WO2022062638A1 - 光学玻璃、光学元件和光学仪器 - Google Patents

光学玻璃、光学元件和光学仪器 Download PDF

Info

Publication number
WO2022062638A1
WO2022062638A1 PCT/CN2021/108894 CN2021108894W WO2022062638A1 WO 2022062638 A1 WO2022062638 A1 WO 2022062638A1 CN 2021108894 W CN2021108894 W CN 2021108894W WO 2022062638 A1 WO2022062638 A1 WO 2022062638A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical glass
less
sio
optical
Prior art date
Application number
PCT/CN2021/108894
Other languages
English (en)
French (fr)
Inventor
毛露路
郝良振
李赛
马赫
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to JP2023519274A priority Critical patent/JP2023543575A/ja
Publication of WO2022062638A1 publication Critical patent/WO2022062638A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the invention relates to an optical glass, in particular to an optical glass with a refractive index of 1.70-1.77 and an Abbe number of 28-36.
  • the optical glasses with the refractive index in the above range mainly include lanthanum flint glass (LaF) and heavy flint glass (ZF).
  • lanthanum flint glass has low P g, F value and ⁇ P g, F value, it can be used for secondary chromatic aberration correction, but the density of lanthanum flint glass is generally above 4.0g/cm 3 , and the acid resistance is stable (D A ) Usually below class 3 or even below class 4.
  • the lenses and prisms used in the micro-optical system are limited by the power of the driving motor and the endurance limit. If the density exceeds 4.0g/cm 3 , it will have a catastrophic impact on the overall design.
  • the lenses or prisms used in micro-optical systems are different from traditional optical parts. They are in a strong acid-base environment during processing. If the acid resistance of optical materials is not good, the yield of optical components will be greatly reduced. Not even qualified products.
  • the traditional heavy flint glass in the above range of refractive index and Abbe number has low density, it has excellent chemical stability and can meet the processing needs of strong acid environment.
  • the P g, F value of traditional heavy flint glass is relatively large, which cannot meet the requirements of miniature optical systems to eliminate secondary chromatic aberration while reducing lens components.
  • the light transmittance of heavy flint glass is generally poor, which cannot meet the requirements of high light input for micro-optical systems.
  • the technical problem to be solved by the present invention is to provide an optical glass with low P g,F value and ⁇ P g,F value, excellent chemical stability, high light transmittance and low density.
  • Optical glass whose components are expressed in weight percentage, containing: SiO 2 : 25-50%; ZrO 2 : 2-14%; Rn 2 O: 5-25%; Nb 2 O 5 : 25-50% , wherein (Nb 2 O 5 +Rn 2 O)/SiO 2 is 0.8 to 1.8, and the Rn 2 O is one or more of Li 2 O, Na 2 O and K 2 O.
  • the optical glass according to (1) wherein the components are expressed in weight percentage, and further contains: B 2 O 3 : 0-5%; and/or ZnO: 0-5%; and/or P 2 O 5 : 0-3%; and/or Al 2 O 3 : 0-5%; and/or MgO: 0-5%; and/or CaO: 0-8%; and/or SrO: 0-8%; and/or BaO: 0-8%; and/or La 2 O 3 : 0-5%; and/or Gd 2 O 3 : 0-5%; and/or Y 2 O 3 : 0-5%; and and/or WO 3 : 0-5%; and/or Bi 2 O 3 : 0-5%; and/or TiO 2 : 0-5%; and/or clarifying agent: 0-2%, the clarifying agent is One or more of Sb 2 O 3 , SnO 2 , SnO, CeO 2 , NaCl, sulfate.
  • Optical glass containing SiO 2 , Rn 2 O and Nb 2 O 5 as necessary components, the components are expressed in weight percentage, wherein (Nb 2 O 5 +Rn 2 O)/SiO 2 is 0.8-1.8,
  • the refractive index n d of the optical glass is 1.70-1.77
  • the Abbe number ⁇ d is 28-36
  • the P g, F value of the optical glass is 0.5950 or less
  • the ⁇ P g, F value is 0.0015 or less
  • the Rn 2 O It is one or more of Li 2 O, Na 2 O and K 2 O.
  • Optical glass the components of which are expressed by weight percentage, including SiO 2 : 25-50%; ZrO 2 : 2-14%; Rn 2 O: 5-25%; Nb 2 O 5 : 25-50%; B 2 O 3 : 0-5%; ZnO: 0-5%; P 2 O 5 : 0-3%; Al 2 O 3 : 0-5%; MgO: 0-5%; CaO: 0-8% ; SrO: 0-8%; BaO: 0-8%; La 2 O 3 : 0-5%; Gd 2 O 3 : 0-5%; Y 2 O 3 : 0-5%; WO 3 : 0-5% 5%; Bi 2 O 3 : 0-5%; TiO 2 : 0-5%; clarifying agent: 0-2% composition, wherein (Nb 2 O 5 +Rn 2 O)/SiO 2 is 0.8-1.8, so The Rn 2 O is one or more of Li 2 O, Na 2 O and K 2 O, and the clarifying agent is one or more of
  • Rn 2 O/SiO 2 is 0.2 to 0.6;
  • Li 2 O/(Na 2 O+K 2 O) is 0.1 to 0.6;
  • K 2 O/Na 2 O is 0.1 to 0.7;
  • ZnO/ZrO 2 is 0.01 ⁇ 1.5;
  • the Rn 2 O is one or more of Li 2 O, Na 2 O, and K 2 O, and RO is the total content of BaO, SrO, CaO, and MgO.
  • Rn 2 O/SiO 2 is 0.23 ⁇ 0.55;
  • Li 2 O/(Na 2 O+K 2 O) is 0.2 to 0.5;
  • ZnO/ZrO 2 is 0.05 ⁇ 1.0
  • the Rn 2 O is one or more of Li 2 O, Na 2 O, and K 2 O, and RO is the total content of BaO, SrO, CaO, and MgO.
  • Rn 2 O/SiO 2 is 0.25 ⁇ 0.5;
  • K 2 O/Na 2 O is 0.2 to 0.5;
  • ZnO/ZrO 2 is 0.1 to 0.5
  • ZnO/RO is 3.0 or less, preferably ZnO/RO is 1.0 or less
  • the Rn 2 O is one or more of Li 2 O, Na 2 O, and K 2 O, and RO is the total content of BaO, SrO, CaO, and MgO.
  • optical glass according to any one of (1) to (5), wherein its components do not contain B 2 O 3 ; and/or do not contain P 2 O 5 ; and/or do not contain Al 2 O 3 ; and/or no MgO; and/or no TiO 2 ; and/or no WO 3 ; and/or no Bi 2 O 3 .
  • optical glass according to any one of (1) to (5), wherein the refractive index n d of the optical glass is 1.70 to 1.77, preferably 1.705 to 1.765, more preferably 1.71 to 1.76, further preferably 1.72 ⁇ 1.75; Abbe's number ⁇ d is 28-36, preferably 29-35, more preferably 30-34, still more preferably 31-33.5.
  • the F value is 0.0015 or less, preferably 0.0010 or less, more preferably 0.0005 or less, and further preferably 0 or less; and/or acid resistance stability D A is 2 or more types, preferably 1 type; and/or water resistance stability D W is 2 or more types, preferably 1 type; and/or light transmittance ⁇ 400nm is 85.0% or more, preferably 88.0% or more, more preferably 90.0% or more; and/or density ⁇ is 3.80g/ cm3 or less , preferably 3.60 g/cm 3 or less, more preferably 3.40 g/cm 3 or less.
  • thermo expansion coefficient ⁇ 20/300°C of the optical glass is 100 ⁇ 10 -7 /K or less, preferably 95 ⁇ 10 -7 /K below, more preferably 93 ⁇ 10 -7 /K or less; and/or weather resistance CR is 2 or more, preferably 1; and/or bubble degree is A or more, preferably A 0 or more; and/or The streak degree is D or higher, preferably C or higher; and/or the devitrification resistance is B or higher, preferably A.
  • optical element is made of the optical glass described in any one of (1) to (16) or the glass preform described in (17).
  • the optical glass obtained by the present invention has lower Pg,F value and ⁇ Pg ,F value while having desired refractive index and Abbe number, excellent chemical stability, and light transmittance High rate and low density.
  • optical glass of this invention is demonstrated in detail, this invention is not limited to the following embodiment, It can change suitably within the range of the objective of this invention, and can implement.
  • description is abbreviate
  • the optical glass of the present invention is sometimes simply referred to as glass.
  • each component (component) of the optical glass of the present invention will be described below.
  • the content of each component and the total content are all expressed in weight percent (wt%), that is, the content and total content of each component are relative to the total glass substance of the composition converted into oxides. Amounts are expressed in weight percent.
  • the “composition in terms of oxides” refers to the case where the oxides, complex salts, hydroxides, etc. used as raw materials of the optical glass composition of the present invention are decomposed and converted into oxides when melted. , and the total amount of the oxide is taken as 100%.
  • SiO2 belongs to the network former component in the present invention. If its content exceeds 50%, the refractive index of the glass is lower than the design requirement, the Abbe number is higher than the design requirement, and the melting property of the glass is deteriorated. If its content is less than 25%, the broken bonds of the internal network of the glass rise rapidly, the chemical stability decreases, and the anti-devitrification performance drops rapidly. Therefore, the content of SiO 2 is limited to 25 to 50%, preferably 28 to 47%, and more preferably 30 to 45%.
  • An appropriate amount of B 2 O 3 can increase the Abbe number of the glass, lower the melting temperature of the glass, and reduce the probability of infusible matter in the glass.
  • the content of B 2 O 3 exceeds 5%, free oxygen in the glass is lost, and part of the valence oxides are converted to a low valence state, resulting in a sharp deterioration of light transmittance.
  • more than 5% of B 2 O 3 leads to a rapid increase in the P g, F value of the glass, which cannot meet the design requirements. Therefore, the content of B 2 O 3 is limited to 5% or less, preferably 3% or less, and more preferably no B 2 O 3 is contained.
  • P 2 O 5 can adjust the Abbe number of glass, but for the glass of this system, P 2 O 5 higher than 3% will form a large number of crystal nuclei in the glass, resulting in the rapid deterioration of the anti-devitrification property of the glass. Therefore, the content of P 2 O 5 is limited to 3% or less, preferably 1% or less, and more preferably not to contain P 2 O 5 .
  • Al 2 O 3 in the glass can improve the chemical stability of the glass, but if the content of Al 2 O 3 exceeds 5%, the anti-devitrification property of the glass will deteriorate rapidly, and a large number of stones will appear inside the glass. Therefore, the content of Al 2 O 3 is 5% or less, preferably 3% or less. In some embodiments, since Al 2 O 3 has the effect of increasing the P g,F value, it is more preferable not to contain Al 2 O 3 .
  • Nb 2 O 5 belongs to the high refractive index and high dispersion component, and is one of the main components of the glass of the present invention. If its content is less than 25%, the P g,F value and ⁇ P g,F required by the glass of the present invention cannot be reached. If its content is higher than 50%, the refractive index of the glass exceeds the design value, and the anti-devitrification property of the glass deteriorates rapidly. Therefore, the content of Nb 2 O 5 is in the range of 25 to 50%, preferably 28 to 45%, and more preferably 32 to 40%.
  • TiO 2 can improve the chemical stability of the glass and reduce the thermal expansion coefficient of the glass. If its content exceeds 5%, the light transmittance of the glass will deteriorate rapidly, especially when there are components such as B 2 O 3 and Al 2 O 3 in the glass. . Therefore, its content is limited to 5% or less, preferably 3% or less. In some embodiments, TiO2 rapidly increases the ⁇ Pg ,F value of the glass, so it is more preferred to be free of TiO2 .
  • ZrO 2 in glass can significantly improve the devitrification resistance of glass, especially when the content of Nb 2 O 5 is higher than 25%, if the content of ZrO 2 is less than 2 %, the above effect is not obvious;
