WO2020220559A1 - 一种废旧镍钴锰三元锂电池中有价金属的回收方法 - Google Patents

一种废旧镍钴锰三元锂电池中有价金属的回收方法 Download PDF

Info

Publication number
WO2020220559A1
WO2020220559A1 PCT/CN2019/105497 CN2019105497W WO2020220559A1 WO 2020220559 A1 WO2020220559 A1 WO 2020220559A1 CN 2019105497 W CN2019105497 W CN 2019105497W WO 2020220559 A1 WO2020220559 A1 WO 2020220559A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
extraction
nickel
raffinate
sulfuric acid
Prior art date
Application number
PCT/CN2019/105497
Other languages
English (en)
French (fr)
Inventor
詹稳
甄爱钢
余心亮
张景伟
李斌
陈健
赵海敏
陈红娟
Original Assignee
浙江天能新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天能新材料有限公司 filed Critical 浙江天能新材料有限公司
Publication of WO2020220559A1 publication Critical patent/WO2020220559A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the technical field of waste lithium ion battery recovery, in particular to a method for recovering valuable metals in waste nickel cobalt manganese ternary lithium batteries.
  • the Chinese invention patent with publication number CN105591171A discloses a method for recovering the cathode material of a waste nickel-cobalt-manganese ternary lithium-ion battery.
  • the method dissolves the cathode material with an alkali, and separates the dissolved solution I and the insoluble matter; Acid hydrolyze the substance to obtain dissolving liquid II, adjust the pH value to alkaline to form a precipitate, obtain filtrate I and precipitate I; acid hydrolyze the precipitate I to obtain dissolving liquid III, add ammonia water to it for complexation, adjust the pH value After it is alkaline, add soluble carbonate and filter to obtain filtrate II and precipitate II; add soluble carbonate to filtrate II and heat to obtain precipitate III; after acidolysis, adjust the pH to 3.0 ⁇ 3.5, add hypochlorite to adjust the pH to 2.0-3.0, filter to obtain filtrate III and precipitate IV.
  • the Chinese invention patent with publication number CN109449523A discloses a comprehensive recovery method for waste lithium ion batteries, including: first leaching ternary waste lithium battery cell powder with sulfuric acid and potassium permanganate to obtain the first leaching solution and The first leaching residue; the first leaching solution is immersed with sodium carbonate to obtain lithium carbonate; the first leaching residue is selectively reduced and leached with hydrogen peroxide and sulfuric acid to obtain the second leaching solution and the second leaching residue; adjusting the pH of the second leaching solution to 4.2 -4.5, extract the second leachate with P204 to obtain P204 raffinate and P204 loaded organic phase; back-extract P204 loaded organic phase with sulfuric acid, evaporate and crystallize to obtain manganese sulfate; adjust the pH value of P204 raffinate to 4.5- 5.
  • the pH value is 5-5.5.
  • the C272 extract is extracted with P507 to obtain the P507-supported organic phase.
  • the P507-supported organic phase is back-extracted with sulfuric acid to obtain a nickel sulfate solution, which is evaporated and crystallized to obtain nickel sulfate.
  • the present invention provides a method for recovering valuable metals in waste nickel-cobalt-manganese ternary lithium batteries
  • a method for recovering valuable metals in waste nickel-cobalt-manganese ternary lithium batteries including the following steps:
  • step (4) The raffinate obtained in step (4) is used to extract cobalt with P507.
  • the ratio of oil to water is controlled to be 0.8 ⁇ 0.9:1, lye is used for saponification, and the saponification rate is controlled to be 55% ⁇ 60%;
  • step (5) The raffinate obtained in step (5) is extracted by using C272 to remove impurities, to obtain a C272 raffinate after removing Mg 2+ ;
  • step (7) The raffinate obtained in step (7) is reacted with sodium carbonate to collect lithium carbonate.
  • lithium batteries need to be discharged before being broken to discharge the remaining power to avoid explosion or combustion during the broken process.
  • the discharge can be immersed in a salt solution. After crushing, the crushed material is carbonized at a high temperature to consume the organic matter, and the remaining is mainly some metal elements. Carbonization is generally carried out in a carbonization furnace, and natural gas can be used for heating. After carbonization, it can be crushed again if necessary to make the electrode material into a powder form. Of course, it is also possible to crush the remaining larger particles again after air selection.
  • the air-selected powders are mainly electrode materials for the next processing, while the steel shell of the lithium battery becomes granular, which can be directly recycled after being separated from the powders.
  • step (2) when sulfuric acid is used for leaching, concentrated sulfuric acid is generally used, and concentrated sulfuric acid with a concentration of 98% is preferably used.
  • the step (2) is divided into two steps when the powder is leached with sulfuric acid:
  • the leaching solution I and the leaching solution II are mixed to obtain the leaching solution.
  • the mass of the reducing agent is 0.2 to 0.5 times that of the powder; the mass of hydrogen peroxide is 0.1 to 0.4 times that of the filter residue I.
  • the powder or filter residue I Before leaching with sulfuric acid, the powder or filter residue I needs to be slurried with water to facilitate subsequent leaching.
  • the liquid to solid ratio of the powder or filter residue I to water can be 4 to 5:1.
  • the main control parameter of the added sulfuric acid is the pH of the reaction, and there is no special requirement for the concentration of sulfuric acid used.
  • Leaching through a two-step method can ensure the leaching rate.
  • the reaction time of the two-step leaching reaction can be 1 hour. Of course, the longer the reaction time, the higher the leaching rate.
  • the concentration of the corresponding metal elements in the leaching solution or filter residue can be tested after the reaction, such as Ni, Co, Mn, Li, etc. Concentration to calculate the leaching rate.
  • the step (3) of removing Fe 2+ , Al 3+ , Ca 2+ and Mg 2+ in the leachate includes:
  • the amount of the oxidant added is 0.2-0.5 times the mass of Fe 2+ ; the neutralizer is sodium carbonate, and the pH is adjusted to 4.5-5.0.
  • the fluoride is sodium fluoride, and the added amount is 4-7 times the total mass of Ca 2+ and Mg 2+ .
  • the removal operation of some non-principal impurities in the leachate is beneficial to the preparation of higher-purity products during subsequent extraction and the reduction of impurities therein.
  • the filter residue produced in steps (2) and (3) also contains a small amount of Ni, Co and other components, and the residue washing operation can be selected to improve the overall recovery rate.
  • the residue washing operation can be terminated.
  • the obtained filtrate is used as the water for the slurry powder and filter residue I in the leaching process or as the leaching solution and step (2)
  • the obtained leachate is mixed and enters the next process.
  • step (4) uses a sulfuric acid solution with a concentration of 100-120 g/L for back extraction
  • step (5) uses a sulfuric acid solution with a concentration of 150-220 g/L for back extraction
  • step (7) uses a concentration of 100-220 g/L for back extraction.
  • Different extraction agents have different isotherms for different metal ions.
  • Different extraction agents are used to extract various metal ions successively, and then different concentrations of sulfuric acid solutions are used (in the case of close amounts, different pH can be achieved)
  • the metal ions extracted by the extractant are stripped out to obtain the corresponding sulfate, which can be further processed to obtain the sulfate product, and the extractant after the stripping can be reused.
  • P507 is used for extraction in two steps, and the extraction of cobalt and nickel is determined according to the isotherm of the P507 extractant for metal ion extraction at different pHs, so that the separation of cobalt and nickel can be achieved.
  • step (8) before using sodium carbonate reaction to collect lithium carbonate, the raffinate obtained in step (7) is adjusted to pH 9-10 to remove impurities, and the filter residue is concentrated to remove sodium salt to obtain a lithium-containing mother liquor.
  • the concentration of Li + in the raffinate is generally 1 ⁇ 3g/L.
  • the residue After removing impurities by adjusting pH 9 ⁇ 10 with sodium hydroxide solution, the residue is filtered and then concentrated. During the concentration process, the sodium salt is saturated and then precipitated.
  • the sodium salt is mainly The composition is sodium sulfate, and the precipitated sodium salt is separated and dried and packaged and stored for sale.
  • the concentration of Li + in the lithium-containing mother liquor is 12-15 g/L. During the concentration process, periodically check the concentration of Li + and stop the concentration after reaching the standard.
  • step (b) The lithium carbonate precipitate obtained in step (a) is reconstituted by adding sulfuric acid, and the pH is adjusted to 10-13 to remove impurities. After filtering the residue, sodium carbonate is added for reaction. The reaction temperature is 95°C ⁇ 98°C. The lithium carbonate precipitate is obtained by the reaction and washed. , Drying to obtain lithium carbonate.
  • the reaction temperature is selected from 95°C ⁇ 98 for the second purification of lithium carbonate. At this temperature, it can be ensured that the product obtained by the reaction has a good crystal form, and it is not easy to coat the sodium salt, and the sodium salt adhering to the surface can be washed away with water, so that the product lithium carbonate has a better purity.
  • the method for recovering valuable metals in the waste nickel-cobalt-manganese ternary lithium battery of the present invention through the Fe 2+ , Al 3+ , Ca 2+ and Mg 2+ de-impurity treatment before extraction, so that the subsequent recovery of valuable metals
  • the product purity is relatively high.
  • the ratio of oil to water is controlled to be 0.8-0.9:1, and the saponification rate is controlled to be 55% to 60%.
  • the saponification rate is reduced and the ratio of oil to water is appropriately reduced. The remaining cobalt remains in the water phase to ensure that magnesium will not be extracted, thereby ensuring that the magnesium impurity in the cobalt sulfate product meets the standard.
  • a step of magnesium extraction is added after cobalt extraction and before nickel extraction to remove residual magnesium as much as possible and increase the purity of the nickel sulfate product obtained from nickel extraction.
  • C272 extractant is used for extracting magnesium, using its characteristic of separating the isotherm curves of cobalt-magnesium and nickel, and controlling only extracting magnesium and cobalt without extracting nickel, so as to achieve the separation of magnesium and nickel.
  • the scraps are carbonized at a high temperature in a carbonization furnace to consume organic matter, and the remaining are mainly some metal elements.
  • the powder selected by the winnowing is mainly the electrode material (hereinafter referred to as the ternary black powder), which is used in the next step.
  • the steel shell, etc. becomes granular and can be recycled directly after being separated from the powder.
  • the secondary leaching residue is cleaned with clean water and 98% sulfuric acid to adjust the pH to about 3.0. After filtering, the washing water is used as the pre-leaching solution.
  • the two leaching solutions were mixed to obtain 1100 mL leaching solution, and the content of some major metal elements was tested. The test results are shown in Table 4.
  • P204 impurity removal mix 2L of 25% P204 organic phase, add 32% liquid caustic soda (sodium hydroxide solution) to saponify, the saponification rate is 70%, and the organic phase is compared with the pre-extraction liquid at a ratio of 2:1
  • the test results of raffinate and back extraction liquid are shown in Table 7.
  • manganese sulfate crystals are MnSO 4 ⁇ H 2 O, each molecule contains 1 crystal water, and manganese sulfate crystals are obtained.
  • the amount is 76g, the purity is 99.6%, and the recovery rate is 98.54%.
  • the cobalt sulfate solution is evaporated and crystallized into cobalt sulfate crystals (the cobalt sulfate crystals are CoSO 4 ⁇ 7H 2 O, and each molecule contains 7 crystal water) to obtain 108 g of cobalt sulfate crystals with a purity of 99.3% and a recovery rate of 98.57%.
  • the stripping liquid After the stripping liquid is back-leached and added sodium fluoride to remove magnesium, it then enters the P204 pre-extraction liquid.
  • P507 nickel extraction mix 2L of 25% P507 organic phase, add 32% liquid caustic soda for saponification, and the saponification rate is 70%.
  • Back extraction shake for 5 minutes and then clarify for 10 minutes, release the lower back extraction liquid, raffinate liquid 1800mL and back extraction liquid 300mL, the test results of raffinate and back extraction liquid are shown in Table 10.
  • the nickel sulfate solution is evaporated and crystallized into nickel sulfate crystals (the nickel sulfate crystals are NiSO 4 ⁇ 6H 2 O, and each molecule contains 6 crystal water) to obtain 182 g of nickel sulfate crystals with a purity of 99.35% and a recovery rate of 98%.
  • the obtained lithium carbonate has high purity and low sodium salt content.
  • the scraps are carbonized at a high temperature in a carbonization furnace to consume organic matter, and the remaining are mainly some metal elements.
  • the powder selected by the winnowing is mainly the electrode material (hereinafter referred to as the ternary black powder), which is used in the next step.
  • the steel shell, etc. becomes granular and can be recycled directly after being separated from the powder.
  • the secondary leaching residue is cleaned with clean water and 98% sulfuric acid to adjust the pH to about 3.0. After filtering, the washing water is used as the pre-leaching solution.
  • the two leaching solutions were mixed to obtain 1170 mL leaching solution, and the content of some major metal elements was tested. The test results are shown in Table 15.
  • P204 impurity removal mix 3L of 25% P204 organic phase, add 32% sodium hydroxide solution to saponify, the saponification rate is 70%, the organic phase and the pre-extraction liquid are added to the separatory funnel in a ratio of 2:1 for extraction Shake for 5 minutes and then clarify for 10 minutes, then add 200mL 15g/L sulfuric acid solution to wash the organic phase, shake for 5 minutes and then clarify for 10 minutes, release the lower raffinate 1600mL, and then add 200mL 100g/L sulfuric acid to the separatory funnel The solution was subjected to back extraction, shaken for 5 minutes and then clarified for 10 minutes, and the lower back extraction liquid was discharged. The test results of the raffinate and the back extraction liquid are shown in Table 18.
  • manganese sulfate solution is added with alkali sulfide to remove impurities
  • P204 extractant is used to remove Ca, and then evaporated and crystallized into manganese sulfate crystals (manganese sulfate crystals are MnSO 4 ⁇ H 2 O, each molecule contains 1 crystal water) to obtain manganese sulfate crystals 68.93g, purity 99.5%, recovery rate 98.76%.
  • the cobalt sulfate solution is evaporated and crystallized into cobalt sulfate crystals (the cobalt sulfate crystals are CoSO 4 ⁇ 7H 2 O, and each molecule contains 7 crystal water) to obtain 92 g of cobalt sulfate crystals with a purity of 99.3% and a recovery rate of 98.74%.
  • Extraction of magnesium from C272 mix 500 mL of 10% C272 organic phase, add 32% liquid caustic soda for saponification, and the saponification rate is 20%. Add the organic phase and the pre-extraction liquid to a separatory funnel at a ratio of 0.3:1 for extraction. Shake for 5 minutes and then clarify for 10 minutes, then add 100mL 15g/L sulfuric acid solution to wash the organic phase, shake for 5 minutes and then clarify for 10 minutes, release the lower raffinate 1950mL, and then add 50mL 200g/L sulfuric acid solution to the separatory funnel Perform back extraction, shake for 5 minutes and then clarify for 10 minutes, release the lower back extraction liquid, 1950 mL of raffinate and 50 mL of back extraction. The test results of raffinate and back extraction are shown in Table 20.
  • the stripping liquid After the stripping liquid is back-leached and added sodium fluoride to remove magnesium, it then enters the P204 pre-extraction liquid.
  • P507 nickel extraction mix 2L of 25% P507 organic phase, add 32% liquid caustic soda for saponification, and the saponification rate is 70%.
  • Back extraction shake for 5 minutes and then clarify for 10 minutes, release the lower back extraction liquid, raffinate 2250mL and back extraction liquid 300mL, the test results of raffinate and back extraction liquid are shown in Table 21.
  • the nickel sulfate solution is evaporated and crystallized into nickel sulfate crystals (the nickel sulfate crystals are NiSO 4 ⁇ 6H 2 O, and each molecule contains 6 crystal water) to obtain 140 g of nickel sulfate crystals with a purity of 99.6% and a recovery rate of 98.2%.
  • the obtained lithium carbonate has high purity and low sodium salt content.
  • Example 1 Take the same batch of ternary black powder in Example 1 for testing.
  • the leaching operation is the same as that in Example 1.
  • the extraction method is different.
  • the saponification rate is controlled to 65%, and the oil-water ratio (organic The ratio of phase and pre-extraction liquid) is 1:1, and finally cobalt is extracted to obtain cobalt sulfate crystals (cobalt sulfate crystals are CoSO 4 ⁇ 7H 2 O, each molecule contains 7 crystal water) 93.5g, purity 98.21%, and Co content It is 19.9%, and the Mg content is 0.0078%.
  • nickel sulfate crystals are NiSO 4 ⁇ 6H 2 O, each molecule contains 6 crystal water) 135g, purity 98.32%, of which The Ni content is 20.65%, and the Mg content is 0.0069%.
  • Example 2 The P507 nickel extraction residue after leaching and extraction in the same way as in Example 2 was subjected to lithium carbonate precipitation. Only the temperature was used for the precipitation of lithium carbonate at 80°C, and the other steps were the same. The purity of the finally obtained lithium carbonate product was tested and the purity was 98.52% , The Na content is 0.25%. Compared with Examples 1 and 2, Comparative Example 2 has more sodium salt impurities. It shows that at lower temperature, it is easy to coat sodium salt when lithium carbonate precipitates.
  • the percentages are all mass percentages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种废旧镍钴锰三元锂电池中有价金属的回收方法,该方法通过在萃取前进行Fe 2+、Al 3+、Ca 2+和Mg 2+去杂处理,使得后续回收的各有价金属产品纯度较高。在萃钴时,控制油水比例为0.8~0.9∶1,控制皂化率为55%~60%,通过降低皂化率和适当降低油水比例,控制水相中的钴不全萃,少量的钴继续留在水相中,这样保证镁不会被萃上去,从而保证硫酸钴产品中镁杂质达标。在萃钴后萃镍前增加一步萃镁操作,将残留的镁尽可能去除,增加萃镍所得硫酸镍产品的纯度。萃镁用C272萃取剂,利用它对钴镁、镍萃取等温曲线分离较开的特性,控制只萃镁钴不萃镍,从而做到镁镍的分离。

Description

一种废旧镍钴锰三元锂电池中有价金属的回收方法 技术领域
本发明涉及废旧锂离子电池回收技术领域,特别是涉及一种废旧镍钴锰三元锂电池中有价金属的回收方法。
背景技术
近年来,随着我国能源危机加深,民众环保意识增强,以及政府政策补贴等刺激下,新能源汽车产业迅猛发展。在混合动力汽车技术逐步成熟,动力电池成本逐步降低大背景下,各大企业纷纷扎堆进入新能源汽车行业。新能源汽车的快速发展,也使得动力电池产量不断增长。截至2017年,我国累计推广新能源汽车总量超过180万辆,动力电池的单体能量密度比2012年提高了两倍,每千瓦时的售价下降了70%以上。数据显示,2020年预计中国国内汽车动力电池回收量将达到25.7万吨,2022年这一数据将达到42.2万吨。随着新能源汽车产业的快速发展,我国已成为世界第一大新能源汽车产销国,动力蓄电池产销量也逐年攀升,动力蓄电池回收利用迫在眉睫。中国是全球最大的三元电池生产大国,三元电池行业已成为国家重点支持的高新技术产业之一,随着电池使用寿命的到期,废旧电池回收再利用就成为环保急需解决的难题。
现有技术中,往往整个回收过程设计不够精细,回收率较低,且回收产物的纯度较差。
比如,公开号为CN105591171A的中国发明专利公开了一种废旧镍钴锰三元锂离子电池的正极材料的回收方法,该方法将正极材料加碱溶解,分离获得溶解液I和不溶物;将不溶物酸解,得到溶解液II,调节pH值至碱性,形成沉淀,得到滤液I和沉淀物I;将沉淀物I酸解,得到溶解液III,向其中加入氨水进行络合,调节pH值至碱性后,再加入可溶性碳酸盐,过滤,获得滤液II和沉淀物II;向滤液II中加入可溶性碳酸盐,加热,得到沉淀物III;再酸解后,调节pH值至3.0~3.5,再加入次氯酸盐调节pH值至2.0~3.0,过滤,获得滤液III和沉淀物Ⅳ。
再比如,公开号为CN109449523A的中国发明专利公开了一种废旧锂离子电池综合回收方法,包括:用硫酸和高锰酸钾第一次浸出三元废旧锂电池电芯粉末,得第一浸出液和第一浸出渣;用碳酸钠对第一浸出液沉锂,得碳酸锂;用双氧水和硫酸选择性还原浸出第一浸出渣,得第二浸出液和第二浸出渣;调整第二浸出液的pH至4.2-4.5,用P204对第二浸出液萃取,得P204萃余液和 P204负载有机相;用硫酸反萃P204负载有机相,蒸发结晶,制得硫酸锰;调整P204萃余液的pH值至4.5-5,用C272对P204萃余液萃取,得C272萃取液和C272负载有机相;用硫酸对C727负载有机相反萃得硫酸钴溶液,蒸发结晶,制得电池级硫酸钴;调整C272萃余液的pH值为5-5.5,对C272萃取液用P507萃取得P507负载有机相,P507负载有机相经硫酸反萃得硫酸镍溶液,蒸发结晶,得硫酸镍。
发明内容
本发明针对现有技术中存在的回收过程设计不够精细,回收率较低,且回收产物的纯度较差等问题,提供了一种废旧镍钴锰三元锂电池中有价金属的回收方法
一种废旧镍钴锰三元锂电池中有价金属的回收方法,包括以下步骤:
(1)将废旧镍钴锰三元锂电池进行破碎、炭化后风选分离粉料和金属颗粒;
(2)将步骤(1)分离的粉料使用硫酸浸出,得到浸出液;
(3)去除浸出液中的Fe 2+、Al 3+、Ca 2+和Mg 2+作为萃前液;
(4)将萃前液使用P204萃取除杂,反萃获得含有硫酸锰的反萃液,以及含有Co 2+、Ni 2+、Li +的萃余液;将反萃液除铜后蒸发浓缩、结晶获得硫酸锰;
(5)将步骤(4)所得萃余液使用P507萃钴,P507萃钴时,控制油水比例为0.8~0.9∶1,使用碱液进行皂化,控制皂化率为55%~60%;反萃获得含有硫酸钴的反萃液,以及含有Ni 2+和Li +的萃余液;将反萃液蒸发浓缩、结晶获得硫酸钴;
(6)将步骤(5)所得萃余液使用C272萃镁除杂,获得除Mg 2+后的C272萃余液;
(7)将C272萃余液使用P507萃镍,反萃获得含有硫酸镍的反萃液,以及含Li +的萃余液;将反萃液蒸发浓缩、结晶获得硫酸镍;
(8)将步骤(7)所得萃余液使用碳酸钠反应收集碳酸锂。
一般锂电池破碎前需要先进行放电处理,将剩余电量放出,以免破碎过程中发生***或燃烧。放电可以使用盐溶液浸泡放电。破碎后,再将碎料进行高温碳化,将有机物消耗掉,从而剩余主要是一些金属元素。碳化一般在炭化炉中进行,可以使用天然气进行加热。碳化后,如果有需要可以再次进行破碎,以使电极材料成为粉末状,当然也可以风选后,将剩余较大的颗粒再次进行破碎。风选出的粉料主要是电极材料,用于下一步处理,而锂电池的钢壳等成为颗粒状,与粉料分离后,可以直接回收。
步骤(2)使用硫酸浸出时,一般使用浓硫酸,优选使用浓度为98%的浓硫酸。
优选的,步骤(2)中粉料使用硫酸浸出时分为两步浸出:
(a)粉料加水浆化,加入硫酸反应,再加入还原剂还原,控制反应过程中pH为1.0~1.5,过滤得到浸出液Ⅰ和滤渣Ⅰ;
(b)滤渣Ⅰ加水浆化,加入硫酸反应,再加入双氧水助溶,控制pH为1.0~1.5,过滤得到浸出液Ⅱ和滤渣Ⅱ,
将浸出液Ⅰ和浸出液Ⅱ混合得到所述浸出液。
更优选的,还原剂的质量为粉料的0.2~0.5倍;双氧水的质量为滤渣Ⅰ的0.1~0.4倍。
加硫酸浸出前需要先将粉料或滤渣Ⅰ用水浆化处理,便于后续浸出,其中粉料或滤渣Ⅰ与水的液固比可以为4~5∶1。使用硫酸进行浸出时,添加的硫酸主要控制的参数是反应的pH,对所使用硫酸的浓度并无特殊要求。通过两步法进行浸出能够确保浸出率。两步浸出反应的反应时间可以是1小时,当然,反应时间越长浸出率越高,可以在反应结束后检测下浸出液或滤渣中相应金属元素的浓度,比如Ni、Co、Mn、Li等的浓度,以测算浸出率。
优选的,步骤(3)去除浸出液中的Fe 2+、Al 3+、Ca 2+和Mg 2+的步骤包括:
(a)检测浸出液中Fe 2+浓度,加入氧化剂将Fe 2+氧化成Fe 3+,加入中和剂调pH使Fe 3+和Al 3+沉淀析出并过滤去除;
(b)取样检测Ca 2+和Mg 2+含量,加入氟化物使Ca 2+和Mg 2+沉淀析出并过滤去除。
更优选的,氧化剂的加入量为Fe 2+质量的0.2~0.5倍;所述中和剂为碳酸钠,调pH到4.5~5.0。
更优选的,所述氟化物为氟化钠,加入量为Ca 2+和Mg 2+总质量的4~7倍。
将浸出液中一些非主成分的杂质先进行去除操作,有利于后续萃取时能够制备纯度更高的产物,减少其中的杂质。
步骤(2)和(3)产生的滤渣中还含有少量的Ni、Co等成分,可以选择洗渣操作以提高总体回收率。洗渣时可以使用水将滤渣浆化,再加入水,在较高的温度下,比如90℃下浸出,也可以加入硫酸,控制反应pH在1.5~2.0以加快浸出,反应完成后,过滤获得滤液,取余下的滤渣检测Ni、Co的浓度,达到要求后即可结束洗渣操作,将所得滤液用作步骤(2)浸出过程中浆化粉料和滤渣Ⅰ用的水或者作为浸出液与步骤(2)所得浸出液混合,进入下一道工序。
优选的,步骤(4)反萃使用浓度为100~120g/L的硫酸溶液,步骤(5)反 萃使用浓度为150~220g/L的硫酸溶液,步骤(7)反萃使用浓度为100~150g/L的硫酸溶液。不同的萃取剂对不同的金属离子萃取的等温曲线不同,使用不同的萃取剂先后萃取出各种金属离子,然后再使用不同浓度的硫酸溶液(在用量接近的情况下,可以实现不同的pH)进行反萃,将被萃取剂萃取出来的金属离子反萃出来,获得对应的硫酸盐,可以进一步处理获得硫酸盐产品,而反萃后的萃取剂可以重复再利用。而先后两步使用P507萃取,根据P507萃取剂在不同的pH下对金属离子萃取的等温曲线来确定先萃钴后萃镍,这样才能实现钴镍分离。
优选的,步骤(8)使用碳酸钠反应收集碳酸锂之前先将步骤(7)所得萃余液调pH9~10除杂,滤渣后浓缩除钠盐获得含锂母液。步骤(7)萃余液含Li +浓度一般为1~3g/L,使用氢氧化钠溶液调pH9~10除杂后,滤渣,然后浓缩,浓缩过程中钠盐达到饱和后析出,钠盐主要成分为硫酸钠,析出的钠盐分离烘干后打包入库代售。
更优选的,所述含锂母液中Li +的浓度为12~15g/L。浓缩过程中,定期检测其中Li +的浓度,达标后停止浓缩。
更优选的,使用碳酸钠反应收集碳酸锂分为两步:
(a)含锂母液中加入碳酸钠反应获得碳酸锂沉淀;
(b)步骤(a)获得的碳酸锂沉淀加入硫酸复溶,调pH到10~13除杂,滤渣后,加入碳酸钠反应,反应温度为95℃~98℃,反应获得碳酸锂沉淀经洗涤、烘干获得碳酸锂。
通过加入碳酸钠反应后,碳酸锂沉淀析出,过滤收集后作为碳酸锂粗制品,进行复溶和再次加入碳酸钠反应,获得碳酸锂沉淀,第二次精制碳酸锂时反应温度选择95℃~98℃,该温度下可以保证反应所得产物晶型较好,不容易将钠盐包覆在内,而粘附在表面的钠盐可以经水洗洗涤掉,从而使所得产物碳酸锂纯度较好。
本发明废旧镍钴锰三元锂电池中有价金属的回收方法,通过在萃取前进行Fe 2+、Al 3+、Ca 2+和Mg 2+去杂处理,使得后续回收的各有价金属产品纯度较高。
在萃钴时,控制油水比例为0.8~0.9∶1,控制皂化率为55%~60%,相对于现有技术中降低皂化率和适当降低油水比例,控制水相中的钴不全萃,少量的钴继续留在水相中,这样保证镁不会被萃上去,从而保证硫酸钴产品中镁杂质达标。
在萃钴后萃镍前增加一步萃镁操作,将残留的镁尽可能去除,增加萃镍所得硫酸镍产品的纯度。萃镁用C272萃取剂,利用它对钴镁、镍萃取等温曲线分 离较开的特性,控制只萃镁钴不萃镍,从而做到镁镍的分离。
具体实施方式
实施例1
将回收的废旧镍钴锰三元锂电池先进行放电处理,将剩余电量放出,以免破碎过程中发生***或燃烧。破碎后,再将碎料在炭化炉中进行高温碳化,将有机物消耗掉,从而剩余主要是一些金属元素。碳化后,再次进行破碎,以使电极材料成为粉末状,再经过风选,风选出的粉料主要是电极材料(以下简称三元黑粉料),用于下一步处理,而锂电池的钢壳等成为颗粒状,与粉料分离后,可以直接回收。
三元黑粉料试验。
一、浸出:
1、取三元黑粉料200克,成份检测如表1所示。
表1
Ni Co Mn Li
19.5% 11.23% 12.34% 5.25%
加入1L水中开搅拌浆化30分钟。
2、缓缓加入98%硫酸,调pH 1.0,加入还原剂亚硫酸钠65g,继续反应2小时,过程中继续加98%硫酸,确保溶液pH 1.0-1.5,直到pH不变化为止。
3、过滤,得滤液920ml,湿渣52g,对部分主要金属元素含量进行检测,检测结果如表2所示。
表2
项目 Ni Co Mn Li
一次浸出液 33.91g/L 19.53g/L 23.09g/L 10.0g/L
一次浸出渣 15% 8.63% 6.6% 1.92%
4、将浸出渣加水200mL,浆化加温80℃,加98%硫酸调pH 1.0,缓缓加入双氧水10g(速度要慢,防止冒槽),继续反应2小时,过程中保证pH 1.0-1.5,待pH稳定后,过滤,得180mL二次浸出液和35g湿渣,对部分主要金属元素含量进行检测,检测结果如表3所示。
表3
项目 Ni Co Mn Li
二次浸出液 42.2g/L 24g/L 18.7g/L 5.2g/L
二次浸出渣 1.23% 1.03% 1.22% 0.45%
5、二次浸出渣再用清水加98%硫酸调pH 3.0左右进行清洗,过滤后洗水做浸出前液使用。两次的浸出液混合得1100mL浸出液,对部分主要金属元素含量进行检测,检测结果如表4所示。
表4
Ni(g/L) Co(g/L) Mn(g/L) Li(g/L) Fe(g/L)
35.27 20.26 22.39 9.5 0.85
6、将浸出液加入2L烧杯中,搅拌加温到80℃,加碳酸钠调pH到5.0稳定后,过滤得滤液985mL,滤渣45g,滤渣去清洗,对滤液进行检测,结果如表5所示。
表5
Ni(g/L) Co(g/L) Mn(g/L) Li(g/L) Ca+Mg(g/L)
35.15 19.85 21.56 10.23 1.86
7、将滤液加入1L烧杯,搅拌加温到85℃,缓缓加入氟化钠11g,继续反应1小时,过滤,得滤液952mL,滤渣进行洗渣处理,对滤液进行检测,结果如表6所示。
表6
Ni(g/L) Co(g/L) Mn(g/L) Li(g/L) Ca(g/L) Mg(g/L) Fe(g/L)
34.21 18.53 21.05 9.95 0.043 0.035 0.0056
二、萃取
1、P204除杂:配25%P204有机相2L,加浓度为32%的液碱(氢氧化钠溶液)皂化,皂化率70%,将有机相和萃前液按相比2∶1的比例加入分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入100mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液,再向分液漏斗中加入200mL100g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液和反萃液检测结果如表7所示。
表7
项目 Ni(g/L) Co(g/L) Mn(g/L) Ca(g/L) Cu(g/L)
萃余液 30.85 16.81 0.0053 0.0011 0.0005
反萃液 -- -- 100.2 0.21 0.52
硫酸锰液加硫化碱除杂后,再用P204萃取剂除Ca后,蒸发结晶成硫酸锰 晶体(硫酸锰晶体为MnSO 4·H 2O,每分子含1个结晶水),得到硫酸锰晶体量76g,纯度99.6%,回收率98.54%。
2、P507萃钴:配25%P507有机相2L,加32%液碱皂化,皂化率60%,将有机相和萃前液按相比0.9∶1的比例加用分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入300mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液,再向分液漏斗中加入100mL 200g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液1400mL和反萃液300mL,萃余液和反萃液检测结果如表8所示。
表8
项目 Ni(g/L) Co(g/L) Mn(g/L) Ca(g/L) Mg(g/L)
萃余液 24.29 1.25 -- 0.0048 0.10
反萃液 -- 119.5 -- 0.0042 0.0045
硫酸钴液蒸发结晶成硫酸钴晶体(硫酸钴晶体为CoSO 4·7H 2O,每分子含7个结晶水),获得硫酸钴晶体108g,纯度99.3%,回收率98.57%。
3、C272萃镁:配10%C272有机相500mL,加32%液碱皂化,皂化率200%,将有机相和萃前液按相比0.3∶1的比例加用分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入100mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液,再向分液漏斗中加入50mL 200g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液1500mL和反萃液300mL,萃余液和反萃液检测结果如表9所示。
表9
项目 Ni(g/L) Co(g/L) Ca(g/L) Mg(g/L)
萃余液 22.08 -- 0.0001 0.0002
反萃液 -- 4.5 0.0042 2.8
反萃液回浸出加氟化钠除镁后,再进入P204萃前液。
4、P507萃镍:配25%P507有机相2L,加32%液碱皂化,皂化率70%,将有机相和萃前液按相比1.5∶1的比例加用分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入300mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液,再向分液漏斗中加入300mL 200g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液1800mL和反萃液300mL,萃余液和反萃液检测结果如表10所示。
表10
项目 Ni(g/L) Co(g/L) Na(g/L) Li(g/L) Mg(g/L)
萃余液 0.012 0.008 -- 5.3 0.10
反萃液 103.2 --- 0.22 -- 0.0045
硫酸镍溶液蒸发结晶成硫酸镍晶体(硫酸镍晶体为NiSO 4·6H 2O,每分子含6个结晶水),获得硫酸镍晶体182g,纯度99.35%,回收率98%。
三、沉碳酸锂
1、将P507萃镍余液加热浓缩至600mL,锂浓度富集到15g/L已上,过滤去掉硫酸钠盐,剩下的锂水加热到80℃,加入配好的碳酸钠饱和溶液,调pH 11,过滤得粗制碳酸锂。
2、将粗制碳酸锂加入500mL清水中,加98%硫酸搅拌完全溶解,pH 3-4,过滤,滤液加32%液碱调pH 10-13,再次过滤所得545mL滤液在新烧杯中加热到95℃。
3、配碳酸钠饱和溶液200mL,过滤后加热到95℃,开搅拌,缓慢均匀加入上步中处理好的热锂水,过程中保持温度95℃以上,加完料后继续搅拌保温反应1小时。
4、反应结束后过滤,再用95℃以上的热纯水洗涤3遍后烘干,得到电池级碳酸锂50.8g,回收率90.5%。对所得碳酸锂纯度及部分杂质进行检测,检测结果如表11所示,所得碳酸锂纯度高,钠盐含量少。
表11
Li 2CO 3 Fe Na Ca Mg Mn Cu 硫酸根
99.59% 0.0024% 0.023% 0.0011% 0.0007% 0.0023% 0.0003% 0.003%
实施例2
将回收的废旧镍钴锰三元锂电池先进行放电处理,将剩余电量放出,以免破碎过程中发生***或燃烧。破碎后,再将碎料在炭化炉中进行高温碳化,将有机物消耗掉,从而剩余主要是一些金属元素。碳化后,再次进行破碎,以使电极材料成为粉末状,再经过风选,风选出的粉料主要是电极材料(以下简称三元黑粉料),用于下一步处理,而锂电池的钢壳等成为颗粒状,与粉料分离后,可以直接回收。
三元黑粉料试验。
一、浸出:
1、取三元黑粉料200克,成份检测如表12所示。
表12
Ni Co Mn Li
15.03% 9.59% 11.22% 5.33%
加入1L水中开搅拌浆化30分钟。
2、缓缓加入98%硫酸,调pH 1.0,加入还原剂亚硫酸钠65g,继续反应2小时,过程中继续加98%硫酸,确保溶液pH 1.0-1.5,直到pH不变化为止。
3、过滤,得滤液945ml,湿渣78g,对部分主要金属元素含量进行检测,检测结果如表13所示。
表13
项目 Ni Co Mn Li
一次浸出液 27.86g/L 17.75g/L 20.79g/L 8.71g/L
一次浸出渣 4.78% 3.09% 3.58% 3.12%
4、将浸出渣加水300mL,浆化加温80℃,加98%硫酸调pH 1.0,缓缓加入双氧水8g(速度要慢,防止冒槽),继续反应2小时,过程中保证pH 1.0-1.5,待pH稳定后,过滤,得225mL二次浸出液和65g湿渣,对部分主要金属元素含量进行检测,检测结果如表14所示。
表14
项目 Ni Co Mn Li
二次浸出液 14.92g/L 9.64g/L 11.16g/L 9.72g/L
二次浸出渣 0.57% 0.37% 0.43% 0.37%
5、二次浸出渣再用清水加98%硫酸调pH 3.0左右进行清洗,过滤后洗水做浸出前液使用。两次的浸出液混合得1170mL浸出液,对部分主要金属元素含量进行检测,检测结果如表15所示。
表15
Ni(g/L) Co(g/L) Mn(g/L) Li(g/L) Fe(g/L)
25.37 16.19 18.94 8.90 1.15
6、将浸出液加入2L烧杯中,搅拌加温到80℃,加碳酸钠调pH到5.0稳定后,过滤得滤液加水稀释到1468mL,滤渣55g,滤渣去清洗,对滤液进行检测,结果如表16所示。
表16
Ni(g/L) Co(g/L) Mn(g/L) Li(g/L) Ca+Mg(g/L)
20.22 12.90 15.10 7.10 2.15
7、将滤液加入1L烧杯,搅拌加温到85℃,缓缓加入氟化钠19g,继续反应1小时,过滤,得滤液1402mL,滤渣进行洗渣处理,对滤液进行检测,结果如表17所示。
表17
Ni(g/L) Co(g/L) Mn(g/L) Li(g/L) Ca(g/L) Mg(g/L) Fe(g/L)
19.1 12.3 14.5 6.8 0.033 0.027 0.0038
二、萃取
1、P204除杂:配25%P204有机相3L,加32%氢氧化钠溶液皂化,皂化率70%,将有机相和萃前液按相比2∶1的比例加入分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入200mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液1600mL,再向分液漏斗中加入200mL 100g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液和反萃液检测结果如表18所示。
表18
项目 Ni(g/L) Co(g/L) Mn(g/L) Ca(g/L) Cu(g/L)
萃余液 16.75 10.79 -- 0.0008 0.0003
反萃液 -- -- 100.1 0.19 0.43
硫酸锰液加硫化碱除杂后,再用P204萃取剂除Ca后,蒸发结晶成硫酸锰晶体(硫酸锰晶体为MnSO 4·H 2O,每分子含1个结晶水),获得硫酸锰晶体68.93g,纯度99.5%,回收率98.76%。
2、P507萃钴:配25%P507有机相2L,加32%液碱皂化,皂化率60%,将有机相和萃前液按相比0.9∶1的比例加用分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入300mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液,再向分液漏斗中加入150mL 200g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液1900mL和反萃液150mL,萃余液和反萃液检测结果如表19所示。
表19
项目 Ni(g/L) Co(g/L) Mn(g/L) Ca(g/L) Mg(g/L)
萃余液 14.11 0.98 -- 0.0045 0.15
反萃液 -- 125.73 -- 0.0022 0.0025
硫酸钴液蒸发结晶成硫酸钴晶体(硫酸钴晶体为CoSO 4·7H 2O,每分子含7个结晶水),获得硫酸钴晶体92g,纯度99.3%,回收率98.74%。
3、C272萃镁:配10%C272有机相500mL,加32%液碱皂化,皂化率20%,将有机相和萃前液按相比0.3∶1的比例加用分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入100mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液1950mL,再向分液漏斗中加入50mL 200g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液1950mL和反萃液50mL,萃余液和反萃液检测结果如表20所示。
表20
项目 Ni(g/L) Co(g/L) Ca(g/L) Mg(g/L)
萃余液 13.75 -- 0.0001 0.0002
反萃液 -- 4.2 0.0032 1.57
反萃液回浸出加氟化钠除镁后,再进入P204萃前液。
4、P507萃镍:配25%P507有机相2L,加32%液碱皂化,皂化率70%,将有机相和萃前液按相比1.5∶1的比例加用分液漏斗,进行萃取,摇5分钟再澄清10分钟,再加入300mL 15g/L硫酸溶液进行清洗有机相,摇5分钟再澄清10分钟,放出下部的萃余液,再向分液漏斗中加入250mL 200g/L硫酸溶液进行反萃,摇5分钟再澄清10分钟,放出下部反萃液,萃余液2250mL和反萃液300mL,萃余液和反萃液检测结果如表21所示。
表21
项目 Ni(g/L) Co(g/L) Na(g/L) Li(g/L) Mg(g/L)
萃余液 0.010 0.005 -- 3.3 0.050
反萃液 107.25 -- 0.28 -- 0.0045
硫酸镍溶液蒸发结晶成硫酸镍晶体(硫酸镍晶体为NiSO 4·6H 2O,每分子含6个结晶水),获得硫酸镍晶体140g,纯度99.6%,回收率98.2%。
三、沉碳酸锂
1、将P507萃镍余液加热浓缩至600mL,锂浓度富集到15g/L已上,过滤去掉硫酸钠盐,剩下的锂水加热到80℃,加入配好的碳酸钠饱和溶液,调pH 11,过滤得粗制碳酸锂。
2、将粗制碳酸锂加入500mL清水中,加98%硫酸搅拌完全溶解,pH 3-4,过滤,滤液加32%液碱调pH 10-13,再次过滤所得545mL滤液在新烧杯中加热 到95℃
3、配碳酸钠饱和溶液200mL,过滤后加热到95℃,开搅拌,缓慢均匀加入上步中处理好的热锂水,过程中保持温度95℃以上,加完料后继续搅拌保温反应1小时。
4、反应结束后过滤,再用95℃以上的热纯水洗涤3遍后烘干,得到电池级碳酸锂52g,回收率91.23%。对所得碳酸锂纯度及部分杂质进行检测,检测结果如表22所示,所得碳酸锂纯度高,钠盐含量少。
表22
Li 2CO 3 Fe Na Ca Mg Mn Cu 硫酸根
99.58% 0.0019% 0.019% 0.0022% 0.0005% 0.0015% 0.0001% 0.0028%
对比例1
取实施例1中同一批次三元黑粉料进行试验,浸出操作也与实施例1中相同,萃取方法不同,在第2步P507萃钴时,皂化率控制为65%,油水比(有机相和萃前液加入比例)为1∶1,最后萃钴获得硫酸钴晶体(硫酸钴晶体为CoSO 4·7H 2O,每分子含7个结晶水)93.5g,纯度98.21%,其中Co含量为19.9%,Mg含量为0.0078%。
然后不经过C272萃镁而是在萃钴后直接进行P507萃镍,最后获得硫酸镍晶体(硫酸镍晶体为NiSO 4·6H 2O,每分子含6个结晶水)135g,纯度98.32%,其中Ni含量为20.65%,Mg含量为0.0069%。
对比例2
将按实施例2相同方法经浸出、萃取后的P507萃镍余液进行碳酸锂沉淀,碳酸锂沉淀时仅温度使用80℃,其他步骤均相同,最后所得碳酸锂产品纯度检测,纯度为98.52%,Na含量0.25%,对比例2较实施例1和2中,钠盐杂质较多。说明在较低的温度下,碳酸锂沉淀时容易将钠盐包覆在内。
本发明中,检测各物质纯度及含量时,百分比均为质量百分比。

Claims (10)

  1. 一种废旧镍钴锰三元锂电池中有价金属的回收方法,其特征在于,包括以下步骤:
    (1)将废旧镍钴锰三元锂电池进行破碎、炭化后风选分离粉料和金属颗粒;
    (2)将步骤(1)分离的粉料使用硫酸浸出,得到浸出液;
    (3)去除浸出液中的Fe 2+、Al 3+、Ca 2+和Mg 2+作为萃前液;
    (4)将萃前液使用P204萃取除杂,反萃获得含有硫酸锰的反萃液,以及含有Co 2+、Ni 2+、Li +的萃余液;将反萃液除铜后蒸发浓缩、结晶获得硫酸锰;
    (5)将步骤(4)所得萃余液使用P507萃钴,P507萃钴时,控制油水比例为0.8~0.9∶1,使用碱液进行皂化,控制皂化率为55%~60%;反萃获得含有硫酸钴的反萃液,以及含有Ni 2+和Li +的萃余液;将反萃液蒸发浓缩、结晶获得硫酸钴;
    (6)将步骤(5)所得萃余液使用C272萃镁除杂,获得除Mg 2+后的C272萃余液;
    (7)将C272萃余液使用P507萃镍,反萃获得含有硫酸镍的反萃液,以及含Li +的萃余液;将反萃液蒸发浓缩、结晶获得硫酸镍;
    (8)将步骤(7)所得萃余液使用碳酸钠反应收集碳酸锂。
  2. 如权利要求1所述的回收方法,其特征在于,步骤(2)中粉料使用硫酸浸出时分为两步浸出:
    (a)粉料加水浆化,加入硫酸反应,再加入还原剂还原,控制反应过程中pH为1.0~1.5,过滤得到浸出液Ⅰ和滤渣Ⅰ;
    (b)滤渣Ⅰ加水浆化,加入硫酸反应,再加入双氧水助溶,控制pH为1.0~1.5,过滤得到浸出液Ⅱ和滤渣Ⅱ,
    将浸出液Ⅰ和浸出液Ⅱ混合得到所述浸出液。
  3. 如权利要求2所述的回收方法,其特征在于,还原剂的质量为粉料的0.2~0.5倍;双氧水的质量为滤渣Ⅰ的0.1~0.4倍。
  4. 如权利要求1所述的回收方法,其特征在于,步骤(3)去除浸出液中的Fe 2+、Al 3+、Ca 2+和Mg 2+的步骤包括:
    (a)检测浸出液中Fe 2+浓度,加入氧化剂将Fe 2+氧化成Fe 3+,加入中和剂调pH使Fe 3+和Al 3+沉淀析出并过滤去除;
    (b)取样检测Ca 2+和Mg 2+含量,加入氟化物使Ca 2+和Mg 2+沉淀析出并过滤去除。
  5. 如权利要求4所述的回收方法,其特征在于,氧化剂的加入量为Fe 2+质量的0.2~0.5倍;所述中和剂为碳酸钠,调pH到4.5~5.0。
  6. 如权利要求4所述的回收方法,其特征在于,所述氟化物为氟化钠,加入量为Ca 2+和Mg 2+总质量的4~7倍。
  7. 如权利要求1所述的回收方法,其特征在于,步骤(4)反萃使用浓度为100~120g/L的硫酸溶液,步骤(5)反萃使用浓度为150~220g/L的硫酸溶液,步骤(7)反萃使用浓度为100~150g/L的硫酸溶液。
  8. 如权利要求1所述的回收方法,其特征在于,步骤(8)使用碳酸钠反应收集碳酸锂之前先将步骤(7)所得萃余液调pH 9~10除杂,滤渣后浓缩除钠盐获得含锂母液。
  9. 如权利要求8所述的回收方法,其特征在于,所述含锂母液中Li +的浓度为12~15g/L。
  10. 如权利要求8所述的回收方法,其特征在于,使用碳酸钠反应收集碳酸锂分为两步:
    (a)含锂母液中加入碳酸钠反应获得碳酸锂沉淀;
    (b)步骤(a)获得的碳酸锂沉淀加入硫酸复溶,调pH到10~13除杂,滤渣后,加入碳酸钠反应,反应温度为95℃~98℃,反应获得碳酸锂沉淀经洗涤、烘干获得碳酸锂。
PCT/CN2019/105497 2019-04-28 2019-09-12 一种废旧镍钴锰三元锂电池中有价金属的回收方法 WO2020220559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910348755.3A CN110066925A (zh) 2019-04-28 2019-04-28 一种废旧镍钴锰三元锂电池中有价金属的回收方法
CN201910348755.3 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020220559A1 true WO2020220559A1 (zh) 2020-11-05

Family

ID=67369226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105497 WO2020220559A1 (zh) 2019-04-28 2019-09-12 一种废旧镍钴锰三元锂电池中有价金属的回收方法

Country Status (2)

Country Link
CN (1) CN110066925A (zh)
WO (1) WO2020220559A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026931A1 (ja) * 2021-08-26 2023-03-02 Jfeスチール株式会社 マンガンの除去方法および酸化鉄の製造方法
CN115893497A (zh) * 2022-11-14 2023-04-04 广东邦普循环科技有限公司 一种从含钙铜铬硅的锰溶液中制备高纯硫酸锰的方法
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries
WO2024042115A1 (en) 2022-08-24 2024-02-29 Umicore Process for preparing a high-purity nickel sulphate solution
US12024755B2 (en) 2022-04-18 2024-07-02 Green Li-Ion Pte. Ltd. Process and system for recovering lithium from lithium-ion batteries
US12051788B2 (en) 2022-01-17 2024-07-30 Green Li-Ion Pte. Ltd. Process for recycling lithium iron phosphate batteries

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法
CN110616331B (zh) * 2019-10-16 2021-11-30 衢州华友资源再生科技有限公司 一种动力锂离子电池全金属回收循环利用的方法
CN110642276B (zh) * 2019-11-11 2022-01-25 南昌航空大学 一种制备6n级氯化镁溶液的方法
CN111003734A (zh) * 2019-12-25 2020-04-14 南通金通储能动力新材料有限公司 一种三元前驱体废料回收再利用的方法
CN111018008B (zh) * 2019-12-28 2022-09-23 湖南金源新材料股份有限公司 免萃制取电池级氢氧化镍的方法
CN111270073A (zh) * 2020-02-03 2020-06-12 广东省稀有金属研究所 一种从废旧锂离子电池电极材料浸出液中回收有价金属的方法
CN111519031B (zh) * 2020-04-29 2022-06-28 江苏北矿金属循环利用科技有限公司 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
CN112079391A (zh) * 2020-07-31 2020-12-15 浙江天能新材料有限公司 一种制备电池级硫酸锰的方法
CN114134341B (zh) 2020-09-04 2023-01-13 苏州博萃循环科技有限公司 一种含镍钴锰的料液中镍钴锰的回收方法
CN114250362A (zh) * 2020-09-22 2022-03-29 北京博萃循环科技有限公司 一种分离净化并回收废旧锂离子电池正极材料的方法及得到的正极材料
CN112342390A (zh) * 2020-10-26 2021-02-09 宁波互邦新材料有限公司 三元浸出液的萃取分离技术及基于其的三元正极材料回收工艺
CN113003589B (zh) * 2021-04-25 2023-04-25 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置
CN114349078B (zh) * 2021-12-29 2024-04-26 广西中伟新能源科技有限公司 一种氢氧化镍中氯、镁的去除方法及应用
CN114427032B (zh) * 2022-01-28 2024-07-16 重庆大学 采用沉淀法分离浸出液原料中有价金属的方法
CN114853093A (zh) * 2022-05-27 2022-08-05 中国恩菲工程技术有限公司 电池级硫酸镍的制备方法
CN115057481A (zh) * 2022-06-09 2022-09-16 云南金浔资源股份有限公司 一种高性能锂离子动力电池使用硫酸钴生产方法
CN115369251A (zh) * 2022-10-27 2022-11-22 杭州天易成环保设备股份有限公司 三元锂电池料的萃取回收线、方法及应用
CN116902999A (zh) * 2023-05-31 2023-10-20 广东盛祥新材料科技有限公司 三元粉/铁锂粉/碳酸锂加工方法及废旧电池回收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509071A (zh) * 2008-02-13 2009-08-19 日矿金属株式会社 从含有Co、Ni、Mn的锂电池渣中回收有价金属的方法
WO2016159001A1 (ja) * 2015-03-31 2016-10-06 Jx金属株式会社 鉄含有溶液からの鉄の除去方法及び、有価金属の回収方法
CN108517409A (zh) * 2018-04-04 2018-09-11 长沙矿冶研究院有限责任公司 一种从废旧动力电池正极废料中回收有价金属的方法
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383440B (zh) * 2007-11-16 2010-05-12 佛山市邦普镍钴技术有限公司 一种从镍氢电池正极废料中回收、制备超细金属镍粉的方法
JP5706457B2 (ja) * 2013-02-27 2015-04-22 Jx日鉱日石金属株式会社 金属混合溶液からの金属の分離回収方法
CN105206889B (zh) * 2015-07-29 2018-10-26 浙江三晟化工有限公司 一种废旧镍钴锰酸锂三元电池正极材料的处理方法
CN108002408B (zh) * 2016-10-31 2021-06-04 湖南金源新材料股份有限公司 电池废料制备硫酸镍、锰、锂、钴及四氧化三钴的方法
CN108977662A (zh) * 2018-07-13 2018-12-11 兰州金川新材料科技股份有限公司 一种利用钴铁合金制备氯化钴溶液和硫酸铜溶液的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509071A (zh) * 2008-02-13 2009-08-19 日矿金属株式会社 从含有Co、Ni、Mn的锂电池渣中回收有价金属的方法
WO2016159001A1 (ja) * 2015-03-31 2016-10-06 Jx金属株式会社 鉄含有溶液からの鉄の除去方法及び、有価金属の回収方法
CN108517409A (zh) * 2018-04-04 2018-09-11 长沙矿冶研究院有限责任公司 一种从废旧动力电池正极废料中回收有价金属的方法
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries
WO2023026931A1 (ja) * 2021-08-26 2023-03-02 Jfeスチール株式会社 マンガンの除去方法および酸化鉄の製造方法
JP7276626B1 (ja) * 2021-08-26 2023-05-18 Jfeスチール株式会社 マンガンの除去方法および酸化鉄の製造方法
US12051788B2 (en) 2022-01-17 2024-07-30 Green Li-Ion Pte. Ltd. Process for recycling lithium iron phosphate batteries
US12024755B2 (en) 2022-04-18 2024-07-02 Green Li-Ion Pte. Ltd. Process and system for recovering lithium from lithium-ion batteries
WO2024042115A1 (en) 2022-08-24 2024-02-29 Umicore Process for preparing a high-purity nickel sulphate solution
CN115893497A (zh) * 2022-11-14 2023-04-04 广东邦普循环科技有限公司 一种从含钙铜铬硅的锰溶液中制备高纯硫酸锰的方法

Also Published As

Publication number Publication date
CN110066925A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020220559A1 (zh) 一种废旧镍钴锰三元锂电池中有价金属的回收方法
JP7216945B2 (ja) 三元系電池廃棄物総合回収におけるマンガン-リチウム分離と抽出前溶液調製プロセス及び三元系電池廃棄物からコバルト-ニッケル-マンガン-リチウム元素を総合回収する方法
CN111519031B (zh) 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
JP6714226B2 (ja) 電池廃棄物による硫酸ニッケル、硫酸マンガン、硫酸リチウム、硫酸コバルト及び四酸化三コバルトの製造方法
CN106319228B (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
TWI392745B (zh) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
CN113444885B (zh) 一种从废旧三元锂离子电池中优先提取金属锂以及同时得到电池级金属盐的方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN111092273B (zh) 从三元电池废料中综合回收钴镍锰锂元素的新方法
CN112375910B (zh) 废动力电池粉的回收处理方法
CN110835683B (zh) 废旧锂离子电池材料中选择性提取锂的方法
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
JP2024514966A (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN113387402A (zh) 利用氢氧化镍钴原料结晶法生产硫酸镍钴盐的方法
CN113122725A (zh) 一种提升废旧锂电池金属回收率及纯度的方法
CN101603125B (zh) 一种镍液净化除杂的方法
CN114477240A (zh) 一种电池级氢氧化锂的制备方法
CN114132909A (zh) 一种从退役磷酸锰铁锂电池废料中回收纯金属盐的方法
CN111118311B (zh) 三元电池废料综合回收中的锰锂分离方法
CN115057481A (zh) 一种高性能锂离子动力电池使用硫酸钴生产方法
WO2021134515A1 (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
WO2023193517A1 (zh) 处理废旧锂电池铜钴合金的方法和应用
CN116607013A (zh) 一种废旧锂离子电池预提锂的方法
KR100516976B1 (ko) 중유회 또는 오리멀젼회로 부터 산화바나듐 플레이크를회수하는 방법
CN116553502A (zh) 一种有效回收废旧磷酸铁锂电池正极材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927267

Country of ref document: EP

Kind code of ref document: A1