WO2022016477A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2022016477A1
WO2022016477A1 PCT/CN2020/103907 CN2020103907W WO2022016477A1 WO 2022016477 A1 WO2022016477 A1 WO 2022016477A1 CN 2020103907 W CN2020103907 W CN 2020103907W WO 2022016477 A1 WO2022016477 A1 WO 2022016477A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
value
communication device
coresetpoolindex
Prior art date
Application number
PCT/CN2020/103907
Other languages
English (en)
French (fr)
Inventor
张永平
纪刘榴
张希
李铁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/103907 priority Critical patent/WO2022016477A1/zh
Publication of WO2022016477A1 publication Critical patent/WO2022016477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and a communication device.
  • the terminal of Release-16 version (the second version of 5G) can support multi-transmission reception point (TRP) transmission technology, and can also support dual active protocol stack based handover (DAPS-HO) ) technology, and can also support shorter processing delay of physical downlink shared channel (PDSCH).
  • TRP multi-transmission reception point
  • DAPS-HO dual active protocol stack based handover
  • PDSCH physical downlink shared channel
  • the terminal may not be able to support the above multiple features at the same time, for example, the terminal may not support DAPS-HO and multi-TRP transmission at the same time.
  • the network device cannot know whether the terminal supports multiple features at the same time, and therefore cannot reasonably configure or schedule the terminal.
  • the present application provides a communication method and a communication device, which can reasonably configure or schedule a terminal.
  • an embodiment of the present application provides a communication method, and the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first information, and the terminal determines to monitor the physical downlink control channel (physical downlink control channel, PDCCH) corresponding to the CORESETPoolIndex associated with the first value in the N configured control resource set pool indices (CORESETPoolIndex), wherein the first A message is used for DAPS-HO based reconfiguration, and N is an integer greater than or equal to 2.
  • PDCCH physical downlink control channel
  • CORESETPoolIndex control resource set pool indices
  • an embodiment of the present application provides a communication method, and the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • the network device generates first information, and sends the first information.
  • the first information is used for reconfiguration based on DAPS-HO, which can make the resource control corresponding to the CORESETPoolIndex associated with the first value among the N CORESETPoolIndex configured for the terminal.
  • the configuration of the set CORESET takes effect, and N is an integer greater than or equal to 2.
  • the terminal can monitor the PDCCH corresponding to the CORESETPoolIndex associated with the first value among the multiple configured CORESETPoolIndexes during the DAPS-HO process . That is, the terminal can only monitor the information from the same TRP, and does not need to monitor the information from multiple TRPs, which can reduce the complexity of the terminal.
  • the terminal regardless of whether the terminal supports multi-TRP transmission in the DAPS-HO process, it may be pre-agreed that the terminal performs single TRP transmission in the DAPS-HO process, or the base station may Inform the terminal that the terminal performs single TRP transmission during the DAPS-HO process. In this way, regardless of whether the values of the associated CORESETPoolIndex in the multiple CORESETs configured by the base station for the terminal are the same, the terminal only monitors the PDCCH associated with the first CORESETPoolIndex.
  • the first value is predefined.
  • the terminal is pre-agreed to perform single TRP transmission in the DAPS-HO process.
  • the method further includes: the terminal receives second information, where the second information is used to indicate the first value.
  • the method further includes: sending the second information by the network device.
  • the base station notifies the terminal to perform single TRP transmission in the DAPS-HO process.
  • the second information includes the first value.
  • the solution can directly indicate the first value through the second information, which is simple and clear.
  • the second information may also indicate the first value indirectly, and the embodiment of the present application does not limit the specific implementation form of the second information, which is more flexible.
  • the second information includes first identification information, where the first identification information is used to indicate the first value.
  • the second information includes at least one bit, and the value of the at least one bit is used to indicate the first value, and the values of CORESETPoolIndex corresponding to different values of the at least one bit are different.
  • the method further includes: sending first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process; correspondingly, in In a possible implementation manner of the second aspect, the method further includes: the network device receiving the first capability information.
  • the terminal can report the first capability information of the terminal to the network device, that is, whether the terminal supports multi-TRP transmission in the DAPS-HO process.
  • the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process, which can be understood as the terminal does not support multi-TRP transmission in the DAPS-HO process. It is more reasonable for the network device to determine the second information according to the first capability information, that is, to determine how to configure the terminal according to the actual capability of the terminal.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the reception time of the second information.
  • the transmission time of the second information is earlier than or equal to the transmission time of the first information, which can ensure that the terminal can monitor the PDCCH according to the second information before completing the DAPS-HO, thereby ensuring that the terminal can perform a single operation during the DAPS-HO process. TRP transmission.
  • an embodiment of the present application provides a communication method, and the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first information, and the terminal determines to receive the PDSCH according to the first TCI state in the N transmission configuration indicator (TCI) states, wherein the first information is used for reconfiguration based on DAPS-HO, and the N
  • TCI transmission configuration indicator
  • Each TCI state is the TCI state associated with the code point of the TCI field in the received downlink control information (downlink control information, DCI), and N is an integer greater than or equal to 2.
  • an embodiment of the present application provides a communication method, and the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • the network device generates the first information, and sends the first information, the first information is used for reconfiguration based on DAPS-HO, so that the terminal can receive the PDSCH according to the first TCI state among the N TCI states, the N
  • the TCI state is the TCI state associated with the code point of the TCI field in the received DCI, and the N is an integer greater than or equal to 2.
  • the terminal can receive the PDSCH according to the first TCI state among the N TCI states during the DAPS-HO process. , it is not necessary to receive PDSCH according to N TCI states, it can also be said that single TRP reception is performed instead of multiple TRP reception, which can reduce the complexity of the terminal.
  • the first TCI state is predefined.
  • the method further includes: the terminal receives second information, where the second information is used to indicate the first TCI state; correspondingly, in a possible implementation of the fourth aspect In the implementation manner of , the method further includes: sending the second information by the network device.
  • the method further includes: the terminal sending first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process; correspondingly, In a possible implementation manner of the fourth aspect, the method further includes: the network device receiving the first capability information.
  • the second information includes a first TCI state or first identification information, where the first identification information is used to indicate the first TCI state.
  • the second information includes at least one bit, the value of the at least one bit is used to indicate the first TCI state, and the at least one bit is different
  • the TCI states associated with different DMRS groups of the PDSCH corresponding to the value are different.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the second information time of receipt of the information.
  • the solution of the first aspect or the second aspect is for multi-TRP transmission of multiple DCIs
  • the solution of the third aspect or the fourth aspect is for multi-TRP transmission of single DCI.
  • an embodiment of the present application provides a communication method, and the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first information and receives the DCI, where the first information is used to configure N CORESETs for the terminal, the CORESETPoolIndex associated with the N CORESETs has at least two different values, and the N is greater than or equal to 2 Integer, the DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the result of the hybrid automatic repeat request (HARQ) corresponding to the scheduling PDSCH.
  • HARQ hybrid automatic repeat request
  • the location satisfies the first PDSCH processing capability among the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing delay corresponding to the second PDSCH processing capability is lower than the processing delay corresponding to the first PDSCH processing capability.
  • an embodiment of the present application provides a communication method, the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • the network device sends the first information and the DCI, where the first information is used for N CORESETs configured for the terminal, the CORESETPoolIndex associated with the N CORESETs has at least two different values, and the N is greater than or equal to 2
  • the DCI is used to indicate the first time-frequency resource
  • the first time-frequency resource can be used to carry the result of the hybrid automatic repeat request (HARQ) corresponding to the scheduling PDSCH
  • HARQ hybrid automatic repeat request
  • the position of the terminal satisfies the first PDSCH processing capability of the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing delay corresponding to the second PDSCH processing capability is lower than the processing delay corresponding to the first PDSCH processing capability.
  • the network device in the case of multi-TRP transmission, regardless of whether the terminal supports PDSCH processing capability 2, the network device can configure the terminal according to PDSCH processing capability 1. Since the processing delay of PDSCH processing capability 2 is lower than that of PDSCH processing capability 1, the PDSHC processing delay can be guaranteed not to exceed the actual PDSCH processing capability of the terminal, and the terminal can report valid HARQ results.
  • the method further includes: the terminal sends first capability information, where the first capability information is used to indicate that the terminal supports the second PDSCH processing capability; correspondingly, in the sixth aspect
  • the method further includes: the network device receives the first capability information, and the DCI is determined according to the first capability information.
  • the network device can configure the terminal according to the PDSCH processing capability reported by the terminal, which is more reasonable.
  • an embodiment of the present application provides a communication method, and the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first information and receives the DCI, where the first information is used to indicate that the CORESETPoolIndex corresponding to the N CORESETs configured for the terminal has at least two different values, the N is an integer greater than or equal to 2, and the The DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the hybrid automatic repeat request (HARQ) result corresponding to the scheduled PDSCH, and the location of the first time-frequency resource satisfies the terminal support
  • an embodiment of the present application provides a communication method, and the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip or chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • the network device sends the first information and the DCI, where the first information is used to indicate that the CORESETPoolIndex corresponding to the N CORESETs configured for the terminal has at least two different values, the N is an integer greater than or equal to 2, the The DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the hybrid automatic repeat request (HARQ) result corresponding to the scheduled PDSCH, and the location of the first time-frequency resource satisfies the terminal support
  • the network device may configure the terminal according to PDSCH processing capability 2, but at the same time, the network device may be limited to the terminal according to PDSCH processing capability 2
  • the scheduling parameters of the configured PUCCH time-frequency resources are used to reduce the complexity of the terminal while ensuring that the PDSHC processing delay does not exceed the actual PDSCH processing capability of the terminal.
  • the at least one scheduling parameter is associated with the second PDSCH processing capability, including: the at least one scheduling parameter satisfies one or more of the following preset conditions:
  • the at least one scheduling parameter includes a transmission bandwidth, and the preset condition includes that the transmission bandwidth is less than or equal to M resource block RBs, where M is pre-agreed or M is determined according to the second PDSCH processing capability supported by the terminal;
  • the at least one scheduling parameter includes a modulation and coding strategy MCS, and the preset condition includes that the MCS is less than or equal to a first MCS threshold, the first MCS threshold is pre-agreed, or the first MCS threshold is based on a second MCS threshold supported by the terminal.
