WO2024032396A1 - 通信方法与装置 - Google Patents

通信方法与装置 Download PDF

Info

Publication number
WO2024032396A1
WO2024032396A1 PCT/CN2023/110042 CN2023110042W WO2024032396A1 WO 2024032396 A1 WO2024032396 A1 WO 2024032396A1 CN 2023110042 W CN2023110042 W CN 2023110042W WO 2024032396 A1 WO2024032396 A1 WO 2024032396A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
reference signals
downlink path
loss reference
information
Prior art date
Application number
PCT/CN2023/110042
Other languages
English (en)
French (fr)
Inventor
刘晓晴
刘江华
余政
李铁
张哲宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032396A1 publication Critical patent/WO2024032396A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the terminal device needs to send a sounding reference signal (SRS) to the network side so that the network side can determine the channel information.
  • SRS sounding reference signal
  • the network side needs to perform uplink power control.
  • uplink power control on the network side includes: the network side sends a path loss reference signal (PL-RS) to the terminal device, and the terminal device calculates the path loss value based on the PL-RS and determines the transmission based on the path loss value.
  • PL-RS path loss reference signal
  • the network side needs to measure the downlink channel information between each TRP in multiple TRPs and the terminal device.
  • the network side measures the downlink channel information between each TRP and the terminal device.
  • the TRP sends a path loss reference signal, and then the terminal device uses the transmit power determined by the path loss reference signal sent by the closer/farer TRP to send SRS.
  • Different TRPs determine the corresponding channels after receiving the same SRS.
  • the terminal device receives the path loss reference signal sent by each TRP in multiple TRPs, and sends the SRS on different resources based on the transmit power calculated based on the path loss reference signal sent by each TRP.
  • different TRPs respectively determine the corresponding channel information after receiving the corresponding SRS.
  • the above first implementation method may cause the problem of non-uniform power when the terminal device sends SRS to different TRPs. For example, if the terminal device transmits SRS using the transmission power determined by the path loss reference signal sent by the TRP that is closer, the power of the SRS received by the TRP that is farther away may be lower; and for the above second implementation method , which will lead to high power consumption of the terminal equipment.
  • This application provides a communication method and device, which helps to solve the problem of non-uniform power of terminal equipment when sending SRS to different TRPs and the problem of high power consumption of terminal equipment.
  • this application provides a communication method, applied to terminal equipment, including: receiving N downlink path loss reference signals, where the N downlink path loss reference signals include M downlink path loss reference signals, and N is greater than or equal to 2. is a positive integer, M is a positive integer less than or equal to N; determine the first transmit power, and the first transmit power is associated with the transmit power corresponding to one or more downlink path loss reference signals among the M downlink path loss reference signals; send The first information is used to indicate that the uplink reference signal corresponding to the M downlink path loss reference signals is sent on the first resource; and the uplink reference signal is sent on the first resource with the first transmit power.
  • the terminal device after receiving N downlink path loss reference signals, the terminal device indicates to the network device M downlink paths that can simultaneously receive the uplink reference signals sent by the terminal device on the first resource.
  • loss reference signal (corresponding to M TRPs)
  • M TRPs the network device only M TRPs among the N TRPs can be used to simultaneously receive the uplink reference signal sent by the terminal device on the first resource, and for the remaining N-M TRPs , respectively receiving the uplink reference signals corresponding to their respective TRPs.
  • the M downlink path loss reference signals satisfy one or more of the following conditions: two downlink path loss reference signals among the M downlink path loss reference signals The difference between the path loss values corresponding to the signals is less than the first threshold, and the difference in transmit power of the uplink reference signals corresponding to two of the M downlink path loss reference signals is less than the first threshold.
  • the terminal device uses the first transmit power to send the uplink reference signal on the first resource, the uplink reference signals received by the M TRPs
  • the transmit power is a relatively moderate power.
  • the first transmit power is any one of the following: the maximum value among the M transmit powers corresponding to the M downlink path loss reference signals, the M The minimum value among the M transmit powers, the average value of the M transmit powers, and a value among the M transmit powers.
  • the first transmit power is The transmit power corresponding to the first downlink path loss reference signal.
  • the first information includes identification information of one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the method before receiving N downlink path loss reference signals, the method further includes: receiving second information, where the second information includes a set of resource information and N pieces of identification information, the set of resource information indicates the first resource, and the N pieces of identification information indicate the N downlink path loss reference signals.
  • the network device can indicate to the terminal device N downlink path loss reference signals and the resource information that the terminal device needs to use when sending uplink reference signals to the terminal device through a set of resource information and N pieces of identification information. It can be understood that in this implementation, since the network device is only configured with a set of resource information, resources of the communication system can be saved.
  • the method before receiving N downlink path loss reference signals, the method further includes: receiving third information, where the third information includes N sets of resource information and N pieces of identification information, N groups of resource information indicate N different resources, N pieces of identification information indicate N downlink path loss reference signals, and N groups of resource information correspond to N pieces of identification information; the uplink reference signal is transmitted on the first resource using the first transmit power, It also includes: determining a resource indicated by a group of resource information in M groups of resource information as the first resource, and the M group of resource information corresponds to M downlink path loss reference signals.
  • the network device may indicate to the terminal device N sets of downlink path loss reference signals and the resource information that the terminal device needs to use when sending uplink reference signals in the form of N sets of resource information and N pieces of identification information. It can be understood that in this implementation, since the network device has configured N sets of resource information required for N TRPs in advance, radio resource control (RRC) reconfiguration can be avoided, further reducing the number of uplink transmissions by the terminal device. Delay problem when reference signal.
  • RRC radio resource control
  • the method before transmitting the uplink reference signal using the first transmit power on the first resource, the method further includes: receiving fourth information; and when the fourth information indicates the first When in the state, use the first transmit power to send the uplink reference signal on the first resource.
  • the network device after receiving the first information, the network device will feed back the fourth information to the terminal device. Only when the fourth information indicates the first state, the terminal device will use the first transmit power on the first resource. Send uplink reference signals. It can be understood that this implementation method can improve the accuracy of the communication system.
  • this application provides a communication method, applied to network equipment, including: sending N downlink path loss reference signals, where the N downlink path loss reference signals include M downlink path loss reference signals, where N is greater than or A positive integer equal to 2, M is a positive integer less than or equal to N; receiving the first information, the first information is used to indicate that the uplink reference signals corresponding to the M downlink path loss reference signals are sent by the terminal equipment on the first resource; Receive an uplink reference signal sent by the terminal device on the first resource using a first transmission power, and the first transmission power is associated with the transmission power corresponding to one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the M downlink path loss reference signals satisfy one of the following conditions: One or more items: the difference between the path loss values corresponding to two of the M downlink path loss reference signals is less than the first threshold, and the difference between the path loss values corresponding to two of the M downlink path loss reference signals is The difference between the transmission powers of the uplink reference signals corresponding to the signals is less than the first threshold.
  • the first transmit power is any one of the following: the maximum value among M transmit powers corresponding to the M downlink path loss reference signals, the M The minimum value among the M transmit powers, the average value of the M transmit powers, and a value among the M transmit powers.
  • the first transmit power is The transmit power corresponding to the first downlink path loss reference signal.
  • the first information includes identification information of one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the method before sending the N downlink path loss reference signals, further includes: sending second information, where the second information includes a set of resource information and N identifiers.
  • the second information includes a set of resource information and N identifiers.
  • Information indicates the first resource
  • the N pieces of identification information indicate N downlink path loss reference signals.
  • the method further includes: sending third information, the third information includes N groups of resource information and N pieces of identification information, the N group of resource information indicates N Different resources, the N pieces of identification information indicate the N downlink path loss reference signals, and the N sets of resource information correspond to the N pieces of identification information.
  • the method further includes: sending fourth information.
  • this application provides a communication method, applied to terminal equipment, including: receiving N repetition factors, each repetition factor indicating the number of orthogonal frequency division multiplexing OFDM symbols used by the terminal equipment when sending uplink reference signals, so
  • the N repetition factors correspond to N downlink path loss reference signals; receive the N downlink path loss reference signals; and according to the first transmission corresponding to each downlink path loss reference signal among the first i-1 downlink path loss reference signals power and the first transmit power corresponding to the i-th downlink path loss reference signal, determine the second transmission corresponding to each of the K OFDM symbols indicated by the i-th repetition factor corresponding to the i-th downlink path loss reference signal Power, i ranges from 1 to N, and K is a positive integer; the uplink reference signal is sent using the second transmit power on each OFDM symbol.
  • the sum of the K second transmit powers corresponding to the K OFDM symbols is the same as the first transmit power corresponding to the i-th path loss reference signal.
  • the sum of the K second transmit powers corresponding to the K OFDM symbols is the same as the target transmit power, and the target transmit power is the i-th path loss reference 2 times the first transmit power corresponding to the signal.
  • this application provides a communication method, which is applied to network equipment, including: sending N repetition factors, each repetition factor indicating the number of orthogonal frequency division multiplexing OFDM symbols used by the terminal equipment when sending uplink reference signals, so The N repetition factors correspond to N downlink path loss reference signals; the N downlink path loss reference signals are sent; and the uplink reference signal sent by the terminal device is received on each OFDM symbol.
  • this application provides a communication device, applied to terminal equipment, including: a receiving module, configured to receive N downlink path loss reference signals, where the N downlink path loss reference signals include M downlink path loss reference signals. , N is a positive integer greater than or equal to 2, M is a positive integer less than or equal to N; the processing module is used to determine the first transmit power, the first transmit power and the M downlink path loss reference signals Transmit power correlation corresponding to one or more downlink path loss reference signals; a sending module, configured to send first information, the first information being used to indicate that the uplink reference signals corresponding to the M downlink path loss reference signals are in the first Send on the resource; the sending module is further configured to: send the uplink reference signal on the first resource using the first transmit power.
  • the M downlink path loss reference signals satisfy one or more of the following conditions: two downlink path loss reference signals among the M downlink path loss reference signals The difference between the path loss values corresponding to the signals is less than the first threshold, and the difference in transmit power of the uplink reference signals corresponding to two of the M downlink path loss reference signals is less than the first threshold.
  • the first transmit power is any one of the following: with the M The maximum value among the M transmit powers corresponding to the downlink path loss reference signal, the minimum value among the M transmit powers, the average value of the M transmit powers, and a value among the M transmit powers.
  • the first transmit power is The transmit power corresponding to the first downlink path loss reference signal.
  • the first information includes identification information of one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the receiving module is further configured to: receive second information, where the second information includes a set of resource information and N pieces of identification information, and the set of resource information indicates In the first resource, the N pieces of identification information indicate the N downlink path loss reference signals.
  • the receiving module is further configured to: receive third information, where the third information includes N groups of resource information and N pieces of identification information, and the N group of resource information indicates N different resources, the N identification information indicates the N downlink path loss reference signals, and the N groups of resource information correspond to the N identification information; the processing module is also used to: convert the M groups of resources The resources indicated by a group of resource information in the information are determined as the first resources, and the M groups of resource information correspond to the M downlink path loss reference signals.
  • the receiving module is further configured to: receive fourth information; and the sending module is further configured to: when the fourth information indicates the first state, when the The uplink reference signal is sent on the first resource using the first transmit power.
  • the present application provides a communication device, applied to network equipment, including: a sending module, configured to send N downlink path loss reference signals, where the N downlink path loss reference signals include M downlink path loss reference signals. , N is a positive integer greater than or equal to 2, M is a positive integer less than or equal to N; the receiving module is configured to receive first information, the first information is used to indicate the M downlink path loss reference signals corresponding to The uplink reference signal is sent by the terminal device on the first resource; the receiving module is also configured to: receive the uplink reference signal sent by the terminal device on the first resource with the first transmit power, the first transmitter The power is associated with the transmission power corresponding to one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • a sending module configured to send N downlink path loss reference signals, where the N downlink path loss reference signals include M downlink path loss reference signals.
  • N is a positive integer greater than or equal to 2
  • M is a positive integer less than or equal to N
  • the receiving module is configured to
  • the M downlink path loss reference signals satisfy one or more of the following conditions: two downlink path loss reference signals among the M downlink path loss reference signals The difference between the path loss values corresponding to the signals is less than the first threshold, and the difference in transmit power of the uplink reference signals corresponding to two of the M downlink path loss reference signals is less than the first threshold.
  • the first transmit power is any one of the following: the maximum value among M transmit powers corresponding to the M downlink path loss reference signals, the M The minimum value among the M transmit powers, the average value of the M transmit powers, and a value among the M transmit powers.
  • the first transmit power is The transmit power corresponding to the first downlink path loss reference signal.
  • the first information includes identification information of each downlink path loss reference signal among the M downlink path loss reference signals.
  • the sending module is further configured to: send second information, where the second information includes a set of resource information and N pieces of identification information, and the set of resource information indicates In the first resource, the N pieces of identification information indicate the N downlink path loss reference signals.
  • the sending module is further configured to: send third information, where the third information includes N groups of resource information and N pieces of identification information, and the N group of resource information indicates N different resources, the N pieces of identification information indicate the N downlink path loss reference signals, and the N sets of resource information correspond to the N pieces of identification information.
  • the sending module is further configured to: send fourth information.
  • this application provides a communication device, applied to terminal equipment, including: a receiving module, configured to receive N repetition factors, each repetition factor indicating the orthogonal frequency division multiplexing used by the terminal equipment when sending uplink reference signals.
  • OFDM symbol number the N repetition factors correspond to N downlink path loss reference signals;
  • the receiving module is also used to: receive the N downlink path loss parameters signal;
  • a processing module used to determine the transmit power corresponding to each path loss reference signal among the N path loss reference signals;
  • the processing module is also used to: according to each of the first i-1 downlink path loss reference signals
  • the first transmit power corresponding to the downlink path loss reference signal and the first transmit power corresponding to the i-th downlink path loss reference signal determine the K OFDM indicated by the i-th repetition factor corresponding to the i-th downlink path loss reference signal.
  • the second transmit power corresponding to each OFDM symbol in the symbol, i ranges from 1 to N, and K is a positive integer;
  • a sending module configured to use the
  • the sum of the K second transmit powers corresponding to the K OFDM symbols is the same as the first transmit power corresponding to the i-th path loss reference signal.
  • the sum of the K second transmit powers corresponding to the K OFDM symbols is the same as the target transmit power, and the target transmit power is the i-th path loss reference 2 times the first transmit power corresponding to the signal.
  • this application provides a communication device, applied to network equipment, including: a sending module, configured to send N repetition factors, each repetition factor indicating the orthogonal frequency division multiplexing used by the terminal equipment when sending uplink reference signals.
  • the number of OFDM symbols, the N repetition factors correspond to the N downlink path loss reference signals;
  • the sending module is also used to send the N downlink path loss reference signals;
  • the receiving module is used to Receive the uplink reference signal sent by the terminal device.
  • the present application provides a communication system, including the devices described in the fifth and sixth aspects or the devices described in the seventh and eighth aspects.
  • the present application provides a communication device, including: a memory and a processor; the memory is used to store program instructions; the processor is used to call the program instructions in the memory to execute the first to fourth aspects. Or any of the possible implementation methods.
  • the present application provides a communication device, including: a memory and a processor; the memory is used to store program instructions; the processor is used to call the program instructions in the memory to execute the first to fourth aspects. Aspects or methods described in any of the possible implementations.
  • the present application provides a computer-readable medium that stores program code for computer execution.
  • the program code includes a program code for executing the first to fourth aspects or any one of the possibilities.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, the computer implements the first to fourth aspects. Aspects or methods described in any of the possible implementations.
  • Figure 1 is a schematic structural diagram of the communication system
  • Figure 2 is a structural schematic diagram of the application scenario provided by this application.
