WO2022056762A1 - 一种多孔氧化物的制备方法 - Google Patents

一种多孔氧化物的制备方法 Download PDF

Info

Publication number
WO2022056762A1
WO2022056762A1 PCT/CN2020/115808 CN2020115808W WO2022056762A1 WO 2022056762 A1 WO2022056762 A1 WO 2022056762A1 CN 2020115808 W CN2020115808 W CN 2020115808W WO 2022056762 A1 WO2022056762 A1 WO 2022056762A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous oxide
preparation
hours
optionally
reaction
Prior art date
Application number
PCT/CN2020/115808
Other languages
English (en)
French (fr)
Inventor
邢嘉成
袁丹华
徐云鹏
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2020/115808 priority Critical patent/WO2022056762A1/zh
Priority to US18/026,828 priority patent/US20230331578A1/en
Publication of WO2022056762A1 publication Critical patent/WO2022056762A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present application relates to a preparation method of a porous oxide, belonging to the field of material synthesis and preparation.
  • Porous oxides have important applications in fundamental research and industrial production. Porous oxides are oxide systems composed of oxygen and other elements. It can have important applications in catalysis, petroleum cracking, gas separation, drug carrier and other fields. Since porous oxides are amorphous materials, their synthesis control is complicated. There is currently no effective means for synthetic control. The content of control mainly includes controlling the pore size of the porous oxide and the distribution of mesopores.
  • the traditional method for synthesizing porous oxides mainly adopts the sol-gel method of soft template, that is, mixing the raw materials with surfactants, forming micelles in the solution system, hydrolyzing the raw materials, and calcining the porous oxides.
  • a method for preparing a porous oxide is provided.
  • the porous oxide prepared by the method has the characteristics of uniform pore size, adjustable size and controllable distribution of mesopores, micropores and macropores.
  • the porous oxide of the present application is obtained by calcining a polyester polyol polymer, wherein the polyester polyol is a new type of polyester polyol obtained by transesterification of oxoester and polyol as raw materials
  • the traditional polyester polyol is obtained by dehydration and esterification of organic acid and polyol as raw materials.
  • a method for preparing a porous oxide is provided, which is prepared by using polyester polyol as a raw material.
  • the method includes: in an atmosphere containing gas A, calcining a raw material containing polyester polyol to obtain the porous oxide;
  • the gas A is selected from at least one of air, nitrogen, inert gas, and oxygen.
  • the roasting atmosphere is selected from one or a combination of air, oxygen or nitrogen.
  • the roasting conditions are: the roasting temperature is 350°C to 900°C; the roasting time is 1.5-25 hours.
  • the upper limit of the reaction temperature is independently selected from 900°C, 850°C, 800°C, 750°C, 700°C, 630°C, 600°C, 550°C, 500°C, 480°C, 475°C, 445°C, 420°C, 400°C, 375°C
  • the lower limit is independently selected from 350°C, 850°C, 800°C, 750°C, 700°C, 630°C, 600°C, 550°C, 500°C, 480°C, 475°C, 445°C, 420°C, 400°C, 375°C.
  • the upper limit of the roasting time is independently selected from 25h, 20 hours, 18 hours, 15 hours, 12 hours, 9 hours, 8 hours, 7 hours, 6 hours, 4 hours, 3 hours, 2 hours.
  • the lower limit is independently selected from 1.5 hours, 20 hours, 18 hours, 15 hours, 12 hours, 9 hours, 8 hours, 7 hours, 6 hours, 4 hours, 3 hours, 2 hours.
  • the polyester polyol is obtained by transesterifying the raw material containing the oxyester and polyol.
  • the oxyester is selected from at least one of the compounds with the chemical formula shown in formula I and the compounds with the chemical formula shown in formula II:
  • M is a metal element or a non-metal element excluding P
  • n 1 2, 3, 4, 5, 6, 7 or 8.
  • n 2 3.
  • the M is selected from at least one of B, Si, Ge, Al, Ti, Fe, Sn, V, Ga, Zr, Cr, Sb or W.
  • M is B, Si, Ge, Al, Ti, Fe, Sn, V, Ga, Zr, Cr, Sb, W, or the like.
  • R 1 and R 2 are independently selected from at least one of C 1 -C 4 alkyl groups.
  • the oxyester includes trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tri-n-hexyl borate, triisooctyl borate, trioctyl borate, orthosilicic acid Methyl silicate, tetraethyl silicate, tetrapropyl silicate, tetrabutyl silicate, ethyl n-germanate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tri-n-pentyl phosphate, triphosphate Hexyl ester, aluminum triethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum tert-butoxide, tetraethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetrahexyl titanate, tetra Isoocty
  • the molar ratio of the oxyester and polyol satisfies:
  • x is the number of moles of alkoxy groups contained in each mole of the oxyester
  • n 3 is the number of moles of hydroxyl groups contained in each mole of the polyol.
  • the upper limit of the molar ratio of the oxyester and polyol is selected from 0.85n 3 /x, 0.9n 3 /x, 0.95n 3 /x, 1n 3 /x, 1.05n 3 /x, 1.1n 3 /x, 1.15n 3 /x or 1.2n 3 /x; lower limit selected from 0.8n 3 /x, 0.85n 3 /x, 0.9n 3 /x, 0.95n 3 /x, 1n 3 /x, 1.05n 3 /x, 1.1n 3 /x or 1.15n 3 /x.
  • x is the number of moles of alkoxy groups contained in each mole of the oxyester
  • n 3 is the number of moles of hydroxyl groups contained in each mole of the polyol.
  • the number of hydroxyl groups in the polyol is not less than two.
  • the polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4- Butanediol, 1,6-hexanediol, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 600, polyethylene glycol 800, 1,4-cyclohexanediol, 1,4-cyclohexanediol At least one of hexanedimethanol, terephthalic alcohol, glycerol, trimethylolpropane, pentaerythritol, xylitol, and sorbitol.
  • the general formula of the polyol is R 2 -(OH) x , wherein x ⁇ 2.
  • the oxyester and polyol have the following molar ratio: (0.8-1.2) n/x;
  • the transesterification reaction is carried out in the presence of a transesterification catalyst.
  • the added amount of the transesterification catalyst is 0.1 wt % to 5 wt % of the oxyester.
  • the added amount of the transesterification catalyst is that the upper limit of the mass percentage of the oxyester is selected from 0.2wt%, 0.5wt%, 0.8wt%, 1.0wt%, 1.5wt%, 2.0wt% , 2.5wt%, 3.0wt%, 3.5wt%, 4.0wt%, 4.5wt% or 5.0wt%; the lower limit is selected from 0.1wt%, 0.2wt%, 0.5wt%, 0.8wt%, 1.0wt%, 1.5wt% %, 2.0 wt%, 2.5 wt%, 3.0 wt%, 3.5 wt%, 4.0 wt% or 4.5 wt%.
  • the transesterification catalyst is selected from at least one of acidic catalysts and basic catalysts.
  • the acidic catalyst comprises alcohol-soluble acid, solid acid, aluminum alkoxide, aluminum phenoxide, tetrabutyl stannate, titanium alkoxide, zirconium alkoxide, ethyl antimonite, At least one of butyl antimonite;
  • the basic catalyst includes at least one of an alcohol-soluble alkali and a solid alkali.
  • the alcohol-soluble acid is an alcohol-soluble acid.
  • the alcohol-soluble base is an alcohol-soluble base.
  • the alcohol-soluble acid includes sulfuric acid, sulfonic acid, and the like.
  • the alcohol-soluble base includes NaOH, KOH, NaOCH 3 , organic base and the like.
