WO2022025255A1 - Heat conduction member - Google Patents

Heat conduction member Download PDF

Info

Publication number
WO2022025255A1
WO2022025255A1 PCT/JP2021/028350 JP2021028350W WO2022025255A1 WO 2022025255 A1 WO2022025255 A1 WO 2022025255A1 JP 2021028350 W JP2021028350 W JP 2021028350W WO 2022025255 A1 WO2022025255 A1 WO 2022025255A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick structure
metal plate
conductive member
heat conductive
member according
Prior art date
Application number
PCT/JP2021/028350
Other languages
French (fr)
Japanese (ja)
Inventor
征志 高尾
仕▲ゆ▼ 楊
敏彦 小関
雅昭 花野
淳一 石田
Original Assignee
日本電産株式会社
尼得科超▲しゅう▼科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020192031A external-priority patent/JP2023127009A/en
Application filed by 日本電産株式会社, 尼得科超▲しゅう▼科技股▲ふん▼有限公司 filed Critical 日本電産株式会社
Publication of WO2022025255A1 publication Critical patent/WO2022025255A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to heat conductive members.
  • the conventional heat conductive member has a flat plate-shaped closed container, a porous sheet, and a working fluid.
  • the porous sheet is arranged on the inner surface of the flat plate-shaped closed container.
  • the working fluid is housed inside a flat plate-shaped closed container. It was
  • the flat plate-shaped closed container is arranged in contact with the heating element.
  • Porous sheets are arranged on the inner surface of the flat plate-shaped closed container on the heating element side and the inner surface of the flat plate-shaped closed container on the heat radiation surface side opposite to the heating element side.
  • the working fluid is heated by the heating element and vaporized from the porous sheet on the heat generating side.
  • the vaporized working fluid condenses on the porous sheet on the heat dissipation surface side. As a result, heat is transported from the heating element side to the heat radiating surface side (see, for example, Patent Document 1).
  • the heat conductive member as described above has a problem that the working fluid in the vicinity of the heating element is less likely to condense and the heat transport efficiency is low. It was
  • the exemplary heat conductive member of the present disclosure includes a housing having an internal space, a first wick structure, a second wick structure, an actuating medium, and a pillar portion.
  • the housing has a first metal plate and a second metal plate.
  • the second metal plate is arranged so as to face the first metal plate, and a heating element is arranged on the outer surface.
  • the pillar portion is arranged between the first metal plate and the second metal plate.
  • the working medium, the first wick structure, and the second wick structure are housed in the internal space.
  • the first wick structure is arranged on the inner surface of the first metal plate.
  • the second wick structure is arranged on the inner surface of the second metal plate.
  • the first wick structure has a convex portion protruding vertically from the inner surface, and at least a part of the convex portion is located in the first region where the first metal plate and the second metal plate vertically overlap with the heating element.
  • a heat conductive member is provided.
  • a heat conductive member capable of improving heat transport efficiency by easily causing condensation of a working fluid in the vicinity of a heating element.
  • FIG. 1 is a perspective view of a heat conductive member according to the present embodiment.
  • FIG. 2 is a schematic side sectional view of the heat conductive member according to the present embodiment.
  • FIG. 3 is a schematic side sectional view of the heat conductive member according to the modified example of the present embodiment.
  • the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate.
  • the Z-axis direction indicates a vertical direction (that is, a vertical direction)
  • the + Z direction is the upper side (opposite the gravity direction)
  • the ⁇ Z direction is the lower side (gravity direction).
  • the Z-axis direction is also the vertical direction between the first metal plate 11 and the second metal plate 12, which will be described later.
  • the X-axis direction refers to a direction orthogonal to the Z-axis direction, and one direction and the opposite direction thereof are the + X direction and the ⁇ X direction, respectively.
  • the Y-axis direction refers to a direction orthogonal to both the Z-axis direction and the X-axis direction, and one direction and the opposite direction thereof are the + Y direction and the ⁇ Y direction, respectively.
  • this is for convenience of explanation only, and does not limit the orientation of the heat conductive member 1 according to the present disclosure at the time of manufacture and use.
  • parallel when used in the present application, it does not mean only the case where it is mathematically strictly parallel, but also includes the case where it is parallel to the extent that the effect in the present disclosure is exhibited, for example.
  • sining refers to a technique of heating a metal powder or a metal powder to a temperature lower than the melting point of the metal to bake and harden the metal particles.
  • sintered body refers to an object obtained by sintering. It was
  • FIG. 1 is a perspective view of a heat conductive member 1 according to an exemplary embodiment of the present disclosure (hereinafter referred to as the present embodiment), and FIG. 2 is a schematic side sectional view of the heat conductive member 1.
  • FIG. 2 is a cross-sectional view taken along the alternate long and short dash line AA of FIG.
  • the heat conductive member 1 is also called a vapor chamber and transports the heat of the heating element H.
  • the heating element H include a power transistor of an inverter provided in a traction motor for driving a wheel of a vehicle.
  • the power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the heat conductive member 1 is mounted on the traction motor.
  • the calorific value of the IGBT is generally 100 W or more.
  • a heating element H is arranged in contact with the lower surface of the heat conductive member 1.
  • the heat generated by the heating element H is dissipated from the upper surface of the heat conductive member 1.
  • heat dissipation fins such as stacked fins and pin fins may be provided on the upper surface of the heat conductive member 1.
  • a cooling medium is passed between the heat radiation fins.
  • the cooling medium may be, for example, water, oil, or air. It was
  • one heating element H is arranged at the center of the lower surface of the rectangular heat conductive member 1.
  • the heating element H may be arranged on the lower surface edge portion of the heat conductive member 1.
  • a plurality of heating elements H may be arranged on the lower surface of the heat conductive member 1.
  • the heat conductive member 1 includes a housing 10, an actuating medium 20, a pillar portion 15, a first wick structure 31, a second wick structure 32, and a third wick structure 33.
  • the pillar portion 15 includes at least one of the first pillar portion 16 and the second pillar portion 33.
  • the thickness of the heat conductive member 1 in the Z direction is, for example, 5 mm or more. It was
  • the housing 10 has an internal space 10a.
  • the pillar portion 15, the working medium 20, the first wick structure 31, and the second wick structure 32 are arranged in the internal space 10a.
  • the housing 10 has a first metal plate 11 and a second metal plate 12 which is arranged so as to face the first metal plate 11 and in which a heating element H is arranged on an outer surface.
  • the pillar portion 15 is arranged between the first metal plate 11 and the second metal plate 12.
  • the pillar portion 15 is arranged in the internal space 10a and supports the first metal plate 11 and the second metal plate 12.
  • a metal having high thermal conductivity such as copper is used. Further, it may be formed by plating the surface of a metal other than copper with copper.
  • the metal other than copper for example, stainless steel can be considered.
  • the first metal plate 11 and the second metal plate 12 are made of a metal having high thermal conductivity such as copper. Further, it may be formed by plating the surface of a metal other than copper with copper. As the metal other than copper, for example, stainless steel can be considered. It was
  • the first metal plate 11 and the second metal plate 12 have a rectangular plate shape that extends in the horizontal direction when viewed from above.
  • the heating element H is arranged in contact with the outer surface of the second metal plate 12.
  • the first metal plate 11 covers the upper surface of the second metal plate 12.
  • the first metal plate 11 and the second metal plate 12 of the present embodiment are rectangular in top view, but the present invention is not limited to this. For example, it may be a polygon or a circle having a plurality of corners in a top view. It was
  • the first metal plate 11 has a first side wall portion 13a extending downward from the peripheral edge.
  • the second metal plate 12 has a second side wall portion 13b extending upward from the peripheral edge.
  • the lower surface of the first side wall portion 13a and the upper surface of the second side wall portion 13b are joined at the joint portion 14.
  • the lower surface of the first side wall portion 13a and the upper surface of the second metal plate 12 may be joined by omitting the second side wall portion 13b.
  • the upper surface of the second side wall portion 13b and the lower surface of the first metal plate 11 may be joined by omitting the first side wall portion 13a.
  • the internal space 10a is formed by being surrounded by the first metal plate 11 and the second metal plate 12.
  • the internal space 10a is a closed space, and is maintained in a decompressed state where the atmospheric pressure is lower than the atmospheric pressure, for example.
  • the working medium 20 housed in the internal space 10a is likely to evaporate.
  • the working medium 20 is, for example, water, but may be another liquid such as alcohol. It was
  • the joint portion 14 is located around the first wick structure 31 and the second wick structure 32 in the upward view.
  • the method of joining the first side wall portion 13a and the second side wall portion 13b is not particularly limited.
  • any joining method such as a method of joining by applying heat and pressure, a diffusion joining, or a joining using a brazing material may be used. It was
  • the joint portion 14 may include a sealing portion.
  • the sealing portion is, for example, a portion where an injection port for injecting the working medium 20 into the housing 10 is sealed by welding in the manufacturing process of the heat conductive member 1. It was
  • the pillar portion 15 is a separate member from the first metal plate 11 and the second metal plate 12, and is arranged between the first metal plate 11 and the second metal plate 12 in the internal space 10a. It is a member that supports the first metal plate 11 and the second metal plate 12.
  • the pillar portion 15 has, for example, a circular cylindrical shape when viewed upward.
  • the pillar portions 15 are two-dimensionally and regularly arranged side by side in the XY plane.
  • the pillar portion 15 has a first pillar portion 16 which is a solid member.
  • the first pillar portion 16 is arranged between the first metal plate 11 and the second metal plate 12 in the internal space 10a, and supports the first metal plate 11 and the second metal plate 12.
  • the "solid” member means a so-called solid member, and refers to a member whose contents are tightly packed and which is composed of a non-porous object.
  • the "solid” member may be a member that does not have a cavity inside, or may be a member that has one or more macroscopic cavities inside.
  • a metal having high thermal conductivity such as copper is used. It was
  • the pillar portion 15 has a second pillar portion 33 which is a porous sintered body.
  • the second pillar portion 33 is the third wick structure 33.
  • the third wick structure 33 is arranged between the first wick structure 31 and the second wick structure 32 in the internal space 10a, and supports the first wick structure 31 and the second wick structure 32.
  • the third wick structure 33 supports the first metal plate 11 and the second metal plate 12 via the first wick structure 31 and the second wick structure 32.
  • the pillar portion 15 has a first pillar portion 16 which is a solid member and a second pillar portion 33 which is a porous sintered body.
  • the second pillar portion 33 is the third wick structure 33.
  • the second pillar portion 33 will be described as the third wick structure 33.
  • the third wick structure 33 is preferably arranged in the middle of the adjacent first pillar portions 16. It was
  • the first pillar 16 which is a solid member, extends in the Z-axis direction, and the upper and lower ends of the first pillar 16 are the lower surface of the first metal plate 11 and the second metal plate.
  • Each of the upper surfaces of 12 is joined using a brazing material.
  • the first pillar portion 16 may be joined to the first metal plate 11 and the second metal plate 12 by welding or the like, in addition to joining with a brazing material.
  • the first pillar portion 16 may be integrated with one of the first metal plate 11 and the second metal plate 12. At this time, the first pillar portion 16 can be formed by etching or cutting the first metal plate 11 or the second metal plate 12. It was
  • the first wick structure 31 is a plate-shaped member arranged on the inner surface of the first metal plate 11, and is arranged on the cooling side opposite to the heating element H side.
  • the second wick structure 32 is a plate-shaped member arranged on the inner surface of the second metal plate 12, and is arranged on the heating element H side.
  • the first wick structure 31 and the second wick structure 32 are arranged so as to face each other.
  • a vapor space S is formed between the first wick structure 31 and the second wick structure 32.
  • the steam space S is a space for diffusing the steam of the working medium 20. It was
  • the third wick structure 33 is arranged in the internal space 10a, and connects the first wick structure 31 and the second wick structure 32.
  • the third wick structure 33 extends in the Z-axis direction and is composed of, for example, a circular cylinder in upward view. Further, the third wick structure 33 is two-dimensionally and regularly arranged side by side in the XY plane.
  • the third wick structure 33 is preferably arranged in the middle of the adjacent first pillar portions 16. It was
  • the third wick structure 33 supports the first metal plate 11 and the second metal plate 12 via the first wick structure 31 and the second wick structure 32. As a result, the third wick structure 33 can reinforce the first pillar portion 16 and further suppress the deformation of the housing 10 in the Z-axis direction. It was
  • first wick structure 31, the second wick structure 32, and the third wick structure 33 are porous sintered bodies, respectively, and are integrated with each other.
  • first wick structure 31, the second wick structure 32, and the third wick structure 33 as porous sintered bodies, it is possible to manufacture the first wick structure 31, the second wick structure 32, and the third wick structure 33 more easily than the mesh material, and the manufacturing cost of the heat conductive member 1 is high. Can be lowered.
  • the third wick structure 33 the flow path of the operating medium 20 from the first wick structure 31 to the second wick structure 32 can be increased. It was
  • the first wick structure 31 arranged on the heat dissipation surface side opposite to the heating element H the working medium 20 vaporized from the second wick structure 32 on the heating element H side is condensed. That is, the first wick structure 31 can further promote the condensation of the working medium 20.