  • Figure 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of a communication method provided by another embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal device configured with N SRS resource set information according to an embodiment of the present application
  • Figure 6 is a schematic flowchart of a communication method provided by another embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a terminal device configured with N SRS resource set information provided by another embodiment of the present application.
  • FIG. 8 is a structural schematic diagram of sending SRS provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the communication device provided by this application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • the first information and the second information are used to distinguish different information, and their order is not limited.
  • words such as “first” and “second” and The quantity and order of execution are not limited, and words such as "first” and “second” are not limited to being different.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b and c can mean: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c, where a, b, c can be single or multiple.
  • the reference signal is a known signal provided by the transmitting end to the receiving end for estimating or detecting wireless channel information.
  • This wireless channel information can be very rough, such as the path loss information of the wireless channel. Knowing the path loss information can control the transmission power at the transmitting end.
  • Wireless channel information can also be very detailed, such as accurate channel amplitude and phase information of wireless channels in the time domain, frequency domain, and spatial domain.
  • the physical layer includes uplink communication and downlink communication.
  • Uplink communication includes the transmission of uplink physical channels and uplink reference signals
  • downlink communication includes the transmission of downlink physical channels and downlink reference signals.
  • uplink physical channels include random access channel (PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • Downlink physical channels include broadcast channel (physical broadcast channel, PBCH), downlink control channel (physical downlink control channel, PDCCH), downlink data channel (physical downlink shared channel, PDSCH), etc.
  • the uplink reference signal refers to the reference signal sent from the terminal equipment to the base station (BS) or multiple transceiver points (transmission and receiving point, TRP), that is, the transmitting end is the terminal equipment, and the receiving end is the BS or TRP.
  • the uplink reference signal includes a channel sounding reference signal (SRS), a demodulation reference signal (de-modulation reference signal, DMRS) of the uplink control channel, and a demodulation reference signal (PUSCH-DMRS) of the uplink data channel.
  • SRS channel sounding reference signal
  • DMRS demodulation reference signal
  • PUSCH-DMRS demodulation reference signal
  • PTRS uplink phase noise tracking reference signal
  • uplink positioning signal etc.
  • the downlink reference signal refers to the reference signal sent from the BS or TRP to the terminal equipment, that is, the transmitting end is the BS or TRP, and the receiving end is the terminal equipment.
  • the downlink reference signal includes primary synchronization signal (PSS)/secondary synchronization signal (SSS), downlink control channel demodulation reference signal (PDCCH-DMRS), downlink data channel demodulation Reference signal (PDSCH-DMRS), phase noise tracking signal, channel status information reference signal (CSI-RS), cell signal (cell reference signal, CRS) (NR does not have), fine synchronization signal (time/ frequency tracking reference signal, TRS) (not available in LTE), LTE/NR positioning signal (positioning RS), etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS downlink data channel demodulation Reference signal
  • phase noise tracking signal channel status information reference signal
  • CSI-RS channel status information reference signal
  • the downlink channel information can be obtained by the terminal equipment measuring the downlink reference signal, and then reporting the measured downlink channel information to the network, and then the network sets appropriate transmission settings for subsequent downlink transmission based on this downlink channel information. parameter.
  • the downlink channel information in the time division duplexing (TDD) system it can also be obtained based on channel heterogeneity, that is, the uplink channel and the downlink channel are considered to be the same in some channel characteristics.
  • the network side can pass the uplink reference
  • the signal is measured to obtain the uplink channel information, and then the relevant downlink channel information is estimated based on the obtained uplink channel information.
  • the sounding reference signal is an uplink reference signal that is sent by the terminal equipment to the base station equipment.
  • SRS currently supports four functions: codebook-based uplink transmission, support for non-codebook-based uplink transmission, beam management, and antenna switching.
  • the base station can configure one or more SRS resource sets for the terminal device through high-layer parameters, and the applicability of each SRS resource set is configured through high-layer parameters.
  • the transmission of SRS by the terminal device depends on signaling information, such as radio resource control (RRC) connection settings, RRC connection reconfiguration, etc. That is, the base station notifies the terminal device of the SRS configuration through these RRC information.
  • RRC radio resource control
  • SRS is configured in "SRS-ConfigIE”.
  • a list of SRS resource sets (SRS-resourceset) is defined in "SRS-ConfigIE”.
  • the terminal device can be configured with one or more SRS resource sets through the high-level parameter SRS-resourceset, and each SRS resource set defines a set of SRS resources (SRS-Resource).
  • the terminal device For a given SRS resource, the terminal device will be configured to send the number N s of consecutive orthogonal frequency division multiplexing (OFDM) symbols of the set of SRS resources, the starting OFDM symbol and the repetition factor R, by
  • OFDM orthogonal frequency division multiplexing
  • the above three parameters can configure the repetition and/or frequency hopping of an SRS resource within a time slot.
  • the specific configuration method is as follows:
  • only the repetition of one SRS resource in one time slot is configured, and the SRS is sent in a repeated manner on all configured OFDM symbols. That is, within a time slot, on N s consecutive symbols starting from the starting OFDM symbol, the frequency domain resources mapped to each antenna port of the SRS resource are the same (for example, the same subcarrier set of the same PRB set). That is, SRS is sent in a repeated manner on consecutive N s symbols.
  • the SRS resource If R ⁇ N s , frequency hopping and repetition of an SRS resource in a time slot are configured, that is, in a time slot, on every R adjacent OFDM symbols starting from the starting OFDM symbol, the SRS resource
  • the frequency domain resources mapped to each antenna port are the same; different Between groups of OFDM symbols, the frequency domain resources mapped to each antenna port of the SRS resource are different.
  • increasing the transmission power of terminal equipment for sending uplink reference signals can meet the required signal-to-noise ratio or bit error rate on the network side, while reducing the transmission power of terminal equipment for sending uplink reference signals can reduce the interference between terminals between cells and within cells. interference and power consumption of terminal equipment. Therefore, when the terminal equipment sends the uplink reference signal, the network side usually needs to perform uplink power control to achieve: reduce the bit error rate and packet loss rate, ensure the transmission success rate and service quality, save the transmission power of the terminal equipment (energy saving), reduce interference and improve channel capacity.
  • the formula for calculating the transmit power of SRS on each uplink carrier in the communication system is as follows: the terminal device uses SRS on the uplink part bandwidth (Bandwidth part, BWP) b of carrier f of serving cell c based on the configuration of SRS-resourceset. Power control adjustment state l transmits SRS, and the transmit power of SRS on each OFDM symbol is calculated according to the following formula:
  • c is the serving cell of the terminal device
  • f represents the carrier of the serving cell
  • b represents the uplink part bandwidth (bandwidth part, BWP) of f
  • l represents the SRS power control adjustment state used by the terminal device
  • P CMAX, f, c(i) is the terminal’s configured maximum transmit power on carrier f of serving cell c within SRS transmission opportunity i, is the static working point of the base station, that is, the base station expects the received power on b of carrier f of serving cell c for SRS resource set q s , which can be configured in SRS resource set units through high-level parameter p0;
  • the terminal equipment calculates the downlink path loss based on the path loss reference signal (PL-RS) with index q d .
  • the path loss reference signal can be a synchronization signal or a physical broadcast channel (synchronization signal/physical broadcast channel, SS/PBCH) block index, or channel state information reference signal (channel state information reference signal, CSI-RS);
  • h b, f, c (i, l) are the power control adjustment amounts indicated by the transmission power control (TPC) command in the downlink control information (DCI), which is closed-loop power control.
  • SRS can have joint power control with the physical uplink shared channel (PUSCH), that is, the power adjustment amount of SRS is the same as that of PUSCH; it can also perform power control independent of PUSCH, in which case the TPC command of SRS passes DCI format 2_3 carried on the physical downlink control channel (PDCCH) is delivered to the terminal.
  • PUSCH physical uplink shared channel
  • PDCH physical downlink control channel
  • the communication system includes a network device 101 and a terminal device 102.
  • the network device 101 can be any device with wireless transceiver function.
  • the equipment includes but is not limited to: evolved NodeB (evolved NodeB, eNB or eNodeB), wireless network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base stationcontroller, BSC) , base transceiver station (BTS), home base station (e.g., homeevolved NodeB, or home Node B, HNB), base band unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • 5G such as NR, A gNB in the system, or a transmission point (TRP or TP), one or a group (including multiple antenna panels) of antenna panels of a base station in a 5G system, or it can also be a network node that constitutes a gNB or transmission point, such
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the terminal device 102 may be a device that provides voice and/or data connectivity to a user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • Terminal equipment can also be called user equipment (UE), access terminal (access terminal), user unit (user unit), user station (user station), mobile station (mobile station), mobile station (mobile), Remote station, remote terminal, mobile equipment, user terminal, wireless telecom equipment, user agent, user equipment or user device.
  • UE user equipment
  • access terminal access terminal
  • user unit user unit
  • user station user station
  • mobile station mobile station
  • Remote station remote terminal, mobile equipment, user terminal, wireless telecom equipment, user agent, user equipment or user device.
  • the terminal device can be a station (STA) in a wireless local area network (WLAN), a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local) loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems ( For example, terminals in the fifth-generation (5G) communication network) or terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN) network, etc. Among them, 5G can also be called new radio (new radio, NR).
  • 5G fifth-generation
  • NR new radio
  • the terminal device may also be a terminal device that often works on the ground, such as a vehicle-mounted device.
  • the chip deployed in the above-mentioned device, or the chip may also be called a terminal device.
  • terminal equipment and UE are interchangeable, and the terms base station and network equipment are also interchangeable.
  • network equipment and terminal equipment can communicate through licensed spectrum or unlicensed spectrum. It can also communicate through licensed spectrum and unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through the spectrum below 6 gigahertz (GHZ), or through the spectrum above 6 GHZ, or they can communicate using the spectrum below 6 GHZ and the spectrum above 6 GHZ at the same time.
  • GHZ gigahertz
  • the embodiments of this application do not limit the spectrum resources used between the network device and the terminal device.
  • the number of terminal devices shown in Figure 1 is only an example. In the actual process, the number of terminal devices can also be other numbers.
  • the communication system may also include other network elements, for example, it may also include core network equipment, and the network equipment may be connected to the core network equipment. It should be noted here that the specific forms of network equipment and terminal equipment are not limited in the embodiments of the present application.
  • the terminal device or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. method to communicate.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the terminal device 102 needs to send a sounding reference signal (SRS) to the network device 101, so that the network device 101 determines the downlink channel between the network device 101 and the terminal device 102 information, and then can set appropriate transmission parameters for subsequent downlink transmission based on this downlink channel information.
  • SRS sounding reference signal
  • the network device 101 will send configuration information to the terminal device 102 to inform how SRS transmission should be performed, such as which SRS resource to use, the number of ports for each SRS resource, and so on.
  • SRS-ConfigIE can be used to configure SRS transmission.
  • the "SRS-ConfigIE" configuration information defines a list of SRS resource sets (SRS-resourceset), and each SRS resource set defines a set of SRS resources (SRS-Resource).
  • the transmission of the uplink SRS can be implemented based on the above configuration information sent by the network device.
  • the transmission of uplink SRS also needs to consider the transmit power of the terminal equipment. If the transmit power used by the terminal equipment is too high, it will cause excessive interference to other transmissions of the same time-frequency resource. If the transmit power used is too small, it will cause The service success rate and service quality are reduced. Therefore, the network device 101 needs to perform uplink power control for the transmission power when the terminal device sends SRS.
  • the method for the network device 101 to control the uplink power of the terminal device 102 is as follows: the network device 101 sends a path loss reference signal (PL-RS) to the terminal device 102, and the terminal device calculates PL-RS based on the set formula.
  • the path loss value corresponding to the RS, and the transmit power used to send the SRS is determined based on the path loss value.
  • the formula for the terminal device to determine the path loss value and transmit power based on the PL-RS can refer to the relevant description of the power control of the SRS in the introduction of the aforementioned terms, which will not be described again here.
  • the path loss reference signal is also called the downlink path loss reference signal
  • the reference signal sent by the terminal device is called the uplink reference signal
  • FIG. 2 is a structural schematic diagram of the application scenario provided by this application. As shown in Figure 2, TRP1 and TRP2 can provide data transmission services for the same terminal device 120. It should be noted here that TRP1 and TRP2 in Figure 2 are only an example and do not constitute a limitation of this application. In specific scenarios, more TRPs may be included.
  • the network device 101 needs to measure the downlink channel information between each TRP and the terminal device, and in this scenario, when the terminal device sends an SRS, the SRS can be used by multiple TRPs. received. Therefore, the industry currently proposes the following three implementation methods to measure the downlink channel information between each TRP in multiple TRPs and the terminal device. For the convenience of description, this application takes the multiple TRPs as N TRPs as an example for introduction.
  • the network device sends the downlink path loss reference signal through the TRP that is close to the terminal device, and sends an SRS resource set information to the terminal device.
  • the SRS resource set information indicates the resources used by the terminal device when sending SRS. ;
  • the transmit power can be determined based on the downlink path loss reference signal, and the transmit power can be used to indicate the SRS resource set information.
  • SRS is sent on the resource; correspondingly, each TRP among the N TRPs receives the SRS at the same time, and determines the corresponding downlink channel information based on the received SRS.
  • the network device sends the downlink path loss reference signal through the TRP that is far away from the terminal device, and sends an SRS resource set information to the terminal device.
  • the SRS resource set information indicates the resources used by the terminal device when sending SRS. ;
  • the transmit power can be determined based on the downlink path loss reference signal, and the transmit power can be used in the SRS resource set information indication.
  • SRS is sent on the resource; correspondingly, each TRP among the N TRPs receives the SRS at the same time, and determines the corresponding downlink channel information based on the received SRS.
  • the network device sends the downlink path loss reference signal to the terminal device through each of the N TRPs, and sends the SRS resource set information corresponding to each TRP to the terminal device; for the terminal device, receive The downlink path loss reference signal and SRS resource set information corresponding to each TRP, and after determining the transmit power corresponding to each TRP based on the downlink path loss reference signal, use the transmit power on the resources indicated by the corresponding SRS resource set information.
  • SRS is sent; accordingly, each TRP in the plurality of TRPs receives the corresponding SRS, and determines the corresponding downlink channel information based on the received SRS.
  • the transmit power for sending SRS is determined only based on the downlink path loss reference signal sent by one TRP
  • the problem For example, if the terminal device only calculates the transmit power based on the downlink path loss reference signal of the nearby TRP, then for the farther away TRP, the power may be lower when receiving the SRS, resulting in a poor reception signal-to-noise comparison. Low, thereby reducing service success rate and service quality.
  • the terminal equipment only calculates the transmit power based on the downlink path loss reference signal of the farther away TRP, then for the closer TRP, the received SRS may have higher power, which will cause the SRS to affect other terminal equipment.
  • the transmitted information causes strong interference, resulting in reduced overall system performance.
  • the terminal equipment may increase On the other hand, due to the increase in time-frequency resources occupied by SRS resources, it will also lead to a waste of resources in the entire communication system.
  • the terminal device uses the transmit power determined based on the downlink path loss reference signal of a certain TRP to send SRS to different TRPs on the resources indicated by the SRS resource set information, it will cause The problem of power non-uniformity arises; if the terminal equipment uses the transmit power determined by the downlink path loss reference signals corresponding to multiple TRPs to send SRS to the corresponding TRP on the resources indicated by the SRS resource set information corresponding to each TRP, it will This brings about problems of power waste in terminal equipment and capacity reduction of communication systems.
  • embodiments of the present application provide a communication method and device, which helps to solve the problem of non-uniform power of terminal equipment when sending SRS to different TRPs and the problem of high power consumption of terminal equipment.
  • Figure 3 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 3, the method may include: S310, S320, S330 and S340. The method includes the following steps:
  • the network device sends N downlink path loss reference signals to the terminal device.
