WO2022049844A1 - Low insect-attracting method for inactivating microorganism or virus - Google Patents

Low insect-attracting method for inactivating microorganism or virus Download PDF

Info

Publication number
WO2022049844A1
WO2022049844A1 PCT/JP2021/020417 JP2021020417W WO2022049844A1 WO 2022049844 A1 WO2022049844 A1 WO 2022049844A1 JP 2021020417 W JP2021020417 W JP 2021020417W WO 2022049844 A1 WO2022049844 A1 WO 2022049844A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
less
inactivating
ultraviolet light
emitted
Prior art date
Application number
PCT/JP2021/020417
Other languages
French (fr)
Japanese (ja)
Inventor
敬祐 内藤
英昭 柳生
龍志 五十嵐
広行 大橋
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2022049844A1 publication Critical patent/WO2022049844A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation

Definitions

  • the present invention relates to a method for inactivating a bacterium or a virus, and more particularly to a method for inactivating a bacterium or a virus by irradiation with ultraviolet light.
  • the sterilization method using ultraviolet light is mainly required for high hygiene management in food factories and medical facilities because the sterilization process can be performed simply by irradiating the treatment target space and the treatment target with ultraviolet light without spraying chemicals. It is used for sterilization of the environment.
  • the sterilization treatment with ultraviolet light mainly employs a method using ultraviolet light having a wavelength of 254 nm.
  • ultraviolet rays provided with a low-pressure mercury lamp that emits ultraviolet light having a wavelength of 254 nm.
  • the irradiation device is described.
  • FIG. 14 is a spectrum of light emitted from a low-pressure mercury lamp, and the vertical axis is represented by a relative value with respect to the peak value.
  • the ultraviolet light emitted from the low-pressure mercury lamp has a peak wavelength of 254 nm, and also includes light showing a certain degree of relative intensity with respect to the peak wavelength in the range of 300 nm or more and less than 400 nm. There is.
  • FIG. 15 is a graph of the visual sensitivity characteristics of Drosophila, and the vertical axis is represented by a relative value with respect to the peak value (see Non-Patent Document 1).
  • the vision of Drosophila is characterized by being strongly stimulated by light having a wavelength of 300 nm or more and less than 550 nm. It is known that many insects have luminosity factor in the wavelength band of 250 nm or more and less than 550 nm, although the stimulating effect differs depending on the type.
  • Drosophila many insects such as Drosophila have phototaxis that move toward stimulating light, and they are within the wavelength range of luminosity factor and are relatively bright with respect to ambient light. It has the property of moving toward a light source. Due to this property, Drosophila are visually stimulated by light having a wavelength of 250 nm or more and less than 550 nm, and are attracted to the light source.
  • insects are sterilized by light having a wavelength of 254 nm used for sterilization, or ultraviolet light or visible light having a different wavelength band emitted together with the light. It attracted and created an unsanitary environment.
  • the method for inactivating a bacterium or a virus of the present invention is: It is characterized in that the effect of attracting insects is suppressed by irradiating emitted light having a peak wavelength in the wavelength range of 200 nm or more and less than 240 nm and suppressing the light intensity in the wavelength range of 250 nm or more and less than 550 nm.
  • light intensity is suppressed means that the light intensity is 1 mW / cm 2 or less and the light intensity is less than 5% with respect to the light intensity at the peak wavelength. More preferably, it is less than 3%.
  • inactivation refers to a concept that includes killing bacteria and viruses or losing infectivity and toxicity
  • fungi refers to bacteria, fungi, etc.
  • microorganisms refers to microorganisms.
  • bacteria or viruses may be collectively referred to as “bacteria, etc.”
  • ultraviolet light having a wavelength of 200 nm or more and less than 240 nm has a property of being absorbed by DNA or RNA possessed by cells such as bacteria and viruses, and therefore can be used for inactivation treatment of bacteria and viruses. can. This effect will be described in detail in "Modes for Carrying Out the Invention" with reference to FIGS. 4A and 4B.
  • insects particularly Drosophila and midges have high luminosity factor in the wavelength range of 300 nm or more and less than 400 nm.
  • the above method of inactivating bacteria or viruses is At least in a dark environment, a method of repeatedly turning on and off to inactivate bacteria or viruses may be used.
  • the method of inactivating the above-mentioned bacteria or viruses is It is preferable to repeat lighting and extinguishing so that the lighting period is 50% or less of the extinguishing period.
  • the above-mentioned method for inactivating bacteria or viruses is It is more preferable to repeat lighting and extinguishing so that the lighting period is 25% or less of the extinguishing period.
  • dark environment includes not only a dark space in which no light exists but also an environment in which a person can visually recognize and move around, for example, an emergency staircase in a building or the surrounding area. It also includes an environment like a night park with few street lights and a room with windows covered with blackout curtains. Specifically, an environment in which the illuminance of the space is 75 lpx or less is assumed.
  • insects have phototaxis and tend to attract light sources that are perceived as relatively bright. For example, when the light emitted from the light source has an intensity within the wavelength range of 250 nm or more and less than 550 nm, the light of the light source is perceived to be relatively bright in a dark environment, so that the light is weak. But sometimes it stands out. This can be understood from the fact that insects may be attracted at night even if the white lighting does not include light in a wavelength band (300 nm or more and less than 400 nm) in which the visibility of insects is high.
  • a wavelength band 300 nm or more and less than 400 nm
  • the light emitted from the light source in the wavelength range of 250 nm or more and less than 550 nm stands out even if it is very small, and attracts insects. It ends up.
  • the surroundings of the light source are shielded from light so that light in the wavelength range is not emitted, the light for inactivating bacteria and the like will also be shielded.
  • insects that are trying to move toward the light source for inactivation treatment or are moving will temporarily lose sight of the light emitted from the light source. Therefore, it is possible to suppress the movement of insects toward the light source, and the effect of attracting insects to insects is suppressed even in a dark environment.
  • the lighting period may be 60 seconds or less.
  • the lighting period is 60 seconds or less, most of the insects located several tens of centimeters away from the light source visually recognize the light emitted from the light source and proceed until or progress toward the light source. The tendency to lose sight of the light is confirmed while doing. Therefore, by using the above method, the effect of attracting insects is further suppressed.
  • the above method of inactivating bacteria or viruses is It may be performed by irradiating the light emitted from the excimer lamp containing Kr and Cl as the light emitting gas.
  • the emitted light may be light emitted from the excimer lamp and passed through a filter that reduces the light intensity in the wavelength range of at least 250 nm or more and less than 550 nm.
  • the light intensity in the wavelength range of 250 nm or more and less than 550 nm is further suppressed, and the effect of attracting insects is further suppressed.
  • a method for inactivating a bacterium or a virus by ultraviolet light that suppresses the effect of attracting insects is realized.
  • FIG. 1 is a drawing schematically showing one usage mode of the inactivating device 1, and shows a state in which the bench 2 and the space around it are inactivated in a park at night in a dark environment.
  • the inactivating device 1 includes an ultraviolet light irradiator 10 and a control unit 20.
  • FIG. 2 is a schematic side view of the ultraviolet light irradiator 10.
  • FIG. 2 shows an example in which the ultraviolet light irradiator 10 includes four excimer lamps 12 in the housing 11.
  • the excimer lamp 12 includes a light emitting tube 12a in which a light emitting gas is sealed, and a pair of electrodes 12b for applying a voltage to these light emitting tubes 12a.
  • a voltage is applied between the pair of electrodes 12b, the luminescent gas enclosed in the arc tube 12a emits excimer light, and ultraviolet light is emitted from the arc tube 12a.
  • the ultraviolet light emitted from the excimer lamp 12 is emitted from the light extraction window 13 and is applied to the bench 2 as the emitted light L1 as shown in FIG.
  • the excimer lamp 12 of the present embodiment contains Kr and Cl as luminescent gases in a arc tube 12a made of quartz glass, and emits ultraviolet light having a peak wavelength in the vicinity of 222 nm.
  • the light extraction window 13 is composed of a plate material such as glass that transmits ultraviolet light, and a dielectric multilayer film or the like formed on the plate material so as to reduce the light intensity in the wavelength range of 250 nm or more and less than 300 nm. A filter is formed.
  • ultraviolet light in the wavelength range of 240 nm or more and less than 300 nm has a risk of affecting the human body when irradiated to a human.
  • the skin is divided into three parts, from the part closer to the surface to the epidermis, the dermis, and the subcutaneous tissue in the deep part thereof. Divided into layers.
  • ultraviolet light in the wavelength range of 240 nm or more and less than 300 nm such as a wavelength of 254 nm as a sterilizing line, it passes through the stratum corneum and reaches the stratum granulosum, the stratum spinosum, and in some cases, the basal layer. It is absorbed by the DNA of the cells present in the layer. As a result, there is a risk of skin cancer.
  • ultraviolet light in the wavelength range of 200 nm or more and less than 240 nm (more preferably, ultraviolet light in the wavelength range of 200 nm or more and 235 nm or less) is absorbed by the stratum corneum of the skin even when the human body is irradiated, and more than that. It is difficult to progress to the inside (base layer side). Since the stratum corneum contained in the stratum corneum is a cell having no cell nucleus, DNA does not exist like, for example, spinous cells. Therefore, there is a low risk that the DNA will be destroyed by being absorbed by cells, as in the case of irradiation with ultraviolet light in the wavelength range of 240 nm or more and less than 300 nm. Furthermore, by suppressing the light intensity in the band having a wavelength of 235 nm or more and less than 240 nm, the risk that ultraviolet light is absorbed by cells and DNA is destroyed can be surely reduced.
  • the ultraviolet light emitted from the ultraviolet light irradiator 10 is effectively reduced in insect attraction by suppressing the light intensity in the wavelength range of 250 nm or more and less than 300 nm. Further, by suppressing the light intensity in the band of 240 nm or more and less than 400 nm, even if the ultraviolet light irradiator 10 is turned on during the time when a person is present near the inactivating device 1, the effect on the human body is effective. Can be reduced. Furthermore, by suppressing the light intensity in the band of 235 nm or more and less than 400 nm, the insect attracting property can be effectively reduced and the influence on the human body can be more reliably reduced.
  • the ultraviolet light in the wavelength range of 200 nm or more and less than 240 nm emitted from the ultraviolet light irradiator 10 is irradiated as the emitted light L1 emitted from the inactivating device 1, so that the irradiated region and the object to be processed are irradiated.
  • Bacteria and the like existing on the surface can be inactivated. More preferably, by irradiating ultraviolet light in the wavelength range of 200 nm or more and less than 235 nm, it is possible to inactivate bacteria and the like existing in the irradiation region while surely reducing the influence on the human body.
  • Such suppression of the wavelength band can be realized, for example, by selecting an appropriate light source or using an optical filter capable of suppressing the band.
  • an optical filter for example, an optical filter having a dielectric multilayer film composed of two layers of HfO and two layers of SiO can be used. The same applies when the excimer lamp 12 mounted on the ultraviolet light irradiator 10 has an arc tube filled with a KrCl luminescent gas or a KrBr luminescent gas.
  • an optical filter that reduces the light intensity in the wavelength range of 250 nm or more and less than 550 nm may be used to further suppress the light intensity in a wide wavelength band of 250 nm or more and less than 550 nm.
  • a filter may not be formed in the light extraction window 13 as long as the light source has a sufficiently low light intensity at a wavelength of 250 nm or more and less than 550 nm.
  • FIG. 3 is a spectrum of light emitted from the light extraction window 13 of the ultraviolet light irradiator 10, and the vertical axis thereof is represented by a relative value with respect to the light intensity at the peak wavelength (222 nm).
  • the emitted light L1 emitted from the ultraviolet light irradiator 10 has a peak wavelength of 222 nm.
  • the KrCl excimer lamp ultraviolet light showing a steep spectrum with a peak wavelength of around 222 nm and an extremely narrow half-value width is generated.
  • this ultraviolet light is transmitted to the outside through the light extraction window 13 after passing through the arc tube 12a in which the luminescent gas is sealed.
  • the arc tube 12a may inevitably contain impurities (for example, transition metals such as Ti, Ni, and Fe) at the time of manufacture.
  • the ultraviolet light generated in the arc tube 12a is incident on the tube wall of the arc tube 12a to excite impurities.
  • the emitted light L1 emitted from the ultraviolet light irradiator 10 has a peak wavelength in the wavelength range of 200 nm or more and less than 240 nm, so that the action of inactivating bacteria and viruses is confirmed. This point will be described with reference to the verification results.
  • FIG. 4A is a graph of the above experimental results, in which the horizontal axis corresponds to the irradiation amount of emitted light L1 and the vertical axis corresponds to the survival rate of Staphylococcus aureus.
  • the vertical axis corresponds to the Log value of the ratio of the number of Staphylococcus aureus colonies after irradiation based on the number of Staphylococcus aureus colonies before irradiation of the emitted light L1.
  • FIG. 4A it is confirmed that the inactivation of Staphylococcus aureus can be realized even when the illuminance of the emitted light L1 is as extremely low as 0.001 mW / cm 2 . It has been confirmed that the emitted light L1 also has an inactivating effect on other bacteria such as Bacillus cereus and Bacillus subtilis.
  • FIG. 4B shows the result of the same verification for influenza virus.
  • the virus can be inactivated by the emitted light L1.
  • the emitted light L1 For example, in order to set the irradiation amount of the emitted light L1 to 3 mJ / cm 2 , it is realized by irradiation for 5 minutes when the illuminance is 0.01 mW / cm 2 , and when the illuminance is 0.001 mW / cm 2 . It is realized by irradiation for 50 minutes.
  • the inactivation of the virus can also be realized by the emitted light L1. It has been confirmed that the emitted light L1 also has an inactivating effect on other viruses such as cat coronavirus.
  • FIG. 5 is a block diagram schematically showing the configuration of the control unit 20.
  • the control unit 20 includes a lighting control unit 21 that outputs a control signal for switching between a lighting state and an extinguishing state for the ultraviolet light irradiator 10, and a timer that measures the lighting period and the extinguishing period. 22 and an operation unit 23 for performing an operation start operation, an operation mode switching operation, and the like are provided.
  • the operation of starting the operation or switching the operation mode is assumed to be, for example, a case where the manager of the park starts the operation of the inactivating device 1 when the summer when insects are likely to occur is approaching.
  • FIG. 6 is a graph showing an example of a lighting control signal transmitted by the lighting control unit 21 of the control unit 20 to the ultraviolet light irradiator 10.
  • FIG. 6 shows a state in which the high level turns on the ultraviolet light irradiator 10 and a low level shows a state in which the ultraviolet light irradiator 10 is turned off.
  • the lighting control unit 21 refers to the ultraviolet light irradiator 10. Outputs a control signal for switching to the lighting state (at the time of S1 in FIG. 6).
  • the timer 22 starts measuring the time T1 during the lighting period.
  • the lighting control unit 21 When the timer 22 detects that the time T1 has elapsed from the time point S1, the lighting control unit 21 outputs a control signal for switching to the off state to the ultraviolet light irradiator 10 (time point S2 in FIG. 6).
  • the timer 22 starts measuring the time T2 during the extinguishing period.
  • the lighting control unit 21 When the timer 22 detects that the time T2 has elapsed from the time point S2, the lighting control unit 21 outputs a control signal to the ultraviolet light irradiator 10 so as to switch to the lighting state (time point S3 in FIG. 6).
  • the above control is repeated until the operator operates the operation unit 23 to stop the ultraviolet light irradiator 10.
  • the ultraviolet light irradiator 10 performs an inactivation process so as to repeatedly turn on and off.
  • the time T1 is set to 30 seconds and the time T2 is set to 150 seconds so that the lighting period is 20% of the extinguishing period, but the time T1 and the time T2 may be set arbitrarily. ..
  • the lighting period is preferably 50% or less, more preferably 25% or less of the extinguishing period so that the insects can easily lose sight of the emitted light L1 emitted from the ultraviolet light irradiator 10.
  • the time T1 is preferably set to 60 seconds or less so that the insects can easily lose sight of the emitted light L1 emitted from the ultraviolet light irradiator 10.
  • the magnitude of the effect of inactivating bacteria and viruses depends on the integrated irradiation amount (dose amount) of the emitted light L1. Therefore, even if the ultraviolet light irradiator 10 operates so as to repeatedly turn on and off, the integrated irradiation amount of the emitted light L1 is only required for inactivating bacteria and the like with respect to the space and region to be processed. If it is sufficiently secured, the effect of inactivating bacteria and the like in the space and region can be obtained.
  • FIG. 7 is a graph showing the results of verification of inactivation against Staphylococcus aureus by the same method as in FIG. 4A, except that the irradiation mode of the emitted light L1 is different.
  • a method was adopted in which the illuminance was 0.01 mW / cm 2 and the intermittent lighting with a duty ratio of 50% was turned on for 8.3 minutes and turned off for 8.3 minutes.
  • FIG. 8 is a drawing schematically showing the device configuration of Experiment 1.
  • the apparatus of Experiment 1 has a configuration in which two boxes (B1 and B2) are connected by an acrylic pipe P1.
  • a light source N1 was arranged in the box B1.
  • the entire device was covered with a blackout curtain to prevent outside light from entering the device.
  • a light source N1 is arranged in the box B1, about 150 chironomids are put in the box B2, the light source N1 is turned on at the start of the experiment, and the number of chironomids moved from the box B2 to the box B1 after a predetermined time has elapsed. Counted.
  • the experiment was carried out in a state where the light source N1 was changed to the three types of the ultraviolet light irradiator 10, the white LED, and the fluorescent lamp of the above embodiment. Note that FIG. 9 is a spectrum of light emitted from the white LED, and FIG. 10 is a spectrum of light emitted from the fluorescent lamp.
  • FIG. 11 is a drawing schematically showing the device configuration of Experiment 1.
  • the apparatus of Experiment 2 has a configuration in which three boxes (B1, B2, B3) are connected in series by acrylic pipes (P1, P2).
  • a light source N1 was arranged in the box B1, and a light source N2 was arranged in the box B3.
  • the entire device was covered with a blackout curtain to prevent outside light from entering the device.
  • a light source N1 is placed in the box B1 and a light source N2 is placed in the box B3. About 150 chironomids are placed in the box B2. , The number of chironomids that moved to each of the boxes B3 was counted.
  • the light sources N1 and N2 are different combinations of the light sources N1 and N2 from the three types of the ultraviolet light irradiator 10, the white LED, and the fluorescent lamp of the above embodiment. It was done by choosing.
  • the ultraviolet light irradiator 10 When the ultraviolet light irradiator 10 was lit at the same time as the white LED or the fluorescent lamp, the effect of attracting the chironomid was small. As a result, it was confirmed that the probability of insects approaching the ultraviolet light irradiator 10 is extremely low in an environment where lighting equipment is present in the vicinity of the actual use.
  • FIG. 12 is a drawing schematically showing another usage mode of the inactivating device 1.
  • the inactivating device 1 is shown to inactivate the vending machine 3 and the space around it at night.
  • the vending machine 3 that is automatically turned off is irradiated with ultraviolet light, and buttons, coin slots, and product removal that people frequently touch are used. It is conceivable that the bacteria and the like adhering to the mouth and the like are inactivated.
  • control unit 20 is housed in a housing together with the ultraviolet light irradiator 10 and is placed on the upper part of the vending machine 3, so that it cannot be seen.
  • FIG. 12 is configured to include a plurality of ultraviolet light irradiators 10 in order to inactivate a wider range.
  • the inactivating device 1 may be provided with a plurality of ultraviolet light irradiators 10, and the control unit 20 may be configured to control each of the ultraviolet light irradiators 10 collectively or separately.
  • FIG. 13 is a drawing schematically showing a usage mode different from that of FIG. 12 of the inactivating device 1.
  • the ultraviolet light irradiator 10 may be mounted on the door 4 so that the emitted light L1 is irradiated to the doorknob 4a which is frequently touched by a person.
  • the ultraviolet light irradiator 10 is arranged around a ticket vending machine, a game machine, or the like, or is attached to these devices, and the emitted light L1 irradiates the operation buttons of the device or equipment, the touch panel for operation, or the like. It may be configured to be.
  • bacteria and viruses adhering to the part touched by a person for opening / closing the door or purchasing operation can be prevented from being transmitted to the person touching the part one after another, and the effect of suppressing the spread of the infectious disease can be expected.
  • the inactivating device 1 shares the control function of the control unit 20 with a device having a lighting function such as a vending machine 3, or a lighting system so as to integrally control each lighting time and the like. It may be a part of.
  • control unit 20 further includes a wireless reception unit and is transmitted from the remote controller.
  • the configuration may be such that the operation is started or the operation mode is switched by receiving the wireless signal.
  • the inactivating device 1 may not be provided with the control unit 20, and may be configured such that the operator simply turns on / off the power of the ultraviolet light irradiator 10.
  • Inactivating device 2 Bench 3: Vending machine 4: Door 4a: Doorknob 10: Ultraviolet light irradiator 11: Housing 12: Excimer lamp 12a: Light emitting tube 12b: Electrode 13: Light take-out window 20: Control unit 21 : Lighting control unit 22: Timer 23: Operation unit L1: Emission light