  • the first wick structure 31 arranged on the heat radiation surface side opposite to the heating element H promotes the condensation of the vaporized working medium 20 as compared with the second wick structure 32. Therefore, it is preferable that the first wick structure 31 has a higher cooling efficiency of the working medium 20 than the second wick structure 32. It was
  • the first wick structure 31 has a convex portion 31a projecting vertically from the inner surface, and at least a part of the convex portion 31a is a heating element in the vertical direction of the first metal plate 11 and the second metal plate 12. It is located in the first region U1 that overlaps with H. It was
  • the thickness W1a of the first wick structure 31 in the convex portion 31a is formed to be larger than the thickness W1b of the first wick structure 31 in the region other than the convex portion 31a.
  • the working fluid is formed in at least a part of the first region U1 that overlaps the heating element H in the Z direction (opposite direction of the first metal plate 11 and the second metal plate 12). 20 condensation is promoted. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
  • the condensation of the working medium 20 is most promoted in the first region U1 facing the heating element H in the Z direction.
  • the condensation of the working medium 20 in the first region U1 can be promoted. Therefore, in the first region U1 facing the heating element H in the Z direction, the working medium 20 held in the first wick structure 31 is condensed, and the heat generated by the condensation of the working medium 20 is transferred to the first metal plate 11. Efficient heat can be dissipated to the heat dissipation surface side as a whole. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
  • the upper surface of the convex portion 31a is formed on a surface parallel to the first metal plate 11, but it may be formed in a mountain shape. That is, the thickness W1a of the first wick structure 31 in the convex portion 31a is gradually formed to be larger toward a predetermined position in the first region U1. This facilitates condensation at a predetermined position in the first region U1. It was
  • the entire convex portion 31a does not have to overlap with the first region U1 in the Z direction.
  • the end portion of the convex portion 31a may overlap with the second region U2 in the Z direction. It was
  • the convex portion 31a of the first wick structure 31 has an area larger than that of the first region U1 in a plan view, and the convex portion 31a overlaps the entire area of the first region U1 in the vertical direction.
  • the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 is larger in the Z direction than the thickness W2 of the second wick structure 32.
  • the working medium 20 vaporized from the second wick structure 32 on the heating element H side is condensed. That is, by making the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 larger in the Z direction than the thickness W2 of the second wick structure 32, the working medium 20 of the first wick structure 31 Condensation can be further promoted.
  • the average thickness of the first wick structure 31 is preferably larger than the average thickness of the second wick structure 32. As a result, the holding property of the working medium of the first wick structure 31 can be further improved. It was
  • the working medium 20 vaporized from the second wick structure 32 is XY in the internal space 10a. It becomes easy to diffuse in the plane. This promotes the condensation of the working medium 20 in the first wick structure 31.
  • the same effect can be obtained by applying the thickness W1b of the first wick structure 31 in the second region U2 to the equation (1) instead of the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1. Is obtained. It was
  • the thickness W1a of the first wick structure 31 and the thickness of the second wick structure 32 in the convex portion 31a in the Z direction (vertical direction of the first metal plate 11 and the second metal plate 12). It is more preferable that the length W3 of the gap between W2 and the first wick structure 31 and the second wick structure 32 satisfies the formulas (2) to (4). It was
  • the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 is set to be twice or more and four times or less the thickness W2 of the second wick structure 32 in the first region U1, and the first wick structure 31 is set. It is preferable that the length W3 of the gap between the wick structure 32 and the second wick structure 32 is 5 times or more and 7 times or less the thickness W2 of the second wick structure 32 in the first region U1. Thereby, the condensation of the working medium 20 in the first wick structure 31 can be further promoted.
  • the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 is applied to the equations (2) to (4). Has the same effect. It was
  • the second wick structure 32 has a higher porosity than the first wick structure 31. As a result, the capillary force of the second wick structure 32 becomes larger than the capillary force of the first wick structure 31. It was
  • the ratio of the volume of the space to the total product of the first wick structure 31 and the second wick structure 32 is referred to as a porosity.
  • the unit of porosity is%.
  • the porosity is determined by the following method. For example, the porosity can be obtained by measuring the area of the space from the cross-sectional photograph of the wick structure and calculating the ratio of the area of the space to the whole.
  • a scanning electron microscope having a deep depth of field. The method of observing the cross section is not particularly limited as long as it can easily distinguish between the metal portion and the space. It was
  • the first wick structure 31 and the second wick structure 32 are made of a porous sintered body, but the first wick structure 31 or the second wick structure 32 is a plurality of pieces. It may be a mesh member in which a metal linear member is woven.
  • the capillary force of the second wick structure 32 can be reduced to that of the first wick structure 31. It is larger than the capillary force and can be easily formed. It was
  • first wick structure 31 or the second wick structure 32 may be composed of a plurality of grooves formed on the inner surface of the first metal plate 11 and the inner surface of the second metal plate 12.
  • the first wick structure 31 or the second wick structure 32 can be formed thinner than in the case of being composed of the mesh material and the sintered body. Therefore, the internal space 10a can be expanded in the Z-axis direction. Further, the housing 10 can be made thinner in the Z-axis direction without narrowing the internal space 10a. Further, by forming one of the first wick structure 31 and the second wick structure 32 with a groove portion, the thickness of the first wick structure 31 or the second wick structure 32 in the Z-axis direction without narrowing the internal space 10a. Can be increased. It was
  • the first wick structure 31, the second wick structure 32, and the third wick structure 33 are formed, for example, as follows. First, a mixed powder containing micro copper particles, a copper body and a resin is sprayed and applied to the lower surface of the first metal plate 11 and the upper surface of the second metal plate 12 before joining. Next, the first metal plate 11 and the second metal plate 12 are joined by sandwiching the mixed powder formed in a columnar shape. After that, the housing 10 is heated to bake the mixed powder. As a result, the first wick structure 31, the second wick structure 32, and the third wick structure 33 can be easily integrally formed in the internal space 10a of the housing 10. As a result, the manufacturing cost of the heat conductive member 1 can be suppressed. The first metal plate 11 and the second metal plate 12 may be joined after the first wick structure 31, the second wick structure 32, and the third wick structure 33 are separately fired. It was
  • coating means adhering mixed powder to the lower surface of the 1st metal plate 11 and the upper surface of the 2nd metal plate 12.
  • a paste containing a mixed powder may be applied. It was
  • Micro copper particles are particles in which a plurality of copper atoms are aggregated or bonded.
  • the particle size of the micro copper particles is 1 ⁇ m or more and less than 1 mm.
  • the micro copper particles are, for example, porous. It was
  • the copper body is a copper melt obtained by melting and solidifying sub-micro copper particles smaller than the micro copper particles by sintering.
  • Submicro copper particles are particles in which a plurality of copper atoms are aggregated or bonded.
  • the particle size of the sub-micro copper particles before melting is 0.1 ⁇ m or more and less than 1 ⁇ m. It was
  • the resin is a volatile resin that volatilizes at a temperature below the melting point of the copper constituting the micro copper particles and the copper body.
  • a volatile resin for example, a cellulose resin such as methyl cellulose or ethyl cellulose, an acrylic resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin or the like can be used.
  • an acrylic resin having high thermal decomposability. It was
  • the working medium 20 that has been vaporized into steam diffuses in the steam space S.
  • the steam space S is a space excluding the space occupied by the first pillar portion 16 and the third wick structure 33 from the gap space between the first wick structure 31 and the second wick structure 32. .. It was
  • the first wick structure 31 has a larger surface area and higher cooling efficiency than the lower surface of the first metal plate 11. Therefore, by providing the first wick structure 31, the cooling efficiency of the vaporized working medium 20 is improved and condensation is promoted. It was
  • a part of the working medium 20 condensed in the first wick structure 31 is dropped and absorbed in the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves in the first wick structure 31 and the third wick structure 33 and is absorbed by the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves along the outer surface of the first pillar portion 16 and is absorbed by the second wick structure 32. It was
  • the condensed working medium 20 moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. Further, the working medium 20 absorbed from the first wick structure 31 to the second wick structure 32 also moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. It was
  • the heating element H is arranged on the working medium 20 condensed through the second wick structure 32. It can be moved to a position faster. Therefore, the heat transport efficiency by the working medium 20 is improved. It was
  • the working medium 20 moves while changing its state, so that heat is continuously transferred from the heating element H side to the cooling side. It was
  • the steam space S excludes the space occupied by the first pillar portion 16 and the third wick structure 33 from the gap space between the first wick structure 31 and the second wick structure 32. It is a space. That is, the steam space S is a space other than the first wick structure 31, the second wick structure 32, the third wick structure 33, and the first pillar portion 16 in the internal space 10a.
  • V1 the volume of the steam space S
  • V2 the total volume
  • the total volume is the total volume of each of the first wick structure 31, the second wick structure 32, and the third wick structure 33. That is, in the present embodiment, the total volume further includes the volume of the third wick structure 33 in the total volume of the first wick structure 31 and the second wick structure 32. It was
  • the total volume is calculated by summing the volumes of the first wick structure 31 and the second wick structure 32. It was
  • the arrangement of the first pillar portion 16 causes the steam space S to become narrower, and even when such a first pillar portion 16 is provided, the above equation ( By satisfying 5), the diffusion of vapor can be promoted. It was
  • the volume of the steam space S is larger than the sum of the volumes of the first wick structure 31, the second wick structure 32, and the third wick structure 33. Can promote diffusion. It was
  • the first pillar portion 16 and the third wick structure 33 preferably have the following configurations.
  • the total joint area where the upper surface of the first pillar portion 16 and the lower surface of the first metal plate 11 are joined is the joint area where the upper surface of the third wick structure 33 and the lower surface of the first wick structure 31 are joined. Is larger than the sum of. Further, the total joint area where the lower surface of the first pillar portion 16 and the upper surface of the second metal plate 12 are joined is such that the lower surface of the third wick structure 33 and the upper surface of the second wick structure 32 are joined. It is larger than the total joint area.
  • the total joint area is the total number of joint areas of one first pillar portion 16 or the third wick structure 33.
  • the third wick structure 33 penetrates the first wick structure 31 and is joined to the first metal plate 11 and also penetrates the second wick structure 32. It may be joined to the second metal plate 12.
  • the total joint area where the upper surface of the first pillar portion 16 and the lower surface of the first metal plate 11 are joined is the upper surface of the third wick structure 33 and the lower surface of the first metal plate 11. Is larger than the total joint area to which is joined.
  • the total joint area where the lower surface of the first pillar portion 16 and the upper surface of the second metal plate 12 are joined is the joint where the lower surface of the third wick structure 33 and the upper surface of the second metal plate 12 are joined. It is larger than the total area. It was
  • the total contact area of the one-sided end of the first pillar 16 in contact with the first metal plate 11 is such that the one-sided end of the third wick structure 33 is the first wick structure 31 or the first metal plate 11.
  • the total contact area that is wider than the total contact area in contact with the second metal plate 12 and that the other side end portion of the first pillar portion 16 is in contact with the second metal plate 12 is such that the other side end portion of the third wick structure 33 is second. It is wider than the total contact area in contact with the wick structure 32 or the second metal plate 12. It was
  • the strength of the solid first pillar portion 16 is higher than the strength of the third wick structure 33. Therefore, due to the magnitude relationship of the contact area as described above, the strength of the housing 10 can be sufficiently secured by the first pillar portion 16 even in the configuration using the third wick structure 33. It was
  • the first wick structure 31 may be made of a mesh material, and the second wick structure 32 may be made of a porous sintered body. Alternatively, at least one of the first pillar portion 16 and the third wick structure 33 may not be provided. It was
  • the pillar portion 15 is a mixture of the first pillar portion 16 and the third wick structure 33, but the pillar portion 15 may be all the first pillar portion 16 and all may be the third wick structure 33. But it may be. It was
  • the present disclosure can be used for cooling various heating elements.
  • Heat conductive member 10 Housing 10a Internal space 11 1st metal plate 12 2nd metal plate 13a 1st side wall 13b 2nd side wall 14 Joint part 15 Pillar part 16 1st pillar part 20 31a Convex part 32 Second wick structure 33 Second pillar part, third wick structure H Heater S Steam space U1 First area U2 Second area

