵子。这些天线阵子,按照一定的排布,如线性排布、圆形排布等,可形成天线阵列。节点通过天线阵列发送或者接收信号时,可以通过调整天线阵子上的权值,获得天线增益,使得发送或者接收的信号,在空间中呈现出不均匀的能量分布。通过一些算法,可以使得信号在空间中的部分方向上具有能量集中的效果。这种效果可以成为称为是波束成形。此时信号在空间中形成波束的存在。这里的空间,可以是指水平方向的角度分布、垂直方向的角度分布等等。
在高频中,由于这种M-MIMO的技术,往往天线增益很高,使得信号有明显的波束指向性。不同的波束之间,将呈现出较高的隔离度,它们将经历不同的信道状况。当两个节点采用波束进行通信时,在其他条件不变的情况下,采用不同的波束将可能导致接收功率的大幅度变化,这种变化由几dB到十几dB不等。在LTE的功率控制技术中,并没有考虑这种波束的状况。
通信***中可以灵活地运用多个功控参数用于功率计算,这样保证在不同的场景下,终端设备可以根据不同的参数计算来满足这些不同场景的需求。
比如说网络设备和终端设备之间可以是采用波束传输。波束是一种物理资源,在一些通信***中,可以是索引为一些导频资源和/或时频资源。
波束的物理含义是,在发送或者接收信号时,可以采用多天线的技术进行发送、接收,传输节点如网络设备、终端设备等可以对多天线进行权值处理,使得发送、接收的信号在一定的空间方向中呈现出能量的非均匀分布,使得信号能量有一定的聚集,这种能量的聚集可以称为是波束。
波束可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,所述能量传输指向性可以指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
可选地,同一通信设备(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。
针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个或多个波束。波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置终端设备的资源标识(identification,ID),比如,所述索引信息可以对应配置的信道状态信息参考信号(channel state information reference signal,CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(sounding reference signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
波束对beam pair可以包括发送端的发送波束和接收端的接收波束,或者,也称作上行波束或下行波束。比如,beam pair可以包括gNB Tx beam传输波束或UE Rx beam接收波束,或者,UE Tx beam传输波束或gNB Rx beam接收波束。
采用波束传输的过程中,网络设备和终端设备之间可能会切换波束,尤其是一个波束的质量变差的时候,可能会切换其他的波束进行通信,来保证通信质量。
有鉴于此,可以在多波束***中引入多个PL。这样,终端设备可以根据多个导频测量出PL,写为PL(k),这里的k是和测量资源有对应关系的值。测量资源是和波束有对应关系的。网络设备通常会在传输过程中通知终端设备所使用的波束,这种波束可以包括发送波束、接收波束等。因此,在接收到这种波束的指示信息时,终端设备可以明确地知道,现在应该用什么测量资源来测量,然后进行功率的计算。但当终端设备在没有收到这种波束指示的时候,终端设备如何从多个PL(k)中得到计算功率或功率余量的PL(k),是一个亟待解决的问题。
下面对本申请实施例中的部分名词进行解释说明,以便于本领域技术人员理解。
1、时间单元,为传输信号的资源在时域上的单位,例如时间单元可以为时隙(slot)、迷你时隙(mini-slot)、半时隙、***帧、无线帧、帧、子帧、符号、符号集合等中的一项或多项。
示例的,第一时间单元可以为时隙i,其中i为大于等于0的整数,当i=0时,第一时 间单元为时隙0,在这种情况下,第一时间单元的闭环功率控制参数为0;第二时间单元为时隙(i-m),m为大于等于1的整数,在这种情况下i的取值为大于等于1的整数。
需要说明的是,本申请各个实施例中涉及的第二时间单元在第一时间单元之前,例如第一时间单元为时隙j,第二时间单元可以为时隙(j-1),也可以为时隙(j-n),其中j为大于等于0的整数,n为大于等于1的整数。
2、信号的资源信息,可以包括资源标识、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口组号、天线端口所在的准共址指示标识、时域标识、频域标识等中的一个或多个。
示例的,资源标识可以用具体的数字来区分,如资源标识为0、1、2等分别代表了不同的资源。
示例的,序列标识可以是序列的初始化ID,如小区ID、用户专用ID、信道或信号的专用ID等。
示例的,时域标识是指信号在时域上的标识,如信号在时域上用时域OFDM符号位置来表示的标识。
示例的,时域偏移可以指信号的在时域单元内的子帧偏移、时隙偏移等。
示例的,天线端口所在的准共址指示标识,可以用准共址指示域来指示天线端口之间的准共址信息,这种准共址指示域的指示即指示标识,可选的,该指示域可以以比特位的形式来体现。
例如,SS的资源信息可以包括同步信号的序列、序列的种子、时域资源位置(如时域符号位置)、频域资源位置等中的一个或多个;CSI-RS的资源信息可以包括CSI-RS的资源标识、序列标识(如序列加扰标识)、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移(如子帧偏移,时隙偏移等)、天线端口数、天线端口号、码分多址(code division multiplexing,CDM)类型、CDM图案、CSI-RS的频域密度(如CSI-RS在每个物理资源块(physical resource block,PRB)内每个port所占据的RE个数)、CSI-RS的频段(如宽带的CSI-RS、部分带宽的CSI-RS)、CSI-RS的资源映射(如CSI-RS在一个时隙里映射的时域符号和频域RE)、CSI-RS的时域配置(包括CSI-RS的周期和时隙偏移等)、端口数量、资源ID、CSI-RS相对于物理下行共享信道(physical downlink shared channel,PDSCH)的功率偏移、时域的行为(如周期、半静态)、加扰ID等中的一个或多个。
3、闭环功率控制参数指的是功率控制技术中闭环功率控制的参数。在功率控制技术中,一般来说可以包括开环功率控制参数和/或闭环功率控制参数。终端设备在应用功率控制方法计算功率时,其中由闭环功率控制技术所控制的参数为闭环功率控制参数。
4、闭环功率控制调整值,可以用来调整闭环功率控制技术中闭环功率控制参数。一般来说,闭环功率控制参数的确定,是根据闭环功率控制调整值来确定的。
5、配置信息是指用于终端设备接收、测量、传输等中的一项或多项的配置信息。
6、两信号具有相同或相近的空间信息关系可以包括第二信号对应的天线端口与第一信号对应的天线端口具有准共址(quasi co-located,QCL)关系,所述准共址关系至少包括关于空间参数的准共址关系;和/或,第二信号与第一信号对应的空间滤波相同或相近,如终端设备或网络设备对第一信号和第二信号采用相同或相近的空间滤波参数进行发送和/或接收。所述空间滤波参数可以包含波束成型参数、预编码矩阵、模拟波束权值等中的一项或多项。
其中,两个天线端口之间具有准共址(quasi co-located,QCL)关系,指的是,一个天线端口的信道大尺度参数可以通过另一个天线端口得到的(conveyed)信道大尺度参数而推知(infer)。大尺度参数可以包括平均增益(average gain)、平均时延(average delay)、时延扩展(delay spread)、多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、空间参数(spatial parameter,或spatial Rx parameters)中的一项或多项。
其中,空间参数可以包括发射角(Angle of arrival,AOA)、主发射角(Dominant AoA)、平均到达角(Average AoA)、到达角(Angle of departure,AOD)、信道相关矩阵,到达角的功率角度扩展谱,平均触发角(Average AoD)、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器,或,空间滤波参数,或,空间接收参数等中的一项或多项。
7、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