  • the terminal device receives N downlink path loss reference signals.
  • the N downlink path loss reference signals include M downlink path loss reference signals, and N is A positive integer greater than or equal to 2, M is a positive integer less than or equal to N.
  • N downlink path loss reference signals correspond to N TRPs.
  • N TRPs N downlink path loss reference signals.
  • TRP the concept of TRP, please refer to the description in related technologies, and will not be described again here.
  • the downlink path loss reference signal can be a synchronization signal or a physical broadcast channel (synchronization signal/physical broadcast channel, SS/PBCH) block index, or a channel state information reference signal (channel state information reference signal, CSI-RS). Or other downward reference signals.
  • the terminal device determines the first transmission power, where the first transmission power is associated with the transmission power corresponding to one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the terminal equipment can calculate the path loss value corresponding to each downlink path loss reference signal, and calculate the path loss value before sending the uplink reference signal to the corresponding TRP based on the path loss value.
  • the transmit power used when signaling For information on how to calculate the path loss value corresponding to each downlink path loss reference signal and calculate the transmit power used when transmitting the uplink reference signal based on the path loss value, please refer to the relevant technology and the power control section of the SRS in the terminology explanation of this application. Description will not be repeated here.
  • the first transmit power refers to the transmit power used when transmitting the uplink reference signal on the first resource.
  • the first transmit power is associated with the transmit power corresponding to one or more downlink path loss reference signals among the M downlink path loss reference signals included in the N downlink path loss reference signals.
  • the relationship between the first transmit power and the transmit power corresponding to one or more of the M downlink path loss reference signals means: the first transmit power is the transmit power corresponding to the M downlink path loss reference signals. obtained, instead of being obtained from the transmit power corresponding to the downlink path loss reference signals other than the M downlink path loss reference signals among the N downlink path loss reference signals.
  • the first transmission power may be associated with the transmission power corresponding to one downlink path loss signal among the M downlink path loss reference signals.
  • the first transmission power is the maximum value among the M transmission powers corresponding to the M downlink path loss reference signals; or, the first transmission power is the maximum value among the M transmission powers corresponding to the M downlink path loss reference signals. value; or, the first transmit power is any one of the M transmit powers corresponding to the M downlink path loss reference signals; or, the first transmit power of the serving cell where the M downlink path loss reference signals include the serving terminal equipment
  • the first transmission power is the transmission power corresponding to the first downlink path loss reference signal.
  • the first transmission power may be associated with the transmission power corresponding to a plurality of downlink path loss signals among the M downlink path loss reference signals.
  • the first transmit power is the average of the M transmit powers corresponding to the M downlink path loss reference signals; or, the first transmit power is the K downlink path loss reference signals among the M downlink path loss reference signals.
  • the average value of the corresponding K transmit powers, where K is less than M; or, the first transmit power is obtained by a weighted average of multiple transmit powers corresponding to the M downlink path loss references.
  • the uplink reference signal may be SRS.
  • the terminal device sends the first information to the network device.
  • the network device receives the first information.
  • the first information is used to indicate that the uplink reference signals corresponding to the M downlink path loss reference signals are sent on the first resource.
  • the first resource refers to the time-frequency resource used by the terminal device when transmitting the uplink reference signal corresponding to the M downlink path loss reference signals. It should be noted here that this application does not limit the implementation of how to obtain the first resource.
  • the M downlink path loss reference signals may correspond to the same uplink reference signal, and the uplink reference signal is sent on the first resource.
  • the network device may send the second information to the terminal device, and accordingly, the terminal device receives the second information, where the second information includes a set of resource information and N pieces of identification information, and the A set of resource information indicates the first resource, and N pieces of identification information indicate N downlink path loss reference signals.
  • the set of resource information may be a resource Set information, that is, in this implementation, the terminal device is configured with a resource set information, which includes information indicating N downlink path loss reference signals, and information indicating the first resource for transmitting the uplink reference signal.
  • a set of resource information is associated with N TRPs, and the N TRPs correspond to N downlink path loss reference signals.
  • the M downlink path loss reference signals may correspond to M uplink reference signals, and the terminal device may select one of the M uplink reference signals to send on the first resource.
  • the network device may send the third information to the terminal device, and accordingly, the terminal device receives the third information.
  • the third information includes N sets of resource information and N pieces of identification information.
  • N sets of The resource information indicates N different resources, the N pieces of identification information indicate N downlink path loss reference signals, and the N sets of resource information correspond to the N pieces of identification information.
  • the resources indicated by a set of resource information corresponding to any one of the M downlink path loss reference signals may be determined as the first resource.
  • the N sets of resource information may be N resource set information, and each resource set information includes information indicating a downlink path loss reference signal.
  • the functions of the N resource set information are the same, or the usage of the N resource set information is the same. It can also be understood that in this implementation manner, the N groups of resource information are associated with different TRPs.
  • N pieces of identification information described in the above-mentioned first implementation manner and the second implementation manner are also called N groups of power control (PC) parameters.
  • the terminal device when it determines the first transmit power corresponding to the uplink reference signal corresponding to the M downlink path loss reference signals, it will send the first information to the terminal device.
  • the first information is used to tell the network device:
  • the uplink reference signal corresponding to the M downlink path loss reference signals is the uplink reference signal sent on the first resource.
  • the network device after receiving the first information, if the terminal device sends the uplink reference signal on the first resource, then the network device can learn the M corresponding to the M downlink path loss reference signals.
  • Two TRPs simultaneously receive the uplink reference signal on the first resource. That is to say, in this embodiment, the terminal device notifies the network device of M TRPs that can simultaneously receive the uplink reference signal when transmitting the uplink reference signal on the same resource using the same transmit power.
  • the terminal device may report through physical layer signaling or high-layer signaling.
  • the terminal device reports through the uplink control information (UCI), or the terminal device reports through the capability of the terminal device, or the terminal device reports through the medium-access-control control element (MAC) CE).
  • UCI uplink control information
  • MAC medium-access-control control element
  • the first information includes identification information of one or more downlink path loss reference signals among the M downlink path loss reference signals, that is, the reported content can be understood as a path loss reference signal identification (ID).
  • ID path loss reference signal identification
  • the first information may only include the identification information of L downlink path loss reference signals among the M downlink path loss reference signals (L is less than M), and then based on the L downlink path loss reference signals The index relationship between the identification information and the M downlink path loss reference signals obtains each reported downlink path loss reference signal; alternatively, the identification information of each path loss reference signal may be included in the first information.
  • the first information may include group identification information, and the group identification information is used to indicate M TRPs corresponding to M path loss reference signals. That is, the reported content may be understood as identification associated with the M TRPs.
  • the terminal device may report the M downlink path loss reference signals to the network device.
  • M downlink path loss reference signals correspond to M TRPs
  • the terminal device determines the M downlink path loss reference signals, it reports the M downlink path loss reference signals to the network device, or it can also be hidden It is considered as an instruction: when the terminal device determines M downlink path loss reference signals, it reports the M TRPs to the network device.
  • S340 The terminal device sends the uplink reference signal using the first transmit power on the first resource, and accordingly, the network device receives the uplink reference signal.
  • the terminal device after the terminal device determines the first transmission power for sending the uplink reference signal on the first resource, it can use the first transmission power to send the uplink reference signal on the first resource. It can be understood that for the network device, since the terminal device reports the first information, it can learn the M TRPs that simultaneously receive the uplink reference signal based on the first information, and then use The M TRPs are used to receive the uplink reference signals respectively, and the measurement of the downlink channel information between each TRP in the M TRPs and the terminal equipment is completed.
  • the terminal device after receiving N downlink path loss reference signals, the terminal device indicates to the network that it can simultaneously receive the uplink reference signal sent by the terminal device on the first resource using the first transmit power. M TRPs. Therefore, for the network, only M TRPs among the N TRPs can be used to simultaneously receive the uplink reference signal sent by the terminal device on the first resource, and for the remaining N-M TRPs, the network can respectively receive the uplink reference signals corresponding to the respective TRPs. Uplink reference signal.
  • the terminal equipment after the terminal equipment determines the path loss values corresponding to the N downlink path loss reference signals or the transmit power of the uplink reference signals, it can determine M based on the N transmit powers or N path loss values.
  • Downlink path loss reference signal Specifically, the M downlink path loss reference signals satisfy the following conditions:
  • the transmission power difference between the M transmission powers corresponding to the M downlink path loss references is less than or equal to the first threshold.
  • the M downlink path loss reference signals may also satisfy the following conditions: the transmit power difference between the M transmit powers corresponding to the M TRPs Less than or equal to the first threshold.
  • the M path loss reference signals may also satisfy the following conditions: transmission between M path loss values corresponding to the M downlink path loss references The power difference is less than or equal to the first threshold.
  • the first threshold is predefined.
  • the first threshold may be configured by high-level parameters.
  • the first threshold may be determined by the terminal device and then reported to the network device.
  • the first threshold in this embodiment is an integer, such as 3 decibels (db), or 6db, or 10db, or the value set of the first threshold is ⁇ 3, 6, 10 ⁇ db.
  • the terminal device uses the first transmit power to send the uplink reference signal on the first resource, the uplink reference signals received by the M TRPs
  • the transmit power is a relatively moderate power, which can solve the problem of non-uniform power of the terminal equipment when sending uplink reference signals to M TRPs.
  • the method in this embodiment includes:
  • the network device sends SRS resource set information to the terminal device.
  • the terminal device receives the SRS resource set information.
  • the SRS resource set information includes a set of resource information and N pieces of identification information.
  • the set of resource information indicates the first resource.
  • N pieces of identification information indicate N downlink path loss reference signals.
  • the terminal device can be configured with an SRS resource set as shown in Figure 5, and then the SRS resource set information includes a set of resource information (such as SRS resource 1 and SRS resource 2 in Figure 5) and N identifiers. information.
  • SRS resource set information includes a set of resource information (such as SRS resource 1 and SRS resource 2 in Figure 5) and N identifiers. information.
  • the N pieces of identification information are also called a set of power control parameters.
  • the N pieces of identification information are also called a set of power control parameters.
  • PC1 corresponds to TRP1
  • PC2 corresponds to TRP2
  • PC3 corresponds to TRP3.
  • S420 The network device sends N downlink path loss reference signals to the terminal device.
  • the terminal device receives N downlink path loss reference signals. loss of reference signal.
  • the network device sends N downlink path loss reference signals to the terminal device on N time-frequency resources, and accordingly, the terminal device receives the corresponding N downlink path loss reference signals on N time-frequency resources.
  • the network device in this embodiment sends N downlink path loss reference signals to the terminal device.
  • N TRPs in the network device send N downlink path loss reference signals.
  • the terminal equipment calculates the transmit power of the reference signal corresponding to each of the N downlink path loss reference signals.
  • the terminal device determines the transmit power of the uplink reference signal based on the downlink path loss reference signal, please refer to the description in the related art, and will not be described again here.
  • the terminal device sends first information to the network device, which indicates that the uplink reference signal corresponding to the M downlink path loss reference signals is the uplink reference signal sent on the first resource; accordingly, the network device receives the first information.
  • the M downlink path loss reference signals satisfy one or more of the following conditions: the difference in path loss values corresponding to any two of the M downlink path loss reference signals is less than the first threshold , the difference in transmit power of the uplink reference signals corresponding to any two of the M downlink path loss reference signals is less than the first threshold, and the difference in the transmit power of the uplink reference signals corresponding to any two of the M TRPs less than the first threshold.
  • the first threshold is, for example, 3 decibels (db), or 6db, or 10db, or the value set of the first threshold is ⁇ 3, 6, 10 ⁇ db.
  • the terminal device may report the first information through physical layer signaling or high-layer signaling.
  • the terminal device reports through UCI, or the terminal device capability reports, or reports through MAC CE.
  • the reported content may be a path loss reference signal identification (ID), or an identification associated with the TRP.
  • ID path loss reference signal identification
  • M downlink path loss reference signals correspond to M TRPs. Therefore, in this embodiment, the first information can also be considered as reporting to the network device the uplink reference that can simultaneously receive the first transmit power and send on the first resource. M TRPs of the signal. In this embodiment, M TRPs are also called a TRP group.
  • the terminal device determines the first transmit power based on the M downlink path loss reference signals, and the first transmit power is associated with the transmit power corresponding to one or more of the M downlink path loss reference signals.
  • the first transmit power is calculated based on one of the M downlink path loss reference signals.
  • the first transmit power is determined based on M transmit powers corresponding to M downlink path loss reference signals.
  • the terminal device may determine the first transmit power according to predefined rules or high-level configuration.
  • the predefined rule may be any one of the following: the smallest transmit power among the M transmit powers; the largest transmit power among the M transmit powers; any transmit power among the M transmit powers; if the first set If the downlink path loss reference signal (or TRP) corresponding to the serving cell is included, the predefined rule is the transmit power corresponding to the serving cell of the terminal device.
  • the terminal device may also report the first transmit power it adopts.
  • the terminal device sends the SRS using the first transmit power on the first resource; correspondingly, the M TRPs corresponding to the M downlink path loss reference signals in the network device receive the SRS on the first resource.
  • the network device triggers the terminal device to report in a semi-static or dynamic manner. For example, the network device triggers the terminal device to report through RRC signaling or MAC CE signaling, or the network device triggers the terminal device to report through DCI. Report; 2. After the terminal device reports, the network device needs to be reconfigured. That is, for the N-M TRPs other than the above M TRPs among the N TRPs, the network device also needs to reconfigure the SRS for channel measurement.
  • the network device may send signaling to notify the terminal device whether to send SRS in accordance with the TRP group reported by the terminal device. If yes, the terminal device executes S406; if not, the terminal device sends an SRS to a TRP according to predefined rules.
  • the communication method provided in this embodiment considers that the terminal device reports a TRP group that can be received at the same time to the network device.
  • the terminal device since the terminal device can obtain accurate path loss information based on the downlink path loss reference signal, it can more accurately notify the network device to report TRP groups that can be received simultaneously.
  • any two TRPs in the TRP group in this embodiment satisfy that the path loss difference (or transmit power difference) is less than the first threshold. Therefore, the method of this embodiment can ensure that multiple TRPs receive the same SRS. Channel measurement performance, improve service success rate and service quality, and reduce interference.
  • the method in this embodiment includes:
  • the network device sends N SRS resource set information to the terminal device.
  • the terminal device receives N SRS resource set information.
  • Each SRS resource set information includes a set of resource information and an identification information.
  • Each SRS A group of resource information in the resource set information indicates a group of resources, and one piece of identification information in each SRS resource set information indicates a downlink path loss reference signal.
  • the terminal device may be configured with N pieces of SRS resource set information, and each SRS resource set includes a set of resource information and an identification information.
  • Figure 7 is a structural schematic diagram in which the terminal device is configured with N SRS resource set information.
  • SRS resource set 1 contains a set of SRS resources and an identification information PC1
  • SRS resource set 2 contains A set of SRS resources and an identification information PC2, and so on.
  • the SRS resource set N contains a set of SRS resources and an identification information PCN.
  • PC1 corresponds to TRP1
  • PC2 corresponds to TRP2
  • PCN corresponds to TRPN. Since different power control parameters in this embodiment are included in different SRS resource sets, it can also be considered that the SRS resource sets correspond to different TRPs.
  • S620 The network device sends N downlink path loss reference signals to the terminal device, and accordingly, the terminal device receives N downlink path loss reference signals.
  • the terminal device calculates the transmit power of the reference signal corresponding to each of the N path loss reference signals.
  • the terminal device determines the transmit power of the uplink reference signal based on the downlink path loss reference signal, please refer to the description in the related art, and will not be described again here.
  • the terminal device sends first information to the network device.
  • the first information is used to indicate that the uplink reference signal corresponding to the M downlink path loss reference signals is the uplink reference signal sent on the first resource.