  • PDSCH processing capability is determined.
  • the communication methods described in the first aspect, the third aspect, the fifth aspect, and the seventh aspect may be performed independently, respectively, or may be performed in a coupled manner.
  • the communication methods described in the second aspect, the fourth aspect, the sixth aspect, and the eighth aspect may be performed independently, respectively, or may be performed in a coupled manner.
  • an embodiment of the present application provides a communication device, which may be a terminal-side communication device or a communication device capable of supporting the terminal-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the transceiver module is configured to receive first information, and the first information is used for reconfiguration of DAPS-HO; the processing module is configured to determine to monitor N configured The PDCCH corresponding to the CORESETPoolIndex associated with the first value in the CORESETPoolIndex, where N is an integer greater than or equal to 2.
  • the first value is predefined.
  • the transceiver module is further configured to: receive second information, where the second information is used to indicate the first value.
  • the transceiver module is further configured to: send first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process, wherein the The second information is determined according to the first capability information.
  • the second information includes the first value or first identification information, where the first identification information is used to indicate the first value.
  • the second information includes at least one bit, the value of the at least one bit is used to indicate the first value, and the value of CORESETPoolIndex corresponding to different values of the at least one bit different.
  • the first information and the second information are carried in the same signaling; or,
  • the reception time of the first information is later than the reception time of the second information.
  • an embodiment of the present application provides a communication device, which may be a network-side communication device or a communication device capable of supporting the network-side communication device to implement the functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the processing module is configured to generate first information, and the first information is used for reconfiguration of DAPS-HO; the transceiver module is configured to send the first information,
  • the N is an integer greater than or equal to 2.
  • the first value is predefined.
  • the transceiver module is further configured to: send second information, where the second information is used to indicate the first value.
  • the transceiver module is further configured to: receive first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process, wherein the The second information is determined according to the first capability information.
  • the second information includes the first value or first identification information, where the first identification information is used to indicate the first value.
  • the second information includes at least one bit, the value of the at least one bit is used to indicate the first value, and the value of CORESETPoolIndex corresponding to different values of the at least one bit different.
  • the first information and the second information are carried in the same signaling; or,
  • the sending time of the first information is later than the sending time of the second information.
  • an embodiment of the present application provides a communication device, which may be a terminal-side communication device or a communication device capable of supporting the terminal-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the transceiver module is configured to receive first information, and the first information is used for reconfiguration based on handover DAPS-HO; the processing module is configured to determine according to N TCIs
  • the first TCI state in the state receives the PDSCH, the N TCI states are the TCI states associated with the code points of the TCI field in the received DCI, and N is an integer greater than or equal to 2.
  • the first TCI state is predefined.
  • the transceiver module is further configured to receive second information, where the second information is used to indicate the first TCI state.
  • the transceiver module is further configured to send first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process.
  • the second information includes a first TCI state or first identification information, where the first identification information is used to indicate the first TCI state.
  • the second information includes at least one bit
  • the value of the at least one bit is used to indicate the first TCI state
  • different values of the at least one bit correspond to different DMRS groups of the PDSCH.
  • the associated TCI states are different.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the reception time of the second information.
  • an embodiment of the present application provides a communication device, which may be a network-side communication device or a communication device capable of supporting the network-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the processing module is configured to generate first information, and the first information is used for reconfiguration based on DAPS-HO; the transceiver module is configured to send the first information to The terminal is made to receive the PDSCH according to the first TCI state in the N TCI states, where the N TCI states are the TCI states associated with the code points of the TCI field in the received DCI, where N is an integer greater than or equal to 2.
  • the first TCI state is predefined.
  • the transceiver module is further configured to receive second information, where the second information is used to indicate the first TCI state.
  • the transceiver module is further configured to receive first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process.
  • the second information includes a first TCI state or first identification information, where the first identification information is used to indicate the first TCI state.
  • the second information includes at least one bit
  • the value of the at least one bit is used to indicate the first TCI state
  • different values of the at least one bit correspond to different DMRS groups of the PDSCH.
  • the associated TCI states are different.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the reception time of the second information.
  • an embodiment of the present application provides a communication device, which may be a terminal-side communication device or a communication device capable of supporting the terminal-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the transceiver module is configured to receive first information and receive DCI, wherein the first information is used to configure N CORESETs for the terminal, and CORESETPoolIndex associated with the N CORESETs Has at least two different values, the N is an integer greater than or equal to 2, the DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the hybrid automatic retransmission corresponding to the scheduled PDSCH request (hybrid automatic repeat request, HARQ) result, the location of the first time-frequency resource satisfies the first PDSCH processing capability in the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing
  • the transceiver module is further configured to send first capability information, where the first capability information is used to indicate that the terminal supports the processing capability on the second PDSCH.
  • an embodiment of the present application provides a communication device, which may be a network-side communication device or a communication device capable of supporting the network-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the processing module is used to determine a first time-frequency resource; the transceiver module is used to send first information and send DCI, where the first information is used to configure the terminal N CORESETs, the CORESETPoolIndex associated with the N CORESETs has at least two different values, the N is an integer greater than or equal to 2, the DCI is used to indicate a first time-frequency resource, the first time-frequency
  • the resource can be used to carry the result of a hybrid automatic repeat request (HARQ) corresponding to the scheduled PDSCH, and the position of the first time-frequency resource satisfies the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal.
  • HARQ hybrid automatic
  • the transceiver module is further configured to receive the first capability information, and the DCI is determined according to the first capability information.
  • an embodiment of the present application provides a communication device, which may be a terminal-side communication device or a communication device capable of supporting the terminal-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the transceiver module is configured to receive first information and receive DCI, wherein the first information is used to configure N CORESETs for the terminal, and CORESETPoolIndex corresponding to the N CORESETs Has at least two different values, the N is an integer greater than or equal to 2, the DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the hybrid automatic retransmission corresponding to the scheduled PDSCH request (hybrid automatic repeat request, HARQ) result, the location of the first time-frequency resource satisfies the first PDSCH processing capability in the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the
  • the at least one scheduling parameter is associated with the second PDSCH processing capability, including: the at least one scheduling parameter satisfies one or more of the following preset conditions:
  • the at least one scheduling parameter includes a transmission bandwidth, and the preset condition includes that the transmission bandwidth is less than or equal to M resource block RBs, where M is pre-agreed or M is determined according to the second PDSCH processing capability supported by the terminal;
  • the at least one scheduling parameter includes a modulation and coding strategy MCS, and the preset condition includes that the MCS is less than or equal to a first MCS threshold, the first MCS threshold is pre-agreed, or the first MCS threshold is based on a second MCS threshold supported by the terminal.
  • PDSCH processing capability is determined.
  • an embodiment of the present application provides a communication device, which may be a network-side communication device or a communication device capable of supporting the network-side communication device to implement functions required by the method, such as a chip or a chip system.
  • the communication device may include a processing module and a transceiver module, wherein the transceiver module is used for sending first information and sending DCI, wherein the first information is used to configure N CORESETs for the terminal, and CORESETPoolIndex corresponding to the N CORESETs has at least two different values, the N is an integer greater than or equal to 2, the DCI is used to indicate the first time-frequency resource, the first time-frequency resource can be used to carry the HARQ result corresponding to the scheduled PDSCH, the The location of the first time-frequency resource satisfies the first PDSCH processing capability in the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing delay corresponding to the second PDSCH processing capability is lower than the processing
  • the at least one scheduling parameter is associated with the second PDSCH processing capability, including: the at least one scheduling parameter satisfies one or more of the following preset conditions:
  • the at least one scheduling parameter includes a transmission bandwidth, and the preset condition includes that the transmission bandwidth is less than or equal to M resource block RBs, where M is pre-agreed or M is determined according to the second PDSCH processing capability supported by the terminal;
  • the at least one scheduling parameter includes a modulation and coding strategy MCS, and the preset condition includes that the MCS is less than or equal to a first MCS threshold, the first MCS threshold is pre-agreed, or the first MCS threshold is based on a second MCS threshold supported by the terminal.
  • PDSCH processing capability is determined.
  • an embodiment of the present application provides a communication device, and the communication device may be the communication device in any one of the ninth to sixteenth aspects of the above embodiments, or a communication device set in the ninth to sixteenth aspects.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface, and when the processor reads the computer program or instructions or data, the communication device is made to execute the above-mentioned method embodiments by the terminal or the communication interface. The method performed by the network device.
  • the communication interface may be a transceiver in a communication device, for example, implemented by an antenna, a feeder, a codec, etc. in the communication device, or, if the communication device is a chip set in a network device or terminal, then The communication interface may be an input/output interface of the chip, such as input/output circuits, pins, etc., for inputting/outputting instructions, data or signals.
  • the transceiver is used for the communication device to communicate with other devices. Exemplarily, when the communication device is a terminal, the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the method executed by the communication apparatus in any one of the ninth aspect to the sixteenth aspect .
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect, or the communication system includes the communication device described in the eleventh aspect.
  • the communication system includes the communication device of one or more of the ninth, eleventh, thirteenth, and fifteenth aspects, as well as the tenth, twelfth, and fourteenth aspects and the communication device of one or more of the sixteenth aspects.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the terminal in the above aspects is implemented; or the above-mentioned method is implemented; A method of various aspects performed by a network device.
  • a computer program product comprising: computer program code, when the computer program code is executed, causes the method performed by the terminal in the above aspects to be executed, or causes the The method performed by the network device in the above aspects is performed.
  • FIG. 1 is a schematic diagram of two kinds of multi-TRP transmissions provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a network architecture to which an embodiment of the present application is applicable;
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is still another schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the terminal of Release-16 (the second version of 5G) can support multi-TRP transmission, can also support DAPS-HO, and can also support shorter PDSCH processing delay.
  • the terminal can support multi-TRP transmission, and it can also be considered that the terminal has the ability to support multi-TRP transmission.
  • the terminal can support DAPS-HO, it can be considered that the terminal has the DAPS-HO capability, the terminal can support a shorter PDSCH processing delay, and it can be considered that the terminal has the PDSCH processing capability.
  • the terminal in the Release-16 version can support a shorter PDSCH processing delay relative to the PDSCH processing delay supported by the terminal in 4G.