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Catching Or Destruction (AREA)
  • Radiation-Therapy Devices (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Provided is a method for inactivating a microorganism or a virus by ultraviolet light while suppressing an insect-attracting effect. In the present invention, irradiation of emission light suppresses an insect-attracting effect, wherein the emission light has a peak wavelength within the wavelength range not less than 200 nm and less than 240 nm and the light intensity within the wavelength range not less than 250 nm and less than 550 nm is suppressed.

Description

低誘虫な菌又はウィルスの不活化方法Inactivation method of low insect attractant fungus or virus
 本発明は、菌又はウィルスの不活化方法に関し、特に、紫外光の照射による菌又はウィルスの不活化方法に関する。 The present invention relates to a method for inactivating a bacterium or a virus, and more particularly to a method for inactivating a bacterium or a virus by irradiation with ultraviolet light.
 紫外光による殺菌方法は、薬剤等を散布することなく、処理対象空間や処理対象物に紫外光を照射するだけで殺菌処理が行えるため、主に食品工場や医療施設等の高い衛生管理が求められる環境の殺菌処理に採用されている。 The sterilization method using ultraviolet light is mainly required for high hygiene management in food factories and medical facilities because the sterilization process can be performed simply by irradiating the treatment target space and the treatment target with ultraviolet light without spraying chemicals. It is used for sterilization of the environment.
 紫外光による殺菌処理は、主に波長が254nmの紫外光を利用した方法が採用されており、例えば、下記特許文献1には、波長が254nmの紫外光を出射する低圧水銀ランプを備えた紫外線照射装置が記載されている。 The sterilization treatment with ultraviolet light mainly employs a method using ultraviolet light having a wavelength of 254 nm. For example, in Patent Document 1 below, ultraviolet rays provided with a low-pressure mercury lamp that emits ultraviolet light having a wavelength of 254 nm. The irradiation device is described.
特開2020-078479号公報Japanese Unexamined Patent Publication No. 2020-078479
 そこで、本発明者は、人の往来が頻繁な駅や公園、屋外のスタジアムやテーマパーク、さらには、上述したような高い衛生管理が求められる環境向けの紫外光による殺菌処理及びウィルスの不活化処理について鋭意検討したところ、以下のような課題が存在することを見出した。以下、図面を参照しながら説明する。 Therefore, the present inventor has sterilized by ultraviolet light and inactivated viruses for stations and parks where people frequently come and go, outdoor stadiums and theme parks, and environments where high hygiene management is required as described above. As a result of diligent examination of the treatment, it was found that the following problems exist. Hereinafter, description will be given with reference to the drawings.
 図14は、低圧水銀ランプから出射される光のスペクトルであり、縦軸がピーク値に対する相対値で表されている。図14に示すように、低圧水銀ランプから出射される紫外光は、254nmにピーク波長を有するとともに、300nm以上400nm未満の範囲にもピーク波長に対してある程度の相対強度を示す光が含まれている。 FIG. 14 is a spectrum of light emitted from a low-pressure mercury lamp, and the vertical axis is represented by a relative value with respect to the peak value. As shown in FIG. 14, the ultraviolet light emitted from the low-pressure mercury lamp has a peak wavelength of 254 nm, and also includes light showing a certain degree of relative intensity with respect to the peak wavelength in the range of 300 nm or more and less than 400 nm. There is.
 図15は、ショウジョウバエの視感度特性のグラフであり、縦軸がピーク値に対する相対値で表されている(非特許文献1参照)。図15に示すように、ショウジョウバエの視覚は、波長が300nm以上550nm未満の光に対して強い刺激を受ける特徴がある。なお、種類によって波長ごとの刺激効果は異なるが、多くの虫が、250nm以上550nm未満の波長帯に視感度を有することが知られている。 FIG. 15 is a graph of the visual sensitivity characteristics of Drosophila, and the vertical axis is represented by a relative value with respect to the peak value (see Non-Patent Document 1). As shown in FIG. 15, the vision of Drosophila is characterized by being strongly stimulated by light having a wavelength of 300 nm or more and less than 550 nm. It is known that many insects have luminosity factor in the wavelength band of 250 nm or more and less than 550 nm, although the stimulating effect differs depending on the type.
 また、ショウジョウバエ等の多くの虫は、刺激となる光に向かって移動する走光性を有しており、視感度の波長範囲内であって、周囲の光に対して相対的に明るいと視感する光源に向かって移動する特性を有する。この特性によって、ショウジョウバエは、波長が250nm以上550nm未満の光によって視覚が刺激され、当該光源に誘引されてしまう。 In addition, many insects such as Drosophila have phototaxis that move toward stimulating light, and they are within the wavelength range of luminosity factor and are relatively bright with respect to ambient light. It has the property of moving toward a light source. Due to this property, Drosophila are visually stimulated by light having a wavelength of 250 nm or more and less than 550 nm, and are attracted to the light source.
 したがって、低圧水銀ランプから出射される紫外光を照射して殺菌処理する方法は、殺菌処理に用いられる波長254nmの光や、当該光とともに出射される異なる波長帯の紫外光や可視光によって虫を誘引し、かえって不衛生な環境を作り出してしまっていた。 Therefore, in the method of sterilizing by irradiating ultraviolet light emitted from a low-pressure mercury lamp, insects are sterilized by light having a wavelength of 254 nm used for sterilization, or ultraviolet light or visible light having a different wavelength band emitted together with the light. It attracted and created an unsanitary environment.
 本発明は、上記課題に鑑み、虫に対する誘引効果を抑制した紫外光による菌又はウィルスの不活化方法を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a method for inactivating bacteria or viruses by ultraviolet light that suppresses the effect of attracting insects.
 本発明の菌又はウィルスの不活化方法は、
 200nm以上240nm未満の波長範囲内にピーク波長を有し、250nm以上550nm未満の波長範囲の光強度が抑止された出射光を照射することで、虫に対する誘引効果を抑制したことを特徴とする。
The method for inactivating a bacterium or a virus of the present invention is:
It is characterized in that the effect of attracting insects is suppressed by irradiating emitted light having a peak wavelength in the wavelength range of 200 nm or more and less than 240 nm and suppressing the light intensity in the wavelength range of 250 nm or more and less than 550 nm.
 本明細書における、「光強度が抑止された」とは、光強度が1mW/cm2以下であって、ピーク波長における光強度に対して、光強度が5%未満であることを意味し、より好ましくは3%未満である。 In the present specification, "light intensity is suppressed" means that the light intensity is 1 mW / cm 2 or less and the light intensity is less than 5% with respect to the light intensity at the peak wavelength. More preferably, it is less than 3%.
 また、本明細書において、「不活化」とは、菌やウィルスを死滅させる又は感染力や毒性を失わせることを包括する概念を指し、「菌」とは、細菌や真菌(カビ)等の微生物を指す。以下において、「菌又はウィルス」を「菌等」と総称することがある。 Further, in the present specification, "inactivation" refers to a concept that includes killing bacteria and viruses or losing infectivity and toxicity, and "fungi" refers to bacteria, fungi, etc. Refers to microorganisms. In the following, "bacteria or viruses" may be collectively referred to as "bacteria, etc."
 波長が200nm以上240nm未満の紫外光は、254nmの紫外光と同様に、菌やウィルス等の細胞が持つDNAやRNAに吸収される性質を有するため、菌やウィルスの不活化処理に用いることができる。この効果については、「発明を実施するための形態」において、図4A及び4Bを参照しながら詳述される。 Similar to 254 nm ultraviolet light, ultraviolet light having a wavelength of 200 nm or more and less than 240 nm has a property of being absorbed by DNA or RNA possessed by cells such as bacteria and viruses, and therefore can be used for inactivation treatment of bacteria and viruses. can. This effect will be described in detail in "Modes for Carrying Out the Invention" with reference to FIGS. 4A and 4B.
 また、上述したように、虫(特に、ショウジョウバエやユスリカ)は、300nm以上400nm未満の波長範囲に対して視感度が高い。 Further, as described above, insects (particularly Drosophila and midges) have high luminosity factor in the wavelength range of 300 nm or more and less than 400 nm.
 そこで、上記方法とすることで、虫に対する誘引効果を低減させつつ、空間や処理対象物の表面に存在する菌やウィルスの不活化処理をすることができる。 Therefore, by using the above method, it is possible to inactivate bacteria and viruses existing in the space or on the surface of the object to be treated while reducing the effect of attracting insects.
 上記の菌又はウィルスの不活化方法は、
 少なくとも暗環境下において、点灯と消灯とを繰り返して菌又はウィルスの不活化処理を行う方法であっても構わない。
The above method of inactivating bacteria or viruses is
At least in a dark environment, a method of repeatedly turning on and off to inactivate bacteria or viruses may be used.
 また、上記の菌又はウィルスの不活化方法は、
 点灯期間が消灯期間に対して50%以下となるように、点灯と消灯を繰り返すことが好ましい。
In addition, the method of inactivating the above-mentioned bacteria or viruses is
It is preferable to repeat lighting and extinguishing so that the lighting period is 50% or less of the extinguishing period.
 さらに、上記の菌又はウィルスの不活化方法は、
 点灯期間が消灯期間に対して25%以下となるように、点灯と消灯を繰り返すことがより好ましい。
Furthermore, the above-mentioned method for inactivating bacteria or viruses is
It is more preferable to repeat lighting and extinguishing so that the lighting period is 25% or less of the extinguishing period.
 本明細書における「暗環境」とは、光が全く存在しない暗黒空間だけではなく、人が周囲の状況を視認して移動できる程度の環境までを含み、例えば、建物内の非常階段、周辺に街灯が少ない夜間の公園、窓が暗幕で覆われた部屋のような環境をも含んでいる。具体的には、空間の照度が75lx以下の環境が想定される。 The term "dark environment" as used herein includes not only a dark space in which no light exists but also an environment in which a person can visually recognize and move around, for example, an emergency staircase in a building or the surrounding area. It also includes an environment like a night park with few street lights and a room with windows covered with blackout curtains. Specifically, an environment in which the illuminance of the space is 75 lpx or less is assumed.
 上述したように、虫の多くは、走光性を有しており、相対的に明るいと視感される光源に対して誘引させる傾向がある。例えば、光源から出射される光が波長250nm以上550nm未満の範囲内に強度を有する場合、暗環境下であるほど当該光源の光は相対的に明るいと視感されるため、微弱な光であっても際立つことがある。これは、虫の視感度が高い波長帯(300nm以上400nm未満)の光が含まれない白色照明であっても、夜間では虫が誘引されてしまうことがあることからも理解できる。特に、空間の照度が50lxを下回るような暗環境下となると、光源から出射される波長250nm以上550nm未満の範囲内の光が、ごく僅かであったとしても際立ってしまい、虫を誘引してしまう。 As mentioned above, many insects have phototaxis and tend to attract light sources that are perceived as relatively bright. For example, when the light emitted from the light source has an intensity within the wavelength range of 250 nm or more and less than 550 nm, the light of the light source is perceived to be relatively bright in a dark environment, so that the light is weak. But sometimes it stands out. This can be understood from the fact that insects may be attracted at night even if the white lighting does not include light in a wavelength band (300 nm or more and less than 400 nm) in which the visibility of insects is high. In particular, in a dark environment where the illuminance of the space is less than 50 lpx, the light emitted from the light source in the wavelength range of 250 nm or more and less than 550 nm stands out even if it is very small, and attracts insects. It ends up.
 しかしながら、当該波長範囲の光が出射されないように、光源の周囲を遮光してしまうと、菌等を不活化するための光をも遮光してしまうことになる。 However, if the surroundings of the light source are shielded from light so that light in the wavelength range is not emitted, the light for inactivating bacteria and the like will also be shielded.
 そこで、上記方法とすることで、不活化処理用の光源に向かって進行しようとする、又は進行している虫が、一時的に当該光源から出射される光を見失うことになる。したがって、虫が光源に向かって移動することを抑制することができ、暗環境下であっても、虫に対する誘引効果が抑制される。 Therefore, by using the above method, insects that are trying to move toward the light source for inactivation treatment or are moving will temporarily lose sight of the light emitted from the light source. Therefore, it is possible to suppress the movement of insects toward the light source, and the effect of attracting insects to insects is suppressed even in a dark environment.
 なお、点灯と消灯を繰り返すように菌等の不活化処理が行われる場合であっても、断続的に動作し、紫外光が菌等に対して、不活化処理に必要な積算照射量だけ照射されれば、所望の効果は得られる。詳細については、「発明を実施するための形態」において、図7を参照しながら説明される。 Even if the inactivation treatment of bacteria etc. is performed so as to repeat turning on and off, it operates intermittently, and ultraviolet light irradiates the bacteria etc. with the integrated irradiation amount required for the inactivation treatment. If so, the desired effect can be obtained. Details will be described with reference to FIG. 7 in "Modes for Carrying Out the Invention".
 さらに、上記の菌又はウィルスの不活化方法は、
 点灯期間が60秒以下であっても構わない。
Furthermore, the above-mentioned method for inactivating bacteria or viruses is
The lighting period may be 60 seconds or less.
 点灯期間が60秒以下であれば、光源から数十cm離れた場所にいる虫のほとんどは、光源から出射される光を視認し、当該光源に向かって進行しようとするまでの間、又は進行している最中に光を見失う傾向が確認される。そこで、上記方法とすることで、虫の誘引効果がさらに抑制される。 If the lighting period is 60 seconds or less, most of the insects located several tens of centimeters away from the light source visually recognize the light emitted from the light source and proceed until or progress toward the light source. The tendency to lose sight of the light is confirmed while doing. Therefore, by using the above method, the effect of attracting insects is further suppressed.
 上記の菌又はウィルスの不活化方法は、
 Kr及びClを発光ガスとして含むエキシマランプから出射された光を照射することで行われても構わない。
The above method of inactivating bacteria or viruses is
It may be performed by irradiating the light emitted from the excimer lamp containing Kr and Cl as the light emitting gas.
 上記構成による方法とすることで、200nm以上240nm未満の波長範囲内である222nmにピーク波長を有する光源を構成することができる。 By the method according to the above configuration, it is possible to configure a light source having a peak wavelength at 222 nm, which is within the wavelength range of 200 nm or more and less than 240 nm.
 また、上記の菌又はウィルスの不活化方法において、
 前記出射光は、前記エキシマランプから出射されて、少なくとも250nm以上550nm未満の波長範囲の光強度を低減させるフィルタを通過した光であっても構わない。
In addition, in the above-mentioned method for inactivating bacteria or viruses,
The emitted light may be light emitted from the excimer lamp and passed through a filter that reduces the light intensity in the wavelength range of at least 250 nm or more and less than 550 nm.
 上記構成とすることで、250nm以上550nm未満の波長範囲の光強度がさらに抑制され、さらに虫に対する誘引効果が抑制される。 With the above configuration, the light intensity in the wavelength range of 250 nm or more and less than 550 nm is further suppressed, and the effect of attracting insects is further suppressed.
 本発明によれば、虫に対する誘引効果を抑制した紫外光による菌又はウィルスの不活化方法が実現される。 According to the present invention, a method for inactivating a bacterium or a virus by ultraviolet light that suppresses the effect of attracting insects is realized.
不活化装置の一使用態様を模式的に示す図面である。It is a drawing which shows one usage mode of an inactivated device schematically. 紫外光照射器の模式的な側面図である。It is a schematic side view of the ultraviolet light irradiator. 紫外光照射器の光取り出し窓から出射される光のスペクトルである。It is a spectrum of the light emitted from the light extraction window of the ultraviolet light irradiator. 紫外光照射器から出射される紫外光が、菌を不活化する作用を奏することを説明するための検証結果である。It is a verification result for explaining that the ultraviolet light emitted from the ultraviolet light irradiator has an action of inactivating bacteria. 紫外光照射器から出射される紫外光が、ウィルスを不活化する作用を奏することを説明するための検証結果である。It is a verification result for explaining that the ultraviolet light emitted from the ultraviolet light irradiator has an action of inactivating a virus. 制御部の構成を模式的に示すブロック図である。It is a block diagram which shows the structure of the control part schematically. 制御部の点灯制御部が紫外光照射器に対して送信する点灯制御信号の一例を示すグラフである。It is a graph which shows an example of the lighting control signal transmitted to the ultraviolet light irradiator by the lighting control unit of the control unit. 紫外光照射器を間欠点灯させた場合に、菌を不活化する作用を奏することを説明するための検証結果である。This is a verification result for explaining that when the ultraviolet light irradiator is intermittently turned on, it has an effect of inactivating bacteria. 実験1の装置構成を模式的に示す図面である。It is a drawing which shows typically the apparatus composition of Experiment 1. 白色LEDから出射される光のスペクトルである。It is a spectrum of light emitted from a white LED. 蛍光灯から出射される光のスペクトルである。It is a spectrum of light emitted from a fluorescent lamp. 実験2の装置構成を模式的に示す図面である。It is a drawing which shows typically the apparatus composition of Experiment 2. 不活化装置の別使用態様を模式的に示す図面である。It is a figure which shows typically another usage mode of an inactivated device. 不活化装置の別使用態様を模式的に示す図面である。It is a figure which shows typically another usage mode of an inactivated device. 低圧水銀ランプから出射される光のスペクトルである。It is a spectrum of light emitted from a low-pressure mercury lamp. ショウジョウバエの視感度特性のグラフである。It is a graph of the luminosity factor characteristic of Drosophila.
 以下、本発明の不活化方法及び不活化装置について、図面を参照して説明する。なお、不活化装置に関して、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。 Hereinafter, the inactivating method and the inactivating device of the present invention will be described with reference to the drawings. Regarding the inactivating device, the following drawings are all schematically shown, and the dimensional ratio and the number on the drawings do not always match the actual dimensional ratio and the number.
 図1は、不活化装置1の一使用態様を模式的に示す図面であり、暗環境下である夜間の公園において、ベンチ2及びその周辺の空間を不活化処理する様子が示されている。図1に示すように、不活化装置1は、紫外光照射器10と制御部20とを備える。 FIG. 1 is a drawing schematically showing one usage mode of the inactivating device 1, and shows a state in which the bench 2 and the space around it are inactivated in a park at night in a dark environment. As shown in FIG. 1, the inactivating device 1 includes an ultraviolet light irradiator 10 and a control unit 20.
 図2は、紫外光照射器10の模式的な側面図である。図2には、紫外光照射器10は、筐体11内に四本のエキシマランプ12を備える例が図示されている。このエキシマランプ12は、発光ガスが封入された発光管12aと、これらの発光管12aに対して電圧を印加するための一対の電極12bを備える。一対の電極12b間に電圧が印加されることで発光管12a内に封入された発光ガスがエキシマ発光し、発光管12aから紫外光が出射される。 FIG. 2 is a schematic side view of the ultraviolet light irradiator 10. FIG. 2 shows an example in which the ultraviolet light irradiator 10 includes four excimer lamps 12 in the housing 11. The excimer lamp 12 includes a light emitting tube 12a in which a light emitting gas is sealed, and a pair of electrodes 12b for applying a voltage to these light emitting tubes 12a. When a voltage is applied between the pair of electrodes 12b, the luminescent gas enclosed in the arc tube 12a emits excimer light, and ultraviolet light is emitted from the arc tube 12a.
 エキシマランプ12から出射された紫外光は、光取り出し窓13から出射されて、図1に示すように、出射光L1としてベンチ2に照射される。 The ultraviolet light emitted from the excimer lamp 12 is emitted from the light extraction window 13 and is applied to the bench 2 as the emitted light L1 as shown in FIG.
 本実施形態のエキシマランプ12は、石英ガラスからなる発光管12a内に発光ガスとしてKrとClが封入されており、ピーク波長が222nm近傍の紫外光を出射する。また、光取り出し窓13は、紫外光を透過するガラス等の板材と、250nm以上300nm未満の波長範囲の光強度を低減させるように、当該板材上に形成された、誘電体多層膜等からなるフィルタが形成されている。 The excimer lamp 12 of the present embodiment contains Kr and Cl as luminescent gases in a arc tube 12a made of quartz glass, and emits ultraviolet light having a peak wavelength in the vicinity of 222 nm. Further, the light extraction window 13 is composed of a plate material such as glass that transmits ultraviolet light, and a dielectric multilayer film or the like formed on the plate material so as to reduce the light intensity in the wavelength range of 250 nm or more and less than 300 nm. A filter is formed.
 また、波長240nm以上300nm未満の波長域の紫外光は、人に照射されると、人体に影響を及ぼすリスクがあることが知られている。皮膚は、表面に近い部分から表皮、真皮、その深部の皮下組織の3つの部分に分けられ、表皮は、さらに表面に近い部分から順に、角質層、顆粒層、有棘層、基底層の4層に分けられる。殺菌線としての波長254nm等、240nm以上300nm未満の波長域の紫外光が人体に照射されると、角質層を透過して、顆粒層や有棘層、場合によっては基底層に達し、これらの層内に存在する細胞のDNAに吸収される。この結果、皮膚がんのリスクが発生する。 It is also known that ultraviolet light in the wavelength range of 240 nm or more and less than 300 nm has a risk of affecting the human body when irradiated to a human. The skin is divided into three parts, from the part closer to the surface to the epidermis, the dermis, and the subcutaneous tissue in the deep part thereof. Divided into layers. When the human body is irradiated with ultraviolet light in the wavelength range of 240 nm or more and less than 300 nm, such as a wavelength of 254 nm as a sterilizing line, it passes through the stratum corneum and reaches the stratum granulosum, the stratum spinosum, and in some cases, the basal layer. It is absorbed by the DNA of the cells present in the layer. As a result, there is a risk of skin cancer.
 一方、波長200nm以上240nm未満の波長域の紫外光(より好ましくは、波長200nm以上235nm以下の波長域の紫外光)は、人体に照射されても、皮膚の角質層で吸収され、それよりも内側(基底層側)には進行し難い。角質層に含まれる角質細胞は細胞核を有しない細胞であるため、例えば有棘細胞のようにDNAが存在しない。このため、240nm以上300nm未満の波長域の紫外光が照射される場合のように、細胞に吸収されてDNAが破壊されるというリスクが低い。さらに、波長235nm以上240nm未満の帯域の光強度も抑止されることによって、紫外光が細胞に吸収されてDNAが破壊されるというリスクが確実に低減できる。 On the other hand, ultraviolet light in the wavelength range of 200 nm or more and less than 240 nm (more preferably, ultraviolet light in the wavelength range of 200 nm or more and 235 nm or less) is absorbed by the stratum corneum of the skin even when the human body is irradiated, and more than that. It is difficult to progress to the inside (base layer side). Since the stratum corneum contained in the stratum corneum is a cell having no cell nucleus, DNA does not exist like, for example, spinous cells. Therefore, there is a low risk that the DNA will be destroyed by being absorbed by cells, as in the case of irradiation with ultraviolet light in the wavelength range of 240 nm or more and less than 300 nm. Furthermore, by suppressing the light intensity in the band having a wavelength of 235 nm or more and less than 240 nm, the risk that ultraviolet light is absorbed by cells and DNA is destroyed can be surely reduced.
 上述したように、紫外光照射器10から発せられた紫外光は、波長250nm以上300nm未満の波長域において光強度が抑止されることで、誘虫性が効果的に低減される。さらに、240nm以上400nm未満の帯域の光強度が抑止されることによって、不活化装置1の近くに人が存在する時間帯に紫外光照射器10が点灯したとしても、人体に対する影響を効果的に低減することができる。さらには、235nm以上400nm未満の帯域の光強度が抑制されることによって、誘虫性を効果的に低減するとともに、人体に対する影響をより確実に低減できる。 As described above, the ultraviolet light emitted from the ultraviolet light irradiator 10 is effectively reduced in insect attraction by suppressing the light intensity in the wavelength range of 250 nm or more and less than 300 nm. Further, by suppressing the light intensity in the band of 240 nm or more and less than 400 nm, even if the ultraviolet light irradiator 10 is turned on during the time when a person is present near the inactivating device 1, the effect on the human body is effective. Can be reduced. Furthermore, by suppressing the light intensity in the band of 235 nm or more and less than 400 nm, the insect attracting property can be effectively reduced and the influence on the human body can be more reliably reduced.
 そして、紫外光照射器10から発せられる、200nm以上240nm未満の波長域内の紫外光が、不活化装置1から出射される出射光L1として照射されることで、照射される領域や被処理物の表面等に存在する菌等を不活化できる。より好ましくは、200nm以上235nm未満の波長域内の紫外光が照射されることで、人体への影響を確実に低減しながら、当該照射領域内に存在する菌等を不活化できる。このような波長帯域の抑止は、例えば、適切な光源を選択するか、当該帯域を抑止可能な光学フィルタを用いることによって実現できる。光学フィルタとしては、例えば、HfO2層及びSiO2層による誘電体多層膜を有する光学フィルタを用いることができる。紫外光照射器10に搭載されるエキシマランプ12が、KrClの発光ガスやKrBrの発光ガスが封入された発光管を有する場合においても、同様である。 Then, the ultraviolet light in the wavelength range of 200 nm or more and less than 240 nm emitted from the ultraviolet light irradiator 10 is irradiated as the emitted light L1 emitted from the inactivating device 1, so that the irradiated region and the object to be processed are irradiated. Bacteria and the like existing on the surface can be inactivated. More preferably, by irradiating ultraviolet light in the wavelength range of 200 nm or more and less than 235 nm, it is possible to inactivate bacteria and the like existing in the irradiation region while surely reducing the influence on the human body. Such suppression of the wavelength band can be realized, for example, by selecting an appropriate light source or using an optical filter capable of suppressing the band. As the optical filter, for example, an optical filter having a dielectric multilayer film composed of two layers of HfO and two layers of SiO can be used. The same applies when the excimer lamp 12 mounted on the ultraviolet light irradiator 10 has an arc tube filled with a KrCl luminescent gas or a KrBr luminescent gas.
 さらに、250nm以上550nm未満の波長範囲の光強度を低減させる光学フィルタを用いて、250nm以上550nm未満の広い波長帯域の光強度をより抑止させる構成であっても構わない。上記構成とすることで、人体に影響を及ぼす波長帯域の紫外光を抑制しつつ、かつ、250nm以上550nm未満の波長範囲の光強度を抑制することで、虫に対する誘引効果をより抑制することができる。 Further, an optical filter that reduces the light intensity in the wavelength range of 250 nm or more and less than 550 nm may be used to further suppress the light intensity in a wide wavelength band of 250 nm or more and less than 550 nm. With the above configuration, it is possible to further suppress the effect of attracting insects by suppressing the ultraviolet light in the wavelength band that affects the human body and by suppressing the light intensity in the wavelength range of 250 nm or more and less than 550 nm. can.
 なお、出射する光の波長250nm以上550nm未満における光強度が十分に低い光源であれば、光取り出し窓13にフィルタが形成されていなくても構わない。 A filter may not be formed in the light extraction window 13 as long as the light source has a sufficiently low light intensity at a wavelength of 250 nm or more and less than 550 nm.
 ここで、紫外光照射器10から出射される出射光L1と、ショウジョウバエの比刺激効果について確認する。図3は、紫外光照射器10の光取り出し窓13から出射される光のスペクトルであって、縦軸がピーク波長(222nm)における光強度に対する相対値で表されている。 Here, the emitted light L1 emitted from the ultraviolet light irradiator 10 and the specific stimulating effect of Drosophila are confirmed. FIG. 3 is a spectrum of light emitted from the light extraction window 13 of the ultraviolet light irradiator 10, and the vertical axis thereof is represented by a relative value with respect to the light intensity at the peak wavelength (222 nm).
 図3に示すように、紫外光照射器10から出射される出射光L1は、ピーク波長が222nmである。 As shown in FIG. 3, the emitted light L1 emitted from the ultraviolet light irradiator 10 has a peak wavelength of 222 nm.
 本来、KrClエキシマランプからは、ピーク波長が222nm近傍で半値幅が極めて狭い、急峻なスペクトルを示す紫外光が生成される。しかし、上述したように、この紫外光は、発光ガスが封入された発光管12aを透過した後、光取り出し窓13から外部に出射される。発光管12aは、製造時に不純物(例えば、Ti、Ni、Fe等の遷移金属)が不可避的に含まれることがある。この場合、発光管12a内で生成された紫外光が発光管12aの管壁に入射して不純物を励起する。これにより、発光管12aからは、紫外光に加えて、300nm以上550nm未満の範囲内の微弱な光が出射されることがある。したがって、虫を誘引する効果を抑制するには、発光管12aを構成する材料が、できる限り不純物の濃度が低い材料が選択されることが好ましい。なお、光取り出し窓13を構成する材料についても同様である。 Originally, from the KrCl excimer lamp, ultraviolet light showing a steep spectrum with a peak wavelength of around 222 nm and an extremely narrow half-value width is generated. However, as described above, this ultraviolet light is transmitted to the outside through the light extraction window 13 after passing through the arc tube 12a in which the luminescent gas is sealed. The arc tube 12a may inevitably contain impurities (for example, transition metals such as Ti, Ni, and Fe) at the time of manufacture. In this case, the ultraviolet light generated in the arc tube 12a is incident on the tube wall of the arc tube 12a to excite impurities. As a result, in addition to the ultraviolet light, weak light in the range of 300 nm or more and less than 550 nm may be emitted from the arc tube 12a. Therefore, in order to suppress the effect of attracting insects, it is preferable to select a material constituting the arc tube 12a having a concentration of impurities as low as possible. The same applies to the materials constituting the light extraction window 13.
 紫外光照射器10から出射される出射光L1は、200nm以上240nm未満の波長域内にピーク波長を有することで、菌やウィルスを不活化する作用が確認される。この点について検証結果を参照して説明する。 The emitted light L1 emitted from the ultraviolet light irradiator 10 has a peak wavelength in the wavelength range of 200 nm or more and less than 240 nm, so that the action of inactivating bacteria and viruses is confirmed. This point will be described with reference to the verification results.
 φ35mmのシャーレに、濃度106/mL程度の黄色ブドウ球菌を1mL入れ、シャーレの上方から、図3に示すスペクトルを有する出射光L1を、照度0.001mW/cm2で照射した。その後、出射光L1の照射後のシャーレ内の溶液を、生理食塩水で所定の倍率に希釈し、希釈後の溶液0.1mLを標準寒天培地に播種した。そして、温度37℃、湿度70%の培養環境下で24時間培養し、コロニー数をカウントした。 1 mL of Staphylococcus aureus having a concentration of about 10 6 / mL was placed in a petri dish of φ35 mm, and the emitted light L1 having the spectrum shown in FIG. 3 was irradiated from above the petri dish with an illuminance of 0.001 mW / cm 2 . Then, the solution in the petri dish after irradiation with the emitted light L1 was diluted with physiological saline to a predetermined magnification, and 0.1 mL of the diluted solution was seeded on a standard agar medium. Then, the cells were cultured for 24 hours in a culture environment having a temperature of 37 ° C. and a humidity of 70%, and the number of colonies was counted.
 図4Aは、上記実験結果をグラフ化したものであり、横軸が出射光L1の照射量、縦軸が黄色ブドウ球菌の生存率に対応する。なお、縦軸は、出射光L1の照射前の時点における黄色ブドウ球菌のコロニー数を基準としたときの、照射後の黄色ブドウ球菌のコロニー数の比率のLog値に対応する。 FIG. 4A is a graph of the above experimental results, in which the horizontal axis corresponds to the irradiation amount of emitted light L1 and the vertical axis corresponds to the survival rate of Staphylococcus aureus. The vertical axis corresponds to the Log value of the ratio of the number of Staphylococcus aureus colonies after irradiation based on the number of Staphylococcus aureus colonies before irradiation of the emitted light L1.
 図4Aによれば、出射光L1の照度が0.001mW/cm2と極めて低い場合であっても、黄色ブドウ球菌の不活化が実現できていることが確認される。なお、出射光L1によって、セレウス菌や枯草菌等、他の菌に対しても不活化の作用があることが確認されている。 According to FIG. 4A, it is confirmed that the inactivation of Staphylococcus aureus can be realized even when the illuminance of the emitted light L1 is as extremely low as 0.001 mW / cm 2 . It has been confirmed that the emitted light L1 also has an inactivating effect on other bacteria such as Bacillus cereus and Bacillus subtilis.
 なお、別の検証として、インフルエンザウィルスに対して同様の検証を行った結果を図4Bに示す。この結果によれば、出射光L1によってウィルスの不活化が行えることも確認される。なお、例えば、出射光L1の照射量を3mJ/cm2とするには、照度0.01mW/cm2の場合には5分間の照射によって実現され、照度0.001mW/cm2の場合には50分間の照射によって実現される。図4Bによれば、出射光L1によって、ウィルスの不活化も実現できることが確認される。なお、出射光L1によって、ネココロナウィルス等の他のウィルスに対しても不活化の作用があることが確認されている。 As another verification, FIG. 4B shows the result of the same verification for influenza virus. According to this result, it is also confirmed that the virus can be inactivated by the emitted light L1. For example, in order to set the irradiation amount of the emitted light L1 to 3 mJ / cm 2 , it is realized by irradiation for 5 minutes when the illuminance is 0.01 mW / cm 2 , and when the illuminance is 0.001 mW / cm 2 . It is realized by irradiation for 50 minutes. According to FIG. 4B, it is confirmed that the inactivation of the virus can also be realized by the emitted light L1. It has been confirmed that the emitted light L1 also has an inactivating effect on other viruses such as cat coronavirus.
 次に制御部20の構成と、制御部20による紫外光照射器10の点灯制御について説明する。図5は、制御部20の構成を模式的に示すブロック図である。図5に示すように、制御部20は、紫外光照射器10に対して点灯状態と消灯状態とを切り換える制御信号を出力する点灯制御部21と、点灯期間と消灯期間の時間を計測するタイマ22と、動作開始や動作モードを切り換え操作等を行う操作部23とを備える。動作開始や動作モードを切り換え操作とは、例えば、公園の管理者が、虫が発生しやすい夏場が近づいた頃に、不活化装置1の動作を開始させる場合等が想定される。 Next, the configuration of the control unit 20 and the lighting control of the ultraviolet light irradiator 10 by the control unit 20 will be described. FIG. 5 is a block diagram schematically showing the configuration of the control unit 20. As shown in FIG. 5, the control unit 20 includes a lighting control unit 21 that outputs a control signal for switching between a lighting state and an extinguishing state for the ultraviolet light irradiator 10, and a timer that measures the lighting period and the extinguishing period. 22 and an operation unit 23 for performing an operation start operation, an operation mode switching operation, and the like are provided. The operation of starting the operation or switching the operation mode is assumed to be, for example, a case where the manager of the park starts the operation of the inactivating device 1 when the summer when insects are likely to occur is approaching.
 図6は、制御部20の点灯制御部21が紫外光照射器10に対して送信する点灯制御信号の一例を示すグラフである。図6は、ハイレベルが紫外光照射器10を点灯させる状態を示し、ローレベルが紫外光照射器10を消灯させる状態を示している。図6に示すように、制御部20は、操作者が操作部23を操作して、紫外光照射器10の動作を開始させる操作を行うと、点灯制御部21が紫外光照射器10に対して点灯状態に切り替える制御信号を出力する(図6におけるS1時点)。 FIG. 6 is a graph showing an example of a lighting control signal transmitted by the lighting control unit 21 of the control unit 20 to the ultraviolet light irradiator 10. FIG. 6 shows a state in which the high level turns on the ultraviolet light irradiator 10 and a low level shows a state in which the ultraviolet light irradiator 10 is turned off. As shown in FIG. 6, when the operator operates the operation unit 23 to start the operation of the ultraviolet light irradiator 10, the lighting control unit 21 refers to the ultraviolet light irradiator 10. Outputs a control signal for switching to the lighting state (at the time of S1 in FIG. 6).
 紫外光照射器10を点灯状態に切り替える信号が、点灯制御部21から紫外光照射器10に対して出力されると、タイマ22が点灯期間の時間T1の計測を開始する。 When a signal for switching the ultraviolet light irradiator 10 to the lighting state is output from the lighting control unit 21 to the ultraviolet light irradiator 10, the timer 22 starts measuring the time T1 during the lighting period.
 タイマ22がS1時点から時間T1が経過したことを検知すると、点灯制御部21が、紫外光照射器10に対して消灯状態に切り替える制御信号を出力する(図6におけるS2時点)。 When the timer 22 detects that the time T1 has elapsed from the time point S1, the lighting control unit 21 outputs a control signal for switching to the off state to the ultraviolet light irradiator 10 (time point S2 in FIG. 6).
 点灯制御部21から、紫外光照射器10に対して消灯状態に切り替える制御信号が出力されると、タイマ22が消灯期間の時間T2の計測を開始する。 When the lighting control unit 21 outputs a control signal for switching to the extinguished state for the ultraviolet light irradiator 10, the timer 22 starts measuring the time T2 during the extinguishing period.
 タイマ22がS2時点から時間T2が経過したことを検知すると、点灯制御部21が、紫外光照射器10に対して点灯状態に切り替えるように制御信号を出力する(図6におけるS3時点)。 When the timer 22 detects that the time T2 has elapsed from the time point S2, the lighting control unit 21 outputs a control signal to the ultraviolet light irradiator 10 so as to switch to the lighting state (time point S3 in FIG. 6).
 以降、操作者が操作部23を操作して、紫外光照射器10を停止させる操作を行うまでは、上述の制御が繰り返される。この制御により、紫外光照射器10は、点灯と消灯を繰り返すように不活化処理を行う。 After that, the above control is repeated until the operator operates the operation unit 23 to stop the ultraviolet light irradiator 10. By this control, the ultraviolet light irradiator 10 performs an inactivation process so as to repeatedly turn on and off.
 本実施形態では、時間T1を30秒、時間T2を150秒として、点灯期間が消灯期間に対して20%となるようにしたが、時間T1と時間T2は、任意に設定されても構わない。なお、虫が紫外光照射器10から出射される出射光L1を見失いやすいように、点灯期間は、消灯期間に対して50%以下であることが好ましく、25%以下であることがより好ましい。 In the present embodiment, the time T1 is set to 30 seconds and the time T2 is set to 150 seconds so that the lighting period is 20% of the extinguishing period, but the time T1 and the time T2 may be set arbitrarily. .. The lighting period is preferably 50% or less, more preferably 25% or less of the extinguishing period so that the insects can easily lose sight of the emitted light L1 emitted from the ultraviolet light irradiator 10.
 また、虫の誘引効果をより低減させるために、虫が紫外光照射器10から出射される出射光L1を見失いやすいように、時間T1は、60秒以下に設定されることが好ましい。 Further, in order to further reduce the effect of attracting insects, the time T1 is preferably set to 60 seconds or less so that the insects can easily lose sight of the emitted light L1 emitted from the ultraviolet light irradiator 10.
 上記構成による方法によれば、虫に対する誘引効果を低減させて、空間や処理対象物の表面に存在する菌等を不活化処理することができる。また、紫外光照射器10を用いた方法により、虫(特に、ショウジョウバエやユスリカ)に対する誘引効果を低減できる点については、実験結果を参照して後述される。 According to the method based on the above configuration, it is possible to reduce the effect of attracting insects and inactivate bacteria and the like existing in the space and the surface of the object to be treated. Further, the point that the attracting effect on insects (particularly Drosophila and midges) can be reduced by the method using the ultraviolet light irradiator 10 will be described later with reference to the experimental results.
 そして、菌やウィルスの不活化の効果の大小は、出射光L1の積算照射量(ドーズ量)に依存する。このため、紫外光照射器10が点灯と消灯を繰り返すように動作したとしても、処理対象となる空間、領域に対して出射光L1の積算照射量が菌等の不活化に必要とされるだけ十分に確保されていれば、当該空間、領域における菌等を不活化する効果は得られる。 The magnitude of the effect of inactivating bacteria and viruses depends on the integrated irradiation amount (dose amount) of the emitted light L1. Therefore, even if the ultraviolet light irradiator 10 operates so as to repeatedly turn on and off, the integrated irradiation amount of the emitted light L1 is only required for inactivating bacteria and the like with respect to the space and region to be processed. If it is sufficiently secured, the effect of inactivating bacteria and the like in the space and region can be obtained.
 図7は、出射光L1の照射態様を異ならせた点を除けば、図4Aと同様の方法で黄色ブドウ球菌に対する不活化の検証を行った結果を示すグラフである。照射条件としては、照度を0.01mW/cm2として、デューティ比50%の間欠点灯8.3分ON、8.3分OFFする方法が採用された。 FIG. 7 is a graph showing the results of verification of inactivation against Staphylococcus aureus by the same method as in FIG. 4A, except that the irradiation mode of the emitted light L1 is different. As the irradiation conditions, a method was adopted in which the illuminance was 0.01 mW / cm 2 and the intermittent lighting with a duty ratio of 50% was turned on for 8.3 minutes and turned off for 8.3 minutes.
 図7の結果によれば、出射光L1が間欠的に照射された場合であっても菌等の不活化作用が得られることが分かる。 According to the result of FIG. 7, it can be seen that the inactivating action of bacteria and the like can be obtained even when the emitted light L1 is intermittently irradiated.
 虫に対する誘引効果を検証する実験を行った。以下、実験の詳細と結果について説明する。 An experiment was conducted to verify the attracting effect on insects. The details and results of the experiment will be described below.
 [実験1]
 実験対象とする虫は、ショウジョウバエと同じハエ目の仲間であるユスリカとした。
[Experiment 1]