  • the transesterification catalysts are: basic catalysts include alkalis that are easily soluble in alcohol (such as NaOH, KOH, NaOCH 3 , organic bases, etc.) and various solid base catalysts, and acidic catalysts include Acids (such as sulfuric acid, sulfonic acid, etc.) and various solid acid catalysts, aluminum alkoxide, aluminum phenoxide, tetrabutyl stannate, titanium alkoxide, zirconium alkoxide, ethyl antimonite, antimony Acid butyl ester, etc., the catalyst dosage is 0.1wt%-5wt% of the oxyester.
  • basic catalysts include alkalis that are easily soluble in alcohol (such as NaOH, KOH, NaOCH 3 , organic bases, etc.) and various solid base catalysts
  • acidic catalysts include Acids (such as sulfuric acid, sulfonic acid, etc.) and various solid acid catalysts, aluminum alkoxide, aluminum phenoxide, t
  • the inactive atmosphere is selected from at least one of nitrogen gas and inert gas.
  • the inactive atmosphere is nitrogen.
  • the transesterification reaction is carried out under stirring conditions.
  • the upper limit of the temperature of the reaction is selected from 85°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 175°C or 180°C; From 80°C, 85°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C or 175°C.
  • the upper time limit of the reaction is selected from 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours; the lower limit is selected from 2 hours, 3 hours, 4 hours, 5 hours , 6 hours, 7 hours, 8 hours or 9 hours.
  • the conversion of the transesterification is between 60% and 80%.
  • the conditions for the transesterification further include: performing vacuum distillation after the reaction.
  • the conditions of the vacuum distillation include: reacting at 170-230° C. for 0.5-5 hours under the condition that the degree of vacuum is 0.01-5KPa.
  • the upper limit of the vacuum degree of the system is selected from 0.02KPa, 0.05KPa, 0.1KPa, 0.5KPa, 1KPa, 2KPa, 3KPa, 4KPa, 4.5KPa or 5KPa; the lower limit is selected from 0.01KPa , 0.02KPa, 0.05KPa, 0.1KPa, 0.5KPa, 1KPa, 2KPa, 3KPa, 4KPa or 4.5KPa.
  • the upper limit of the reaction temperature is selected from 175°C, 180°C, 190°C, 200°C, 210°C, 220°C, 225°C or 230°C; the lower limit is selected from 170°C, 175°C , 180°C, 190°C, 200°C, 210°C, 220°C or 225°C.
  • the upper limit of the reaction time is selected from 0.8 hours, 1 hour, 2 hours, 3 hours, 4 hours, 4.5 hours or 5 hours; the lower limit is selected from 0.5 hours, 0.8 hours, 1 hour , 2 hours, 3 hours, 4 hours or 4.5 hours.
  • the conversion of the transesterification reaction is greater than 90%.
  • the method includes:
  • reaction temperature is between 80-180 DEG C
  • reaction time is between 2-10 hours
  • step b) Carry out vacuum distillation after the reaction in step a), control the vacuum degree of the system at 0.01-5KPa, the reaction temperature at 170-230°C, and the reaction time at 0.5-5 hours.
  • the method includes:
  • step 2) connect the device after step 1) reaction with water pump or oil pump and carry out underpressure distillation to make transesterification more complete, control system vacuum tightness at 0.01-5KPa, temperature of reaction between 170-230 °C, reaction time between In 0.5-5 hours, the conversion rate of the transesterification reaction is greater than 90%.
  • porous oxide wherein the porous oxide is selected from at least one of the porous oxides prepared according to the above method.
  • the pore size of the porous oxide is 0.4-80 nm; the specific surface area is 150-1500 square meters per gram. .
  • the porous oxide includes micropores; the pore size of the micropores is 0.4-2.0 nm.
  • the porous oxide includes mesopores; the pore size of the mesopores is 2.0-50 nm.
  • the porous oxide includes macropores; the pore size of the macropores is 50-80 nm.
  • the pore size and mesopore distribution of the porous oxide are measured by a physical adsorption method, the micropore pore size analysis adopts NLDFT and HK methods, the mesopore pore size adopts BJH and NLDFT methods, and the mesopore distribution adopts t. -PLOT method.
  • the porous oxide prepared according to the preparation method of the present application may include at least one of micropores, mesopores, and macropores.
  • the porous oxide prepared according to the preparation method of the present application includes micropores, and the pore sizes of the micropores are uniform.
  • the porous oxide prepared according to the preparation method of the present application includes mesopores, and the pore sizes of the mesopores are uniform.
  • the porous oxide prepared according to the preparation method of the present application includes macropores, and the pore sizes of the macropores are uniform.
  • the porous oxide prepared according to the preparation method of the present application includes micropores and mesopores, wherein the pore size of the micropores is uniform, and the pore size of the mesopores is uniform.
  • porous oxides with different pore sizes can be obtained.
  • controllable distribution of mesopores, micropores and macropores in the present application means that porous oxides with different pore sizes can be obtained by controlling the chain length of the polyol molecules in the present application.
  • the porous oxide in the present application includes any one of metal oxides, non-metal oxides, and metal-non-metal hybrid oxides.
  • C 1 -C 8 and the like all refer to the number of carbon atoms contained in the group.
  • alkyl is a group formed by the loss of any hydrogen atom on the molecule of an alkane compound.
  • the "initial decomposition temperature” refers to the temperature at which the polyester polyol has an obvious weight loss peak by thermogravimetric analysis.
  • the porous oxide synthesized in the present application adopts a polyester polyol as a raw material, and is synthesized by a roasting method.
  • the method has a simple technical process and overcomes the problems of poor repeatability, cumbersome steps, and difficulty in synthesizing porous oxides by traditional methods. Disadvantages of doing top-level design.
  • the pore size of the synthesized porous oxide is uniform and adjustable, and the distribution of mesopores, micropores and macropores is controllable, and it has extremely high designability.
  • the porous oxide prepared in the present application has the characteristics of adjustable pore size and controllable distribution of mesomicropores, and can be widely used in adsorption separation, catalytic oxidation, fine chemical industry and other fields.
  • Fig. 1 is the thermal analysis diagram of the polyester polyol synthesized in Example 1 of the application;
  • Fig. 2 is the BET diagram of the porous oxide synthesized in Example 1 of the application;
  • Example 3 is a pore distribution diagram of the porous oxide synthesized in Example 1 of the application.
  • Fig. 4 is the thermogram of the polyester polyol synthesized in Example 2 of the application.
  • Example 5 is a BET diagram of the porous oxide synthesized in Example 2 of the application.
  • Example 6 is a pore distribution diagram of the porous oxide synthesized in Example 2 of the application.