  • the network device receives the a message.
  • the terminal device determines the first transmit power based on the M downlink path loss reference signals, where the first transmit power is associated with the transmit power corresponding to one or more of the M downlink path loss reference signals.
  • the terminal device uses the first transmit power to send the SRS on the first resource; correspondingly, the M TRPs corresponding to the M downlink path loss reference signals in the network device receive the SRS on the first resource.
  • the terminal device is configured with N different SRS resource sets.
  • the terminal equipment determines M downlink path loss reference signals or M TRPs, since the M TRPs receive the SRS sent on the same resource, in this embodiment, the terminal equipment determines After M downlink path loss reference signals or M TRPs, an SRS resource set needs to be determined, and then SRS is sent on a set of resources indicated by the SRS resource set.
  • the terminal device sends SRS on a set of resources indicated by one of the SRS resource sets, and does not send it on the resources indicated by the remaining M-1 SRS resource sets. SRS. Or, in other words, in this embodiment, the terminal device sends SRS on the resources indicated by N-M+1 SRS resource sets.
  • the network device may send signaling (also referred to as fourth information in this application) to notify the terminal device whether to send SRS in accordance with the TRP group reported by the terminal device. If yes, the terminal device executes S660; if not, the terminal device sends an SRS to a TRP according to predefined rules.
  • signaling also referred to as fourth information in this application
  • this embodiment may also include the following steps: the network device feeds back to the terminal device whether to perform SRS reception according to the TRP group reported by the terminal device. That is, the network device sends signaling to notify the terminal device whether to send SRS according to the TRP group reported by the terminal device. Under the premise of this step, if the feedback from the network device is yes, the terminal device performs the above S660. Otherwise, if the feedback from the network device is no, the terminal device sends messages on the resources indicated by the N SRS resource set information based on the configuration in S610. SRS.
  • the communication method provided in this embodiment is different from the communication method provided in Embodiment 1 in that: at the terminal After the device reports the TRP group, the network device does not need to be reconfigured. That is, the measurement of channel information of N TRPs can be completed through a semi-static configuration of the network device, avoiding RRC reconfiguration and reducing transmission delay.
  • the terminal device sends the same SRS, and the transmission power of the SRS is calculated according to the power control parameters of any TRP, while for one or more TRPs outside the TRP group For each TRP, the terminal device sends different SRS, and the transmission power of the SRS is calculated according to the power control parameters of each TRP.
  • this application also proposes a method of power accumulation of multiple OFDM symbols to transmit SRS for different TRPs. That is, the communication method uses different SRS transmission powers on different symbols of the same SRS resource.
  • the repetition factor of TRP1 (or serving cell) that is closer is 1, and the repetition factor of TRP2 (or cooperating cell) that is farther is 2.
  • the SRS transmitted on the first OFDM symbol The power is the power calculated based on the PC parameters of TRP1, and the SRS transmit power on the second OFDM symbol is (power calculated based on the PC parameters of TRP2 - power calculated based on the PC parameters of TRP1), or, the second The SRS transmit power on OFDM symbols is (2*power calculated based on the PC parameters of TRP2 - power calculated based on the PC parameters of TRP1).
  • Step 1 The terminal equipment is configured with an SRS resource set.
  • the SRS resource set contains N path loss reference signal identifiers (or N sets of PC parameters), which are assumed to be called PL-RS1, PL-RS2,..., PL-RSN respectively;
  • the SRS resource set includes SRS resource configuration information, where the above-mentioned SRS resource configuration information also includes N repetition factors R1, R2,..., RN; the above-mentioned N repetition factors are associated with N path loss reference signals (or N TRPs) , or the above N repetition factors correspond to N path loss reference signals (or N TRPs).
  • the order of PL-RS1, PL-RS2, ..., PL-RSN may be predefined or configured by high-level parameters. For example, the closer the TRP corresponding to the PL-RS is, the smaller the sequence number of the PL-RS is. For another example, the smaller the path loss value corresponding to the PL-RS, the smaller the sequence number of the PL-RS.
  • the repetition factors corresponding to TRPs far from the terminal equipment should be larger than the repetition factors corresponding to TRPs close to the terminal equipment.
  • Step 2 The terminal device receives N path loss reference signals (from N TRPs) and calculates the transmit power corresponding to each path loss reference signal.
  • Step 3 The terminal device sends the SRS, and accordingly, each of the N TRPs receives the SRS.
  • the SRS transmit power on R1 OFDM symbols is calculated according to PL-RS1
  • the SRS transmit power on R2 OFDM symbols is calculated according to PL-RS1 and PL-RS2
  • the SRS transmit power on R3 OFDM symbols is calculated.
  • the transmit power is calculated based on PL-RS2 and PL-RS3 and by analogy, the SRS transmit power on RN OFDM symbols is calculated based on PL-RS1, PL-RS2,..., PL-RSN.
  • TRP1 is the closest to the terminal device, followed by TRP2, and TRP3 is the farthest from the terminal device.
  • the R1 corresponding to TRP1 is equal to 1
  • the R2 corresponding to RP2 is equal to 2.
  • R3 corresponding to RP3 is equal to 3.
  • the transmit power of the SRS corresponding to TRP1 is P1
  • the transmit power of the SRS corresponding to RP2 is P2
  • the transmit power of the SRS corresponding to RP3 is P3.
  • the terminal device specifically transmits the SRS, it can use the transmission power P1 to transmit the SRS on the first OFDM symbol, and then use the transmission power P2-P1 on the second OFDM symbol or transmit the SRS, and then use the transmission power P2-P1 on the second OFDM symbol.
  • SRS is transmitted using transmit power P3-P2.
  • the terminal equipment can meet the transmit power requirement of TRP1 when transmitting SRS using transmit power P1 on the first OFDM symbol.
  • the total transmit power P2-P1 used can just meet TRP2.
  • the transmit power P1 is used on the first OFDM symbol
  • the transmit power P2-P1 is used on the second OFDM symbol
  • the transmit power P3- is used on the third OFDM symbol.
  • P2 combined can just satisfy TRP3.
  • the communication method of how the terminal device sends SRS to multiple TRPs on multiple OFDM symbols in the same SRS resource set is considered. By sequentially accumulating the transmit power on consecutive symbols from front to back, it satisfies Power control of different TRP demand, thus improving the transmission power utilization of terminal equipment and saving resources in some scenarios.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application. Specifically, as shown in Figure 9, the device 900 includes: a receiving module 901, a sending module 902 and a processing module 903.
  • the communication device 900 can be applied to terminal equipment.
  • the receiving module 901 is used to receive N downlink path loss reference signals, the N downlink path loss reference signals include M downlink path loss reference signals, N is a positive integer greater than or equal to 2, and M is less than or equal to N is a positive integer;
  • the processing module 903 is used to determine the first transmit power, which is associated with the transmit power corresponding to one or more downlink path loss reference signals among the M downlink path loss reference signals;
  • the sending module 902 is configured to send first information, where the first information is used to indicate that the uplink reference signal corresponding to the M downlink path loss reference signals is sent on the first resource; the sending module 902 is also configured to The uplink reference signal is sent on the first resource using the first transmit power.
  • the receiving module 901 may be configured to perform the step of the terminal device receiving N downlink path loss reference signals in the method described in FIG. 3 .
  • the receiving module 901 is used to perform S310.
  • the M downlink path loss reference signals satisfy one or more of the following conditions: the path loss corresponding to two of the M downlink path loss reference signals is The difference in values is less than the first threshold, and the difference in transmit power of the uplink reference signals corresponding to two of the M downlink path loss reference signals is less than the first threshold.
  • the first transmit power is any one of the following: a maximum value among M transmit powers corresponding to the M downlink path loss reference signals, a maximum value among the M transmit powers Minimum value, the average value of the M transmit powers, and a value among the M transmit powers.
  • the M downlink path loss reference signals include a first downlink path loss reference signal of a serving cell serving the terminal device
  • the first transmit power is the first downlink path loss reference signal. Transmit power corresponding to the line path loss reference signal.
  • the first information includes identification information of one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the receiving module 901 is further configured to: receive second information, where the second information includes a set of resource information and N pieces of identification information, where the set of resource information indicates the first resource, the N pieces of identification information indicate the N downlink path loss reference signals.
  • the receiving module 901 is further configured to: receive third information, where the third information includes N groups of resource information and N pieces of identification information, and the N group of resource information indicates N different resources, the N pieces of identification information indicate the N pieces of downlink path loss reference signals, and the N groups of resource information correspond to the N pieces of identification information; the processing and sending module is also used to: convert the M groups of resource information into The resources indicated by a group of resource information are determined as the first resources, and the M groups of resource information correspond to the M downlink path loss reference signals.
  • the receiving module 901 is further configured to: receive fourth information; the sending module 902 is further configured to: when the fourth information indicates the first state, in the first resource The uplink reference signal is sent using the first transmit power.
  • the communication device 900 can be applied to access network equipment.
  • the sending module 902 is used to send N downlink path loss reference signals, the N downlink path loss reference signals include M downlink path loss reference signals, N is a positive integer greater than or equal to 2, and M is less than or equal to N is a positive integer;
  • the receiving module 901 is used to receive the first information, the first information is used to indicate that the uplink reference signals corresponding to the M downlink path loss reference signals are sent by the terminal equipment on the first resource;
  • the receiving module 901 is also configured to: receive the uplink reference signal sent by the terminal device on the first resource using a first transmit power, the first transmit power and one of the M downlink path loss reference signals. Or the transmission power correlation corresponding to multiple downlink path loss reference signals.
  • the M downlink path loss reference signals satisfy one or more of the following conditions: the path loss corresponding to two of the M downlink path loss reference signals is The difference in values is less than the first threshold, and the difference in transmit power of the uplink reference signals corresponding to two of the M downlink path loss reference signals is less than the first threshold.
  • the first transmit power is any one of the following: related to the M downlink path loss reference signals.
  • the maximum value among the M transmit powers corresponding to the number, the minimum value among the M transmit powers, the average value of the M transmit powers, and a value among the M transmit powers.
  • the M downlink path loss reference signals include a first downlink path loss reference signal of a serving cell serving the terminal device
  • the first transmit power is the first downlink path loss reference signal. Transmit power corresponding to the line path loss reference signal.
  • the first information includes identification information of one or more downlink path loss reference signals among the M downlink path loss reference signals.
  • the sending module 902 is further configured to: send second information, where the second information includes a set of resource information and N pieces of identification information, where the set of resource information indicates the first resource, the N pieces of identification information indicate the N downlink path loss reference signals.
  • the sending module 902 is further configured to: send third information, where the third information includes N groups of resource information and N pieces of identification information, and the N group of resource information indicates N different resources, the N pieces of identification information indicate the N downlink path loss reference signals, and the N sets of resource information correspond to the N pieces of identification information.
  • the sending module 902 is also configured to send fourth information.
  • the communication device 900 can be applied to terminal equipment.
  • the receiving module 901 is used to receive N repetition factors. Each repetition factor indicates the number of orthogonal frequency division multiplexing OFDM symbols used by the terminal equipment when transmitting the uplink reference signal.
  • the N repetition factors and N downlink path losses Reference signal correspondence; the receiving module 901 is also used to: receive the N downlink path loss reference signals; the processing module 903 is used to determine the transmit power corresponding to each of the N path loss reference signals ; The processing module 903 is also configured to: according to the first transmission power corresponding to each downlink path loss reference signal in the first i-1 downlink path loss reference signals and the first transmission power corresponding to the i-th downlink path loss reference signal , determine the second transmit power corresponding to each of the K OFDM symbols indicated by the i-th repetition factor corresponding to the i-th downlink path loss reference signal, i is taken from 1 to N, and K is a positive integer; the sending module 902: Use the second transmit power to send the uplink reference signal on each OFDM symbol.
  • the sum of the K second transmit powers corresponding to the K OFDM symbols is the same as the first transmit power corresponding to the i-th path loss reference signal.
  • the sum of the K second transmit powers corresponding to the K OFDM symbols is the same as the target transmit power, and the target transmit power is the first transmit power corresponding to the i-th path loss reference signal. 2 times the transmit power.
  • the communication device 900 can be applied to network equipment.
  • the sending module 902 is used to send N repetition factors.
  • Each repetition factor indicates the number of orthogonal frequency division multiplexing OFDM symbols used by the terminal equipment when sending the uplink reference signal.
  • the N repetition factors are related to the N downlink path losses. Reference signal correspondence; the sending module 902 is also used to send the N downlink path loss reference signals; the receiving module 901 is used to receive the uplink reference signal sent by the terminal device on each OFDM symbol.
  • Figure 10 is a schematic structural diagram of a communication device provided by another embodiment of the present application.
  • the device shown in Figure 10 can be used to perform the method described in any of the aforementioned embodiments.
  • the device 1000 in this embodiment includes: a memory 1001, a processor 1002, a communication interface 1003 and a bus 1004.
  • the memory 1001, the processor 1002, and the communication interface 1003 implement communication connections between each other through the bus 1004.
  • the memory 1001 may be a read only memory (ROM), a static storage device, a dynamic storage device or a random access memory (RAM).
  • the memory 1001 can store a program. When the program stored in the memory 1001 is executed by the processor 1002, the processor 1002 is used to execute various steps of the methods shown in Figures 3 to 8.
  • the processor 1002 may be a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs to Implement the methods shown in Figures 3 to 8 of this application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 1002 may also be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the method shown in FIGS. 3 to 8 in the embodiment of the present application can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1002 .
  • the above-mentioned processor 1002 can also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other processors.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • programmed logic devices discrete gate or transistor logic devices, discrete hardware components. Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1001.
  • the processor 1002 reads the information in the memory 1001, and combines its hardware to complete the functions required to be performed by the units included in the device of the present application. For example, each step of the embodiment shown in Figures 3 to 8 can be executed. /Function.
  • the communication interface 1003 may use, but is not limited to, a transceiver device such as a transceiver to implement communication between the device 1000 and other devices or communication networks.
  • Bus 1004 may include a path that carries information between various components of device 1000 (eg, memory 1001, processor 1002, communication interface 1003).
  • the device 1000 shown in the embodiment of the present application may be an electronic device, or may also be a chip configured in the electronic device.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • Another point is that the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the device or unit may be electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法与装置。本申请提供的技术方案中,终端设备接收到N个下行路损参考信号后,确定第一发射功率并向网络设备发送第一信息,其中,第一发射功率与N个下行路损参考信号中的M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联,第一信息指示M个下行路损参考信号对应的上行参考信号在第一资源上发送;相应地,网络设备可以使用与M个下行路损参考信号对应的M个TRP接收终端第一资源上用第一发射功率发送的所述上行参考信号。本申请提供的通信方法,有助于解决终端设备在向不同的TRP发送SRS时的功率不统一问题以及终端设备功耗大的问题。

Description

通信方法与装置
本申请要求于2022年08月12日提交中国国家知识产权局、申请号为202210970256.X、申请名称为“通信方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法与装置。
背景技术
在移动通信***中,终端设备需要向网络侧发送探测参考信号(sounding reference signal,SRS),以使得网络侧确定信道信息。而对于上行SRS的传输,网络侧需要进行上行功率控制。具体地,网络侧进行上行功率控制包括:网络侧向终端设备发送路损参考信号(path loss reference signal,PL-RS),终端设备基于该PL-RS计算路损值并基于路损值确定发送SRS使用的发射功率。
而在多收发点(transmission and receiving point,TRP)传输场景中,网络侧需要测量多个TRP中每个TRP与终端设备之间的下行信道信息。目前,网络侧在测量多个TRP中每个TRP与终端设备之间的下行信道信息时主要有3种实现方式:在第一种实现方式中,网络侧通过距离终端设备较近/较远的TRP发送路损参考信号,然后终端设备使用该距离较近/较远的TRP发送的路损参考信号确定出的发射功率发送SRS,不同的TRP在接收到该同一个SRS之后分别确定对应的信道信息;在第二种实现方式中,终端设备接收多个TRP中每个TRP发送的路损参考信号,并基于每个TRP发送的路损参考信号计算出的发射功率在不同的资源上发送SRS,不同的TRP在接收到对应的SRS之后分别确定对应的信道信息。
但是,对于上述第一种实现方式,会导致终端设备向不同TRP发送SRS时的功率不统一的问题。例如,若终端设备使用距离较近的TRP发送的路损参考信号确定出的发射功率发送SRS,则对于距离较远的TRP接收到的SRS的功率可能较低;而对于上述第二种实现方式,会导致终端设备的功耗大。
发明内容
本申请提供了一种通信方法与装置,有助于解决终端设备在向不同的TRP发送SRS时的功率不统一问题以及终端设备功耗大的问题。
第一方面,本申请提供一种通信方法,应用于终端设备,包括:接收N个下行路损参考信号,N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;确定第一发射功率,第一发射功率与M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联;发送第一信息,第一信息用于指示M个下行路损参考信号对应的上行参考信号在第一资源上发送;在第一资源上用第一发射功率发送上行参考信号。
应理解,本申请提供的通信方法,由于终端设备在接收到N个下行路损参考信号后,向网络设备指示了可以同时接收终端设备在第一资源上发送的上行参考信号的M个下行路损参考信号(与M个TRP对应),因此,对于网络设备,可以仅使用N个TRP中的M个TRP同时接收终端设备在第一资源上发送的上行参考信号,而对于剩余的N-M个TRP,分别接收与各自TRP对应的上行参考信号。
可以理解的是,相比现有技术中的使用一个发射功率发送上行参考信号,N个TRP同时接收参考信号的方法而言,本申请提供的通信方法中,由于只是N个TRP中的M个TRP同时接收,因此有助于解决功率不统一的问题。而相比现有技术中的使用N个发射功率在不同的资源上向不 同的TRP发送上行参考信号的方法,由于本申请提供的通信方法中,终端设备不需要在每个资源上都发送上行参考信号,因此有助于降低终端设备的功耗。
结合第一方面,在一种可能的实现方式中,所述M个下行路损参考信号满足如下条件中的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值、所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
可以理解的是,当本申请选取的M个路损参考信号满足上述条件时,可以保证终端设备使用第一发射功率在第一资源上发送上行参考信号时,M个TRP接收到的上行参考信号的发射功率是相对比较适中的功率。
结合第一方面,在一种可能的实现方式中,所述第一发射功率为以下任意一种:与所述M个下行路损参考信号对应的M个发射功率中的最大值、所述M个发射功率中的最小值、所述M个发射功率的平均值,所述M个发射功率中的一值。
结合第一方面,在一种可能的实现方式中,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
结合第一方面,在一种可能的实现方式中,所述第一信息中包括M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
结合第一方面,在一种可能的实现方式中,在所述接收N个下行路损参考信号之前,所述方法还包括:接收第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
该实现方式中,网络设备可以向终端设备通过一组资源信息和N个标识信息的方式向终端设备指示N个下行路损参考信号以及终端设备在发送上行参考信号时需要使用的资源信息。可以理解的是,在该实现方式中,由于网络设备只配置了一组资源信息,因此可以节省通信***的资源。
结合第一方面,在一种可能的实现方式中,在接收N个下行路损参考信号之前,所述方法还包括:接收第三信息,第三信息包括N组资源信息和N个标识信息,N组资源信息指示N个不同的资源,N个标识信息指示N个下行路损参考信号,N组资源信息与N个标识信息对应;在第一资源上用第一发射功率发送上行参考信号,还包括:将M组资源信息中的一组资源信息指示的资源确定为第一资源,M组资源信息与M个下行路损参考信号对应。
该实现方式中,网络设备可以向终端设备通过N组资源信息和N个标识信息的方式向终端设备指示N个下行路损参考信号以及终端设备在发送上行参考信号时需要使用的资源信息。可以理解的是,在该实现方式中,由于网络设备提前配置了N个TRP需要的N组资源信息,因此可以避免无线资源控制(radio resource control,RRC)重配置,进一步地降低终端设备发送上行参考信号时的时延问题。
结合第一方面,在一种可能的实现方式中,在第一资源上用所述第一发射功率发送上行参考信号之前,所述方法还包括:接收第四信息;在第四信息指示第一状态时,在第一资源上使用所述第一发射功率发送上行参考信号。
该实现方式中,网络设备在接收到第一信息后,会向终端设备反馈第四信息,只有在第四信息指示第一状态时,终端设备才会在第一资源上使用第一发射功率上发送上行参考信号。可以理解的是,该实现方式,可以提升通信***的准确度。
第二方面,本申请提供一种通信方法,应用于网络设备,包括:发送N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;接收第一信息,第一信息用于指示M个下行路损参考信号对应的上行参考信号为终端设备在第一资源上发送的;接收终端设备在第一资源上用第一发射功率发送的上行参考信号,第一发射功率与M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
结合第二方面,在一种可能的实现方式中,所述M个下行路损参考信号满足如下条件中的一 项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值、所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
结合第二方面,在一种可能的实现方式中,所述第一发射功率为以下任意一种:与所述M个下行路损参考信号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
结合第二方面,在一种可能的实现方式中,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
结合第二方面,在一种可能的实现方式中,所述第一信息中包括M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
结合第二方面,在一种可能的实现方式中,在所述发送N个下行路损参考信号之前,所述方法还包括:发送第二信息,第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,N个标识信息指示N个下行路损参考信号。
结合第二方面,在一种可能的实现方式中,所述方法还包括:发送第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应。
结合第二方面,在一种可能的实现方式中,所述方法还包括:发送第四信息。
第三方面,本申请提供一种通信方法,应用于终端设备,包括:接收N个重复因子,每个重复因子指示终端设备发送上行参考信号时使用的正交频分复用OFDM符号数,所述N个重复因子与N个下行路损参考信号对应;接收所述N个下行路损参考信号;根据前i-1个下行路损参考信号中每个下行路损参考信号对应的第一发射功率以及第i个下行路损参考信号对应的第一发射功率,确定与第i个下行路损参考信号对应的第i个重复因子指示的K个OFDM符号中每个OFDM符号对应的第二发射功率,i从1取至N,K为正整数;在所述每个OFDM符号上使用所述第二发射功率发送所述上行参考信号。
结合第三方面,在一种可能的实现方式中,所述K个OFDM符号对应的K个第二发射功率之和与所述第i个路损参考信号对应的第一发射功率相同。
结合第三方面,在一种可能的实现方式中,所述K个OFDM符号对应的K个第二发射功率之和与目标发射功率相同,所述目标发射功率为所述第i个路损参考信号对应的第一发射功率的2倍。
第四方面,本申请提供一种通信方法,应用于网络设备,包括:发送N个重复因子,每个重复因子指示终端设备发送上行参考信号时使用的正交频分复用OFDM符号数,所述N个重复因子与N个下行路损参考信号对应;发送所述N个下行路损参考信号;在每个OFDM符号上接收终端设备发送的所述上行参考信号。
第五方面,本申请提供一种通信装置,应用于终端设备,包括:接收模块,用于接收N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;处理模块,用于确定第一发射功率,所述第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联;发送模块,用于发送第一信息,所述第一信息用于指示所述M个下行路损参考信号对应的上行参考信号在第一资源上发送;所述发送模块还用于:在所述第一资源上用所述第一发射功率发送所述上行参考信号。
结合第五方面,在一种可能的实现方式中,所述M个下行路损参考信号满足如下条件中的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值,所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
结合第五方面,在一种可能的实现方式中,所述第一发射功率为以下任意一种:与所述M个 下行路损参考信号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
结合第五方面,在一种可能的实现方式中,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
结合第五方面,在一种可能的实现方式中,所述第一信息中包括所述M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
结合第五方面,在一种可能的实现方式中,所述接收模块还用于:接收第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
结合第五方面,在一种可能的实现方式中,所述接收模块还用于:接收第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应;所述处理模块还用于:将M组资源信息中的一组资源信息指示的资源确定为所述第一资源,所述M组资源信息与所述M个下行路损参考信号对应。
结合第五方面,在一种可能的实现方式中,所述接收模块还用于:接收第四信息;所述发送模块还用于:在所述第四信息指示第一状态时,在所述第一资源上用所述第一发射功率发送所述上行参考信号。
第六方面,本申请提供一种通信装置,应用于网络设备,包括:发送模块,用于发送N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;接收模块,用于接收第一信息,所述第一信息用于指示所述M个下行路损参考信号对应的上行参考信号为终端设备在第一资源上发送的;所述接收模块还用于:接收终端设备在所述第一资源上用第一发射功率发送的所述上行参考信号,所述第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
结合第六方面,在一种可能的实现方式中,所述M个下行路损参考信号满足如下条件中的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值、所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
结合第六方面,在一种可能的实现方式中,所述第一发射功率为以下任意一种:与所述M个下行路损参考信号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
结合第六方面,在一种可能的实现方式中,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
结合第六方面,在一种可能的实现方式中,所述第一信息中包括M个下行路损参考信号中每个下行路损参考信号的标识信息。
结合第六方面,在一种可能的实现方式中,所述发送模块还用于:发送第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
结合第六方面,在一种可能的实现方式中,所述发送模块还用于:发送第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应。
结合第六方面,在一种可能的实现方式中,所述发送模块还用于:发送第四信息。
第七方面,本申请提供一种通信装置,应用于终端设备,包括:接收模块,用于接收N个重复因子,每个重复因子指示终端设备发送上行参考信号时使用的正交频分复用OFDM符号数,所述N个重复因子与N个下行路损参考信号对应;所述接收模块还用于:接收所述N个下行路损参 考信号;处理模块,用于确定所述N个路损参考信号中每个路损参考信号对应的发射功率;所述处理模块还用于:根据前i-1个下行路损参考信号中每个下行路损参考信号对应的第一发射功率以及第i个下行路损参考信号对应的第一发射功率,确定与第i个下行路损参考信号对应的第i个重复因子指示的K个OFDM符号中每个OFDM符号对应的第二发射功率,i从1取至N,K为正整数;发送模块,用于在所述每个OFDM符号上使用所述第二发射功率发送所述上行参考信号。
结合第七方面,在一种可能的实现方式中,所述K个OFDM符号对应的K个第二发射功率之和与所述第i个路损参考信号对应的第一发射功率相同。
结合第七方面,在一种可能的实现方式中,所述K个OFDM符号对应的K个第二发射功率之和与目标发射功率相同,所述目标发射功率为所述第i个路损参考信号对应的第一发射功率的2倍。
第八方面,本申请提供一种通信装置,应用于网络设备,包括:发送模块,用于发送N个重复因子,每个重复因子指示终端设备发送上行参考信号时使用的正交频分复用OFDM符号数,所述N个重复因子与N个下行路损参考信号对应;所述发送模块,还用于发送所述N个下行路损参考信号;接收模块,用于在每个OFDM符号上接收终端设备发送的所述上行参考信号。
第九方面,本申请提供一种通信***,包括第五方面以及第六方面所述的装置或者包括第七方面以及第八方面所述的装置。
第十方面,本申请提供一种通信装置,包括:存储器和处理器;所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令执行如第一方面至第四方面或其中任意一种可能的实现方式所述的方法。
第十一方面,本申请提供一种通信装置,包括:存储器和处理器;所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令执行如第一方面至第四方面或其中任意一种可能的实现方式所述的方法。
第十二方面,本申请提供一种计算机可读介质,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行第一方面至第四方面或其中任意一种可能的实现方式所述的方法的指令。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机实现如如第一方面至第四方面或其中任意一种可能的实现方式所述的方法。
附图说明
图1为通信***的结构示意图;
图2为本申请提供的应用场景的结构性示意图;
图3为本申请一个实施例提供的通信方法的流程性示意图;
图4为本申请另一个实施例提供的通信方法的流程性示意图;
图5为本申请一个实施例提供的终端设备被配置N个SRS资源集信息的结构性示意图;
图6为本申请又一个实施例提供的通信方法的流程性示意图;
图7为本申请另一个实施例提供的终端设备被配置N个SRS资源集信息的结构性示意图;
图8为本申请一个实施例提供的发送SRS的结构性示意图;
图9为本申请提供的通信装置的结构性示意图;
图10为本申请一个实施例提供的通信装置的结构性示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一信息和第二信息是为了区分不同的信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并 不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
此外,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或b,或c,或a和b,或a和c,或b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
下面,结合附图,对本申请实施例进行详细描述。
为便于理解,下面对本申请实施例所涉及的术语进行简单介绍。
1、参考信号
参考信号是由发射端提供给接收端用于估计或探测无线信道信息的一种已知信号。这些无线信道信息可以是非常粗略的,例如无线信道的路损信息,知道路损信息可以在发发射端进行发射功率控制。无线信道信息也可以是非常详尽的,例如无线信道在时域、频域以及空域上准确的信道幅度和相位信息。
根据长期演进LTE/NR的协议,在物理层,包括上行通信和下行通信,上行通信包括上行物理信道和上行参考信号的传输,下行通信包括下行物理信道和下行参考信号的传输。