  • the content exceeds 14% the solubility of ZrO 2 drops sharply, forming tiny infusibles in the glass, resulting in a decrease in the intrinsic quality of the glass. More seriously, these tiny infusibles become crystallization carriers, which seriously weakens the glass's anti-devitrification. performance. Therefore, the content of ZrO 2 is 2 to 14%, preferably 3 to 12%, and more preferably 5 to 10%.
  • Rn 2 O is one or more of Li 2 O, Na 2 O, K 2 O
  • Rn 2 O is one or more of Li 2 O, Na 2 O, K 2 O
  • the solubility of the material can make it easier for the refractive index, Abbe number, P g,F value and ⁇ P g,F value to meet the design requirements. If the content of Rn 2 O is less than 5%, the above effect is not obvious. If the content of Rn 2 O is higher than 25%, the broken bond of the glass structure increases rapidly, and the anti-devitrification property of the glass decreases rapidly. Therefore, the content of Rn 2 O is 5 to 25%, preferably 6 to 23%, and more preferably 8 to 20%.
  • SiO 2 +Nb 2 O 5 +ZrO 2 +Rn 2 O is 80% or more, more preferably SiO 2 +Nb 2 O 5 +ZrO 2 +Rn 2 O is 85% or more, still more preferably SiO 2 +Nb 2 O 5 + ZrO 2 +Rn 2 O is 88% or more, and more preferably SiO 2 +Nb 2 O 5 +ZrO 2 +Rn 2 O is 91% or more.
  • the P g,F value and ⁇ P g,F of the glass can easily reach a desired range, and the stability of the glass can be improved, preferably (Nb 2 O 5 +Rn 2 O)/SiO 2 is 0.9 to 1.6, more preferably 1.0 to 1.5.
  • the requirements for the intrinsic quality of glass are much higher than other imaging instruments. has a greater impact on the image quality.
  • the bubble degree of the optical glass used in the micro imaging instrument needs to reach A 0 level and above, and the fringe degree needs to reach the D level or above to meet the optical imaging requirements of the micro imaging instrument.
  • the glass composition system adopted by the glass of the present invention has relatively high viscosity in the optical glass system, which is not conducive to the increase of the degree of bubbles and the degree of streaks.
  • the value of Rn 2 O/SiO 2 is preferably 0.2 to 0.6, more preferably 0.23 to 0.55, and further preferably 0.25 to 0.5.
  • Li 2 O has the strongest ability to improve the solubility of raw materials among the three alkali metal oxides of Li 2 O, Na 2 O and K 2 O, but because of its large field strength, if its content exceeds 10%, it will promote the glass resistance. Deterioration of crystallization performance. If the content of Li 2 O is less than 1%, in order to maintain the solubility of the refractory, the content of Na 2 O and K 2 O will inevitably increase, which leads to a rapid deterioration of the chemical stability of the glass. Therefore, the content of Li 2 O is 1 to 10%, preferably 1.5 to 8%, and more preferably 2 to 6%.
  • the content of Na 2 O exceeds 20%, the chemical stability of the glass cannot meet the design requirements, and if the content of Na 2 O is less than 2%, the glass becomes more refractory. Therefore, the content of Na 2 O is limited to 2 to 20%, preferably 4 to 18%, and more preferably 5 to 15%.
  • K 2 O quickly weakens the chemical stability of glass in glass, especially in strong acid and alkali environment, potassium is most likely to precipitate. Therefore, the content of K 2 O is limited to 8% or less, preferably 6% or less. In some embodiments, in order to make the three alkali metal oxides of Li 2 O, Na 2 O and K 2 O produce a synergistic effect and optimize the performance of the glass, it is more preferable that the content of K 2 O is 0.5-5%.
  • Li 2 O, Na 2 O, and K 2 O have complex synergistic effects in glass, and the ratio of their contents affects the anti-devitrification performance, light transmittance, and chemical stability of the glass. And key indicators such as thermal expansion coefficient have an important impact.
  • Li 2 O has a strong ability to improve the solubility of refractory materials, and can also reduce the thermal expansion coefficient of glass, but it has a large field strength, and it has a tendency to promote glass crystallization when added to glass alone.
  • the ability of Li 2 O to promote crystallization is weakened, especially when Li 2 O/(Na 2 O+K 2 O) is between 0.1 and 0.1
  • it is between 0.6, preferably between 0.2 and 0.5, and more preferably between 0.25 and 0.45, the anti-devitrification performance of the glass is excellent, and the thermal expansion coefficient of the glass will not exceed the design requirements.
  • K 2 O and K 2 O can improve the solubility of refractory materials, improve the stability of glass, and optimize the light transmittance of glass, they will quickly reduce the chemical stability of glass, especially when Na 2 O or K is contained alone 2 o'clock.
  • the inventor's research found that, in some embodiments, when Na 2 O and K 2 O coexist in the glass, the content of K 2 O and Na 2 O satisfies that K 2 O/Na 2 O is in the range of 0.1-0.7 , Glass has excellent chemical stability while having high solubility and light transmittance.
  • K 2 O/Na 2 O is preferably 0.15 to 0.6, and more preferably K 2 O/Na 2 O is 0.2 to 0.5.
  • ZnO can improve the refractive index and dispersion of glass, reduce the high temperature viscosity of glass, and improve the degree of bubbles and streaks of glass. If its content exceeds 5%, the phase separation trend of the glass increases, and the streak degree decreases greatly. At the same time, the P g, F value and ⁇ P g, F value of the glass are difficult to meet the design requirements. Therefore, the content of ZnO is limited to 5% or less, preferably 4% or less, and more preferably 3% or less.
  • a small amount of ZnO can significantly improve the solubility of ZrO 2 in glass, especially when the value of ZnO/ZrO 2 is between 0.01 and 1.5, preferably between 0.05 and 1.0, and more When it is preferably between 0.1 and 0.5, the effect of improving the solubility of ZrO 2 in glass is the best.
  • BaO can adjust the dispersion of glass, but if its content exceeds 8%, the chemical stability of the glass decreases, and the ⁇ P g, F value of the glass is difficult to meet the design requirements. Therefore, the content of BaO is 8% or less, preferably 6% or less, and more preferably 5% or less.
  • CaO can adjust the dispersion of the glass, and the effect of CaO in increasing the Abbe number of the glass is better than that of BaO, but if its content exceeds 8%, the anti-devitrification performance of the glass decreases, and the ⁇ P g, F value of the glass is difficult to meet the design requirements. Therefore, the content of CaO is limited to 8% or less, preferably 6% or less, and more preferably 5% or less.
  • SrO can increase the stability of the glass, improve the anti-devitrification performance of the glass, and increase the Abbe number of the glass. If its content is higher than 8%, the Abbe number of the glass is higher than the design requirements, and the ⁇ P g and F values of the glass are difficult to achieve. meet the design requirements. Therefore, the content of SrO is limited to 8% or less, preferably 5% or less, and more preferably 4% or less.
  • MgO can improve the chemical stability of glass. If its content is higher than 5%, the anti-devitrification property of glass will decrease rapidly. Therefore, the content of MgO is limited to 5% or less, preferably 3% or less, and more preferably not to contain MgO.
  • the ratio between the content of ZnO and the alkaline earth metal oxide RO (RO is the total content of BaO, SrO, CaO, and MgO) has an effect on the anti-devitrification performance of the optical glass. Significantly affected. Specifically, when the value of ZnO/RO is higher than 10.0, the devitrification resistance of the glass rapidly deteriorates. Therefore, the value of ZnO/RO is preferably 10.0 or less, more preferably 5.0 or less, still more preferably 3.0 or less, and still more preferably 1.0 or less.
  • La 2 O 3 can increase the refractive index of the glass, reduce the high temperature viscosity of the glass, and improve the internal quality of the glass. If the content of La 2 O 3 exceeds 5%, the anti-devitrification property of the glass will deteriorate, and the Abbe number will rise rapidly, resulting in the ⁇ P g of the glass, The F value is difficult to meet the design requirements. Therefore, the content of La 2 O 3 is limited to 5% or less, preferably 3% or less, and more preferably 2% or less.
  • Y 2 O 3 can improve the refractive index and dispersion of glass, strengthen the aggregation of glass network, and improve the chemical stability of glass. If the content of Y 2 O 3 exceeds 5%, the glass network aggregates seriously, resulting in a rapid decline in the anti-devitrification property and a rapid increase in the density of the glass. Therefore, the content of Y 2 O 3 is limited to 5% or less, preferably 3% or less, and more preferably 2% or less.
  • Gd 2 O 3 can improve the refractive index and dispersion of the glass and increase the stability of the glass. If the content of Gd 2 O 3 exceeds 5%, stones are likely to appear in the glass, and the internal quality is not easy to meet the design requirements. Therefore, the content of Gd 2 O 3 is limited to 5% or less, preferably 3% or less, and more preferably 2% or less.
  • WO 3 can improve the dispersion of the glass, reduce the Abbe number of the glass, and make the ⁇ P g,F value easier to meet the design requirements, but if its content exceeds 5%, the anti-devitrification performance and light transmittance of the glass drop rapidly. Therefore, the content of WO 3 is limited to 5% or less, preferably 3% or less, and more preferably not containing WO 3 .
  • Bi 2 O 3 can improve the dispersion of the glass, reduce the Abbe number of the glass, and make it easier for the ⁇ P g,F value to meet the design requirements, but if its content exceeds 5%, the light transmittance of the glass drops rapidly and the density rises sharply. Therefore, the content of Bi 2 O 3 is limited to 5% or less, preferably 3% or less.
  • the glass of the present invention needs to be produced in platinum utensils, and Bi 2 O 3 has a strong corrosive effect on platinum utensils, so it is more preferable to not contain Bi 2 O 3 .
  • the glass of the present invention can use a small amount of clarifying agent to improve the bubble degree of the glass, such as Sb 2 O 3 , SnO 2 , SnO, CeO 2 and NaCl, sulfate, etc.
  • the content of the clarifying agent is limited to 0-2%, preferably It is 0 to 1%, more preferably 0 to 0.5%.
  • Sb 2 O 3 is preferably used as a clarifying agent.
  • the glass of the present invention even if the oxides of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained in small amounts alone or in combination, the glass will be colored, and in the visible light region Specified wavelengths are absorbed, thereby weakening the property of the present invention to improve the visible light transmittance effect. Therefore, it is preferable not to actually contain the optical glass, which requires transmittance at wavelengths in the visible light region.