The insects used for the experiment were midges, which are members of the same fly order as Drosophila.
 図8は、実験1の装置構成を模式的に示す図面である。図8に示すように、実験1の装置は、二つのボックス(B1,B2)をアクリルパイプP1で接続した構成である。ボックスB1には光源N1を配置した。なお、実験時は、装置全体は暗幕で覆い、装置内に外光が入らないように構成した。 FIG. 8 is a drawing schematically showing the device configuration of Experiment 1. As shown in FIG. 8, the apparatus of Experiment 1 has a configuration in which two boxes (B1 and B2) are connected by an acrylic pipe P1. A light source N1 was arranged in the box B1. At the time of the experiment, the entire device was covered with a blackout curtain to prevent outside light from entering the device.
 (実験方法)
 ボックスB1に光源N1を配置し、ボックスB2には、ユスリカを約150匹入れ、実験開始とともに、光源N1を点灯させて、所定の時間経過後にボックスB2からボックスB1に移動したユスリカの匹数をカウントした。実験は、光源N1を、上記実施例の紫外光照射器10、白色LED、蛍光灯の3種類に変更した状態で行われた。なお、図9は白色LEDから出射される光のスペクトルであり、図10は、蛍光灯から出射される光のスペクトルである。
(experimental method)
A light source N1 is arranged in the box B1, about 150 chironomids are put in the box B2, the light source N1 is turned on at the start of the experiment, and the number of chironomids moved from the box B2 to the box B1 after a predetermined time has elapsed. Counted. The experiment was carried out in a state where the light source N1 was changed to the three types of the ultraviolet light irradiator 10, the white LED, and the fluorescent lamp of the above embodiment. Note that FIG. 9 is a spectrum of light emitted from the white LED, and FIG. 10 is a spectrum of light emitted from the fluorescent lamp.
 (結果)
 光源N1が蛍光灯では、実験開始後40分で21匹のユスリカがボックスB1に移動した。
(result)
When the light source N1 was a fluorescent lamp, 21 chironomids moved to the box B1 40 minutes after the start of the experiment.
 光源N1が白色LEDでは、実験開始後40分で23匹のユスリカがボックスB1に移動した。 When the light source N1 was a white LED, 23 chironomids moved to the box B1 40 minutes after the start of the experiment.
 光源N1が紫外光照射器10では、実験開始後20分で36匹のユスリカがボックスB1に移動した。 When the light source N1 was the ultraviolet light irradiator 10, 36 chironomids moved to the box B1 20 minutes after the start of the experiment.
 以上の結果から、暗幕で覆われた暗環境下においては、蛍光灯、白色LED、紫外光照射器10のいずれも、出射する光のユスリカに対する誘引効果が確認された。 From the above results, it was confirmed that in a dark environment covered with a blackout curtain, all of the fluorescent lamp, the white LED, and the ultraviolet light irradiator 10 have an attractive effect on the chironomid of the emitted light.
 [実験2]
 実験対象とする虫は、実験1と同様にユスリカとした。
[Experiment 2]
The insects to be tested were chironomids as in Experiment 1.
 図11は、実験1の装置構成を模式的に示す図面である。図11に示すように、実験2の装置は、三つのボックス(B1,B2,B3)をアクリルパイプ(P1,P2)で直列に接続した構成である。ボックスB1には光源N1、ボックスB3には光源N2を配置した。なお、実験時は、装置全体は暗幕で覆い、装置内に外光が入らないように構成した。 FIG. 11 is a drawing schematically showing the device configuration of Experiment 1. As shown in FIG. 11, the apparatus of Experiment 2 has a configuration in which three boxes (B1, B2, B3) are connected in series by acrylic pipes (P1, P2). A light source N1 was arranged in the box B1, and a light source N2 was arranged in the box B3. At the time of the experiment, the entire device was covered with a blackout curtain to prevent outside light from entering the device.
 (実験方法)
 ボックスB1に光源N1、ボックスB3に光源N2を配置し、ボックスB2には、ユスリカを約150匹入れ、実験開始とともに、光源(N1,N2)を点灯させて、20分後にボックスB2からボックスB1、ボックスB3のそれぞれに移動したユスリカの匹数をカウントした。実験2は、実験1と同様に、光源N1,N2を、上記実施例の紫外光照射器10、白色LED、蛍光灯の3種類の中から、光源N1と光源N2が相互に異なる組み合わせとなるように選択して行われた。
(experimental method)
A light source N1 is placed in the box B1 and a light source N2 is placed in the box B3. About 150 chironomids are placed in the box B2. , The number of chironomids that moved to each of the boxes B3 was counted. In Experiment 2, as in Experiment 1, the light sources N1 and N2 are different combinations of the light sources N1 and N2 from the three types of the ultraviolet light irradiator 10, the white LED, and the fluorescent lamp of the above embodiment. It was done by choosing.
 (結果)
 それぞれの結果を下記の表1に示す。
(result)
The results of each are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 紫外光照射器10は、白色LEDや蛍光灯と同時に点灯している場合は、ユスリカに対する誘引効果が小さい結果となった。これにより、実際に使用される周辺に照明機器が存在するような環境下においては、紫外光照射器10に虫が寄っていく確率は、非常に低いことが確認された。 When the ultraviolet light irradiator 10 was lit at the same time as the white LED or the fluorescent lamp, the effect of attracting the chironomid was small. As a result, it was confirmed that the probability of insects approaching the ultraviolet light irradiator 10 is extremely low in an environment where lighting equipment is present in the vicinity of the actual use.
 [別使用態様]
 以下、別使用態様につき説明する。
[Another usage mode]
Hereinafter, another usage mode will be described.
 〈1〉 図12は、不活化装置1の別使用態様を模式的に示す図面である。図12に示すように、不活化装置1は、夜間における自動販売機3及びその周辺の空間を不活化処理する様子が示されている。人が飲み物を購入する頻度が低くなる深夜帯において、自動的に消灯している状態の自動販売機3に対して紫外光を照射し、人が頻繁に触れるボタンやコインの投入口、商品取り出し口等に付着している菌等を不活化処理する態様が考えられる。 <1> FIG. 12 is a drawing schematically showing another usage mode of the inactivating device 1. As shown in FIG. 12, the inactivating device 1 is shown to inactivate the vending machine 3 and the space around it at night. In the middle of the night when people purchase drinks less frequently, the vending machine 3 that is automatically turned off is irradiated with ultraviolet light, and buttons, coin slots, and product removal that people frequently touch are used. It is conceivable that the bacteria and the like adhering to the mouth and the like are inactivated.
 なお、図12においては、制御部20は、紫外光照射器10と一緒に筐体に収められて、自動販売機3の上部に載置されているため見えない。 In FIG. 12, the control unit 20 is housed in a housing together with the ultraviolet light irradiator 10 and is placed on the upper part of the vending machine 3, so that it cannot be seen.
 また、図12の構成は、より広い範囲を不活化処理するために、紫外光照射器10を複数備えるように構成されている。図12に示すように、不活化装置1は、紫外光照射器10を複数備え、制御部20がそれぞれの紫外光照射器10を一括、又は別々に制御するように構成されていてもよい。 Further, the configuration of FIG. 12 is configured to include a plurality of ultraviolet light irradiators 10 in order to inactivate a wider range. As shown in FIG. 12, the inactivating device 1 may be provided with a plurality of ultraviolet light irradiators 10, and the control unit 20 may be configured to control each of the ultraviolet light irradiators 10 collectively or separately.
 図13は、不活化装置1の図12とは別の使用態様を模式的に示す図面である。図13に示すように、紫外光照射器10は、ドア4に装着されて、出射光L1が、人が頻繁に触れるドアノブ4aに対して照射されるように配置されていてもよい。さらには、紫外光照射器10は、券売機や遊技機等の周辺に配置、又はこれらの機器に装着されて、出射光L1が装置や設備の操作ボタンや操作用のタッチパネル等に対して照射されるように構成されていてもよい。これにより、ドアの開閉や購入操作等のために人が触れる部分に付着した菌やウィルスが、次々に当該部分に触れる人に伝搬することを防ぎ、感染症の拡大を抑える効果が期待できる。 FIG. 13 is a drawing schematically showing a usage mode different from that of FIG. 12 of the inactivating device 1. As shown in FIG. 13, the ultraviolet light irradiator 10 may be mounted on the door 4 so that the emitted light L1 is irradiated to the doorknob 4a which is frequently touched by a person. Further, the ultraviolet light irradiator 10 is arranged around a ticket vending machine, a game machine, or the like, or is attached to these devices, and the emitted light L1 irradiates the operation buttons of the device or equipment, the touch panel for operation, or the like. It may be configured to be. As a result, bacteria and viruses adhering to the part touched by a person for opening / closing the door or purchasing operation can be prevented from being transmitted to the person touching the part one after another, and the effect of suppressing the spread of the infectious disease can be expected.
 さらに、不活化装置1は、自動販売機3のような照明機能を有する装置、又は照明装置と制御部20の制御機能を共有し、それぞれの点灯時間等を一体的に制御するように照明システムの一部を構成するものであっても構わない。 Further, the inactivating device 1 shares the control function of the control unit 20 with a device having a lighting function such as a vending machine 3, or a lighting system so as to integrally control each lighting time and the like. It may be a part of.
 〈2〉 上述した不活化装置1の実施形態では、操作者が制御部20の操作部23を操作する態様を説明したが、例えば、制御部20がさらに無線受信部を備え、リモコンから発信される無線信号を受信して動作を開始したり、動作モードを切り替えたりする構成であっても構わない。 <2> In the above-described embodiment of the inactivating device 1, the mode in which the operator operates the operation unit 23 of the control unit 20 has been described. However, for example, the control unit 20 further includes a wireless reception unit and is transmitted from the remote controller. The configuration may be such that the operation is started or the operation mode is switched by receiving the wireless signal.
 また、不活化装置1は制御部20を備えず、単に操作者が紫外光照射器10の電源をオン/オフするだけの構成であっても構わない。 Further, the inactivating device 1 may not be provided with the control unit 20, and may be configured such that the operator simply turns on / off the power of the ultraviolet light irradiator 10.
    1    :  不活化装置
    2    :  ベンチ
    3    :  自動販売機
    4    :  ドア
    4a   :  ドアノブ
   10    :  紫外光照射器
   11    :  筐体
   12    :  エキシマランプ
   12a   :  発光管
   12b   :  電極
   13    :  光取り出し窓
   20    :  制御部
   21    :  点灯制御部
   22    :  タイマ
   23    :  操作部
    L1   :  出射光
1: Inactivating device 2: Bench 3: Vending machine 4: Door 4a: Doorknob 10: Ultraviolet light irradiator 11: Housing 12: Excimer lamp 12a: Light emitting tube 12b: Electrode 13: Light take-out window 20: Control unit 21 : Lighting control unit 22: Timer 23: Operation unit L1: Emission light

Claims (7)

  1.  200nm以上240nm未満の波長範囲内にピーク波長を有し、250nm以上550nm未満の波長範囲の光強度が抑止された出射光を照射することで、虫に対する誘引効果を抑制したことを特徴とする低誘虫な菌又はウィルスの不活化方法。 It is characterized by suppressing the effect of attracting insects by irradiating emitted light having a peak wavelength in the wavelength range of 200 nm or more and less than 240 nm and suppressing the light intensity in the wavelength range of 250 nm or more and less than 550 nm. A method of inactivating an attracting fungus or virus.
  2.  少なくとも暗環境下において、点灯と消灯とを繰り返して菌又はウィルスの不活化処理を行うことを特徴とする請求項1に記載の低誘虫な菌又はウィルスの不活化方法。 The method for inactivating a hypoallergenic fungus or virus according to claim 1, wherein the inactivating treatment of the fungus or virus is performed by repeating turning on and off at least in a dark environment.
  3.  点灯期間が消灯期間に対して50%以下となるように、点灯と消灯を繰り返すことを特徴とする請求項2に記載の低誘虫な菌又はウィルスの不活化方法。 The method for inactivating a hypoallergenic fungus or virus according to claim 2, wherein the lighting period is 50% or less of the extinguishing period, and the lighting and extinguishing are repeated.
  4.  点灯期間が消灯期間に対して25%以下となるように、点灯と消灯を繰り返すことを特徴とする請求項3に記載の低誘虫な菌又はウィルスの不活化方法。 The method for inactivating a hypoallergenic fungus or virus according to claim 3, wherein the lighting period is 25% or less of the extinguishing period, and the lighting and extinguishing are repeated.
  5.  点灯期間が60秒以下であることを特徴とする請求項2~4のいずれか一項に記載の低誘虫な菌又はウィルスの不活化方法。 The method for inactivating a hypoactive fungus or virus according to any one of claims 2 to 4, wherein the lighting period is 60 seconds or less.
  6.  Kr及びClを発光ガスとして含むエキシマランプから出射された光を照射することを特徴とする請求項1~5のいずれか一項に記載の低誘虫な菌又はウィルスの不活化方法。 The method for inactivating a hypoactive fungus or virus according to any one of claims 1 to 5, wherein the light emitted from an excimer lamp containing Kr and Cl as a luminescent gas is irradiated.
  7.  前記出射光は、前記エキシマランプから出射されて、少なくとも250nm以上550nm未満の波長範囲の光強度を低減させるフィルタを通過した光であることを特徴とする請求項6に記載の低誘虫な菌又はウィルスの不活化方法。 The low insect attractant fungus according to claim 6, wherein the emitted light is light emitted from the excimer lamp and passed through a filter that reduces the light intensity in a wavelength range of at least 250 nm or more and less than 550 nm. How to inactivate the virus.
PCT/JP2021/020417 2020-09-01 2021-05-28 Low insect-attracting method for inactivating microorganism or virus WO2022049844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-147016 2020-09-01
JP2020147016A JP2022041670A (en) 2020-09-01 2020-09-01 Low insect-attracting method for inactivating bacteria or virus

