WO2022041589A1 - 全桥型llc谐振变换器及其谐振电流检测方法 - Google Patents

全桥型llc谐振变换器及其谐振电流检测方法 Download PDF

Info

Publication number
WO2022041589A1
WO2022041589A1 PCT/CN2020/137568 CN2020137568W WO2022041589A1 WO 2022041589 A1 WO2022041589 A1 WO 2022041589A1 CN 2020137568 W CN2020137568 W CN 2020137568W WO 2022041589 A1 WO2022041589 A1 WO 2022041589A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
resistor
resonant
bridge
diode
Prior art date
Application number
PCT/CN2020/137568
Other languages
English (en)
French (fr)
Inventor
李锐
程志杰
王金鑫
许双全
卢继东
刘宏森
Original Assignee
杭州中恒电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州中恒电气股份有限公司 filed Critical 杭州中恒电气股份有限公司
Publication of WO2022041589A1 publication Critical patent/WO2022041589A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the technical field of power electronics, in particular to a full-bridge LLC resonant converter and a resonant current detection method thereof.
  • LLC resonant converter is one of the main power stage topologies of led tv, which has many advantages over other converters, such as: a) It works under zvs (zero voltage switching) conditions over the entire load range, In order to achieve high efficiency; b) The operating frequency range is relatively narrow, which is convenient for the design of high-frequency transformers and input filters; c) The voltage stress of the switch used on the primary side is clamped on the input voltage, while the two diodes on the secondary side is always equal to twice the output voltage of the center-tapped transformer.
  • the LLC resonant converter can be divided into full-bridge type and half-bridge type according to the rectification method.
  • circuit transformers are mostly used to detect the resonant current, but due to the high cost of current transformers , thereby increasing the overall cost of the full-bridge LLC resonant converter.
  • one of the objectives of the present invention is to provide a full-bridge LLC resonant converter, which uses the first resistor and the first capacitor instead of the current transformer to detect the resonant current, thereby reducing the overall cost.
  • a full-bridge LLC resonant converter comprising: a full-bridge rectifier circuit, a resonant circuit, a detection circuit and a secondary side circuit;
  • the full-bridge rectifier circuit includes two first bridge arms and two second bridge arms, the resonant circuit has an access point A1 and an access point A2, and one of the first bridge arms is connected to the access point A1 and the forward end of the DC source, another first bridge arm is connected between the access point A2 and the reverse end of the DC source, and one second bridge arm is connected between the access point A1 and the DC Between the reverse ends of the source, another second bridge arm is connected between the access point A2 and the forward end of the DC source; the two first bridge arms are synchronously turned on, and the two second bridge arms are synchronously turned on connected, the first bridge arm and the second bridge arm are asynchronously connected;
  • the resonant circuit includes a first inductor, a second inductor, a resonant capacitor, and a transformer group formed with a first winding, a second winding and a third winding, and the resonant capacitor has a first end and a second end,
  • the first inductor and the first winding are connected in series between the access point A1 and the first terminal, and the second inductor and the second winding are connected in series between the access point A2 and the second terminal. and the potential values of the first end and the second end are the same and opposite in direction, and the third winding is connected in series with the secondary circuit;
  • the detection circuit includes a first resistor and a first capacitor, the first resistor and the first capacitor are connected in series, the end of the first capacitor away from the first resistor is connected to any end of the resonant capacitor, and the first capacitor is connected to any end of the resonant capacitor.
  • One end of a resistor away from the first capacitor is grounded, wherein the ratio of the voltage across the first capacitor to the voltage across the first resistor is greater than 50, so that the value of the resonant current is proportional to the value of the first resistor There is a linear relationship between the voltage values at both ends.
  • the detection circuit further includes a second resistor and a second capacitor, the second resistor and the second capacitor are connected in series, the end of the first capacitor far away from the first resistor and the second capacitor far away from the One end of the second resistor is connected to the first end and the second end, respectively, and one end of the second resistor far from the second capacitor is grounded, wherein the voltage value across the second capacitor is the same as that of the second capacitor.
  • the ratio of the voltage values across the resistor is greater than 50, so that the value of the resonant current has a linear relationship with the voltage value across the second resistor.
  • first bridge arm and the second bridge arm are any one of a MOSFET transistor, an IGBT transistor, a GaN transistor, a triode, a thyristor and a relay, or a bidirectional switch formed by a combination thereof.
  • the secondary circuit includes a fifth diode, a sixth diode, a seventh diode, an eighth diode, a third capacitor and a load, and one end of the third winding is connected to the fifth
  • the anode of the diode is connected to the anode of the sixth diode
  • the cathode of the fifth diode is connected to the cathode of the sixth diode
  • the anode of the fifth diode is connected to the cathode of the seventh diode connected
  • the anode of the sixth diode is connected to the cathode of the eighth diode
  • the anode of the seventh diode and the anode of the eighth diode are connected and grounded
  • the load and the third capacitor are connected in parallel with the fifth diode between the cathode of the seventh diode and the anode of the seventh diode.
  • the transformer group includes 2n transformers, and n is greater than zero; the primary windings of the 2n transformers are connected in series in the same direction, wherein the primary windings of the n transformers are located between the first end of the resonant capacitor and the access point A1, and form the first winding; the primary windings of the other n transformers are located between the second end of the resonance capacitor and the access point A2, and form the second winding.
  • the transformer group includes 2m-1 transformers, where m is greater than zero; the primary windings of the 2m-1 transformers are connected in series in the same direction, wherein the primary winding of the mth transformer has two sub-windings, where m- The primary winding of a transformer and a sub-winding of the m-th transformer are located between the first end of the resonant capacitor and the access point A1, and form the first winding; where m+1 of the primary winding of the transformer and the m-th transformer are The other sub-winding of each transformer is located between the second end of the resonant capacitor and the access point A2, and forms the second winding.
  • the overcurrent protection circuit includes a comparison module, the input end of the comparison module is connected to the end of the first resistor away from the ground, and the output end of the comparison module is connected to the first resistor.
  • Another object of the present invention is to provide a method for detecting resonant current, which can quickly obtain the resonant current by detecting the voltage value V 1 of the first resistor.
  • a resonant current detection method applied to the above-mentioned full-bridge LLC resonant converter, comprising the following steps:
  • the beneficial effect of the present invention is that: when the two first bridge arms are turned on and the two second bridge arms are turned off, the current output by the DC source flows through: the forward end of the DC source - and the The first bridge arm connected to the access point A1-resonant circuit-the first bridge arm connected to the access point A2-the reverse end of the DC source; when the two first bridge arms are turned off, the two second bridge arms conduct When it is on, the current output by the DC source flows in sequence: the forward end of the DC source - the second bridge arm connected to the access point A2 - the resonant circuit - the second bridge arm connected to the access point A1 - the reverse side of the DC source.
  • the potential values of the first and second terminals are kept the same and in opposite directions, so that the potential of the first capacitor away from the first resistor is equal to 1/2 the voltage value of the resonant capacitor.
  • the ratio of the voltage value across a capacitor to the voltage value across the first resistor is greater than 50, so that the resonant current and the voltage value across the first resistor can be considered to be linearly distributed, and the value of the resonant current can be quickly obtained.
  • FIG. 1 is a circuit diagram of a full-bridge LLC resonant converter shown in Embodiment 1;
  • FIG. 2 is a flow chart of the vibration current detection method shown in the second embodiment.
  • full-bridge rectifier circuit 20 resonance circuit; 30, detection circuit; 40, secondary side circuit; 50, overcurrent protection circuit.
  • This embodiment provides a full-bridge LLC resonant converter, which aims to solve the problem of high overall cost caused by using a current transformer to sample the resonant current in the existing full-bridge LLC resonant converter.
  • the full-bridge LLC resonant converter includes: a full-bridge rectifier circuit 10 , a resonance circuit 20 , a detection circuit 30 and a secondary circuit 40 .
  • the full-bridge rectifier circuit 10 includes two first bridge arms and two second bridge arms, both of which are used for rectification.
  • the resonance circuit 20 has an access point A1 and an access point A2.
  • One of the first bridge arms is connected between the access point A1 and the forward end of the DC source
  • the other first bridge arm is connected between the access point A2 and the reverse end of the DC source
  • one of the second bridge arms Connected between the access point A1 and the reverse end of the DC source
  • the other second bridge arm is connected between the access point A2 and the forward end of the DC source
  • the two first bridge arms are synchronously turned on
  • the two The second bridge arms are synchronously turned on
  • the first bridge arms and the second bridge arms are asynchronously turned on.
  • the resonant circuit 20 includes a first inductance L1, a second inductance L2, a resonant capacitor C5, and a transformer group.
  • the transformer group is formed with a first winding, a second winding and a third winding.
  • the resonant capacitor C5 has a first end and a second end.
  • An inductor L1 and the first winding are connected in series between the access point A1 and the first terminal, the second inductor L2 and the second winding are connected in series between the access point A2 and the second terminal, and the potential of the first terminal and the second terminal is The values are the same and the directions are opposite, and the third winding is connected to the secondary circuit 40 in series.
  • the first inductor L1 and the second inductor L2 are of the same type.
  • the detection circuit 30 includes a first resistor R1 and a first capacitor C1, the first resistor R1 and the first capacitor C1 are connected in series, and one end of the first capacitor C1 away from the first resistor R1 is connected to the first end or the second end of the resonant capacitor C5, One end of the first resistor R1 away from the first capacitor C1 is grounded, wherein the ratio of the voltage across the first capacitor C1 to the voltage across the first resistor R1 is greater than 50, so that the value of the resonant current is equal to the voltage across the first resistor R1 a linear relationship.
  • the current output by the DC source flows in sequence: the forward end of the DC source - the first bridge arm connected to the access point A1 - Resonant circuit - the first bridge arm connected to the access point A2 - the reverse end of the DC source; when the two first bridge arms are turned off and the two second bridge arms are turned on, the current output by the DC source flows in turn Via: the forward end of the DC source - the second bridge arm connected to the access point A2 - the resonant circuit - the second bridge arm connected to the access point A1 - the reverse end of the DC source.
  • the potential values of the first terminal and the second terminal are kept the same and in opposite directions, so that the potential of the first capacitor C1 away from the first resistor R1 is equal to 1/2 of the voltage value of the resonant capacitor C5.
  • the ratio of the voltage across the capacitor C1 to the voltage across the first resistor R1 is greater than 50, so that the resonant current and the voltage across the first resistor R1 can be considered to be linearly distributed, and the resonant current value can be quickly obtained.
  • the first bridge arm and the second bridge arm are any one of a MOSFET tube, an IGBT tube, a GaN tube, a triode, a thyristor and a relay, or a bidirectional switch formed by a combination thereof.
  • the two first bridge arms may respectively have multiple branches, but the two bridge arms should be the same in the number and connection of branches, and the two first bridge arms should be in the same branch.
  • the number and type of components on the road are the same, of course, the connection sequence can be the same or different.
  • the two second bridge arms may also respectively have multiple branches.
  • the two second bridge arms can also use a combination of parasitic diodes and N-channel enhancement MOSFETs.
  • the two N-channel enhancement mode MOSFETs of the two first bridge arms are respectively recorded as S1 and S4, the corresponding parasitic diodes are respectively recorded as D1 and D4, and the two MOSFET transistors of the two second bridge arms are respectively recorded as S2 and S3, the corresponding parasitic diodes are denoted as D2 and D3, respectively.
  • the drain of the MOSFET S1 is connected to the forward terminal of the DC source, the source is connected to the drain of the MOSFET S3; the source of the MOSFET S3 is connected to the reverse terminal of the DC source, and the reverse of the DC source The terminal is grounded; the drain of the MOSFET S2 is connected to the forward terminal of the DC source, and the source is connected to the drain of the MOSFET S4; the source of the MOSFET S4 is connected to the reverse terminal of the DC source; the cathodes of each parasitic diode are It is connected to the drain of the corresponding MOSFET, and the anode is connected to the source of the corresponding MOSFET; the access point A1 is connected to the source of the MOSFET S1, and the access point A2 is connected to the source of the MOSFET S2.
  • MOSFET tube S1 and the MOSFET tube S4 are turned on synchronously, that is, the duty ratio of the two is the same; the MOSFET tube S2 and the MOSFET tube S3 are turned on synchronously, that is, the duty ratio of the two is the same.
  • the MOSFET tube S1 and the MOSFET tube S2 are asynchronously turned on, so that the MOSFET tube S1 and the MOSFET tube S2 realize interleaved operation in a phase-shifted manner of 180 degrees.
  • the corresponding phase range is [360n+x, 360n+y]
  • the corresponding phase range when the MOSFET tube S2 is turned on is [360n+180+x, 360n+180+y] ] or [360n-180+x, 360n-180+y]
  • n is a natural number, 0° ⁇ (yx) ⁇ 360°.
  • the MOSFET tube S1 and the MOSFET tube S4 When the MOSFET tube S1 and the MOSFET tube S4 are turned on, the MOSFET tube S2 and the MOSFET tube S3 are turned off, and the current flows through: the forward end of the DC source - the MOSFET tube S1 - the resonant circuit 20 - the MOSFET tube S4 - the reverse of the DC source Towards the end, that is, the two first bridge arms can be regarded as being symmetrically arranged relative to the DC source and the resonant circuit 20; when the MOSFET tube S1 and the MOSFET tube S4 are turned off, the MOSFET tube S2 and the MOSFET tube S3 are turned on, and the current flows in turn.
  • the forward end of the DC source - flows through the MOSFET tube S2 - the resonant circuit 20 - the MOSFET tube S3 - the reverse end of the DC source, that is, the two second bridge arms can be regarded as symmetrical with respect to the DC source and the resonance circuit 20 set, so as to control the potential value of the first end and the second end to be equal.
  • the transformer group may include 2n transformers T, where n is greater than zero, and the 2n transformers T are of the same type.
  • the circuit diagram shown in FIG. 1 shows that the transformer group adopts two transformers T. Schematic diagram of the circuit.
  • the primary windings of the 2n transformers T are connected in series in the same direction, that is, the same-named end of any primary winding is connected to the different-named end of the adjacent primary winding, so as to achieve the effect of signal enhancement.
  • the primary windings of the n transformers T are located between the first end of the resonant capacitor C5 and the access point A1, and form the first winding; the other primary windings of the n transformers T are located between the second end of the resonant capacitor C5 and the connection point A1. between the entry point A2 and form the second winding. It is worth noting here that the overall resistance, the number of turns, the diameter and the freewheeling capability of the first winding and the second winding are all equal, that is, the first winding and the second winding can be regarded as relative to the resonant capacitance.
  • C5 is arranged symmetrically, so that it is convenient to control the potential value of the first end and the second end to be equal.
  • the transformer group includes 2m-1 transformers T, m is greater than zero, and the models of the 2m-1 transformers T are all the same.
  • the primary windings of 2m-1 transformers T are connected in series in the same direction, that is, the same-named end of any primary winding is connected to the different-named end of the adjacent primary winding to achieve the effect of signal enhancement.
  • the primary winding of the m-th transformer T has two sub-windings, and the primary winding of the m-1 transformer T and a sub-winding of the m-th transformer T are located at the first end and the access point of the resonant capacitor C5 Between A1 and forming the first winding; wherein the primary winding of m+1 transformer T and the other sub-winding of m-th transformer T are located between the second end of the resonant capacitor C5 and the access point A2, and form second winding.
  • the overall resistance, the number of turns, the diameter and the freewheeling capability of the first winding and the second winding are all equal, that is, the first winding and the second winding can be regarded as relative to the resonant capacitance.
  • C5 is arranged symmetrically, so that it is convenient to control the potential value of the first end and the second end to be equal.
  • the number of the transformers T can be set according to the actual situation, as long as the number is greater than one, and the setting position of the resonant capacitor C5 can be set according to the number of transformers T or specific parameters. adjustment. Since the models of the transformers T in the above technical solutions are the same, it is convenient to quickly determine the setting position of the resonant capacitor C5, thereby saving the time of calculation and simulation.
  • the setting method of the transformer T is not limited to the above method.
  • the model of the transformer T can also be set to be different, and the number of primary windings at both ends of the resonant capacitor C5 will also be different, but as long as the first and second ends are guaranteed
  • the potential value of the terminals is the same and the direction is opposite.
  • the detection circuit 30 further includes a second resistor R2 and a second capacitor C2, the second resistor R2 and the second capacitor C2 are connected in series, and one end of the first capacitor C1 away from the first resistor R1 and the second capacitor C2 away from One end of the second resistor R2 is connected to the first end and the second end respectively, and one end of the second resistor R2 away from the second capacitor C2 is grounded, wherein the ratio of the voltage across the second capacitor C2 to the voltage across the second resistor R2 It is greater than 50, so that the value of the resonance current has a linear relationship with the value of the voltage across the second resistor R2.
  • Ir (2*C 5 )/(R 2 *C 2 )*V 1 , where Ir is the current of the resonant current value, C5 is the capacitance value of the resonant capacitor C5 , V5 is the voltage value of the resonant capacitor C5, R2 is the resistance value of the second resistor R2, C2 is the capacitance value of the second capacitor C2, then ( 2 * C5 )/(R 2 *C 2 ) is a constant, so it is only necessary to obtain the voltage value V 2 of the second resistor R2 to obtain the current value of the resonant current, and the direction of the resonant current can be calculated from the period of the DC source, Thus, the corresponding resonant current can be obtained.
  • the voltage across the first resistor R1 It has the same phase as the resonant current, and has a 180-degree phase difference with the voltage across the second resistor R2, so that the user can draw the required voltage according to his own needs, and avoid using the corresponding components for phase inversion.
  • the secondary circuit 40 includes a fifth diode D5, a sixth diode D6, a seventh diode D7, an eighth diode D8, a third capacitor C3 and a load Rx, and the third One end of the winding is connected to the anode of the fifth diode D5, the other end is connected to the anode of the sixth diode D6, the cathode of the fifth diode D5 is connected to the cathode of the sixth diode D6, and the fifth diode D6
  • the anode of the tube D5 is connected to the cathode of the seventh diode D7
  • the anode of the sixth diode D6 is connected to the cathode of the eighth diode D8, the anode of the seventh diode D7 and the
  • the anode is connected and grounded, and the load Rx and the third capacitor C3 are connected in parallel between the cathode of the fifth diode D5 and the anode of the seventh diode D7.
  • the full-bridge LLC resonant converter may further include an overcurrent protection circuit 50, the overcurrent protection circuit 50 includes a comparison module, and the input end of the comparison module is connected to the first resistor R1 and/or the second resistor One end of R2 away from the ground, the output end of the comparison module is connected to the control ends of the first bridge arm and the second bridge arm.
  • the comparison module determines that the voltage value of the first resistor R1 exceeds the preset range, it controls the first bridge arm and the second bridge arm. The second bridge arm is powered off.
  • the output end of the comparison module can be connected to the control electrode of MOSFET tube S1 and/or MOSFET tube S4 via the driver chip, and the output end of the comparison module can be connected to the control electrode of MOSFET tube S2 and/or MOSFET tube S3 via the driver chip , so as to control the full-bridge LLC resonant converter to stop running in case of overcurrent.
  • the full-bridge LLC resonant converter may further include a display, the input end of the display is connected to the end of the first resistor R1 and/or the second resistor R2 away from the ground, the display is connected to the first resistor The voltage of R1 and/or the second resistor R2 is processed, and the change curve of the resonant current is displayed on the display, so as to facilitate the user's observation.
  • This embodiment provides a method for detecting resonant current, which is applied to the full-bridge LLC resonant converter shown in the first embodiment.
  • the method for detecting resonant current includes step S10 and step S20 .
  • step S10 the voltage value of the first resistor R1 is obtained and recorded as V 1 .
  • the acquisition method is not limited here, and can refer to the method correspondingly used by the existing current transformer when performing the resonant current detection.
  • C5 is the capacitance value of the resonance capacitor C5
  • R1 is the resistance value of the first resistor R1
  • C1 is the capacitance value of the first capacitor C1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种全桥型LLC谐振变换器,涉及电力电子技术领域,其包括全桥整流电路、谐振电路、检测电路以及副边电路;谐振电路包括第一电感、第二电感、谐振电容以及变压器组,谐振电容具有第一端和第二端,第一端和第二端的电位数值相同且方向相反;检测电路包括第一电阻和第一电容,第一电阻和第一电容串联,第一电容远离第一电阻的一端连接至谐振电容的任意一端,第一电阻远离第一电容的一端接地,第一电容两端电压值与第一电阻两端电压值的比值大于50,使得谐振电流值与第一电阻两端电压值呈线性关系。本发明通过第一电阻和第一电容代替电流互感器进行谐振电流检测,以降低整体成本,本发明还公开了一种谐振电流检测方法。

Description

全桥型LLC谐振变换器及其谐振电流检测方法 技术领域
本发明涉及电力电子技术领域,尤其涉及一种全桥型LLC谐振变换器及其谐振电流检测方法。
背景技术
LLC谐振转换器是led tv的主功率级拓扑之一,相比其它转换器具有更多优势,例如:a)在整个负载范围下都是以zvs(zero voltage switching,零电压开关)条件工作,以实现高效率;b)工作频率变化范围比较窄,便于高频变压器和输入滤波器的设计;c)初级端所用开关的电压应力被钳位在输入电压上,而次级端两个二极管上的电压始终等于中心抽头变压器输出电压的两倍。
该LLC谐振变换器可以根据整流方式分为全桥型和半桥型,对于全桥型LLC谐振变换器而言,其大多采用电路互感器进行谐振电流的检测,但由于电流互感器的成本高,从而提高了全桥型LLC谐振变换器的整体成本。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种全桥型LLC谐振变换器,通过第一电阻和第一电容代替电流互感器进行谐振电流的检测,从而降低了整体成本。
本发明的目的之一采用如下技术方案实现:
一种全桥型LLC谐振变换器,包括:全桥整流电路、谐振电路、检测电路以及副边电路;
所述全桥整流电路包括两个第一桥臂和两个第二桥臂,所述谐振电路具 有接入点A1和接入点A2,其中一个第一桥臂连接于所述接入点A1和直流源的正向端之间,另一个第一桥臂连接于所述接入点A2和直流源的反向端之间,其中一个第二桥臂连接于所述接入点A1和直流源的反向端之间,另一个第二桥臂连接于所述接入点A2和直流源的正向端之间;两个第一桥臂同步导通,两个第二桥臂同步导通,所述第一桥臂和所述第二桥臂异步导通;
所述谐振电路包括第一电感、第二电感、谐振电容以及变压器组,所述变压器组形成有第一绕组、第二绕组以及第三绕组,所述谐振电容具有第一端和第二端,所述第一电感和所述第一绕组串联于所述接入点A1和第一端之间,所述第二电感和所述第二绕组串联于所述接入点A2和第二端之间,且所述第一端和所述第二端的电位数值相同且方向相反,所述第三绕组串联于所述副边电路;
所述检测电路包括第一电阻和第一电容,所述第一电阻和第一电容串联,所述第一电容远离所述第一电阻的一端连接至所述谐振电容的任意一端,所述第一电阻远离所述第一电容的一端接地,其中所述第一电容两端电压值与所述第一电阻两端电压值的比值大于50,使得所述谐振电流的数值与所述第一电阻两端电压值呈线性关系。
进一步地,所述检测电路还包括第二电阻和第二电容,所述第二电阻和第二电容串联,所述第一电容远离所述第一电阻的一端和所述第二电容远离所述第二电阻的一端分别连接于所述第一端和所述第二端,所述第二电阻远离所述第二电容的一端接地,其中所述第二电容两端电压值与所述第二电阻两端电压值的比值大于50,使得所述谐振电流的数值与所述第二电阻两端电压值呈线性关系。
进一步地,所述第一桥臂和第二桥臂均为MOSFET管、IGBT管、GaN 管、三极管、晶闸管和继电器中的任一种,或者它们的组合构成的双向开关。
进一步地,所述副边电路包括第五二极管、第六二极管、第七二极管、第八二极管、第三电容以及负载,所述第三绕组的一端连接至第五二极管的阳极,另一端连接至第六二极管的阳极,第五二极管的阴极与第六二极管的阴极连接,第五二极管的阳极与第七二极管的阴极连接,第六二极管的阳极与第八二极管的阴极连接,第七二极管的阳极和第八二极管的阳极连接并接地,负载和第三电容并联于第五二极管的阴极和第七二极管的阳极之间。
进一步地,所述变压器组包括2n个变压器,n大于零;2n个变压器的原边绕组同向串联,其中n个变压器的原边绕组位于谐振电容的第一端和接入点A1之间,并形成第一绕组;另外n个变压器的原边绕组位于谐振电容的第二端和接入点A2之间,并形成第二绕组。
进一步地,所述变压器组包括2m-1个变压器,m大于零;2m-1个变压器的原边绕组同向串联,其中第m个变压器的原边绕组引出有两个分绕组,其中m-1个变压器的原边绕组和第m个变压器的一个分绕组位于谐振电容的第一端和接入点A1之间,并形成第一绕组;其中m+1个变压器的原边绕组和第m个变压器的另一个分绕组位于谐振电容的第二端和接入点A2之间,并形成第二绕组。
进一步地,还包括过流保护电路,所述过流保护电路包括比较模块,所述比较模块的输入端连接于所述第一电阻远离地的一端,所述比较模块的输出端连接于第一桥臂和第二桥臂的控制端;当所述比较模块判定所述第一电阻的电压值超出预设范围时,则控制第一桥臂和第二桥臂均断电。
本发明的目的之二在于提供一种谐振电流检测方法,通过检测第一电阻的电压值V 1,从而快速得到谐振电流。
本发明的目的之一采用如下技术方案实现:一种谐振电流检测方法,应用于上述的全桥型LLC谐振变换器,其包括以下步骤:
获取第一电阻的电压值并记为V 1
将所述电压值V 1输入第一公式,以得到谐振电流,其中第一公式为:Ir=(2*C 5)/(R 1*C 1)*V 1,其中,Ir为流经谐振电路的谐振电流,C5为谐振电容的电容值,R1为第一电阻的电阻值,C1为第一电容的电容值。
相比现有技术,本发明的有益效果在于:当两个第一桥臂导通,两个第二桥臂关断时,直流源输出的电流依次流经:直流源的正向端-与接入点A1连接的第一桥臂-谐振电路-与接入点A2连接的第一桥臂-直流源的反向端;当两个第一桥臂关断,两个第二桥臂导通时,直流源输出的电流依次流经:直流源的正向端-与接入点A2连接的第二桥臂-谐振电路-与接入点A1连接的第二桥臂-直流源的反向端,在这两个过程中,均保持第一端和第二端的电位数值相同且方向相反,从而使得第一电容远离第一电阻的电位等于1/2谐振电容的电压值,且由于第一电容两端电压值与第一电阻两端电压值的比值大于50,使得谐振电流与第一电阻两端电压值可以视为呈线性分布,则可以快速得到谐振电流的数值。
附图说明
图1为实施例一所示全桥型LLC谐振变换器的电路图;
图2为实施例二所示振电流检测方法的流程图。
图中:10、全桥整流电路;20、谐振电路;30、检测电路;40、副边电路;50、过流保护电路。
具体实施方式
以下将结合附图,对本发明进行更为详细的描述,需要说明的是,以下参照附图对本发明进行的描述仅是示意性的,而非限制性的。各个不同实施例之间可以进行相互组合,以构成未在以下描述中示出的其他实施例。
实施例一
本实施例提供了一种全桥型LLC谐振变换器,旨在解决现有全桥型LLC谐振变换器采用电流互感器进行谐振电流的采样而导致整体成本高的问题。
具体地,参照图1所示,该全桥型LLC谐振变换器包括:全桥整流电路10、谐振电路20、检测电路30以及副边电路40。
其中,全桥整流电路10包括两个第一桥臂和两个第二桥臂,两个第一桥臂和两个第二桥臂均用于整流。谐振电路20具有接入点A1和接入点A2。其中一个第一桥臂连接于接入点A1和直流源的正向端之间,另一个第一桥臂连接于接入点A2和直流源的反向端之间,其中一个第二桥臂连接于接入点A1和直流源的反向端之间,另一个第二桥臂连接于接入点A2和直流源的正向端之间,且两个第一桥臂同步导通,两个第二桥臂同步导通,第一桥臂和第二桥臂异步导通。
谐振电路20包括第一电感L1、第二电感L2、谐振电容C5以及变压器组,变压器组形成有第一绕组、第二绕组以及第三绕组,谐振电容C5具有第一端和第二端,第一电感L1和第一绕组串联于接入点A1和第一端之间,第二电感L2和第二绕组串联于接入点A2和第二端之间,且第一端和第二端的电位数值相同且方向相反,第三绕组串联于副边电路40。第一电感L1和第二电感L2的型号相同。
检测电路30包括第一电阻R1和第一电容C1,第一电阻R1和第一电容C1串联,第一电容C1远离第一电阻R1的一端连接至谐振电容C5的第一端 或第二端,第一电阻R1远离第一电容C1的一端接地,其中第一电容C1两端电压值与第一电阻R1两端电压值的比值大于50,使得谐振电流的数值与第一电阻R1两端电压值呈线性关系。
综上,当两个第一桥臂导通,两个第二桥臂关断时,直流源输出的电流依次流经:直流源的正向端-与接入点A1连接的第一桥臂-谐振电路-与接入点A2连接的第一桥臂-直流源的反向端;当两个第一桥臂关断,两个第二桥臂导通时,直流源输出的电流依次流经:直流源的正向端-与接入点A2连接的第二桥臂-谐振电路-与接入点A1连接的第二桥臂-直流源的反向端。
在这两个过程中,均保持第一端和第二端的电位数值相同且方向相反,从而使得第一电容C1远离第一电阻R1的电位等于1/2谐振电容C5的电压值,且由于第一电容C1两端电压值与第一电阻R1两端电压值的比值大于50,使得谐振电流与第一电阻R1两端电压值可以视为呈线性分布,则可以快速得到谐振电流的数值。
作为可选的技术方案,第一桥臂和第二桥臂均为MOSFET管、IGBT管、GaN管、三极管、晶闸管和继电器中的任一种,或者它们的组合构成的双向开关。
在此值得说明的是,两个第一桥臂可以分别具有多条支路,但是两个桥臂在支路的数量和连接方式上应当相同,且两个第一桥臂在对应相同的支路上的元器件数量和型号均相同,当然其在连接顺序上可以相同,也可以不同。两个第二桥臂也可以分别具有多条支路,具体可以参照上述相关说明,在此不再赘述。
例如,当两个第一桥臂均采用寄生二极管和N沟道增强型的MOSFET管和的组合,两个第二桥臂也均可以采用寄生二极管和N沟道增强型 MOSFET管和组合,在此将两个第一桥臂的两个N沟道增强型MOSFET管分别记为S1和S4,对应的寄生二极管分别记为D1和D4,两个第二桥臂的两个MOSFET管分别记为S2和S3,对应的寄生二极管分别记为D2和D3。具体地,MOSFET管S1的漏极与直流源的正向端连接,源极与MOSFET管S3的漏极连接;MOSFET管S3的源极与直流源的反向端连接,且直流源的反向端接地;MOSFET管S2的漏极与直流源的正向端连接,源极与MOSFET管S4的漏极连接;MOSFET管S4的源极与直流源的反向端连接;各个寄生二极管的阴极均与对应MOSFET管的漏极连接,阳极与对应MOSFET管的源极连接;接入点A1与MOSFET管S1的源极连接,接入点A2与MOSFET管S2的源极连接。
可以理解,MOSFET管S1与MOSFET管S4同步导通,即二者的占空比相同;MOSFET管S2与MOSFET管S3同步导通,即二者的占空比相同。
MOSFET管S1和MOSFET管S2异步导通,则MOSFET管S1和MOSFET管S2以移相180度的方式实现交错工作。具体地,当MOSFET管S1导通时对应的相位范围为[360n+x,360n+y]时,则MOSFET管S2导通时对应的相位范围为[360n+180+x,360n+180+y]或[360n-180+x,360n-180+y],n为自然数,0°<(y-x)<360°。
在MOSFET管S1和MOSFET管S4导通时,MOSFET管S2和MOSFET管S3关断,电流依次流经:直流源的正向端-MOSFET管S1-谐振电路20-MOSFET管S4-直流源的反向端,即两个第一桥臂相对于直流源和谐振电路20可以视为呈对称设置;在MOSFET管S1和MOSFET管S4关断时,MOSFET管S2和MOSFET管S3导通,电流依次流经:直流源的正向端-流经MOSFET管S2-谐振电路20-MOSFET管S3-直流源的反向端,即两个第二 桥臂相对于直流源和谐振电路20可以视为呈对称设置,从而便于控制第一端和第二端的电位数值相等。
作为可选的技术方案,在谐振电路20中,该变压器组可以包括2n个变压器T,n大于零,且2n个变压器T的型号均相等,图1所示电路图为变压器组采用两个变压器T的电路示意图。2n个变压器T的原边绕组同向串联,即任意原边绕组的同名端与相邻原边绕组的异名端相连,以实现信号加强的效果。其中n个变压器T的原边绕组位于谐振电容C5的第一端和接入点A1之间,并形成第一绕组;另外n个变压器T的原边绕组位于谐振电容C5的第二端和接入点A2之间,并形成第二绕组。在此值得说明的是,该第一绕组和第二绕组的的整体阻值、匝数、直径以及续流能力等特性参量均相等,即第一绕组和第二绕组可以视为相对于谐振电容C5呈对称设置,从而便于控制第一端和第二端的电位数值相等。
作为可选的技术方案,在谐振电路20中,变压器组包括2m-1个变压器T,m大于零,且2m-1个变压器T的型号均相等。2m-1个变压器T的原边绕组同向串联,即任意原边绕组的同名端与相邻原边绕组的异名端相连,以实现信号加强的效果。其中第m个变压器T的原边绕组引出有两个分绕组,其中m-1个变压器T的原边绕组和第m个变压器T的一个分绕组位于谐振电容C5的第一端和接入点A1之间,并形成第一绕组;其中m+1个变压器T的原边绕组和第m个变压器T的另一个分绕组位于谐振电容C5的第二端和接入点A2之间,并形成第二绕组。在此值得说明的是,该第一绕组和第二绕组的的整体阻值、匝数、直径以及续流能力等特性参量均相等,即第一绕组和第二绕组可以视为相对于谐振电容C5呈对称设置,从而便于控制第一端和第二端的电位数值相等。
在此值得说明的是,该变压器T的个数可以根据实际情况进行设置,只要保证其个数大于一即可,而该谐振电容C5的设置位置可以根据变压器T的个数或具体参数进行相应的调整。由于上述技术方案中的变压器T的型号一致,从而便于快速确定谐振电容C5的设置位置,从而节约计算和仿真的时间。当然,变压器T的设置方式不限于上述方式,例如变压器T的型号也可以设置为不相同,则谐振电容C5的两端的原边绕组的数量也会有差异,但只要保证第一端和第二端的电位数值相同且方向相反即可。
作为可选的技术方案,检测电路30还包括第二电阻R2和第二电容C2,第二电阻R2和第二电容C2串联,第一电容C1远离第一电阻R1的一端和第二电容C2远离第二电阻R2的一端分别连接于第一端和第二端,第二电阻R2远离第二电容C2的一端接地,其中第二电容C2两端电压值与第二电阻R2两端电压值的比值大于50,使得谐振电流的数值与第二电阻R2两端电压值呈线性关系。
在此值得说明的是,由于第一端和第二端的电位数值相等且方向相反,在此将谐振电容C5的电压记为V 5,则第一端和第二端的电位数值均为1/2*V5,在此以第一电阻R1和第一电容C1为例进行说明,由于Ir=C 5*dV 5/dt,
Figure PCTCN2020137568-appb-000001
由于第一电容C1两端电压值与第一电阻R1两端电压值V 1的比值大于50,则V 1相对于1/2*V 5可以忽略不计,即
Figure PCTCN2020137568-appb-000002
从而使得Ir=(2*C 5)/(R 1*C 1)*V 1,其中,Ir为谐振电流的电流值,C 5为谐振电容C5的电容值,V 5为谐振电容C5的电压值,R 1为第一电阻R1的电阻值,C 1为第一电容C1的电容值,则(2*C 5)/(R 1*C 1)为常量,因此只需要获取第一电阻R1的电压值V 1,即可得到谐振电流的电流值,而谐振电流的方向可以 从直流源的周期推算得到,从而可以得到相应的谐振电流。
参照上述说明,则在第二电阻R2和第二电容C2的所在支路中,使得Ir=(2*C 5)/(R 2*C 2)*V 1,其中,Ir为谐振电流的电流值,C 5为谐振电容C5的电容值,V 5为谐振电容C5的电压值,R 2为第二电阻R2的电阻值,C 2为第二电容C2的电容值,则(2*C 5)/(R 2*C 2)为常量,因此只需要获取第二电阻R2的电压值V 2,即可得到谐振电流的得电流值,而谐振电流的方向可以从直流源的周期推算得到,从而可以得到相应的谐振电流。
在此值得说明的是,由于第一端和第二端的电位相反,若第一电阻R1与第一端配合连接,第二电阻R2与第二端配合连接,则第一电阻R1的两端电压与谐振电流的相位相同,并与第二电阻R2的两端电压呈180度相位差,以便于用户根据自身需求引出所需的电压,而避免使用相应的元器件进行相位翻转。
通过该技术方案,不仅便于进行后续的电压引出,还可以经过测量第一电阻R1的电压值V 1和第二电阻R2的电压值V2,以得到对应的谐振电流的计算值,从而进行相互验证,以提高结果的准确性。
作为可选的技术方案,副边电路40包括第五二极管D5、第六二极管D6、第七二极管D7、第八二极管D8、第三电容C3以及负载Rx,第三绕组的一端连接至第五二极管D5的阳极,另一端连接至第六二极管D6的阳极,第五二极管D5的阴极与第六二极管D6的阴极连接,第五二极管D5的阳极与第七二极管D7的阴极连接,第六二极管D6的阳极与第八二极管D8的阴极连接,第七二极管D7的阳极和第八二极管D8的阳极连接并接地,负载Rx和第三电容C3并联于第五二极管D5的阴极和第七二极管D7的阳极之间。在此值得说明的是,当变压器组具有一个以上的变压器T时,各个变压 器T的副边绕组也同向串联并形成第三绕组,以实现对副边电路40的生成电流进行整流。
作为可选的技术方案,该全桥型LLC谐振变换器还可以包括过流保护电路50,过流保护电路50包括比较模块,比较模块的输入端连接于第一电阻R1和/或第二电阻R2远离地的一端,比较模块的输出端连接于第一桥臂和第二桥臂的控制端,当比较模块判定第一电阻R1的电压值超出预设范围时,则控制第一桥臂和第二桥臂均断电。
例如:比较模块的输出端可以经由驱动芯片连接于MOSFET管S1和/或MOSFET管S4的控制极,以及比较模块的输出端可以经由驱动芯片连接于MOSFET管S2和/或MOSFET管S3的控制极,以实现在过流时,控制该全桥型LLC谐振变换器停止运行。
作为可选的技术方案,该全桥型LLC谐振变换器还可以包括显示器,该显示器的输入端连接于第一电阻R1和/或第二电阻R2远离地的一端,该显示器经过对第一电阻R1和/或第二电阻R2的电压进行处理,并在显示器上显示谐振电流的变化曲线,以便于用户进行观测。
实施例二
本实施例提供一种谐振电流检测方法,其应用于上述实施例一所示全桥型LLC谐振变换器,参照图1和图2所示,该谐振电流检测方法包括步骤S10和步骤S20。
步骤S10、获取第一电阻R1的电压值并记为V 1。该获取方式在此不做限定,其可以参照现有电流互感器在进行谐振电流检测时对应使用的方法。
步骤S20、将电压值V 1输入第一公式,以得到谐振电流,其中第一公式为:Ir=(2*C 5)/(R 1*C 1)*V 1,其中,Ir为流经谐振电路20的谐振电流,C 5为 谐振电容C5的电容值,R 1为第一电阻R1的电阻值,C 1为第一电容C1的电容值。该步骤可以参照参照实施例一中的相关说明。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (8)

  1. 一种全桥型LLC谐振变换器,其特征在于,包括:全桥整流电路、谐振电路、检测电路以及副边电路;
    所述全桥整流电路包括两个第一桥臂和两个第二桥臂,所述谐振电路具有接入点A1和接入点A2,其中一个第一桥臂连接于所述接入点A1和直流源的正向端之间,另一个第一桥臂连接于所述接入点A2和直流源的反向端之间,其中一个第二桥臂连接于所述接入点A1和直流源的反向端之间,另一个第二桥臂连接于所述接入点A2和直流源的正向端之间;两个第一桥臂同步导通,两个第二桥臂同步导通,所述第一桥臂和所述第二桥臂异步导通;
    所述谐振电路包括第一电感、第二电感、谐振电容以及变压器组,所述变压器组形成有第一绕组、第二绕组以及第三绕组,所述谐振电容具有第一端和第二端,所述第一电感和所述第一绕组串联于所述接入点A1和第一端之间,所述第二电感和所述第二绕组串联于所述接入点A2和第二端之间,且所述第一端和所述第二端的电位数值相同且方向相反,所述第三绕组串联于所述副边电路;
    所述检测电路包括第一电阻和第一电容,所述第一电阻和第一电容串联,所述第一电容远离所述第一电阻的一端连接至所述谐振电容的任意一端,所述第一电阻远离所述第一电容的一端接地,其中所述第一电容两端电压值与所述第一电阻两端电压值的比值大于50,使得所述谐振电流的数值与所述第一电阻两端电压值呈线性关系。
  2. 根据权利要求1所述的全桥型LLC谐振变换器,其特征在于,所述检测电路还包括第二电阻和第二电容,所述第二电阻和第二电容串联,所述第一电容远离所述第一电阻的一端和所述第二电容远离所述第二电阻的一端分 别连接于所述第一端和所述第二端,所述第二电阻远离所述第二电容的一端接地,其中所述第二电容两端电压值与所述第二电阻两端电压值的比值大于50,使得所述谐振电流的数值与所述第二电阻两端电压值呈线性关系。
  3. 根据权利要求1所述的全桥型LLC谐振变换器,其特征在于,所述第一桥臂和第二桥臂均为MOSFET管、IGBT管、GaN管、三极管、晶闸管和继电器中的任一种,或者它们的组合构成的双向开关。
  4. 根据权利要求1所述的全桥型LLC谐振变换器,其特征在于,所述副边电路包括第五二极管、第六二极管、第七二极管、第八二极管、第三电容以及负载,所述第三绕组的一端连接至第五二极管的阳极,另一端连接至第六二极管的阳极,第五二极管的阴极与第六二极管的阴极连接,第五二极管的阳极与第七二极管的阴极连接,第六二极管的阳极与第八二极管的阴极连接,第七二极管的阳极和第八二极管的阳极连接并接地,负载和第三电容并联于第五二极管的阴极和第七二极管的阳极之间。
  5. 根据权利要求1至4任意一项所述的全桥型LLC谐振变换器,其特征在于,所述变压器组包括2n个变压器,n大于零;2n个变压器的原边绕组同向串联,其中n个变压器的原边绕组位于谐振电容的第一端和接入点A1之间,并形成第一绕组;另外n个变压器的原边绕组位于谐振电容的第二端和接入点A2之间,并形成第二绕组。
  6. 根据权利要求1至4任意一项所述的全桥型LLC谐振变换器,其特征在于,所述变压器组包括2m-1个变压器,m大于零;2m-1个变压器的原边绕组同向串联,其中第m个变压器的原边绕组引出有两个分绕组,其中m-1 个变压器的原边绕组和第m个变压器的一个分绕组位于谐振电容的第一端和接入点A1之间,并形成第一绕组;其中m+1个变压器的原边绕组和第m个变压器的另一个分绕组位于谐振电容的第二端和接入点A2之间,并形成第二绕组。
  7. 根据权利要求1所述的全桥型LLC谐振变换器,其特征在于,还包括过流保护电路,所述过流保护电路包括比较模块,所述比较模块的输入端连接于所述第一电阻远离地的一端,所述比较模块的输出端连接于第一桥臂和第二桥臂的控制端;当所述比较模块判定所述第一电阻的电压值超出预设范围时,则控制第一桥臂和第二桥臂均断电。
  8. 一种谐振电流检测方法,其特征在于,应用于上述权利要求1至7任意一项所述的全桥型LLC谐振变换器,其包括以下步骤:
    获取第一电阻的电压值并记为V 1
    将所述电压值V 1输入第一公式,以得到谐振电流,其中第一公式为:Ir=(2*C 5)/(R 1*C 1)*V 1,其中,Ir为流经谐振电路的谐振电流,C 5为谐振电容的电容值,R 1为第一电阻的电阻值,C 1为第一电容的电容值。
PCT/CN2020/137568 2020-08-31 2020-12-18 全桥型llc谐振变换器及其谐振电流检测方法 WO2022041589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010895001.2A CN112134463B (zh) 2020-08-31 2020-08-31 全桥型llc谐振变换器及其谐振电流检测方法
CN202010895001.2 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041589A1 true WO2022041589A1 (zh) 2022-03-03

Family

ID=73847714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137568 WO2022041589A1 (zh) 2020-08-31 2020-12-18 全桥型llc谐振变换器及其谐振电流检测方法

Country Status (2)

Country Link
CN (1) CN112134463B (zh)
WO (1) WO2022041589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117907877A (zh) * 2024-03-20 2024-04-19 江苏展芯半导体技术股份有限公司 一种隔离型变换器的电流检测电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737302B (zh) * 2020-12-29 2022-05-31 佛山科学技术学院 一种潜电路抑制电路及抑制方法
CN113804945B (zh) * 2021-09-17 2022-07-12 西安交通大学 高频llc中同步整流的电流检测电路、检测方法及控制方法
EP4215924A1 (en) * 2022-01-25 2023-07-26 Wiferion GmbH Determining an alternating electrical current of a resonant circuitry arrangement
CN117240096A (zh) * 2022-06-06 2023-12-15 华为技术有限公司 变换器及电子设备
CN117420348A (zh) * 2023-12-19 2024-01-19 江苏巧思科技有限公司 一种谐振电流检测电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666823A (zh) * 2008-09-04 2010-03-10 力博特公司 一种用于llc谐振电路的电流检测方法及装置
JP2011083130A (ja) * 2009-10-07 2011-04-21 Shindengen Electric Mfg Co Ltd スイッチング電源
CN103299526A (zh) * 2011-02-01 2013-09-11 富士电机株式会社 谐振开关电源设备
CN106664022A (zh) * 2015-01-20 2017-05-10 富士电机株式会社 开关电源装置
WO2018115554A1 (es) * 2016-12-19 2018-06-28 Universitat Rovira I Virgili Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye
CN111463878A (zh) * 2020-05-14 2020-07-28 深圳威迈斯新能源股份有限公司 一种兼容型大功率双端输出车载充电机及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013697B2 (ja) * 1994-03-24 2000-02-28 サンケン電気株式会社 スイッチング電源装置
CN101930021A (zh) * 2009-06-23 2010-12-29 力博特公司 电流采样电路、谐振电路及dcdc变换器
JP6007931B2 (ja) * 2014-03-06 2016-10-19 サンケン電気株式会社 電流共振型電源装置
JP6843094B2 (ja) * 2018-06-25 2021-03-17 コーセル株式会社 スイッチング電源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666823A (zh) * 2008-09-04 2010-03-10 力博特公司 一种用于llc谐振电路的电流检测方法及装置
JP2011083130A (ja) * 2009-10-07 2011-04-21 Shindengen Electric Mfg Co Ltd スイッチング電源
CN103299526A (zh) * 2011-02-01 2013-09-11 富士电机株式会社 谐振开关电源设备
CN106664022A (zh) * 2015-01-20 2017-05-10 富士电机株式会社 开关电源装置
WO2018115554A1 (es) * 2016-12-19 2018-06-28 Universitat Rovira I Virgili Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye
CN111463878A (zh) * 2020-05-14 2020-07-28 深圳威迈斯新能源股份有限公司 一种兼容型大功率双端输出车载充电机及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117907877A (zh) * 2024-03-20 2024-04-19 江苏展芯半导体技术股份有限公司 一种隔离型变换器的电流检测电路
CN117907877B (zh) * 2024-03-20 2024-06-11 江苏展芯半导体技术股份有限公司 一种隔离型变换器的电流检测电路

Also Published As

Publication number Publication date
CN112134463B (zh) 2022-06-03
CN112134463A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2022041589A1 (zh) 全桥型llc谐振变换器及其谐振电流检测方法
JPH10164837A (ja) 電源装置
TW588497B (en) Synchronous rectifier of intermittent control and its control method
TWI436563B (zh) 用於臨界連續電流模式之無橋功率因數校正電路及其方法
JP6859034B2 (ja) 共振変換器における同期整流のための回路および方法
US5818704A (en) Synchronizing/driving circuit for a forward synchronous rectifier
JPH11262263A (ja) スイッチング電源装置
TWI408898B (zh) 用於同步整流控制之補償裝置及其方法
US6535407B1 (en) DC/DC converter having a piezoelectric transformer and rectification-smoothing circuit
EP1391982A2 (en) Dc-dc converter
CN115720045A (zh) 可升降压的双向直流-直流电源转换装置及其控制方法
CN115296547A (zh) Llc谐振变换器、电源电路及其产生输出电压的方法
CN101997438B (zh) 用于同步整流控制的补偿装置及其方法
CN113676057B (zh) 一种基于二次电流模拟的llc同步整流电路
US20140226385A1 (en) Inverter device
CN114039486A (zh) 不对称半桥反激变换器及其输入电压检测方法
JPH10243647A (ja) 電源装置
US10447141B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
EP1475881A2 (en) Power converter
JP6015947B2 (ja) スイッチング電源装置、及びその制御方法
US7099161B2 (en) Converter with synchronous rectifier with ZVS
CN103391016B (zh) 与输出电容直接并联的mosfet同步整流电路及同步整流方法
CN210839384U (zh) 一种利用可饱和互感器的整流电路
CN111987897A (zh) 用于pfc拓扑的高压启动电路、pfc电路和ac/dc变换器
WO2023100318A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951255

Country of ref document: EP

Kind code of ref document: A1