Abstract

This heat conduction member is provided with: a housing having an internal space; a first wick structure; a second wick structure; a working medium; and a column portion. The housing includes a first metal plate and a second metal plate. The second metal plate is disposed opposite the first metal plate and has an outer surface with a heating element disposed thereon. The column portion is disposed between the first metal plate and the second metal plate. The working medium, the first wick structure, and the second wick structure are housed in the internal space. The first wick structure is disposed on an inner surface of the first metal plate. The second wick structure is disposed on an inner surface of the second metal plate. The first wick structure includes a protrusion vertically protruding from the inner surface. At least a part of the protrusion is positioned in a first region overlapping the heating element vertically to the first metal plate and the second metal plate.

Description

熱伝導部材Heat conduction member
本開示は、熱伝導部材に関する。 The present disclosure relates to heat conductive members.
従来の熱伝導部材は、平板状密閉容器と、多孔質シートと、作動流体と、を有する。多孔質シートは、平板状密閉容器の内面に配置される。作動流体は、平板状密閉容器の内部に収容される。  The conventional heat conductive member has a flat plate-shaped closed container, a porous sheet, and a working fluid. The porous sheet is arranged on the inner surface of the flat plate-shaped closed container. The working fluid is housed inside a flat plate-shaped closed container. It was
平板状密閉容器は、発熱体と接触して配置される。発熱体側の平板状密閉容器内面と、発熱体側と反対側である放熱面側の平板状密閉容器内面には、多孔質シートが、配置される。作動流体は、発熱体によって加熱されて発熱側の多孔質シートから気化する。気化した作動流体は、放熱面側の多孔質シートにおいて凝縮する。これにより、発熱体側から放熱面側に熱が輸送される(例えば、特許文献1参照)。 The flat plate-shaped closed container is arranged in contact with the heating element. Porous sheets are arranged on the inner surface of the flat plate-shaped closed container on the heating element side and the inner surface of the flat plate-shaped closed container on the heat radiation surface side opposite to the heating element side. The working fluid is heated by the heating element and vaporized from the porous sheet on the heat generating side. The vaporized working fluid condenses on the porous sheet on the heat dissipation surface side. As a result, heat is transported from the heating element side to the heat radiating surface side (see, for example, Patent Document 1).
日本国公開公報:特開2002-62072号公報Japanese Publication: Japanese Patent Application Laid-Open No. 2002-62072
しかしながら、上記のような熱伝導部材は、発熱体付近の作動流体の凝縮が起こりにくく、熱輸送効率が低い問題があった。  However, the heat conductive member as described above has a problem that the working fluid in the vicinity of the heating element is less likely to condense and the heat transport efficiency is low. It was
本開示は、熱輸送効率を向上できる熱伝導部材を提供することを目的とする。 It is an object of the present disclosure to provide a heat conductive member capable of improving heat transport efficiency.
本開示の例示的な熱伝導部材は、内部空間を有する筐体と、第1ウィック構造体と、第2ウィック構造体と、作動媒体と、柱部と、を備える。筐体は、第1金属板と、第2金属板と、を有する。第2金属板は、第1金属板に対向して配置されるとともに外面に発熱体が配置される。柱部は、第1金属板及び前記第2金属板の間に配置される。作動媒体と、第1ウィック構造体と、第2ウィック構造体と、は、内部空間に収容される。第1ウィック構造体は、第1金属板の内面に配置される。第2ウィック構造体は、第2金属板の内面に配置される。第1ウィック構造体は、内面から鉛直方向に突出する凸部を有し、凸部の少なくとも一部が、第1金属板及び第2金属板の鉛直方向に発熱体と重なる第1領域に位置する、熱伝導部材。 The exemplary heat conductive member of the present disclosure includes a housing having an internal space, a first wick structure, a second wick structure, an actuating medium, and a pillar portion. The housing has a first metal plate and a second metal plate. The second metal plate is arranged so as to face the first metal plate, and a heating element is arranged on the outer surface. The pillar portion is arranged between the first metal plate and the second metal plate. The working medium, the first wick structure, and the second wick structure are housed in the internal space. The first wick structure is arranged on the inner surface of the first metal plate. The second wick structure is arranged on the inner surface of the second metal plate. The first wick structure has a convex portion protruding vertically from the inner surface, and at least a part of the convex portion is located in the first region where the first metal plate and the second metal plate vertically overlap with the heating element. A heat conductive member.
本開示によると、発熱体付近の作動流体の凝縮が起こりやすくなり、熱輸送効率を向上できる熱伝導部材を提供することができる。 According to the present disclosure, it is possible to provide a heat conductive member capable of improving heat transport efficiency by easily causing condensation of a working fluid in the vicinity of a heating element.
図1は、本実施形態に係る熱伝導部材の斜視図である。FIG. 1 is a perspective view of a heat conductive member according to the present embodiment. 図2は、本実施形態に係る熱伝導部材の模式的な側面断面図である。FIG. 2 is a schematic side sectional view of the heat conductive member according to the present embodiment. 図3は、本実施形態の変形例に係る熱伝導部材の模式的な側面断面図である。FIG. 3 is a schematic side sectional view of the heat conductive member according to the modified example of the present embodiment.
以下、本開示の例示的な実施形態について、図面を参照しつつ説明する。なお、図面においては、適宜、3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。Z軸方向は、後述する第1金属板11と第2金属板12との鉛直方向でもある。X軸方向は、Z軸方向と直交する方向を指し、その一方向および逆方向を、それぞれ+X方向および-X方向とする。Y軸方向は、Z軸方向およびX軸方向の両方向と直交する方向を指し、その一方向および逆方向を、それぞれ+Y方向および-Y方向とする。ただし、これは、あくまで説明の便宜のために方向を定義したものであって、本開示に係る熱伝導部材1の製造時および使用時の向きを限定するものではない。また、本願において平行、と表現する場合、数学的に厳密に平行である場合のみを指すものではなく、例えば本開示における効果を奏する程度に平行である場合を含む。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. In the drawings, the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction indicates a vertical direction (that is, a vertical direction), the + Z direction is the upper side (opposite the gravity direction), and the −Z direction is the lower side (gravity direction). The Z-axis direction is also the vertical direction between the first metal plate 11 and the second metal plate 12, which will be described later. The X-axis direction refers to a direction orthogonal to the Z-axis direction, and one direction and the opposite direction thereof are the + X direction and the −X direction, respectively. The Y-axis direction refers to a direction orthogonal to both the Z-axis direction and the X-axis direction, and one direction and the opposite direction thereof are the + Y direction and the −Y direction, respectively. However, this is for convenience of explanation only, and does not limit the orientation of the heat conductive member 1 according to the present disclosure at the time of manufacture and use. Further, when the term "parallel" is used in the present application, it does not mean only the case where it is mathematically strictly parallel, but also includes the case where it is parallel to the extent that the effect in the present disclosure is exhibited, for example.
また、本明細書において、「焼結」とは、金属の粉末または金属の粉体を、金属の融点よりも低い温度まで加熱して、金属の粒子を焼き固める技術を指す。また、「焼結体」とは、焼結によって得られる物体を指す。  Further, in the present specification, "sintering" refers to a technique of heating a metal powder or a metal powder to a temperature lower than the melting point of the metal to bake and harden the metal particles. Further, the "sintered body" refers to an object obtained by sintering. It was
<1.熱伝導部材の構成>



図1は、本開示の例示的な実施形態に係る(以下、本実施形態という)熱伝導部材1の斜視図であり、図2は、熱伝導部材1の模式的な側面断面図である。なお、図2は、図1の一点鎖線A-Aに沿う断面図である。熱伝導部材1は、ベーパーチャンバーとも呼ばれ、発熱体Hの熱を輸送する。発熱体Hとしては、例えば、車両の車輪を駆動するためのトラクションモータに備えられるインバータのパワートランジスタが挙げられる。当該パワートランジスタは、例えばIGBT(Insulated Gate Bipolar Transistor)である。この場合、熱伝導部材1は、トラクションモータに搭載される。IGBTの発熱量は、一般的に100W以上である。 
<1. Structure of heat conductive member>



FIG. 1 is a perspective view of a heat conductive member 1 according to an exemplary embodiment of the present disclosure (hereinafter referred to as the present embodiment), and FIG. 2 is a schematic side sectional view of the heat conductive member 1. Note that FIG. 2 is a cross-sectional view taken along the alternate long and short dash line AA of FIG. The heat conductive member 1 is also called a vapor chamber and transports the heat of the heating element H. Examples of the heating element H include a power transistor of an inverter provided in a traction motor for driving a wheel of a vehicle. The power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor). In this case, the heat conductive member 1 is mounted on the traction motor. The calorific value of the IGBT is generally 100 W or more.
熱伝導部材1の下面には、発熱体Hが接して配置される。発熱体Hにより発生した熱は、熱伝導部材1の上面より放熱される。なお、放熱性を向上させるために、熱伝導部材1の上面にスタックドフィンやピンフィンなどの放熱フィンを設けてもよい。その場合、放熱フィン間に冷却媒体を流す。冷却媒体は、例えば水や油であってもよいし、空気でもよい。  A heating element H is arranged in contact with the lower surface of the heat conductive member 1. The heat generated by the heating element H is dissipated from the upper surface of the heat conductive member 1. In order to improve heat dissipation, heat dissipation fins such as stacked fins and pin fins may be provided on the upper surface of the heat conductive member 1. In that case, a cooling medium is passed between the heat radiation fins. The cooling medium may be, for example, water, oil, or air. It was
なお、図1および図2で示す構成では、一例として、矩形体状の熱伝導部材1の下面中央部に、1つの発熱体Hが配置される。ただし、発熱体Hを熱伝導部材1の下面縁部に配置してもよい。また、複数の発熱体Hを熱伝導部材1の下面に配置してもよい。  In the configuration shown in FIGS. 1 and 2, as an example, one heating element H is arranged at the center of the lower surface of the rectangular heat conductive member 1. However, the heating element H may be arranged on the lower surface edge portion of the heat conductive member 1. Further, a plurality of heating elements H may be arranged on the lower surface of the heat conductive member 1. It was
熱伝導部材1は、筐体10と、作動媒体20と、柱部15と、第1ウィック構造体31と、第2ウィック構造体32と、第3ウィック構造体33と、を備える。柱部15は、第1柱部16と、第2柱部33の少なくともいずれか一方、を備える。熱伝導部材1のZ方向の厚みは、例えば5mm以上である。  The heat conductive member 1 includes a housing 10, an actuating medium 20, a pillar portion 15, a first wick structure 31, a second wick structure 32, and a third wick structure 33. The pillar portion 15 includes at least one of the first pillar portion 16 and the second pillar portion 33. The thickness of the heat conductive member 1 in the Z direction is, for example, 5 mm or more. It was
<1-1.筐体の構成>