8、信号可以包括物理信道、物理信号等。其中,物理信道可以是指上行和/或下行的物理信道。信号可以包括物理信号。其中,物理信号可以包括参考信号和/或同步信号等。
本申请中,名词同步信号、同步信号块经常交替使用,但本领域的技术人员可以理解其含义。同步信号块实质是指包含了同步信号的信号,该信号中还可以包含广播信道。信号本身是通过一些物理资源来承载的。资源可以是指时域资源、频域资源、码域资源、空域资源等中的一项或多项。
在多波束传输的通信***中,为了兼容现有的功率控制方式,通常情况下,网络设备通过增加的额外信令来指示终端设备闭环功率控制参数置零还是累加。但是,由于波束是动态切换的,因此这种通过增加额外信令实现功率控制的方式,大大增加了信令的开销。为此,本申请实施例提供了一种功率控制的方法,以适用于NR***中的功率控制或功率余量上报。可以理解的是,本申请实施例提供的方法,也可以应用于其他***,并不限于本申请提到的多波束传输***。本申请实施例可以应用于网络设备与网络设备(如宏基站与微基站),网络设备与终端设备,终端设备与终端设备(如设备到设备D2D,车载设备到其他设备V2X通信)之间的通信。在此,以网络设备与终端设备之间的通信为例进行描述,但并不限于此,比如可以统称为发送端与接收端之间的通信。在本申请中,上行可以指终端设备为发送端,网络设备为接收端,下行可以指网络设备为发送端,终端设备为接收端。本申请应用于发送端与接收端之间的通信时,上行可以指一个传输方向,下行可以指与上行相对的另一传输方向。
具体的,如图2所示,为本申请实施例提供的一种功率控制的方法的流程示意图,包括以下步骤:
步骤201,网络设备向终端设备发送第一配置信息,其中第一配置信息用于第一时间单元的配置,且所述第一配置信息包括第一信息,第一信息用于指示第一信号的第一资源信息。
步骤202,终端设备在接收到来自网络设备的第一配置信息,根据第一信息确定在第 一时间单元的信号的发射功率。
由于本申请实施例中终端设备可以根据第一信息确定第一时间单元的信号的发射功率,与现有技术中通过网络设备向终端设备发送信令指示终端设备确定第一时间单元的信号的发射功率相比,有助于降低信令开销。
示例的,本申请实施例的第一信号可以为SS,具体的本申请实施例涉及的SS可以指主同步信号(primary synchronization signal,PSS)和/或指辅同步信号(secondary synchronization signal,SSS),或,同步信号和广播信道所在的资源块(synchronization signal and PBCH block,SSB)等中的一项或多项。可选的,终端设备可以通过盲检的方式获得网络设备发送的第一配置信息,其中第一配置信息可以通过物理广播信道(physical broadcast channel,PBCH)发送给终端设备。需要说明的是,终端设备通过盲检的方式获得网络设备发送第一配置信息的方式可参见LTE中终端设备通过盲检的方式获得同步信号的配置信息的方式,在此不再赘述。可选的,终端设备还可以通过网络设备通知的方式获得第一配置信息,其中第一配置信息可以通过高层信令如无线资源控制(radio resource control,RRC)信令、或者物理层信令如下行控制信息(downlink control information,DCI)发送给终端设备。此外,终端设备还可以通过盲检的方式和网络设备通知的方式获得第一配置信息,其中部分第一配置信息如时域符号位置通过PBCH发送给终端设备,另一部分第一配置信息通过网络设备通知的方式发送给终端设备,具体的另一部分第一配置信息可以通过高层信令如RRC信令、或者物理层信令如DCI发送给终端设备。在本申请实施例中终端设备采用上述方式中的任意一种方式获得第一配置信息,对此本申请实施例不作限定。
示例的,本申请实施例中的第一信号还可以为用于上行波束指示的信号,如用于信道测量的参考信号CSI-RS、或者信道探测的参考信号SRS、用于解调的参考信号(demodulation reference signal,DMRS)中的一项或多项。
其中,用于信道测量的信号CSI-RS可以是非零功率的用于信道测量的信号CSI-RS。用于信道探测的参考信号可以是非零功率的用于信道探测的参考信号。用于解调的参考信号DMRS可以是用于PDSCH、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行数据信道(physical uplink shared channel,PUSCH)、PUSCH中的一项或多项的解调的参考信号等。
可选的,第一配置信息可以通过高层信令如RRC信令、和/或物理层信令DCI发送给终端设备。
例如,若上行波束和下行波束不存在对应关系,第一信号可以为上行信号,如SRS、或者用于PUSCH的DMRS、或者用于PUCCH的DMRS等中的一项或多项;若上行波束与下行波束之间存在对应关系,第一信号可以为上行信号或者下行信号,如SRS、或者用于PUSCH的DMRS、或者用于PUCCH的DMRS、CSI-RS、用于PDSCH的DMRS、用于PDCCH的DMRS等中的一项或多项。所述对应关系是指,上行波束和下行波束可以具有相似的信道空间特性,因此,可以通过已知其中之一的空间信息,而获得另一个的空间信息。
示例的,第一信号还可以为物理信道,如物理下行数据信道PDSCH、物理下行控制信道PDCCH、物理上行数据信道PUSCH、或,物理上行控制信道PUCCH中的一项或多项。当第一信号为物理信道时,第一配置信息可以指示物理信道的资源信息,如指示物理信道 的资源标识等。示例的,本申请实施例中的第一信号还可以为路径损耗测量信号,具体的,路径损耗测量信号可以为SS、CSI-RS、DMRS、时频跟踪信号(time-frequency tracking signal,TRS)等。本申请实施例中的第一信号为路径损耗测量信号(简称路损测量信号)时,可选的,网络设备可以通过路损测量信号指示来指示终端设备采用哪个信号作为路损测量信号,例如路损测量信号指示中包括信号类型,例如信号类型为SS,则终端设备采用SS作为路损测量信号,当路损测量信号为SS时,终端设备直接将用于第一时间单元配置的SS的配置信息作为第一配置信息,其中第一配置信息的获取方式与第一信号为SS时第一配置信息的获取方式类似,在此不再赘述。当信号类型为CSI-RS时,则终端设备采用CSI-RS作为路损测量信号,当路损测量信号为CSI-RS信号时,终端设备可直接将用于第一时间单元配置的CSI-RS的配置信息作为第一配置信息,其中第一配置信息的获取方式与第一信号为CSI-RS时第一配置信息的获取方式类似,在此不再赘述。此外,本申请实施例中还可以预先定义哪种类型的信号作为路径损耗测量信号,例如预定义SS作为路损测量信号。
下面给出了几种终端设备根据第一信息确定在第一时间单元的信号的发射功率的具体实现方式。这些实现方式可以各自独立实施,也可以结合实施,在此不予限定。
方式一:终端设备根据第一信息直接确定第一时间单元的信号的发射功率。
终端设备根据第一时间单元的信号的配置信息是否为参考配置信息集合,来确定信号的发射功率。所述参考配置集合,为预先定义好的,或者是网络设备发送给终端设备的。所述参考配置集合与确定信号的发射功率的方法有对应关系。
例如,预先定义或者向终端设备指示波束资源集合。波束资源集合中包括N个波束,其中N为大于等于1的整数。所述波束资源集合与确定闭环功率控制参数的方法有对应关系。第一确定闭环功率控制参数的方法可以是确定第一闭环功率控制参数为第二闭环功率控制参数与第一配置信息包括的第一闭环功率控制调整值的函数(比如第二闭环功率控制参数与第一配置信息包括的第一闭环功率控制调整值之和,或,加权和),其中第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;第二确定闭环功率控制参数的方法可以是确定第一闭环功率控制参数为0,或者第一配置信息包括的第一闭环功率控制调整值。然后根据第一闭环功率控制参数确定第一时间单元的信号的发送功率,其中根据第一闭环功率控制参数确定第一时间单元的信号的发送功率的方式可以与LTE中根据第一闭环功率控制参数确定第一时间单元的信号的发送功率的方式类似,也可以不同,在此不予限制。所述波束资源集合与第一确定闭环功率控制参数的方法或者第二确定闭环功率控制参数的方法有对应关系。例如,所述波束资源集合与第一确定闭环功率控制参数的方法有对应关系。则在第一资源信息对应的波束资源在波束资源集合中时,则应用第一确定闭环功率控制参数的方法。在第一资源信息对应的波束资源不在波束资源集合中时,则应用第二确定闭环功率控制参数的方法。
