WO2022052408A1 - 一种碳纳米管母粒及其制备方法与应用 - Google Patents

一种碳纳米管母粒及其制备方法与应用 Download PDF

Info

Publication number
WO2022052408A1
WO2022052408A1 PCT/CN2021/073536 CN2021073536W WO2022052408A1 WO 2022052408 A1 WO2022052408 A1 WO 2022052408A1 CN 2021073536 W CN2021073536 W CN 2021073536W WO 2022052408 A1 WO2022052408 A1 WO 2022052408A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
carbon nanotube
conductive
resin
master batch
Prior art date
Application number
PCT/CN2021/073536
Other languages
English (en)
French (fr)
Inventor
卢朝亮
叶南飚
黄险波
杨波
吴亦建
吴志强
苏娟霞
罗忠富
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022052408A1 publication Critical patent/WO2022052408A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • the invention relates to the field of polymer material modification, in particular to a carbon nanotube master batch and a preparation method and application thereof.
  • polypropylene As a cost-effective general-purpose plastic, polypropylene (PP) has excellent mechanical properties after toughening and modification, and is easy to form and process, and is widely used in home appliances and automotive products.
  • Millimeter-wave radars will be widely used in automatic cruise (ACC), collision avoidance system (CA) and lane-change assistance systems in future automotive automated driving technologies, and with the development of technology, 77GHz millimeter-wave radars will be widely industrialized and Replacing 24GHz millimeter-wave radar has become the mainstream of automotive millimeter-wave radar applications. In this case, the anti-jamming of radar is particularly important.
  • ACC automatic cruise
  • CA collision avoidance system
  • lane-change assistance systems in future automotive automated driving technologies
  • 77GHz millimeter-wave radars will be widely industrialized and Replacing 24GHz millimeter-wave radar has become the mainstream of automotive millimeter-wave radar applications. In this case, the anti-jamming of radar is particularly important.
  • MWCNTs multi-walled carbon nanotubes
  • MWCNTs are not easy to disperse and easily cause dust pollution in the production process.
  • professional equipment technology and professional formula design are required at the same time, and the formula design freedom is low and cumbersome, so an efficient, convenient and cost-saving preparation method of MWCNT masterbatch is required.
  • the purpose of the present invention is to overcome the deficiencies of the above-mentioned prior art and provide a carbon nanotube master batch.
  • a carbon nanotube master batch comprising the following components by weight: 50-80 parts of PP resin, 10-40 parts of filler, 3-10 parts of MWCNT and auxiliary agent 0.1 to 3 parts; the filler is at least one of talc, calcium carbonate, barium sulfate, and glass fiber.
  • the carbon nanotube masterbatch includes the following components in parts by weight: 50-80 parts of PP resin, 20-30 parts of filler, 5-8 parts of MWCNT and 0.1-3 parts of auxiliary.
  • the PP resin is at least one of homopolypropylene and copolymerized polypropylene, and the melt mass flow rate of the PP resin at 230° C. under a load of 2.16Kg is 1-100g/10min;
  • the MWCNT is a multi-walled carbon nanotube, the diameter of the MWCNT is 8-60 nm, and the length of the MWCNT is 2-100 ⁇ m;
  • the auxiliary agent is one or more of antioxidants, light stabilizers and lubricants.
  • the present invention also provides a method for preparing the carbon nanotube master batch, which comprises the following steps: mixing PP resin, MWCNT, filler and auxiliary agent uniformly, then adding it into a twin-screw extruder, and performing melt-kneading. , extruding and granulating to obtain carbon nanotube master batches; wherein, the temperature of melting and kneading is 200-210° C., and the screw speed of the twin-screw extruder is 350-450 rpm.
  • the invention also provides the application of the carbon nanotube master batch in the conductive polypropylene material.
  • the present invention also provides a conductive polypropylene material comprising the above-mentioned carbon nanotube master batch, comprising the following components in parts by weight: 20-70 parts of PP resin, 0-30 parts of toughening agent, 0-40 parts of filler, carbon 10-50 parts of nanotube master batch, 10-50 parts of conductive carbon black master batch and 0.1-3 parts of auxiliary agent.
  • the weight percentage of the conductive carbon black is ⁇ 40%, and the oil absorption value of the conductive carbon black is ⁇ 120 m 3 /100g; the measurement standard of the oil absorption value of the conductive carbon black is ASTM D3493 -2016.
  • the conductive polypropylene material comprises the following components by weight: 20-70 parts of PP resin, 0-30 parts of toughening agent, 0-40 parts of filler, 20-40 parts of carbon nanotube masterbatch, conductive 15-35 parts of carbon black masterbatch and 0.1-3 parts of additives.
  • the PP resin is at least one of homopolypropylene and copolymerized polypropylene, and the melt mass flow rate of the PP resin at 230°C and a load of 2.16Kg is 1-100g/10min;
  • the toughening agent is one or more of POE plastic, hydrogenated styrene-butadiene block copolymer (SEBS), and ethylene-propylene-diene rubber (EPDM);
  • (3) described filler is one or more in talc, calcium carbonate, barium sulfate, glass fiber;
  • the auxiliary agent is one or more of antioxidants, light stabilizers and lubricants.
  • the particle size of the filler is 1000-5000 mesh.
  • the antioxidant is a hindered phenolic and/or phosphite antioxidant, specifically one or a mixture of two or more of 1010, 1076, 3114, 168, and PEP-36;
  • the light stabilizer is a hindered amine light stabilizer, specifically one or a mixture of two or more of UV-3808PP5, LA-402XP, and LA-402AF;
  • the lubricant is one or a mixture of two or more of silicones, esters, amides, polyethylenes, stearic acids, fatty acids and esters.
  • the present invention also provides a preparation method of the conductive polypropylene material, the method is as follows: mixing PP resin, toughening agent, filler, carbon nanotube master batch, conductive carbon black master batch and auxiliary agent evenly Then, it is added to the twin-screw extruder, melt-kneaded, extruded and pelletized to obtain conductive polypropylene material; wherein, the melt-kneading temperature is 200-210°C, and the screw speed of the twin-screw extruder is 350-450 rpm /Minute.
  • the present invention also discloses the application of the conductive polypropylene material in the interior and exterior trim parts of automobiles that require electromagnetic shielding.
  • the carbon nanotube masterbatch of this application through the control of each component and content, realizes the preparation of MWCNT masterbatch with a high degree of dispersion under ordinary twin-screw extrusion conditions, and gets rid of the traditional masterbatch preparation that requires professional use. Banburying with equipment can easily lead to the problem of damage to the MWCNT structure.
  • the MWCNT masterbatch produced by extrusion has a higher degree of freedom in formula design and is easy to operate, so it does not need to be limited by the limitations of commercially available MWCNT masterbatch products.
  • the production method of the prepared MWCNT masterbatch is simple and convenient to implement, has cost advantages, and has a high degree of design freedom.
  • the prepared conductive polypropylene composition has a convenient production method, a lower content of conductive fillers to be added, and a higher conductivity of the material, and has the advantages of simplicity, low cost, and improved performance.
  • the advantage of high conductivity is a convenient production method, a lower content of conductive fillers to be added, and a higher conductivity of the material, and has the advantages of simplicity, low cost, and improved performance. The advantage of high conductivity.
  • the prepared conductive polypropylene composition has very high conductivity, and is suitable for use as an EMI material, for automotive interior and exterior trim parts with EMI characteristic requirements and other applications with EMI requirements.
  • test method for electrical conductivity is: the surface resistance of the material is tested according to ASTM D-4496 and D-257 standards; the test standard for impact strength is ISO 527; the test for flexural modulus is expressed as ISO 178 .
  • PP resin copolymerized polypropylene, the melt mass flow rate at 230°C and 2.16Kg load is 40g/10min, Sinopec Maoming;
  • MWCNT diameter of 8-15nm, length of 10-70um, LG Chem
  • Filler 1 (talc): the particle size is 3000 mesh, Beihai Group;
  • Filler 2 (talcum powder): particle fineness is 325 mesh, Beihai Group
  • Toughening agent 1 (POE): The melt mass flow rate at 190°C and 2.16Kg load is 1.2g/10min, Dow Chemical;
  • Toughening agent 2 (POE): the melt mass flow rate at 190°C and 2.16Kg load is 30g/10min, Dow Chemical;
  • Conductive carbon black masterbatch 1 The weight percentage of conductive carbon black is 50%, the oil absorption value of conductive carbon black is 150m 3 /100g [the measurement standard is ASTM D3493-2016], Chengrong, Taiwan;
  • Conductive carbon black masterbatch 2 The weight percentage of conductive carbon black is 50%, the oil absorption value of conductive carbon black is 110m 3 /100g [the measurement standard is ASTM D3493-2016], Chengrong, Taiwan;
  • the preparation method of carbon nanotube masterbatch is as follows:
  • the preparation method of the conductive polypropylene material is as follows:
  • the melting and kneading temperature is 200 ⁇ 210°C
  • the rotating speed of the screw is 350-450 rpm, extruding and granulating to obtain conductive polypropylene material.
  • the electrical conductivity test results of the conductive polypropylene materials obtained in Examples 1 to 11 of the present invention are all at the level of 10 4 -10 2 ⁇ /sq, indicating that the self-made MWCNT masterbatch in this patent and the conductive carbon
  • the scheme of mixing black masterbatch can greatly reduce the total amount of conductive filler added in the system, and at the same time achieve very good material conductivity.
  • Example 2 Comparing Examples 2 to 5, it can be seen that in Examples 3 and 4, 20 to 40 parts of carbon nanotube masterbatches, 15 to 35 parts of conductive carbon black masterbatches, and 10 parts of carbon nanotube masterbatches in Examples 2 and 5 ⁇ 50 parts, 10 ⁇ 50 parts of conductive carbon black masterbatch, the conductivity, impact strength, and flexural modulus in Examples 3 and 4 are better than those in Examples 2 and 5, and at the same time, Example 2 uses a large amount of MWCNT masterbatch. , although the final product can achieve good electrical conductivity, but its product cost is much higher than that of Examples 3 and 4; while Example 5 has a very high proportion of conductive carbon black, although the product has high conductivity, it is often produced The process is prone to problems.
  • Example 7 Comparing Examples 3 and 6 to 8, it can be seen that in the carbon nanotube master batches in Examples 3 and 6, 20 to 30 parts of fillers and 5 to 8 parts of MWCNTs; the carbon nanotube master batches in Examples 7 and 8 Among them, 10-40 parts of filler and 3-10 parts of MWCNT; the impact strength and flexural modulus in Examples 3 and 6 are better than those in Examples 7 and 8, and the electrical conductivity in Examples 3 and 6 are better than those in Example 8, Although Example 7 has high electrical conductivity, it does not have a very good actual production capacity. This is because: the carbon nanotube masterbatch 3# contains very high talc and MWCNT ratios, resulting in Production becomes less stable, which is not conducive to the improvement of material conductivity.
  • Comparative Example 1 Comparing Example 1 with Comparative Examples 1 to 3, it can be seen that Comparative Examples 1 and 3 only contain at least one of conductive carbon black masterbatch and carbon nanotube masterbatch, and Comparative Example 2 directly uses MWCNT powder and conductive The carbon black masterbatch is compounded (25 parts of MWCNT masterbatch 1# contains 2 parts of active ingredient MWCNT).
  • Example 3 Comparing Example 3 with Example 9, it can be seen that the particle size of the filler in Example 9 is less than 1000 mesh, and its electrical conductivity, impact performance, and flexural modulus are all worse than those of Example 3; compare Example 3 with Example 10 It can be seen that the melt mass flow rate in Example 10 is greater than 20g/10min, and its electrical conductivity, impact performance, and flexural modulus are all worse than those in Example 3; Conductive carbon black masterbatch, the oil absorption value of conductive carbon black is less than 120m 3 /100g, and its electrical conductivity, impact performance, and flexural modulus are all inferior to those of Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种碳纳米管母粒及其制备方法与应用,其中碳纳米管母粒包括如下重量份的成分:PP树脂50~80份、填料10~40份、MWCNT 3~10份和助剂0.1~3份;所述MWCNT为多壁碳纳米管,所述填料为滑石粉、碳酸钙、硫酸钡、玻璃纤维中的至少一种。本申请碳纳米管母粒,通过各成分及含量的控制,实现了在普通双螺杆挤出条件下即可制备出高分散程度的MWCNT母粒,摆脱了传统母粒制备需要用到专业设备进行密炼容易导致MWCNT结构破坏的问题。

Description

一种碳纳米管母粒及其制备方法与应用 技术领域
本发明涉及高分子材料改性领域,尤其涉及一种碳纳米管母粒及其制备方法与应用。
背景技术
聚丙烯(PP)作为一种高性价比的通用塑料,通过增韧改性后具有较为优异的力学性能,成型加工简便,广泛应用于家电及汽车产品。
未来的汽车自动化驾驶技术中自动巡航(ACC)、防撞***(CA)以及变道辅助***等将大量使用毫米波雷达,且随着技术的发展,77GHz毫米波雷达将在行业普遍产业化并替代24GHz毫米波雷达成为汽车毫米波雷达应用的主流,在此情况下,雷达的抗干扰显得格外重要。
由于多壁碳纳米管(MWCNT)的密度小难以分散的问题,在用于制备导电聚丙烯组合物时,MWCNT不易分散且容易造成生产过程中的粉尘污染,而目前市售的MWCNT母粒多为采用密炼高剪切的方法进行生产,同时需要用到专业的设备工艺以及专业的配方设计,配方设计自由度低且繁琐,所以需要一种高效便捷且节约成本的MWCNT母粒的制备方法来提高MWCNT在基体树脂当中的分散性以及降低生产过程中的粉尘污染。同时,由于聚丙烯相比于其它极性树脂来说更不易实现导电性,所以目前市面上关于导电聚丙烯产品的报道相对较少,而常规的实现材料导电性的方案在聚丙烯体系中会遇到添加量极高,生产不稳定以及材料导电性波动的问题,因此本领域尚需开发一种制备简单可行的制备导电聚丙烯材料的方法,同时适用于有电磁屏蔽需求的汽车内外饰件。
发明内容
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种碳纳米管母粒。
为实现上述目的,本发明所采取的技术方案为:一种碳纳米管母粒,包括 如下重量份的成分:PP树脂50~80份、填料10~40份、MWCNT 3~10份和助剂0.1~3份;所述填料为滑石粉、碳酸钙、硫酸钡、玻璃纤维中的至少一种。
优选地,所述的碳纳米管母粒,包括如下重量份的成分:PP树脂50~80份、填料20~30份、MWCNT 5~8份和助剂0.1~3份。
优选地,如下(a)~(c)中的至少一种:
(a)所述PP树脂为均聚聚丙烯、共聚聚丙烯中的至少一种,所述PP树脂在230℃、2.16Kg负荷下的熔体质量流动速率为1~100g/10min;
(b)所述MWCNT为多壁碳纳米管,所述MWCNT的管径为8-60nm,所述MWCNT的长度为2-100μm;
(c)所述助剂为抗氧剂、光稳定剂和润滑剂中的一种或几种。
同时,本发明还提供一种所述的碳纳米管母粒的制备方法,所述方法为:将PP树脂、MWCNT、填料及助剂混合均匀之后加入双螺杆挤出机中,进行熔融混炼、挤出造粒,得到碳纳米管母粒;其中,熔融混炼的温度为200~210℃,双螺杆挤出机的螺杆转速为350~450转/分。
本发明还提供所述的碳纳米管母粒在导电聚丙烯材料中的应用。
此外,本发明还提供一种包含上述碳纳米管母粒的导电聚丙烯材料,包含以下重量份的成分:PP树脂20~70份、增韧剂0~30份、填料0~40份、碳纳米管母粒10~50份、导电炭黑母粒10~50份和助剂0.1~3份。
优选地,所述导电炭黑母粒中,导电炭黑的重量百分含量≥40%,导电炭黑的吸油值≥120m 3/100g;所述导电炭黑的吸油值的测量标准为ASTM D3493-2016。
优选地,所述的导电聚丙烯材料,包含以下重量份的成分:PP树脂20~70份、增韧剂0~30份、填料0~40份、碳纳米管母粒20~40份、导电炭黑母粒15~35份和助剂0.1~3份。
优选地,如下(1)~(4)中的至少一种:
(1)所述PP树脂为均聚聚丙烯、共聚聚丙烯中的至少一种,所述PP树脂 在230℃、2.16Kg负荷下的熔体质量流动速率为1~100g/10min;
(2)所述增韧剂为POE塑料、氢化苯乙烯-丁二烯嵌段共聚物(SEBS)、三元乙丙橡胶(EPDM)中的一种或几种;
(3)所述填料为滑石粉、碳酸钙、硫酸钡、玻璃纤维中的一种或几种;
(4)所述助剂为抗氧剂、光稳定剂、润滑剂中的一种或几种。
更优选地,如下(a)~(b)中的至少一种:
(a)所述增韧剂在190℃、2.16Kg负荷下的熔体质量流动速率为0.1-20g/10min;
(b)所述填料的颗粒细度为1000~5000目。
优选地,所述抗氧剂为受阻酚类和/或亚磷酸酯类抗氧剂,具体可以是1010、1076、3114、168、PEP-36中的一种或者两种及以上的混合物;
所述光稳定剂为受阻胺类光稳定剂,具体可以是UV-3808PP5、LA-402XP、LA-402AF中的一种或者两种及以上的混合物;
所述润滑剂为硅酮类、酯类、酰胺类、聚乙烯类、硬脂酸类、脂肪酸及酯类中的一种或者两种及以上的混合物。
进一步地,本发明还提供一种所述导电聚丙烯材料的制备方法,所述方法为:将PP树脂、增韧剂、填料、碳纳米管母粒、导电炭黑母粒及助剂混合均匀后加入双螺杆挤出机中,进行熔融混炼、挤出造粒,得到导电聚丙烯材料;其中,熔融混炼温度为200~210℃,双螺杆挤出机的螺杆转速为350~450转/分。
此外,本发明还公开所述导电聚丙烯材料在有电磁屏蔽需求的汽车内外饰件中的应用。
相对于现有技术,本发明的有益效果为:
1)本申请碳纳米管母粒,通过各成分及含量的控制,实现了在普通双螺杆挤出条件下即可制备出高分散程度的MWCNT母粒,摆脱了传统母粒制备需要用到专业设备进行密炼容易导致MWCNT结构破坏的问题,同时挤出法生产的MWCNT母粒的配方设计自由度更高,操作简便,从而不需要受限于市售MWCNT母粒产品的局限性。
2)所制备的MWCNT母粒的生产方法简单便于实行,具有成本优势,设计自由度高。
3)所制备的导电聚丙烯组合物相比于常规的聚丙烯导电方案,其生产方法便于实现,所需要添加的导电填料含量更低,同时材料导电性更高,具备简便、低成本以及更高导电性的优势。
4)所制备的导电聚丙烯组合物具有非常高的导电性,适用于作为EMI材料,用于具有EMI特性需求的汽车内外饰件以及其他有EMI需求的应用场合。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。以下实施例只是本发明的典型例,本发明的保护范围并不局限于此。以下实施例和对比例中,导电性能测试方法为:按ASTM D-4496和D-257标准对材料的表面电阻进行测试;冲击强度的测试标准为ISO 527;弯曲模量的测试表示为ISO 178。
实施例和对比例中用到的主要代表材料如下:
PP树脂:共聚聚丙烯,在230℃、2.16Kg负荷下的熔体质量流动速率为40g/10min,中石化茂名;
MWCNT:管径为8-15nm,长度为10-70um,LG化学;
填料1(滑石粉):颗粒细度为3000目,北海集团;
填料2(滑石粉):颗粒细度为325目,北海集团
增韧剂1(POE):在190℃、2.16Kg负荷下的熔体质量流动速率为1.2g/10min,陶氏化学;
增韧剂2(POE):在190℃、2.16Kg负荷下的熔体质量流动速率为30g/10min,陶氏化学;
导电炭黑母粒1:导电炭黑的重量百分含量为50%,导电炭黑吸油值150m 3/100g【测量标准为ASTM D3493-2016】,台湾成榕;
导电炭黑母粒2:导电炭黑的重量百分含量为50%,导电炭黑吸油值110m 3/100g【测量标准为ASTM D3493-2016】,台湾成榕;
助剂(均为市售所得):
润滑剂(硬脂酸锌)
抗氧剂(1010/168)
光稳定剂(UV-3808)
碳纳米管母粒的制备方法如下:
取PP树脂、MWCNT、填料及助剂混合均匀之后加入双螺杆挤出机中,进行熔融混炼,熔融混炼温度为200~210℃,螺杆转速为350~450转/分,挤出造粒,得到碳纳米管母粒。
导电聚丙烯材料的制备方法如下:
将PP树脂、增韧剂、矿物填料、碳纳米管母粒、导电炭黑母粒及助剂混合均匀后加入双螺杆挤出机中,进行熔融混炼,熔融混炼温度为200~210℃,螺杆转速为350~450转/分,挤出造粒,得到导电聚丙烯材料。
本申请设置实施例1~11及对比例1~5,碳纳米管母粒1#~5#的各成分含量如表1所示;实施例1~11中导电聚丙烯材料的各成分含量及性能如表2所示;对比例1~5中导电聚丙烯材料的各成分含量及性能如表3所示。
表1碳纳米管母粒1#~5#的各成分含量
Figure PCTCN2021073536-appb-000001
表2实施例1~11中导电聚丙烯材料的各成分含量及性能
Figure PCTCN2021073536-appb-000002
Figure PCTCN2021073536-appb-000003
表3对比例1~5中导电聚丙烯材料的各成分含量及性能
项目 对比例1 对比例2 对比例3 对比例4
PP树脂 50 50 50 30
滑石粉       15
POE       10
导电炭黑母粒 25 25   35
MWCNT   2    
碳纳米管母粒1#     25  
碳纳米管母粒5#       20
抗氧剂 0.4 0.4 0.4 0.4
光稳定剂 0.4 0.4 0.4 0.4
硬脂酸锌 0.3 0.3 0.3 0.3
表面电阻(Ω/sq) >1.0E+12 5.62E+05 4.81E+06 4.75E+08
冲击强度(KJ/m 2) 45.78 34.26 45.12 28.54
弯曲模量(MPa) 1040 1126 1158 1246
从表2可以看出,本发明实施例1~11所得导电聚丙烯材料的导电性测试结果均处于10 4-10 2Ω/sq水平,说明采用本专利中的自制MWCNT母粒以及与导电炭黑母粒复配的方案,可以很大程度上降低体系中总的导电填料的添加量,同时达到非常好的材料导电性。
将实施例2~5进行对比可知,实施例3、4中的碳纳米管母粒20~40份、导电炭黑母粒15~35份,实施例2、5中的碳纳米管母粒10~50份、导电炭黑母粒10~50份,实施例3、4中的导电性能、冲击强度、弯曲模量优于实施例2和5,同时其中实施例2由于大量使用了MWCNT母粒,最终产品虽可以达到不错的导电性,但是其产品成本则要远高于实施例3和4;而实施例5则导电炭黑的占比非常高,虽然产品导电性较高,但往往生产过程容易出现问题。
将实施例3、6~8进行对比可知,实施例3、6中的碳纳米管母粒中,填料20~30份、MWCNT 5~8份;实施例7、8中的碳纳米管母粒中,填料10~40份、MWCNT 3~10份;实施例3、6中的冲击强度、弯曲模量优于实施例7、8,实施例3、6中的导电性能优于实施例8,而实施例7虽然导电性也很高,但并不具备很好的实际的生产能力,这是因为:碳纳米管母粒3#由于含有非常高的滑石粉以及MWCNT配比,导致母粒的生产变得不太稳定,反而不利于材料导电性的提高。
将实施例1与对比例1~3对比可知,对比例1、3中只含有导电炭黑母粒和碳纳米管母粒中的至少一种,对比例2中直接采用了MWCNT粉体与导电炭黑母粒进行复配(25份的MWCNT母粒1#当中含有有效成分MWCNT为2份),对比例1~3中的导电性能、冲击性能、弯曲模量均差于实施例1。
将对比例4与实施例6对比可知,对比例4中的碳纳米管母粒中不含有填料,其导电性能、冲击性能、弯曲模量均差于实施例6。
将实施例3与实施例9对比可知,实施例9中的填料颗粒细度小于1000目,其导电性能、冲击性能、弯曲模量均差于实施例3;将实施例3与实施例10对比可知,实施例10中的熔体质量流动速率大于20g/10min,其导电性能、冲击性能、弯曲模量均差于实施例3;将实施例3与实施例11对比可知,实施例11中的导电炭黑母粒,导电炭黑的吸油值小于120m 3/100g,其导电性能、冲击性能、弯曲模量均差于实施例3。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的 普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (11)

  1. 一种碳纳米管母粒,其特征在于,包括如下重量份的成分:PP树脂50~80份、填料10~40份、MWCNT 3~10份和助剂0.1~3份;所述MWCNT为多壁碳纳米管,所述填料为滑石粉、碳酸钙、硫酸钡、玻璃纤维中的至少一种。
  2. 如权利要求1所述的碳纳米管母粒,其特征在于,包括如下重量份的成分:PP树脂50~80份、填料20~30份、MWCNT 5~8份和助剂0.1~3份。
  3. 如权利要求1或2所述的碳纳米管母粒,其特征在于,如下(a)~(c)中的至少一种:
    (a)所述PP树脂为均聚聚丙烯、共聚聚丙烯中的至少一种,所述PP树脂在230℃、2.16Kg负荷下的熔体质量流动速率为1~100g/10min;
    (b)所述MWCNT的管径为8-60nm,所述MWCNT的长度为2-100μm;
    (c)所述助剂为抗氧剂、光稳定剂和润滑剂中的一种或几种。
  4. 如权利要求1~3任一项所述的碳纳米管母粒的制备方法,其特征在于,所述方法为:将PP树脂、MWCNT、填料及助剂混合均匀之后加入双螺杆挤出机中,进行熔融混炼、挤出造粒,得到碳纳米管母粒;其中,熔融混炼的温度为200~210℃,双螺杆挤出机的螺杆转速为350~450转/分。
  5. 一种包含如权利要求1~3任一项所述碳纳米管母粒的导电聚丙烯材料,其特征在于,包含以下重量份的成分:PP树脂20~70份、增韧剂0~30份、填料0~40份、碳纳米管母粒10~50份、导电炭黑母粒10~50份和助剂0.1~3份。
  6. 如权利要求5所述的导电聚丙烯材料,其特征在于,所述导电炭黑母粒中,导电炭黑的重量百分含量≥40%,导电炭黑的吸油值≥120m 3/100g;所述导电炭黑的吸油值的测量标准为ASTM D3493-2016。
  7. 如权利要求5所述的导电聚丙烯材料,其特征在于,包含以下重量份的成分:PP树脂20~70份、增韧剂0~30份、填料0~40份、碳纳米管母粒20~40份、导电炭黑母粒15~35份和助剂0.1~3份。
  8. 如权利要求5所述的导电聚丙烯材料,其特征在于,如下(1)~(4) 中的至少一种:
    (1)所述PP树脂为均聚聚丙烯、共聚聚丙烯中的至少一种,所述PP树脂在230℃、2.16Kg负荷下的熔体质量流动速率为1~100g/10min;
    (2)所述增韧剂为POE塑料、氢化苯乙烯-丁二烯嵌段共聚物、三元乙丙橡胶中的一种或几种;
    (3)所述填料为滑石粉、碳酸钙、硫酸钡、玻璃纤维中的一种或几种;
    (4)所述助剂为抗氧剂、光稳定剂、润滑剂中的一种或几种。
  9. 如权利要求8所述的导电聚丙烯材料,其特征在于,如下(a)~(b)中的至少一种:
    (a)所述增韧剂在190℃、2.16Kg负荷下的熔体质量流动速率为0.1-20g/10min;
    (b)所述填料的颗粒细度为1000~5000目。
  10. 如权利要求6~9任一项所述导电聚丙烯材料的制备方法,其特征在于,所述方法为:将PP树脂、增韧剂、填料、碳纳米管母粒、导电炭黑母粒及助剂混合均匀后加入双螺杆挤出机中,进行熔融混炼、挤出造粒,得到导电聚丙烯材料;其中,熔融混炼温度为200~210℃,双螺杆挤出机的螺杆转速为350~450转/分。
  11. 如权利要求6~9任一项所述导电聚丙烯材料在有电磁屏蔽需求的汽车内外饰件中的应用。
PCT/CN2021/073536 2020-09-14 2021-01-25 一种碳纳米管母粒及其制备方法与应用 WO2022052408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010965070.6A CN112175300A (zh) 2020-09-14 2020-09-14 一种碳纳米管母粒及其制备方法与应用
CN202010965070.6 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052408A1 true WO2022052408A1 (zh) 2022-03-17

Family

ID=73921011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073536 WO2022052408A1 (zh) 2020-09-14 2021-01-25 一种碳纳米管母粒及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112175300A (zh)
WO (1) WO2022052408A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716763A (zh) * 2022-03-23 2022-07-08 华润化学材料科技股份有限公司 一种耐老化导电聚丙烯功能材料及其制备方法
CN114891350A (zh) * 2022-06-17 2022-08-12 山东海科创新研究院有限公司 高性能抗静电填料、含抗静电材料的聚醚砜复合材料及其制备方法
CN115322489A (zh) * 2022-08-23 2022-11-11 江苏中科聚合新材料产业技术研究院有限公司 一种耐高温发泡聚丙烯母粒及其制备方法
CN115536927A (zh) * 2022-09-30 2022-12-30 江苏金发科技新材料有限公司 矿粉母粒及制备方法、含矿粉母粒的聚丙烯组合物和应用
CN116199971A (zh) * 2022-12-27 2023-06-02 金发科技股份有限公司 一种易喷涂的导电微发泡聚丙烯材料及其制备方法和应用
CN116199985A (zh) * 2023-02-28 2023-06-02 宁波天益医疗器械股份有限公司 一种去电荷黑胶管及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175300A (zh) * 2020-09-14 2021-01-05 金发科技股份有限公司 一种碳纳米管母粒及其制备方法与应用
CN113980478B (zh) * 2021-10-27 2022-09-06 中化学科学技术研究有限公司 导电性热塑性弹性体组合物、电极部件及开关
CN116239840A (zh) * 2023-02-14 2023-06-09 深圳烯湾科技有限公司 碳纳米管改性的聚丙烯复合材料及其制备方法、注塑制件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124606A1 (en) * 2010-04-08 2011-10-13 Viba S.P.A. Flame retardant masterbatch for thermoplastic polymers and process for its production
CN102884112A (zh) * 2010-05-04 2013-01-16 沙伯基础创新塑料知识产权有限公司 将添加剂混入到聚合物组合物中的方法以及用于其中的分散体
CN106147011A (zh) * 2015-04-17 2016-11-23 普立万聚合体(上海)有限公司 一种含碳纳米管作为黑色颜料的母粒
CN110054835A (zh) * 2019-03-27 2019-07-26 无锡会通轻质材料股份有限公司 一种高倍率导电型聚丙烯发泡珠粒的制备方法
CN112175300A (zh) * 2020-09-14 2021-01-05 金发科技股份有限公司 一种碳纳米管母粒及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200563A (zh) * 2007-11-30 2008-06-18 清华大学 一种结晶型聚合物/碳纳米管导电性复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124606A1 (en) * 2010-04-08 2011-10-13 Viba S.P.A. Flame retardant masterbatch for thermoplastic polymers and process for its production
CN102884112A (zh) * 2010-05-04 2013-01-16 沙伯基础创新塑料知识产权有限公司 将添加剂混入到聚合物组合物中的方法以及用于其中的分散体
CN106147011A (zh) * 2015-04-17 2016-11-23 普立万聚合体(上海)有限公司 一种含碳纳米管作为黑色颜料的母粒
CN110054835A (zh) * 2019-03-27 2019-07-26 无锡会通轻质材料股份有限公司 一种高倍率导电型聚丙烯发泡珠粒的制备方法
CN112175300A (zh) * 2020-09-14 2021-01-05 金发科技股份有限公司 一种碳纳米管母粒及其制备方法与应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716763A (zh) * 2022-03-23 2022-07-08 华润化学材料科技股份有限公司 一种耐老化导电聚丙烯功能材料及其制备方法
CN114891350A (zh) * 2022-06-17 2022-08-12 山东海科创新研究院有限公司 高性能抗静电填料、含抗静电材料的聚醚砜复合材料及其制备方法
CN114891350B (zh) * 2022-06-17 2023-10-13 山东海科创新研究院有限公司 高性能抗静电填料、含抗静电材料的聚醚砜复合材料及其制备方法
CN115322489A (zh) * 2022-08-23 2022-11-11 江苏中科聚合新材料产业技术研究院有限公司 一种耐高温发泡聚丙烯母粒及其制备方法
CN115322489B (zh) * 2022-08-23 2024-03-22 江苏中科聚合新材料产业技术研究院有限公司 一种耐高温发泡聚丙烯母粒及其制备方法
CN115536927A (zh) * 2022-09-30 2022-12-30 江苏金发科技新材料有限公司 矿粉母粒及制备方法、含矿粉母粒的聚丙烯组合物和应用
CN115536927B (zh) * 2022-09-30 2023-12-15 江苏金发科技新材料有限公司 矿粉母粒及制备方法、含矿粉母粒的聚丙烯组合物和应用
CN116199971A (zh) * 2022-12-27 2023-06-02 金发科技股份有限公司 一种易喷涂的导电微发泡聚丙烯材料及其制备方法和应用
CN116199985A (zh) * 2023-02-28 2023-06-02 宁波天益医疗器械股份有限公司 一种去电荷黑胶管及其制备方法
CN116199985B (zh) * 2023-02-28 2024-02-06 宁波天益医疗器械股份有限公司 一种去电荷黑胶管及其制备方法

Also Published As

Publication number Publication date
CN112175300A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2022052408A1 (zh) 一种碳纳米管母粒及其制备方法与应用
WO2022110655A1 (zh) 导电聚丙烯组合物及其制备方法
CN111978615A (zh) 聚合物导热母粒及其制备方法和应用
CN102585348A (zh) 一种增韧导电材料及其制备方法
CN102030963B (zh) 无卤阻燃热塑性弹性体材料及其制备方法
WO2022105134A1 (zh) 低密度导电聚丙烯组合物及其制备方法与应用
CN108727697B (zh) 一种高流动性阻燃母料
CN106751004A (zh) 一种易加工高效抗静电聚丙烯复合材料及其制备方法
CN109354773A (zh) 成核剂在降低聚丙烯复合材料的析出发粘性的应用
CN107541049B (zh) 一种石墨烯协同连续玻纤增强无卤阻燃耐候ppo/hips合金材料及其制备方法
CN111621088A (zh) 一种导电聚丙烯材料及其制备方法
CN111484681A (zh) 一种石墨烯改性抗静电聚丙烯复合材料及其制备方法
CN110655708A (zh) 一种综合性能优异的低密度聚丙烯复合材料及其制备方法
CN105820494A (zh) 一种抗静电免喷涂聚丙烯复合材料及其制备方法
CN106751035A (zh) 一种耐折叠发白聚丙烯复合材料及其制备方法
CN102336967B (zh) 一种硬质无缝气囊材料及其制备方法
CN112662053A (zh) 一种低密度高性能车保险杠用改性聚丙烯复合材料及其制备方法
CN109575450A (zh) 一种高刚高韧聚丙烯复合材料及其制备方法
CN111393744A (zh) 具有抗菌导电性的tpe材料及其制备方法
JP3362791B2 (ja) ポリオレフィン樹脂組成物
CN108047572B (zh) 一种功能型滑石粉母粒
CN107841039B (zh) 一种橡胶增韧聚丙烯复合物及其应用
CN111777820A (zh) 石墨烯改性聚丁烯复合材料及其制备方法
CN110964258B (zh) 一种低收缩率聚丙烯组合物及其制备方法和应用
CN115418055B (zh) 一种高流动性聚丙烯塑料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21865472

Country of ref document: EP

Kind code of ref document: A1