筐体10は、内部空間10aを有する。柱部15と、作動媒体20と、第1ウィック構造体31と、第2ウィック構造体32と、は内部空間10aに配置される。筐体10は、第1金属板11と、第1金属板11に対向して配置されるとともに外面に発熱体Hが配置される第2金属板12とを有する。柱部15は第1金属板11と第2金属板12の間に配置される。柱部15は、内部空間10aに配置され、第1金属板11及び第2金属板12を支持する。第1金属板11及び第2金属板12として、例えば、銅等の熱伝導性の高い金属を用いている。また、銅以外の金属の表面に銅メッキを施して形成されてもよい。銅以外の金属としては、例えばステンレス鋼が考えられる。
<1-1. Housing configuration>



The housing 10 has an internal space 10a. The pillar portion 15, the working medium 20, the first wick structure 31, and the second wick structure 32 are arranged in the internal space 10a. The housing 10 has a first metal plate 11 and a second metal plate 12 which is arranged so as to face the first metal plate 11 and in which a heating element H is arranged on an outer surface. The pillar portion 15 is arranged between the first metal plate 11 and the second metal plate 12. The pillar portion 15 is arranged in the internal space 10a and supports the first metal plate 11 and the second metal plate 12. As the first metal plate 11 and the second metal plate 12, for example, a metal having high thermal conductivity such as copper is used. Further, it may be formed by plating the surface of a metal other than copper with copper. As the metal other than copper, for example, stainless steel can be considered.
第1金属板11及び第2金属板12は、例えば、銅等の熱伝導性の高い金属から成る。また、銅以外の金属の表面に銅メッキを施して形成されてもよい。銅以外の金属としては、例えばステンレス鋼が考えられる。  The first metal plate 11 and the second metal plate 12 are made of a metal having high thermal conductivity such as copper. Further, it may be formed by plating the surface of a metal other than copper with copper. As the metal other than copper, for example, stainless steel can be considered. It was
第1金属板11及び第2金属板12は、上面視において水平方向に拡がる矩形の板状である。第2金属板12の外面に発熱体Hが接触して配置される。第1金属板11は、第2金属板12の上面を覆う。なお、本実施形態の第1金属板11及び第2金属板12は、上面視において四角形であるがこの限りではない。例えば、上面視において複数の角を有する多角形、または円形であってもよい。  The first metal plate 11 and the second metal plate 12 have a rectangular plate shape that extends in the horizontal direction when viewed from above. The heating element H is arranged in contact with the outer surface of the second metal plate 12. The first metal plate 11 covers the upper surface of the second metal plate 12. The first metal plate 11 and the second metal plate 12 of the present embodiment are rectangular in top view, but the present invention is not limited to this. For example, it may be a polygon or a circle having a plurality of corners in a top view. It was
第1金属板11は、周縁から下方に延びる第1側壁部13aを有する。第2金属板12は、周縁から上方に延びる第2側壁部13bを有する。第1側壁部13aの下面と第2側壁部13bの上面とが接合部14で接合される。なお、第2側壁部13bを省いて、第1側壁部13aの下面と第2金属板12の上面とを接合してもよい。または、第1側壁部13aを省いて、第2側壁部13bの上面と第1金属板11の下面とを接合してもよい。  The first metal plate 11 has a first side wall portion 13a extending downward from the peripheral edge. The second metal plate 12 has a second side wall portion 13b extending upward from the peripheral edge. The lower surface of the first side wall portion 13a and the upper surface of the second side wall portion 13b are joined at the joint portion 14. The lower surface of the first side wall portion 13a and the upper surface of the second metal plate 12 may be joined by omitting the second side wall portion 13b. Alternatively, the upper surface of the second side wall portion 13b and the lower surface of the first metal plate 11 may be joined by omitting the first side wall portion 13a. It was
内部空間10aは、第1金属板11及び第2金属板12で囲まれて形成される。内部空間10aは、密閉空間であり、例えば大気圧よりも気圧が低い減圧状態に維持される。内部空間10aが減圧状態であることにより、内部空間10aに収容される作動媒体20が蒸発しやすくなる。作動媒体20は、例えば水であるが、アルコールなどの他の液体であってもよい。  The internal space 10a is formed by being surrounded by the first metal plate 11 and the second metal plate 12. The internal space 10a is a closed space, and is maintained in a decompressed state where the atmospheric pressure is lower than the atmospheric pressure, for example. When the internal space 10a is in a decompressed state, the working medium 20 housed in the internal space 10a is likely to evaporate. The working medium 20 is, for example, water, but may be another liquid such as alcohol. It was
接合部14は、上方視において、第1ウィック構造体31及び第2ウィック構造体32の周囲に位置する。第1側壁部13aと第2側壁部13bとの接合方法は、特に限定されない。例えば、熱と圧力を加えて接合する方法、拡散接合、ろう材を用いた接合、などのいずれの接合方法であってもよい。  The joint portion 14 is located around the first wick structure 31 and the second wick structure 32 in the upward view. The method of joining the first side wall portion 13a and the second side wall portion 13b is not particularly limited. For example, any joining method such as a method of joining by applying heat and pressure, a diffusion joining, or a joining using a brazing material may be used. It was
なお、接合部14は、封止部を含んでいてもよい。封止部は、例えば、熱伝導部材1の製造過程において、作動媒体20を筐体10内に注入するための注入口を溶接によって封止した箇所である。  The joint portion 14 may include a sealing portion. The sealing portion is, for example, a portion where an injection port for injecting the working medium 20 into the housing 10 is sealed by welding in the manufacturing process of the heat conductive member 1. It was
本実施形態において、柱部15は、第1金属板11及び第2金属板12とは別部材であり、内部空間10aにおいて、第1金属板11および第2金属板12の間に配置され、第1金属板11及び第2金属板12を支持する部材である。柱部15は、例えば、上方視において円形の円柱形状を有する。柱部15は、XY面内において2次元的に、かつ、規則的に並んで位置する。Z軸方向において柱部15が、直接または間接的に第1金属板11及び第2金属板12を支持することにより、筐体10のZ軸方向の厚みが一定に保たれる。これにより、筐体10のZ軸方向の変形によって内部空間10aが、狭くなることを抑制できる。  In the present embodiment, the pillar portion 15 is a separate member from the first metal plate 11 and the second metal plate 12, and is arranged between the first metal plate 11 and the second metal plate 12 in the internal space 10a. It is a member that supports the first metal plate 11 and the second metal plate 12. The pillar portion 15 has, for example, a circular cylindrical shape when viewed upward. The pillar portions 15 are two-dimensionally and regularly arranged side by side in the XY plane. By the pillar portion 15 directly or indirectly supporting the first metal plate 11 and the second metal plate 12 in the Z-axis direction, the thickness of the housing 10 in the Z-axis direction is kept constant. As a result, it is possible to prevent the internal space 10a from becoming narrow due to the deformation of the housing 10 in the Z-axis direction. It was
本実施形態において、柱部15の少なくとも一部に、中実な部材である第1柱部16を有する。第1柱部16は、内部空間10aにおいて、第1金属板11および第2金属板12の間に配置され、第1金属板11及び第2金属板12を支持する。これにより、筐体10のZ軸方向の変形が抑制され、内部空間10aが狭くなることを抑制できる。なお、「中実」な部材は、いわゆるソリッドな部材であることを意味し、中身が密に詰まっており、且つ多孔質でない物体で構成された部材を指す。例えば、「中実」な部材は、内部に空洞がない部材で合ってもよいし、単数又は複数の巨視的な空洞を内部に有する部材であってもよい。なお中実な部材として、例えば、銅等の熱伝導性の高い金属が用いられている。  In the present embodiment, at least a part of the pillar portion 15 has a first pillar portion 16 which is a solid member. The first pillar portion 16 is arranged between the first metal plate 11 and the second metal plate 12 in the internal space 10a, and supports the first metal plate 11 and the second metal plate 12. As a result, deformation of the housing 10 in the Z-axis direction can be suppressed, and the internal space 10a can be suppressed from becoming narrow. The "solid" member means a so-called solid member, and refers to a member whose contents are tightly packed and which is composed of a non-porous object. For example, the "solid" member may be a member that does not have a cavity inside, or may be a member that has one or more macroscopic cavities inside. As a solid member, for example, a metal having high thermal conductivity such as copper is used. It was
本実施形態において、柱部15の少なくとも一部に多孔質の焼結体である第2柱部33を有する。ここで第2の柱部33は第3ウィック構造体33である。第3ウィック構造体33は内部空間10aにおいて、第1ウィック構造体31及び第2ウィック構造体32の間に配置され、第1ウィック構造体31及び第2ウィック構造体32を支持する。第3ウィック構造体33は、第1ウィック構造体31及び第2ウィック構造体32を介して第1金属板11及び第2金属板12を支持する。これにより筐体10のZ軸方向の変形をより抑制でき、内部空間10aが狭くなることを抑制できる。  In the present embodiment, at least a part of the pillar portion 15 has a second pillar portion 33 which is a porous sintered body. Here, the second pillar portion 33 is the third wick structure 33. The third wick structure 33 is arranged between the first wick structure 31 and the second wick structure 32 in the internal space 10a, and supports the first wick structure 31 and the second wick structure 32. The third wick structure 33 supports the first metal plate 11 and the second metal plate 12 via the first wick structure 31 and the second wick structure 32. As a result, deformation of the housing 10 in the Z-axis direction can be further suppressed, and narrowing of the internal space 10a can be suppressed. It was
すなわち、本実施形態において、柱部15は中実な部材である第1柱部16と、多孔質の焼結体である第2柱部33とをそれぞれ有する。前述の通り第2柱部33とは、第3ウィック構造体33である。以後、第2柱部33は第3ウィック構造体33として説明する。第3ウィック構造体33は、隣り合う第1の柱部16の中間に配置されることが好ましい。  That is, in the present embodiment, the pillar portion 15 has a first pillar portion 16 which is a solid member and a second pillar portion 33 which is a porous sintered body. As described above, the second pillar portion 33 is the third wick structure 33. Hereinafter, the second pillar portion 33 will be described as the third wick structure 33. The third wick structure 33 is preferably arranged in the middle of the adjacent first pillar portions 16. It was
柱部15のうち、中実な部材である第1柱部16は、Z軸方向に延び、第1柱部16の上端部及び下端部は、第1金属板11の下面及び第2金属板12の上面にそれぞれろう材を用いて接合される。なお、第1柱部16は、ろう材による接合以外に溶接などにより第1金属板11及び第2金属板12と接合されてもよい。なお、第1柱部16は、第1金属板11及び第2金属板12の一方と一体であってもよい。このとき、第1柱部16は、第1金属板11又は第2金属板12をエッチング又は切削して形成することができる。  Of the pillars 15, the first pillar 16, which is a solid member, extends in the Z-axis direction, and the upper and lower ends of the first pillar 16 are the lower surface of the first metal plate 11 and the second metal plate. Each of the upper surfaces of 12 is joined using a brazing material. The first pillar portion 16 may be joined to the first metal plate 11 and the second metal plate 12 by welding or the like, in addition to joining with a brazing material. The first pillar portion 16 may be integrated with one of the first metal plate 11 and the second metal plate 12. At this time, the first pillar portion 16 can be formed by etching or cutting the first metal plate 11 or the second metal plate 12. It was
<1-2.第1ウィック構造体、第2ウィック構造体、第3ウィック構造体の構成>