再例如:网络设备通知终端设备功率控制参数集合或者预定义功率控制参数集合。示例的,功率控制参数集合可以为[P O,α]的集合,其中P O为标称功率谱密度,α为路径损耗补偿因子,若功率控制参数集合中包括J组[P O,α],网络设备通知终端设备或者预定义J组[P O,α]的子集。或者示例的,功率控制参数集合可以为P O的集合,若功率控制参数集合中包括J组P O,网络设备通知终端设备或者预定义J组P O的子集。所述功率控制参数的集合还可以是其他的一种或多种功率控制参数的集合。
所述子集与确定闭环功率控制参数的方法有对应关系。例如,所述子集与第一确定闭环功率控制参数的方法有对应关系。当第一资源信息对应的功率控制参数在所述功率控制参数子集中时,则应用第一确定闭环功率控制参数的方法,当第一资源信息对应的功率控制参数不在所述功率控制参数的子集中,则应用第二确定闭环功率控制参数的方法。
第一确定闭环功率控制参数的方法可以是确定第一闭环功率控制参数为第二闭环功率控制参数与第一配置信息包括的第一闭环功率控制调整值的函数,其中第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;第二确定闭环功率控制参数的方法可以是确定第一闭环功率控制参数为0,或者第一配置信息包括的第一闭环功率控制调整值。然后根据第一闭环功率控制参数确定第一时间单元的信号的发送功率,其中根据第一闭环功率控制参数确定第一时间单元的信号的发送功率的方式可以与LTE中根据第一闭环功率控制参数确定第一时间单元的信号的发送功率的方式类似,也可以不同,在此不予限制。
其中,可选的,第二时间单元在第一时间单元之前,例如第一时间单元为时隙j,第二时间单元可以为时隙(j-1),也可以为时隙(j-n),其中j为大于等于0的整数、n为大于等于1的整数。下述根据第一信息确定在第一时间单元的信号的发射功率的具体实现方式中,第二时间单元与第一时间单元之间的关系也满足第二时间单元在第一时间单元之前,下述介绍时不再重复说明。
示例的,以PUSCH为例,信号发射功率的功率可以基于下列方式来确定:
Figure PCTCN2018117540-appb-000002
其中,P PUSCH,c(i)为终端设备在载波c、时间单元i(如时隙i、子帧i)上的信号的发射功率;P CMAX,c(i)为终端设备在载波c、时间单元i上的最大发射功率;M PUSCH,c(i)为载波c、时间单元i上PUSCH的带宽;P O_PUSCH,c(i)为终端设备在载波c、时间单元i上的功率谱密度标称功率谱密度,用于标识基站期望接收到的信号的基准功率水平;α c(j)为调度传输方式j对应的路径损耗补偿因子,例如j=0对应的调度传输方式为半静态调度方式,j=1对应的调度传输方式为动态调度方式,j=2对应的调度传输方式为动态调度方式随机接入等;PL c为路径损耗,用于补偿信号传输中的路径损耗;Δ TF,c(i)为与数据的调制方式、码率、承载的信号内容(如是否有上行控制信息、上行控制信息的大小)等相关的功率偏移;f c(i)为闭环功率控制参数。
其中,当预定义功率控制参数集合的子集时,若当第一资源信息包括的功率控制参数在功率控制参数集合的子集中,则f c(i)=f c(i-k)+δ(i-n),f c(i-k)为第二闭环功率控制参数,δ(i-n)为第一闭环功率控制调整值,k、n的取值为大于等于1正整数。参数n与调度时延有关,如网络设备在时间单元(i-n)发送的控制消息是调度时间单元i的,则n是指从接收控制消息到控制消息生效的时间。
可选的,若当第一资源信息包括的功率控制参数不在功率控制参数集合的子集中,则f c(i)=0、或δ(i-n),可选的,f c(i-k)=0。
其中,在本申请实施例PUSCH的带宽用于表示上行传输的信号在频域上所占据的资源块(resource block,RB)个数,也可以表示上行传输信号在频域上占据的总频带大小;对于标称功率谱密度P O、路径损耗补偿因子α(又可称之为alpha),网络设备向终端设备配置用于半静态传输、用于不基于调度信息传输、用于随机接入阶段的前导信息传输、用 于基于动态调度传输中的一项或多项的P O、alpha发送给终端设备。对于基于动态调度传输的标称功率谱密度和路径损耗因子也可以配置多组P O、α值。
上述PUSCH的信号的发射功率确定的公式仅为一个示例说明,可以理解为信号的发射功率与公式右侧的影响因子中的一项或多项相关,或者,是公式右侧的影响因子中的一项或多项的函数。其中,影响因子可以包括信道带宽、基准功率、特定信道或信号的格式的偏移参数、信道承载的信息内容的偏移、最大发射功率、路径损耗、路径损耗补偿因子、闭环功率控制参数、信道或信号发射模式的偏移参数等中的一项或多项。
方式二:终端设备接收来自网络设备的第二配置信息,第二配置信息用于第二时间单元的配置,且第二配置信息包括第二信息,第二信息指示第一信号的第二资源信息;然后根据第一信息和第二信息确定第一时间单元的信号的发射功率。
可选的,第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件时,可以应用第二确定闭环功率控制参数的方法。所述确定第二确定闭环功率控制参数的方法包括:确定第一闭环功率控制参数为0,确定第一闭环功率控制参数为第一配置信息包括的第一闭环功率控制调整值的函数,或者,确定第二闭环功率控制参数为0中的一项或多项。
其中,第一闭环功率控制参数用于确定所述第一时间单元的信号的发射功率;根据所述第一闭环功率控制参数,确定信号的发射功率。第二闭环功率控制参数用于确定第二时间单元的信号的发射功率。
可选的,第一条件可以包括信号的资源信息不同、或信号的接收功率变化值不在设定的阈值范围内中的一项或多项。其中信号的资源信息可以包括资源标识(又称之为资源ID)、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口所在的准共址指示标识、时域标识、频域标识中的一个或多个,信号的资源信息不同指的是信号的资源信息中的至少一个参数不同。其中,时域标识可以是指时域符号位置,频域标识可以指频域位置标识。
例如,第一资源信息对应的第一信号的资源ID和第二资源信息对应的第一信号的资源ID不同,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件。再例如,若第一资源信息对应的第一信号的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号位置和第二资源信息对应的第一信号的OFDM符号位置不同,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件,其中每个OFDM符号位置对应一个波束资源,且每个第一信号对应不同的波束资源,例如第一信号为SS,SS1对应波束资源1,SS2对应波束资源2,则SS1对应OFDM符号位置与SS2对应的OFDM符号位置不同。又例如,若第一资源信息对应的第一信号的频域标识和第二资源信息对应的第一信号的频域标识不同,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件,其中频域标识对应一个波束资源,且每个第一信号对应不同的波束资源,例如第一信号为CSI-RS,CSI-RS1对应波束资源1,CSI-RS2对应波束资源2,则CSI-RS1对应频域标识与CSI-RS2对应的频域标识不同。
需要说明的是,所述频域标识可以是指信号所在的频域位置的标识,如资源块(resource block,RB)位置的标识。所述波束资源是指资源在空间上的区分,即不同的波束资源对应的空间信息不同。
可选的,波束资源可以为以下中的一项或多项,也可以为其他资源或由其他资源表征 (即与其他资源具有对应关系),在此不予限定:
1、逻辑编号。一个逻辑编号可能对应着动态变化的发送和接收波束对。它可以是一种缩减的CSI-RS资源编号/天线端口编号的映射。也就是说,网络设备可能总共使用了很多个CSI-RS资源/天线端口,但是对于某一个终端设备来说,它测量和使用的CSI-RS资源/天线端口只是一个子集,所以可以采用比直接指示CSI-RS资源/天线端口较为缩减的方式来指示对于该终端设备之前使用过的CSI-RS,进而指示终端设备相应的波束。
2、波束对链接(beam pair link,BPL)编号。指一个用来表示发送和接收波束对的指示。
3、CSI-RS资源编号/天线端口编号。指通过指示之前使用/测量过的CSI-RS资源编号/天线端口编号来告知终端设备相应的波束。
4、同步信号块时间索引SS block time index。即终端设备接收到SS block的时间编号。可以用来告知终端设备相应的波束。
需要说明的是本申请实施例中所涉及的波束资源、测量资源参见上述对波束资源和测量资源的介绍。
可选的,本申请实施例中若时间单元为时隙,第一闭环功率控制参数为0时对应的第一时间单元又可称之为时隙0。
此外,第一资源信息对应的第一信号和第二资源信息对应的第一信号满足信号的接收功率变化值不在设定的阈值范围内,例如终端设备接收第一资源信息对应的第一信号的信号接收功率与终端设备接收第二资源信息对应的第一信号的信号接收功率的差值为X,若设定的阈值范围为[a,b],其中,X不在阈值范围[a,b]内,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件。其中a、b的取值可以预先定义,也可以由网络设备根据预先配置的算法进行确定,本申请实施例对此不作限定。应理解,本申请实施例中信号的接收功率变化值可以为信号接收功率的差值,也可以为信号接收功率的比值,还可以为信号接收功率的比值取dB后的值,本申请实施例对此也不做限定。上述设定的阈值范围与第一确定闭环功率控制参数的方法对应,此外,设定的阈值范围还可以与第二闭环功率控制的方法对应,当设定的阈值范围与第二闭环功率控制的方法对应时,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足信号的接收功率变化值在设定的阈值范围内时,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件。其中第一闭环功率控制的方法、和第二闭环功率控制的方法参见方式一中的具体介绍。
可选的,第一条件还可以为测量资源和波束资源的映射关系、P O、α中的至少一项发生变化,例如,第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一资源信息对应的第一信号的测量资源和波束资源的映射关系与第二资源信息对应的第一信号的测量资源和波束资源的映射关系不同、第一资源信息对应的第一信号的P O与第二资源信息对应的第一信号的P O不同、第一资源信息对应的第一信号的α与第二资源信息对应的第一信号的α不同中至少一项,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件。其中,测量资源指的是用于测量路径损耗的资源,如用于进行路径损耗测量的信号资源标识、时频图案、频域资源位置、时域资源位置、频域周期、时域周期、或,时域偏移等中的一项或多项,波束资源指的是指资源在空间上的区分,即不同的波束资源对应的空间信息不同。
其中需要说明的是,第二时间单元为第一时间单元的前m个时间单元中的每一个,m为大于等于1的正整数。其中m值可以预先定义或者由网络设备通知,示例的,m值取值为1,则第二时间单元为第一时间单元的前一个时间单元,或者,m值取值为大于等于2正整数,则在第一时间单元的前m个时间单元任意一个时间单元,满足第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件。
可选的,若第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件时,可以应用第一确定闭环功率控制参数的方法。其中,第一确定闭环功率控制参数的方法是指确定第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数(比如,第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值之和,或,加权和)。其中,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;并根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
示例的,第二条件可以包括信号的资源信息相同、或信号的接收功率变化值在设定的阈值范围内中的一项或多项。其中信号的资源信息可以包括资源标识、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口所在的准共址指示标识、时域标识、频域标识中的一个或多个。可选的,信号的资源信息相同指的是信号的资源信息包括的参数均相同。
例如,信号的资源信息包括资源标识和时频图案,则第一资源信息对应的第一信号的资源标识与第二资源信息对应的第一信号的资源标识相同、第一资源信息对应的第一信号的时频图案和第二资源信息对应的第一信号的时频图案相同时,则终端设备确定第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件。当信号的资源信息包括一个或多个其它参数时,终端设备判断第一资源信息对应的第一信号和第二资源信息对应的第一信号是否满足第二条件的方式,与信号的资源信息包括资源标识和时频图案时,终端设备判断第一资源信息对应的第一信号和第二资源信息对应的第一信号是否满足第二条件的方式类似,在此不再赘述。
再例如,终端设备接收第一资源信息对应的第一信号的信号接收功率与终端设备接收第二资源信息对应的第一信号的信号接收功率的差值为Y,若设定的阈值范围为[c,d],其中,Y在阈值范围[c,d]内,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件。其中c和/或d的取值可以预先定义,也可以有网络设备根据预先配置的算法进行确定,本申请实施例对此不作限定。应理解,本申请实施例中信号的接收功率变化值可以为信号接收功率的差值,也可以为信号接收功率的比值,还可以为信号接收功率的比值取dB后的值,本申请实施例对此也不做限定。可以理解的是,这里的阈值范围和描述第一条件时对应的阈值范围可以相同,也可以不同,在此不予限定。另外,阈值范围也可以为阈值,即满足与该阈值的关系,比如小于(或等于)该阈值,就满足了第二条件。相应的,在描述第一条件时,阈值范围也可以为阈值,即满足与该阈值的关系,比如大于(或等于)该阈值,就满足了第一条件。类似的,第一条件对应的阈值和第二条件对应的阈值可以相同,也可以不同,在此不予限定。
可选的,第二条件还可以为测量资源和波束资源的映射关系、P O、α均未变化,例如,第一资源信息对应的第一信号和第二资源信息对应的第一信息同时满足第一资源信息对 应的第一信号的测量资源和波束资源的映射关系与第二资源信息对应的第一信号的测量资源和波束资源的映射关系相同、第一资源信息对应的第一信号的P O与第二资源信息对应的第一信号的P O相同、以及第一资源信息对应的第一信号的α与第二资源信息对应的第一信号的α相同的情况下,则第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件。其中,测量资源指的是用于测量路径损耗的资源,如用于进行路径损耗测量的信号资源标识、时频图案、频域资源位置、时域资源位置、频域周期、时域周期、时域偏移等中的一项或多项,波束资源指的是指资源在空间上的区分,即不同的波束资源对应的空间信息不同。
其中需要说明的是,第二时间单元为第一时间单元的前m个时间单元中的一个,m为大于等于1的正整数。其中m值可以预先定义或者由网络设备通知,示例的,m值取值为1,则第二时间单元为第一时间单元的前一个时间单元,或者,m值取值为大于等于2正整数,则第二时间单元为第一时间单元的前m个时间单元的一个时间单元,具体第二时间单元为第一时间单元的前m个时间单元中的哪个时间单元,可以按照下列方式确定:在第一时间单元的前一个时间单元时,若第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件,则第二时间单元为第一时间单元的前一个时间单元,若第一资源信息对应的第一信号和第二资源信息对应的第一信号不满足第二条件,继续判断第一时间单元的前两个时间单元,若第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件,则第二时间单元为第一时间单元的前两个时间单元,若第一资源信息对应的第一信号和第二资源信息对应的第一信号不满足第二条件,则继续判断第一时间单元的前三个时间单元,直至判断第一时间单元中的前m个时间单元中的第二时间单元满足第二条件。
示例的,以SRS为例,信号的发射功率可以基于下列方式来确定:
P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(k)+α SRS,c·PL c+f SRS,c(i)}
其中,M SRS,c表示用于传输SRS的频域资源的带宽,P O_SRS,c(k)表示SRS的标称(或基准)功率(又可以称为功率密度基准值),包括SRS的小区标称功率(P O_NOMINAL_SRS,c(k))和SRS的终端特定标称功率(P O_UE_SRS,c(k)),其中k=0或1;α SRS,c表示SRS的路径损耗调整因子(或补偿因子);PL c表示路径损耗;f SRS,c(i)为闭环功率控制参数。本申请实施例中的c用于表示本参数对应的是服务小区c,或者载波分量c,或者用于传输点c(如DMRS导频组1是传输点1,DMRS导频组2是传输点2,可以通过QCL指示来知道)。i用于表示时间单元i,如子帧i、时隙i。