  • Oxides of Th, Cd, Tl, Os, Be, and Se tend to be used in a controlled manner as harmful chemical substances in recent years, not only in the glass manufacturing process, but also in the processing process and disposal after productization. Action is required. Therefore, when considering the influence on the environment, it is preferable not to actually contain them except for unavoidable mixing. Thereby, the optical glass becomes practically free of substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special environmental measures.
  • the optical glass of the present invention does not contain As 2 O 3 and PbO.
  • As 2 O 3 has the effect of eliminating bubbles and preventing glass coloration, the addition of As 2 O 3 will increase the platinum erosion of the glass to the furnace, especially the platinum furnace, resulting in more platinum ions entering the glass. The service life of the platinum furnace is adversely affected.
  • PbO can significantly improve the high refractive index and high dispersion properties of glass, but both PbO and As 2 O 3 are substances that cause environmental pollution.
  • Does not contain and “0%” described herein means that the compound, molecule, ion or element is not intentionally added to the optical glass of the present invention as a raw material; however, as a raw material and/or equipment for producing optical glass, there may be Some impurities or components that are not intentionally added will be contained in a small or trace amount in the final optical glass, and this situation is also within the protection scope of the patent of the present invention.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the methods specified in GB/T 7962.1-2010.
  • the upper limit of the refractive index (n d ) of the optical glass of the present invention is 1.77, preferably 1.765, more preferably 1.76, and further preferably 1.75.
  • the lower limit of the refractive index (n d ) of the optical glass of the present invention is 1.70, preferably 1.705, more preferably 1.71, and even more preferably 1.72.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 36, preferably 35, more preferably 34, and further preferably 33.5.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 28, preferably 29, more preferably 30, and even more preferably 31.
  • the P g, F value and ⁇ P g, F value of the optical glass are tested according to the method specified in "GB/T 7962.1-2010" and the n F , n C , and n g values of the glass are calculated according to the following formulas:
  • the P g,F value of the optical glass of the present invention is 0.5950 or less, preferably 0.5940 or less, and more preferably 0.5930 or less.
  • the ⁇ P g,F value of the optical glass of the present invention is 0.0015 or less, preferably 0.0010 or less, more preferably 0.0005 or less, and further preferably 0 or less.
  • the coefficient of thermal expansion ( ⁇ 20/300°C ) of optical glass is measured according to the method specified in "GB/T 7962.16-2010" for optical glass at 20°C to 300°C.
  • the thermal expansion coefficient ( ⁇ 20/300°C ) of the optical glass of the present invention is 100 ⁇ 10 -7 /K or less, preferably 95 ⁇ 10 -7 /K or less, more preferably 93 ⁇ 10 -7 /K K or less.
  • the water resistance stability (D W ) of the optical glass of the present invention is 2 or more types, preferably 1 type.
  • the acid resistance stability (D A ) (powder method) of optical glass is tested according to the method specified in "GB/T 17129".
  • the acid resistance stability (D A ) of the optical glass of this invention is 2 or more types, Preferably it is 1 type.
  • the density ( ⁇ ) of optical glass is tested according to the method specified in "GB/T7962.20-2010".
  • the density ( ⁇ ) of the optical glass of the present invention is 3.80 g/cm 3 or less, preferably 3.60 g/cm 3 or less, and more preferably 3.40 g/cm 3 or less.
  • the crystallization performance of the glass of the present invention is detected as follows:
  • the experimental sample was processed into a specification of 20 ⁇ 20 ⁇ 10 mm, polished on both sides, and the sample was placed in a crystallization furnace with a temperature of T g +200 ° C for 30 minutes, taken out and cooled, and then polished on the two large surfaces according to the following Table 1 judges the crystallization performance of the glass, A grade is the best, and E grade is the worst.
  • the anti-devitrification performance of the optical glass of the present invention is B grade or higher, preferably A grade, and the anti-devitrification performance is excellent.
  • the streak degree of the glass of the present invention is measured according to the method specified in MLL-G-174B.
  • the method is to use a streak meter composed of a point light source and a lens to compare and check with the standard sample from the direction where the fringes are most easily seen.
  • a grade is no visible streaks under the specified detection conditions
  • B grades are fine and scattered stripes under the specified detection conditions
  • C grades are slight parallel stripes under the specified detection conditions
  • D grades are specified detection conditions. There are rough stripes underneath.
  • the streak degree of the optical glass is D or higher, preferably C or higher.
  • the light transmittance ( ⁇ 400nm ) of the optical glass is tested according to the method specified in "GB/T 7962.12-2010".
  • the optical transmittance ( ⁇ 400nm ) of the optical glass of the present invention is 85.0% or more, preferably 88.0% or more, and more preferably 90.0% or more.
  • the bubble degree of optical glass is tested according to the method specified in GB/T7962.8-2010.
  • the bubble degree of the optical glass of the present invention is A-level or higher, preferably A 0 -level or higher.
  • the weather resistance (CR) of the optical glass was tested as follows.
  • the sample is placed in a test box with a relative humidity of 90% saturated water vapor, and alternately circulates every 1 hour at 40-50° C. for 15 cycles.
  • the weather resistance category is divided according to the turbidity change before and after the sample is placed. Table 2 shows the weather resistance classification.
  • the weather resistance (CR) of the optical glass of this invention is 2 types or more, Preferably it is 1 type.
  • the manufacturing method of the optical glass of the present invention is as follows: the glass of the present invention is produced by using conventional raw materials and conventional processes, using carbonates, nitrates, sulfates, phosphates, metaphosphates, hydroxides, oxides, etc. After batching in the conventional method, put the prepared charge into a smelting furnace (such as platinum crucible, quartz crucible, etc.) at 1300-1350 ° C for melting, and after clarification, stirring and homogenization, no bubbles and no undissolved are obtained. A homogeneous molten glass of a substance, which is cast and annealed in a mold. Those skilled in the art can appropriately select raw materials, process methods and process parameters according to actual needs.
  • a smelting furnace such as platinum crucible, quartz crucible, etc.
  • a glass preform can be produced from the optical glass produced by means of grinding, or by means of press forming such as reheat press forming and precision press forming. That is, a glass preform can be produced by subjecting optical glass to mechanical processing such as grinding and polishing, or by producing a preform for press-molding from optical glass, reheating the preform, and then grinding the preform. Glass preforms are produced by machining, or by precision stamping of preforms produced by grinding. It should be noted that the means for preparing the glass preform is not limited to the above-mentioned means.
  • the optical glass of the present invention is useful for various optical elements and optical designs, and it is particularly preferable to form a preform from the optical glass of the present invention, and to perform reheat press molding, precision press molding, etc. using the preform , making optical components such as lenses and prisms.
  • the glass of the present invention can also be used to manufacture glass preforms by one-shot drop forming.
  • Both the glass preform and the optical element of the present invention are formed from the optical glass of the present invention described above.
  • the glass preform of the present invention has the excellent characteristics of optical glass;
  • the optical element of the present invention has the excellent characteristics of optical glass, and can provide various optical elements such as lenses and prisms with high optical value.
  • the lens examples include various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens having a spherical or aspheric lens surface.
  • the optical glass or the optical element formed by the optical glass of the present invention can be used to manufacture optical instruments such as photographing equipment, imaging equipment, display equipment and monitoring equipment.
  • the optical glass or optical element of the present invention is suitable for use in vehicle lighting instruments, optical equipment, and in the fields of vehicle and the like.
  • the optical glass or optical element of the present invention is suitable for use in optical instruments such as micro-projection, micro-imaging (camera/photography), and micro-illumination.
  • the optical glass which has the composition shown in Table 3 - Table 4 was obtained by the manufacturing method of the said optical glass.
  • the properties of each glass were measured by the test method according to the present invention, and the measurement results are shown in Tables 3 to 4.
  • a concave meniscus lens, a convex meniscus lens, and a biconvex lens are produced by using the glass obtained in Examples 1 to 15 of the optical glass, for example, by means of grinding, or by means of press molding such as reheat press molding and precision press molding. , Bi-concave lenses, plano-convex lenses, plano-concave lenses and other lenses, prisms and other prefabricated parts.
  • the preforms obtained in the above-mentioned glass preform embodiments can be annealed without annealing, that is, the refractive index can be fine-tuned while reducing the internal stress of the glass, so that the optical properties such as the refractive index can be achieved. desired value.
  • each preform is ground and polished to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
  • An antireflection film may also be coated on the surface of the obtained optical element.
  • optical elements produced by the above-mentioned optical element embodiments are optically designed and formed by using one or more optical elements to form optical components or optical assemblies, which can be used for example in imaging equipment, sensors, microscopes, medical technology, digital projection, communication, optical communication Technology/information transmission, optics/lighting in the automotive field, lithography, excimer lasers, wafers, computer chips and integrated circuits and electronic devices including such circuits and chips, or camera equipment and devices for the automotive field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种光学玻璃,其组分以重量百分比表示,含有:SiO 2:25~50%;ZrO 2:2~14%;Rn 2O:5~25%;Nb 2O 5:25~50%,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种。本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,具有较低的P g,F值和ΔP g,F值,化学稳定性优异,光透过率高,密度较小。