第1ウィック構造体31、第2ウィック構造体32及び第3ウィック構造体33は、多孔質であり、作動媒体20の流路を形成する空隙部(不図示)を有する。 
<1-2. Configuration of 1st wick structure, 2nd wick structure, 3rd wick structure>



The first wick structure 31, the second wick structure 32, and the third wick structure 33 are porous and have a gap portion (not shown) forming a flow path of the working medium 20.
第1ウィック構造体31は、第1金属板11の内面に配置される板状の部材であり、発熱体H側と反対側の冷却側に配置される。第2ウィック構造体32は、第2金属板12の内面に配置される板状の部材であり、発熱体H側に配置される。第1ウィック構造体31と第2ウィック構造体32とは対向して配置される。第1ウィック構造体31と第2ウィック構造体32との間には、蒸気空間Sが形成される。蒸気空間Sは、作動媒体20の蒸気を拡散させるための空間である。  The first wick structure 31 is a plate-shaped member arranged on the inner surface of the first metal plate 11, and is arranged on the cooling side opposite to the heating element H side. The second wick structure 32 is a plate-shaped member arranged on the inner surface of the second metal plate 12, and is arranged on the heating element H side. The first wick structure 31 and the second wick structure 32 are arranged so as to face each other. A vapor space S is formed between the first wick structure 31 and the second wick structure 32. The steam space S is a space for diffusing the steam of the working medium 20. It was
第3ウィック構造体33は、内部空間10a内に配置され、第1ウィック構造体31と第2ウィック構造体32とを連結する。第3ウィック構造体33は、Z軸方向に延び、例えば、上方視において円形の円柱で構成される。また、第3ウィック構造体33は、XY面内において2次元的に、かつ、規則的に並んで位置する。第3ウィック構造体33は、隣り合う第1柱部16の中間に配置されることが好ましい。  The third wick structure 33 is arranged in the internal space 10a, and connects the first wick structure 31 and the second wick structure 32. The third wick structure 33 extends in the Z-axis direction and is composed of, for example, a circular cylinder in upward view. Further, the third wick structure 33 is two-dimensionally and regularly arranged side by side in the XY plane. The third wick structure 33 is preferably arranged in the middle of the adjacent first pillar portions 16. It was
第3ウィック構造体33は、第1ウィック構造体31及び第2ウィック構造体32を介して第1金属板11及び第2金属板12を支持する。これにより、第3ウィック構造体33が、第1柱部16を補強して筐体10のZ軸方向の変形をより抑制できる。  The third wick structure 33 supports the first metal plate 11 and the second metal plate 12 via the first wick structure 31 and the second wick structure 32. As a result, the third wick structure 33 can reinforce the first pillar portion 16 and further suppress the deformation of the housing 10 in the Z-axis direction. It was
また、第1ウィック構造体31と、第2ウィック構造体32と、第3ウィック構造体33と、は、それぞれ多孔質の焼結体であり、一体である。第1ウィック構造体31、第2ウィック構造体32及び第3ウィック構造体33を多孔質の焼結体とすることにより、メッシュ材よりも容易に製造可能であり、熱伝導部材1の製造コストを下げることができる。また、第3ウィック構造体33を設けることにより、第1ウィック構造体31から第2ウィック構造体32への作動媒体20の流路を増やすことができる。  Further, the first wick structure 31, the second wick structure 32, and the third wick structure 33 are porous sintered bodies, respectively, and are integrated with each other. By using the first wick structure 31, the second wick structure 32, and the third wick structure 33 as porous sintered bodies, it is possible to manufacture the first wick structure 31, the second wick structure 32, and the third wick structure 33 more easily than the mesh material, and the manufacturing cost of the heat conductive member 1 is high. Can be lowered. Further, by providing the third wick structure 33, the flow path of the operating medium 20 from the first wick structure 31 to the second wick structure 32 can be increased. It was
ここで、発熱体Hとは反対側の放熱面側に配置される第1ウィック構造体31で、発熱体H側の第2ウィック構造体32から気化した作動媒体20が凝縮される。つまり、第1ウィック構造体31により、作動媒体20の凝縮をより促進することができる。言い換えれば、発熱体Hとは反対側の放熱面側に配置される第1ウィック構造体31は、第2ウィック構造体32よりも気化した作動媒体20の凝縮が、促進される。このため、第1ウィック構造体31は、第2ウィック構造体32と比べて作動媒体20の冷却効率が高いことが好ましい。  Here, in the first wick structure 31 arranged on the heat dissipation surface side opposite to the heating element H, the working medium 20 vaporized from the second wick structure 32 on the heating element H side is condensed. That is, the first wick structure 31 can further promote the condensation of the working medium 20. In other words, the first wick structure 31 arranged on the heat radiation surface side opposite to the heating element H promotes the condensation of the vaporized working medium 20 as compared with the second wick structure 32. Therefore, it is preferable that the first wick structure 31 has a higher cooling efficiency of the working medium 20 than the second wick structure 32. It was
また、第1ウィック構造体31は、内面から鉛直方向に突出する凸部31aを有し、凸部31aの少なくとも一部が、第1金属板11及び第2金属板12の鉛直方向に発熱体Hと重なる第1領域U1に位置する。  Further, the first wick structure 31 has a convex portion 31a projecting vertically from the inner surface, and at least a part of the convex portion 31a is a heating element in the vertical direction of the first metal plate 11 and the second metal plate 12. It is located in the first region U1 that overlaps with H. It was
このとき、凸部31aにおける第1ウィック構造体31の厚みW1aが、凸部31a以外の領域における第1ウィック構造体31の厚みW1bよりも大きく形成される。第1ウィック構造体31の厚みを大きくすることにより、発熱体HとZ方向(第1金属板11及び第2金属板12の対向方向)に重なる第1領域U1の少なくとも一部において、作動流体20の凝縮が促進される。これにより、作動媒体20による熱輸送効率を向上できる。  At this time, the thickness W1a of the first wick structure 31 in the convex portion 31a is formed to be larger than the thickness W1b of the first wick structure 31 in the region other than the convex portion 31a. By increasing the thickness of the first wick structure 31, the working fluid is formed in at least a part of the first region U1 that overlaps the heating element H in the Z direction (opposite direction of the first metal plate 11 and the second metal plate 12). 20 condensation is promoted. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
通常、作業媒体20の凝縮は、発熱体HとZ方向に対向する第1領域U1で最も促進される。ここで、凸部31aを設けることにより、第1領域U1における作動媒体20の凝縮を促進できる。従って、発熱体HとZ方向に対向する第1領域U1において、第1ウィック構造体31に保持された作動媒体20を凝縮し、作動媒体20の凝縮により発生する熱を、第1金属板11全体で放熱面側に効率よく放熱できる。これにより、作動媒体20による熱輸送効率を向上できる。  Normally, the condensation of the working medium 20 is most promoted in the first region U1 facing the heating element H in the Z direction. Here, by providing the convex portion 31a, the condensation of the working medium 20 in the first region U1 can be promoted. Therefore, in the first region U1 facing the heating element H in the Z direction, the working medium 20 held in the first wick structure 31 is condensed, and the heat generated by the condensation of the working medium 20 is transferred to the first metal plate 11. Efficient heat can be dissipated to the heat dissipation surface side as a whole. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
なお、本実施形態では、凸部31aの上面が第1金属板11と平行な面に形成されるが、山型に形成されてもよい。すなわち、凸部31aにおける第1ウィック構造体31の厚みW1aが、第1領域U1内の所定位置に向かって漸次大きく形成される。これにより、第1領域U1内の所定位置において、凝縮しやすくなる。  In the present embodiment, the upper surface of the convex portion 31a is formed on a surface parallel to the first metal plate 11, but it may be formed in a mountain shape. That is, the thickness W1a of the first wick structure 31 in the convex portion 31a is gradually formed to be larger toward a predetermined position in the first region U1. This facilitates condensation at a predetermined position in the first region U1. It was
また、凸部31a全体が、第1領域U1とZ方向に重ならなくてもよい。この場合、凸部31aの端部が、第2領域U2とZ方向に重なってもよい。  Further, the entire convex portion 31a does not have to overlap with the first region U1 in the Z direction. In this case, the end portion of the convex portion 31a may overlap with the second region U2 in the Z direction. It was
第1ウィック構造体31の凸部31aは、平面視において第1領域U1より大きい面積を有し、凸部31aは、鉛直方向において、第1領域U1の全域と重なる。第1領域U1の全域において、第1ウィック構造体31の厚みを大きくすることにより、作動流体20の凝縮が促進される。これにより、作動媒体20による熱輸送効率を向上できる。  The convex portion 31a of the first wick structure 31 has an area larger than that of the first region U1 in a plan view, and the convex portion 31a overlaps the entire area of the first region U1 in the vertical direction. By increasing the thickness of the first wick structure 31 in the entire area of the first region U1, the condensation of the working fluid 20 is promoted. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
また、第1領域U1の凸部31aにおける第1ウィック構造体31の厚みW1aは、第2ウィック構造体32の厚みW2よりもZ方向に大きい。発熱体Hとは反対側の放熱面側に配置される第1ウィック構造体31で、発熱体H側の第2ウィック構造体32から気化した作動媒体20が凝縮される。つまり、第1領域U1の凸部31aにおける第1ウィック構造体31の厚みW1aを、第2ウィック構造体32の厚みW2よりもZ方向に大きくすることにより第1ウィック構造体31の作動媒体20の凝縮をより促進することができる。なお、第1ウィック構造体31の平均厚さは、第2ウィック構造体32の平均厚さより大きいことが好ましい。これによりさらに第1ウィック構造体31の作業媒体の保持性を高めることができる。  Further, the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 is larger in the Z direction than the thickness W2 of the second wick structure 32. In the first wick structure 31 arranged on the heat radiation surface side opposite to the heating element H, the working medium 20 vaporized from the second wick structure 32 on the heating element H side is condensed. That is, by making the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 larger in the Z direction than the thickness W2 of the second wick structure 32, the working medium 20 of the first wick structure 31 Condensation can be further promoted. The average thickness of the first wick structure 31 is preferably larger than the average thickness of the second wick structure 32. As a result, the holding property of the working medium of the first wick structure 31 can be further improved. It was
また、Z方向(第1金属板11及び第2金属板12の鉛直方向)において、第1領域U1の凸部31aにおける第1ウィック構造体31の厚みW1aと、第2ウィック構造体32の厚みW2と、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3と、は、式(1)を満たすことが好ましい。  Further, in the Z direction (vertical direction of the first metal plate 11 and the second metal plate 12), the thickness W1a of the first wick structure 31 and the thickness of the second wick structure 32 in the convex portion 31a of the first region U1. It is preferable that the length W3 of the gap between W2 and the first wick structure 31 and the second wick structure 32 satisfies the formula (1). It was
W3>W2+W1a ・・・(1)  W3> W2 + W1a ... (1)
内部空間10aにおいて、第1ウィック構造体31と第2ウィック構造体32とのZ方向の隙間を大きく設けることにより、第2ウィック構造体32から気化した作動媒体20が、内部空間10a内でXY面内に拡散し易くなる。これにより、第1ウィック構造体31における作動媒体20の凝縮が促進される。なお、第1領域U1の凸部31aにおける第1ウィック構造体31の厚みW1aの代わりに、第2領域U2における第1ウィック構造体31の厚みW1bを式(1)に当てはめても同様の効果が得られる。  By providing a large gap in the Z direction between the first wick structure 31 and the second wick structure 32 in the internal space 10a, the working medium 20 vaporized from the second wick structure 32 is XY in the internal space 10a. It becomes easy to diffuse in the plane. This promotes the condensation of the working medium 20 in the first wick structure 31. The same effect can be obtained by applying the thickness W1b of the first wick structure 31 in the second region U2 to the equation (1) instead of the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1. Is obtained. It was
さらに、第1領域U1において、Z方向(第1金属板11及び第2金属板12の鉛直方向)の凸部31aにおける第1ウィック構造体31の厚みW1aと、第2ウィック構造体32の厚みW2と、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3とは、式(2)から式(4)を満たすことがより好ましい。  Further, in the first region U1, the thickness W1a of the first wick structure 31 and the thickness of the second wick structure 32 in the convex portion 31a in the Z direction (vertical direction of the first metal plate 11 and the second metal plate 12). It is more preferable that the length W3 of the gap between W2 and the first wick structure 31 and the second wick structure 32 satisfies the formulas (2) to (4). It was
4W2≧W1a≧2W2 ・・・(2)