若第一时间单元为时隙i,则第二时间单元可以为时隙(i-k),k为大于等于1的正整数,第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件时,f SRS,c(i)=f SRS,c(i-k)+δ(i-n),f SRS,c(i-k)为第二闭环功率控制参数,δ(i-n)为第一闭环功率控制调整值,k、n的取值为大于等于1正整数。第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件时,则f SRS,c(i)=0、或δ(i-n),可选的,f SRS,c(i-k)=0。
上述SRS的信号的发射功率确定的公式仅为一个示例说明,可以理解为信号的发射功率与公式右侧的影响因子中的一项或多项相关,或者,是公式右侧的影响因子中的一项或多项的函数。其中,影响因子可以包括信道带宽、基准功率、特定信道或信号的格式的偏移参数、信道承载的信息内容的偏移、最大发射功率、路径损耗、路径损耗补偿因子、闭环功率控制参数、信道或信号发射模式的偏移参数等中的一项或多项。
方式三:终端设备接收来自网络设备的第二配置信息,其中第二配置信息用于第二时间单元的配置,且第二配置信息包括第二信息,第二信息指示第一信号的第二资源信息;接收来自网络设备的第三配置信息,其中,第三配置信息指示第二信号的第三资源信息且用于至少两个时间单元的配置;第二信号与第一信号具有相同或相近的空间信息关系;至少两个时间单元包括第一时间单元和第二时间单元时,确定第一闭环功率控制参数为第二闭环功率控制参数和第一配置信息包括的第一闭环功率控制调整值的函数,所述第一闭环功率控制参数用于确定第一时间单元的信号的发射功率,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;并根据所述第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
示例的,第一信号为CSI-RS,第二信号为SS,其中SS与CSI-RS具有相同或相近的空间信息关系。所述空间信息关系可以包括CSI-RS与SS对应的空间滤波相同或相近,和/或,CSI-RS对应的天线端口与SS对应的天线端口具有QCL关系,所述QCL关系至少包括关于空间参数的QCL关系。当至少两个时间单元包括第二时间单元与第一时间单元时,则第一资源信息对应的波束和第二资源信息对应的波束具有相近的信道特性。
方式四:终端设备接收来自网络设备的第三配置信息,第三配置信息指示第二信号的第三资源信息且用于包括第一时间单元的至少两个时间单元的配置,第二信号与第一信号具有相同或相近的空间信息关系。以及接收来自网络设备的第四配置信息,第四配置信息指示第二信号的第四资源信息且用于包括第二时间单元的至少两个时间单元的配置;第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第一条件时,确定第一闭环功率控制参数为0、或者第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率;并根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
可选的,在方式四中,包括第一时间单元的至少两个时间单元与包括第二时间单元的至少两个时间单元为不同的时间单元,例如,包括第一时间单元的至少两个时间单元包括时间单元1、时间单元2、时间单元3和时间单元4,其中时间单元1为第一时间单元,包括第二时间单元的至少两个时间单元包括时间单元5、时间单元6、时间单元7和时间单元8,其中时间单元5为第二时间单元,则时间单元1、时间单元2、时间单元3、时间单元4、时间单元5、时间单元6、时间单元7和时间单元8为不同的时间单元。
可选的,第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第一条件时,确定第二闭环功率控制参数为0。
其中方式四中的第一条件和方式二中的第一条件类似,只是方式二中针对的第一信号进行的描述,而方式四中针对的第二信号进行描述,在此不再赘述。
方式五:终端设备接收来自网络设备的第三配置信息,其中,第三配置信息指示第二信号的第三资源信息且用于包括第一时间单元的至少两个时间单元的配置,第二信号与第一信号具有相同或相近的空间信息关系。以及接收来自网络设备的第四配置信息,第四配置信息指示第二信号的第四资源信息且用于包括第二时间单元的至少两个时间单元的配置;第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第二条件时,确定第一闭环功率控制参数为第二闭环功率控制参数和所述第一配置信息包括的第一闭环功率控制调整值的函数,第一闭环功率控制参数用于确定第一时间单元的信号的发射功率,第二闭环功率控制参数用于确定第二时间单元的信号的发射功率。然后根据第一闭环功率控制参数,确定在第一时间单元的信号的发射功率。
其中,所述相同或相近的空间信息关系可以包括第二信号与第一信号对应的空间滤波相同或相近,和/或,第二信号对应的天线端口与第一信号对应的天线端口具有QCL关系,所述QCL关系至少包括关于空间参数的QCL关系。
需要说明的是,方式五中第二条件与方式二中的第二条件类似,方式二中第二条件针对的第一信号进行的描述,方式五中为针对第二信号进行的描述,在此不再赘述。
在方式四和方式五中,终端设备是根据第二信号确定第一闭环功率控制参数的,为了便于终端设备确定使用第二信号来确定第一闭环功率控制参数,可选的,网络设备向终端设备发送指示信息,其中用于闭环功率控制参数的确定,或者,用于信号的发射功率的确定。或者,可选的,预定义第二信号作为用于确定闭环功率控制参数的信号。
本申请实施例中的方式一、方式二、方式三、方式四和方式五中涉及的第一闭环功率控制调整值的函数可以为第一闭环功率调整值,也可以为第一闭环功率调整值的线性加权等,其中线性加权指的是在第一闭环功率调整值可以乘以某个系数,具体系数的值可以由网络设备通知终端设备,比如,网络设备根据预先配置的算法确定后通知终端设备,也可以预定义上述系数,本申请实施例对此不作限定。
本申请实施例中的方式一、方式二、方式三、方式四和方式五中涉及的第二闭环功率控制参数和第一闭环功率调整值的函数可以为第二闭环功率控制参数和第一闭环功率调整值之和,也可以为第二闭环功率控制参数和第一闭环功率调整值的加权求和等,其中加权指的是在第二闭环功率控制参数、第一闭环功率调整值可以乘以某个系数,具体系数的值可以由网络设备通知终端设备,比如,网络设备根据预先配置的算法确定后通知终端设备,也可以预定义上述系数,本申请实施例对此不作限定。
还需要说明的是,本申请实施例的第一闭环功率控制调整值可以通过TPC指示,具体的TPC可以指示索引号,其中索引号与闭环功率控制调整值相对应,例如,索引号与闭环功率控制调整值的对应关系如表1所示。
表1
索引号 闭环功率控制调整值
0 -1
1 0
2 1
3 3
以表1为例,若第一闭环功率控制调整值为0,则TPC指示的为1,在具体实现时,TPC可以是单独的DCI域、或者TPC与其它指示信息联合编码的域,如,TPC可以与网络设备的SRS发送请求和/或波束指示(波束指示用于指示信号的空间信息)等联合指示,这种情况下终端设备解读该域后,可以获得TPC、SRS发送请求和/或波束指示等多个信息。含有TPC指示的域,可以在携带下行相关调度信息的DCI中、携带上行相关调度信息的DCI中、或者用于调度多个用户的DCI中。
可以理解的是,以上确定方式一、二、三、四、五可以单独实施,也可以结合使用,比如在网络设备和终端设备通信的过程中,可以某一时间使用方式一确定信号的发射功率,在另一个时间也可以使用方式二确定信号的发射功率。在此不予限定。再例如,方式二和方式四和方式五结合使用,在基于方式二确定第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第二条件后,然后再进一步基于方式四和方式五判断第三资源 信息对应的第二信号和第四资源信息对应的第二信号满足第一条件还是第二条件。当基于方式二确定第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件后,可选的,可以直接应用第二确定闭环功率控制参数的方法。当基于方式二确定第一资源信息对应的第一信号和第二资源信息对应的第一信号满足第一条件后,可选的,还可以进一步基于方式四和方式五判断第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第一条件还是第二条件,若确定第三资源信息对应的第二信号和第四资源信息对应的第二信号同时满足第一条件,则可以直接应用第二确定闭环功率控制参数的方法,其中第二确定闭环功率控制参数的方法可以参见方式一中的具体介绍。
在本申请实施例中,可选的,当终端设备在第一时间单元需要向网络设备发送信号时,可以根据本申请实施例确定的信号的发射功率向网络设备发送信号。
为了便于网络设备对终端设备的管理,可选的,终端设备根据信号的发射功率,确定PHR,并向网络设备发送PHR。其中PHR可以携带在媒体访问控制控制单元(MAC control element,MAC CE)中发送给终端设备。
需要说明的是,本申请实施例的PHR是指PH的上报,PH指的是终端设备能够达到的最大发射功率与发射信号时实际使用的发射功率之间的功率差,这里的功率差指的是广义上的功率之间的差距的含义,例如该功率差可以为最大发射功率的分贝(dB)值与发射信号时实际使用的发射功率的dB值之间的差值,可以为最大发射功率的线性值(如以功率的瓦特、毫瓦为单位的值)与发射信号时实际使用的发射功率的线性值之间的差值,还可以为最大发射功率的线性值除以发射信号时实际使用的发射功率的线性值后得到的值转换得到的dB值。
网络设备在收到PHR后,将可以得到PHR中的功率余量(power headroom,PH)信息等。网络设备可以根据PH信息,来进行功率控制和/或资源调度等。例如,当网络设备接收到的来自终端设备的PH较小时(PH为负数也可称为是PH较小),表示终端设备能够支持的最大发射功率,已经很难、或者不能支撑发送当前的信号了。在这种情况下,网络设备可通过算法,调整给终端设备分配的资源,如减小终端设备发送信号的带宽,或者,网络设备可以调整终端设备的发送功率,如降低终端设备的信号发射功率,使得终端设备能够发送信号,防止因为发送功率需求过大而最大功率不够所导致的实际发送功率密度低于网络设备所需求的功率密度,造成信号的质量变差。上述仅为功率控制中应用PH的一个例子,此外,网络设备还可以根据PH,设计各类优化算法,来优化通信的性能等。
以上结合图2详细说明了本申请实施例的通信方法。以下结合图3至图5详细说明本申请实施例的通信装置。
图3是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的***中,执行如图2所示的功率控制的方法实施例中终端设备的功能。为了便于说明,图3仅示出了终端设备的主要部件。如图3所示,终端设备30包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,根据接收的来自网络设备的第一配置信息包括的第一信息确定在第一时间单元的信号的发射功率等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述第一配置信息等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于 收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图3仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图3中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备30的收发单元301,例如,用于支持终端设备执行如图2部分所述的接收功能和发送功能。将具有处理功能的处理器视为终端设备30的处理单元302。如图3所示,终端设备30包括收发单元301和处理单元302。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元301中用于实现接收功能的器件视为接收单元,将收发单元301中用于实现发送功能的器件视为发送单元,即收发单元301包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理单元302可用于执行该存储器存储的指令,以控制收发单元301接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元301的功能可以考虑通过收发电路或者收发的专用芯片实现。
图4是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图4所示,该基站可应用于如图1所示的***中,执行如图2所示的功率控制的方法实施例中网络设备的功能。基站40可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的第一配置信息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401 与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)402可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,4G网或其他网)。所述BBU 402还包括存储器4021和处理器4022,所述存储器4021用于存储必要的指令和数据。例如存储器4021存储上述实施例中的第一配置信息等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图5给出了一种通信装置500的结构示意图。通信装置500可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置500可以是芯片,网络设备(如基站),终端设备或者其他网络设备等。
所述通信装置500包括一个或多个处理器501。所述处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,所述收发单元可以为收发器,射频芯片等。
所述通信装置500包括一个或多个所述处理器501,所述一个或多个处理器601可实现图2所示的实施例中网络设备或者终端设备的方法。
在一种可能的设计中,所述通信装置500包括用于接收第一配置信息的部件(means),以及用于确定信号的发射功率的部件(means)。可以通过一个或多个部件来实现所述确定信号的发射功率的means以及接收第一配置信息的means的功能。例如可以通过一个或多个处理器确定信号的发射功率,通过收发器、或输入/输出电路、或芯片的接口接收第一配置信息。所述第一配置信息可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置500包括用于接收第一配置信息的部件(means),以及用于确定信号的发射功率的部件(means)。所述第一配置信息以及如何确定信号的发射功率可以参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述第一配置信息,通过一个或多个处理器确定信号的发射功率。
可选的,处理器501除了实现图2所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器501也可以包括指令503,所述指令可以在所述处理器上被运行,使得所述通信装置500执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置500也可以包括电路,所述电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中所述通信装置500中可以包括一个或多个存储器502,其上存 有指令504,所述指令可在所述处理器上被运行,使得所述通信装置500执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器502可以存储上述实施例中所描述的配置信息,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置500还可以包括收发单元505以及天线506。所述处理器501可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元505可以称为收发机、收发电路、或者收发器等,用于通过天线506实现通信装置的收发功能。
本申请还提供一种通信***,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半 导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,通常为“和/或”的简略形式。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种功率控制的方法,其特征在于,包括:
    接收来自网络设备的第一配置信息,所述第一配置信息用于第一时间单元的配置,且所述第一配置信息包括第一信息,所述第一信息指示第一信号的第一资源信息;
    根据所述第一信息确定在所述第一时间单元的信号的发射功率。
  2. 如权利要求1所述的方法,其特征在于,所述第一信号为路径损耗测量信号、或者同步信号SS、或者信道状态信息参考信号CSI-RS、或者探测参考信号SRS。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述第一信息确定在所述第一时间单元的信号的发射功率,包括:
    接收来自所述网络设备的第二配置信息,所述第二配置信息用于第二时间单元的配置,且所述第二配置信息包括第二信息,所述第二信息指示第一信号的第二资源信息;
    根据所述第一信息和所述第二信息确定在所述第一时间单元的信号的发射功率。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述第一信息和所述第二信息确定在所述第一时间单元的信号的发射功率,包括:
    所述第一资源信息对应的第一信号和所述第二资源信息对应的第一信号满足第一条件时,确定第一闭环功率控制参数为0、或者,第一闭环功率控制参数为所述第一配置信息包括的第一闭环功率控制调整值的函数;
    根据所述第一闭环功率控制参数,确定所述在第一时间单元的信号的发射功率。
  5. 如权利要求3所述的方法,其特征在于,所述根据所述第一信息和所述第二信息确定在所述第一时间单元的信号的发射功率,包括:
    所述第一资源信息对应的第一信号和所述第二资源信息对应的第一信号满足第二条件时,确定第一闭环功率控制参数为第二闭环功率控制参数和所述第一配置信息包括的第一闭环功率控制调整值的函数,所述第一闭环功率控制参数用于确定所述第一时间单元的信号的发射功率,所述第二闭环功率控制参数用于确定第二时间单元的信号的发射功率;
    根据所述第一闭环功率控制参数,确定所述在第一时间单元的信号的发射功率。
  6. 如权利要求1或2所述的方法,其特征在于,所述根据所述第一信息确定在第一时间单元的信号的发射功率,包括:
    接收来自所述网络设备的第二配置信息,所述第二配置信息用于第二时间单元的配置,且所述第二配置信息包括第二信息,所述第二信息指示第一信号的第二资源信息;
    接收来自所述网络设备的第三配置信息,所述第三配置信息指示第二信号的第三资源信息且用于至少两个时间单元的配置;所述第二信号与所述第一信号具有相同或相近的空间信息关系;
    所述至少两个时间单元包括所述第一时间单元和所述第二时间单元时,确定第一闭环功率控制参数为第二闭环功率控制参数和所述第一配置信息包括的第一闭环功率控制调整值的函数,所述第一闭环功率控制参数用于确定所述第一时间单元的信号的发射功率,所述第二闭环功率控制参数用于确定所述第二时间单元的信号的发射功率;
    根据所述第一闭环功率控制参数,确定所述在第一时间单元的信号的发射功率。
  7. 如权利要求1或2所述的方法,其特征在于,所述根据所述第一信息确定在所述第一时间单元的信号的发射功率,包括:
    接收来自所述网络设备的第三配置信息,所述第三配置信息指示第二信号的第三资源信息且用于包括所述第一时间单元的至少两个时间单元的配置,第二信号与第一信号具有相同或相近的空间信息关系;
    接收来自所述网络设备的第四配置信息,所述第四配置信息指示第二信号的第四资源信息且用于包括第二时间单元的至少两个时间单元的配置;
    所述第三资源信息对应的第二信号和所述第四资源信息对应的第二信号满足第一条件时,确定第一闭环功率控制参数为0,或者,第一闭环功率控制参数为所述第一配置信息包括的第一闭环功率控制调整值的函数;
    根据所述第一闭环功率控制参数,确定所述在第一时间单元上的信号的发射功率。
  8. 如权利要求4或7所述的方法,其特征在于,所述方法还包括:
    确定第二闭环功率控制参数为0,所述第二闭环功率控制参数用于确定所述第二时间单元的信号的发射功率。
  9. 如权利要求1或2所述的方法,其特征在于,所述根据所述第一信息确定在所述第一时间单元的信号的发射功率,包括:
    接收来自网络设备的第三配置信息,所述第三配置信息指示第二信号的第三资源信息且用于包括第一时间单元的至少两个时间单元的配置,第二信号与第一信号具有相同或相近的空间信息关系;
    接收来自网络设备的第四配置信息,所述第四配置信息指示第二信号的第四资源信息且用于包括第二时间单元的至少两个时间单元的配置;
    所述第三资源信息对应的第二信号和第四资源信息对应的第二信号满足第二条件时,确定第一闭环功率控制参数为第二闭环功率控制参数和所述第一配置信息包括的第一闭环功率控制调整值的函数,所述第一闭环功率控制参数用于确定所述第一时间单元的信号的发射功率,所述第二闭环功率控制参数用于确定所述第二时间单元的信号的发射功率;
    根据所述第一闭环功率控制参数,确定所述在第一时间单元上的信号的发射功率。
  10. 如权利要求4、7或8所述的方法,其特征在于,所述第一条件包括:信号的接收功率变化值不在设定的阈值范围内,和/或,信号的资源信息不同;
    其中,所述信号的资源信息包括的资源标识、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口组号、天线端口所在的准共址指示标识、时域标识、频域标识中的至少一个不同。
  11. 如权利要求4、7、8或10中任一所述的方法,其特征在于,所述第二时间单元为第一时间单元前m个时间单元中的每一个,m为大于等于1的整数。
  12. 如权利要求5、6或9所述的方法,其特征在于,所述第二条件包括:信号的接收功率变化值在设定的阈值范围内,和/或,信号的资源信息相同;
    其中,所述信号的资源信息包括资源标识、序列标识、时频图案、时域资源位置、频域资源位置、时域周期、频域周期、时域偏移、天线端口数、天线端口号、天线端口组号、天线端口所在的准共址指示标识、时域标识、频域标识中的一个或多个。
  13. 如权利要求5、6、9或12中任一所述的方法,其特征在于,所述第二时间单元为第一时间单元前m个时间单元中的一个,m为大于等于1的整数。
  14. 如权利要求6至13任一所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的指示信息,所述指示信息用于指示所述终端设备使用所述第 二信号确定所述第一闭环功率控制参数。
  15. 如权利要求1至14任一所述的方法,其特征在于,所述方法还包括:
    根据所述信号的发射功率,向所述网络设备发送信号。
  16. 如权利要求1至15任一所述的方法,其特征在于,所述方法还包括:
    根据所述信号的发射功率,生成功率余量报告PHR并向所述网络设备发送所述PHR。
  17. 一种功率控制的方法,其特征在于,包括:
    向终端设备发送第一配置信息,所述第一配置信息用于第一时间单元的配置,且所述第一配置信息包括第一信息,所述第一信息指示第一信号的第一资源信息;
    接收来自终端设备的信号和/或功率余量报告PHR,其中所述信号的发射功率和/或所述PHR与所述第一信息相关。
  18. 如权利要求17所述的方法,其特征在于,所述第一信号为路径损耗测量信号、或者同步信号SS、或者信道状态信息参考信号CSI-RS、或者探测参考信号SRS。
  19. 一种通信装置,其特征在于,用于执行如权利要求1至18中任意一项所述的方法。
  20. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至18中任意一项所述的方法。
  21. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至18中任意一项所述的方法被执行。
PCT/CN2018/117540 2017-11-27 2018-11-26 一种功率控制的方法、装置及*** WO2019101204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711206357.5A CN109842926B (zh) 2017-11-27 2017-11-27 一种功率控制的方法、装置及***
CN201711206357.5 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019101204A1 true WO2019101204A1 (zh) 2019-05-31

Family

ID=66631362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117540 WO2019101204A1 (zh) 2017-11-27 2018-11-26 一种功率控制的方法、装置及***

Country Status (2)

Country Link
CN (1) CN109842926B (zh)
WO (1) WO2019101204A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381576A (zh) * 2019-06-10 2019-10-25 华为技术有限公司 功率配置方法及装置
WO2021026695A1 (zh) * 2019-08-09 2021-02-18 华为技术有限公司 数据传输的方法和装置
CN112399543B (zh) * 2019-08-15 2022-04-19 大唐移动通信设备有限公司 一种功率控制参数配置方法、终端和网络侧设备
CN112398622B (zh) * 2019-08-16 2022-05-20 大唐移动通信设备有限公司 一种上行发送方法、终端及网络侧设备
WO2021088000A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 通信方法及装置
EP4075876A4 (en) * 2020-01-17 2023-01-04 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
CN113573397A (zh) * 2020-04-29 2021-10-29 苹果公司 无线调制解调器中的功率管理
CN113824455B (zh) * 2020-06-18 2023-04-07 华为技术有限公司 一种控制天线输出功率的方法、介质及设备
CN117715166A (zh) * 2020-06-22 2024-03-15 华为技术有限公司 功率控制方法及装置
CN113939017A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 有效全向辐射功率控制方法、装置及存储介质
CN111818627B (zh) * 2020-07-24 2022-07-08 成都爱瑞无线科技有限公司 一种动态调整的下行发端定标方法
CN114585064A (zh) * 2020-11-18 2022-06-03 ***通信有限公司研究院 一种上行传输处理方法、装置及设备
CN114828184A (zh) * 2021-01-22 2022-07-29 维沃移动通信有限公司 信号发射功率控制方法及相关设备
CN113301578B (zh) * 2021-05-12 2022-10-11 国网甘肃省电力公司庆阳供电公司 基于电力载波的5g智能通信***
CN113573395B (zh) * 2021-09-23 2021-12-28 鹏城实验室 一种探测参考信号的功率控制方法、***及终端
CN114364004A (zh) * 2021-12-13 2022-04-15 北京佰才邦技术股份有限公司 上行功率控制方法、装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057663A1 (en) * 2010-10-28 2012-05-03 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for uplink transmit power adjustment
CN102761900A (zh) * 2011-04-28 2012-10-31 中兴通讯股份有限公司 功率余量报告触发方法及装置
CN103327595A (zh) * 2012-03-23 2013-09-25 华为技术有限公司 上行功率控制方法、网络节点及***
CN104168600A (zh) * 2014-08-01 2014-11-26 电信科学技术研究院 一种信号发送方法、测量方法、通信控制方法及装置
CN104301979A (zh) * 2013-07-19 2015-01-21 华为技术有限公司 一种ue的上行发射功率控制方法、装置、ue及基站
US20160044609A1 (en) * 2014-08-07 2016-02-11 Qualcomm Incorporated Reporting user equipment transmission power headroom (uph) of a secondary uplink carrier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958147B (zh) * 2011-08-18 2016-08-24 华为技术有限公司 上行功率控制的方法、用户设备和基站
CN103298091B (zh) * 2012-03-01 2018-08-24 中兴通讯股份有限公司 上行发射功率确定方法及装置
CN103945504B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 功率控制方法及设备
US9900844B2 (en) * 2014-01-13 2018-02-20 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
JP6253071B2 (ja) * 2014-05-30 2017-12-27 華為技術有限公司Huawei Technologies Co.,Ltd. D2d通信での送信電力制御方法およびデバイス
CN107396443B (zh) * 2016-05-13 2022-07-12 中兴通讯股份有限公司 一种控制信息的发送方法、检测方法、基站和终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057663A1 (en) * 2010-10-28 2012-05-03 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for uplink transmit power adjustment
CN102761900A (zh) * 2011-04-28 2012-10-31 中兴通讯股份有限公司 功率余量报告触发方法及装置
CN103327595A (zh) * 2012-03-23 2013-09-25 华为技术有限公司 上行功率控制方法、网络节点及***
CN104301979A (zh) * 2013-07-19 2015-01-21 华为技术有限公司 一种ue的上行发射功率控制方法、装置、ue及基站
CN104168600A (zh) * 2014-08-01 2014-11-26 电信科学技术研究院 一种信号发送方法、测量方法、通信控制方法及装置
US20160044609A1 (en) * 2014-08-07 2016-02-11 Qualcomm Incorporated Reporting user equipment transmission power headroom (uph) of a secondary uplink carrier

Also Published As

Publication number Publication date
CN109842926B (zh) 2021-06-29
CN109842926A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
US11516754B2 (en) Communication method, communications apparatus, and communications system
WO2019101204A1 (zh) 一种功率控制的方法、装置及***
US11317355B2 (en) System and method for wireless power control
CN110809321B (zh) 接收和发送信号的方法以及通信装置
US11234198B2 (en) Sounding reference signal transmission method, and apparatus
JP2022165995A (ja) 多入力多出力無線システムのためのサウンディング基準信号の電力制御
WO2019214725A1 (zh) 一种波束训练的方法、装置及***
US11516688B2 (en) Terminal apparatus, base station apparatus, and communication method
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
JP7385340B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019026296A1 (ja) ユーザ端末及び無線通信方法
WO2021179316A1 (zh) 选择波束的方法和通信装置
WO2019096316A1 (zh) 通信方法、通信装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882000

Country of ref document: EP

Kind code of ref document: A1