  • Example 7 is a transmission electron microscope image of the porous oxide prepared in Example 1.
  • FIG. 8 is a transmission electron microscope image of the porous oxide prepared in Example 2.
  • Thermogravimetric analysis was performed using a thermogravimetric analyzer, model TAQ-600, produced by TA Instruments.
  • the nitrogen flow rate was 100 ml/min and the temperature was ramped up to 700°C at a heating rate of 10°C/min.
  • the physical adsorption and pore distribution analysis of the product adopts the ASAP2020 automatic physical instrument of Mike Company.
  • the conversion rate of the transesterification is calculated in the following manner:
  • n the number of groups participating in the transesterification reaction
  • m the total number of moles of esters in the reaction raw materials
  • the conversion rate of the transesterification reaction is : n/xm. x depends on the number of alkoxy groups attached to the central atom in the ester.
  • the method for synthesizing the porous oxide, the polyester polyol polymer and the method for synthesizing the same includes the following steps:
  • step b) connecting the device after step a) with a water pump or an oil pump to carry out vacuum distillation to make the transesterification more complete, the control system vacuum degree is at 0.01-5KPa, the reaction temperature is between 170-230 ° C, and the reaction time is between In 0.5-5 hours, the conversion rate of the transesterification reaction is greater than 90%.
  • the general formula of the oxyester in the step a) is M(OR) n , wherein M is B, Si, Ge, Al, Ti, Fe, Sn, V, Ga, Zr, Cr, Sb, W, etc.; R is an alkyl group of carbon atoms 1-8; including trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tri-n-hexyl borate, triisooctyl borate, Trioctyl borate, methyl orthosilicate, tetraethyl silicate, tetrapropyl silicate, tetrabutyl silicate, ethyl orthogermanate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, Tri-n-amyl phosphate, trihexyl phosphate, aluminum triethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum
  • the general formula of the polyol in the step a) is R-(OH) x , where x ⁇ 2; including ethylene glycol, diethylene glycol, triethylene glycol, triethylene glycol Tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 600 , polyethylene glycol 800, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, terephthalic alcohol, glycerol, trimethylolpropane, pentaerythritol, xylitol, sorbitol, etc. one or a mixture of any of them.
  • x ⁇ 2 including ethylene glycol, diethylene glycol, triethylene glycol, triethylene glycol Tetraethylene glycol, 1,2-propanediol, 1,3-prop
  • the oxyester and polyol have the following molar ratios:
  • the transesterification catalyst used in the step a) is: basic catalysts include alkalis (such as NaOH, KOH, NaOCH 3 , organic bases, etc.) that are easily soluble in alcohol and various solid base catalysts, acidic catalysts Including easily soluble acids in alcohol (such as sulfuric acid, sulfonic acid, etc.) and various solid acid catalysts, aluminum alkoxides, aluminum phenoxides, tetrabutyl stannate, titanium alkoxides, zirconium alkoxides, antimony Ethyl acid, butyl antimonite, etc., the catalyst dosage is 0.1wt% to 5wt% of the oxyester.
  • alkalis such as NaOH, KOH, NaOCH 3 , organic bases, etc.
  • acidic catalysts Including easily soluble acids in alcohol (such as sulfuric acid, sulfonic acid, etc.) and various solid acid catalysts, aluminum alkoxides, aluminum phenoxides, t
  • the reaction in the step a) is carried out under nitrogen protection, the reaction temperature is between 80 and 180°C, and the reaction time is between 2 and 10 hours.
  • the conversion rate of the transesterification reaction in the step a) is between 60% and 80%.
  • step b) is carried out under reduced pressure distillation conditions, and the vacuum degree of the control system is 0.01-5KPa.
  • the reaction temperature is between 170 and 230° C.
  • the reaction time is between 0.5 and 5 hours.
  • the conversion rate of the transesterification reaction in the step b) is greater than 90%.
  • the product after the step b) reaction is processed by calcination, the calcination temperature is between 350-900 DEG C, the calcination time is 1.5-20 hours, and the atmosphere used is one or a combination of air, oxygen or nitrogen.
  • the reaction was stopped, and the sample was taken out after naturally cooling to room temperature.
  • the conversion rate of the transesterification reaction was 93%.
  • the sample was calcined at 450 °C for 25 hours under the condition of passing nitrogen and air, and the porous boron-titanium oxide was taken out.
  • Figure 4 corresponds to the thermal analysis curve of the polyester polyol prepared in Example 2. It can be seen from the figure that the initial decomposition temperature of the polyester polyol prepared in Example 2 is 500°C.
  • test results of the polyester polyol in other examples are similar to the above, and the initial decomposition temperature of the polyester polyol is higher than 300°C.
  • the porous oxides prepared in Examples 1 to 13 were subjected to physical adsorption characterization and evaluation. Examples 1 and 2 were typical representatives. The BET curves are shown in Figures 2 and 5, and the pore distribution curves are shown in Figure 2 and Figure 5.
  • Figure 2 corresponds to the physical adsorption curve of the porous oxide prepared in Example 1. It can be seen from the figure that the porous oxide prepared in Example 1 is a typical microporous I-type adsorption isotherm.
  • Figure 3 corresponds to the example 1
  • the pore distribution curve of the prepared porous oxide can be seen from Figure 3, the pore distribution is 0.55nm, and the pore distribution curve has an obvious peak at 0.55nm, which proves that the micropores are concentrated at 0.55nm.
  • Figure 5 corresponds to the physical adsorption curve of the porous oxide prepared in Example 2. It can be seen from the figure that the porous oxide prepared in Example 2 is a typical mesoporous IV-type adsorption isotherm. Figure 6 corresponds to the example 2.
  • the pore distribution curve of the prepared porous oxide shows that the pore distribution is 4.0 nm, and the pore distribution curve has an obvious peak at 4.0 nm, which proves that the mesopores are concentrated at 4.0 nm.
  • FIGS. 7 and 8 The porous oxides prepared in Examples 1 to 13 were characterized and evaluated by transmission electron microscopy, with Examples 1 and 2 as typical representatives, and their transmission electron microscopy images are shown in FIGS. 7 and 8 .
  • Figure 7 corresponds to the transmission electron microscope image of the porous oxide prepared in Example 1. It can be seen from the figure that the pore size of the porous oxide prepared in Example 1 is relatively uniform, about 0.5-0.6 nm, and is concentrated in the microscopic hole range.
  • FIG. 8 corresponds to the transmission electron microscope image of the porous oxide prepared in Example 2. It can be seen from FIG. 8 that the mesopore size distribution is 4-5 nm, mainly concentrated in the mesopore range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本申请公开了一种多孔氧化物的制备方法,以聚酯多元醇为原料制备得到。本申请中所述方法得到的多孔氧化物具有孔径大小均一、可调和介孔、微孔和大孔分布可控的特点。

Description

一种多孔氧化物的制备方法 技术领域
本申请涉及一种多孔氧化物的制备方法,属于材料合成制备领域。
背景技术
多孔氧化物在基础研究和工业生产中具有重要的应用。多孔氧化物是由氧和其他元素组成的氧化物体系。可以在催化,石油裂化,气体分离,药物载体等领域都具有重要的应用。由于多孔氧化物是无定形材料,其合成控制较为复杂。目前缺乏有效手段进行合成控制。控制的内容主要包括控制多孔氧化物的孔径大小,介微孔分布。传统方法合成多孔氧化物,主要采用的是软模版的溶胶凝胶法,即将原料与表面活性剂混合,在溶液体系中形成胶束,原料水解,焙烧得到多孔氧化物。但这种方法,合成过程中难以控制胶束的大小,同时焙烧过程难以控制多孔氧化物的孔径和比表面积,部分原料水解速率不匹配,表面活性剂的成本较高。
发明内容
根据本申请的一个方面,提供了一种多孔氧化物的制备方法,该方法制备得到的多孔氧化物具有孔径大小均一、大小可调和介孔、微孔、大孔分布可控的特点。
本申请的多孔氧化物是由聚酯多元醇聚合物通过焙烧处理得到的,其中聚酯多元醇是以含氧酸酯和多元醇为原料进行酯交换反应得到的一种新型的聚酯多元醇聚合物,而传统的聚酯多元醇是以有机酸和多元醇为原料进行脱水酯化反应得到。
根据本申请的第一方面,提供了一种多孔氧化物的制备方法,以聚酯多元醇为原料制备得到。
可选地,所述方法包括:在含有气体A的气氛下,以含有聚酯多元醇的原料,焙烧,即可得到所述多孔氧化物;
所述气体A选自空气、氮气、惰性气体、氧气中的至少一种。
可选地,所述焙烧中,焙烧的气氛选自空气,氧气或者氮气中的一种或几种的组合气体。
可选地,所述焙烧的条件为:焙烧温度为350℃~900℃;焙烧时间为1.5-25小时。
可选地,所述焙烧中,反应的温度上限独立地选自900℃、850℃、800℃、750℃、700℃、630℃、600℃、550℃、500℃、480℃、475℃、445℃、420℃、400℃、375℃,下限独立地选自350℃、850℃、800℃、750℃、700℃、630℃、600℃、550℃、500℃、480℃、475℃、445℃、420℃、400℃、375℃。
可选地,所述焙烧中,焙烧的时间上限独立地选自25h、20小时、18小时、15小时、12小时、9小时、8小时、7小时、6小时、4小时、3小时、2小时,下限独立地选自1.5小时、20h、18小时、15小时、12小时、9小时、8小时、7小时、6小时、4小时、3小时、2小时。
可选地,将含有含氧酸酯和多元醇的原料,酯交换反应,获得所述聚酯多元醇。
可选地,所述含氧酸酯选自具有如式I所示化学式的化合物、如式II所示化学式的化合物中的至少一种:
M(OR 1) n 1    式I
O=P(OR 2) n 2   式II
其中,M为金属元素或不包括P的非金属元素,R 1,R 2独立地选自C 1-C 8的烷基中的至少一种,n 1=2-8,n 2=2-8。
可选地,n 1=2、3、4、5、6、7或8。
可选地,n 2=3。
可选地,所述M选自B、Si、Ge、Al、Ti、Fe、Sn、V、Ga、Zr、Cr、Sb或W中的至少一种。
可选地,M为B、Si、Ge、Al、Ti、Fe、Sn、V、Ga、Zr、Cr、Sb、W等。
可选地,式I中R 1,R 2独立地选自C 1~C 4的烷基中的至少一种。
可选地,所述含氧酸酯包括硼酸三甲酯、硼酸三乙酯、硼酸三丙酯、硼酸三丁酯、硼酸三正己酯、硼酸三异辛酯、硼酸三辛酯、正硅酸甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯、正锗酸乙酯、磷酸三乙酯、磷酸三丙酯、磷酸三丁酯、磷酸三正戊酯、磷酸三己酯、三乙醇铝、异丙醇铝、正丁醇铝、叔丁醇铝、钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四己酯、钛酸四异辛酯、铁酸四丁酯、锡酸四丁酯、原钒酸丁酯、乙醇镓、锆酸四正丙酯、锆酸四丁酯、铬酸叔丁酯、亚锑酸乙酯、亚锑酸丁酯、乙醇钨、异丙醇钨中的至少一种。
可选地,所述含氧酸酯和多元醇的摩尔比满足:
含氧酸酯:多元醇=(0.8-1.2)n 3/x
其中,x为每摩尔所述含氧酸酯中含有的烷氧基的摩尔数;
n 3为每摩尔所述多元醇中含有的羟基摩尔数。
可选地,所述含氧酸酯和多元醇的摩尔比上限选自0.85n 3/x、0.9n 3/x、0.95n 3/x、1n 3/x、1.05n 3/x、1.1n 3/x、1.15n 3/x或1.2n 3/x;下限选自0.8n 3/x、0.85n 3/x、0.9n 3/x、0.95n 3/x、1n 3/x、1.05n 3/x、1.1n 3/x或1.15n 3/x。其中,x为每摩尔所述含氧酸酯中含有的烷氧基的摩尔数;n 3为每摩尔所述多元醇中含有的羟基摩尔数。
可选地,所述多元醇中羟基的数量不少于两个。
可选地,所述多元醇包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4-环己二醇、1,4-环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇中的至少一种。
可选地,所述多元醇的通式为R 2-(OH) x,其中x≥2。
可选地,含氧酸酯与多元醇具有如下摩尔配比:(0.8~1.2)n/x;
其中,x为每摩尔所述含氧酸酯中含有的烷氧基的摩尔数;n为每摩尔所述多元醇中含有的羟基摩尔数。
可选地,所述酯交换反应在酯交换催化剂的存在下进行。
可选地,所述酯交换催化剂的加入量为所述含氧酸酯的0.1wt%-5wt%。
可选地,所述酯交换催化剂的加入量为所述含氧酸酯的质量百分含量上限选自0.2wt%、0.5wt%、0.8wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%、3.0wt%、3.5wt%、4.0wt%、4.5wt%或5.0wt%;下限选自0.1wt%、0.2wt%、0.5wt%、0.8wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%、3.0wt%、3.5wt%、4.0wt%或4.5wt%。
可选地,所述酯交换催化剂选自酸性催化剂、碱性催化剂中的至少一种。
可选地,所述酸性催化剂包括溶于醇的酸、固体酸、烷氧基铝、苯氧基铝、锡酸四丁酯、烷氧基钛、烷氧基锆、亚锑酸乙酯、亚锑酸丁酯中的至少一种;
所述碱性催化剂包括溶于醇的碱、固体碱中的至少一种。
可选地,所述溶于醇的酸为易溶于醇的酸。
可选地,所述溶于醇的碱为易溶于醇的碱。
可选地,所述溶于醇的酸包括硫酸、磺酸等。
可选地,所述溶于醇的碱包括NaOH、KOH、NaOCH 3、有机碱等。
可选地,所述酯交换反应催化剂为:碱性催化剂包括易溶于醇的碱(如NaOH、KOH、NaOCH 3、有机碱等)和各种固体碱催化剂、酸性催化剂包括易溶于醇的酸(如硫酸、磺酸等)和各种固体酸催化剂、烷氧基铝、苯氧基铝、锡酸四丁酯、烷氧基钛、烷氧基锆、亚锑酸乙酯、亚锑酸丁酯等,催化剂用量为含氧酸酯的0.1wt%-5wt%。