  • PDSCH processing capability 1 the capability of a terminal in 4G to support PDSCH processing delay
  • PDSCH processing capability 2 the capability of supporting more PDSCH processing delays
  • Multi-TRP transmission introduced in Release-16, can improve downlink performance based on multi-TRP transmission.
  • multi-TRP transmission means that multiple TRPs can simultaneously provide data transmission services for the same terminal.
  • each of the multiple TRPs sends downlink control information (downlink control information, DCI) to the terminal, and each DCI schedules one PDSCH to implement configuration or scheduling of the terminal.
  • the first TRP among the multiple TRPs sends DCI to the terminal, and schedules one PDSCH, but a part of the PDSCH or a demodulation reference signal (demodulation reference signal, DMRS) port is sent by the first TRP , another partial layer or DMRS port of the PDSCH is sent by a TRP other than the first TRP among the multiple TRPs.
  • FIG. 1 takes as an example that two TRPs provide a data transmission service for the same terminal.
  • TRP1 and TRP2 in (a) of FIG. 1 respectively send one DCI to the terminal, for example, TRP1 sends DCI1 to the terminal, and TRP2 sends DCI2 to the terminal.
  • DCI1 can be used to schedule PDSCH to send data 1 (Data1) to the terminal
  • DCI2 can be used to schedule another PDSCH to send Data2 to the terminal. That is, two TRPs send one DCI to the terminal respectively, and one DCI is used to schedule one PDSCH.
  • the DCI sent by each TRP includes control channel resource configuration information (PDCCH-Config) configured for the terminal, where the control channel resource configuration information is used to indicate configuration information for sending the PDCCH.
  • PDCCH-Config control channel resource configuration information
  • the control channel resource configuration information includes multiple control resource sets CORESET, each CORESET includes a control resource set pool index (CORESETPoolIndex), and the CORESETPoolIndex can be used to distinguish TRPs that send DCI.
  • CORESETPoolIndex a control resource set pool index
  • the CORESETPoolIndex can be used to distinguish TRPs that send DCI.
  • One CORESET is associated with one PDCCH at most, and the CORESETPoolIndex included in the N CORESETs configured for the terminal may have the same value or two different values. Since the DCI is carried on the physical downlink control channel (PDCCH), it can also be considered that the CORESETPoolIndex can be used to distinguish the TRP that sends the PDCCH.
  • PDCH physical downlink control channel
  • the TRP for sending the PDCCH by using the corresponding control resource set is also different. For example, if the CORESETPoolIndex in the control channel resource configuration information corresponding to DCI1 is different from the CORESETPoolIndex in the control channel resource configuration information corresponding to DCI2, then the TRPs for sending DCI1 and DCI2 are different, that is, the TRPs for sending DCI1 and DCI2 are 2 TRPs. In (a) of FIG. 1 , multiple TRPs respectively send DCI for scheduling PDSCH to the terminal, and this manner may be referred to as a multiple-DCI multiple-TRP transmission mode.
  • the scheduled PDSCH can be used to carry Data1 sent by TRP1 to the terminal and Data2 sent by TRP2 to the terminal.
  • part of the layers or part of the DMRS ports in the PDSCH are sent by one TRP, and another part of the layers or DMRS ports in the PDSCH are sent by another TRP.
  • one TRP among the multiple TRPs sends the DCI that schedules the PDSCH to the terminal, which can be called a single DCI multi-TRP transfer mode.
  • the multi-TRP transmission mode of multiple DCIs and the multi-TRP transmission mode of single DCI have different requirements for network deployment.
  • the multi-TRP transmission mode of a single DCI has higher requirements on network deployment than the multi-TRP transmission mode of multiple DCIs. This is because different layers or DMRS ports of PDSCH scheduled by a single DCI are sent on different TRPs.
  • strict synchronization between multiple TRPs is required, and multiple TRPs are required to be strictly synchronized. There needs to be an ideal backhaul link between them, and the requirements for network deployment are high.
  • the network side device can use high-layer signaling to indicate the transmission configuration indication field in the DCI, that is, one of the "Transmission configuration indication" fields.
  • the association relationship between the code point and two different transmission configuration indication (TCI) states is configured to the terminal, that is, the network side device can simultaneously indicate two different TCI states for the terminal through the transmission configuration indication field in the DCI .
  • the network side device can indicate the transmission configuration indication (TCI) state (state) through high-layer signaling, and each TCI state can be used to configure the quasi-common communication between a group of DMRS ports of the PDSCH and other downlink reference signals.
  • TCI transmission configuration indication
  • Station (Quasi co-location, QCL) relationship the terminal receives downlink reference signals that have a QCL relationship with the current PDSCH layer or DMRS port, and estimates the time-frequency offset parameters of these downlink reference signals, based on the estimated time-frequency offset parameters. , which can be used to compensate the time-frequency offset on the layer of the current PDSCH or the DMRS port.
  • TCI transmission configuration indication
  • DAPS-HO is to shorten the movement interruption time, which refers to a period of time during which the terminal cannot send and receive data during the cell handover process.
  • FIG. 2 is a schematic flowchart of the DAPS-HO provided in this embodiment of the present application.
  • the source base station sends a measurement control message to the terminal, and the terminal receives the measurement control message, measures the downlink pilot signals of all possible target cells respectively, and sends a measurement report to the source base station.
  • the source base station determines whether to DAPS-HO, and if the source base station determines DAPS-HO, the source base station sends a DAPS-HO request message to the target base station.
  • the target base station uses an admission controller (admission control) to allow DAPS-HO, and sends a DAPS-HO request response message to the source base station.
  • the source base station receives the DAPS-HO request response message, and sends an RRC link reconfiguration request message to the terminal.
  • the terminal When the terminal receives the RRC link reconfiguration request message, it will not cut off the link with the source base station immediately, but will continue to send user data or receive user data in the serving cell of the source base station. That is, DAPS-HO requires the terminal to continue to receive and transmit data in the source cell after receiving the cell handover request.
  • the terminal After the new link of the target cell is established, the terminal will perform synchronization and random access with the target cell, during this process, the terminal will establish a new user plane protocol stack with the target cell, Keep a source user plane protocol stack active for sending and receiving user data. That is, the terminal receives data from the source cell and the target cell at the same time, and after completing the random access process, the terminal can continue to send user data, and then switch to the target cell.
  • the terminal needs to be able to receive data from two different cells at the same time. Therefore, the terminal can simultaneously receive data from two different cells, and it can also be considered that the terminal has DAPS-HO.
  • the PDSCH processing capability is mainly used to describe the PDSCH processing delay.
  • a hybrid automatic repeat request may be used to ensure the reliability of signal transmission.
  • the terminal can determine whether the received signal is correct according to the check digit added to the signal. The terminal determines that the received signal is correct, and the terminal can send an acknowledgement (ACK) message to the TRP. On the contrary, if the terminal determines that the received signal is wrong, the terminal can send a (negative acknowledgement, NACK) message to the TRP to notify the TRP of the signal received by the terminal. it's wrong. When the TRP receives the NACK message, the TRP will re-send the signal to the terminal.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the terminal will feed back the HARQ result to the TRP, that is, the terminal will send hybrid automatic repeat request-acknowledgement (HARQ-ACK) information to the TRP.
  • HARQ-ACK hybrid automatic repeat request-acknowledgement
  • the terminal needs to analyze the signal retransmitted by the TRP to determine whether the received signal is correct. If the signal is incorrect, the terminal also needs to pack (packetize) the uplink data before feeding back the HARQ result to the TRP. If the terminal does not have enough time to receive the PDSCH and package the uplink data, the terminal may not be able to provide a valid HARQ-ACK message to the TRP. Therefore, in order to ensure that the terminal has enough time for receiving and processing the PDSCH and packetizing the uplink data, the terminal can provide effective HARQ-ACK information.
  • NR specifies the time interval (also called time span) from the end time (end position) of the last symbol of PDSCH to the start time (start position) of the first uplink symbol of PUCCH carrying HARQ-ACK information. ) must be greater than or equal to a certain threshold. When the time span is greater than or equal to a certain threshold, the terminal has enough time to receive and process the PDSCH and packetize the uplink data, and thus can report valid HARQ-ACK information. It should be understood that the start position and the end position here refer to time domain positions.
  • the above-mentioned certain threshold may be determined according to the capability reported by the terminal. Considering the allocated HARQ-ACK timing K1 and the influence of the used PUCCH resources due to timing advance, in some embodiments, it is stipulated that the start time of the first uplink symbol of the PUCCH carrying the HARQ-ACK information cannot be earlier than L1, so that Make the above time span greater than or equal to a certain threshold.
  • the L1 is greater than or equal to the first duration T proc,1 after the end of the last symbol of the PDSCH carrying the transport block (transport block, TB), that is, the start time of the cyclic prefix (CP) of the next uplink symbol After T proc,1 after the end of the last symbol of PDSCH.
  • T proc,1 satisfies formula (1).
  • T proc,1 (N 1 +d 1,1 )(2048+144) ⁇ k2 ⁇ ⁇ T c (1)
  • N1 is determined based on PDSCH processing capability 1 and PDSCH processing capability 2 of the terminal.
  • the PDSCH processing time corresponding to PDSCH processing capability 1 is shown in Table 1-1 below, and the PDSCH processing time corresponding to PDSCH processing capability 2 is shown in Table 1-2 below.
  • the ⁇ value of PDSCH processing capacity 1 can be determined according to Table 1-1, and the ⁇ value of PDSCH processing capacity 2 can be determined according to Table 1-2.
  • the ⁇ value indicates the subcarrier spacing, and the ⁇ value corresponds to one of ( ⁇ PDCCH, ⁇ PDSCH, ⁇ UL) that maximizes the value of T proc,1.
  • ⁇ PDCCH corresponds to the subcarrier spacing of the PDCCH on which PDSCH is scheduled
  • ⁇ PDSCH corresponds to the subcarrier spacing of the scheduled PDSCH
  • ⁇ UL corresponds to the subcarrier spacing of the uplink channel for transmitting HARQ-ACK.
  • the processing delay of PDSCH processing capability 2 is shorter than that of PDSCH processing capability 1. Therefore, a terminal with PDSCH processing capability 2 has higher requirements on the processing capability of the terminal than a terminal with PDSCH processing capability 1 .
