WO2022053733A1 - Dispositivo regasificador gnl y cogenerador de agua fria y aire seco frio - Google Patents

Dispositivo regasificador gnl y cogenerador de agua fria y aire seco frio Download PDF

Info

Publication number
WO2022053733A1
WO2022053733A1 PCT/ES2021/070655 ES2021070655W WO2022053733A1 WO 2022053733 A1 WO2022053733 A1 WO 2022053733A1 ES 2021070655 W ES2021070655 W ES 2021070655W WO 2022053733 A1 WO2022053733 A1 WO 2022053733A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
face
casing
tubes
chambers
Prior art date
Application number
PCT/ES2021/070655
Other languages
English (en)
French (fr)
Inventor
Juan Eusebio Nomen Calvet
Dan Alexandru Hanganu
Original Assignee
WGA Water Global Access, SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WGA Water Global Access, SL filed Critical WGA Water Global Access, SL
Priority to JP2023516130A priority Critical patent/JP2023540623A/ja
Priority to EP21866144.5A priority patent/EP4212813A4/en
Priority to US18/044,846 priority patent/US20230375137A1/en
Priority to CN202180076045.5A priority patent/CN116529552A/zh
Publication of WO2022053733A1 publication Critical patent/WO2022053733A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the present invention relates to a device for regasification of liquefied natural gas and cogeneration of cold fresh water and cold dry air.
  • Liquefied natural gas, LNG, regasification systems mainly use four energy sources:
  • patent PCTES2016070589 discloses the problems perfectly described in the literature of the state of the art, related to regasification devices by air circulation, the problems of regasification devices by supplying seawater on ORV and the problems of regasification devices by combustion of hydrocarbons.
  • Patent PCTES2016070589 discloses a tube and shell regasification device with a condenser duct on its inner face and an evaporator on its outer face inside which saturated air circulates. The problem with this device is the limitation in its production capacity and the capital cost since the entire bundle of tubes inside which the humid air circulates is placed inside a casing. Limits on the casing diameter and capital cost of this vacuum proof casing limit the feasibility of this technology.
  • the contribution of the working fluid in liquid phase through the outer wall of the condenser evaporator tube inside which the humid air circulates is a complex contribution that usually ends up forming a film of water or liquid working fluid and said liquid film limits the latent heat transfer coefficient, which makes it necessary to multiply the surface of the tubes with air inside them and to multiply the diameter of the outer casing, this being a limiting factor for the viability of said technology.
  • the present invention seeks to solve one or more of the aforementioned drawbacks by means of a liquefied natural gas, LNG, regasification device, as defined in the claims.
  • the liquefied natural gas, LNG, regasification device allows the cogeneration of cold fresh water and cold dry air, using chambers or tubes for exchanging latent heat and sensible heat, evaporators on its inner face and condensers on its outer face.
  • the regasifier device is made up of the following components:
  • At least one cryogenic conduit through which liquefied natural gas, hereinafter LNG, is introduced at one end and NG natural gas exits at the other end.
  • This conduit can have flow control systems and security systems and with the proper contribution of external energy it can maintain the thermal gradient even at a controlled temperature inside its wall, as the current Open Rack Vaporizers, ORV, do.
  • the at least one cryogenic conduit through which the LNG circulates and the resulting regasified NG exits is located inside at least one hermetic casing with the outside that supports vacuum conditions and inside which there is a working fluid in phase liquid and gas.
  • the gaseous phase of the working fluid condenses on the outer face of the LNG tube.
  • the working fluid in liquid phase that is inside the shell is then supplied to the inner evaporating face of the latent heat and sensible heat exchange chambers or tubes, condenser evaporators located outside the shell and that have vacuum conditions in their inside.
  • the chambers or tubes of exchange of latent heat and sensible heat evaporators condensers are in vacuum conditions inside.
  • the chambers or tubes for exchanging latent heat and sensible heat, condenser evaporators, are condensers on the outside, which is exposed to a flow of moist air through atmospheric pressure and they are evaporators on their inner face on which a working fluid is provided in liquid phase.
  • the outer condensing face may be covered, at least in part, with a capillary structure of microgrooves, microgrooves, wick, sinter, or other capillary structure.
  • a capillary structure is a structure with a design such that the fluid is dominated by the intermolecular forces of cohesion and adhesion such that the liquid-gas interface of the condensing fluid is curved throughout its length, dominating the intermolecular forces of cohesion and adhesion. accession.
  • the inner evaporating face may be covered, at least in part, with a capillary structure of microgrooves, microgrooves, wick, sinter or other capillary structure in which pure water or other working fluid flows and evaporates in a capillary regime.