7W2≧W3≧5W2 ・・・(3)

W3+W1a=9W2 ・・・(4) 
4W2 ≧ W1a ≧ 2W2 ・ ・ ・ (2)

7W2 ≧ W3 ≧ 5 W2 ・ ・ ・ (3)

W3 + W1a = 9W2 ... (4)
すなわち、第1領域U1の凸部31aにおける第1ウィック構造体31の厚みW1aを第1領域U1における第2ウィック構造体32の厚みW2の2倍以上4倍以下とし、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3を第1領域U1における第2ウィック構造体32の厚みW2の5倍以上7倍以下とすることが好ましい。これにより、第1ウィック構造体31における作動媒体20の凝縮をより促進することができる。なお、第1領域U1の凸部31aにおける第1ウィック構造体31の厚みW1aの代わりに、第2領域U2における第1ウィック構造体31の厚みW1bを式(2)から(4)に当てはめても同様の効果が得られる。  That is, the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1 is set to be twice or more and four times or less the thickness W2 of the second wick structure 32 in the first region U1, and the first wick structure 31 is set. It is preferable that the length W3 of the gap between the wick structure 32 and the second wick structure 32 is 5 times or more and 7 times or less the thickness W2 of the second wick structure 32 in the first region U1. Thereby, the condensation of the working medium 20 in the first wick structure 31 can be further promoted. Instead of the thickness W1a of the first wick structure 31 in the convex portion 31a of the first region U1, the thickness W1b of the first wick structure 31 in the second region U2 is applied to the equations (2) to (4). Has the same effect. It was
また、第2ウィック構造体32は、第1ウィック構造体31よりも空隙率が高い。これにより、第2ウィック構造体32の毛細管力が、第1ウィック構造体31の毛細管力よりも大きくなる。  Further, the second wick structure 32 has a higher porosity than the first wick structure 31. As a result, the capillary force of the second wick structure 32 becomes larger than the capillary force of the first wick structure 31. It was
ここで、第1ウィック構造体31及び第2ウィック構造体32の全体積に対する空間の体積の割合を、空隙率と呼ぶ。空隙率の単位は%である。空隙率は以下の方法によって求められる。例えば、ウィック構造体の断面写真から、空間の面積を測定し、空間の面積が全体に占める割合を算出することにより、空隙率を求めることができる。第1ウィック構造体31及び第2ウィック構造体32の断面の観察においては、被写界深度の深い走査型電子顕微鏡を用いることが好ましい。なお、断面の観察の方法は、金属部分と空間とを容易に判別できる方法であればよく、特に限定されない。  Here, the ratio of the volume of the space to the total product of the first wick structure 31 and the second wick structure 32 is referred to as a porosity. The unit of porosity is%. The porosity is determined by the following method. For example, the porosity can be obtained by measuring the area of the space from the cross-sectional photograph of the wick structure and calculating the ratio of the area of the space to the whole. When observing the cross sections of the first wick structure 31 and the second wick structure 32, it is preferable to use a scanning electron microscope having a deep depth of field. The method of observing the cross section is not particularly limited as long as it can easily distinguish between the metal portion and the space. It was
なお、本実施形態では、第1ウィック構造体31及び第2ウィック構造体32を多孔質の焼結体で構成しているが、第1ウィック構造体31又は第2ウィック構造体32を複数の金属線状部材が編み込まれたメッシュ部材であってもよい。第2ウィック構造体32をメッシュ材で構成し、第1ウィック構造体31を多孔質の焼結体で構成することにより、第2ウィック構造体32の毛細管力を、第1ウィック構造体31の毛細管力よりも大きく容易に形成することができる。  In the present embodiment, the first wick structure 31 and the second wick structure 32 are made of a porous sintered body, but the first wick structure 31 or the second wick structure 32 is a plurality of pieces. It may be a mesh member in which a metal linear member is woven. By constructing the second wick structure 32 with a mesh material and the first wick structure 31 with a porous sintered body, the capillary force of the second wick structure 32 can be reduced to that of the first wick structure 31. It is larger than the capillary force and can be easily formed. It was
また、第1ウィック構造体31又は第2ウィック構造体32を第1金属板11の内面及び第2金属板12の内面に形成された複数の溝部により構成してもよい。これにより、メッシュ材及び焼結体で構成する場合と比べて第1ウィック構造体31又は第2ウィック構造体32を薄く形成できる。従って、内部空間10aをZ軸方向に広げることができる。また、内部空間10aを狭めずに筐体10をZ軸方向に薄型化できる。また、第1ウィック構造体31又は第2ウィック構造体32の一方を溝部で構成ことにより、内部空間10aを狭めずに第1ウィック構造体31又は第2ウィック構造体32のZ軸方向の厚みを大きくできる。  Further, the first wick structure 31 or the second wick structure 32 may be composed of a plurality of grooves formed on the inner surface of the first metal plate 11 and the inner surface of the second metal plate 12. As a result, the first wick structure 31 or the second wick structure 32 can be formed thinner than in the case of being composed of the mesh material and the sintered body. Therefore, the internal space 10a can be expanded in the Z-axis direction. Further, the housing 10 can be made thinner in the Z-axis direction without narrowing the internal space 10a. Further, by forming one of the first wick structure 31 and the second wick structure 32 with a groove portion, the thickness of the first wick structure 31 or the second wick structure 32 in the Z-axis direction without narrowing the internal space 10a. Can be increased. It was
第1ウィック構造体31、第2ウィック構造体32及び第3ウィック構造体33は、例えば、以下のように形成される。まず、マイクロ銅粒子、銅体及び樹脂を含む混合粉体を接合前の第1金属板11の下面及び第2金属板12の上面に吹き付け塗布する。次に、柱状に成形した混合粉体を挟んで第1金属板11及び第2金属板12を接合する。その後、筐体10を加熱して混合粉体を焼成する。これにより、筐体10の内部空間10aに、第1ウィック構造体31と、第2ウィック構造体32と、第3ウィック構造体33と、を、容易に一体に形成できる。これにより、熱伝導部材1の製造コストを抑制することができる。なお、第1ウィック構造体31、第2ウィック構造体32及び第3ウィック構造体33を別々に焼成した後に、第1金属板11及び第2金属板12を接合してもよい。  The first wick structure 31, the second wick structure 32, and the third wick structure 33 are formed, for example, as follows. First, a mixed powder containing micro copper particles, a copper body and a resin is sprayed and applied to the lower surface of the first metal plate 11 and the upper surface of the second metal plate 12 before joining. Next, the first metal plate 11 and the second metal plate 12 are joined by sandwiching the mixed powder formed in a columnar shape. After that, the housing 10 is heated to bake the mixed powder. As a result, the first wick structure 31, the second wick structure 32, and the third wick structure 33 can be easily integrally formed in the internal space 10a of the housing 10. As a result, the manufacturing cost of the heat conductive member 1 can be suppressed. The first metal plate 11 and the second metal plate 12 may be joined after the first wick structure 31, the second wick structure 32, and the third wick structure 33 are separately fired. It was
なお、本明細書において、「塗布」とは、第1金属板11の下面及び第2金属板12の上面に混合粉体を付着させることを指す。吹き付け塗布する方法以外に、混合粉体を含むペーストを塗布してもよい。  In addition, in this specification, "coating" means adhering mixed powder to the lower surface of the 1st metal plate 11 and the upper surface of the 2nd metal plate 12. In addition to the spray coating method, a paste containing a mixed powder may be applied. It was
マイクロ銅粒子は、複数の銅原子が凝集または結合した粒子である。マイクロ銅粒子の粒径は、1μm以上1mm未満である。マイクロ銅粒子は、例えば多孔質である。  Micro copper particles are particles in which a plurality of copper atoms are aggregated or bonded. The particle size of the micro copper particles is 1 μm or more and less than 1 mm. The micro copper particles are, for example, porous. It was
銅体は、マイクロ銅粒子よりも小さいサブマイクロ銅粒子が焼結により溶融して固まった銅溶融体である。サブマイクロ銅粒子は、複数の銅原子が凝集または結合した粒子である。溶融前のサブマイクロ銅粒子の粒径は、0.1μm以上1μm未満である。  The copper body is a copper melt obtained by melting and solidifying sub-micro copper particles smaller than the micro copper particles by sintering. Submicro copper particles are particles in which a plurality of copper atoms are aggregated or bonded. The particle size of the sub-micro copper particles before melting is 0.1 μm or more and less than 1 μm. It was
樹脂は、マイクロ銅粒子および銅体を構成する銅の融点以下の温度で揮発する揮発性の樹脂である。このような揮発性の樹脂としては、例えば、メチルセルロース、エチルセルロースなどのセルロース樹脂、アクリル樹脂、ブチラール樹脂、アルキド樹脂、エポキシ樹脂、フェノール樹脂などを用いることができる。これらの中では、熱分解性の高いアクリル樹脂を用いることが好ましい。  The resin is a volatile resin that volatilizes at a temperature below the melting point of the copper constituting the micro copper particles and the copper body. As such a volatile resin, for example, a cellulose resin such as methyl cellulose or ethyl cellulose, an acrylic resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin or the like can be used. Among these, it is preferable to use an acrylic resin having high thermal decomposability. It was
<2.熱伝導部材の動作>



図2において、作動媒体20が気化して生成される蒸気の流れを熱伝導部材1内の黒矢印で示し、液状の作動媒体20の流れを熱伝導部材1内の白抜き矢印で示す。 
<2. Operation of heat conductive member>