其中,上行物理信道包括随机接入信道(random access channel,PRACH),上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等。下行物理信道包括广播信道(physical broadcast channel,PBCH),下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等。
其中,上行参考信号指的是从终端设备到基站(base station,BS)或多收发点(transmission and receiving point,TRP)发送的参考信号,即发射端为终端设备,接收端为BS或TRP。示例性地,上行参考信号包括信道探测信号(sounding reference signal,SRS),上行控制信道的解调参考信号(de-modulation reference signal,DMRS),上行数据信道的解调参考信号(PUSCH-DMRS),上行相位噪声跟踪参考信号(phase noise tracking reference signal,PTRS),上行定位信号等等。
其中,下行参考信号指的是从BS或TRP到终端设备发送的参考信号,即发射端为BS或TRP,接收端为终端设备。示例性地,下行参考信号包括主同步信号(primary synchronization signal,简称PSS)/辅同步信号(secondary synchronization signal,SSS),下行控制信道的解调参考信号(PDCCH-DMRS),下行数据信道解调参考信号(PDSCH-DMRS),相位噪声跟踪信号,信道状态信息参考信号(channel status information reference signal,CSI-RS),小区信号(cell reference signal,CRS)(NR没有),精同步信号(time/frequency tracking reference signal,TRS)(LTE没有),LTE/NR定位信号(positioning RS)等。
需要说明的是,对于下行信道信息,可以通过终端设备对下行参考信号的测量获取,然后将测量得到的下行信道信息上报给网络,进而网络依据这些下行信道信息为后续的下行传输设置合适的发送参数。对于时分双工(time division duplexing,TDD)***中的下行信道信息,还可以根据信道互异性获得,即认为上行信道和下行信道在某些信道特性上是相同的,网络侧可以通过对上行参考信号进行测量获得上行信道信息,进而根据获得的上行信道信息估计出相关的下行信道信息。
应理解,上文中列举的参考信号以及相应的参考信号资源仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
2、探测参考信号
探测参考信号(sounding reference signal,SRS)是一种上行参考信号,由终端设备发送给基站设备。具体地,在第五代接入***标准中,SRS目前支持四种功能:基于码本的上行传输、支持基于非码本的上行传输、波束管理以及天线切换。在不同的应用场景下,基站可以通过高层参数为终端设备配置一个或多个SRS资源集,每一个SRS资源集的适用性通过高层参数配置。
3、SRS的重复和跳频
终端设备对SRS的传输取决于信令信息,例如无线资源控制(radio resource control,RRC)连接设置,RRC连接重配置等,即基站通过这些RRC信息将SRS配置通知给终端设备。在RRC信令中,SRS被配置在“SRS-ConfigIE”中。“SRS-ConfigIE”中定义了一个SRS资源集(SRS-resourceset)的列表。终端设备可以通过高层参数SRS-resourceset被配置一个或多个SRS资源集,每个SRS资源集中定义一组SRS资源(SRS-Resource)。
对于一个给定的SRS资源,终端设备会被配置发送该组SRS资源的连续正交频分复用(orthogonal frequency division multiplexing,OFDM)符号个数Ns、起始OFDM符号以及重复因子R,通过上述三个参数可以配置一个时隙内一个SRS资源的重复和/或跳频。具体配置方法如下:
如果R=Ns,或者没有配置R(认为R=Ns),则只配置了一个时隙内一个SRS资源的重复,在所配置的所有OFDM符号上以重复的方式发送SRS。即在一个时隙内,从起始OFDM符号开始的连续Ns个符号上,该SRS资源的每个天线端口映射的频域资源相同(例如相同PRB集合的相同子载波集合)。即在连续的Ns个符号上以重复的方式发送SRS。
如果R=1,则只配置了一个时隙内一个SRS资源的跳频,在所配置的所有OFDM符号上以跳频的方式发送SRS。即在一个时隙内,从起始OFDM符号开始的每个OFDM符号上,该SRS资源的每个天线端口映射的频域资源不同。即在连续的Ns个符号上以跳频的方式发送SRS。
如果R≤Ns,则配置了一个时隙内一个SRS资源的跳频和重复,即在一个时隙内,从起始OFDM符号开始的每R个相邻的OFDM符号上,该SRS资源的每个天线端口映射的频域资源相同;不同的组OFDM符号之间,该SRS资源的每个天线端口映射的频域资源不同。
4、SRS的功率控制
无线通信***中,增加终端设备发送上行参考信号的发射功率可满足网络侧所需的信噪比或误码率,而减少终端设备发送上行参考信号的发射功率可以降低小区间和小区内终端之间的干扰以及终端设备的功率消耗。因此,当终端设备发送上行参考信号时,网络侧通常需要进行上行功率控制以实现:降低误码率和丢包率、保证传输成功率和服务质量、节约终端设备的发送功率(节能)、降低干扰和提高信道容量。
具体地,通信***中计算每个上行载波上的SRS的发射功率的公式如下:终端设备基于SRS-resourceset的配置在服务小区c的载波f的上行部分带宽(Bandwidth part,BWP)b上用SRS功率控制调整状态l发送SRS,SRS在每个OFDM符号上的发射功率根据以下公式计算:
其中,c为终端设备的服务小区、f表示服务小区的载波、b表示f的上行部分带宽(bandwidth part,BWP)、l表示终端设备使用的SRS功率控制调整状态;
PCMAX,f,c(i),为终端被配置的在SRS传输时机i内,服务小区c的载波f上的最大发射功率、为基站静态工作点,即基站预期的对于SRS资源集qs,在服务小区c的载波f的b上的接收功率,其可以通过高层参数p0以SRS资源集为单位进行配置;
10log10(2μ·Msrs,b,f,c(i))反映SRS的带宽对功率的影响,其中,Msrs,b,f,c(i)是服务小区c的载波f的b上用于SRS的传输时机i的资源块个数,μ是子载波间隔(Subcarrier spacing,SCS)配置;
为下行路损,终端设备根据索引为qd的路损参考信号(pathloss reference signal,PL-RS)计算该下行路损,路损参考信号可以是同步信号或物理广播信道(synchronization  signal/physical broadcast channel,SS/PBCH)块索引,也可以是信道状态信息参考信号(channel state information reference signal,CSI-RS);
为路损补偿因子;
hb,f,c(i,l)为下行控制信息(downlink control information,DCI)中的传输功率控制(transmission power control,TPC)命令指示的功控调整量,即为闭环功控。SRS可以和物理上行共享信道(physical uplink shared channel,PUSCH)联合功控,即SRS的功率调整量和PUSCH的功率调整量相同;也可以进行独立于PUSCH的功控,此时SRS的TPC命令通过承载在物理下行控制信道(physical downlink control channel,PDCCH)上的DCI格式2_3下发给终端。
结合图1,说明适用于本申请实施例的通信***的结构性示意图。如图1所示,该通信***包括网络设备101和终端设备102。
其中,网络设备101可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base stationcontroller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,homeevolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and receptionpoint,TRP)等,还可以为5G,如,NR,***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU)或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(corenetwork,CN)中的网络设备,本申请对此不做限定。
终端设备102可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以称为用户设备(user equipment,UE)、接入终端(access terminal)、用户单元(user unit)、用户站(user station)、移动站(mobile station)、移动台(mobile)、远方站(remote station)、远程终端(remote terminal)、移动设备(mobile equipment)、用户终端(user terminal)、无线通信设备(wireless telecom equipment)、用户代理(user agent)、用户装备(user equipment)或用户装置。终端设备可以是无线局域网(wireless local Area networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***(例如,第五代(fifth-generation,5G)通信网络)中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。其中,5G还可以被称为新空口(new radio,NR)。本申请一种可能的应用的场景中,终端设备也可以为经常工作在地面的终端设备,例如车载设备。在本申请中,为了便于叙述,部署在上述设备中的芯片,或者芯片也可以称为终端设备。
本申请实施例中,终端设备与UE两个术语之间可以互换,基站与网络设备两个术语之间也可以互换。
本申请中,网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过非授权频谱进 行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHZ)以下的频谱进行通信,也可以通过该6GHZ以上的频谱进行通信,还可以同时使用6GHZ以下的频谱和6GHZ以上的频谱进行通信。本申请实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
可以理解的是,图1中示出的终端设备的数量仅是一种示例。在实际过程中终端设备的数量还可以为其它数量。当然,该通信***还可以包括其他网元,例如,还可以包括核心网设备,网络设备可以与核心网设备连接。在此说明的是,本申请实施例中对于网络设备和终端设备的具体形式不进行限定。
应注意,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面的方法可以使用编程方式实现,并形成计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应注意,本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,对于图1所示的通信***,终端设备102需要向网络设备101发送探测参考信号(sounding reference signal,SRS),以使得网络设备101确定出网络设备101与终端设备102之间的下行信道信息,进而可以根据这些下行信道信息为后续的下行传输设置合适的发送参数。
具体地,网络设备101会向终端设备102发送配置信息通知应当如何进行SRS传输,例如使用哪个SRS资源、每个SRS资源的端口数量等。目前,在3GPP中,定义了可以使用“SRS-ConfigIE”来配置SRS传输。该“SRS-ConfigIE”配置信息中定义了一个SRS资源集(SRS-resourceset)的列表,每个SRS资源集中定义了一组SRS资源(SRS-Resource)。
对于终端设备102,可以基于网络设备发送的上述配置信息来实现上行SRS的传输。而实现上行SRS的传输还需要考虑终端设备的发射功率,如果终端设备使用的发射功率过高会导致对同一时频资源的其他传输产生过高的干扰,如果使用的发射功率过小又会使得服务成功率和服务质量降低,因此,对于终端设备发送SRS时的发射功率,网络设备101需要进行上行功率控制。
目前,网络设备101对终端设备102进行上行功率控制的方法如下:网络设备101向终端设备102发送路损参考信号(path loss reference signal,PL-RS),终端设备基于设定的公式计算PL-RS对应的路损值、并基于路损值确定发送SRS使用的发射功率。具体地,终端设备基于PL-RS确定路损值以及发射功率的公式可以参考前述术语介绍中的SRS的功率控制中的相关描述,此处不再赘述。
在此说明的是,本申请中,为了将路损参考信号与终端设备发送的参考信号进行区分,本申 请中也将路损参考信号称为下行路损参考信号,将终端设备发送的参考信号称为上行参考信号。
但是,在多收发点(transmission and receiving point,TRP)场景中,可以同时由多个TRP为同一个终端设备提供数据传输服务。示例性地,图2为本申请提供的应用场景的结构性示意图。如图2所示,TRP1和TRP2可以为同一个终端设备120提供数据传输服务。在此说明的是,图2中的TRP1和TRP2仅是一种示例,不构成本申请的限制,在具体场景中,还可以包括更多的TRP。
应理解,在多TRP场景中,网络设备101需要测量每个TRP与终端设备之间的下行信道信息,并且,在该场景中,终端设备发送某个SRS时,该SRS是可以被多个TRP接收到的。因此,目前业界提出了如下三种实现方式来测量多个TRP中每个TRP与终端设备之间的下行信道信息。为便于描述,本申请中将多个TRP为N个TRP为例进行介绍。
在第一种实现方式中,网络设备通过距离终端设备较近的TRP发送下行路损参考信号,并向终端设备发送一个SRS资源集信息,该SRS资源集信息指示终端设备发送SRS时使用的资源;对于终端设备,在接收到距离较近的TRP发送的下行路损参考信号和SRS资源集信息后,可以基于下行路损参考信号确定出发射功率,并使用该发射功率在SRS资源集信息指示的资源上发送SRS;相应地,N个TRP中每个TRP同时接收该SRS,并基于接收到的SRS分别确定对应的下行信道信息。
在第二种实现方式中,网络设备通过距离终端设备较远的TRP发送下行路损参考信号,并向终端设备发送一个SRS资源集信息,该SRS资源集信息指示终端设备发送SRS时使用的资源;对于终端设备,在接收到距离较远的TRP发送的下行路损参考信号和SRS资源集信息后,可以基于下行路损参考信号确定出发射功率,并使用该发射功率在SRS资源集信息指示的资源上发送SRS;相应地,N个TRP中每个TRP同时接收该SRS,并基于接收到的SRS分别确定对应的下行信道信息。
在第三种实现方式中,网络设备通过N个TRP中的每个TRP向终端设备发送下行路损参考信号,并向终端设备发送与每个TRP对应的SRS资源集信息;对于终端设备,接收与每个TRP对应的下行路损参考信号以及SRS资源集信息,并基于下行路损参考信号确定出每个TRP对应的发射功率后,使用该发射功率在对应的SRS资源集信息指示的资源上发送SRS;相应地,多个TRP中每个TRP接收对应的SRS,并基于接收到的SRS确定对应的下行信道信息。
可以理解的是,由于不同的TRP到终端设备的距离不同,此时,当不同的TRP为终端设备发送下行路损参考信号时,终端设备确定出的路损值的差异可能较大。
因此,对于第一种实现方式和第二种实现方式,即仅根据一个TRP发送的下行路损参考信号来确定发送SRS的发射功率时,那么对于剩余的部分TRP而言,可能存在功率不匹配的问题。例如,若终端设备仅按照距离较近的TRP的下行路损参考信号计算发射功率,则对于距离较远的TRP而言,接收到SRS时可能会因为功率较低,从而导致接收信噪比较低,进而降低服务成功率和服务质量。而若终端设备仅按照距离较远的TRP的下行路损参考信号计算发射功率,则对于距离较近的TRP而言,接收到的SRS时可能会因为功率较高,从而导致SRS对其他终端设备发送的信息造成强干扰,导致整体***性能降低。
而对于第三种实现方式,即N个TRP分别向终端设备发送下行路损参考信号以及网络设备向终端设备发送与N个TRP对应的N个SRS资源集信息时,一方面,可能增加终端设备的功耗,另一方面,由于SRS资源所占用的时频资源的增加,也会导致整个通信***的资源浪费。
综上,在多TRP传输场景中,若终端设备使用的是根据某个TRP的下行路损参考信号确定出的发射功率在一个SRS资源集信息指示的资源上向不同的TRP发送SRS,会带来功率不统一问题;而若终端设备使用与多个TRP对应的下行路损参考信号确定出的发射功率在与各个TRP对应的SRS资源集信息指示的资源上向对应的TRP发送SRS,则会带来终端设备的功率浪费和通信***的容量降低问题。
鉴于此,本申请实施例提供一种通信方法与装置,有助于解决终端设备在向不同的TRP发送SRS时的功率不统一问题以及终端设备功耗大的问题。
图3为本申请一个实施例提供的通信方法的流程性示意图。如图3所示,该方法可以包括:S310、 S320、S330和S340。该方法包括如下步骤:
S310,网络设备向终端设备发送N个下行路损参考信号,相应地,终端设备接收N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数。
本申请中,N个下行路损参考信号与N个TRP对应,如可以认为该N个下行路损参考信号是N个TRP发送的。其中,有关TRP的概念可以参考相关技术中的描述,此处不再赘述。
在此说明的是,本申请对下行路损参考信号不做限制。例如,下行路损参考信号可以是同步信号或物理广播信道(synchronization signal/physical broadcast channel,SS/PBCH)块索引,也可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),又或者为其他下行参考信号。
S320,终端设备确定第一发射功率,所述第一发射功率与M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
应理解,当终端设备接收到N个下行路损参考信号后,终端设备可以计算出每个下行路损参考信号对应的路损值,以及根据路损值计算出在向对应的TRP发送上行参考信号时使用的发射功率。其中,有关如何计算每个下行路损参考信号对应的路损值以及根据路损值计算发送上行参考信号时使用的发射功率可以参考相关技术以及本申请在术语解释中有关SRS的功率控制部分的描述,此处不再赘述。
本实施例中,第一发射功率指的是在第一资源上发送上行参考信号时使用的发射功率。
本实施例中,第一发射功率与N个下行路损参考信号包括的M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
其中,第一发射功率与M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联是指:第一发射功率是由M个下行路损参考信号对应的发射功率得到的,而不是从N个下行路损参考信号中除M个下行路损参考信号之外的下行路损参考信号对应的发射功率得到。
例如,第一发射功率可以与M个下行路损参考信号中的一个下行路损信号对应的发射功率关联。示例性地,第一发射功率为M个下行路损参考信号对应的M个发射功率中的最大值;或者,第一发射功率为M个下行路损参考信号对应的M个发射功率中的最大值;或者,第一发射功率为M个下行路损参考信号对应的M个发射功率中的任意一值;又或者,在M个下行路损参考信号包含服务终端设备的服务小区的第一下行路损参考信号时,第一发射功率为第一下行路损参考信号对应的发射功率。不构成本申请中第一发射功率与一个下行路损参考对应的发射功率关联的限制。