Description

光学玻璃、光学元件和光学仪器 技术领域
本发明涉及一种光学玻璃,尤其是涉及一种折射率为1.70~1.77,阿贝数为28~36的光学玻璃。
背景技术
近年来,随着微型(紧凑)高清晰度光学***的发展,迫切需要折射率在1.70~1.77、阿贝数在28~36范围内,同时具备较低的P g,F值和ΔP g,F值,具有较低的密度和较高光透过率的光学玻璃材料。现有技术中,折射率在上述范围内的光学玻璃主要有镧火石类玻璃(LaF)和重火石类玻璃(ZF)。
镧火石类玻璃虽然具有较低的P g,F值和ΔP g,F值,可用于二级色差校正,但是镧火石类玻璃的密度一般在4.0g/cm 3以上,耐酸作用稳定性(D A)通常低于3类,甚至在4类以下。微型光学***使用的镜片、棱镜等受制于驱动马达的动力以及续航限制,密度若超过4.0g/cm 3,会对整体设计带来灾难性的影响。另外,微型光学***使用的镜片或棱镜和传统的光学零件加工不同,其在加工过程中处于较多的强酸碱环境,若光学材料的耐酸性不好,光学元件的良品率大幅度降低,甚至得不到合格的产品。
在上述折射率与阿贝数范围内的传统重火石类玻璃虽然密度较低,同时具有优异的化学稳定性可满足强酸环境的加工需要。但是,传统重火石类玻璃的P g,F值较大,不能满足微型光学***在减少镜片组件的同时消除二级色差的要求。另一方面,重火石类玻璃的光透过率一般较差,不能满足微型光学***高进光量的需求。
发明内容
本发明所要解决的技术问题是提供一种具有较低的P g,F值和ΔP g,F值,化学稳定性优异,光透过率高,密度较小的光学玻璃。
本发明解决技术问题采用的技术方案是:
(1)光学玻璃,其组分以重量百分比表示,含有:SiO 2:25~50%;ZrO 2:2~14%;Rn 2O:5~25%;Nb 2O 5:25~50%,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种。
(2)根据(1)所述的光学玻璃,其组分以重量百分比表示,还含有:B 2O 3:0~5%;和/或ZnO:0~5%;和/或P 2O 5:0~3%;和/或Al 2O 3:0~5%;和/或MgO:0~5%;和/或CaO:0~8%;和/或SrO:0~8%;和/或BaO:0~8%;和/或La 2O 3:0~5%;和/或Gd 2O 3:0~5%;和/或Y 2O 3:0~5%;和/或WO 3:0~5%;和/或Bi 2O 3:0~5%;和/或TiO 2:0~5%;和/或澄清剂:0~2%,所述澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
(3)光学玻璃,含有SiO 2、Rn 2O和Nb 2O 5作为必要组分,其组分以重量百分比表示,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述光学玻璃的折射率n d为1.70~1.77,阿贝数ν d为28~36,光学玻璃的P g,F值为0.5950以下,ΔP g,F值为0.0015以下,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种。
(4)根据(3)所述的光学玻璃,其组分以重量百分比表示,含有:SiO 2:25~50%;和/或ZrO 2:2~14%;和/或Rn 2O:5~25%;和/或Nb 2O 5:25~50%;和/或B 2O 3:0~5%;和/或ZnO:0~5%;和/或P 2O 5:0~3%;和/或Al 2O 3:0~5%;和/或MgO:0~5%;和/或CaO:0~8%;和/或SrO:0~8%;和/或BaO:0~8%;和/或La 2O 3:0~5%;和/或Gd 2O 3:0~5%;和/或Y 2O 3:0~5%;和/或WO 3:0~5%;和/或Bi 2O 3:0~5%;和/或TiO 2:0~5%;和/或澄清剂:0~2%,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
(5)光学玻璃,其组分以重量百分比表示,由SiO 2:25~50%;ZrO 2:2~14%;Rn 2O:5~25%;Nb 2O 5:25~50%;B 2O 3:0~5%;ZnO:0~5%;P 2O 5:0~3%;Al 2O 3:0~5%;MgO:0~5%;CaO:0~8%;SrO:0~8%;BaO:0~8%;La 2O 3:0~5%;Gd 2O 3:0~5%;Y 2O 3:0~5%;WO 3:0~5%;Bi 2O 3:0~5%;TiO 2:0~5%;澄清剂:0~2%组成,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、 CeO 2、NaCl、硫酸盐中的一种或多种。
(6)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,满足以下6种情形中的一种以上:
1)(Nb 2O 5+Rn 2O)/SiO 2为0.9~1.6;
2)Rn 2O/SiO 2为0.2~0.6;
3)Li 2O/(Na 2O+K 2O)为0.1~0.6;
4)K 2O/Na 2O为0.1~0.7;
5)ZnO/ZrO 2为0.01~1.5;
6)ZnO/RO为10.0以下,
所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,RO为BaO、SrO、CaO、MgO的合计含量。
(7)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,其中:SiO 2:28~47%;和/或ZrO 2:3~12%;和/或Rn 2O:6~23%;和/或Nb 2O 5:28~45%;和/或B 2O 3:0~3%;和/或ZnO:0~4%;和/或P 2O 5:0~1%;和/或Al 2O 3:0~3%;和/或MgO:0~3%;和/或CaO:0~6%;和/或SrO:0~5%;和/或BaO:0~6%;和/或La 2O 3:0~3%;和/或Gd 2O 3:0~3%;和/或Y 2O 3:0~3%;和/或WO 3:0~3%;和/或Bi 2O 3:0~3%;和/或TiO 2:0~3%;和/或澄清剂:0~1%,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
(8)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,满足以下6种情形中的一种以上:
1)(Nb 2O 5+Rn 2O)/SiO 2为1.0~1.5;
2)Rn 2O/SiO 2为0.23~0.55;
3)Li 2O/(Na 2O+K 2O)为0.2~0.5;
4)K 2O/Na 2O为0.15~0.6;
5)ZnO/ZrO 2为0.05~1.0;
6)ZnO/RO为5.0以下,
所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,RO为BaO、SrO、CaO、MgO的合计含量。
(9)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,其中:SiO 2:30~45%;和/或ZrO 2:5~10%;和/或Rn 2O:8~20%;和/或Nb 2O 5:32~40%;和/或ZnO:0~3%;和/或CaO:0~5%;和/或SrO:0~4%;和/或BaO:0~5%;和/或La 2O 3:0~2%;和/或Gd 2O 3:0~2%;和/或Y 2O 3:0~2%;和/或澄清剂:0~0.5%,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
(10)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,满足以下5种情形中的一种以上:
1)Rn 2O/SiO 2为0.25~0.5;
2)Li 2O/(Na 2O+K 2O)为0.25~0.45;
3)K 2O/Na 2O为0.2~0.5;
4)ZnO/ZrO 2为0.1~0.5;
5)ZnO/RO为3.0以下,优选ZnO/RO为1.0以下,
所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,RO为BaO、SrO、CaO、MgO的合计含量。
(11)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,其中:Li 2O:1~10%,优选Li 2O:1.5~8%,更优选Li 2O:2~6%;和/或Na 2O:2~20%,优选Na 2O:4~18%,更优选Na 2O:5~15%;和/或K 2O:0~8%,优选K 2O:0~6%,更优选K 2O:0.5~5%。
(12)根据(1)~(5)任一所述的光学玻璃,其组分以重量百分比表示,其中:SiO 2+Nb 2O 5+ZrO 2+Rn 2O为80%以上,优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为85%以上,更优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为88%以上,进一步优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为91%以上。
(13)根据(1)~(5)任一所述的光学玻璃,其组分中不含有B 2O 3; 和/或不含有P 2O 5;和/或不含有Al 2O 3;和/或不含有MgO;和/或不含有TiO 2;和/或不含有WO 3;和/或不含有Bi 2O 3
(14)根据(1)~(5)任一所述的光学玻璃,所述光学玻璃的折射率n d为1.70~1.77,优选为1.705~1.765,更优选为1.71~1.76,进一步优选为1.72~1.75;阿贝数ν d为28~36,优选为29~35,更优选为30~34,进一步优选为31~33.5。
(15)根据(1)~(5)任一所述的光学玻璃,所述光学玻璃的P g,F值为0.5950以下,优选为0.5940以下,更优选为0.5930以下;和/或ΔP g,F值为0.0015以下,优选为0.0010以下,更优选为0.0005以下,进一步优选为0以下;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或光透过率τ 400nm为85.0%以上,优选为88.0%以上,更优选为90.0%以上;和/或密度ρ为3.80g/cm 3以下,优选为3.60g/cm 3以下,更优选为3.40g/cm 3以下。
(16)根据(1)~(5)任一所述的光学玻璃,所述光学玻璃的热膨胀系数α 20/300℃为100×10 -7/K以下,优选为95×10 -7/K以下,更优选为93×10 -7/K以下;和/或耐候性CR为2类以上,优选为1类;和/或气泡度为A级以上,优选为A 0级以上;和/或条纹度为D级以上,优选C级以上;和/或抗析晶性能为B级以上,优选为A级。
(17)玻璃预制件,采用(1)~(16)任一所述的光学玻璃制成。
(18)光学元件,采用(1)~(16)任一所述的光学玻璃或(17)所述的玻璃预制件制成。
(19)光学仪器,含有(1)~(16)任一所述的光学玻璃,和/或含有(18)所述的光学元件。
本发明的有益效果是:本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,具有较低的P g,F值和ΔP g,F值,化学稳定性优异,光透过率高,密度较小。
具体实施方式
下面,对本发明的光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨。以下内容中有时候将本发明光学玻璃简称为玻璃。
[光学玻璃]
下面对本发明光学玻璃的各组分(成分)范围进行说明。在本发明中,如果没有特殊说明,各组分的含量、总含量全部采用重量百分比(wt%)表示,即,各组分的含量、总含量相对于换算成氧化物的组成的玻璃物质总量的重量百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的光学玻璃组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作为100%。
除非在具体情况下另外指出,本发明所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
<必要组分和任选组分>
SiO 2在本发明中属于网络形成体组分,若其含量超过50%,玻璃的折射率低于设计要求,阿贝数高于设计要求,同时玻璃的熔融性能恶化。若其含量低于25%,玻璃内部网络断键快速上升,化学稳定性下降,抗析晶性能快速下降。因此,SiO 2的含量限定为25~50%,优选为28~47%,更优选为30~45%。
合适量的B 2O 3可以提升玻璃的阿贝数,降低玻璃的熔融温度,降低玻璃中出现不熔物的几率。但是,在本发明玻璃体系中,若B 2O 3的含量超过5%,玻璃中的自由氧缺失,部分变价氧化物向低价态转变,导致光透过率的急剧恶化。另一方面,超过5%的B 2O 3导致玻璃的P g,F值快速上升,不能满足设计要求。因此,B 2O 3的含量限定在5%以下,优选为3%以下,更优选为不含有B 2O 3
P 2O 5在玻璃中可以调整玻璃的阿贝数,但对于本体系玻璃,高于3%的P 2O 5会在玻璃中形成大量晶核,导致玻璃的抗析晶性能快速恶化。因此,P 2O 5的含量限定在3%以下,优选为1%以下,更优选为不含有P 2O 5
Al 2O 3在玻璃中可以提升玻璃的化学稳定性,但若其含量超过5%,玻璃的抗析晶性能快速恶化,玻璃内部出现大量结石。因此Al 2O 3的含量在5%以下,优选为3%以下。在一些实施方式中,由于Al 2O 3具有提高P g,F值的作用,因此更优选不含有Al 2O 3