In FIG. 2, the flow of steam generated by vaporizing the working medium 20 is indicated by a black arrow in the heat conductive member 1, and the flow of the liquid working medium 20 is indicated by a white arrow in the heat conductive member 1.
上記の構成の熱伝導部材では、発熱体Hで発生した熱により、第2金属板12の温度が上昇すると、第2ウィック構造体32に含まれた液状の作動媒体20が、気化する。  In the heat conductive member having the above configuration, when the temperature of the second metal plate 12 rises due to the heat generated by the heating element H, the liquid working medium 20 contained in the second wick structure 32 is vaporized. It was
気化して蒸気とされた作動媒体20は、蒸気空間Sで拡散する。なお、蒸気空間Sは、第1ウィック構造体31と第2ウィック構造体32との間の隙間空間から第1柱部16および第3ウィック構造体33により占有される空間を除いた空間である。  The working medium 20 that has been vaporized into steam diffuses in the steam space S. The steam space S is a space excluding the space occupied by the first pillar portion 16 and the third wick structure 33 from the gap space between the first wick structure 31 and the second wick structure 32. .. It was
このとき、気化した作動媒体20の一部は、第1ウィック構造体31に接触して冷却され、凝縮する。第1ウィック構造体31は、第1金属板11の下面よりも表面積が大きく冷却効率が高い。このため、第1ウィック構造体31を設けることにより、気化した作動媒体20の冷却効率が向上して凝縮が促進される。  At this time, a part of the vaporized working medium 20 comes into contact with the first wick structure 31 to be cooled and condensed. The first wick structure 31 has a larger surface area and higher cooling efficiency than the lower surface of the first metal plate 11. Therefore, by providing the first wick structure 31, the cooling efficiency of the vaporized working medium 20 is improved and condensation is promoted. It was
第1ウィック構造体31で凝縮した作動媒体20の一部は、滴下して第2ウィック構造体32に吸収される。また、第1ウィック構造体31で凝縮した作動媒体20の一部は、第1ウィック構造体31中及び第3ウィック構造体33中を移動して第2ウィック構造体32に吸収される。また、第1ウィック構造体31で凝縮した作動媒体20の一部は、第1柱部16の外面に沿って移動して第2ウィック構造体32に吸収される。  A part of the working medium 20 condensed in the first wick structure 31 is dropped and absorbed in the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves in the first wick structure 31 and the third wick structure 33 and is absorbed by the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves along the outer surface of the first pillar portion 16 and is absorbed by the second wick structure 32. It was
凝縮した作動媒体20は、毛細管現象によって第2ウィック構造体32中を第1領域U1に向かって移動する。また、第1ウィック構造体31から第2ウィック構造体32に吸収された作動媒体20も、毛細管現象によって第2ウィック構造体32中を第1領域U1に向かって移動する。  The condensed working medium 20 moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. Further, the working medium 20 absorbed from the first wick structure 31 to the second wick structure 32 also moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. It was
このとき、第2ウィック構造体32の毛細管力は、第1ウィック構造体31の毛細管力よりも高いため、第2ウィック構造体32を介して凝縮した作動媒体20を発熱体Hが配置される位置に、より早く移動させることができる。従って、作動媒体20による熱輸送効率が向上する。  At this time, since the capillary force of the second wick structure 32 is higher than the capillary force of the first wick structure 31, the heating element H is arranged on the working medium 20 condensed through the second wick structure 32. It can be moved to a position faster. Therefore, the heat transport efficiency by the working medium 20 is improved. It was
上記のように作動媒体20が状態変化を伴いながら移動することにより、発熱体H側から冷却側への熱輸送が連続的に行われる。  As described above, the working medium 20 moves while changing its state, so that heat is continuously transferred from the heating element H side to the cooling side. It was
<3.蒸気空間について>



先述したように、蒸気空間Sは、第1ウィック構造体31と第2ウィック構造体32との間の隙間空間から第1柱部16および第3ウィック構造体33により占有される空間を除いた空間である。すなわち、蒸気空間Sは、内部空間10aにおける第1ウィック構造体31、第2ウィック構造体32、第3ウィック構造体33及び第1柱部16以外の空間である。 
<3. About steam space >



As described above, the steam space S excludes the space occupied by the first pillar portion 16 and the third wick structure 33 from the gap space between the first wick structure 31 and the second wick structure 32. It is a space. That is, the steam space S is a space other than the first wick structure 31, the second wick structure 32, the third wick structure 33, and the first pillar portion 16 in the internal space 10a.
そして、本実施形態では、下記式(5)が満たされる。



V1>V2 ・・・(5)



ただし、V1:蒸気空間Sの体積、V2:合計体積 
Then, in this embodiment, the following equation (5) is satisfied.



V1> V2 ... (5)



However, V1: the volume of the steam space S, V2: the total volume
このとき、合計体積は、第1ウィック構造体31、第2ウィック構造体32及び第3ウィック構造体33の各体積を合計した体積である。すなわち、本実施形態において、合計体積は、第1ウィック構造体31及び第2ウィック構造体32の合計体積に第3ウィック構造体33の体積をさらに含む。  At this time, the total volume is the total volume of each of the first wick structure 31, the second wick structure 32, and the third wick structure 33. That is, in the present embodiment, the total volume further includes the volume of the third wick structure 33 in the total volume of the first wick structure 31 and the second wick structure 32. It was
なお、第3ウィック構造体33が設けられていない場合、合計体積は、第1ウィック構造体31及び第2ウィック構造体32の各体積を合計して算出される。  When the third wick structure 33 is not provided, the total volume is calculated by summing the volumes of the first wick structure 31 and the second wick structure 32. It was
このようにすることで、蒸気空間Sの体積を確保し、作動媒体20の蒸気の拡散を促進することができる。従って、熱伝導部材1の熱輸送効率を向上させることができる。  By doing so, it is possible to secure the volume of the steam space S and promote the diffusion of the steam of the working medium 20. Therefore, the heat transport efficiency of the heat conductive member 1 can be improved. It was
また、第1柱部16は、筐体10の強度を確保することができるが、配置することにより蒸気空間Sが狭くなる要因となり、そのような第1柱部16を設ける場合でも上記式(5)を満たすことで蒸気の拡散を促進できる。  Further, although the strength of the housing 10 can be ensured by the first pillar portion 16, the arrangement of the first pillar portion 16 causes the steam space S to become narrower, and even when such a first pillar portion 16 is provided, the above equation ( By satisfying 5), the diffusion of vapor can be promoted. It was
また、上記式(5)より、蒸気空間Sの体積は、第1ウィック構造体31と第2ウィック構造体32と第3ウィック構造体33との各体積の総和よりも大きくなるので、蒸気の拡散を促進できる。  Further, from the above equation (5), the volume of the steam space S is larger than the sum of the volumes of the first wick structure 31, the second wick structure 32, and the third wick structure 33. Can promote diffusion. It was
<4.第1柱部と第3ウィック構造体>



本実施形態では、第1柱部16と第3ウィック構造体33は、次のような構成であることが好ましい。 
<4. 1st pillar and 3rd wick structure>



In the present embodiment, the first pillar portion 16 and the third wick structure 33 preferably have the following configurations.
第1柱部16の上面と第1金属板11の下面とが接合される接合面積の総和は、第3ウィック構造体33の上面と第1ウィック構造体31の下面とが接合される接合面積の総和よりも大きい。かつ、第1柱部16の下面と第2金属板12の上面とが接合される接合面積の総和は、第3ウィック構造体33の下面と第2ウィック構造体32の上面とが接合される接合面積の総和よりも大きい。なお、接合面積の総和とは、1本の第1柱部16または第3ウィック構造体33についての接合面積のすべての本数分の総和のことである。 The total joint area where the upper surface of the first pillar portion 16 and the lower surface of the first metal plate 11 are joined is the joint area where the upper surface of the third wick structure 33 and the lower surface of the first wick structure 31 are joined. Is larger than the sum of. Further, the total joint area where the lower surface of the first pillar portion 16 and the upper surface of the second metal plate 12 are joined is such that the lower surface of the third wick structure 33 and the upper surface of the second wick structure 32 are joined. It is larger than the total joint area. The total joint area is the total number of joint areas of one first pillar portion 16 or the third wick structure 33.
ただし、図3に変形例を示すように、第3ウィック構造体33が第1ウィック構造体31を貫通して第1金属板11に接合されるとともに、第2ウィック構造体32を貫通して第2金属板12に接合されてもよい。このような場合には、第1柱部16の上面と第1金属板11の下面とが接合される接合面積の総和は、第3ウィック構造体33の上面と第1金属板11の下面とが接合される接合面積の総和よりも大きい。かつ、第1柱部16の下面と第2金属板12の上面とが接合される接合面積の総和は、第3ウィック構造体33の下面と第2金属板12の上面とが接合される接合面積の総和よりも大きい。  However, as shown in the modified example in FIG. 3, the third wick structure 33 penetrates the first wick structure 31 and is joined to the first metal plate 11 and also penetrates the second wick structure 32. It may be joined to the second metal plate 12. In such a case, the total joint area where the upper surface of the first pillar portion 16 and the lower surface of the first metal plate 11 are joined is the upper surface of the third wick structure 33 and the lower surface of the first metal plate 11. Is larger than the total joint area to which is joined. The total joint area where the lower surface of the first pillar portion 16 and the upper surface of the second metal plate 12 are joined is the joint where the lower surface of the third wick structure 33 and the upper surface of the second metal plate 12 are joined. It is larger than the total area. It was
すなわち、第1柱部16の一方側端部が第1金属板11と接する接触面積の総和は、第3ウィック構造体33の一方側端部が第1ウィック構造体31または第1金属板11と接する接触面積の総和よりも広く、かつ、第1柱部16の他方側端部が第2金属板12と接する接触面積の総和は、第3ウィック構造体33の他方側端部が第2ウィック構造体32または第2金属板12と接する接触面積の総和よりも広い。  That is, the total contact area of the one-sided end of the first pillar 16 in contact with the first metal plate 11 is such that the one-sided end of the third wick structure 33 is the first wick structure 31 or the first metal plate 11. The total contact area that is wider than the total contact area in contact with the second metal plate 12 and that the other side end portion of the first pillar portion 16 is in contact with the second metal plate 12 is such that the other side end portion of the third wick structure 33 is second. It is wider than the total contact area in contact with the wick structure 32 or the second metal plate 12. It was
中実な第1柱部16の強度は、第3ウィック構造体33の強度よりも高い。従って、上記のような接触面積の大小関係により、第3ウィック構造体33を用いる構成であっても、第1柱部16によって筐体10の強度を十分に確保することができる。  The strength of the solid first pillar portion 16 is higher than the strength of the third wick structure 33. Therefore, due to the magnitude relationship of the contact area as described above, the strength of the housing 10 can be sufficiently secured by the first pillar portion 16 even in the configuration using the third wick structure 33. It was
<5.その他>



以上、本開示の実施形態を説明した。なお、本開示の範囲は上述の実施形態に限定されない。本開示は、発明の主旨を逸脱しない範囲で上述の実施形態に種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。
<5. Others>



The embodiments of the present disclosure have been described above. The scope of the present disclosure is not limited to the above-described embodiment. The present disclosure can be carried out by making various modifications to the above-described embodiments without departing from the gist of the invention. In addition, the items described in the above-described embodiments can be arbitrarily combined as long as they do not cause a contradiction.
例えば、第1ウィック構造体31をメッシュ材で構成し、第2ウィック構造体32を多孔質の焼結体で構成してもよい。または、第1柱部16と第3ウィック構造体33のうち少なくとも一方を設けないようにしてもよい。  For example, the first wick structure 31 may be made of a mesh material, and the second wick structure 32 may be made of a porous sintered body. Alternatively, at least one of the first pillar portion 16 and the third wick structure 33 may not be provided. It was
本開示の実施形態では柱部15は第1柱部16と第3ウィック構造体33が混在するとしたが、柱部15はすべてが第1柱部16でもよく、すべてが第3ウィック構造体33でもよい。  In the embodiment of the present disclosure, the pillar portion 15 is a mixture of the first pillar portion 16 and the third wick structure 33, but the pillar portion 15 may be all the first pillar portion 16 and all may be the third wick structure 33. But it may be. It was
本開示は、各種発熱体の冷却に利用することができる。 The present disclosure can be used for cooling various heating elements.
1   熱伝導部材  10   筐体  10a  内部空間  11   第1金属板  12   第2金属板  13a  第1側壁部  13b  第2側壁部  14   接合部  15   柱部  16   第1柱部  20   作動媒体  31   第1ウィック構造体  31a  凸部  32   第2ウィック構造体  33   第2柱部、第3ウィック構造体   H   発熱体   S   蒸気空間   U1  第1領域   U2  第2領域  1 Heat conductive member 10 Housing 10a Internal space 11 1st metal plate 12 2nd metal plate 13a 1st side wall 13b 2nd side wall 14 Joint part 15 Pillar part 16 1st pillar part 20 31a Convex part 32 Second wick structure 33 Second pillar part, third wick structure H Heater S Steam space U1 First area U2 Second area

Claims (15)

  1. 内部空間を有する筐体と、 



    第1ウィック構造体と、 



    第2ウィック構造体と、 



    作動媒体と、



    柱部と、を備え、 



    前記筐体は、



    第1金属板と、前記第1金属板に対向して配置されるとともに外面に発熱体が配置される第2金属板と、を有し、



    前記柱部は、



    前記第1金属板及び前記第2金属板の間に配置され、



    前記作動媒体と、前記第1ウィック構造体と、前記第2ウィック構造体とは、前記内部空間に収容され、



    前記第1ウィック構造体は、前記第1金属板の内面に配置され、



    前記第2ウィック構造体は、前記第2金属板の内面に配置され、



    前記第1ウィック構造体は、内面から前記鉛直方向に突出する凸部を有し、



    前記凸部の少なくとも一部が、前記第1金属板及び前記第2金属板の前記鉛直方向に前記発熱体と重なる第1領域に位置する、熱伝導部材。
    A housing with an internal space and



    The first wick structure and



    The second wick structure and



    The working medium and



    With pillars,



    The housing is



    It has a first metal plate and a second metal plate which is arranged so as to face the first metal plate and in which a heating element is arranged on an outer surface.