  • the gaseous phase of the working fluid evaporated within the condenser evaporator chambers or tubes is channeled into the casing within which there is at least one cryogenic tube into which the LNG that is converted into NG is introduced.
  • the regasification device can be compartmentalized in a series of casings within which there are successive sections of, at least one, cryogenic tube and which work between different temperature ranges.
  • At least one heat pipe can be inserted between the at least one casing containing the at least one LNG cryogenic tube and the storage container. Collection of steam and surplus liquid from the condenser evaporator chambers or tubes.
  • the at least one intercalated heat pipe allows the use of different working fluids with different solidification temperatures that prevent the solidification of the working fluid on the cryogenic LNG tube or on the condensing face of another tube or intermediate condenser evaporator chamber and prevents the formation of ice on the outer face of the condenser evaporator chambers or tubes and allows the introduction of sensible heat exchangers to create a scaling of working temperatures.
  • Figure 1 Shows in a longitudinal section a schematic representation of a regasification device
  • Figure 2. Shows a diagram of a regasification device with condensing evaporating chambers inside a container with at least one fan, blower or turbine to drive the humid air, and
  • Figure 3. Shows in a longitudinal section a schematic representation of a regasification device with intermediate heat pipes.
  • the device for regasification of Liquefied Natural Gas, LNG, and cogeneration of cold fresh water and cold dry air comprises, at least:
  • At least one cryogenic LNG phase change tube 3 through which LNG liquefied natural gas 1 is introduced at one end and revaporized natural gas 2 is extracted at the other end.
  • the inner face of this tube is the LNG evaporator and the outer face is the condenser.
  • LNG phase change cryogenic tubes are known and described in the state of the art. They are built with some metals and with some sections necessary to withstand the temperature differential to which they are subjected. They are tubes that, with the correct external supply of energy, have the capacity to maintain within their walls the thermal gradient between the LNG and a controlled temperature on their external face, as is the case with the Open Rack Vaporizers used in the regasification of LNG and over which currently seawater is poured at room temperature.
  • At least one hermetic casing 4 that supports vacuum conditions and is crossed by at least one cryogenic tube 3. Inside the at least one casing 4 there is a working fluid in vacuum conditions, with a part in phase liquid 5 and the rest in gas phase 6.
  • This two-phase working fluid 5 and 6 can be pure water or an aqueous solution or other two-phase working fluid. Given the temperature gradient between the outer face of the at least one cryogenic tube 3 and the temperature of the working fluid in gaseous phase 6, the gaseous phase 6 of the working fluid condenses on the outer face of the at least one LNG tube 3 .
  • the gaseous phase of the working fluid 6 releases energy in the form of latent heat of condensation and sensible heat that is absorbed by the LNG for its regasification process and the increase in the temperature of the natural gas generated.
  • the liquid phase working fluid 5 accumulates at the bottom of the at least one casing 4.
  • the working fluid in liquid phase 5 is provided on the evaporating inner face of the condenser evaporator chambers or tubes 7 that are located outside the, at least one, casing 4.
  • the condenser evaporator chambers or tubes 7 are in vacuum conditions inside.
  • casing 4 is no longer a limiting factor for the device's operational capacity.
  • the condensed water 10 resulting from this process of condensation of the water vapor contained in the air flow 8 is cold after the transfer of energy, it flows through the external condensing face of the chambers or tube
  • the condenser evaporators 7, accumulates inside an external collection container 11 and can be used as cold condensed water for municipal, agricultural or industrial uses.
  • the flow of humid air 8 that flows through the external condensing face of the condenser evaporator chambers or tubes becomes a flow of dry and cold air 9 that can be channeled and used in cooling or air conditioning systems.
  • the outlet of the condenser evaporator chambers or tubes 7 is connected to a hermetic container 16, which is in vacuum conditions, for collecting fluids in which the rest of the working fluid is accumulated in liquid phase 13 and the gaseous phase of the working fluid 12 evaporated on the inner evaporator face of the condenser evaporator chambers or tubes 7.
  • the working fluid vapor 12 evaporated on the inner evaporator face of the condenser evaporator chambers or tubes 7 is channeled 15 to the interior of the, at least one shell 4 where it will condense again on the outer condensing face of the at least one cryogenic tube 3.
  • the rest of the liquid phase 13 of the working fluid accumulated inside the container 16 is pumped 14 to the inside of the, at least one, shell 4.