例如,第一发射功率可以与M个下行路损参考信号中的多个下行路损信号对应的发射功率关联。示例性地,第一发射功率为M个下行路损参考信号对应的M个发射功率的平均值;或者,第一发射功率为该M个下行路损参考信号中的K个下行路损参考信号对应的K个发射功率的平均值,其中,K小于M;或者,第一发射功率为M个下行路损参考对应的多个发射功率进行加权平均得到的。不构成本申请中第一发射功率与多个下行路损参考对应的发射功率关联的限制。在此说明的是,本申请中,对上行参考信号不做限制,例如该上行参考信号可以是SRS。
S330,终端设备向网络设备发送第一信息,相应地,网络设备接收第一信息,所述第一信息用于指示M个下行路损参考信号对应的上行参考信号在第一资源上发送。
应理解,在通信***中,任意一个参考信号都是在某个时频资源上发送的。本实施例中,第一资源是指终端设备在发送与M个下行路损参考信号对应的上行参考信号时使用的时频资源。在此说明的是,本申请对如何获取该第一资源的实现方式不做限制。
在第一种实现方式中,所述M个下行路损参考信号可以对应同一个上行参考信号,上述上行参考信号在第一资源上发送。
在该实现方式中,具体实施时,网络设备可以向终端设备发送第二信息,相应地,终端设备接收该第二信息,其中,第二信息中包括一组资源信息和N个标识信息,该一组资源信息指示第一资源,N个标识信息指示N个下行路损参考信号。示例性地,该一组资源信息可以是一个资源 集信息,即在这种实施方案中,终端设备被配置一个资源集信息,该资源集信息包含用于指示N个下行路损参考信号的信息,以及指示发送上行参考信号的第一资源的信息。应注意,在该种实现方式中,一组资源信息关联了N个TRP,该N个TRP与N个下行路损参考信号对应。
在第二种实现方式中,所述M个下行路损参考信号可以对应M个上行参考信号,终端设备可以从上述M个上行参考信号中选取其中的一个上行参考信号在第一资源上发送。
在该实现方式中,具体实施时,网络设备可以向终端设备发送第三信息,相应地,终端设备接收该第三信息,该第三信息中包括N组资源信息和N个标识信息,N组资源信息指示了N个不同的资源,N个标识信息指示了N个下行路损参考信号,N组资源信息与N个标识信息对应。而对于终端设备,可以将与M个下行路损参考信号中的任意一个下行路损参考信号对应的一组资源信息指示的资源确定为第一资源。示例性地,该N组资源信息可以是N个资源集信息,每个资源集信息中包含用于指示一个下行路损参考信号的信息。可选地,N个资源集信息的功能相同,或者,N个资源集信息的用途(usage)相同。还可以理解的是,在该种实现方式中,N组资源信息关联的TRP不同。
在此说明的是,本申请中,对上述第一种实现方式和第二种实现方式中所述的N个标识信息,也称为是N组功控(power control,PC)参数。
本实施例中,当终端设备确定了与M个下行路损参考信号对应的上行参考信号对应的第一发射功率后,会向终端设备发送第一信息,该第一信息用于告诉网络设备:该M个下行路损参考信号对应的上行参考信号为第一资源上发送的上行参考信号。可以理解的是,对于网络网设备而言,当接收到第一信息后,若终端设备在第一资源上发送上行参考信号,那么网络设备就可以获知与M个下行路损参考信号对应的M个TRP同时接收该第一资源上的上行参考信号。也就是说,本实施例中,终端设备将使用同一个发射功率在同一个资源上发送上行参考信号时可以同时接收该上行参考信号的M个TRP告诉给网络设备。
本实施例中,对终端设备如何向网络设备上报第一信息的方式不做限制。
示例性地,在一种可实施方案中,终端设备可以通过物理层信令或者高层信令上报。例如,终端设备通过上行控制信息(uplink control information,UCI)上报,或者,终端设备通过终端设备的能力上报、又或者,终端设备通过媒体接入控制信元(medium-access-control control element,MAC CE)。
在此说明的是,本申请实施例上报的第一信息的具体内容不做限制。
例如,第一信息中包括M个下行路损参考信号中一个或多个下行路损参考信号的标识信息,即上报的内容可以理解为是路损参考信号标识(identification,ID)。
在具体实施时,例如可以在第一信息中仅包括M个下行路损参考信号中的L个(L小于M)下行路损参考信号的标识信息,然后基于该L个下行路损参考信号的标识信息和M个下行路损参考信号之间的索引关系得到上报的每个下行路损参考信号;或者,可以在第一信息中包括每一个路损参考信号的标识信息。
又例如,第一信息中可以包括组标识信息,所述组标识信息用于指示与M个路损参考信号对应的M个TRP,即上报的内容可以理解为是与M个TRP关联的标识。
在具体实施时,当终端设备确定出M个下行路损参考信号后,可以将M个下行路损参考信号上报给网络设备。
应理解,由于M个下行路损参考信号与M个TRP对应,因此,当终端设备确定出M个下行路损参考信号后,将该M个下行路损参考信号上报给网络设备,也可以隐含的认为是指示:当终端设备确定出M个下行路损参考信号后,将该M个TRP上报给网络设备。
S340,终端设备在第一资源上用第一发射功率发送上行参考信号,相应地,网络设备接收上行参考信号。
本实施例中,当终端设备确定了在第一资源上发送上行参考信号的第一发射功率之后,便可以使用第一发射功率在第一资源上发送上行参考信号。可以理解的是,对于网络设备,由于终端设备上报了第一信息,因此可以基于第一信息获知同时接收该上行参考信号的M个TRP,然后使 用该M个TRP分别接收该上行参考信号,并完成M个TRP中每个TRP与终端设备之间的下行信道信息的测量。
应理解,本申请提供的通信方法,由于终端设备在接收到N个下行路损参考信号后,向网络指示了可以同时接收终端设备使用第一发射功率在第一资源上发送的上行参考信号的M个TRP,因此,对于网络,可以仅使用N个TRP中的M个TRP同时接收终端设备在第一资源上发送的上行参考信号,而对于剩余的N-M个TRP,分别接收与各自TRP对应的上行参考信号。
可以理解的是,相比现有技术中的使用一个发射功率发送上行参考信号,N个TRP同时接收参考信号的方法而言,本申请提供的通信方法中,由于只是N个TRP中的M个TRP同时接收,因此有助于解决功率不统一的问题。而相比现有技术中的使用N个发射功率在不同的资源上向对应的TRP发送上行参考信号的方法,由于本申请提供的通信方法中,是对N-M+1个TRP使用不同的发射功率在不同的资源上向对应的TRP发送上行参考信号,因此有助于解决终端设备功耗大的问题。
在此说明的是,本申请实施例对如何确定M个下行路损参考信号的方式不做限制。
在一种实施方案中,当终端设备确定出与N个下行路损参考信号对应的路损值或者上行参考信号的发射功率后,可以基于N个发射功率或者N个路损值确定出M个下行路损参考信号。具体地,该M个下行路损参考信号满足如下条件:
M个下行路损参考对应的M个发射功率之间的发射功率差小于或等于第一阈值。
或者,由于M个下行路损参考信号与M个TRP是对应的,因此,该M个下行路损参考信号也可以是满足如下条件:M个TRP对应的M个发射功率之间的发射功率差小于或等于第一阈值。
或者,由于N个发射功率与N个路损值是对应的,因此,该M个路损参考信号也可以是满足如下条件:M个下行路损参考对应的M个路损值之间的发射功率差小于或等于第一阈值。
在此说明的是,本申请对终端设备如何获取第一阈值的实现方式不做限制。例如,在第一种可实现方式中,该第一阈值是预定义的。又例如,在第二种可实现方式中,该第一阈值可以是高层参数配置的。又例如,在第三种可实现方式中,该第一阈值可以是终端设备确定的,然后再上报给网络设备的。
在此说明的是,本申请对第一阈值的具体数值不做限制,可以根据实际通信***要求而定。示例性的地,本实施例中的第一阈值为整数,例如是3分贝(decibel,db),或者是6db,或者是10db,或者第一阈值的取值集合为{3,6,10}db。
可以理解的是,当本申请选取的M个路损参考信号满足上述条件时,可以保证终端设备使用第一发射功率在第一资源上发送上行参考信号时,M个TRP接收到的上行参考信号的发射功率是相对比较适中的功率,从而可以解决终端设备在向M个TRP发送上行参考信号时的功率不统一的问题。
下面,为便于理解,以上行参考信号为SRS为例,介绍在实施本申请实施例提供的通信方法时的两种具体实施方式。
实施例一:
如图4所示,本实施例的方法包括:
S410,网络设备向终端设备发送SRS资源集信息,相应地,终端设备接收SRS资源集信息,SRS资源集信息中包括一组资源信息和N个标识信息,所述一组资源信息指示第一资源,N个标识信息指示N个下行路损参考信号。
具体地,终端设备可以被配置如图5所示的一个SRS资源集,然后该SRS资源集信息中包含一组资源信息(如有图5中的SRS资源1和SRS资源2)以及N个标识信息.
本实施例中,N个标识信息也称为一组功控参数。如图5中包括三组功控参数:PC1、PC2和PC3。
应理解,不同的功控参数对应不同的TRP。例如,PC1对应的是TRP1,PC2对应的是TRP2,PC3对应的是TRP3。
S420,网络设备向终端设备发送N个下行路损参考信号,相应地,终端设备接收N个下行路 损参考信号。
具体地,网络设备在N个时频资源上向终端设备发送N个下行路损参考信号,相应地,终端设备分别在N个时频资源上接收对应的N个下行路损参考信号。
需要说明的是,在具体实现时,本实施例中的网络设备向终端设备发送N个下行路损参考信号,实际上是网络设备中的N个TRP发送N个下行路损参考信号。
S430,终端设备计算N个下行路损参考信号中与每个路损参考信号对应的参考信号的发射功率。
其中,有关终端设如何根据下行路损参考参考信号确定上行参考信号的发射功率可以参考相关技术中的描述,此处不再赘述。
S440,终端设备向网络设备发送第一信息,该第一信息指示M个下行路损参考信号对应的上行参考信号为第一资源上发送的上行参考信号;相应地,网络设备接收第一信息。
本实施例中,M个下行路损参考信号满足如下条件中的一项或多项:M个下行路损参考信号中任意两个下行路损参考信号对应的路损值之差小于第一阈值、M个下行路损参考信号中任意两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值、M个TRP中任意两个TRP对应的上行参考信号的发射功率之差小于第一阈值。第一阈值例如是3分贝(decibel,db),或者是6db,或者是10db,或者第一阈值的取值集合为{3,6,10}db。
本实施例中,终端设备可以通过物理层信令或者高层信令上报该第一信息。例如终端设备通过UCI上报,或者终端设备能力上报,或者通过MAC CE上报。具体地,上报的内容可以是路损参考信号标识(identification,ID),或者是与TRP关联的标识。
应理解,M个下行路损参考信号与M个TRP对应,因此,本实施例中,第一信息也可以认为是向网络设备上报可以同时接收第一发射功率在第一资源上发送的上行参考信号的M个TRP。本实施例中,将M个TRP也称为是一个TRP组。
S450,终端设备基于M个下行路损参考信号,确定第一发射功率,第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
例如,该第一发射功率根据M个下行路损参考信号中的其中一个下行路损参考信号计算。又例如,该第一发射功率根据M个下行路损参考信号对应的M个发射功率确定。
在具体实施时,终端设备可以按照预定义规则或高层配置确定第一发射功率。
示例性地,预定义规则例如可以是以下任意一项:M个发射功率中最小的发射功率;M个发射功率中最大的发射功率;M个发射功率中的任一个发送功率;若第一集合包含服务小区对应的下行路损参考信号(或TRP),则预定义规则为终端设备的服务小区对应的发送功率。
示例性地,本实施例中,终端设备也可以上报其采用的第一发射功率。
S460,终端设备在第一资源上用第一发射功率发送SRS;相应地,网络设备中的与M个下行路损参考信号对应的M个TRP在第一资源上接收SRS。
需要说明的是,本实施例中,为了保证方案的完整性,还可以包括如下两个步骤:
在终端设备进行上报之前,网络设备通过半静态或动态的方式触发终端设备的上报,例如,网络设备通过RRC信令或MAC CE信令为触发终端设备上报,又如网络设备通过DCI触发终端设备上报;2、在终端设备进行上报之后,网络设备需要进行重新配置,即对于N个TRP中除上述M个TRP之外的N-M个TRP,网络设备还需要重新配置SRS进行信道测量。
可选地,网络设备在接收到终端设备的上报之后,可以发送信令,通知终端设备是否按照终端设备上报的TRP组的方式进行SRS发送。若是,终端设备执行S406;若否,终端设备按照预定义规则发送一个SRS给一个TRP。
本实施例提供的通信方法,考虑终端设备向网络设备上报可以同时进行接收的TRP组。本实施例中,由于终端设备可以根据下行路损参考信号获取准确的路损信息,从而更准确地通知网络设备上报可以同时进行接收的TRP组。进一步地,本实施例中的TRP组中的任意两个TRP满足路损差(或发送功率差)小于第一阈值,因此,本实施例的方法,可以保证多个TRP在接收同一个SRS时的信道测量性能,提高服务成功率和服务质量,降低干扰。
实施例二:
如图6所示,本实施例的方法包括:
S610,网络设备向终端设备发送N个SRS资源集信息,相应地,终端设备接收N个SRS资源集信息,每个SRS资源集信息中包括一组资源信息和一个标识信息,所述每个SRS资源集信息中的一组资源信息指示一组资源,所述每个SRS资源集信息中的中一个标识信息指示一个下行路损参考信号。
即,终端设备可以被配置N个SRS资源集信息,每个SRS资源集中包含一组资源信息以及一个标识信息。
示例性地,图7为终端设备被配置N个SRS资源集信息的结构性示意图,如图7所示,SRS资源集1中包含一组SRS resource以及一个标识信息PC1;SRS资源集2中包含一组SRS resource以及一个标识信息PC2,以此类推,SRS资源集N中包含一组SRS resource以及一个标识信息PCN。
应理解,不同的功控参数对应不同的TRP。例如,PC1对应的是TRP1,PC2对应的是TRP2,PCN对应的是TRPN。由于本实施例中不同的功控参数是包含在不同的SRS资源集中的,因此也可以认为是SRS资源集对应不同的TRP。
S620,网络设备向终端设备发送N个下行路损参考信号,相应地,终端设备接收N个下行路损参考信号。
S630,终端设备计算N个路损参考信号中与每个路损参考信号对应的参考信号的发射功率。
其中,有关终端设如何根据下行路损参考参考信号确定上行参考信号的发射功率可以参考相关技术中的描述,此处不再赘述。
S640,终端设备向网络设备发送第一信息,所述第一信息用于指示M个下行路损参考信号对应的上行参考信号为第一资源上发送的上行参考信号,相应地,网络设备接收第一信息。
S650,终端设备基于M个下行路损参考信号,确定第一发射功率,所述第一发射功率与M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
其中,S620至S650可以参考图4所示实施例中的对应部分的描述,此处不再赘述。
S660,终端设备使用第一发射功率在第一资源上发送SRS;相应地,网络设备中的与M个下行路损参考信号对应的M个TRP在第一资源上接收SRS。
需要说明的是,本实施例中,终端设备被配置了N个不同的SRS资源集。在这种情况下,当终端设备确定了M个下行路损参考信号或M个TRP后,由于M个TRP接收的是同一个资源上发送的SRS,因此,本实施例中,终端设备确定了M个下行路损参考信号或M个TRP后,需要确定一个SRS资源集,然后在该SRS资源集指示的一组资源上发送SRS。
具体地,本实施例中,需要从与M个下行路损参考信号或与M个TRP对应的M个SRS资源集中确定出一个资源集(该第一资源集中的一组资源信息指示的一组资源即为第一资源),即第一资源集与M个下行路损参考信号中的一个下行路损参考信号关联,或与M个TRP中的一个TRP关联。也就是说,本实施例中,对于上述M个SRS资源集,终端设备在其中的一个SRS资源集指示的一组资源上发送SRS,不在剩余的M-1个SRS资源集指示的资源上发送SRS。或者,换句话说,本实施例中,终端设备在N-M+1个SRS资源集指示的资源上发送SRS。
需要说明的是,本实施例中,为了保证方案的完整性,还可以包括如下两个步骤:
可选地,网络设备在接收到终端设备的上报之后,可以发送信令(本申请中也称为第四信息),通知终端设备是否按照终端设备上报的TRP组的方式进行SRS发送。若是,终端设备执行S660;若否,终端设备按照预定义规则发送一个SRS给一个TRP。
在此说明的是,本实施例中,还可以包括如下步骤:网络设备向终端设备反馈是否按照终端设备上报的TRP组进行SRS接收。即网络设备发送信令通知终端设备是否按照终端设备上报的TRP组的方式进行SRS发送。在该步骤的前提下,若网络设备反馈是,则终端设备执行上述S660,否则,若网络设备反馈否,则终端设备基于S610中的配置,分别在N个SRS资源集信息指示的资源上发送SRS。
本实施例提供的通信方法,可以看出,与实施例一提供的通信方法的不同之处在于:在终端 设备上报TRP组之后,网络设备不需要进行重新配置,即通过网络设备的一次半静态配置可以完成N个TRP的信道信息的测量,避免了RRC重配和降低了发送时延。
以上,说明了两个具体地对于TRP组内的一个或多个TRP,终端设备发送同一个SRS,SRS的发送功率按照其中任一TRP的功控参数计算,而对于TRP组外的一个或多个TRP,终端设备发送不同的SRS,SRS的发送功率按照每一个TRP的功控参数计算的具体实施方式。
通常情况下,同一个终端设备在向两个不同距离的TRP发送SRS时,该两个TRP对终端设备传输SRS的发射功率时不同的。可以理解的是,在现有协议中,每一个OFDM符号上的SRS的发射功率都是相同的,导致同一个SRS资源只能按照同一个TRP的功控参数确定SRS的发射功率,从而引发上述问题。为了解决上述问题,本申请另外提出一种多个OFDM符号进行功率累加的方式为不同TRP发送SRS。即同一个SRS资源的不同符号上的SRS发送功率不同的通信方法。
例如,如图8所示,距离较近的TRP1(或服务小区)的重复因子为1,距离较远的TRP2(或协作小区)的重复因子为2,在第一个OFDM符号上的SRS发送功率为根据TRP1的PC参数计算出的功率,第二个OFDM符号上的SRS发送功率为(根据TRP2的PC参数计算出的功率-根据TRP1的PC参数计算出的功率),或者,第二个OFDM符号上的SRS发送功率为(2*根据TRP2的PC参数计算出的功率-根据TRP1的PC参数计算出的功率)。
具体地,该通信方法的具体实施过程为:
步骤一:终端设备被配置一个SRS资源集,该SRS资源集中包含N个路损参考信号标识(或N组PC参数),假设分别称为PL-RS1、PL-RS2、…、PL-RSN;该SRS资源集中包括SRS资源配置信息,其中,上述SRS资源配置信息还包含N个重复因子R1、R2、…、RN;上述N个重复因子与N个路损参考信号(或N个TRP)关联,或者,上述N个重复因子与N个路损参考信号(或N个TRP)对应。
本实施例中,PL-RS1、PL-RS2、…、PL-RSN的顺序可以是预定义的,或者是高层参数配置的。例如,PL-RS对应的TRP越近,PL-RS的序号越小。又如,PL-RS对应的路损值越小,PL-RS的序号越小。
应理解,本实施例中,在配置与N个路损参考信号对应的N个重复因子时,距离终端设备远的TRP对应的重复因子应该大于距离终端设备近的TRP对应的重复因子。
步骤二:终端设备接收N个路损参考信号(来自N个TRP),计算每个路损参考信号对应的发射功率。
该步骤的实现过程可以参考本申请前述实施例中相关部分的描述,此处不再赘述。
步骤三:终端设备发送SRS,相应地,N个TRP各自接收SRS。其中,终端设备在发送SRS时,R1个OFDM符号上的SRS发射功率根据PL-RS1计算,R2个OFDM符号上的SRS发射功率根据PL-RS1和PL-RS2计算,R3个OFDM符号上的SRS发射功率根据PL-RS2和PL-RS3计算,以此类推,RN个OFDM符号上的SRS发射功率根据PL-RS1、PL-RS2、…、PL-RSN计算。
例如,假设有3个TRP,分别称为TRP1、TRP2和TRP3,其中,TRP1距离终端设备最近,其次是TRP2,TRP3距离终端设备最远,TRP1对应的R1等于1,RP2对应的R2等于2,RP3对应的R3等于3。在这种情况下,如果TRP1对应的SRS的发射功率为P1,RP2对应的SRS的发射功率为P2,RP3对应的SRS的发射功率为P3。那么终端设备在具体发射SRS时,可以在第一个OFDM符号上使用发射功率P1发送SRS,然后在第二个OFDM符号上使用发射功率P2-P1或发送SRS,然后在第三个OFDM符号上使用发射功率P3-P2发送SRS。应理解,该示例中,终端设备在第一个OFDM符号上使用发射功率P1发送SRS时可以满足TRP1的发射功率需求,在第一个OFDM上使用的发射功率P1和在第二个OFDM符号上使用的发射功率P2-P1合起来刚好可以满足TRP2,在第一个OFDM符号上使用发射功率P1、第二个OFDM符号上使用发射功率P2-P1以及第三个OFDM符号上使用发射功率P3-P2合起来刚好可以满足TRP3。