可选地,所述酯交换反应
可选地,所述非活性气氛选自氮气、惰性气体中的至少一种。
可选地,所述非活性气氛为氮气。
可选地,所述酯交换反应在搅拌条件下进行。
可选地,所述反应的温度上限选自85℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、175℃或180℃;下限选自80℃、85℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃或175℃。
可选地,所述反应的时间上限选自3小时、4小时、5小时、6小时、7小时、8小时、9小时或10小时;下限选自2小时、3小时、4小时、5小时、6小时、7小时、8小时或9小时。
可选地,所述酯交换的转化率介于60%-80%。
可选地,所述酯交换的条件还包括:反应后进行减压蒸馏。
可选地,所述减压蒸馏的条件包括:在真空度为0.01-5KPa的条件下,170-230℃反应0.5-5小时。
可选地,所述减压蒸馏过程中,体系的真空度的上限选自0.02KPa、0.05KPa、0.1KPa、0.5KPa、1KPa、2KPa、3KPa、4KPa、4.5KPa或5KPa;下限选自0.01KPa、0.02KPa、0.05KPa、0.1KPa、0.5KPa、1KPa、2KPa、3KPa、4KPa或4.5KPa。
可选地,所述减压蒸馏过程中,反应的温度上限选自175℃、180℃、190℃、200℃、210℃、220℃、225℃或230℃;下限选自170℃、175℃、180℃、190℃、200℃、210℃、220℃或225℃。
可选地,所述减压蒸馏过程中,反应的时间上限选自0.8小时、1小时、2小时、3小时、4小时、4.5小时或5小时;下限选自0.5小时、0.8小时、1小时、2小时、3小时、4小时或4.5小时。
可选地,所述酯交换反应的转化率大于90%。
可选地,所述方法包括:
a)将含氧酸酯、多元醇与酯交换反应催化剂混合,搅拌状态下进行酯交换反应,通入非活性气氛保护,反应温度介于80-180℃,反应时间介于2-10小时;
b)将步骤a)反应后进行减压蒸馏,控制体系真空度在0.01-5KPa,反应温度介于170-230℃,反应时间介于0.5-5小时。
作为一种具体的实施方式,所述方法包括:
1)将含氧酸酯、多元醇与酯交换反应催化剂在三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,反应温度介于80-180℃,反应时间介于2-10小时,酯交换反应的转化率介于60%-80%;
2)将步骤1)反应后的装置接上水泵或油泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在0.01-5KPa,反应温度介于170-230℃,反应时间介于0.5-5小时,酯交换反应的转化率大于90%。
根据本申请的另一方面,还提供了一种多孔氧化物,所述多孔氧化物选自根据上述方法制备得到的多孔氧化物中的至少一种。
可选地,所述多孔氧化物的孔径为0.4-80nm;比表面积为150-1500平方米每克。。
可选地,所述多孔氧化物包括微孔;所述微孔的孔径为0.4-2.0nm。
可选地,所述多孔氧化物包括介孔;所述介孔的孔径为2.0-50nm。
可选地,所述多孔氧化物包括大孔;所述大孔的孔径为50-80nm。
可选地,所述多孔氧化物的孔径大小和介微孔分布是采用物理吸附方法进行测量,微孔孔径分析采用NLDFT和H-K方法,介孔孔径采用BJH和NLDFT方法,介微孔分布采用t-PLOT方法。
具体地,根据本申请的制备方法制备得到的多孔氧化物可包括微孔、介孔、大孔中的至少一种。
可选地,根据本申请的制备方法制备得到的多孔氧化物包括微孔,微孔的孔径大小均一。
可选地,根据本申请的制备方法制备得到的多孔氧化物包括介孔,介孔的孔径大小均一。
可选地,根据本申请的制备方法制备得到的多孔氧化物包括大孔,大孔的孔径大小均一。
可选地,根据本申请的制备方法制备得到的多孔氧化物包括微孔和介孔,其中,微孔的孔径大小均一,介孔的孔径大小均一。
具体地,通过控制本申请中多元醇分子大小,可得到不同孔径的多孔氧化物。
具体地,本申请中介孔、微孔、大孔分布可控指的是通过控制本申请中多元醇分子的链长,可得到不同孔大小的多孔氧化物。
可选地,本申请中的多孔氧化物包括金属氧化物、非金属氧化物、金属非金属杂化氧化物中的任一种。
本申请中,“C 1-C 8”等均指基团中所包含的碳原子数。
本申请中,“烷基”是由烷烃化合物分子上失去任意一个氢原子所形成的基团。
本申请中,“起始分解温度”是指通过热重分析,聚酯多元醇出现明显失重峰所在的温度。
本申请能产生的有益效果包括:
1)本申请合成的多孔氧化物是采用一种聚酯多元醇为原料,通过焙烧的方法进行合成,该方法工艺流程简单,克服了传统方法合成多孔氧化物中,重复性差,步骤繁琐,难以进行顶层设计的缺点。合成的多孔氧化物孔径大小均一,可调,介孔、微孔、大孔分布可控,具有极高的设计性。
2)本申请制备的多孔氧化物具有孔径可调节和介微孔分布可控的特点,可以广泛的应用于吸附分离,催化氧化,精细化工等领域。
附图说明
图1为本申请实施例1合成的聚酯多元醇的热分析图;
图2为本申请实施例1合成的多孔氧化物的BET图;
图3为本申请实施例1合成的多孔氧化物的孔分布图;
图4为本申请实施例2合成的聚酯多元醇的热分析图;
图5为本申请实施例2合成的多孔氧化物的BET图;
图6为本申请实施例2合成的多孔氧化物的孔分布图;
图7为实施例1制备得到的多孔氧化物的透射电镜图;
图8为实施例2制备得到的多孔氧化物的透射电镜图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
利用TA Instruments公司生产,型号为TAQ-600的热重分析仪进行热重分析。氮气流速为100ml/min,以10℃/min的升温速率升至700℃。
在本申请的实施例中,产物的物理吸附及孔分布分析采用麦克公司的ASAP2020全自动物理仪。
在本申请的实施例中,产物的透射电子显微镜图片采用的赛默飞世尔Themis TM ETEM。
本申请的实施例中,酯交换反应的转化率通过以下方式进行计算:
根据反应过程中馏出的副产品醇类的摩尔数n,确定参与酯交换反应中参与反应的基团数为n,反应原料中酯类的摩尔数总和为m,则酯交换反应的转化率为:n/xm。x取决于酯类中与中心原子相连的烷氧基的个数。
根据本申请的一种实施方式,所述多孔氧化物的合成方法以及聚酯多元醇聚合物及其其合成方法,所述方法包括以下步骤:
a)将含氧酸酯、多元醇与酯交换反应催化剂在三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,反应温度介于80-180℃,反应时间介于2-10小时,酯交换反应的转化率介于60%-80%。
b)将步骤a)反应后的装置接上水泵或油泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在0.01-5KPa,反应温度介于170-230℃,反应时间介于0.5-5小时,酯交换反应的转化率大于90%。
可选地,所述步骤a)中的含氧酸酯的通式为M(OR) n,其中M为B,Si,Ge,Al,Ti,Fe,Sn,V,Ga,Zr,Cr,Sb,W等;R是碳原子1-8的烷基基团;包括硼酸三甲酯、硼酸三乙酯、硼酸三丙酯、硼酸三丁酯、硼酸三正己酯、硼酸三异辛酯、硼酸三辛酯、正硅酸甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯、正锗酸乙酯、磷酸三乙酯、磷酸三丙酯、磷酸三丁酯、磷酸三正戊酯、磷酸三己酯、三乙醇铝、异丙醇铝、正丁醇铝、叔丁醇铝、钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四己酯、钛酸四异辛酯、铁酸四丁酯、锡酸四丁酯、 原钒酸丁酯、乙醇镓、锆酸四正丙酯、锆酸四丁酯、铬酸叔丁酯、亚锑酸乙酯、亚锑酸丁酯、乙醇钨、异丙醇钨等中的一种或任意几种的混合物。
可选地,所述步骤a)中的多元醇的通式为R-(OH) x,其中x≥2;包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4-环己二醇、1,4-环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇等中的一种或任意几种的混合物。
可选地,所述步骤a)中含氧酸酯与多元醇具有如下摩尔配比:
M(OR) n/R-(OH) x=(0.8~1.2)x/n
可选地,所述步骤a)中使用的酯交换反应催化剂为:碱性催化剂包括易溶于醇的碱(如NaOH、KOH、NaOCH 3、有机碱等)和各种固体碱催化剂、酸性催化剂包括易溶于醇的酸(如硫酸、磺酸等)和各种固体酸催化剂、烷氧基铝、苯氧基铝、锡酸四丁酯、烷氧基钛、烷氧基锆、亚锑酸乙酯、亚锑酸丁酯等,催化剂用量为含氧酸酯的0.1wt%~5wt%。
可选地,所述步骤a)中反应是在氮气保护条件下进行,反应温度介于80~180℃,反应时间介于2~10小时。
可选地,所述步骤a)中酯交换反应的转化率介于60%~80%。
可选地,所述步骤b)是在减压蒸馏条件下进行,控制体系真空度在0.01~5KPa。
可选地,所述步骤b)中反应温度介于170~230℃,反应时间介于0.5~5小时。
可选地,所述步骤b)中酯交换反应的转化率大于90%。
c)将步骤b)反应后的产物通过焙烧处理,焙烧温度介于350-900℃,焙烧时间1.5-20小时,采用的气氛为空气,氧气或者氮气中的一种或组合气。
实施例1
在三口烧瓶中加入10g 1,3-丙二醇、6.84g正硅酸乙酯和5g正硅酸甲酯,接上蒸馏装置,在搅拌状态下滴加0.12g浓硫酸(质量分数为98%)作催化剂,氮气保护条件下升温至100℃,反应时间为6小时,此过程中有大量的甲醇和乙醇蒸馏出来,酯交换反应的转化率为75%;然后接上抽真空装置,在减压蒸馏条件下进行反应,控制体系真空度在1KPa,并升温至170℃,反应一小时后,停止反应,自然降温至室温后,取出样品,酯交换反应的转化率为93%,将样品在通入空气的条件下,550℃下焙烧8小时,取出得到的硅多孔氧化物。
实施例2
在三口烧瓶中加入5g乙二醇和8.7g三乙醇铝,其中三乙醇铝既作为含氧酸盐原料使用,同时也作为酯交换催化剂使用,接上蒸馏装置,在搅拌状态、氮气保护条件下升温至175℃,反应时间为5小时,此过程中有大量的乙醇蒸馏出来,酯交换反应的转化率为73%;然后接上抽真空装置,在减压蒸馏条件下进行反应,控制体系真空度在0.1KPa,并升温至210℃,反应一小时后,停止反应,自然降温至室温后,取出样品,酯交换反应的转化率为92%。将样品在通入氧气的条件下,750℃下焙烧4小时,取出得到的铝多孔氧化物。
实施例3
在三口烧瓶中加入10g对苯二甲醇,5.07g硼酸三丙酯和4g钛酸四丙酯,其中钛酸四丁酯既作为含氧酸盐原料使用,同时也作为酯交换催化剂使用,接上蒸馏装置,在搅拌状态、氮气保护条件下升温至180℃,反应时间为6小时,此过程中有大量的丙醇蒸馏出来,酯交换反应的转化率为75%;然后接上抽真空装置,在减压蒸馏条件下进行反应,控制体系真空度在1KPa,并升温至230℃,反应一小时后,停止反应,自然降温至室温后,取出样品,酯交换反应的转化率为93%。将样品在通入氮气和空气的条件下,450℃下焙烧25小时,取出得到硼钛多孔氧化物。
实施例4
具体配料种类、用料及反应条件见下表1,合成过程中其他操作同实施例1。
表1实施例4-13的原料组成、配比和晶化条件
Figure PCTCN2020115808-appb-000001
Figure PCTCN2020115808-appb-000002
表2实施例4-13的焙烧条件
Figure PCTCN2020115808-appb-000003
实施例5热分析
对实施例1至实施例13中制备得到的聚酯多元醇进行热分析,以实施例1和实施例2为典型代表,图1对应实施例1制备得到的聚酯多元醇的热分析曲线,从图中可以看出,实施例1中制备得到的聚酯多元醇的起始分解温度为500℃。
图4对应实施例2制备得到的聚酯多元醇的热分析曲线,从图中可以看出,实施例2中制备得到的聚酯多元醇的起始分解温度为500℃。
其他实施例中聚酯多元醇的测试结果与上述类似,聚酯多元醇的起始分解温度高于300℃。
实施例6物理吸附分析
对实施例1至实施例13中制备得到的多孔氧化物进行物理吸附表征评价,以实施例1和实施例2为典型代表,其BET曲线如图2和图5所示,其孔分布曲线如图3和图6所示。图2对应实施例1制备得到的多孔氧化物的物理吸附曲线,从图中可以看出,实施例1中制备得到的多孔氧化物为典型的微孔I型等温吸附线,图3对应实施例1制备得到的多孔氧化物的孔分布曲线,由图3可看出,其孔分布为0.55nm,孔分布曲线在0.55nm处明显出峰,证明其微孔集中分布在0.55nm处。
图5对应实施例2制备得到的多孔氧化物的物理吸附曲线,从图中可以看出,实施例2中制备得到的多孔氧化物为典型的介孔IV型等温吸附线,图6对应实施例2制备得到的多孔氧化物的孔分布曲线,其孔分布为4.0nm,孔分布曲线在4.0nm处明显出峰,证明其介孔集中分布在4.0nm处。
表3实施例1-13的比表面积和孔径信息
Figure PCTCN2020115808-appb-000004
实施例7透射电子显微镜分析
对实施例1至实施例13中制备得到的多孔氧化物进行透射电子显微镜表征评价,以实施例1和实施例2为典型代表,其透射电镜图如图7和图8所示。图7对应实施例1制备得到的多孔氧化物的透射电镜图,从图中可以看出,实施例1中制备得到的多孔氧化物的孔径较为均匀,约为0.5~0.6nm,集中分布在微孔范围。图8对应实施例2制备得到的多孔氧化物的透射电镜图,由图8可看出,其介孔孔径分布为4~5nm,主要集中在介孔范围。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (14)

  1. 一种多孔氧化物的制备方法,其特征在于,以聚酯多元醇为原料制备得到。
  2. 根据权利要求1所述的制备方法,其特征在于,所述方法包括:在含有气体A的气氛下,以含有聚酯多元醇的原料,焙烧,即可得到所述多孔氧化物;
    所述气体A选自空气、氮气、惰性气体、氧气中的至少一种。
  3. 根据权利要求2所述的制备方法,其特征在于,所述焙烧的条件为:焙烧温度为350℃‐900℃;焙烧时间为1.5‐25小时。
  4. 根据权利要求1所述的制备方法,其特征在于,将含有含氧酸酯和多元醇的原料,酯交换反应,获得所述聚酯多元醇。
  5. 根据权利要求4所述的制备方法,其特征在于,所述含氧酸酯选自具有如式I所示化学式的化合物、如式II所示化学式的化合物中的至少一种:
    M(OR 1) n 1  式I
    O=P(OR 2) n 2  式II
    其中,M为金属元素或不包括P的非金属元素,R 1,R 2独立地选自C 1‐C 8的烷基中的至少一种,n 1=2‐8,n 2=2‐8。
  6. 根据权利要求5所述的制备方法,其特征在于,所述M选自B、Si、Ge、Al、Ti、Fe、Sn、V、Ga、Zr、Cr、Sb或W中的至少一种。
  7. 根据权利要求4所述的制备方法,其特征在于,所述多元醇中羟基的数量不少于两个。
  8. 根据权利要求4所述的制备方法,其特征在于,所述多元醇包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2‐丙二醇、1,3‐丙二醇、1,4‐丁二醇、1,6‐己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4‐环己二醇、1,4‐环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇中的至少一种。
  9. 根据权利要求4所述的制备方法,其特征在于,所述酯交换反应的条件为:在非活性气氛下,80‐180℃条件下,搅拌反应2‐10小时。
  10. 一种多孔氧化物,其特征在于,所述多孔氧化物选自根据权利要求1至9任一项所述方法制备得到的多孔氧化物中的至少一种。
  11. 根据权利要求10所述的多孔氧化物,其特征在于,所述多孔氧化物的孔径为0.4‐80nm;比表面积为150‐1500平方米每克。
  12. 根据权利要求10所述的多孔氧化物,其特征在于,所述多孔氧化物包括微孔;所述微孔的孔径为0.4‐2.0nm。
  13. 根据权利要求10所述的多孔氧化物,其特征在于,所述多孔氧化物包括介孔;所述介孔的孔径为2.0‐50nm。
  14. 根据权利要求10所述的多孔氧化物,其特征在于,所述多孔氧化物包括大孔;所述大孔的孔径为50‐80nm。
PCT/CN2020/115808 2020-09-17 2020-09-17 一种多孔氧化物的制备方法 WO2022056762A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/115808 WO2022056762A1 (zh) 2020-09-17 2020-09-17 一种多孔氧化物的制备方法
US18/026,828 US20230331578A1 (en) 2020-09-17 2020-09-17 Preparation method of porous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115808 WO2022056762A1 (zh) 2020-09-17 2020-09-17 一种多孔氧化物的制备方法

Publications (1)

Publication Number Publication Date
WO2022056762A1 true WO2022056762A1 (zh) 2022-03-24

Family

ID=80777323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115808 WO2022056762A1 (zh) 2020-09-17 2020-09-17 一种多孔氧化物的制备方法

Country Status (2)

Country Link
US (1) US20230331578A1 (zh)
WO (1) WO2022056762A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055000A1 (en) * 2008-08-29 2010-03-04 Agilent Technologies, Inc. Inorganic/Organic Hybrid Totally Porous Metal Oxide Particles, Methods For Making Them And Separation Devices Using Them
CN104233316A (zh) * 2014-09-09 2014-12-24 郑州轻工业学院 氧化硅填充的金属多孔材料及其制法与用途
CN104445079A (zh) * 2014-11-28 2015-03-25 中国科学院过程工程研究所 一种均相多元多孔氧化物材料、制备方法及其用途
CN105304340A (zh) * 2015-10-16 2016-02-03 湖北大学 染料敏化太阳能电池用多孔二氧化钛薄膜的制备方法
CN107140605A (zh) * 2017-06-29 2017-09-08 东北师范大学 一种多孔氧化物及其制备方法
CN108246285A (zh) * 2018-02-10 2018-07-06 浙江大学 一种制备多孔氧化锰催化剂的方法
CN110512189A (zh) * 2019-06-14 2019-11-29 邱越 一种基于分子层沉积的孔径可调多孔金属氧化物制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055000A1 (en) * 2008-08-29 2010-03-04 Agilent Technologies, Inc. Inorganic/Organic Hybrid Totally Porous Metal Oxide Particles, Methods For Making Them And Separation Devices Using Them
CN104233316A (zh) * 2014-09-09 2014-12-24 郑州轻工业学院 氧化硅填充的金属多孔材料及其制法与用途
CN104445079A (zh) * 2014-11-28 2015-03-25 中国科学院过程工程研究所 一种均相多元多孔氧化物材料、制备方法及其用途
CN105304340A (zh) * 2015-10-16 2016-02-03 湖北大学 染料敏化太阳能电池用多孔二氧化钛薄膜的制备方法
CN107140605A (zh) * 2017-06-29 2017-09-08 东北师范大学 一种多孔氧化物及其制备方法
CN108246285A (zh) * 2018-02-10 2018-07-06 浙江大学 一种制备多孔氧化锰催化剂的方法
CN110512189A (zh) * 2019-06-14 2019-11-29 邱越 一种基于分子层沉积的孔径可调多孔金属氧化物制备方法

Also Published As

Publication number Publication date
US20230331578A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
TWI436947B (zh) 膠體矽石及其製法
CN102781839B (zh) 制造高纯度金属氧化物颗粒的方法及由其制造的材料
US20160151767A1 (en) Mesoporous materials and processes for preparation thereof
JP2014529561A (ja) 高純度金属酸化物粒子の製造方法およびそのために製造される材料
KR102521920B1 (ko) 계층적 다공성 티타늄 실리콘 ts-1 분자체의 제조 방법
CN111187401B (zh) 一种聚酯多元醇的制备方法
JP5002208B2 (ja) 金属酸化物ナノ結晶の製造方法
TWI430951B (zh) Method for preparing large-diameter titanium-silicon molecular sieve and method for producing cyclohexanone oxime using the molecular sieve
JP2007269601A (ja) 金属酸化物ナノ結晶の製造方法
CN114275740B (zh) 一种多孔氧化物的制备方法
JP2022506869A (ja) 階層的細孔を有するts-1分子篩の製造方法
Li et al. Surfactant-assisted sol–gel synthesis of zirconia supported phosphotungstates or Ti-substituted phosphotungstates for catalytic oxidation of cyclohexene
US7579294B2 (en) Synthesis of supported transition metal catalysts
JP5385520B2 (ja) 樹脂組成物
WO2022056762A1 (zh) 一种多孔氧化物的制备方法
WO2020097879A1 (zh) 一种聚酯多元醇的制备方法
Khanmohammadi et al. Micro-porous silica–yttria membrane by sol–gel method: Preparation and characterization
CN111217377B (zh) 铈掺杂介孔氧化硅材料的一步绿色合成方法
CN111217382A (zh) 一种大长径比的纳米线型球形氧化铝及其制备方法
CN102923771A (zh) 一种氧化锆空心微球的制备方法
JP6053444B2 (ja) 金属酸化物ナノ粒子分散液の製造方法
US20100015026A1 (en) Channel-type mesoporous silica material with elliptical pore section and method of preparing the same
WO2020097878A1 (zh) 一种制备多级孔ts-1分子筛的方法
Ataei et al. Tailoring the transesterification activity of MgO/oxidized g-C3N4 nanocatalyst for conversion of waste cooking oil into biodiesel
CN106929949B (zh) 一步法合成聚醋酸氧钛前驱体、其溶胶纺丝液以及氧化钛晶体长纤维的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953620

Country of ref document: EP

Kind code of ref document: A1