Nb 2O 5属于高折射高色散组分,是本发明玻璃的主要组分之一,若其含量低于25%,达不到本发明玻璃所需的P g,F值和ΔP g,F值;若其含量高于50%,玻璃的折射率超过设计值,玻璃的抗析晶性能快速恶化。因此,Nb 2O 5的含量范围为25~50%,优选为28~45%,更优选为32~40%。
TiO 2可以提高玻璃的化学稳定性,降低玻璃的热膨胀系数,若其含量超过5%,玻璃的光透过率快速恶化,尤其是玻璃中存在B 2O 3、Al 2O 3等组分时。因此,其含量限定在5%以下,优选3%以下。在一些实施方式中,TiO 2快速地提升玻璃的ΔP g,F值,因此更优选为不含有TiO 2
ZrO 2在玻璃中可以显著提升玻璃的抗析晶性能,尤其是在Nb 2O 5含量高于25%的情况下,若ZrO 2的含量低于2%,上述效果不明显;若ZrO 2的含量超过14%,ZrO 2溶解度急剧下降,在玻璃中形成微小的不熔物,导致玻璃内在质量下降,更为严重的是,这些微小不熔物成为析晶载体,严重削弱玻璃的抗析晶性能。因此,ZrO 2的含量为2~14%,优选为3~12%,更优选为5~10%。
合适量的碱金属氧化物Rn 2O(Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种)在玻璃中可以增加Nb 2O 5、ZrO 2以及其他难熔物的溶解度,使折射率、阿贝数以及P g,F值和ΔP g,F值较易达到设计要求,若Rn 2O的含量低于5%,上述效果不明显。若Rn 2O的含量高于25%,导致玻璃结构断键快速增加,玻璃抗析晶性能快速下降。因此,Rn 2O的含量为5~25%,优选为6~23%,更优选为8~20%。
在一些实施方式中,为使玻璃获得期望的优异性能,尤其是获得较低的密度和较高的光透过率,优选控制SiO 2、Nb 2O 5、ZrO 2、Rn 2O的合计含量SiO 2+Nb 2O 5+ZrO 2+Rn 2O为80%以上,更优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为85%以上,进一步优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为88%以上,更进一步优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为91%以上。
通过发明人大量实验研究发现,在一些实施方式中,通过控制(Nb 2O 5+Rn 2O)/SiO 2的值在0.8~1.8范围内,玻璃的P g,F值和ΔP g,F值可以较易达到期望的范围,并可以提高玻璃的稳定性,优选(Nb 2O 5+Rn 2O)/SiO 2为0.9~1.6,更优选为1.0~1.5。
作为微型光学仪器来讲,因其成像工作面远小于其他成像仪器,对玻璃内在质量的要求远比其他成像仪器要高,即使玻璃中含有少量的气泡、夹杂物或条纹,均对微型成像仪器的成像质量有较大的影响。通过研究发现,微型成像仪器中使用的光学玻璃的气泡度需达到A 0级及其以上的等级,条纹度需达到D级以上的等级,才能满足微型成像仪器的光学级成像要求。本发明的玻璃所采用的玻璃组成***在光学玻璃体系中粘度相对较大,不利于气泡度和条纹度的升高。通过发明人大量实验研究发现,若Rn 2O/SiO 2的值在0.2以上,可改善玻璃的高温粘度,使玻璃获得较高的气泡度和条纹度等级,提高玻璃的内在质量;若Rn 2O/SiO 2的值超过0.6,玻璃的热膨胀系数增大,这对需要在高温下进行胶合工艺的微型成像仪器的制作具有致命的损害。因此,本发明中优选Rn 2O/SiO 2的值为0.2~0.6,更优选为0.23~0.55,进一步优选为0.25~0.5。
Li 2O在Li 2O、Na 2O、K 2O三种碱金属氧化物中提升原料溶解度的能力最强,但因其场强较大,若其含量超过10%,反而会促进玻璃抗析晶性能的恶化。若Li 2O的含量低于1%,为了维持难熔物的溶解度,势必会增加Na 2O和K 2O的含量,这导致玻璃化学稳定性的快速恶化。因此,Li 2O的含量为1~10%,优选为1.5~8%,更优选为2~6%。
Na 2O的含量若超过20%,玻璃的化学稳定性达不到设计要求,若其含 量低于2%,玻璃变得较为难熔。因此,Na 2O的含量限定为2~20%,优选为4~18%,更优选为5~15%。
K 2O在玻璃中快速削弱玻璃的化学稳定性,尤其是在强酸碱环境中,钾最容易析出。因此,K 2O的含量限定为8%以下,优选为6%以下。在一些实施方式中,为使Li 2O、Na 2O、K 2O三种碱金属氧化物产生协同效应,优化玻璃的性能,更优选K 2O的含量为0.5~5%。
通过发明人大量实验研究发现,Li 2O、Na 2O、K 2O在玻璃中有着复杂的协同效应,其含量之间的比例对玻璃的抗析晶性能、光透过率、化学稳定性以及热膨胀系数等关键指标有重要的影响。
Li 2O提升难熔物溶解度的能力较强,同时还可以降低玻璃的热膨胀系数,但是其有较大的场强,单独加入到玻璃中有促进玻璃析晶的趋势。在一些实施方式中,当玻璃中存在有Na 2O和K 2O时,会削弱Li 2O促进析晶的能力,尤其是当Li 2O/(Na 2O+K 2O)在0.1~0.6之间,优选为0.2~0.5之间,更优选为0.25~0.45之间时,玻璃的抗析晶性能优异,同时玻璃的热膨胀系数不会超过设计要求。
Na 2O和K 2O虽然能够提高难熔物的溶解度,提升玻璃的稳定性,优化玻璃的光透过率,但会快速降低玻璃的化学稳定性,尤其是在单独含有Na 2O或者K 2O时。发明人研究发现,在一些实施方式中,当Na 2O和K 2O共同存在于玻璃中,并使K 2O和Na 2O的含量满足K 2O/Na 2O在0.1~0.7范围内,玻璃在具有较高溶解度和光透过率的同时,化学稳定性优异。优选K 2O/Na 2O为0.15~0.6,更优选K 2O/Na 2O为0.2~0.5。
ZnO可以提升玻璃的折射率和色散,降低玻璃的高温粘度,提升玻璃的气泡度与条纹度。若其含量超过5%,玻璃分相趋势增加,条纹度大幅度下降,同时玻璃的P g,F值和ΔP g,F值难以达到设计要求。因此ZnO的含量限定为5%以下,优选为4%以下,更优选为3%以下。
发明人研究发现,在一些实施方式中,少量的ZnO可以明显提升ZrO 2在玻璃中的溶解度,尤其是当ZnO/ZrO 2的值处于0.01~1.5之间,优选为 0.05~1.0之间,更优选为0.1~0.5之间时,提升ZrO 2在玻璃中的溶解度效果最佳。
BaO可以调整玻璃的色散,但若其含量超过8%,玻璃的化学稳定性下降,同时玻璃的ΔP g,F值难以达到设计要求。因此BaO的含量为8%以下,优选为6%以下,更优选为5%以下。
CaO可以调整玻璃的色散,CaO提升玻璃阿贝数的效果优于BaO,但若其含量超过8%,玻璃的抗析晶性能下降,玻璃的ΔP g,F值难以达到设计要求。因此,CaO的含量限定为8%以下,优选为6%以下,更优选为5%以下。
SrO可以增加玻璃的稳定性,提高玻璃的抗析晶性能,提升玻璃的阿贝数,若其含量高于8%,玻璃的阿贝数高于设计要求,同时玻璃的ΔP g,F值难以达到设计要求。因此,SrO的含量限定为8%以下,优选为5%以下,更优选为4%以下。
MgO可以提升玻璃的化学稳定性,若其含量高于5%,玻璃的抗析晶性能快速下降。因此,MgO的含量限定为5%以下,优选为3%以下,更优选为不含有MgO。
发明人通过大量实验研究发现,在一些实施方式中,ZnO与碱土金属氧化物RO(RO为BaO、SrO、CaO、MgO的合计含量)的含量之间的比例对光学玻璃的抗析晶性能产生显著影响。具体而言,当ZnO/RO的值高于10.0时,玻璃的抗析晶性能快速恶化。因此,ZnO/RO的值优选为10.0以下,更优选为5.0以下,进一步优选为3.0以下,更进一步优选为1.0以下。
La 2O 3可以提高玻璃的折射率,降低玻璃的高温粘度,提升玻璃的内部质量,若其含量超过5%,玻璃的抗析晶性能恶化,阿贝数快速上升,导致玻璃的ΔP g,F值难以达到设计要求。因此,La 2O 3的含量限定为5%以下,优选为3%以下,更优选为2%以下。
Y 2O 3可以提高玻璃的折射率和色散,加强玻璃网络聚集,提升玻璃的化学稳定性。若Y 2O 3的含量超过5%,玻璃网络聚集严重,导致玻璃的抗析晶性能快速下降,密度快速上升。因此,Y 2O 3的含量限定为5%以下,优选为 3%以下,更优选为2%以下。
Gd 2O 3可以提高玻璃的折射率和色散,增加玻璃的稳定性,若其含量超过5%,玻璃内部容易出现结石,内在质量不容易达到设计要求。因此,Gd 2O 3的含量限定为5%以下,优选为3%以下,更优选为2%以下。
WO 3可以提升玻璃的色散,降低玻璃的阿贝数,使得ΔP g,F值更容易达到设计要求,但若其含量超过5%,玻璃的抗析晶性能和光透过率快速下降。因此,WO 3的含量限定为5%以下,优选为3%以下,更优选为不含有WO 3
Bi 2O 3可以提升玻璃的色散,降低玻璃的阿贝数,使得ΔP g,F值更容易达到设计要求,但若其含量超过5%,玻璃的光透过率快速下降,密度急剧上升。因此,Bi 2O 3的含量限定在5%以下,优选为3%以下。在一些实施方式中,本发明玻璃需要在铂金器皿中进行生产,而Bi 2O 3对铂金器皿有强烈的腐蚀作用,因此,更优选为不含有Bi 2O 3
本发明玻璃可以使用少量的澄清剂来改善玻璃的气泡度,如Sb 2O 3、SnO 2、SnO、CeO 2和NaCl、硫酸盐等,所述澄清剂的含量限定为0~2%,优选为0~1%,更优选为0~0.5%。从现有生产技术方面考虑,优选使用Sb 2O 3作为澄清剂。
<不应含有的组分>
本发明玻璃中,V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属的氧化物,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有。
Th、Cd、Tl、Os、Be以及Se的氧化物,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策 上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
为了实现环境友好,本发明的光学玻璃不含有As 2O 3和PbO。虽然As 2O 3具有消除气泡和较好的防止玻璃着色的效果,但As 2O 3的加入会加大玻璃对熔炉特别是对铂金熔炉的铂金侵蚀,导致更多的铂金离子进入玻璃,对铂金熔炉的使用寿命造成不利影响。PbO可显著提高玻璃的高折射率和高色散性能,但PbO和As 2O 3都造成环境污染的物质。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子、离子或元素等作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面,对本发明的光学玻璃的性能进行说明。
<折射率与阿贝数>
光学玻璃的折射率(n d)与阿贝数(ν d)按照《GB/T 7962.1—2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的折射率(n d)的上限为1.77,优选上限为1.765,更优选上限为1.76,进一步优选上限为1.75。
在一些实施方式中,本发明光学玻璃的折射率(n d)的下限为1.70,优选下限为1.705,更优选下限为1.71,进一步优选下限为1.72。
在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的上限为36,优选上限为35,更优选上限为34,进一步优选上限为33.5。
在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的下限为28,优选下限为29,更优选下限为30,进一步优选下限为31。
<P g,F值和ΔP g,F值>
光学玻璃的P g,F值和ΔP g,F值按照《GB/T 7962.1—2010》规定的方法测试玻璃的n F、n C、n g值,按以下公式进行计算:
P g,F=(n g-n F)/(n F-n C)
ΔP g,F=P g,F-0.6457+0.001703ν d
在一些实施方式中,本发明光学玻璃的P g,F值为0.5950以下,优选为0.5940以下,更优选为0.5930以下。
在一些实施方式中,本发明光学玻璃的ΔP g,F值为0.0015以下,优选为0.0010以下,更优选为0.0005以下,进一步优选为0以下。
<热膨胀系数>
光学玻璃的热膨胀系数(α 20/300℃)按照《GB/T 7962.16—2010》规定的方法测试光学玻璃20℃~300℃的数据。
在一些实施方式中,本发明光学玻璃的热膨胀系数(α 20/300℃)为100×10 -7/K以下,优选为95×10 -7/K以下,更优选为93×10 -7/K以下。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(D W)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(D A)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐酸作用稳定性(D A)为2类以上,优选为1类。
<密度>
光学玻璃的密度(ρ)按《GB/T7962.20—2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的密度(ρ)为3.80g/cm 3以下,优选为3.60g/cm 3以下,更优选为3.40g/cm 3以下。
<抗析晶性能>
本发明玻璃的析晶性能采用如下方式检测:
将实验样品加工为20×20×10mm的规格,两面抛光,将样品放入温度为T g+200℃的析晶炉内保温30分钟,取出冷却后,再对两个大面抛光,根 据下表1判断玻璃的析晶性能,A级为最好,E级为最差。
表1.析晶的分级和判断标准
编号 等级 标准
1 A 无肉眼可见的析晶颗粒
2 B 肉眼可见析晶颗粒,数量少而分散
3 C 肉眼可见较大分散或者较密集而小的析晶颗粒
4 D 析晶颗粒较大而密集
5 E 玻璃完全析晶失透
在一些实施方式中,本发明光学玻璃的抗析晶性能为B级以上,优选为A级,抗析晶性能优异。
<条纹度>
本发明玻璃的条纹度按MLL-G-174B规定的方法进行测量。方法为用点光源和透镜组成的条纹仪,从最容易看见条纹的方向上,与标准试样比较检查,共分为4级,分别为A、B、C、D级,A级为在规定检测条件下,A级为规定检测条件下无肉眼可见的条纹,B级为规定检测条件下有细而分散的条纹,C级为规定检测条件下有轻微的平行条纹,D级为规定检测条件下有粗略的条纹。
在一些实施方式中,光学玻璃的条纹度为D级以上,优选C级以上。
<光透过率>
光学玻璃的光透过率(τ 400nm)按《GB/T 7962.12-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的光透过率(τ 400nm)为85.0%以上,优选为88.0%以上,更优选为90.0%以上。
<气泡度>
光学玻璃的气泡度按《GB/T7962.8-2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的气泡度为A级以上,优选为A 0级以上。
<耐候性>
光学玻璃的耐候性(CR)按以下方法进行测试。
将试样放置在相对湿度为90%的饱和水蒸气环境的测试箱内,在40~50℃每隔1小时交替循环,循环15个周期。根据试样放置前后的浊度变化量来划分耐候性类别,表2为耐候性分类情况。
表2.耐候性分类情况
Figure PCTCN2021108894-appb-000001
在一些实施方式中,本发明光学玻璃的耐候性(CR)为2类以上,优选为1类。
[光学玻璃的制造方法]
本发明光学玻璃的制造方法如下:本发明的玻璃采用常规原料和常规工艺生产,使用碳酸盐、硝酸盐、硫酸盐、磷酸盐、偏磷酸盐、氢氧化物、氧化物等为原料,按常规方法配料后,将配好的炉料投入到1300~1350℃的熔炼炉(如铂金坩埚、石英坩埚等)中熔制,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,由所制成的光学玻璃来制作玻璃预制件。即,可以通过对光学玻璃进行磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件,或通过对进行研磨加工而制成的预成型坯进行精密冲压成型来制作玻璃预制件。需要说明的是,制备玻璃预制件的手段不限于上述手段。
如上所述,本发明的光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。本发明玻璃还可采用一次滴料成型的方法来制造玻璃预制件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有光学玻璃所具有的优异特性;本发明的光学元件具有光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明光学玻璃或光学玻璃所形成的光学元件可制作如照相设备、摄像设备、显示设备和监控设备等光学仪器。本发明光学玻璃或光学元件适合用于车载照明仪器、光学设备,应用于车载等领域。本发明光学玻璃或光学元件适合用于微型投影、微型成像(摄像/照相)、微型照明等光学仪器。
实施例
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述光学玻璃的制造方法得到具有表3~表4所示的组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表3~表4中。
表3.
实施例(wt%) 1# 2# 3# 4# 5# 6# 7# 8#
SiO 2 30.0 35.0 35.0 33.0 33.0 33.0 36.0 39.5
B 2O 3 5.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
P 2O 5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
Al 2O 3 3.0 2.0 0.0 1.0 3.0 0.0 0.0 0.0
ZrO 2 9.0 9.0 9.0 8.0 8.0 6.0 5.0 4.0
TiO 2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nb 2O 5 30.5 31.0 36.5 37.0 37.5 36.5 37.5 38.5
Y 2O 3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0
La 2O 3 2.5 2.5 0.0 0.0 0.0 1.0 0.0 0.0
Gd 2O 3 2.7 3.0 0.0 0.0 0.0 1.0 0.0 0.0
WO 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bi 2O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ZnO 0.2 3.0 3.0 2.4 0.4 3.0 3.0 5.0
BaO 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
CaO 3.0 1.0 2.9 1.0 3.0 2.9 2.5 0.5
SrO 2.0 1.0 2.0 2.0 1.0 2.0 1.0 0.0
MgO 1.0 1.0 1.0 0.0 1.0 1.0 1.9 0.0
Li 2O 3.0 2.5 2.5 2.5 3.0 3.0 3.5 3.3
Na 2O 5.0 4.9 5.0 7.0 7.0 7.0 6.5 7.0
K 2O 2.5 3.0 3.0 3.0 2.5 2.5 3.0 2.1
澄清剂 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
合计 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Rn 2O 10.5 10.4 10.5 12.5 12.5 12.5 13.0 12.4
SiO 2+Nb 2O 5+ZrO 2+Rn 2O 80.0 85.4 91.0 90.5 91.0 88.0 91.5 94.4
(Nb 2O 5+Rn 2O)/SiO 2 1.37 1.18 1.34 1.50 1.52 1.48 1.40 1.29
Rn 2O/SiO 2 0.35 0.30 0.30 0.38 0.38 0.38 0.36 0.31
Li 2O/(Na 2O+K 2O) 0.40 0.32 0.31 0.25 0.32 0.32 0.37 0.36
K 2O/Na 2O 0.50 0.61 0.60 0.43 0.36 0.36 0.46 0.30
ZnO/ZrO 2 0.02 0.33 0.33 0.30 0.05 0.50 0.60 1.25
ZnO/RO 0.03 1.00 0.51 0.48 0.08 0.51 0.56 10.00
n d 1.72481 1.71679 1.72911 1.73478 1.73524 1.74657 1.73661 1.72905
ν d 34.45 34.78 32.49 32.44 32.56 32.84 32.64 31.88
τ 400nm(%) 88.4 90.1 89.4 89.8 90.1 90.0 90.1 89.8
CR 1类 1类 1类 1类 1类 1类 1类 1类
D A 1类 1类 1类 1类 1类 1类 1类 1类
D W 1类 1类 1类 1类 1类 1类 1类 1类
α 20-300℃(×10 -7/K) 80.0 81.0 82.0 85.0 87.0 85.0 84.0 86.0
ρ(g/cm 3) 3.36 3.38 3.28 3.25 3.27 3.35 3.27 3.25
P g,F 0.5935 0.5861 0.5918 0.5889 0.5907 0.5914 0.5884 0.5916
ΔP g,F 0.0010 -0.0003 0.0014 -0.0015 0.0005 0.0006 -0.0017 0.0002
抗析晶等级 A A A A B A A A
气泡度 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0
条纹度 C C C C C C C D
表4.
wt% 9# 10# 11# 12# 13# 14# 15#
SiO 2 40.2 37.0 39.2 35.0 38.0 40.0 42.0
B 2O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P 2O 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Al 2O 3 0.0 0.0 0.0 0.5 0.0 0.0 1.0
ZrO 2 5.1 8.0 5.0 5.0 6.0 5.5 5.0
TiO 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nb 2O 5 39.2 36.6 38.2 42.6 38.0 37.0 36.0
Y 2O 3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
La 2O 3 0.0 0.0 0.0 0.0 2.0 0.0 0.0
Gd 2O 3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
WO 3 0.0 0.0 0.0 0.5 0.0 0.0 0.0
Bi 2O 3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
ZnO 1.0 1.0 1.0 2.0 1.0 1.0 0.5
BaO 1.0 0.0 1.9 0.0 0.0 1.0 1.0
CaO 1.0 2.8 1.0 1.0 0.0 1.0 1.0
SrO 1.0 2.0 1.0 1.0 0.3 1.0 1.0
MgO 0.0 1.0 0.0 0.0 0.0 1.0 0.0
Li 2O 3.6 3.0 3.5 3.2 3.5 3.0 3.0
Na 2O 7.0 6.0 7.0 7.0 7.0 7.4 7.5
K 2O 0.8 2.5 2.1 2.1 2.1 1.0 2.0
澄清剂 0.1 0.1 0.1 0.1 0.1 0.1 0.1
合计 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Rn 2O 11.4 11.5 12.6 12.3 12.6 11.4 12.5
SiO 2+Nb 2O 5+ZrO 2+Rn 2O 95.9 93.1 95.0 94.9 94.6 93.9 95.5
(Nb 2O 5+Rn 2O)/SiO 2 1.26 1.30 1.30 1.57 1.33 1.21 1.15
Rn 2O/SiO 2 0.28 0.31 0.32 0.35 0.33 0.29 0.30
Li 2O/(Na 2O+K 2O) 0.46 0.35 0.38 0.35 0.38 0.36 0.32
K 2O/Na 2O 0.11 0.42 0.31 0.31 0.31 0.14 0.27
ZnO/ZrO 2 0.20 0.13 0.20 0.40 0.16 0.18 0.10
ZnO/RO 0.33 0.17 0.25 1.03 3.25 0.25 0.17
n d 1.73076 1.72445 1.73384 1.76241 1.74042 1.72892 1.71121
ν d 32.08 33.05 32.32 28.93 32.42 31.86 34.65
τ 400nm(%) 90.1 89.6 90.1 89.2 89.9 88.8 90.1
CR 1类 1类 1类 1类 1类 1类 1类
D A 1类 1类 1类 1类 1类 1类 1类
D W 1类 1类 1类 1类 1类 1类 1类
α 20-300℃(×10 -7/K) 84.0 82.0 86.0 82.0 83.0 81.0 78.0
ρ(g/cm 3) 3.26 3.32 3.24 3.36 3.38 3.31 3.18
P g,F 0.5899 0.5884 0.5889 0.5912 0.5882 0.5911 0.5872
ΔP g,F -0.0011 -0.0010 -0.0010 -0.0012 -0.0007 0.0001 -0.0013
抗析晶等级 A B A B A A A
气泡度 A 0 A 0 A 0 A 0 A 0 A 0 A 0
条纹度 C C C C C C C
<玻璃预制件实施例>
将光学玻璃实施例1~15所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
上述玻璃预制件实施例所得到的这些预制件在保证应力的前提下,可 以不再退火,也可以进行退火,即在降低玻璃内部应力的同时对折射率进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件,或用于车载领域的摄像设备和装置。

Claims (19)

  1. 光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO 2:25~50%;ZrO 2:2~14%;Rn 2O:5~25%;Nb 2O 5:25~50%,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种。
  2. 根据权利要求1所述的光学玻璃,其特征在于,其组分以重量百分比表示,还含有:B 2O 3:0~5%;和/或ZnO:0~5%;和/或P 2O 5:0~3%;和/或Al 2O 3:0~5%;和/或MgO:0~5%;和/或CaO:0~8%;和/或SrO:0~8%;和/或BaO:0~8%;和/或La 2O 3:0~5%;和/或Gd 2O 3:0~5%;和/或Y 2O 3:0~5%;和/或WO 3:0~5%;和/或Bi 2O 3:0~5%;和/或TiO 2:0~5%;和/或澄清剂:0~2%,所述澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
  3. 光学玻璃,其特征在于,含有SiO 2、Rn 2O和Nb 2O 5作为必要组分,其组分以重量百分比表示,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述光学玻璃的折射率n d为1.70~1.77,阿贝数ν d为28~36,光学玻璃的P g,F值为0.5950以下,ΔP g,F值为0.0015以下,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种。
  4. 根据权利要求3所述的光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO 2:25~50%;和/或ZrO 2:2~14%;和/或Rn 2O:5~25%;和/或Nb 2O 5:25~50%;和/或B 2O 3:0~5%;和/或ZnO:0~5%;和/或P 2O 5:0~3%;和/或Al 2O 3:0~5%;和/或MgO:0~5%;和/或CaO:0~8%;和/或SrO:0~8%;和/或BaO:0~8%;和/或La 2O 3:0~5%;和/或Gd 2O 3:0~5%;和/或Y 2O 3:0~5%;和/或WO 3:0~5%;和/或Bi 2O 3:0~5%;和/或TiO 2:0~5%;和/或澄清剂:0~2%,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
  5. 光学玻璃,其特征在于,其组分以重量百分比表示,由SiO 2:25~50%;ZrO 2:2~14%;Rn 2O:5~25%;Nb 2O 5:25~50%;B 2O 3:0~5%;ZnO:0~5%;P 2O 5:0~3%;Al 2O 3:0~5%;MgO:0~5%;CaO:0~8%;SrO:0~8%; BaO:0~8%;La 2O 3:0~5%;Gd 2O 3:0~5%;Y 2O 3:0~5%;WO 3:0~5%;Bi 2O 3:0~5%;TiO 2:0~5%;澄清剂:0~2%组成,其中(Nb 2O 5+Rn 2O)/SiO 2为0.8~1.8,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
  6. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下6种情形中的一种以上:
    1)(Nb 2O 5+Rn 2O)/SiO 2为0.9~1.6;
    2)Rn 2O/SiO 2为0.2~0.6;
    3)Li 2O/(Na 2O+K 2O)为0.1~0.6;
    4)K 2O/Na 2O为0.1~0.7;
    5)ZnO/ZrO 2为0.01~1.5;
    6)ZnO/RO为10.0以下,
    所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,RO为BaO、SrO、CaO、MgO的合计含量。
  7. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:SiO 2:28~47%;和/或ZrO 2:3~12%;和/或Rn 2O:6~23%;和/或Nb 2O 5:28~45%;和/或B 2O 3:0~3%;和/或ZnO:0~4%;和/或P 2O 5:0~1%;和/或Al 2O 3:0~3%;和/或MgO:0~3%;和/或CaO:0~6%;和/或SrO:0~5%;和/或BaO:0~6%;和/或La 2O 3:0~3%;和/或Gd 2O 3:0~3%;和/或Y 2O 3:0~3%;和/或WO 3:0~3%;和/或Bi 2O 3:0~3%;和/或TiO 2:0~3%;和/或澄清剂:0~1%,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
  8. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下6种情形中的一种以上:
    1)(Nb 2O 5+Rn 2O)/SiO 2为1.0~1.5;
    2)Rn 2O/SiO 2为0.23~0.55;
    3)Li 2O/(Na 2O+K 2O)为0.2~0.5;
    4)K 2O/Na 2O为0.15~0.6;
    5)ZnO/ZrO 2为0.05~1.0;
    6)ZnO/RO为5.0以下,
    所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,RO为BaO、SrO、CaO、MgO的合计含量。
  9. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:SiO 2:30~45%;和/或ZrO 2:5~10%;和/或Rn 2O:8~20%;和/或Nb 2O 5:32~40%;和/或ZnO:0~3%;和/或CaO:0~5%;和/或SrO:0~4%;和/或BaO:0~5%;和/或La 2O 3:0~2%;和/或Gd 2O 3:0~2%;和/或Y 2O 3:0~2%;和/或澄清剂:0~0.5%,所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2、NaCl、硫酸盐中的一种或多种。
  10. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下5种情形中的一种以上:
    1)Rn 2O/SiO 2为0.25~0.5;
    2)Li 2O/(Na 2O+K 2O)为0.25~0.45;
    3)K 2O/Na 2O为0.2~0.5;
    4)ZnO/ZrO 2为0.1~0.5;
    5)ZnO/RO为3.0以下,优选ZnO/RO为1.0以下,
    所述Rn 2O为Li 2O、Na 2O、K 2O中的一种或多种,RO为BaO、SrO、CaO、MgO的合计含量。
  11. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:Li 2O:1~10%,优选Li 2O:1.5~8%,更优选Li 2O:2~6%;和/或Na 2O:2~20%,优选Na 2O:4~18%,更优选Na 2O:5~15%;和/或K 2O:0~8%,优选K 2O:0~6%,更优选K 2O:0.5~5%。
  12. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于, 其组分以重量百分比表示,其中:SiO 2+Nb 2O 5+ZrO 2+Rn 2O为80%以上,优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为85%以上,更优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为88%以上,进一步优选SiO 2+Nb 2O 5+ZrO 2+Rn 2O为91%以上。
  13. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,其组分中不含有B 2O 3;和/或不含有P 2O 5;和/或不含有Al 2O 3;和/或不含有MgO;和/或不含有TiO 2;和/或不含有WO 3;和/或不含有Bi 2O 3
  14. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的折射率n d为1.70~1.77,优选为1.705~1.765,更优选为1.71~1.76,进一步优选为1.72~1.75;阿贝数ν d为28~36,优选为29~35,更优选为30~34,进一步优选为31~33.5。
  15. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的P g,F值为0.5950以下,优选为0.5940以下,更优选为0.5930以下;和/或ΔP g,F值为0.0015以下,优选为0.0010以下,更优选为0.0005以下,进一步优选为0以下;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或光透过率τ 400nm为85.0%以上,优选为88.0%以上,更优选为90.0%以上;和/或密度ρ为3.80g/cm 3以下,优选为3.60g/cm 3以下,更优选为3.40g/cm 3以下。
  16. 根据权利要求1~5任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的热膨胀系数α 20/300℃为100×10 -7/K以下,优选为95×10 -7/K以下,更优选为93×10 -7/K以下;和/或耐候性CR为2类以上,优选为1类;和/或气泡度为A级以上,优选为A 0级以上;和/或条纹度为D级以上,优选C级以上;和/或抗析晶性能为B级以上,优选为A级。
  17. 玻璃预制件,其特征在于,采用权利要求1~16任一所述的光学玻璃制成。
  18. 光学元件,其特征在于,采用权利要求1~16任一所述的光学玻璃或权利要求17所述的玻璃预制件制成。
  19. 光学仪器,其特征在于,含有权利要求1~16任一所述的光学玻 璃,和/或含有权利要求18所述的光学元件。
PCT/CN2021/108894 2020-09-28 2021-07-28 光学玻璃、光学元件和光学仪器 WO2022062638A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023519274A JP2023543575A (ja) 2020-09-28 2021-07-28 光学ガラス、光学素子及び光学機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011039105.X 2020-09-28
CN202011039105.XA CN112142321B (zh) 2020-09-28 2020-09-28 光学玻璃、光学元件和光学仪器