本实施例中,考虑了终端设备在同一个SRS资源集中的多个OFDM符号上如何将SRS发送给多个TRP的通信方法,通过由前到后连续符号上发射功率顺次累加的方式,满足不同TRP的功控 需求,从而提高了终端设备的发射功率利用率,并在部分场景下节省了资源。
上文中结合图3至图8,详细描述了根据本申请实施例的通信方法,下面将结合图9至图10详细描述根据本申请实施例的通信装置。
图9为本申请一个实施例提供的通信装置的结构性示意图。具体地,如图9所示,该装置900包括:接收模块901、发送模块902和处理模块903。
在第一个实施例中,该通信装置900可以应用于终端设备。其中,接收模块901,用于接收N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;处理模块903,用于确定第一发射功率,所述第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联;发送模块902,用于发送第一信息,所述第一信息用于指示所述M个下行路损参考信号对应的上行参考信号在第一资源上发送;所述发送模块902还用于在所述第一资源上用所述第一发射功率发送所述上行参考信号。
作为一种示例,接收模块901可以用于执行图3所述的方法中的终端设备接收N个下行路损参考信号的步骤。例如接收模块901用于执行S310。
在一种可能的实现方式中,所述M个下行路损参考信号满足如下条件中的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值、所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
在一种可能的实现方式中,所述第一发射功率为以下任意一种:与所述M个下行路损参考信号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
在一种可能的实现方式中,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
在一种可能的实现方式中,所述第一信息中包括M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
在一种可能的实现方式中,所述接收模块901还用于:接收第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
在一种可能的实现方式中,所述接收模块901还用于:接收第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应;所述处理送模块还用于:将M组资源信息中的一组资源信息指示的资源确定为所述第一资源,所述M组资源信息与所述M个下行路损参考信号对应。
在一种可能的实现方式中,所述接收模块901还用于:接收第四信息;所述发送模块902还用于:在所述第四信息指示第一状态时,在所述第一资源上使用所述第一发射功率发送所述上行参考信号。
在第二个实施例中,该通信装置900可以应用于接入网设备。其中,发送模块902,用于发送N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;接收模块901,用于接收第一信息,所述第一信息用于指示所述M个下行路损参考信号对应的上行参考信号为终端设备在第一资源上发送的;所述接收模块901还用于:接收终端设备在所述第一资源上用第一发射功率发送的所述上行参考信号,所述第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
在一种可能的实现方式中,所述M个下行路损参考信号满足如下条件中的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值、所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
在一种可能的实现方式中,所述第一发射功率为以下任意一种:与所述M个下行路损参考信 号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
在一种可能的实现方式中,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
在一种可能的实现方式中,所述第一信息中包括M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
在一种可能的实现方式中,所述发送模块902还用于:发送第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
在一种可能的实现方式中,所述发送模块902还用于:发送第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应。
在一种可能的实现方式中,所述发送模块902还用于:发送第四信息。
在第三个实施例中,该通信装置900可以应用于终端设备。其中,接收模块901,用于接收N个重复因子,每个重复因子指示终端设备发送上行参考信号时使用的正交频分复用OFDM符号数,所述N个重复因子与N个下行路损参考信号对应;所述接收模块901还用于:接收所述N个下行路损参考信号;处理模块903,用于确定所述N个路损参考信号中每个路损参考信号对应的发射功率;所述处理模块903还用于:根据前i-1个下行路损参考信号中每个下行路损参考信号对应的第一发射功率以及第i个下行路损参考信号对应的第一发射功率,确定与第i个下行路损参考信号对应的第i个重复因子指示的K个OFDM符号中每个OFDM符号对应的第二发射功率,i从1取至N,K为正整数;发送模块902,用于在所述每个OFDM符号上使用所述第二发射功率发送所述上行参考信号。
在一种可能的实现方式中,所述K个OFDM符号对应的K个第二发射功率之和与所述第i个路损参考信号对应的第一发射功率相同。
在一种可能的实现方式中,所述K个OFDM符号对应的K个第二发射功率之和与目标发射功率相同,所述目标发射功率为所述第i个路损参考信号对应的第一发射功率的2倍。
在第三个实施例中,该通信装置900可以应用于网络设备。其中,发送模块902,用于发送N个重复因子,每个重复因子指示终端设备发送上行参考信号时使用的正交频分复用OFDM符号数,所述N个重复因子与N个下行路损参考信号对应;所述发送模块902,还用于发送所述N个下行路损参考信号;接收模块901,用于在每个OFDM符号上接收终端设备发送的所述上行参考信号。
图10为本申请另一个实施例提供的通信装置的结构性示意图。图10所示的装置可以用于执行前述任意一个实施例所述的方法。
如图10所示,本实施例的装置1000包括:存储器1001、处理器1002、通信接口1003以及总线1004。其中,存储器1001、处理器1002、通信接口1003通过总线1004实现彼此之间的通信连接。
存储器1001可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器1001可以存储程序,当存储器1001中存储的程序被处理器1002执行时,处理器1002用于执行图3至图8所示的方法的各个步骤。
处理器1002可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请图3至图8所示的方法。
处理器1002还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例图3至图8的方法的各个步骤可以通过处理器1002中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器1002还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可 编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1001,处理器1002读取存储器1001中的信息,结合其硬件完成本申请装置包括的单元所需执行的功能,例如,可以执行图3至图8所示实施例的各个步骤/功能。
通信接口1003可以使用但不限于收发器一类的收发装置,来实现装置1000与其他设备或通信网络之间的通信。
总线1004可以包括在装置1000各个部件(例如,存储器1001、处理器1002、通信接口1003)之间传送信息的通路。
应理解,本申请实施例所示的装置1000可以是电子设备,或者,也可以是配置于电子设备中的芯片。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种通信方法,其特征在于,应用于终端设备,包括:
    接收N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;
    确定第一发射功率,所述第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联;
    发送第一信息,所述第一信息用于指示所述M个下行路损参考信号对应的上行参考信号在第一资源上发送;
    在所述第一资源上用所述第一发射功率发送所述上行参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述M个下行路损参考信号满足如下条件中的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值,所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一发射功率为以下任意一种:与所述M个下行路损参考信号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
  4. 根据权利要求1或2所述的方法,其特征在于,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一信息中包括所述M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述接收N个下行路损参考信号之前,所述方法还包括:
    接收第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述接收N个下行路损参考信号之前,所述方法还包括:
    接收第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应;
    所述在所述第一资源上用所述第一发射功率发送所述上行参考信号,还包括:
    将M组资源信息中的一组资源信息指示的资源确定为所述第一资源,所述M组资源信息与所述M个下行路损参考信号对应。
  8. 根据权利要求7所述的方法,其特征在于,所述在所述第一资源上用所述第一发射功率发送所述上行参考信号之前,所述方法还包括:
    接收第四信息;
    在所述第四信息指示第一状态时,在所述第一资源上用所述第一发射功率发送所述上行参考信号。
  9. 一种通信方法,其特征在于,应用于网络设备,包括:
    发送N个下行路损参考信号,所述N个下行路损参考信号包括M个下行路损参考信号,N为大于或等于2的正整数,M为小于或等于N的正整数;
    接收第一信息,所述第一信息用于指示所述M个下行路损参考信号对应的上行参考信号为终端设备在第一资源上发送的;
    接收所述终端设备在所述第一资源上用第一发射功率发送的所述上行参考信号,所述第一发射功率与所述M个下行路损参考信号中的一个或多个下行路损参考信号对应的发射功率关联。
  10. 根据权利要求9所述的方法,其特征在于,所述M个下行路损参考信号满足如下条件中 的一项或多项:所述M个下行路损参考信号中两个下行路损参考信号对应的路损值之差小于第一阈值、所述M个下行路损参考信号中两个下行路损参考信号对应的上行参考信号的发射功率之差小于第一阈值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一发射功率为以下任意一种:与所述M个下行路损参考信号对应的M个发射功率中的最大值,所述M个发射功率中的最小值,所述M个发射功率的平均值,所述M个发射功率中的一值。
  12. 根据权利要求9或10所述的方法,其特征在于,在所述M个下行路损参考信号包含服务所述终端设备的服务小区的第一下行路损参考信号时,所述第一发射功率为所述第一下行路损参考信号对应的发射功率。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述第一信息中包括M个下行路损参考信号中一个或多个下行路损参考信号的标识信息。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,在所述发送N个下行路损参考信号之前,所述方法还包括:
    发送第二信息,所述第二信息包括一组资源信息和N个标识信息,所述一组资源信息指示所述第一资源,所述N个标识信息指示所述N个下行路损参考信号。
  15. 根据权利要求9至13中任一项所述的方法,其特征在于,所述方法还包括:
    发送第三信息,所述第三信息包括N组资源信息和N个标识信息,所述N组资源信息指示N个不同的资源,所述N个标识信息指示所述N个下行路损参考信号,所述N组资源信息与所述N个标识信息对应。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送第四信息。
  17. 一种通信装置,其特征在于,所述装置包括用于执行权利要求1至8中任一项所述方法的模块。
  18. 一种通信装置,其特征在于,所述装置包括用于执行权利要求9至16中任一项所述方法的模块。
  19. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行如权利要求1至8或权利要求9至16中任一项所述的方法。
  20. 一种计算机可读介质,其特征在于,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如权利要求1至8或权利要求9至16中任一项所述的方法的指令。
  21. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得所述计算机实现如权利要求1至8或权利要求9至16中任一项所述的方法。
PCT/CN2023/110042 2022-08-12 2023-07-28 通信方法与装置 WO2024032396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970256.XA CN117641534A (zh) 2022-08-12 2022-08-12 通信方法与装置
CN202210970256.X 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032396A1 true WO2024032396A1 (zh) 2024-02-15

Family

ID=89850842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110042 WO2024032396A1 (zh) 2022-08-12 2023-07-28 通信方法与装置

Country Status (2)

Country Link
CN (1) CN117641534A (zh)
WO (1) WO2024032396A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536394A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和***
WO2021026683A1 (en) * 2019-08-09 2021-02-18 Lenovo (Beijing) Limited Power control for pucch transmissions with multiple trps
US20220030521A1 (en) * 2020-07-23 2022-01-27 Comcast Cable Communications, Llc Power Control in Wireless Communications
WO2022067823A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种上行功率控制方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536394A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和***
WO2021026683A1 (en) * 2019-08-09 2021-02-18 Lenovo (Beijing) Limited Power control for pucch transmissions with multiple trps
US20220030521A1 (en) * 2020-07-23 2022-01-27 Comcast Cable Communications, Llc Power Control in Wireless Communications
WO2022067823A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种上行功率控制方法及设备

Also Published As

Publication number Publication date
CN117641534A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
JP6813662B2 (ja) ユーザ端末及び無線通信方法
US20210219155A1 (en) Interference Measurement Method and Apparatus
WO2020030144A1 (zh) 一种功率控制的方法和装置
WO2020207269A1 (zh) 干扰测量的方法和装置
US11057924B2 (en) Method and apparatus for decoupling uplink and downlink cell selection
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
CN113615280A (zh) 功率控制方法及相关装置
WO2021052473A1 (zh) 通信方法和通信装置
TW201902156A (zh) 涉及無線通信網絡中的通道狀態資訊報告的方法和裝置
US20190260565A1 (en) Information transmission method, apparatus, and system
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2018171666A1 (zh) 信息收发方法和设备
WO2019238007A1 (zh) 检测波束的方法和装置
CN114007257A (zh) 确定传输功率的方法及装置
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2022082790A1 (zh) 一种波束指示方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
US20220209833A1 (en) Method and network device for rank selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851617

Country of ref document: EP

Kind code of ref document: A1