Publications (1)

Publication Number Publication Date
WO2022049844A1 true WO2022049844A1 (en) 2022-03-10

Family

ID=80491025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020417 WO2022049844A1 (en) 2020-09-01 2021-05-28 Low insect-attracting method for inactivating microorganism or virus

Country Status (3)

Country Link
JP (1) JP2022041670A (en)
TW (1) TW202227145A (en)
WO (1) WO2022049844A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678974A (en) * 1991-08-21 1994-03-22 Sanei Giken Kk Sterilizing method
JPH10334701A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Portable luminaire
JP2007068651A (en) * 2005-09-05 2007-03-22 Fujimori Sangyo Kikai Kk Ultraviolet irradiation device
JP2014508612A (en) * 2011-03-07 2014-04-10 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Apparatus, method and system for selectively acting on and / or sterilizing bacteria
JP2017528258A (en) * 2014-09-23 2017-09-28 デイライト メディカル,インク. Indoor decontamination apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678974A (en) * 1991-08-21 1994-03-22 Sanei Giken Kk Sterilizing method
JPH10334701A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Portable luminaire
JP2007068651A (en) * 2005-09-05 2007-03-22 Fujimori Sangyo Kikai Kk Ultraviolet irradiation device
JP2014508612A (en) * 2011-03-07 2014-04-10 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Apparatus, method and system for selectively acting on and / or sterilizing bacteria
JP2017528258A (en) * 2014-09-23 2017-09-28 デイライト メディカル,インク. Indoor decontamination apparatus and method

Also Published As

Publication number Publication date
JP2022041670A (en) 2022-03-11
TW202227145A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
JP6306097B2 (en) Cell disruption device and method for operating cell disruption device
CN111511409B (en) Asynchronous intermittent illumination for rapid surface disinfection
JP2020078479A (en) Ultraviolet ray irradiation device
KR20120029758A (en) Sterilization and disinfection apparatus
EP4035691B1 (en) Inactivation apparatus and inactivation method
JP2021029502A (en) Sterilizer and indoor sterilization system
JP2024023265A (en) Bacteriostatic method
WO2022113442A1 (en) Microbe and virus inactivation device
WO2022049844A1 (en) Low insect-attracting method for inactivating microorganism or virus
WO2022030101A1 (en) Method for inactivating microbes or viruses, and device for inactivating microbes or viruses
JP2022041879A (en) Illumination device with bacterial or viral inactivation function
JP6977853B1 (en) Bacterial or virus inactivating device
JP7302644B2 (en) Inactivation device and method
WO2022190672A1 (en) Apparatus for inactivating bacteria or viruses, and system for inactivating bacteria or viruses
WO2022030342A1 (en) Device for inactivating bacteria or viruses and treatment method for inactivating bacteria or viruses
JP2022138101A (en) Apparatus for inactivating bacteria or viruses, and system for inactivating bacteria or viruses
WO2022049884A1 (en) Illumination device with bacterial or viral inactivation function
JP2023119620A (en) Inactivation method and inactivation system
JP6912014B1 (en) Inactivation method and inactivation system
WO2022239437A1 (en) Ultraviolet light irradiation system
Sahu et al. Disinfectant chamber for killing body germs with integrated FAR-UVC chamber (for COVID-19)
Gafincu-Grigoriu et al. NEW METHODS OF INACTIVATION OF SOME PATHOGENIC AGENTS IN DENTAL CLINICS. REVIEW
CN116830807A (en) Method for inactivating bacteria or viruses
KR200279837Y1 (en) ultraviolet hand and foot sterilizer
JP2022170974A (en) Bacteria or virus inactivation device and bacteria or virus inactivation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863903

Country of ref document: EP

Kind code of ref document: A1