    The pillar is



    Arranged between the first metal plate and the second metal plate,



    The working medium, the first wick structure, and the second wick structure are housed in the internal space.



    The first wick structure is arranged on the inner surface of the first metal plate.



    The second wick structure is arranged on the inner surface of the second metal plate.



    The first wick structure has a convex portion that protrudes in the vertical direction from the inner surface.



    A heat conductive member in which at least a part of the convex portion is located in a first region of the first metal plate and the second metal plate which overlaps with the heating element in the vertical direction.
  2. 前記柱部は、前記内部空間に配置され、



    第1金属板11及び第2金属板12を支持する中実な第1柱部と、



    前記第1ウィック構造体及び前記第2ウィック構造体を支持し、多孔質の焼結体である第2柱部と、の少なくともいずれか一方、を備える、請求項1に記載の熱伝導部材。
    The pillar portion is arranged in the internal space and



    A solid first pillar portion that supports the first metal plate 11 and the second metal plate 12 and



    The heat conductive member according to claim 1, further comprising at least one of a second pillar portion that supports the first wick structure and the second wick structure and is a porous sintered body.
  3. 前記第1ウィック構造体は、多孔質の焼結体である、請求項1又は請求項2に 記載の熱伝導部材。 The heat conductive member according to claim 1 or 2, wherein the first wick structure is a porous sintered body.
  4. 前記第2ウィック構造体は、複数の金属線状部材が編み込まれたメッシュ部材である、請求項1から請求項3のいずれかにに記載の熱伝導部材。  The heat conductive member according to any one of claims 1 to 3, wherein the second wick structure is a mesh member in which a plurality of metal linear members are woven. The
  5. 前記第2ウィック構造体は、多孔質の焼結体である、請求項1から請求項3のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 3, wherein the second wick structure is a porous sintered body.
  6. 前記第1ウィック構造体の前記凸部は、平面視において前記第1領域より大きい面積を有し、



    前記凸部は、鉛直方向において、前記第1領域の全域と重なる、請求項1から請求項5のいずれかに記載の熱伝導部材。
    The convex portion of the first wick structure has an area larger than that of the first region in a plan view.



    The heat conductive member according to any one of claims 1 to 5, wherein the convex portion overlaps the entire area of the first region in the vertical direction.
  7. 前記凸部における前記第1ウィック構造体の厚みが、前記第1領域内の所定位置に向かって漸次大きく形成される、請求項1から請求項6のいずれかに記載の熱伝導部材。  The heat conductive member according to any one of claims 1 to 6, wherein the thickness of the first wick structure in the convex portion is gradually increased toward a predetermined position in the first region. The
  8. 前記第1ウィック構造体と、前記第2ウィック構造体と、前記第2柱部と、 が、一体である、請求項1から請求項5のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 5, wherein the first wick structure, the second wick structure, the second pillar portion, and the second pillar portion are integrated.
  9. 前記第2ウィック構造体は、前記第1ウィック構造体よりも空隙率が高い、請求項1から請求項8のいずれかに記載の熱伝導部材。  The heat conductive member according to any one of claims 1 to 8, wherein the second wick structure has a higher porosity than the first wick structure. The
  10. 前記第2ウィック構造体の毛細管力は、前記第1ウィック構造体の毛細管力よりも高い、請求項1から請求項9のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 9, wherein the capillary force of the second wick structure is higher than the capillary force of the first wick structure.
  11. 前記第1ウィック構造体の平均厚さは、前記第2ウィック構造体の平均厚さよりも大きい、請求項1~請求項10のいずれかに記載の熱伝導部材。  The heat conductive member according to any one of claims 1 to 10, wherein the average thickness of the first wick structure is larger than the average thickness of the second wick structure. The
  12. 前記第1領域において、前記鉛直方向における前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さと、前記第2ウィック構造体の厚みと、前記第1ウィック構造体の厚みとは、下記式(1)を満たす、請求項11に記載の熱伝導部材。



    W3>W2+W1a ・・・(1) 



    W1a:第1ウィック構造体の厚み



    W2:第2ウィック構造体の厚み



    W3:前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さ
    In the first region, the length of the gap between the first wick structure and the second wick structure in the vertical direction, the thickness of the second wick structure, and the thickness of the first wick structure are The heat conductive member according to claim 11, which satisfies the following formula (1).



    W3> W2 + W1a ... (1)



    W1a: Thickness of the first wick structure



    W2: Thickness of the second wick structure



    W3: Length of the gap between the first wick structure and the second wick structure
  13. 前記第1領域において、前記鉛直方向における前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さと、前記第2ウィック構造体の厚みと、前記第1ウィック構造体の厚みとは、下記式(2)から式(4)を満たす、請求項12に記載の熱伝導部材。



    4W2≧W1a≧2W2 ・・・(2) 



    7W2≧W3≧5W2 ・・・(3) 



    W3+W1a=9W2 ・・・(4)
    In the first region, the length of the gap between the first wick structure and the second wick structure in the vertical direction, the thickness of the second wick structure, and the thickness of the first wick structure are The heat conductive member according to claim 12, which satisfies the following formulas (2) to (4).



    4W2 ≧ W1a ≧ 2W2 ・ ・ ・ (2)



    7W2 ≧ W3 ≧ 5 W2 ・ ・ ・ (3)



    W3 + W1a = 9W2 ... (4)
  14. 前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体、前記第1柱部及び第2柱部以外の空間に含まれ、前記作動媒体の蒸気が存在しうる蒸気空間の体積と、前記第1ウィック構造体 及び前記第2ウィック構造体の合計体積とは、下記式(5)を満たす、請求項1から請求項13のいずれかに記載の熱伝導部材。



    V1>V2 ・・・(5)



    V1:前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体、前記第1柱部及び第2柱部以外 の空間に含まれ、前記作動媒体の蒸気が存在しうる蒸気空間の体積



    V2:前記第1ウィック構造体及び前記第2ウィック構造体の合計体積
    The volume of the steam space included in the space other than the first wick structure, the second wick structure, the first pillar portion and the second pillar portion in the internal space, and in which the steam of the working medium can exist, and the volume of the steam space. The heat conductive member according to any one of claims 1 to 13, wherein the total volume of the first wick structure and the second wick structure satisfies the following formula (5).



    V1> V2 ... (5)



    V1: Volume of the steam space in the internal space other than the first wick structure, the second wick structure, the first pillar portion and the second pillar portion, and in which the steam of the working medium can exist.



    V2: Total volume of the first wick structure and the second wick structure
  15. 前記合計体積は、前記第2柱部の体積をさらに含む、請求項14に記載の熱伝導部材。  The heat conductive member according to claim 14, wherein the total volume further includes the volume of the second pillar portion. The
PCT/JP2021/028350 2020-07-31 2021-07-30 Heat conduction member WO2022025255A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020131230 2020-07-31
JP2020-131230 2020-07-31
JP2020192031A JP2023127009A (en) 2020-11-18 2020-11-18 Heat conductive member
JP2020-192031 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022025255A1 true WO2022025255A1 (en) 2022-02-03

Family

ID=80035859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028350 WO2022025255A1 (en) 2020-07-31 2021-07-30 Heat conduction member

Country Status (1)

Country Link
WO (1) WO2022025255A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356485A (en) * 1999-06-15 2000-12-26 Fujikura Ltd Planar heat pipe
JP2005525529A (en) * 2002-05-15 2005-08-25 リー, シェ−ウィン Vapor enhanced heat sink with multi-wick structure
JP2006170602A (en) * 2004-12-17 2006-06-29 Fujikura Ltd Heat transfer device
US20090025910A1 (en) * 2007-07-27 2009-01-29 Paul Hoffman Vapor chamber structure with improved wick and method for manufacturing the same
US20100071879A1 (en) * 2008-09-19 2010-03-25 Foxconn Technology Co., Ltd. Method for manufacturing a plate-type heat pipe and a plate-type heat pipe obtained thereby
CN104896983A (en) * 2014-03-07 2015-09-09 江苏格业新材料科技有限公司 Manufacturing method of soaking plate with ultrathin foam silver as liquid absorbing core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356485A (en) * 1999-06-15 2000-12-26 Fujikura Ltd Planar heat pipe
JP2005525529A (en) * 2002-05-15 2005-08-25 リー, シェ−ウィン Vapor enhanced heat sink with multi-wick structure
JP2006170602A (en) * 2004-12-17 2006-06-29 Fujikura Ltd Heat transfer device
US20090025910A1 (en) * 2007-07-27 2009-01-29 Paul Hoffman Vapor chamber structure with improved wick and method for manufacturing the same
US20100071879A1 (en) * 2008-09-19 2010-03-25 Foxconn Technology Co., Ltd. Method for manufacturing a plate-type heat pipe and a plate-type heat pipe obtained thereby
CN104896983A (en) * 2014-03-07 2015-09-09 江苏格业新材料科技有限公司 Manufacturing method of soaking plate with ultrathin foam silver as liquid absorbing core

Similar Documents

Publication Publication Date Title
JP6741142B2 (en) Vapor chamber
US11359869B2 (en) Vapor chamber
WO2018199218A1 (en) Vapor chamber
KR20180048972A (en) Vapor Chamber
CN114423232A (en) Vapor chamber, heat dissipation device, and electronic device
US11740029B2 (en) Vapor chamber
JP7097308B2 (en) Wick structure and heat pipe containing the wick structure
WO2022025255A1 (en) Heat conduction member
WO2022025256A1 (en) Heat conduction member
WO2022025253A1 (en) Heat conducting member
WO2018198350A1 (en) Vapor chamber
WO2022025254A1 (en) Heat conduction member
WO2022025252A1 (en) Heat conduction member
WO2022025249A1 (en) Heat conduction member
WO2022025257A1 (en) Heat conducting member
WO2022025251A1 (en) Heat conduction member
JP2023127011A (en) Heat conductive member
WO2022025258A1 (en) Heat conduction member
JP2023127009A (en) Heat conductive member
JP2023127013A (en) Heat conductive member
JP2023127010A (en) Heat conductive member
WO2022025259A1 (en) Heat-conducting member
JP2023127008A (en) Heat conductive member
JP2023127012A (en) Heat conducting member
WO2022025261A1 (en) Heat conduction member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP