WO2022042228A1 - 一种镍钴锰溶液中铁铝资源化的回收方法 - Google Patents

一种镍钴锰溶液中铁铝资源化的回收方法 Download PDF

Info

Publication number
WO2022042228A1
WO2022042228A1 PCT/CN2021/110302 CN2021110302W WO2022042228A1 WO 2022042228 A1 WO2022042228 A1 WO 2022042228A1 CN 2021110302 W CN2021110302 W CN 2021110302W WO 2022042228 A1 WO2022042228 A1 WO 2022042228A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
iron
solution
slag
cobalt
Prior art date
Application number
PCT/CN2021/110302
Other languages
English (en)
French (fr)
Inventor
邓浩臻
堪志新
陈若葵
阮丁山
何芳
李长东
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Priority to EP21860068.2A priority Critical patent/EP4194572A4/en
Priority to HUP2200168A priority patent/HU231461B1/hu
Priority to US18/043,027 priority patent/US11760655B2/en
Publication of WO2022042228A1 publication Critical patent/WO2022042228A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/07Preparation from the hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0693Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process from waste-like raw materials, e.g. fly ash or Bayer calcination dust
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0091Treating solutions by chemical methods by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of waste battery recycling, and in particular relates to a recycling method of iron and aluminum resources in the recycling process of nickel-cobalt-manganese solution.
  • Lithium-ion batteries have been widely used in various electronic products and electric vehicles and other industries. With the substantial increase in the production and use of waste lithium-ion batteries, there will be a large number of lithium-ion batteries that need to be scrapped and recycled in recent years. It will cause environmental pollution and waste of resources. Therefore, the recycling of lithium-ion batteries is imminent and of great significance, which is not only conducive to protecting the environment, but also conducive to the recycling of resources.
  • Nickel and aluminum are the main impurities in the recycling process of waste lithium-ion battery cathode materials. The removal and recovery of these impurities have also attracted extensive discussion and in-depth research by researchers.
  • the nickel-cobalt-manganese solution contains a large amount of iron and aluminum, and it is very meaningful to be able to separate and recycle this part of iron and aluminum.
  • the wet process of nickel-cobalt-manganese hydrometallurgy is widely adopted: the process flow of raw material acid leaching, impurity removal, extraction and separation, in the impurity removal process, the most important work is to remove iron and aluminum impurities.
  • the pH is adjusted to 2-5 by adding sodium hydroxide or soda ash, so that the iron in the solution is precipitated by jarosite or ferric hydroxide, and the aluminum is precipitated in the form of aluminum hydroxide, resulting in
  • the slag is filtered and washed to become iron-aluminum slag that needs to be scrapped.
  • This iron-aluminum slag has low economic value due to its impure components; and it contains a certain content of nickel hydroxide, cobalt, manganese, etc., which belongs to hazardous waste. Ordinary landfill treatment not only causes great harm to the environment, but also loses Among them, the high-value nickel, cobalt and manganese resources are obtained.
  • the embodiment of the present invention aims to provide a method for recycling iron and aluminum in a nickel-cobalt-manganese solution.
  • the utilization rate of resource recovery is effectively improved, the process is reasonable, the cost is low, the environmental pollution is small, the generated by-products can be returned to the wet process system, and there is no excess hazardous waste residue discharged in the process system of the invention, which has good economic and social benefits. .
  • a method for recycling iron and aluminum in a nickel-cobalt-manganese solution comprising the following steps:
  • the battery powder is leached and copper removed to obtain a copper-removed liquid, and the pH value is adjusted in stages to remove iron and aluminum to obtain goethite slag and iron-aluminum slag respectively;
  • the aluminum-containing solution is heated and stirred, carbon dioxide is introduced, and the pH value is controlled to obtain aluminum hydroxide and the solution after aluminum removal.
  • the battery powder can be obtained by pulverizing battery waste.
  • the battery waste can be selected from waste positive electrode materials obtained by dismantling waste lithium batteries or waste positive electrode materials generated during the manufacturing process of lithium batteries.
  • a post-copper solution containing nickel, cobalt, manganese, iron, and aluminum is obtained.
  • the step-by-step pH adjustment to remove iron and aluminum includes:
  • the obtained goethite slag is washed and dried to obtain a goethite product.
  • the neutralizing agent includes, but is not limited to, one or more of sodium carbonate, potassium carbonate, calcium carbonate, calcium hydroxide, and magnesium hydroxide.
  • the purity of the obtained goethite product reaches more than 90%.
  • the pH value is controlled to be 2-4, the reaction temperature is 70-95° C., and the reaction time is 1-4 h.
  • the pH value is adjusted to 4-5, the reaction temperature is 60-95° C., and the reaction time is 2-4 h to obtain iron-aluminum slag and iron-removal liquid.
  • the method further comprises: extracting the obtained iron-removed liquid to obtain a nickel-cobalt-manganese product.
  • the alkaline solution is a solution including at least one of sodium hydroxide and potassium hydroxide.
  • the lye solution is a solution with a concentration of 10-30%.
  • the iron-aluminum slag is mixed with the lye at a caustic ratio of 2.5-7.5.
  • the iron-aluminum slag is mixed with lye, heated to a temperature of 70-95° C.; at a stirring speed of 200-700 r/min; and the reaction is stirred for 1-5 hours.
  • the aluminum slag in the iron-aluminum slag generates a sodium metaaluminate solution by alkaline leaching, while the nickel-cobalt-manganese-iron in the iron-aluminum slag is enriched and retained in the alkali slag, so as to achieve the effect of separating the two.
  • the nickel-cobalt-ferromanganese in the obtained aluminum-containing solution is all less than 3.0 mg/L, and the content of nickel-cobalt-ferromanganese in the obtained alkali slag can reach about 20%.
  • the method further includes: returning the alkali residue to the acid leaching process.
  • the aluminum-containing solution is heated and stirred, and carbon dioxide is introduced, wherein the introduction rate of carbon dioxide is 2-8L/min.
  • carbon dioxide is introduced, and the pH value is controlled to be 9.5-11.5.
  • the reaction is terminated to obtain aluminum hydroxide and a liquid after removing aluminum.
  • the aluminum-containing solution is heated and stirred, wherein the stirring speed is 200-500 r/min, and the reaction temperature is 30-90 °C.
  • the sodium metaaluminate solution is prepared by carbon fractionation to prepare aluminum hydroxide, and the aluminum in it is recovered.
  • the purity of the obtained aluminum hydroxide can reach 95%-97%; It is rich in by-products such as sodium carbonate, sodium bicarbonate, etc.
  • the liquid can be returned to the system as a neutralizer for segmental removal of iron and aluminum.
  • the method further includes: using the solution after aluminum removal to adjust the pH value of the solution.
  • the iron-aluminum slag which is a dangerous solid waste
  • the purity of the product reaches more than 90%; meanwhile, the aluminum in it is used to produce the aluminum hydroxide product with economic value.
  • the process of the embodiment of the present invention is simple and feasible, and the separation of nickel, cobalt, ferromanganese and aluminum can be realized in one step, so as to be treated separately as resources; the aluminum removal liquid obtained in the process can be re-applied to the system as a neutralizing agent, and in the implementation of the present invention No waste water waste is generated in the process of the example.
  • FIG. 1 is a flow chart of a method for recycling aluminum slag in a nickel-cobalt-manganese solution according to an embodiment of the present invention.
  • a method for recycling aluminum slag in a nickel-cobalt-manganese solution comprising the following steps:
  • the stirring speed of the aluminum-containing solution is 200-500r/min, and carbon dioxide is introduced at a rate of 2-8L/min, and the pH value of the reaction end point is 9.5-11.5 to obtain aluminum hydroxide and a solution after aluminum removal. ;
  • the solution after aluminum removal is used to adjust the pH value of the solution.
  • waste battery powder is used as a raw material, and a nickel-cobalt-manganese solution containing copper, iron, and aluminum is obtained after acid leaching.
  • the copper in the solution is replaced by iron powder to recover copper, and then the iron in the solution is removed by adding a neutralizing agent Aluminum, to obtain a qualified nickel-cobalt-manganese solution, and the iron-aluminum slag generated during the impurity removal reaction process is not high in iron-aluminum grade and cannot be directly recycled.
  • the iron-aluminum slag contains a certain amount of nickel, cobalt and manganese, which needs to be separated from iron and aluminum. for recycling.
  • the aluminum slag in the iron-aluminum slag generates sodium metaaluminate solution by alkaline leaching, while the nickel-cobalt-manganese-iron in the iron-aluminum slag is enriched and retained in the alkali leaching slag, so as to achieve the effect of separating the two, and the partial
  • the sodium aluminate solution prepares aluminum hydroxide by carbon separation method, and the aluminum in it is recovered.
  • the aluminum removal liquid rich in by-products such as sodium carbonate is obtained, and the alkali leaching residue rich in nickel, cobalt, and ferromanganese is returned to the process flow. Recycling of nickel, cobalt and manganese.
  • the alkali slag treatment process of the embodiment of the present invention can recycle the original hazardous waste iron-aluminum slag into usable aluminum hydroxide products, sodium carbonate solution, and goethite with economic value.
  • the raw materials mentioned below are all commercially available products; the concentrations of metal ions in the following examples are all obtained by atomic absorption spectrometry (AAS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) ) determination; the fluoride ion concentration is determined by the fluorine electrode potentiometric method; the process steps or preparation methods not mentioned in detail are the process steps or preparation methods known to those skilled in the art.
  • AAS atomic absorption spectrometry
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • the present embodiment proposes a method for recycling aluminum slag in a nickel-cobalt-manganese solution, comprising the following steps:
  • the lithium-ion battery waste is pulverized and sieved to obtain battery powder.
  • the obtained battery powder is leached with sulfuric acid to obtain a nickel-cobalt-manganese solution containing copper and aluminum, wherein the total concentration of nickel, cobalt and manganese is 110 g/L, and aluminum is 6.2 g/L; adding iron powder to the solution to remove copper, to obtain a After copper solution, the iron concentration in the solution after copper removal is 4.5g/L; after copper removal, sodium carbonate is added to control the pH of the reaction end point to 3.0 under the condition of 90 °C, and goethite slag is obtained after reaction for 2h, which is washed and dried The goethite product was obtained, the purity was 90%, and the iron content was 55.4%; and sodium carbonate was added to adjust the pH of the solution to 4.5-5.0 under the condition of 90° C.
  • the content of the iron-aluminum slag was: Iron 5.0%, 15.6%; the obtained iron-removing liquid is subjected to subsequent extraction to obtain nickel-cobalt-manganese products.
  • Table 1 shows the content of nickel, cobalt, manganese, iron, and aluminum in the goethite and the solution after removing goethite, and the content of nickel, cobalt, manganese, iron, and aluminum in the iron-aluminum slag and the solution after removing iron is shown in Table 2.
  • Table 1 The content of nickel, cobalt, manganese, iron, and aluminum in goethite and goethite solution
  • Table 2 The content of nickel, cobalt, manganese, iron, and aluminum in iron-aluminum slag and liquid after iron removal
  • step (3) the alkali residue obtained in step (3) is returned to the acid leaching process; the gained sodium metaaluminate solution is passed into carbon dioxide at a speed of 5L/min, and the control reaction temperature is 30 ° C, and the stirring speed is 300r/min, The pH value of the reaction end point is 10.0, the slurry is filtered after the reaction, the filtrate is a sodium carbonate-containing solution, containing 1.6 mg/L of aluminum, and the obtained sodium carbonate-containing solution is used in step (2) as a neutralizing agent for controlling or adjusting pH ; The filter residue is washed to obtain aluminum hydroxide product, and the purity of aluminum hydroxide is 96.1% after testing.
  • the contents of nickel, cobalt, and manganese in the sodium carbonate-containing solution and the filter residue are shown in Table 4.
  • the present embodiment proposes a method for recycling aluminum slag in a nickel-cobalt-manganese solution, comprising the following steps:
  • the lithium-ion battery waste is pulverized and sieved to obtain battery powder.
  • the obtained battery powder is leached with sulfuric acid to obtain a nickel-cobalt-manganese solution containing copper and aluminum, wherein the total concentration of nickel-cobalt-manganese is 115 g/L, and aluminum is 8.3 g/L; adding iron powder to the solution to remove copper, to obtain a After copper solution, the iron concentration in the solution after copper removal is 4.2g/L. After copper removal, calcium hydroxide is added to control the pH of the reaction end point to 3.5 under the condition of 95°C.
  • goethite slag is obtained, which is washed and dried Then, the goethite product is obtained, the purity is 92%, and the iron content is 56.4%; then calcium hydroxide is added to adjust the pH of the solution to 4.0-4.5 under the condition of 85 ° C, and the iron-aluminum slag and the iron-removing liquid are obtained, and the content in the iron-aluminum slag is They are respectively 4.0% iron and 17.2% aluminum; the iron-removing liquid is subjected to subsequent extraction to obtain nickel-cobalt-manganese products.
  • Table 5 shows the content of nickel, cobalt, manganese, iron, and aluminum in the goethite and the liquid after removing goethite, and the content of nickel, cobalt, manganese, iron, and aluminum in the iron-aluminum slag and the liquid after removing iron is shown in Table 6.
  • the alkali residue obtained in step (3) is returned to the acid leaching process; the obtained sodium metaaluminate solution is passed into carbon dioxide at a rate of 6L/min, and the control reaction temperature is 50 ° C, and the stirring speed is 400 r/min, The pH value of the reaction end point is 10.5.
  • the slurry is filtered, and the filtrate is a sodium carbonate-containing solution containing 1.0 mg/L of aluminum.
  • the obtained sodium carbonate-containing solution can be added as a neutralizing agent in step (2) for controlling or adjusting pH. ;
  • the filter residue is washed to obtain aluminum hydroxide product, and the purity of aluminum hydroxide is 95.7% after testing.
  • the contents of nickel, cobalt, and manganese in the sodium carbonate-containing solution and the filter residue are shown in Table 8.
  • the present embodiment proposes a method for recycling aluminum slag in a nickel-cobalt-manganese solution, comprising the following steps:
  • the lithium-ion battery waste is pulverized and sieved to obtain battery powder.
  • the obtained battery powder is leached with sulfuric acid to obtain a nickel-cobalt-manganese solution containing copper and aluminum, wherein the total concentration of nickel, cobalt, and manganese is 95 g/L, and aluminum is 6.7 g/L; adding iron powder to the solution to remove copper to obtain a After copper solution, the iron concentration in the solution after copper removal is 4.8g/L. After copper removal, sodium carbonate is added to the solution at 85°C to control the pH of the reaction end point to 2.8. Goethite slag is obtained after 1.5h of reaction, which is washed and dried.
  • the goethite product is obtained, the purity is 93%, and the iron content is 58.47%; then sodium carbonate is added to adjust the pH of the solution to 4.5-4.8 under the condition of 85 ° C, and the iron-aluminum slag and the iron-removing liquid are obtained, and the content of the iron-aluminum slag is respectively It is 6.8% of iron and 12.6% of aluminum; the liquid after iron removal is subjected to subsequent extraction to obtain nickel-cobalt-manganese products.
  • Table 9 shows the content of nickel, cobalt, manganese, iron, and aluminum in the goethite and the liquid after removing goethite, and the content of nickel, cobalt, manganese, iron, and aluminum in the liquid after iron-aluminum slag and iron removal is shown in Table 10.
  • Table 10 The content of nickel, cobalt, manganese, iron, and aluminum in iron-aluminum slag and iron-removal liquid
  • the total amount of nickel, cobalt, and ferromanganese is 19.86%, and the aluminum content is 4.15%.
  • the contents of nickel, cobalt, and manganese in the sodium metaaluminate solution and alkali slag are shown in Table 11.
  • step (3) the alkali residue obtained in step (3) is returned to the acid leaching process; the gained sodium metaaluminate solution is passed into carbon dioxide at a rate of 4L/min, and the control reaction temperature is 70 ° C, and the stirring speed is 350r/min, The pH value of the reaction end point is 10.8, and the slurry is filtered after the reaction, and the filtrate is a sodium carbonate-containing solution, containing 0.5 mg/L of aluminum, and the obtained sodium carbonate-containing solution is used as a neutralizing agent in step (2) for controlling or adjusting pH. ; The filter residue is washed to obtain aluminum hydroxide product, and the purity of aluminum hydroxide is 97.2% after testing. The contents of nickel, cobalt, and manganese in the sodium carbonate-containing solution and the filter residue are shown in Table 12.
  • the method of the embodiment of the present invention treats the original dangerous solid waste iron-aluminum slag as a resource, not only recovers the high-priced nickel-cobalt-manganese metal that is harmful to the environment, but also produces high-quality goethite, and the obtained The purity of the goethite product reaches more than 90%, and can be sold as a commodity; meanwhile, aluminum hydroxide with economic value is produced by utilizing the aluminum therein, and the purity of the obtained aluminum hydroxide reaches 95%-97%.
  • the process of the embodiment of the present invention is simple and feasible, and the separation of nickel, cobalt, ferromanganese and aluminum can be realized in one step, so as to be separately treated as resources; the aluminum hydroxide post-liquid obtained in the process is a sodium carbonate-containing solution, which can be re-applied to the process flow, No waste water is generated in the process flow of the embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及一种镍钴锰溶液中铁铝资源化的回收方法,包括以下步骤:将电池粉料经过浸出、除铜,得到除铜后液,分段调节pH值除铁铝,分别得到针铁矿渣和铁铝渣;将铁铝渣与碱液混合,加热搅拌,得到含铝溶液和碱渣;将含铝溶液加热搅拌,通入二氧化碳,控制pH值,得到氢氧化铝和除铝后液。本发明实施例的方法可以有效除去溶液中的铁铝,同时将铁铝资源化回收,能够有效地提高资源回收利用率,流程合理、成本较低,环境污染小,生成的副产物可以返回工艺流程,且在本发明工艺***中没有危险废渣排出,具有良好的经济效益和社会效益。

Description

一种镍钴锰溶液中铁铝资源化的回收方法 技术领域
本发明属于废旧电池回收技术领域,具体涉及一种镍钴锰溶液回收过程中铁铝资源化的回收方法。
背景技术
锂离子电池已经广泛地应用于各类电子产品和电动汽车等行业,随着废旧锂离子电池的产生量和使用量大幅增加,近年内将出现大量需要报废回收处理的锂离子电池,若处理不当则会造成环境的污染和资源的浪费,因此,锂离子电池的回收迫在眉睫并且具有重要意义,不仅有利于保护环境,更有利于资源的回收利用。
铁、铝作为废旧锂离子电池正极材料回收过程中的主要杂质,对这些杂质的去除和回收同样吸引了学者们的广泛讨论和深入研究。在废旧电池回收的湿法工艺中,镍钴锰溶液中含有大量铁铝,能够将这部分铁铝分离出来并回收是非常有意义的。镍钴锰湿法冶炼湿法工艺广泛采取:原料酸浸、除杂、萃取分离的工艺流程,在其除杂工序中,最主要的工作是除铁铝杂质。工业上通常采用加入氢氧化钠或者纯碱的方式,将pH调节至2-5,使溶液中的铁以黄钠铁矾或者氢氧化铁的沉淀下来,铝以氢氧化铝的形式沉淀,产生的渣经过滤、洗涤成为需要报废的铁铝渣。这种铁铝渣由于其组分不纯,经济价值很低;并且其中夹杂一定含量的氢氧化镍钴锰等,属于危险废物,普通的填埋处理不仅对环境造成极大的危害,也损失了其中高价值的镍、钴、锰资源。
发明内容
有鉴于此,本发明实施例旨在提供一种镍钴锰溶液中铁铝资源化的回收方法,根据本发明实施例的方法可以有效除去溶液中的铁铝,同时将铁铝资源化回收,能够有效地提高资源回收利用率,流程合理、成本较低,环境污染小,生成的副产物可以返回湿法***,且在本发明工艺***中没有多余危险废渣排出,具有良好的经济效益和社会效益。
本发明的目的通过以下所述的技术方法实现:
一种镍钴锰溶液中铁铝资源化的回收方法,包括以下步骤:
将电池粉料经过浸出、除铜,得到除铜后液,分段调节pH值除铁铝,分别得到针铁矿渣和铁铝渣;
将铁铝渣与碱液混合,加热搅拌,得到含铝溶液和碱渣;
将含铝溶液加热搅拌,通入二氧化碳,控制pH值,得到氢氧化铝和除铝后液。
根据本发明实施例,所述电池粉料可通过将电池废料粉碎后得到。根据本发明实施例, 所述电池废料可选自废旧锂电池拆解得到的废弃正极材料或锂电池制造过程中产生的废弃正极材料。在一些实施例中,将电池粉料经过浸出、除铜后,得到含镍钴锰铁铝的除铜后液。
根据本发明实施例,所述分段调节pH除铁铝包括:
加入中和剂,控制pH值为2-4,加热反应,得到针铁矿渣;
加入中和剂,调节pH值为4-5,加热反应,得到铁铝渣和除铁后液。
根据本发明实施例,所得针铁矿渣经洗涤、烘干,得到针铁矿产品。在本发明实施例中,所述中和剂中包含但不限于碳酸钠、碳酸钾、碳酸钙、氢氧化钙、氢氧化镁中的一种或多种。在一些实施例中,所得针铁矿渣经洗涤、烘干后,得到的针铁矿产品的纯度达到90%以上。
根据本发明一些具体实施例,控制pH值为2-4,反应温度70-95℃,反应时间1-4h,当pH值稳定时结束反应,得到针铁矿渣,避免多余废渣的堆积。在本发明一些具体实施例中,调节pH值为4-5,反应温度60-95℃,反应时间2-4h,得到铁铝渣和除铁后液。
根据本发明实施例,还包括:将所得除铁后液进行萃取,得到镍钴锰产品。
根据本发明实施例,所述碱液为包括氢氧化钠、氢氧化钾中至少一种的溶液。优选地,所述碱液为10-30%浓度的溶液。在一些实施例中,将铁铝渣与碱液按苛性比为2.5-7.5进行混合。在一些具体的实施例中,将铁铝渣与碱液混合,加热至温度为70-95℃;在搅拌速度为200-700r/min下;搅拌反应1-5h。
铁铝渣中的铝渣通过碱浸的方式生成偏铝酸钠溶液,而铁铝渣中的镍钴锰铁则富集保留在碱渣中,以此达到两者分离的效果,在一些实施例中,所得含铝溶液中镍钴锰铁均小于3.0mg/L,所得碱渣中镍钴锰铁的含量可达约20%。根据本发明实施例,得到含铝溶液和碱渣后,还包括:将碱渣返回酸浸工序。
根据本发明实施例,含铝溶液加热搅拌,通入二氧化碳,其中二氧化碳通入速率为2-8L/min。根据本发明实施例,通入二氧化碳,控制pH值为9.5-11.5,当pH值稳定时结束反应,得到氢氧化铝和除铝后液。在一些实施例中,含铝溶液加热搅拌,其中搅拌速度为200-500r/min,反应温度为30-90℃。本发明实施例将偏铝酸钠溶液通过碳分法制备氢氧化铝,回收其中的铝,在一些实施例中,所得氢氧化铝的纯度可达95%-97%;同时除铝后液中富含副产品碳酸钠、碳酸氢钠等,除铝后液可以作为中和剂回到***用于分段除铁铝。根据本发明实施例,得到氢氧化铝和除铝后液后,还包括:将除铝后液用于调节溶液pH值。
本发明实施例的方法具有以下优点及效果:
通过本发明实施例,创造性地将属于危险固废的铁铝渣进行资源化处理,不仅回收了对环境有危害的高价镍钴锰金属,并且生产得到高品质的针铁矿,所得针铁矿产品的纯度达到90%以上;同时利用了其中的铝生产出具有经济价值的氢氧化铝产品。本发明实施例的工艺简单可行,一步便可以实现镍钴锰铁与铝分离,从而分别资源化处理;工艺中得到的除铝后液可以作为中和剂重新应用到***中,在本发明实施例的工艺中没有产生废水废料。
附图说明
图1为本发明一个实施例的镍钴锰溶液中铝渣资源化回收的方法流程图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
参见图1,具体地,一种镍钴锰溶液中铝渣资源化回收的方法,包括以下步骤:
(1)将电池废料粉碎过筛,得到电池粉料;
(2)将所得电池粉料经过酸浸,得到浸出液,加入铁粉除铜后,得到除铜后液,加入中和剂,控制pH值为2-4,反应温度70-95℃,反应时间1-4h,当pH值稳定时结束反应,得到针铁矿渣;加入中和剂,调节pH值为4-5,反应温度60-95℃,反应时间2-4h,得到铁铝渣和除铁后液;
(3)所得针铁矿渣经洗涤、烘干后,得到的针铁矿产品;
(4)将所得除铁后液进行后续萃取,得到镍钴锰产品;
(5)将铁铝渣与碱液按苛性比为2.5-7.5进行混合,加热至温度为70-150℃,在搅拌速度为200-700r/min下反应1-5h,得到含铝溶液和碱渣;将碱渣返回酸浸工序;
(6)含铝溶液在30-90℃下,搅拌速度为200-500r/min,按2-8L/min通入二氧化碳,反应终点pH值为9.5-11.5,得到氢氧化铝和除铝后液;将除铝后液用于调节溶液pH值。
本发明实施例以废旧电池粉料为原料,通过酸浸后得到含铜铁铝的镍钴锰溶液,溶液中的铜经过铁粉置换后回收铜,再通过加入中和剂去除溶液中的铁铝,得到合格的镍钴锰溶液,而除杂反应过程中生成的铁铝渣铁铝品位不高,不能直接回收,同时铁铝渣中含有一定量的镍钴锰,需要与铁铝分离,进行回收。铁铝渣中的铝渣通过碱浸的方式生成偏铝酸钠溶液,而铁铝渣中的镍钴锰铁则富集保留在碱浸渣中,以此达到两者分离的效果,将偏铝酸钠溶液通过碳分法制备氢氧化铝,回收其中的铝,同时得到富含副产品碳酸钠等的除铝后液,而富含镍钴锰铁的碱浸渣则重新回到工艺流程中回收当中的镍钴锰。本发明实施例的碱渣处理工艺能够将原来的危废铁铝渣资源化回收为可使用的氢氧化铝产品、碳酸钠溶液,以及具有经济价值的针铁矿。
下面结合实施例对本发明作进一步详细的描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时下述所提及的原料未详细说明的,均为市售产品;以下实施例中金属离子的浓度均为通过原子吸收光谱法(AAS)或电感耦合等离子体原子发射光谱法(ICP-AES)测定;氟离子浓度通过氟电极电位法测定;未详细提及的工艺步骤或制备方法均为本领域技术人员所知晓的工艺步骤或制备方法。
实施例1
本实施例提出一种镍钴锰溶液中铝渣资源化回收的方法,包括以下步骤:
(1)将锂离子电池废料粉碎过筛,得到电池粉料。
(2)所得电池粉料经过硫酸浸出,得到含铜铝的镍钴锰溶液,其中镍钴锰浓度总量为110g/L,铝6.2g/L;往溶液中加入铁粉除铜,得到除铜后液,除铜后液中铁浓度为4.5g/L;除铜后液在90℃条件下加入碳酸钠控制反应终点pH为3.0,反应2h后得到针铁矿渣,经洗涤、烘干后得到针铁矿产品,纯度为90%,铁含量为55.4%;再在90℃条件下加入碳酸钠调节溶液pH至4.5-5.0,得到铁铝渣和除铁后液,铁铝渣中含量为铁5.0%、15.6%;将所得除铁后液进行后续萃取,得到镍钴锰产品。针铁矿和除针铁矿后液中的镍钴锰铁铝含量如表1所示,铁铝渣和除铁后液中的镍钴锰铁铝含量如表2所示。
表1 针铁矿和除针铁矿后液中的镍钴锰铁铝含量
样品
针铁矿 1.7% 0.7% 0.5% 55.4% 2.1%
除针铁矿后液 46.27g/L 19.27g/L 9.11g/L 2.37g/L 6.09g/L
表2 铁铝渣和除铁后液中的镍钴锰铁铝含量
样品
铁铝渣 2.4% 1.2% 0.7% 5.0% 15.6%
除铁后液 42.18g/L 16.57g/L 8.24g/L 0.09g/L 0.007g/L
(3)取100g所得铁铝渣,按苛性比5.0加入30%氢氧化钠溶液,在600r/min的搅拌速度下90℃恒温反应3h,反应结束后浆料趁热过滤,得到偏铝酸钠溶液和碱渣;其中,偏铝酸钠溶液中镍钴锰铁浓度分别为0.002g/L、0.001g/L、0.0005g/L、0.0001g/L,铝浓度为34.73g/L;碱渣含镍钴锰铁总量19.99%,含铝3.97%。偏铝酸钠溶液和碱渣中的镍钴锰含量如表3所示。
表3 偏铝酸钠溶液和碱渣中的镍钴锰含量
样品
偏铝酸钠溶液 0.002g/L 0.001g/L 0.0005g/L 0.0001g/L 34.73g/L
碱渣 6.84% 3.46% 2.19% 7.5% 3.97%
(4)将步骤(3)得到的碱渣返回至酸浸工序;将所得偏铝酸钠溶液,以5L/min的速率通入二氧化碳,控制反应温度为30℃,搅拌转速为300r/min,反应终点pH值为10.0,反应结束后浆料过滤,滤液为含碳酸钠溶液,含铝1.6mg/L,所得含碳酸钠溶液在步骤(2)中作为中和剂,用于控制或调节pH;滤渣经洗涤后得到氢氧化铝产品,经检测氢氧化铝纯度为96.1%。含碳酸钠溶液和滤渣中的镍钴锰含量如表4所示。
表4 含碳酸钠溶液和滤渣中的镍钴锰含量
样品
含碳酸钠溶液 0.001g/L 0.0005g/L 0.001g/L 0.0002g/L 0.0016g/L
滤渣 <0.005% <0.005% <0.005% <0.005% 33%
实施例2
本实施例提出一种镍钴锰溶液中铝渣资源化回收的方法,包括以下步骤:
(1)将锂离子电池废料粉碎过筛,得到电池粉料。
(2)所得电池粉料经过硫酸浸出,得到含铜铝的镍钴锰溶液,其中镍钴锰浓度总量为115g/L,铝8.3g/L;往溶液中加入铁粉除铜,得到除铜后液,除铜后液中铁浓度为4.2g/L,除铜后液在95℃条件下加入氢氧化钙控制反应终点pH为3.5,反应3h后得到针铁矿渣,经洗涤、烘干后得到针铁矿产品,纯度为92%,铁含量56.4%;再在85℃条件下加入氢氧化钙调节溶液pH至4.0-4.5,得到铁铝渣和除铁后液,铁铝渣中含量分别为铁4.0%、铝17.2%;将除铁后液进行后续萃取,得到镍钴锰产品。针铁矿和除针铁矿后液中的镍钴锰铁铝含量如表5所示,铁铝渣和除铁后液中的镍钴锰铁铝含量如表6所示。
表5 针铁矿和除针铁矿后液中的镍钴锰铁铝含量
样品
针铁矿 1.9% 1.0% 0.8% 56.4% 3.1%
除针铁矿后液 48.18g/L 22.27g/L 16.21g/L 1.97g/L 7.91g/L
表6 铁铝渣和除铁后液中的镍钴们铁铝含量
样品
铁铝渣 3.7% 2.2% 0.7% 4.0% 17.2%
除铁后液 45.19g/L 19.81g/L 15.19g/L 0.04g/L 0.008g/L
(3)取100g所得铁铝渣,按苛性比6.0加入20%氢氧化钠溶液,在500r/min的搅拌速度下100℃恒温反应5h,反应结束后浆料趁热过滤,得到偏铝酸钠溶液和碱渣;其中,偏铝酸钠溶液中镍钴锰铁浓度分别为0.001g/L、0.005g/L、0.001g/L、0.0002g/L,铝浓度为32.78g/L;碱渣含镍钴锰铁总量17.42%,含铝4.27%。偏铝酸钠溶液和碱渣中的镍钴锰含量如表7所示。
表7 偏铝酸钠溶液和碱渣中的镍钴锰含量
样品
偏铝酸钠溶液 0.001g/L 0.005g/L 0.001g/L 0.0002g/L 32.78g/L
碱渣 6.84% 3.46% 1.92% 5.2% 4.27%
(4)将步骤(3)得到的碱渣返回至酸浸工序;将所得偏铝酸钠溶液,以6L/min的速率通入二氧化碳,控制反应温度为50℃,搅拌转速为400r/min,反应终点pH值为10.5,反应结束后浆料过滤,滤液为含碳酸钠溶液,含铝1.0mg/L,所得含碳酸钠溶液可作为中和剂加入步骤(2),用于控制或调节pH;滤渣经洗涤后得到氢氧化铝产品,经检测氢氧化铝纯度为95.7%。含碳酸钠溶液和滤渣中的镍钴锰含量如表8所示。
表8 含碳酸钠溶液和滤渣中的镍钴锰含量
样品
含碳酸钠溶液 0.002g/L 0.001g/L 0.0005g/L 0.0001g/L 0.001g/L
滤渣 <0.005% <0.005% <0.005% <0.005% 33.11%
实施例3
本实施例提出一种镍钴锰溶液中铝渣资源化回收的方法,包括以下步骤:
(1)将锂离子电池废料粉碎过筛,得到电池粉料。
(2)所得电池粉料经过硫酸浸出,得到含铜铝的镍钴锰溶液,其中镍钴锰浓度总量为95g/L,铝6.7g/L;往溶液中加入铁粉除铜,得到除铜后液,除铜后液中铁浓度为4.8g/L,除铜后液在85℃条件下加入碳酸钠控制反应终点pH为2.8,反应1.5h后得到针铁矿渣,经洗涤、烘干后得到针铁矿产品,纯度为93%,含铁58.47%;再在85℃条件下加入碳酸钠调节溶液pH至4.5-4.8,得到铁铝渣和除铁后液,铁铝渣中含量分别为铁6.8%、铝12.6%;将除铁后液进行后续萃取,得到镍钴锰产品。针铁矿和除针铁矿后液中的镍钴锰铁铝含量如表9所示,铁铝渣和除铁后液中的镍钴锰铁铝含量如表10所示。
表9 针铁矿和除针铁矿后液中的镍钴锰铁铝含量
样品
针铁矿 2.4% 1.5% 0.7% 58.47% 1.9%
除针铁矿后液 41.74g/L 17.81g/L 10.92g/L 1.82g/L 6.38g/L
表10 铁铝渣和除铁后液中的镍钴锰铁铝含量
样品
铁铝渣 2.7% 1.6% 0.6% 6.8% 12.6%
除铁后液 37.18g/L 16.57g/L 8.24g/L 0.09g/L 0.007g/L
(3)取100g所得铁铝渣,按苛性比7.0加入30%氢氧化钠溶液,在700r/min的搅拌速度下110℃恒温反应5h,反应结束后浆料趁热过滤,得到偏铝酸钠溶液和碱渣;其中,偏铝酸钠溶液中镍钴锰铁浓度分别为0.002g/L、0.003g/L、0.0006g/L、0.0005g/L,铝含量为27.35g/L,碱渣含镍钴锰铁总量19.86%,含铝4.15%。偏铝酸钠溶液和碱渣中的镍钴锰含量如表11所示。
表11 偏铝酸钠溶液和碱渣中的镍钴锰含量
样品
偏铝酸钠溶液 0.002g/L 0.003g/L 0.0006g/L 0.001g/L 27.35g/L
碱渣 5.81% 4.82% 3.36% 5.87% 4.15%
(4)将步骤(3)得到的碱渣返回至酸浸工序;将所得偏铝酸钠溶液,以4L/min的速率通入二氧化碳,控制反应温度为70℃,搅拌转速为350r/min,反应终点pH值为10.8,反 应结束后浆料过滤,滤液为含碳酸钠溶液,含铝0.5mg/L,所得含碳酸钠溶液在步骤(2)中作为中和剂,用于控制或调节pH;滤渣经洗涤后得到氢氧化铝产品,经检测氢氧化铝纯度为97.2%。含碳酸钠溶液和滤渣中的镍钴锰含量如表12所示。
表12 含碳酸钠溶液和碱渣中的镍钴锰含量
样品
含碳酸钠溶液 0.002g/L 0.001g/L 0.0005g/L 0.0001g/L 0.0005g/L
滤渣 <0.005% <0.005% <0.005% <0.005% 33.64%
相对于相关技术,本发明实施例的方法将原来的危险固废铁铝渣进行资源化处理,不仅回收了对环境有危害的高价镍钴锰金属,并且生产得到高品质的针铁矿,所得针铁矿产品的纯度达到90%以上,可作为商品出售;同时利用了其中的铝生产出具有经济价值的氢氧化铝,所得氢氧化铝的纯度达到95%-97%。本发明实施例的工艺简单可行,一步便可以实现镍钴锰铁与铝分离,从而分别资源化处理;工艺中得到的氢氧化铝后液为含碳酸钠溶液,可以重新应用到工艺流程中,在本发明实施例的工艺流程没有废水废料的产生。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种镍钴锰溶液中铁铝资源化的回收方法,其特征在于,包括以下步骤:
    将电池粉料经过浸出、除铜,得到除铜后液,分段调节pH值除铁铝,分别得到针铁矿渣和铁铝渣;
    将铁铝渣与碱液混合,加热搅拌,得到含铝溶液和碱渣;
    将含铝溶液加热搅拌,通入二氧化碳,控制pH值,得到氢氧化铝和除铝后液。
  2. 根据权利要求1所述的回收方法,其特征在于,所述分段调节pH除铁铝包括:
    加入中和剂,控制pH值为2-4,加热反应,得到针铁矿渣;
    加入中和剂,调节pH值为4-5,加热反应,得到铁铝渣和除铁后液。
  3. 根据权利要求2所述的回收方法,其特征在于,所述中和剂中包含碳酸钠、碳酸钾、碳酸钙、氢氧化钙、氢氧化镁中的一种或多种。
  4. 根据权利要求2所述的回收方法,其特征在于,控制pH值为2-4,反应温度70-95℃,反应时间1-4h,当pH值稳定时结束反应,得到针铁矿渣。
  5. 根据权利要求2所述的回收方法,其特征在于,调节pH值为4-5,反应温度60-95℃,反应时间2-4h,得到铁铝渣和除铁后液。
  6. 根据权利要求1所述的回收方法,其特征在于,所述碱液为包括氢氧化钠、氢氧化钾中至少一种的溶液。
  7. 根据权利要求1所述的回收方法,其特征在于,将铁铝渣与碱液按苛性比为2.5-7.5进行混合。
  8. 根据权利要求1所述的回收方法,其特征在于,得到含铝溶液和碱渣后,还包括:将碱渣返回酸浸工序。
  9. 根据权利要求1所述的回收方法,其特征在于,二氧化碳通入速率为2-8L/min。
  10. 根根据权利要求1所述的回收方法,其特征在于,通入二氧化碳,控制pH值为9.5-11.5,当pH值稳定时结束反应,得到氢氧化铝和除铝后液。
PCT/CN2021/110302 2020-08-25 2021-08-03 一种镍钴锰溶液中铁铝资源化的回收方法 WO2022042228A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21860068.2A EP4194572A4 (en) 2020-08-25 2021-08-03 METHOD FOR RECYCLING IRON AND ALUMINUM IN NICKEL-COBALT-MANGANESE SOLUTION
HUP2200168A HU231461B1 (hu) 2020-08-25 2021-08-03 Eljárás nikkel-kobalt-mangán oldatban lévő vas és alumínium újrahasznosítására
US18/043,027 US11760655B2 (en) 2020-08-25 2021-08-03 Method for recycling iron and aluminum in nickel-cobalt-manganese solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010861358.9 2020-08-25
CN202010861358.9A CN112126783B (zh) 2020-08-25 2020-08-25 一种镍钴锰溶液中铁铝资源化的回收方法

Publications (1)

Publication Number Publication Date
WO2022042228A1 true WO2022042228A1 (zh) 2022-03-03

Family

ID=73847453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110302 WO2022042228A1 (zh) 2020-08-25 2021-08-03 一种镍钴锰溶液中铁铝资源化的回收方法

Country Status (6)

Country Link
US (1) US11760655B2 (zh)
EP (1) EP4194572A4 (zh)
CN (1) CN112126783B (zh)
CL (1) CL2023000550A1 (zh)
HU (1) HU231461B1 (zh)
WO (1) WO2022042228A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583309A (zh) * 2022-03-08 2022-06-03 骆驼集团资源循环襄阳有限公司 一种回收废旧三元锂离子电池制备前驱体的方法
US11760655B2 (en) 2020-08-25 2023-09-19 Hunan Brunp Recycling Technology Co., Ltd. Method for recycling iron and aluminum in nickel-cobalt-manganese solution
WO2024068615A1 (en) 2022-09-28 2024-04-04 Basf Se Process for recycling aluminum hydroxide from a black mass

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021330014B2 (en) * 2020-08-24 2024-04-18 Green Li-ion Pte Ltd. Process for removing impurities in the recycling of lithium-ion batteries
CN117403063A (zh) * 2021-04-25 2024-01-16 湖南金源新材料股份有限公司 用于镍钴锰硫酸溶液的除铁反应器
CN113943864A (zh) * 2021-09-30 2022-01-18 广东邦普循环科技有限公司 一种废旧锂电池中除氟的方法
CN114506864A (zh) * 2022-02-10 2022-05-17 山东创蓝垚石环保技术有限公司 一种铝灰渣生产氢氧化铝的方法
CN117716056A (zh) 2022-04-18 2024-03-15 绿狮私人有限公司 用于从锂离子电池中回收锂的方法和***
TWI789322B (zh) * 2022-07-04 2023-01-01 台灣碳金科技股份有限公司 利用鋁渣回收二氧化碳的方法及系統
CN115852164A (zh) * 2022-12-19 2023-03-28 宜昌邦普循环科技有限公司 一种废旧锂电池浸出液除杂的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197149A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp リチウム電池処理方法
CN101988156A (zh) * 2009-08-01 2011-03-23 路密 一种从废旧锂离子电池中回收金属成分的方法
CN107871912A (zh) * 2017-09-25 2018-04-03 湖南邦普循环科技有限公司 一种从回收废锂离子电池中有价金属时产生的浸出液中除铁铝的方法
CN109439907A (zh) * 2018-11-22 2019-03-08 湖南邦普循环科技有限公司 一种从回收废锂离子电池过程中的酸浸液中除铁铝的方法
CN110983045A (zh) * 2019-11-26 2020-04-10 湖南邦普循环科技有限公司 一种镍钴锰溶液除铁铝的方法
CN111304441A (zh) * 2019-11-27 2020-06-19 湖南邦普循环科技有限公司 一种废旧电池浸出液除杂的方法
CN112126783A (zh) * 2020-08-25 2020-12-25 湖南邦普循环科技有限公司 一种镍钴锰溶液中铁铝资源化的回收方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4224884A1 (de) 1992-07-28 1994-02-03 Batenus Gmbh & Co Kg Verfahren zur Rückgewinnung von Rohstoffen aus vorsortiert gesammeltem, verbrauchten Gut, insbesondere aus verbrauchten elektrochemischen Batterien und Akkumulatoren
CN101850998A (zh) * 2010-06-18 2010-10-06 长春市超威新材料科技有限公司 用煤矸石生产氧化铝联产碳酸钠的方法
CN102515279B (zh) * 2011-12-12 2014-04-02 昆明理工大学 一种综合提取煤矸石中硅铝铁的方法
CN102492858A (zh) * 2011-12-22 2012-06-13 河南省冶金研究所有限责任公司 一种从电池废料浸出液中分离富集镍钴的方法
CN104556175B (zh) * 2015-01-22 2016-08-24 武汉理工大学 从钾长石分解尾渣中制取氢氧化铝的方法
JP6835821B2 (ja) * 2016-03-16 2021-02-24 Jx金属株式会社 リチウムイオン電池スクラップの処理方法
CN109072335B (zh) * 2016-03-16 2021-07-20 捷客斯金属株式会社 锂离子电池废料的处理方法
CN110475879B (zh) * 2017-03-31 2022-03-22 捷客斯金属株式会社 锂离子电池废料的处理方法
KR20200060695A (ko) * 2017-06-08 2020-06-01 어반 마이닝 피티와이 엘티디 폐 리튬-기반 배터리 및 다른 공급물로부터 코발트, 리튬 및 기타 금속의 회수 방법
CN109279665B (zh) * 2018-09-13 2020-09-25 郑忆依 一种镍钴锰酸锂三元废料的处理方法
CN111082043A (zh) * 2019-11-26 2020-04-28 宁夏百川新材料有限公司 一种废旧镍钴锰酸锂三元电池正极材料的回收利用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197149A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp リチウム電池処理方法
CN101988156A (zh) * 2009-08-01 2011-03-23 路密 一种从废旧锂离子电池中回收金属成分的方法
CN107871912A (zh) * 2017-09-25 2018-04-03 湖南邦普循环科技有限公司 一种从回收废锂离子电池中有价金属时产生的浸出液中除铁铝的方法
CN109439907A (zh) * 2018-11-22 2019-03-08 湖南邦普循环科技有限公司 一种从回收废锂离子电池过程中的酸浸液中除铁铝的方法
CN110983045A (zh) * 2019-11-26 2020-04-10 湖南邦普循环科技有限公司 一种镍钴锰溶液除铁铝的方法
CN111304441A (zh) * 2019-11-27 2020-06-19 湖南邦普循环科技有限公司 一种废旧电池浸出液除杂的方法
CN112126783A (zh) * 2020-08-25 2020-12-25 湖南邦普循环科技有限公司 一种镍钴锰溶液中铁铝资源化的回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194572A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760655B2 (en) 2020-08-25 2023-09-19 Hunan Brunp Recycling Technology Co., Ltd. Method for recycling iron and aluminum in nickel-cobalt-manganese solution
CN114583309A (zh) * 2022-03-08 2022-06-03 骆驼集团资源循环襄阳有限公司 一种回收废旧三元锂离子电池制备前驱体的方法
WO2024068615A1 (en) 2022-09-28 2024-04-04 Basf Se Process for recycling aluminum hydroxide from a black mass

Also Published As

Publication number Publication date
CN112126783A (zh) 2020-12-25
US20230227325A1 (en) 2023-07-20
HUP2200168A2 (hu) 2022-07-28
EP4194572A1 (en) 2023-06-14
HU231461B1 (hu) 2023-12-28
EP4194572A4 (en) 2024-01-24
US11760655B2 (en) 2023-09-19
CN112126783B (zh) 2022-06-14
CL2023000550A1 (es) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2022042228A1 (zh) 一种镍钴锰溶液中铁铝资源化的回收方法
WO2022062675A1 (zh) 一种废旧锂电池正极材料的回收方法
TWI718398B (zh) 自鋰離子二次電池廢料回收鋰之方法
CN110835682B (zh) 废旧锂离子电池正、负极活性材料协同处理的方法
WO2018192122A1 (zh) 一种废旧锂离子电池正极材料的混酸浸出及回收方法
WO2020220559A1 (zh) 一种废旧镍钴锰三元锂电池中有价金属的回收方法
WO2020062964A1 (zh) 一种低镁褐铁型红土镍矿的处理方法
CN110828926B (zh) 废旧锂离子电池正负极材料协同回收金属及石墨的方法
JP6363733B2 (ja) 廃鉛ペーストから鉛蓄電池の負極に使用する酸化鉛を直接回収するための方法
CN112410556B (zh) 磷酸铁锂废粉料的回收方法
CN106340692A (zh) 一种清洁回收正极材料中锂的方法
WO2023029898A1 (zh) 一种从废旧锂离子电池中回收有价金属的方法
WO2023060990A1 (zh) 电池粉浸出渣回收制取活性负极材料的方法
WO2024000818A1 (zh) 一种废旧锂电池材料的回收方法
CN115193877A (zh) 一种铝灰渣资源综合利用的方法
CN111778398A (zh) 一种从废scr脱硝催化剂中提取钒、钨的方法
CN114477240A (zh) 一种电池级氢氧化锂的制备方法
CN116495793B (zh) 一种废锂电池回收制备钴蓝颜料的方法
CN116411182A (zh) 一种从锂电池中选择性回收锂的方法
KR101664827B1 (ko) 니켈 및 코발트 회수 방법
WO2023193517A1 (zh) 处理废旧锂电池铜钴合金的方法和应用
CN116553502A (zh) 一种有效回收废旧磷酸铁锂电池正极材料的方法
CN115466845A (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN114195175A (zh) 混有三元粉料的磷酸铁锂粉提锂和回收镍钴锰金属的方法
CN113802006A (zh) 电池粉浸出液中除氟铜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860068

Country of ref document: EP

Effective date: 20230307

NENP Non-entry into the national phase

Ref country code: DE