  • the inner evaporating face of the condenser evaporating chambers or tubes can be covered, at least in part, with a capillary structure in the form of microgrooves, microgrooves, sintered, wick or other structure capillary in which the liquid-gas interface of the working fluid curves and flows in an orderly manner within the capillary structure without forming liquid films so that evaporation takes place in a capillary evaporation regime.
  • a capillary structure in the form of microgrooves, microgrooves, sintered, wick or other structure capillary in which the liquid-gas interface of the working fluid curves and flows in an orderly manner within the capillary structure without forming liquid films so that evaporation takes place in a capillary evaporation regime.
  • the outer condensing face of the condenser evaporator chambers or tubes can be covered, at least in part, with a capillary structure in the form of microgrooves, microgrooves, sintered, wick or other structure capillary in which the gas-liquid interface of the condensed water curves and flows orderly within the capillary structure without forming water films, so that the condensation takes place in a capillary condensation regime.
  • a capillary structure in the form of microgrooves, microgrooves, sintered, wick or other structure capillary in which the gas-liquid interface of the condensed water curves and flows orderly within the capillary structure without forming water films, so that the condensation takes place in a capillary condensation regime.
  • the outer face condenser of the cryogenic tube 3 can be covered at least in part with fins to increase the exchange surface and can be covered at least in part with a capillary structure on which the working fluid condenses in a capillary condensation regime.
  • one embodiment of the invention consists of arranging the condenser evaporator chambers or tubes 17 within at least one structure 18 with at least one fan, blower or turbine 19 that drives a flow of moist air 8 on the external evaporating face of the condensing chambers or tubes 17 evaporators.
  • the regasification device can be made up of more than one casing 4 placed consecutively around at least one cryogenic tube 3 so that inside each casing 4 it works with a range of specific temperatures and with different working fluids 20, 21 adapted to each temperature range.
  • At least one heat pipe or heat pipe 27, 28, 29 can be inserted.
  • the at least one heat pipe 27, 28 , 29 can contain different working fluids 20, 22, 23.
  • the at least one heat pipe 27, 28, 29 may incorporate an internal or external sensible heat exchanger 25, 26 to control the temperature of the working fluid 20, 22, 23.
  • the at least one heat pipe 27 comprises at least one evaporator tube on its outer face and condenser on its inner face 24 that evaporates the working fluid 20 and the evaporated gas phase is provided at a controlled temperature inside the casing 4, the working fluid 20 being a two-phase working fluid with a solidification point below the temperature of the outer face of the at least one cryogenic tube 3, so that no solid phase of the working fluid can accumulate on the outer face of the cryogenic tube 3 and the temperature of the gaseous phase of the working fluid that is provided on the outer face of the cryogenic tube 3 is controlled.
  • n heat pipes 28 can be inserted with their working fluid 22 corresponding to their range of working temperatures and sensible heat exchange systems 26 to create a progressive staggering of working temperatures in which the working fluid does not solidify. .
  • the working fluid in liquid phase 23 that is supplied to the inner evaporator face of the condenser evaporator chambers or tubes 7 on whose outer face the water vapor of the moist air 8 it is at a temperature above 0°C , which guarantees that the condensed water on the outer face of each condenser evaporator shell or tube 7 does not freeze.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Drying Of Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Un dispositivo de regasificación de gas natural licuado, GNL, y cogeneración de agua dulce fría y aire seco frío que comprende al menos una carcasa (4) hermética con el exterior que soporta condiciones de vacío que contiene un fluido de trabajo en sus fases líquida (5) y gaseosa (6) (15), la carcasa (4) está atravesada por al menos un tubo criogénico (3) por el que se introduce gas natural licuado GNL (1) por uno de sus extremos y se extrae gas natural regasificado (2) por el otro extremo, la cara exterior del, al menos un, tubo criogénico (3) es condensadora y sobre ella se condensa la fase gaseosa (6) (15) del fluido de trabajo liberando energía, y unas cámaras o tubos evaporadores condensadores (7) situados fuera de la, al menos una, carcasa (4) con la cara condensadora exterior en contacto con aire húmedo y el vapor de aire contenido en el aire húmedo se condensa sobre la cara condensadora exterior de las cámaras o tubos evaporadores condensadores (7) generando agua dulce fría (10) y liberando energía que es absorbida por el fluido de trabajo en fase líquida (5) que fluye sobre la cara evaporadora interior de las cámaras o tubos evaporadores condensadores (7) y que se evapora generando fase gaseosa (12) del fluido de trabajo que sale por un extremo de las cámaras o tubos evaporadores condensadores (7), y se canaliza (15) dentro de la, al menos una, carcasa (4) para su condensación.

Description

Dispositivo regasificador GNL y cogenerador de agua fría y aire seco frío
DESCRIPCIÓN
OBJETO
La presente invención se refiere a un dispositivo de regasificación de gas natural licuado y cogeneración de agua dulce fría y aire seco frío.
ESTADO DE LA TÉCNICA
Los sistemas de regasificación de gas natural licuado, GNL, usan principalmente cuatro fuentes de energía:
1 - La combustión de combustibles fósiles, con sus conocidos problemas de emisión de CO2,
2- El calor sensible del aire ambiente con el problema del gran tamaño de las instalaciones necesarias y el problema de la formación de hielo,
3- El calor sensible del agua de mar con los problemas de corrosión, formación de hielo, mortalidad directa de vida marina por contacto directo con superficies frías de los Open Rack Vaporizers ORV.
4- El calor latente del vapor de agua contenido en aire húmedo, y su calor sensible con el problema de inversión en capital CAPEX de las unidades publicadas en la patente PCT ES2016 070589.
Concretamente la patente PCTES2016070589 divulga los problemas perfectamente descritos en bibliografía del estado del arte, relativos a los dispositivos de regasificación por circulación de aire, los problemas de los dispositivos de regasificación por aporte de agua de mar sobre ORV y los problemas de los dispositivos de regasificación por combustión de hidrocarburos. La patente PCTES2016070589 divulga un dispositivo regasificador de tubos y carcasa con conducto condensador en su cara interior y evaporador en su cara exterior dentro del cual circula aire saturado. El problema de este dispositivo es la limitación en su capacidad de producción y el coste de capital dado que todo el haz de tubos dentro de los cuales circula el aire húmedo está colocado dentro de una carcasa. Los límites en el diámetro de la carcasa y el coste de capital de esta carcasa a prueba de vacío limitan la viabilidad de esta tecnología. Además, el aporte del fluido de trabajo en fase líquida por la pared exterior del tubo evaporador condensador dentro del cual circula el aire húmedo es un aporte complejo que suele acabar formando una película de agua o de fluido líquido de trabajo y dicha película de líquido limita el coeficiente de transferencia de calor latente, lo cual obliga a multiplicar la superficie de tubos con aire en su interior y a multiplicar el diámetro de carcasa exterior, siendo este un factor limitativo de la viabilidad de dicha tecnología.
Todas las tecnologías actuales tienen, en la práctica, problemas de formación de hielo sobre el tubo de GNL, que bloquea el proceso de aporte de energía.
SUMARIO
La presente invención busca resolver uno o más de los inconvenientes expuestos anteriormente mediante un dispositivo de regasificación de gas natural licuado, GNL, como está definido en las reivindicaciones.
El dispositivo regasificador de gas natural licuado, GNL, permite la cogeneración de agua dulce fría y aire seco frío, usando cámaras o tubos de intercambio de calor latente y calor sensible evaporadores en su cara interior y condensadores en su cara exterior.,.
El dispositivo regasificador está compuesto de los siguientes componentes:
- Al menos un conducto criogénico por el que se introduce gas natural licuado, en adelante GNL, por un extremo y sale gas natural GN por el otro extremo. Este conducto puede disponer de los sistemas de control de caudal y sistemas de seguridad y con el debido aporte de energía exterior puede mantener el gradiente térmico hasta a una temperatura controlada dentro de su pared, como hacen los actuales Open Rack Vaporizers, ORV.
El, al menos uno, conducto criogénico por el que circula el GNL y sale el GN regasificado resultante está situado dentro de al menos una carcasa hermética con el exterior que soporta condiciones de vacío y dentro de la que se encuentra un fluido de trabajo en fase líquida y gaseosa. La fase gaseosa del fluido de trabajo se condensa sobre la cara exterior de tubo de GNL. El fluido de trabajo en fase líquida que se encuentra dentro de la carcasa se aporta seguidamente a la cara evaporadora interior de las cámaras o tubos de intercambio de calor latente y calor sensible evaporadores condensadores situados fuera de la carcasa y que tienen condiciones de vacío en su interior.
Las cámaras o tubos de intercambio de calor latente y calor sensible evaporadores condensadores están en condiciones de vacío en su interior. Las cámaras o tubos de intercambio de calor latente y calor sensible evaporadores condensadores son condensadores por su cara exterior que queda expuesta a un flujo de aire húmedo a presión atmosférica y son evaporadores en su cara interior sobre la que se aporta un fluido de trabajo en fase líquida. La cara exterior condensadora puede estar cubierta, al menos en parte, de una estructura capilar de microranuras, microsurcos, mecha, sinterizado u otra estructura capilar. Una estructura capilar es una estructura con un diseño tal que el fluido queda dominado por las fuerzas intermoleculares de cohesión y adhesión de forma que la interfaz líquido-gas del fluiido que se condensa es curva en toda su longitud, dominando las fuerzas intermoleculares de cohesión y adhesión. La cara interior evaporadora puede estar cubierta, al menos en parte, de una estructura capilar de microranuras, microsurcos, mecha, sinterizado u otra estructura capilar en la que el agua pura u otro fluido de trabajo fluye y se evapora en régimen capilar. La yuxtaposición de una cara evaporadora en régimen capilar y una cara condensadora en régimen capilar, sin formar películas de agua permite conseguir elevados coeficientes de transferencia de calor latente y permite una eficiente transferencia de calor sensible.
La fase gaseosa del fluido de trabajo evaporado dentro de las cámaras o tubos evaporadores condensadores se canaliza al interior de la carcasa dentro de la cual se encuentra el, al menos un, tubo criogénico en el que se introduce el GNL que convierte en GN.
- Sistema de control de aporte del GNL y del vapor del fluido de trabajo dosifica los aportes de fluidos de modo que el gradiente térmico hasta una temperatura controlada se encuentre dentro de la pared del tubo criogénico.
- El dispositivo regasificador se puede compartimentar en una serie de carcasas dentro de las que se encuentran sucesivos tramos del, al menos un, tubo criogénico y que trabajan entre distintos rangos de temperatura.
Para evitar la formación de fase sólida del fluido de trabajo en el dispositivo regasificador se puede intercalar, al menos, un tubo de calor entre la, al menos una, carcasa que contiene el, al menos un, tubo criogénico de GNL y el recipiente de recogida del vapor y del líquido sobrante de las cámaras o tubos evaporadores condensadores. El, al menos un, tubo de calor intercalado permite utilizar distintos fluidos de trabajo con distintas temperaturas de solidificación que impidan la solidificación del fluido de trabajo sobre el tubo criogénico de GNL o sobre la cara condensadora de otro tubo o cámara evaporador condensador intermedio e impide la formación de hielo sobre la cara exterior de las cámaras o tubos evaporadores condensadores y permite introducir intercambiadores de calor sensible para crear un escalado de temperaturas de trabajo. BREVE DESCRIPCIÓN DE LOS DIBUJOS
Una explicación más detallada se da en la descripción que sigue y que se basa en las figuras adjuntas:
Figura 1.- Muestra en una sección en un corte longitudinal una representación esquemática de un dispositivo de regasificación,
Figura 2.- Muestra un esquema de un dispositivo de regasificación con cámaras evaporadoras condensadoras dentro de un contenedor con al menos un ventilador, soplador o turbina para impulsar el aire húmedo, y
Figura 3.- Muestra en una sección en un corte longitudinal una representación esquemática de un dispositivo de regasificación con tubos de calor intermedios.
DESCRIPCIÓN DETALLADA
Como se ¡lustra en la figura 1 , el dispositivo de regasificación de Gas Natural Licuado, GNL, y cogeneración de agua dulce fría y aire seco frío comprende, al menos:
- Al menos un tubo criogénico de cambio de fase de GNL 3 por el que se introduce gas natural licuado GNL 1 por un extremo y se extrae el gas natural revaporizado 2 por el otro extremo. La cara interior de este tubo es evaporadora del GNL y la cara exterior es condensadora. Los tubos criogénicos de cambio de fase de GNL son conocidos y descritos en el estado del arte. Están construidos con unos metales y con unas secciones necesarias para soportar el diferencial de temperatura al que están sometidos. Son tubos que con el correcto aporte externo de energía tienen la capacidad de mantener dentro de sus paredes el gradiente térmico entre el GNL y una temperatura controlada en su cara externa, como sucede con los Open Rack Vaporizers que se usan en la regasificación de GNL y sobre los que en la actualidad se vierte agua de mar a temperatura ambiente.
- Al menos una carcasa 4 hermética que soporta condiciones de vacío y está atravesada por, al menos, un tubo criogénico 3. Dentro de la, al menos una, carcasa 4 hay un fluido de trabajo en condiciones de vacío, con una parte en fase líquida 5 y el resto en fase gaseosa 6. Este fluido de trabajo de dos fases 5 y 6 puede ser agua pura o una solución acuosa u otro fluido de trabajo de dos fases. Dado el gradiente de temperatura entre la cara exterior del, al menos un, tubo criogénico 3 y la temperatura del fluido de trabajo en fase gaseosa 6, la fase gaseosa 6 del fluido de trabajo se condensa sobre la cara exterior del, al menos un, tubo 3 de GNL. Al condensarse, la fase gaseosa del fluido de trabajo 6 libera energía en forma de calor latente de condensación y calor sensible que es absorbida por el GNL para su proceso de regasificación y de aumento de la temperatura del gas natural generado. El fluido de trabajo en fase líquida 5 se acumula en el fondo de la, al menos una, carcasa 4.
- El fluido de trabajo en fase líquida 5 es aportado sobre la cara interior evaporadora de las cámaras o tubos evaporadores condensadores 7 que se encuentran fuera de la, al menos una, carcasa 4. las cámaras o tubos evaporadores condensadores 7 están en condiciones de vacío en su interior. Al estar las cámaras o tubos evaporadores condensadores fuera de la, al menos una, carcasa 4, se consigue un importante ahorro en el coste de capital CAPEX de la, al menos una, carcasa 4 y el volumen interior de la, al menos una, carcasa 4 deja de ser un factor limitativo de la capacidad operativa del dispositivo.
- Sobre la cara exterior de las cámaras o tubos evaporadores condensadores 7 fluye una corriente de aire húmedo 8 que puede estar impulsada por, al menos un ventilador, soplador o turbina 19. El vapor de agua contenido en el flujo de aire húmedo 8 se condensa sobre la cara condensadora exterior de las cámaras o tubos evaporadores condensadores 7. De modo que el vapor de agua condensado sobre la cara exterior de las cámaras o tubos evaporadores condensadores 7 cede energía en forma de calor latente de condensación y calor sensible al fluido de trabajo 5 que fluye sobre la cara interior de las cámaras o tubos evaporadores condensadores 7 que se evapora al menos en parte generando una fase gaseosa 12 que sale por un extremo de las cámaras o tubos evaporadores condensadores 7. El agua condensada 10 resultante de este proceso de condensación del vapor de agua contenida en el flujo de aire 8 es fría después de la cesión de energía, fluye por la cara exterior condensadora de las cámaras o tubos evaporadores condensadores 7, se acumula dentro de un recipiente exterior de recolección 11 y se puede utilizar como agua condensada fría para usos municipales, agrícolas o industriales. El flujo de aire húmedo 8 que fluye por la cara exterior condensadora de las cámaras o tubos evaporadores condensadores se convierte en un flujo de aire seco y frió 9 que se puede canalizar y utilizar en sistemas de frío o aire acondicionado. - La salida de las cámaras o tubo evaporadores condensadores 7 se conecta con un recipiente hermético 16, que está en condiciones de vacío, de recogida de fluidos en el que se acumula el resto de fluido de trabajo en fase líquida 13 y la fase gaseosa del fluido de trabajo 12 evaporada sobre la cara interior evaporadora de las cámaras o tubos evaporadores condensadores 7. El vapor 12 de fluido de trabajo evaporado sobre la cara evaporadora interior de las cámaras o tubos evaporadores condensadores 7 se canaliza 15 hasta el interior de la, al menos una, carcasa 4 donde se volverá a condensar sobre la cara condensadora exterior del, al menos un, tubo criogénico 3. El resto de la fase líquida 13 del fluido de trabajo acumulado dentro del recipiente 16 se bombea 14 hasta el interior de la, al menos una, carcasa 4.
Un sistema regulador del flujo de GNL 1 que se introduce en el tubo criogénico 3 y un sistema regulador del flujo de aire húmedo 8 que se aporta sobre la cara exterior condensadora de la, al menos una, cámara y o tubo condensador evaporador. Estos flujos de GNL y de aire húmedo deben estar equilibrados para que el fluido de trabajo esté en fase líquida y con una temperatura controlada.
- Con la finalidad de aumentar el coeficiente de transferencia de energía, la cara interior evaporadora de las cámaras o tubos evaporadores condensadores puede estar cubierta, al menos en parte, de una estructura capilar en forma de microsurcos, microranuras, sinterizado, mecha u otra estructura capilar en la que la interfaz líquido- gas del fluido de trabajo se curva y fluye ordenadamente dentro de la estructura capilar sin formar películas de líquido de forma que la evaporación se realiza en régimen de evaporación capilar. Al ser un fluido de trabajo sin impurezas ni problemas de precipitaciones minerales no hay problemas de bloquear las distintas formas de estructuras capilares.
- Con la finalidad de aumentar el coeficiente de transferencia de energía, la cara exterior condensadora de las cámaras o tubos evaporadores condensadores puede estar cubierta, al menos en parte, de una estructura capilar en forma de microsurcos, microranuras, sinterizado, mecha u otra estructura capilar en la que la interfaz líquido gas del agua condensada se curva y fluye ordenadamente dentro de la estructura capilar sin formar películas de agua, de forma que la condensación se realiza en régimen de condensación capilar.
- Con la finalidad de aumentar el coeficiente de transferencia de energía, la cara exterior condensadora del tubo criogénico 3 puede estar cubierta al menos en parte de aletas para aumentar la superficie de intercambio y puede estar cubierta al menos en parte de una estructura capilar sobre la que el fluido de trabajo se condensa en régimen de condensación capilar.
Como se ¡lustra en la figura 2, un modo de realización de la invención consiste en disponer las cámaras o tubos evaporadores condensadores 17 dentro de al menos una estructura 18 con al menos un ventilador, soplador o turbina 19 que impulsa un flujo de aire húmedo 8 sobre la cara exterior evaporadora de las cámaras o tubos 17 evaporadores condensadora.
Como se ¡lustra en la figura 3, el dispositivo regasificador puede estar compuesto por más de una carcasa 4 colocadas consecutivamente en torno a, al menos un, tubo criogénico 3 de forma que en el interior de cada carcasa 4 se trabaja con un rango de temperaturas específicas y con distintos fluidos de trabajo 20, 21 adaptados a cada rango de temperatura.
Para evitar la formación de hielo sobre la cara exterior del, al menos un, tubo criogénico 3 de GNL se puede intercalar al menos un tubo de calor o caloducto 27, 28, 29. El, al menos un, tubo de calor 27, 28, 29 puede contener distintos fluidos de trabajo 20, 22, 23.
El, al menos un, tubo de calor 27, 28, 29 puede incorporar un intercambiador interno o externo de calor sensible 25, 26 para controlar la temperatura del fluido de trabajo 20, 22, 23.
El, al menos un, tubo de calor 27 comprende al menos un tubo evaporador en su cara exterior y condensador en su cara interior 24 que evapora el fluido de trabajo 20 y la fase gaseosa evaporada se aporta a temperatura controlada dentro de la carcasa 4, siendo el fluido de trabajo 20 un fluido de trabajo de dos fases con un punto de solidificación por debajo de la temperatura de la cara exterior del, al menos un, tubo criogénico 3, de modo que no se puede acumular fase sólida del fluido de trabajo sobre la cara exterior del tubo criogénico 3 y se controla la temperatura de la fase gaseosa del fluido de trabajo que se aporta sobre la cara exterior del tubo criogénico 3.
Seguidamente se pueden intercalar n tubos de calor 28 con su fluido de trabajo 22 correspondiente a su rango de temperaturas de trabajo y sistemas de intercambio de calor sensible 26 para crear un escalonado progresivo de temperaturas de trabajo en las que el fluido de trabajo no se solidifique.
Al final de este intercalado de, al menos, un tubo de calor, el fluido de trabajo en fase líquida 23 que se aporta a la cara interior evaporadora de las cámaras o tubos evaporadores condensadores 7 sobre cuya cara exterior se condensa el vapor de agua del aire húmedo 8 está a una temperatura por encima de 0eC lo que garantiza que el agua condensada sobre la cara exterior de cada carcasa o tubo evaporador condensador 7 no se congela.

Claims

9 REIVINDICACIONES
1. Un dispositivo de regasificación de gas natural licuado, GNL, y cogeneración de agua dulce fría y aire seco frío, caracterizado por que comprende al menos una carcasa (4) hermética con el exterior que soporta condiciones de vacío que contiene un fluido de trabajo en sus fases líquida (5) y gaseosa (6) (15), la, al menos una, carcasa (4) está atravesada por al menos un tubo criogénico (3) por el que se introduce gas natural licuado GNL (1 ) por uno de sus extremos y se extrae gas natural regasificado (2) por el otro extremo, la cara exterior del, al menos un, tubo criogénico (3) es condensadora y sobre ella se condensa la fase gaseosa (6) (15) del fluido de trabajo liberando energía, y unas cámaras o tubos evaporadores condensadores (7) situados fuera de la, al menos una, carcasa 4 con la cara condensadora exterior en contacto con aire húmedo y el vapor de aire contenido en el aire húmedo se condensa sobre la cara condensadora exterior de las cámaras o tubos evaporadores condensadores (7) generando agua dulce fría (10) y liberando energía que es absorbida por el fluido de trabajo en fase líquida (5) que fluye sobre la cara evaporadora interior de las cámaras o tubos evaporadores condensadores (7) y que se evapora generando fase gaseosa (12) del fluido de trabajo que sale por un extremo de las cámaras o tubos evaporadores condensadores (7), y se canaliza (15) dentro de la, al menos una, carcasa (4) para su condensación.
2. Dispositivo de regasificación de acuerdo con la reivindicación 1 , caracterizado por que comprende al menos un ventilador, soplador o turbina (19) que impulsa aire húmedo (8) sobre las caras exteriores condensadoras de las cámaras o tubos evaporadores condensadores (7) (17).
3. Dispositivo de regasificación de acuerdo con la reivindicación 1 , caracterizado por que las cámaras o tubos evaporadores condensadores (7) tienen su cara interior evaporadora cubierta, al menos en parte de una estructura capilar en forma de microsurcos, microranuras, sinterizado, mecha u otra estructura capilar en la que la interfaz líquido gas del fluido de trabajo se curva y fluye ordenadamente dentro de la estructura capilar sin formar películas de líquido y tiene su cara exterior condensadora cubierta, al menos en parte de una estructura capilar en forma de microsurcos, microranuras, sinterizado, mecha u otra estructura capilar en la que la interfaz líquido gas del agua condensada se curva y fluye ordenadamente dentro de la estructura capilar sin formar películas de agua.
4. Dispositivo de regasificación de acuerdo con la reivindicación 1 , caracterizado por que la cara exterior condensadora del, al menos un, tubo criogénico (3) está cubierta, al menos en parte, de aletas para aumentar la superficie de intercambio
5. Dispositivo de regasificación de acuerdo con la reivindicación 1 , caracterizado por que la cara exterior condensadora del, al menos un, tubo criogénico (3) está cubierta, al menos en parte, de una estructura capilar sobre la que el fluido de trabajo en fase gaseosa (6) (15) se condensa en régimen de condensación capilar.
6. Dispositivo de regasificación de acuerdo con la reivindicación 2, caracterizado por estar dentro de, al menos, una estructura (18) con, al menos, un ventilador, soplador o turbina (19) para canalizar el flujo de aire húmedo (8) sobre la cara evaporadora de las cámaras o tubos evaporadores condensadores (7) (17).
7. Dispositivo de regasificación de acuerdo con la reivindicación 1 , caracterizado por que comprende más de una carcasa 4 con un fluido de trabajo específico (20) (21 ) para trabajar dentro de un rango de temperaturas de trabajo específico por encima de su temperatura de solidificación.
8. Dispositivo de regasificación de acuerdo a la reivindicación 1 , caracterizado por que comprende al menos un tubo de calor o caloducto (27) (28) (29) intercalado entre la, al menos una, carcasa (4) y el, al menos un, recipiente hermético en condiciones de vacío (16), y por que el, al menos un, tubo de calor o caloducto (27) (28) (29) contiene un fluido de trabajo específico (20), (22), (23) de dos fases con un punto de solidificación a una temperatura inferior a la del rango de temperaturas de trabajo del caloducto o tubo de calor (27) (28) (29).
9. Dispositivo de regasificación de acuerdo con la reivindicación 8, caracterizado por que al menos un tubo de calor (27, 28, 29) incorpora o está conectado a un intercambiador de calor sensible (25, 26) para controlar la temperatura del fluido de trabajo (20, 22, 23).
10. Dispositivo de regasificación de acuerdo con la reivindicación 8, caracterizado por que el, al menos un, tubo de calor (27) intercalado comprende al menos un tubo (24) evaporador en su cara exterior y condensador en su cara interior que evapora el fluido de trabajo (20) y la fase gaseosa evaporada se aporta a temperatura controlada dentro de la, al menos una, carcasa (4), siendo el fluido de trabajo (20) un fluido de trabajo de dos fases con un punto de solidificación por debajo de la temperatura de la cara exterior del, al menos un, tubo criogénico (3).
PCT/ES2021/070655 2020-09-11 2021-09-10 Dispositivo regasificador gnl y cogenerador de agua fria y aire seco frio WO2022053733A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023516130A JP2023540623A (ja) 2020-09-11 2021-09-10 Lng再ガス化および低温清水と低温乾燥空気の同時発生のための装置
EP21866144.5A EP4212813A4 (en) 2020-09-11 2021-09-10 LNG RE-EVAPORATOR AND COLD WATER AND COLD DRY AIR COGENERATOR
US18/044,846 US20230375137A1 (en) 2020-09-11 2021-09-10 Lng regasification device and cogenerator of cold water and cold dry air
CN202180076045.5A CN116529552A (zh) 2020-09-11 2021-09-10 用于液化天然气及冷水和冷干空气的共生的再气化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202031986U ES1255744Y (es) 2020-09-11 2020-09-11 Dispositivo regasificador GNL y cogenerador de agua fría y aire seco frio
ESU202031986 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022053733A1 true WO2022053733A1 (es) 2022-03-17

Family

ID=73039176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070655 WO2022053733A1 (es) 2020-09-11 2021-09-10 Dispositivo regasificador gnl y cogenerador de agua fria y aire seco frio

Country Status (6)

Country Link
US (1) US20230375137A1 (es)
EP (1) EP4212813A4 (es)
JP (1) JP2023540623A (es)
CN (1) CN116529552A (es)
ES (1) ES1255744Y (es)
WO (1) WO2022053733A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075010A1 (en) * 2012-11-12 2014-05-15 Fluor Technologies Corporation Configurations and methods for ambient air vaporizers and cold utilization
CN104048161A (zh) * 2014-06-25 2014-09-17 江苏中圣高科技产业有限公司 一种液态天然气(lng)的联合气化装置
WO2014181661A1 (ja) * 2013-05-08 2014-11-13 株式会社神戸製鋼所 中間媒体式気化器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260330A1 (en) * 2005-05-19 2006-11-23 Rosetta Martin J Air vaporizor
JP6111157B2 (ja) * 2013-07-01 2017-04-05 株式会社神戸製鋼所 冷熱回収機能付きガス気化装置及び冷熱回収装置
EP3495712B1 (en) * 2016-08-02 2022-10-19 Juan Eusebio Nomen Calvet Regasification device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075010A1 (en) * 2012-11-12 2014-05-15 Fluor Technologies Corporation Configurations and methods for ambient air vaporizers and cold utilization
WO2014181661A1 (ja) * 2013-05-08 2014-11-13 株式会社神戸製鋼所 中間媒体式気化器
CN104048161A (zh) * 2014-06-25 2014-09-17 江苏中圣高科技产业有限公司 一种液态天然气(lng)的联合气化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212813A4

Also Published As

Publication number Publication date
ES1255744Y (es) 2021-01-26
JP2023540623A (ja) 2023-09-25
US20230375137A1 (en) 2023-11-23
ES1255744U (es) 2020-11-05
EP4212813A4 (en) 2024-03-13
CN116529552A (zh) 2023-08-01
EP4212813A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
ES2400029T3 (es) Sistema y proceso para la vaporización de gas natural licuado
BR112015017785B1 (pt) Sistema de descongelamento para aparelho de refrigeração e unidade refrigerante
ES2764164T3 (es) Dispositivo de refrigeración
ES2548873T3 (es) Procedimiento y dispositivo para controlar el funcionamiento de un dispositivo de bomba de calor
JP6022810B2 (ja) 低温液化ガス気化装置及び低温液化ガス気化方法
WO2019110862A1 (es) Disposición mvc de bajo ratio de compresión
PT2856055T (pt) Processo de transferência de calor entre um sal fundido e outro fluido num permutador de calor em espiral
JP2011080736A (ja) 熱交換装置
WO2022053733A1 (es) Dispositivo regasificador gnl y cogenerador de agua fria y aire seco frio
US11067226B2 (en) Vaporization systems and methods of using the same
ES2375390A1 (es) Planta de recuperación de helio.
JP2007247797A (ja) Lngベーパライザ
JP6092065B2 (ja) 液化ガスの気化システム及び液化ガスの気化方法
ES2742869T3 (es) Intercambiador térmico con al menos tres fluidos de eficacia mejorada
ES2951130T3 (es) Disposición y método para transferir calor
KR101165304B1 (ko) 미세유로형 열교환장치
ES2935835T3 (es) Dispositivo regasificador
ES2328619T3 (es) Sistema y metodo para vaporizar liquidos criogenicos usando un refrigerante intermedio en circulacion natural.
ES2921352T3 (es) Sistema de enfriamiento y método para enfriar agua
ES2839402T3 (es) Aparato para secar un gas
JP2013119942A (ja) 液化ガスの気化システム
ES2970205T3 (es) Disposición y método para transferir calor desde un depurador húmedo a una red de calefacción urbana
ES2473190B1 (es) Dispositivo de Destilación Multi-Efecto
JP2021008942A (ja) 液化天然ガス気化器及び冷水供給方法
CN220647857U (zh) 一种余热利用汽化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866144

Country of ref document: EP

Effective date: 20230411

WWE Wipo information: entry into national phase

Ref document number: 202180076045.5

Country of ref document: CN