Publications (1)

Publication Number Publication Date
WO2022062638A1 true WO2022062638A1 (zh) 2022-03-31

Family

ID=73895564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108894 WO2022062638A1 (zh) 2020-09-28 2021-07-28 光学玻璃、光学元件和光学仪器

Country Status (3)

Country Link
JP (1) JP2023543575A (zh)
CN (1) CN112142321B (zh)
WO (1) WO2022062638A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142321B (zh) * 2020-09-28 2022-04-15 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN113264675B (zh) * 2021-06-24 2022-04-15 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN117303731A (zh) * 2022-06-22 2023-12-29 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN115448591B (zh) * 2022-10-18 2023-07-25 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265840A (ja) * 1987-04-23 1988-11-02 Ohara Inc 光学ガラス
CN1225903A (zh) * 1998-02-10 1999-08-18 株式会社小原 具有负向反常色散的光学玻璃
CN1448353A (zh) * 2002-04-02 2003-10-15 株式会社小原 光学玻璃
CN1990405A (zh) * 2005-12-23 2007-07-04 肖特股份有限公司 光学玻璃
JP4729750B2 (ja) * 2000-03-29 2011-07-20 株式会社オハラ 光学ガラス及び光学素子
JP4806157B2 (ja) * 2000-08-15 2011-11-02 株式会社オハラ 低蛍光性光学ガラス
US20110269617A1 (en) * 2008-01-31 2011-11-03 Ohara Inc. Optical glass
CN104926110A (zh) * 2015-06-23 2015-09-23 成都光明光电股份有限公司 光学玻璃和光学元件
CN111183122A (zh) * 2017-10-02 2020-05-19 株式会社小原 光学玻璃、预成形体以及光学元件
CN112142321A (zh) * 2020-09-28 2020-12-29 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537206A (ja) * 1999-02-15 2002-11-05 カール−ツアイス−スチフツング 高酸化ジルコニウム含有ガラス及びその使用
DE102006013599B4 (de) * 2006-03-22 2008-04-10 Schott Ag Bleifreie optische Gläser der Schwerflintlage, deren Verwendung und Verfahren zu ihrer Herstellung
CN101215082A (zh) * 2007-01-06 2008-07-09 湖北新华光信息材料股份有限公司 高折射率光学玻璃
JP4408937B2 (ja) * 2007-03-23 2010-02-03 Hoya株式会社 ガラスの製造方法およびこのガラスから得られる精密プレス成形用プリフォームと光学素子
DE102007025601B4 (de) * 2007-05-31 2009-04-30 Schott Ag Optische Gläser der Bariumschwerflintlage, deren Verwendung und Verfahren zur Herstellung eines optischen Elements
CN101613184B (zh) * 2008-06-27 2013-07-24 Hoya株式会社 光学玻璃
CN101746951B (zh) * 2008-12-09 2012-01-18 湖北新华光信息材料有限公司 具有负反常色散的光学玻璃
CN101805120B (zh) * 2010-04-19 2013-02-20 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN103755137A (zh) * 2014-01-24 2014-04-30 四川瑞天光学有限责任公司 一种高折射率、低分散的光学玻璃及其制备方法
CN117945647A (zh) * 2017-06-02 2024-04-30 Hoya株式会社 玻璃、光学玻璃及光学元件
JP7294327B2 (ja) * 2018-04-23 2023-06-20 株式会社ニコン 光学ガラス、これを用いた光学素子、光学系、カメラ用交換レンズ、及び光学装置
CN109179982B (zh) * 2018-11-21 2022-04-15 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN110204199B (zh) * 2019-06-27 2022-05-17 成都光明光电股份有限公司 具有负向反常色散的玻璃
CN112125511B (zh) * 2020-09-28 2022-04-12 成都光明光电股份有限公司 光学玻璃

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265840A (ja) * 1987-04-23 1988-11-02 Ohara Inc 光学ガラス
CN1225903A (zh) * 1998-02-10 1999-08-18 株式会社小原 具有负向反常色散的光学玻璃
JP4729750B2 (ja) * 2000-03-29 2011-07-20 株式会社オハラ 光学ガラス及び光学素子
JP4806157B2 (ja) * 2000-08-15 2011-11-02 株式会社オハラ 低蛍光性光学ガラス
CN1448353A (zh) * 2002-04-02 2003-10-15 株式会社小原 光学玻璃
CN1990405A (zh) * 2005-12-23 2007-07-04 肖特股份有限公司 光学玻璃
US20110269617A1 (en) * 2008-01-31 2011-11-03 Ohara Inc. Optical glass
CN104926110A (zh) * 2015-06-23 2015-09-23 成都光明光电股份有限公司 光学玻璃和光学元件
CN111183122A (zh) * 2017-10-02 2020-05-19 株式会社小原 光学玻璃、预成形体以及光学元件
CN112142321A (zh) * 2020-09-28 2020-12-29 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器

Also Published As

Publication number Publication date
CN112142321A (zh) 2020-12-29
JP2023543575A (ja) 2023-10-17
CN112142321B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
TWI756114B (zh) 光學玻璃
CN112125511B (zh) 光学玻璃
WO2022062638A1 (zh) 光学玻璃、光学元件和光学仪器
WO2022193797A1 (zh) 高折射高色散光学玻璃及光学元件
TWI798501B (zh) 光學玻璃、玻璃預製件、光學元件和光學儀器
CN109626814B (zh) 环保光学玻璃、光学预制件、光学元件及光学仪器
CN111018342B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2022267751A1 (zh) 特殊色散光学玻璃
CN110963701A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2022199203A1 (zh) 光学玻璃、光学元件和光学仪器
CN110372202B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
TWI783603B (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
JP2024001862A (ja) 光学ガラス、ガラスプリフォーム、光学素子と光学機器
CN112125513B (zh) 光学玻璃及光学元件
CN112028472B (zh) 光学玻璃、光学元件和光学仪器
CN111333316B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN111320381B (zh) 光学玻璃、玻璃预制件和光学元件
CN110228946B (zh) 光学玻璃
CN109650716B (zh) 一种无色光学玻璃及其玻璃预制件、元件和仪器
CN110240401B (zh) 光学玻璃
WO2024041277A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2022127513A1 (zh) 光学玻璃、光学元件及光学仪器
WO2024041274A1 (zh) 光学玻璃、光学元件和光学仪器
WO2024041273A1 (zh) 光学玻璃、光学元件和光学仪器
CN118184132A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871016

Country of ref document: EP

Kind code of ref document: A1