  • the terminal may have the above three capabilities, the terminal may not be able to support the above multiple features at the same time due to the limitation of the hardware processing capability of the terminal. For example, the terminal may not support DAPS-HO and multi-TRP transmission at the same time.
  • the network device cannot know whether the terminal has multiple capabilities at the same time, and therefore cannot reasonably configure or schedule the terminal.
  • the terminal may not be able to have DAPS-HO capability and multi-TRP transmission capability at the same time. If the network device configures or schedules DAPS-HO and multi-TRP transmission at the same time in the same time slot, the terminal may fail to support the system due to insufficient hardware resources. Crash, unable to realize the service transmission of DAPS-HO and multi-TRP transmission.
  • an embodiment of the present application provides a communication method, in which the network device may configure or schedule the terminal according to the actual processing capacity of the terminal, for example, according to the processing capacity lower than the actual processing capacity of the terminal. , so as to avoid the system crash due to insufficient hardware resources of the terminal and unable to handle the business, and improve the user experience.
  • the terminal reports the capabilities it has to the network device, so that the network device can clearly know the capabilities the terminal has at the same time and which capabilities it has, so that the network device can reasonably configure or schedule the terminal.
  • the communication methods provided in the embodiments of the present application can be applied to various communication systems including a transmitter and a receiver, such as an NR system, an LTE system, an LTE-A system, a worldwide interoperability for microwave access (WiMAX), or Wireless local area networks (WLAN) and 5G systems, etc.
  • a transmitter and a receiver such as an NR system, an LTE system, an LTE-A system, a worldwide interoperability for microwave access (WiMAX), or Wireless local area networks (WLAN) and 5G systems, etc.
  • the communication method provided in this embodiment of the present application may be applied to the network architecture shown in FIG. 3 .
  • the sender and receiver can transmit data through radio waves, or through transmission media such as lasers, infrared, or optical fibers.
  • a device that sends a signal is usually called a sending end
  • a device that receives a signal is called a receiving end
  • the sending end and the receiving end are relative terms. That is, in some embodiments, the sender may also be referred to as the receiver, and relatively speaking, the receiver is referred to as the sender.
  • the sending end may be a network-side device
  • the receiving end may be a terminal-side device.
  • the network side device may also be referred to as a network device, which is an entity on the network side that is used to transmit or receive signals, such as a new generation base station (generation Node B, gNodeB).
  • a network device may be a device used to communicate with mobile devices.
  • the network device may be an AP in wireless local area networks (WLAN), an evolved base station (evolutional Node B, eNB or eNodeB) in long term evolution (LTE), or it may also be included in the 5G NR system
  • the network device is a gNB as an example.
  • the gNB may include an antenna, a base band unit (BBU) and a remote radio unit (RRU).
  • the BBU may be connected to the RRU through a common public radio interface (CPRI) or enhanced CPRI (enhance CPRI, eCPRI), and the RRU may be connected to the antenna through a feeder.
  • CPRI common public radio interface
  • eCPRI enhanced CPRI
  • the antenna can be a passive antenna, which is separated from the RRU and can be connected through a cable.
  • the antenna can be an active antenna unit (active antenna unit, AAU), that is, the antenna unit of the AAU and the RRU are integrated into one piece.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • a gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the DU can be used to transmit and receive radio frequency signals, convert radio frequency signals to baseband signals, and perform part of baseband processing.
  • the CU can be used to perform baseband processing, control the base station, and so on.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, therefore, in this architecture, the higher-layer signaling, such as the RRC layer signaling, can also be considered to be sent by the DU. , or, sent by DU and AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the terminal-side device can also be referred to as a terminal device or a terminal, and can be a wireless terminal device that can receive scheduling and instructions from network devices.
  • the terminal-side device may communicate with one or more core networks or the Internet via a radio access network (eg, radio access network, RAN), and exchange voice and/or data with the RAN.
  • a radio access network eg, radio access network, RAN
  • the terminal-side equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) ), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • terminals may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • the terminal may include a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control), and a wireless terminal in self driving (self driving).
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control industrial control
  • self driving self driving
  • the terminal may include a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant ( personal digital assistant, PDA), etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may also include limited devices, such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, and the like.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • network devices and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; and they can also be deployed on aircraft, balloons, and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of network devices and terminals.
  • the embodiments of the present application may be applicable to uplink signal transmission, and may also be applicable to D2D signal transmission.
  • the sending device is a terminal, and the corresponding receiving device is a network device;
  • the sending device is a terminal, and the receiving device is also a terminal.
  • used for indicating may include direct indicating and indirect indicating.
  • the indication information may directly indicate I or indirectly indicate I, but it does not mean that the indication information must carry I.
  • the information indicated by the indication information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Indicating the index of information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. Alternatively, it may also be agreed that a certain identifier is carried or not carried in a certain information as an indication to treat the indication information.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the above indication manner and various combinations thereof.
  • the required indication mode can be selected according to specific needs.
  • the selected indication mode is not limited in this embodiment of the present application. In this way, the indication mode involved in the embodiment of the present application should be understood as covering the ability to make the indication to be indicated. Various methods for the party to learn the information to be indicated.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the transmission periods and/or transmission timings of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be predefined, for example, predefined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling, and physical layer signaling, such as downlink control information (DCI) one or a combination of at least two.
  • radio resource control signaling such as RRC signaling
  • MAC layer signaling such as MAC-CE signaling
  • DCI downlink control information
  • a time domain concept or a time domain unit may include a frame, a radio frame, a system frame, a subframe, a half frame, a time slot, a mini-slot, a symbol, and the like.
  • At least one (a) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first information and the second information are only for differentiating different indication information, and do not indicate the difference in priority or importance of the two kinds of information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the word "exemplary” is used to indicate an example or illustration. Any embodiment or implementation described in this application summary as an “example” should not be construed as preferred over other embodiments or implementations. That is, the use of the word “example” is intended to present concepts in a concrete manner.
  • the embodiment of the present application aims to enable the network device to configure or schedule the terminal without exceeding the processing capability of the terminal.
  • the network device may configure or schedule the terminal according to the capability actually possessed by the terminal, or may configure or schedule the terminal according to the capability lower than that the terminal actually possesses. In this way, problems such as system crash that may occur in the process of the terminal performing service transmission according to the configuration or scheduling of the network device can be avoided.
  • the terminal does not support multi-TRP transmission during the DAPS-HO process.
  • the network device configures both the DAPS-HO configuration and the multi-TRP transmission configuration for the terminal, for example, the network device configures the terminal to perform DAPS-HO reconfiguration for the terminal, and the network device configures the terminal for CORESETPoolIndex includes two different values; or a code point of CORESETPoolIndex configured by the network device for the terminal is associated with two different TCI states.
  • the terminal performs multi-TRP transmission in the DAPS-HO process according to the configuration of the network equipment.
  • the network device can configure or schedule the terminal according to the fact that the terminal supports DAPS-HO and single TRP transmission at the same time, that is, configure or schedule the terminal according to the actual processing capability of the terminal, and try to avoid the problem of insufficient processing capability of the terminal. Terminal system crashes, etc.
  • the terminal supports multi-TRP transmission in the DAPS-HO process
  • the network device can configure DAPS-HO reconfiguration for the terminal, and configure the multi-TRP transmission configuration for the terminal; or the network device can configure DAPS-HO for the terminal.
  • the terminal is configured or scheduled according to the actual processing capability of the terminal, which can also avoid problems such as terminal system collapse due to insufficient processing capability of the terminal.
  • the network device can be configured according to PDSCH processing capability 1 to ensure that the PDSHC processing delay does not exceed the actual PDSCH processing capability of the terminal and ensure that the terminal can report Valid HARQ results.
  • the method is applied to the communication system shown in FIG. 3 as an example. Additionally, the method may be performed by two communication devices, eg, a first communication device and a second communication device.
  • the method is performed by a base station and a terminal as an example, that is, the first communication device is a base station and the second communication device is a terminal as an example.
  • the embodiment of the present application only uses the communication system of FIG. 3 as an example, and is not limited to this scenario.
  • multi-TRP transmission including 2 TRP transmission is taken as an example, that is, for multi-DCI multi-TRP transmission, the CORESETPoolIndex configured by the base station for the terminal may include at most two values, such as the first value. and the second value for example.
  • the TCI state associated with the code point in the TCI field in the DCI sent by the base station to the terminal may include at most two TCI states, such as a first TCI state and a second TCI state.
  • the multi-TRP transmission is only 2 TRP transmissions as an example, but this application does not limit the number of TRPs included in the multi-TRP transmission scenario.
  • the multi-TRP transmission scenario includes 3 or more TRPs, it is also possible to The examples of this application are continued.
  • the CORESETPoolIndex configured by the base station for the terminal may include at least three values.
  • the TCI state associated with the code point in the TCI field in the DCI sent by the base station to the terminal may include at least three TCI states.
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of the present application. The specific flow of the communication method is described as follows.
  • the base station sends first information to the terminal, and accordingly, the terminal receives the first information, where the first information is used for reconfiguration of DAPS-HO.
  • the first information is information available for DAPS-HO reconfiguration.
  • the first information may be carried in one or more fields of the existing signaling, which facilitates compatibility with the existing signaling.
  • the first information may be the above-mentioned RRC link reconfiguration request message.
  • the terminal determines to monitor the PDCCH corresponding to the CORESETPoolIndex associated with the first value among the N configured CORESETPoolIndex, where N is an integer greater than or equal to 2.
  • the terminal receives the first information, and performs a DAPS-HO process according to the first information.
  • the base station may also send the PDCCH configuration parameter configured for the terminal to the terminal, where the PDCCH configuration parameter includes the CORESETPoolIndex in the CORESET.
  • the terminal can determine the information from which TRPs to monitor according to the CORESETPoolIndex, that is, the terminal performs multiple TRP transmission or single TRP transmission according to the CORESETPoolIndex.
  • the terminal can only monitor the information from the same TRP during the DAPS-HO process, and does not need to monitor the information from multiple TRPs . It can also be understood that, regardless of whether the CORESETPoolIndex configured by the base station for the terminal has the same value, or the CORESETPoolIndex configured by the base station for the terminal has a different value, the terminal monitors the CORESETPoolIndex associated with a certain value (the first value is used as an example in this article). The corresponding PDCCH, and the PDCCH corresponding to the CORESETPoolIndex associated with other values is not monitored.
  • the base station can configure CORESETPoolIndex to have multiple different values. For example, if there are two TRPs, then CORESETPoolIndex has two different values, such as 0 and 1. The first value can be 0, can also be 1.
  • the embodiment of the present application may pre-stipulate that the terminal performs single TRP transmission in the DAPS-HO process, or the base station may notify the terminal that the terminal performs single TRP transmission in the DAPS-HO process.
  • the terminal regardless of whether the CORESETPoolIndex configured by the base station for the terminal has the same value or multiple different values, the terminal only monitors the PDCCH associated with the CORESETPoolIndex associated with a certain value.
  • the base station sends a PDCCH to the terminal, and the CORESETPoolIndex corresponding to the CORESET associated with the PDCCH is the first value, or the PDCCH is associated with the first value.
  • the value of CORESETPoolIndex corresponding to CORESET includes two different values, such as a first value and a second value.
  • the terminal Before completing this DAPS-HO, the terminal only needs to monitor the PDCCH corresponding to the CORESETPoolIndex associated with the first value, that is, the value of CORESETPoolInde in the CORESET associated with the PDCCH monitored by the terminal is the first value.
  • the value of the CORESETPoolIndex configured by the base station may include a first value and a second value, and the terminal only monitors the PDCCH corresponding to the CORESETPoolIndex associated with the first value. From the perspective of the terminal, it can be considered that only the first value is useful among the obtained first and second values. In other words, the terminal may consider that when the value of the CORESETPoolIndex is the first value, the configuration of the CORESET corresponding to the CORESETPoolIndex takes effect, and the terminal may monitor the PDCCH according to the CORESET.
  • the terminal performs single TRP transmission in the DAPS-HO process, and it can also be considered that when the value of the CORESETPoolIndex is the first value, the configuration of the CORESET corresponding to the CORESETPoolIndex takes effect.
  • the base station may inform the terminal that the terminal performs single TRP transmission during the DAPS-HO process. It can also be considered that the base station informs the terminal that when the value of CORESETPoolIndex is the first value, the configuration of the CORESET corresponding to the CORESETPoolIndex takes effect.
  • the system may predefine the first value, that is, the system may predefine that in multi-DCI-based multi-TRP transmission, the CORESETPoolIndex is the first value, and the CORESET configuration corresponding to the CORESETPoolIndex takes effect.
  • the base station and the terminal may pre-agreed the first value, that is, the base station and the terminal may pre-agreed that in multi-DCI-based multi-TRP transmission, the CORESETPoolIndex is the first value, and the CORESET configuration corresponding to the CORESETPoolIndex takes effect.
  • the first value may be 0, that is, in the multi-TRP transmission of the predefined multi-DCI, the CORESETPoolIndex is 0, and the CORESET configuration corresponding to the CORESETPoolIndex of 0 takes effect.
  • the CORESETPoolIndex corresponding to the multiple CORESETs associated with the PDCCH sent by the base station to the terminal may be the same or different.
  • CORESETPoolIndex 0.
  • the CORESETPoolIndex corresponding to the multiple CORESETs associated with the PDCCH sent by the base station to the terminal is different, for example, the CORESETPoolIndex includes 0 and 1.
  • the first value may be 1, that is, in the predefined multi-TRP transmission based on multi-DCI, when the CORESETPoolIndex associated with the CORESET is 1, the corresponding CORESET configuration takes effect.
  • CORESETPoolIndex 1 corresponding to multiple CORESETs associated with the PDCCH sent by the base station to the terminal, or CORESETPoolIndex of two different values corresponding to multiple CORESETs associated with the PDCCH sent by the base station to the terminal, such as including 0 and 1.
  • the terminal receives the first information, performs DAPS-HO according to the first information, and monitors the PDCCH corresponding to the CORESETPoolIndex associated with 1 before completing the DAPS-HO.
  • the above-mentioned first value may be notified by the base station to the terminal, that is, the base station informs the terminal that in multi-DCI multi-TRP transmission, monitor the PDCCH corresponding to the CORESETPoolIndex associated with the first value among multiple configured CORESETPoolIndexes. That is, the base station informs the terminal that the CORESETPoolIndex is the first value, and the CORESET configuration corresponding to the CORESETPoolIndex takes effect.
  • the base station may indicate the first value through the second information.
  • the second information may directly indicate the first value, or may indicate the first value indirectly, for example, the first value is indirectly indicated through information related to the first value, thereby reducing the indication overhead to a certain extent.
  • the base station sends second information to the terminal, and correspondingly, the terminal receives the second information, where the second information can be used to indicate the first value.
  • the second information may also be carried in one or more fields of the existing signaling, which facilitates compatibility with the existing signaling.
  • the second information is carried in one or more of RRC signaling, media access control element (media access control control element, MAC CE) signaling, and DCI signaling.
  • RRC signaling media access control element (media access control control element, MAC CE) signaling
  • MAC CE media access control control element
  • DCI signaling DCI signaling.
  • One or more of the above fields may be defined fields in RRC signaling, fields defined in MAC CE signaling, or fields defined in uplink control information (UCI) signaling, or may be newly defined RRC fields. , MAC CE field or UCI field.
  • the embodiments of the present application are not limited.
  • the second information may also be carried in newly defined signaling.
  • the second information and the first information may be sent through one signaling, for example, the second information may be carried in the first information, so that the two types of information can be sent through one signaling, which can save signaling overhead. It should be understood that the second information and the first information are sent through the same signaling, and the second information and the first information are sent at the same time.
  • the second information can also be sent to the terminal independently of the first information, that is, the first information and the second information are respectively sent to the terminal, and the manner of reporting the second information is more flexible.
  • the sending time of the second information is earlier than the sending time of the first information. It should be noted that the sending time of the second information is earlier than the sending time of the first information, that is, the second information is sent before the first information.
  • the base station may send the second information (high-layer signaling indicating the first value or the first TCI state) to the terminal at time T, and the base station may send the first information (high-layer signaling for DAPS-HO configuration) at time T+ ⁇ ), where ⁇ is greater than or equal to 0.
  • the terminal receives the second information at time T, and receives the first information at time T+ ⁇ , and the terminal determines, according to the second information, that the CORESETPoolIndex configured by the base station for the terminal is the first value, then the terminal in the DAPS-HO process,
  • the PDCCH associated with the CORESETPoolIndex of the first value may be monitored, while the PDCCH associated with the CORESETPoolIndex of other values may not be monitored.
  • time instant may refer to a time domain unit.
  • the base station can reconfigure the DAPS-HO of single TRP transmission for the terminal before DAPS-HO is started or at the same time as DAPS-HO is started, this can ensure that during the HAPS-HO handover process, multi-TRP transmission can be avoided, exceeding the The processing power of the terminal.
  • the following introduces several specific indication manners in which the second information indicates the first value, that is, specific implementation forms of the second information.
  • the second information includes the first value, which is straightforward.
  • the second information may instruct the base station to configure a single TRP transmission mode for the terminal.
  • the second information may indicate that the CORESETPoolIndex in the CORESET configured by the base station for the terminal has the same value, and the value is the first value.
  • the second information may be high-level signaling sent by the base station to the terminal, and the high-level signaling is that the CORESETPoolIndex in CORESET in the PDCCH-Config configured by the terminal has the same value, and this value is the first value. That is, the second information includes the value included in CORESETPoolIndex in CORESET in the PDCCH-Config configured by the base station for the terminal, and the value is the first value. In this case, the terminal may determine that the CORESETPoolIndex associated with the monitored PDCCH is equal to the first value by receiving the second information.
  • the first value can be specified through the first identification information, that is, the first value is indirectly indicated through the first identification information, which is more flexible.
  • the first identification information may be used to indicate whether the monitored CORESETPoolIndex associated with the PDCCH during the DAPS-HO process may include multiple different values, that is, indirectly instruct the base station to configure multi-TRP transmission or single-TRP transmission for the terminal .
  • the second information carrying the first identification information may be agreed, which may indicate that the CORESETPoolIndex associated with the monitored PDCCH during the DAPS-HO process of the terminal is equal to a pre-agreed value, such as the first value.
  • the second information that does not carry the first identification information may indicate that the value of the CORESETPoolIndex associated with the monitored PDCCH during the DAPS-HO process is not restricted.
  • the second information can indicate that the terminal is in the DAPS-HO process, and the monitored PDCCH associated CORESETPoolIndexde value may be one (for example, the first value), or may be multiple, Take 2 as an example (eg first value and second value).
  • the terminal can determine whether to monitor the PDCCH associated with the first value of CORESETPoolIndex or the PDCCH associated with the first value and the second value of CORESETPoolIndex according to whether the second information carries the first identification information. If the second information carries the first identification information, the terminal only needs to monitor the PDCCH associated with the first value of CORESETPoolIndex, that is, monitor the information from the same TRP.
  • the second information carrying the first identification information may also be agreed, which may indicate that the value of the CORESETPoolIndex associated with the monitored PDCCH during the DAPS-HO process is not limited.
  • the second information, which does not carry the first identification information may indicate that the CORESETPoolIndex associated with the monitored PDCCH is equal to a pre-agreed value, such as the first value, during the DAPS-HO process.
  • the first identification information may be carried in one field or multiple fields included in the second information, the first identification information may occupy multiple bits, and the values (states) of the multiple bits indicate that the terminal is in
  • the monitored CORESETPoolIndex associated with the PDCCH is which of multiple values (eg, the first value and the second value), that is, it indirectly instructs the base station to configure multi-TRP transmission or single-TRP transmission for the terminal. It should be understood that the values of CORESETPoolIndex corresponding to different values of the at least one bit are different.
  • the first identification information occupies 1 bit, that is, the first identification information has two states, and the two states are the first state and the second state respectively.
  • the first state can be used to indicate that the value of CORESETPoolIndex that the terminal needs to monitor during the DAPS-HO process is the first value
  • the second state can be used to indicate that the terminal needs to monitor the value of the CORESETPoolIndex during the DAPS-HO process.
  • the value of CORESETPoolIndex is the second value.
  • the first state can be used to indicate that the value of CORESETPoolIndex that the terminal needs to monitor during the DAPS-HO process is a second value
  • the second state can be used to indicate that the terminal is in the DAPS-HO process.
  • the value of CORESETPoolIndex that needs to be monitored is the first value.
  • the terminal receives the second information, if the first identification information indicates that the value of the CORESETPoolIndex that the terminal needs to monitor during the DAPS-HO process is the first value, then the terminal monitors the PDCCH corresponding to the CORESETPoolIndex associated with the first value; if The first identification information indicates that the value of the CORESETPoolIndex that the terminal needs to monitor during the DAPS-HO process is the second value, and then the terminal monitors the PDCCH corresponding to the CORESETPoolIndex associated with the second value.
  • the first identification information occupies multiple bits, for example, the first identification information occupies 2 bits, then the first identification information has 4 states.
  • the correspondence between the four states of the first identification information and the CORESETPoolIndex that the terminal needs to monitor during the DAPS-HO process may be predefined.
  • the terminal may determine to monitor the PDCCH corresponding to the CORESETPoolIndex associated with a certain value according to the state identified by the first identification information and the corresponding relationship.
  • the four states of the first identification information are the first state, the second state, the third state and the fourth state, respectively.
  • the first state can be used to indicate that the CORESETPoolIndex associated with the PDCCH that the terminal needs to monitor during the DAPS-HO process is the first value
  • the second state can be used to indicate that the terminal needs to monitor the PDCCH during the DAPS-HO process.
  • CORESETPoolIndex is the second value
  • the third state may be used to indicate that the CORESETPoolIndex associated with the PDCCH that the terminal needs to monitor during the DAPS-HO process is not limited, for example, including the first value and the second value. Since the multi-TRP transmission includes 2 TRPs as an example herein, the fourth state can be regarded as a reserved state.
  • the second information may not include the first value and the first identification information, that is, in the case of defaulting the first value and the first identification information, the second information may indicate the first value by default.
  • the second information may not include the first value and the first identification information, and it may be considered that the base station configures single TRP transmission for the terminal, that is, the value of CORESETPoolIndex configured by the base station for the terminal is a pre-agreed value.
  • the value can be predefined as the first value.
  • this indication manner may be regarded as a manner of indicating the first value under the condition of defaulting the first value and the first identification information.
  • CORESETPoolIndex is the first value, and the CORESET configuration of CORESETPoolIndex takes effect, which can be predefined or indicated by the base station to the terminal, so the second information is not necessarily sent by the base station to the terminal, Therefore, in FIG. 4 , S403 is indicated by a dotted line. It should be noted that S403 is not meant to be a step after S401 or S402.
  • the base station may perform configuration and scheduling for the terminal according to the capability of the terminal itself, that is, the base station sends the second information to the terminal according to the capability of the terminal itself. Since the second information is determined according to the capabilities of the terminal itself, the configuration of the second information is more reasonable, which can not only avoid the configuration of the terminal beyond the capabilities of the terminal itself, but also maximize the use of the capabilities of the terminal itself.
  • the base station may perform configuration and scheduling for the terminal according to the capability of the terminal itself, that is, the base station sends the second information to the terminal according to the capability of the terminal itself. Since the second information is determined according to the capabilities of the terminal itself, the configuration of the second information is more reasonable, which can not only avoid the configuration of the terminal beyond the capabilities of the terminal itself, but also maximize the use of the capabilities of the terminal itself.
  • Ability
  • the terminal sends first capability information to the base station, and the base station receives the first capability information, where the first capability information is used to indicate whether the terminal supports multi-TRP transmission in the DAPS-HO process.
  • the base station receives the first capability information sent by the terminal, and if it is determined that the first capability information indicates that the terminal supports single TRP transmission in the DAPS-HO process, that is, the terminal does not support multi-TRP transmission in the DAPS-HO process, then the base station sends
  • the second information sent by the terminal may indicate the first value.
  • the terminal can monitor the PDCCH whose associated CORESETPoolIndex is the first value, and does not monitor the PDCCH whose associated CORESETPoolIndex is other values.
  • the terminal may monitor the PDCCH associated with multiple values of CORESETPoolIndex during the DAPS-HO process. It should be noted that, if multi-TRP transmission in the DAPS-HO process is supported, the indication of the second information is not required.
  • the first capability information is not necessarily sent by the terminal, so S404 is indicated by a dotted line in FIG. 4 .
  • this embodiment of the present application does not limit the sequence of S403 and S404. That is, S404 can be executed before S403, or can be executed after S403.
  • the terminal does not send the first capability information, it may be assumed that the terminal does not support multi-TRP transmission in the DAPS-HO process. That is, by defaulting the first capability information, it may be assumed that the terminal does not support multi-TRP transmission in the DAPS-HO process.
  • the foregoing takes multi-DCI multi-TRP transmission as an example to describe how the base station configures or schedules the terminal according to the actual capability of the terminal. It should be understood that the foregoing configuration or scheduling of the base station for the terminal is also applicable to the multi-TRP transmission scenario of a single DCI, which will be described in detail below.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method is suitable for multi-TRP transmission of a single DCI, and the specific flow of the method is described as follows.
  • the base station sends first information to the terminal, and accordingly, the terminal receives the first information, where the first information is used for DAPS-HO reconfiguration.
  • the base station sends second information to the terminal, and correspondingly, the terminal receives the second information, where the second information can be used to indicate the first TCI state.
  • the base station can also send DCI to the terminal, and the DCI can be used to indicate different DMRS groups of PDSCH
  • the associated TCI state For example, the code point of the TCI field in the DCI may be associated with the TCI state associated with the code point of the TCI field in the DCI.
  • the terminal may use the TCI state indicated by the DCI to receive the PDSCH.
  • the terminal can receive the PDSCH according to one TCI state during the DAPS-HO process, and does not need to follow multiple TCIs. state receiving PDSCH. It can also be understood that, regardless of whether the TCI fields in the DCI configured by the base station for the terminal are associated with the same TCI state, or the TCI fields in the DCI configured by the base station for the terminal are associated with different TCI states, the terminal can be in the DAPS-HO process.
  • the PDSCH is received in the TCI state, and there is no need to receive the PDSCH according to multiple TCI states, which can reduce the complexity of the terminal implementation.
  • the base station can configure the TCI field in the DCI to associate with different TCI states. For example, if there are two TRPs, then the TCI field in the DCI is associated with two different TCI states, such as the first TCI. state and the second TCI state. Only one TCI state of the two TCI states associated with the code point of the TCI domain in the DCI sent by the base station to the terminal takes effect. TCI state (TCI state1) takes effect.
  • the first TCI state may be the first TCI state in the 2 TCI states associated with the code point of the TCI domain in the DCI, or may be the first TCI state in the 2 TCI states associated with the code point of the TCI domain in the DCI the second TCI state (TCI state2).
  • the terminal may be pre-specified that the terminal performs single TRP transmission during the DAPS-HO process, or the base station may inform the terminal that the terminal performs single TRP transmission during the DAPS-HO process.
  • the terminal receives the PDSCH according to one of the TCI states, for example, the terminal receives the PDSCH according to the first TCI state.
  • the TCI field in the DCI configured by the base station for the terminal may be associated with the first TCI state and the second TCI state, and the terminal only receives the PDSCH according to the first TCI state. From the perspective of the terminal, it can be considered that among the obtained first TCI state and second TCI state, only the first TCI state is useful. In other words, the terminal may consider that the first TCI state associated with the TCI field in the DCI is valid. From this perspective, it may also be considered that the pre-appointed first TCI state associated with the TCI field in the DCI takes effect when the terminal performs single TRP transmission in the DAPS-HO process.
  • the base station may inform the terminal that the terminal performs single TRP transmission during the DAPS-HO process, or it may be considered that the base station informs the terminal that the first TCI state associated with the TCI field in the DCI takes effect.
  • the first TCI state may be pre-agreed, or may be notified by the base station to the terminal. Since the first TCI state associated with the TCI field in the predefined DCI takes effect, after receiving the first information, the terminal receives the PDSCH according to the first TCI state according to the pre-definition, and it can also be considered that the first information triggers the first TCI state to receive PDSCH . That is, the first information enables the terminal to receive the PDSCH according to the first TCI state among the multiple TCI states.
  • the base station may notify the terminal through the second information that the first TCI state associated with the TCI field in the DCI takes effect. That is, the second information may indicate the first TCI state. Similar to the second information indicating the first value, the second information indicating the first TCI state includes a direct indication manner and an indirect indication manner, which will be introduced separately below.
  • the second information includes the first TCI state, which is straightforward.
  • the second information may instruct the base station to configure a single TRP transmission manner for the terminal.
  • the second information may indicate that the TCI state associated with the code point in the TCI field of the DCI configured by the base station for the terminal is a TCI state, and the TCI state is the first TCI state.
  • the second information may be MAC-CE signaling sent by the base station to the terminal, where the MAC-CE signaling is that the TCI state associated with the code point in the TCI field in the DCI configured by the terminal is a TCI state, and the TCI state The state is the first TCI state.
  • the terminal receiving the second information may determine to receive the PDSCH according to the first TCI state.
  • the first TCI state can be specified by the first identification information, that is, the first TCI state is indirectly indicated by the first identification information, which is more flexible.
  • the first identification information may be used to indicate whether the TCI state associated with different DMRS packets of the PDSCH is the same in the DAPS-HO process of the terminal, that is, indirectly instruct the base station to configure multi-TRP transmission or single-TRP transmission for the terminal.
  • the second information carrying the first identification information may be agreed, which may indicate to the terminal that in the DAPS-HO process, the TCI state associated with different DMRS groups of the PDSCH is equal to a pre-agreed value, such as the first TCI state.
  • the second information that does not carry the first identification information can be used to instruct the terminal to determine, in the DAPS-HO process, the first TCI state associated with the code point of the TCI domain in the DCI corresponding to the first group of DMRS packets of the PDSCH, the PDSCH state.
  • the second group of DMRS packets corresponds to the second TCI state associated with the code point of the TCI field in the DCI.
  • the terminal may determine the TCI state to be used for receiving the PDSCH according to whether the second information carries the first identification information. If the second information carries the first identification information, the terminal determines to use the TCI state indicated by the first identification information to receive the PDSCH.
  • the second information that does not carry the first identification information can be agreed, and the terminal can be instructed that in the DAPS-HO process, the TCI state associated with different DMRS groups of the PDSCH is equal to a pre-agreed value, such as the first TCI state.
  • the second information carrying the first identification information can be used to instruct the terminal to determine, in the DAPS-HO process, the first TCI state associated with the code point of the TCI domain in the DCI corresponding to the first group of DMRS packets of the PDSCH, and the first TCI state of the PDSCH.
  • the two groups of DMRS packets correspond to the second TCI state associated with the code point of the TCI field in the DCI.
  • the first identification information may be carried in one field or multiple fields included in the second information, the first identification information may occupy multiple bits, and the values (states) of the multiple bits indicate that the terminal is in
  • the TCI state associated with different DMRS groups of PDSCH is which TCI state among multiple TCI states (such as the first TCI state and the second TCI state), that is, the base station is indirectly instructed to configure multi-TRP transmission for the terminal or Single TRP transmission. It should be understood that the TCI states corresponding to different values of the at least one bit are different.
  • the first identification information occupies 1 bit, that is, the first identification information has two states, and the two states are the first state and the second state respectively.
  • the first state may be used to indicate that the terminal is in the DAPS-HO process
  • the TCI state associated with different DMRS groups of the PDSCH is equal to a pre-agreed value, such as the first TCI state.
  • the second state is used to indicate that in the DAPS-HO process of the terminal, the first group of DMRS packets of PDSCH corresponds to the first TCI state associated with the code point of the TCI domain in the DCI, and the second group of DMRS packets of PDSCH corresponds to the first TCI state in the DCI.
  • the second TCI state associated with the code point of the TCI field is used to indicate that the terminal is in the DAPS-HO process, and the first group of DMRS packets of PDSCH corresponds to the first TCI state associated with the code point of the TCI domain in the DCI.
  • the first state is used to indicate that the terminal is in the DAPS-HO process
  • the first group of DMRS packets of PDSCH corresponds to the first TCI state associated with the code point of the TCI domain in the DCI
  • the second group of DMRS packets of PDSCH corresponds to the DCI
  • the second state is used to indicate that in the DAPS-HO process of the terminal, the TCI state associated with different DMRS groups of the PDSCH is equal to a pre-agreed value, such as the first TCI state.
  • the first identification information occupies multiple bits, for example, the first identification information occupies 2 bits, then the first identification information has 4 states.
  • the correspondence between the four states of the first identification information and the TCI states associated with different DMRS groups of the PDSCH in the DAPS-HO process of the terminal may be predefined.
  • the four states of the first identification information are the first state, the second state, the third state and the fourth state, respectively. It can be pre-defined, the first state can be used to indicate that the terminal is in the DAPS-HO process, the TCI state associated with different DMRS groups of PDSCH is the first TCI state, and the second state can be used to indicate that the terminal is in the DAPS-HO process.
  • the TCI state associated with different DMRS groups is the second TCI state
  • the third state can be used by the terminal in the DAPS-HO process
  • the first group of DMRS groups in PDSCH corresponds to the first TCI associated with the code point of the TCI domain in the DCI state
  • the second group of DMRS packets of PDSCH corresponds to the second TCI state associated with the code point of the TCI domain in the DCI. Since the multi-TRP transmission includes 2 TRPs as an example herein, the fourth state can be regarded as a reserved state.
  • the second information may not include the first TCI state and the first identification information, that is, in the case of the default first state and the first identification information, the second information The first state may be indicated by default.
  • the manner in which the second information indicates the first TCI state is similar to the manner in which the second information indicates the first value in the multi-TRP transmission scenario with multiple DCIs.
  • the description in the embodiment shown in FIG. 4 will not be repeated here.
  • the second information and the first information may be sent through the same signaling, or may be sent independently, which is not limited in this embodiment of the present application.
  • the base station may send the second information to the terminal at time T (send the first information at time T+ ⁇ , where ⁇ is greater than or equal to 0. That is, the base station may start DAPS-HO before or at the same time as DAPS-HO is started. , to reconfigure the DAPS-HO of single TRP transmission for the terminal, which can ensure that in the HAPS-HO handover process, multiple TRP transmissions are avoided, which exceeds the processing capability of the terminal.
  • S502 is not essential, so it is indicated by a dotted line in FIG. 5 .
  • the terminal sends first capability information to the base station, and the base station receives the first capability information, where the first capability information is used to indicate whether the terminal supports multi-TRP transmission in the DAPS-HO process.
  • S503 is not essential, so it is illustrated with a dotted line in FIG. 5 .
  • this embodiment of the present application does not limit the sequence of S503 and S502. That is, S503 can be executed before S502, or can be executed after S502.
  • the terminal determines to receive the PDSCH according to the first TCI state among the multiple TCI states.
  • the TCI state1 associated with the code point of the TCI field in the DCI is agreed or indicated, it is valid.
  • the TCI state associated with the code point in the TCI field in the DCI sent by the base station to the terminal is TCI state1, or the TCI state associated with the code point in the TCI field in the DCI includes TCI state1 and TCI state2.
  • the terminal receives the first information, and performs DAPS-HO according to the first information. Since the TCI state 1 in the two TCI states associated with the code point of the TCI domain in the agreed DCI takes effect, the terminal only receives the PDSCH according to the TCI state 1 before completing the DAPS-HO.
  • the TCI state2 associated with the code point of the TCI field in the DCI is agreed or indicated to take effect. Then, before the terminal completes DAPS-HO, the TCI state associated with the code point in the TCI field in the DCI sent by the base station to the terminal is TCI state2, or the TCI state associated with the code point in the TCI field in the DCI sent by the base station to the terminal Including TCI state1 and TCI state2. Before completing DAPS-HO, the terminal only receives PDSCH according to TCI state2.
  • the terminal monitors the PDCCH according to the configuration for single DCI transmission, and receives the PDSCH according to the configuration for single DCI transmission. That is, the terminal monitors the PDCCH in the CORESET whose associated CORESETPoolIndex is the first value, and the terminal receives the PDSCH according to the first TCI state among the multiple TCI states.
  • the terminal may monitor the PDCCH and receive the PDSCH according to the configuration of multiple DCI transmission and/or the configuration of single DCI transmission.
  • the terminal may monitor the PDCCH according to the configuration of multiple DCI transmission, and receive the PDSCH according to the configuration of single DCI transmission.
  • the terminal may monitor the PDCCH in the CORESET corresponding to the CORESETPoolIndex associated with the first value and the second value, and receive the PDSCH according to the first TCI state among the multiple TCI states.
  • the terminal may also monitor the PDCCH according to the configuration of single DCI transmission, and receive the PDSCH according to the configuration of multiple DCI transmission.
  • the terminal may monitor the PDCCH in the CORESET whose associated CORESETPoolIndex is the first value, and receive the PDSCH according to multiple TCI states.
  • the terminal may also monitor the PDCCH according to the configuration of multiple DCI transmission, and receive the PDSCH according to the configuration of multiple DCI transmission.
  • the terminal may monitor the PDCCH in the CORESET corresponding to the CORESETPoolIndex associated with the first value and the second value, and receive the PDSCH according to multiple TCI states.
  • the terminal may also monitor the PDCCH according to the configuration of single DCI transmission, and receive the PDSCH according to the configuration of single DCI transmission. For example, the terminal monitors the PDCCH in the CORESET whose associated CORESETPoolIndex is the first value, and the terminal receives the PDSCH according to the first TCI state among the multiple TCI states.
  • the base station configures or schedules the terminal according to the capability not exceeding the capability of the terminal itself, which can avoid problems such as terminal system collapse due to insufficient processing capability of the terminal.
  • some terminals may support PDSCH processing capability 1 (also referred to herein as the first PDSCH processing capability), and some terminals may support PDSCH processing capability 2 (also referred to herein as the second PDSCH processing capability). If the PUCCH resource configured by the base station for the terminal supporting PDCSH processing capability 1 for HARQ result reporting meets PDSCH processing capability 2 but does not meet PDSCH processing capability 1, the terminal will not have enough time to feed back valid HARQ results.
  • the base station may configure PUCCH resources for the terminal for HARQ result reporting according to PDSCH processing capability 1, so as to ensure that the PDSHC processing delay does not exceed the actual value of the terminal.
  • PDSCH processing capability That is, the PUCCH resource configured by the base station for the terminal to report the HARQ result meets the PDSCH processing capability 1, so that the terminal has enough time to feed back the HARQ result.
  • the terminal has enough time to feed back the HARQ result, and it may also be considered that the HARQ result reported by the terminal is valid, that is, the terminal reports a valid HARQ result.
  • the base station configures the PUCCH resource for the terminal to report the HARQ result to meet the PDSCH processing capability 2, but the base station restricts the parameters for scheduling PDSCH, such as modulation and coding scheme (MCS), transmission bandwidth, etc., so that the terminal also has enough time to feed back valid HARQ results.
  • MCS modulation and coding scheme
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application, which is also applicable to the system shown in FIG. 3 .
  • the base station and terminal of the method are used as examples.
  • the specific flow of the communication method is described as follows.
  • the base station sends first information to the terminal, and the terminal receives the first information, where the first information can be used to indicate that the CORESETPoolIndex corresponding to N CORESETs configured by the base station for the terminal has at least two different values, and N is greater than or equal to An integer of 2.
  • the base station can configure and send multiple CORESET configuration information ControlResourceSets for the terminal, and each ControlResourceSet includes a CORESETPoolIndex. If the terminal supports multi-TRP transmission, the base station may configure CORESETPoolIndex in all resource control sets ControlResourceSet for the terminal to have two different values, such as 0 and 1.
  • the base station sends DCI to the terminal, where the DCI is used to indicate a first time-frequency resource, the first time-frequency resource is used to carry the HARQ result corresponding to the PDSCH, and the position of the first time-frequency resource satisfies the first time-frequency resource supported by the terminal.
  • PDSCH processing capability
  • the base station may send the first DCI to the terminal through the first TRP, and the base station may send the second DCI to the terminal through the second TRP.
  • the first DCI and the second DCI may be used to indicate the first time-frequency resource.
  • the base station may send the DCI for indicating the first time-frequency resource to the terminal through one TRP among the two TRPs.
  • the first time-frequency resource is the PUCCH resource used for reporting the HARQ result corresponding to the scheduled PDSCH.
  • the first DCI and the second DCI include information for indicating the first time-frequency resource, and it should be understood that the first time-frequency resource is the same time-frequency resource corresponding to the two TRPs.
  • the location of the first time-frequency resource configured by the base station for the terminal meets the requirement of PDSHC processing capability 1. That is, the location of the first time-frequency resource meets the requirement of PDSCH processing capability 1 as indicated in Table 1-1 above.
  • the terminal sends the HARQ result to the base station on the first time-frequency resource.
  • the starting position of the first time-frequency resource that is, the first uplink symbol of the PUCCH resource
  • the terminal supporting PDSCH processing capability 1 determines the starting position of the first uplink symbol of the PUCCH according to the above Table 1-1, and there is enough time to The base station reports a valid HARQ result.
  • the HARQ result can also be reported to the base station from the starting position of the first uplink symbol of the PUCCH resource that is also used to report the HARQ result in Table 1-1 above. . Since the processing delay of PDSCH processing capability 2 is lower than that of PDSCH processing capability 1, the terminal supporting PDSCH processing capability 2 determines the starting position of the first uplink symbol of PUCCH according to the above Table 1-1, and there is enough report the effective HARQ result to the base station at the time.
  • the terminal sends first capability information to the base station, and the base station receives the first capability information, where the first capability information is used to indicate whether the terminal supports the second PDSCH processing capability.
  • the base station defaults to a terminal that supports PDSCH processing capability 2, according to Table 1-1 above, the terminal configures PUCCH resources for reporting HARQ results for the terminal, obviously the delay is relatively long.
  • the base station configures the terminal with PUCCH resources for reporting the HARQ result according to Table 1-2 above.
  • the base station does not know whether the terminal supports multi-TRP transmission and PDSCH processing capability 2 at the same time.
  • the terminal may report its own capability to the base station, such as whether to support multi-TRP transmission and PDSCH processing capability 2 at the same time.
  • the terminal may send first capability information to the base station, where the first capability information may be used to indicate whether the terminal supports multi-TRP transmission and PDSCH processing capability 2 at the same time.
  • the base station receives the first capability information sent by the terminal, and if it is determined that the first capability information indicates that the terminal supports both multi-TRP transmission and PDSCH processing capability 1, that is, the terminal does not support multi-TRP transmission based on PDSCH processing capability 2, then the base station can configure DCI The indicated location of the first time-frequency resource satisfies PDSCH processing capability 1.
  • the base station may configure the location of the first time-frequency resource indicated by the DCI to satisfy the PDSCH processing capability 1, or the base station may configure the first time-frequency resource indicated by the DCI.
  • the location of the resource satisfies PDSCH processing capability 2.
  • the first capability information is not necessarily sent by the terminal, so S604 is indicated by a dotted line in FIG. 6 .
  • this embodiment of the present application does not limit the sequence of S604 and S601-603.
  • the terminal may be assumed that the terminal does not support multi-TRP transmission based on PDSCH processing capability 2. That is, by defaulting the first capability information, it may be assumed that the terminal does not support multi-TRP transmission based on PDSCH processing capability 2.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of the present application, and the method is also applicable to the system shown in FIG. 3 .
  • the base station and terminal of the method are used as examples.
  • the specific flow of the communication method is described as follows.
  • the base station sends first information to the terminal, and the terminal receives the first information, where the first information can be used to indicate that the CORESETPoolIndex corresponding to the N CORESETs configured by the base station for the terminal has at least two different values, and N is greater than or equal to An integer of 2.
  • S701 is the same as the aforementioned S601.
  • S601 which will not be repeated here.
  • the base station sends DCI to the terminal, where the DCI is used to indicate a first time-frequency resource, the first time-frequency resource is used to carry the HARQ result corresponding to the PDSCH, and the position of the first time-frequency resource satisfies the second time-frequency resource supported by the terminal.
  • the DCI includes at least one scheduling parameter, and the at least one scheduling parameter is related to the second PDSCH processing capability.
  • the base station may limit the scheduling parameters configured for the terminal so as not to exceed the actual processing capability of the terminal as much as possible.
  • the at least one scheduling parameter is based on the PDSCH processing capability 2 supported by the terminal, it can be considered that the at least one scheduling parameter is associated with the PDSCH processing capability 2 . Alternatively, it may be considered that at least one scheduling parameter satisfies a preset condition, and the preset condition is determined according to PDSCH processing capability 2 .
  • At least one scheduling parameter includes a transmission bandwidth
  • the corresponding preset condition includes that the transmission bandwidth is less than or equal to M RBs, where M is pre-agreed or M is determined according to PDSCH processing capability 2 .
  • M can be 136.
  • At least one scheduling parameter includes MCS
  • the corresponding preset condition includes that MCS is less than or equal to a first MCS threshold, the first MCS threshold is pre-agreed, or the first MCS threshold is determined according to PDSCH processing capability 2 .
  • the terminal may skip decoding of the second PDSCH.
  • the preset condition may include that the subcarrier spacing of the second PDSCH satisfies a certain condition, for example, the subcarrier spacing of the second PDSCH is 30 kHz, 60 kHz, 120 kHz, or other values.
  • the scheduling delay of the second PDSCH satisfies the foregoing Table 1-1 and the like.
  • the preset condition that the second PDSCH needs to meet is one or more of the above conditions.
  • the subcarrier interval of the second PDSCH satisfies certain conditions
  • the bandwidth occupied by the second PDSCH is greater than K RBs
  • the scheduling delay of the second PDSCH satisfies the above Table 1-1 and the like.
  • CORESETPoolIndex associated with the second PDSCH is different from the value of CORESETPoolIndex associated with the first PDSCH.
  • the UE can use independent hardware resources to process PDSCHs from different TRPs.
  • S703 The terminal sends the HARQ result to the base station on the first time-frequency resource under the condition that at least one scheduling parameter satisfies the preset condition.
  • the terminal For the terminal to send the HARQ result to the base station on the first time-frequency resource, reference may be made to the foregoing S603, and details are not repeated here.
  • the difference from S603 is that the terminal judges at least one scheduling parameter before reporting the HARQ result, and when at least one scheduling parameter satisfies one or more of the above preset conditions, the terminal sends the HARQ to the base station on the first time-frequency resource. result.
  • the terminal sends first capability information to the base station, and the base station receives the first capability information, where the first capability information is used to indicate whether the terminal supports the second PDSCH processing capability.
  • S704 is similar to that of the foregoing S604. For details, reference may be made to the relevant description of S604, which will not be repeated here.
  • the terminal may also inform the base station whether to support skipping decoding of the second PDSCH, so that the base station can configure reasonable PUCCH resources for the terminal.
  • the first capability information is further used to indicate that the terminal supports skipping decoding of the second PDSCH. That is, the capability information supporting skipping decoding of the second PDSCH and the first capability information may be sent to the base station together. Alternatively, the terminal may individually send capability information on whether to support decoding of the second PDSCH to the base station.
  • the base station may configure PUCCH resources for the terminal for HARQ result reporting according to the PDSCH processing capability 1, so as to ensure that the PDSHC processing delay does not exceed the actual PDSCH processing capability of the terminal, and the terminal has enough time to feedback effective HARQ results.
  • the base station configures the PUCCH resource for HARQ result reporting for the terminal to satisfy PDSCH processing capability 2, but the base station restricts the parameters for scheduling PDSCH, such as modulation and coding scheme (MCS) , transmission bandwidth, etc., so that the terminal also has enough time to feed back effective HARQ results, and at the same time, the complexity of the terminal can be reduced.
  • MCS modulation and coding scheme
  • the embodiments shown in FIG. 4 to FIG. 7 can be executed independently or in a coupled manner, which is not limited by the embodiments of the present application.
  • the value of N in different embodiments may be the same or different.
  • the first information and the second information are only used to distinguish different information in the same embodiment, and the first information and the second information in different embodiments may be different.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between a terminal and a network device.
  • the terminal and the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 8 is a schematic block diagram of a communication apparatus 800 according to an embodiment of the present application.
  • the communication apparatus 800 may correspondingly implement the functions or steps implemented by the terminal or the base station in the foregoing method embodiments.
  • the communication apparatus may include a processing module 810 and a transceiver module 820 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 810 and the transceiver module 820 may be coupled with the storage unit, for example, the processing unit 810 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the communication apparatus 800 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication apparatus 800 may be a terminal, and may also be a component (eg, a chip or a circuit) applied in the terminal.
  • the transceiver module 820 may be configured to perform all the receiving or sending operations performed by the terminal in any of the embodiments shown in FIG. 4 to FIG. 7 .
  • the processing module 810 is configured to perform all operations performed by the terminal in any of the embodiments shown in FIG. 4 to FIG. 7 except for the transceiving operation, such as S402 in the embodiment shown in FIG. 4 , and/ Or other processes used to support the technology described herein; another example is S504 in the embodiment shown in FIG. 5 , and/or other processes used to support the technology described herein.
  • the transceiver module 820 is configured to receive first information, where the first information is used for reconfiguration of DAPS-HO; the processing module 810 is configured to determine the CORESETPoolIndex associated with the first value in the monitoring N configured CORESETPoolIndex For the corresponding PDCCH, the N is an integer greater than or equal to 2.
  • the first value is predefined.
  • the transceiver module 820 is further configured to receive second information, where the second information is used to indicate the first value.
  • the transceiver module 820 is further configured to send first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process, wherein the second The information is determined according to the first capability information.
  • the second information includes the first value or first identification information, where the first identification information is used to indicate the first value.
  • the second information includes at least one bit, a value of the at least one bit is used to indicate the first value, and different values of the at least one bit correspond to different values of CORESETPoolIndex.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the reception time of the second information.
  • the transceiver module 820 is configured to receive first information, where the first information is used for reconfiguration based on switching DAPS-HO; the processing module 810 is configured to determine to receive the PDSCH according to the first TCI state among the N TCI states , the N TCI states are the TCI states associated with the code points of the TCI field in the received DCI, and N is an integer greater than or equal to 2.
  • the first TCI state is predefined.
  • the transceiver module 820 is further configured to receive second information, where the second information is used to indicate the first TCI state.
  • the transceiver module 820 is further configured to send first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process.
  • the second information includes a first TCI state or first identification information, where the first identification information is used to indicate the first TCI state.
  • the second information includes at least one bit, a value of the at least one bit is used to indicate the first TCI state, and different values of the at least one bit correspond to different DMRSs of the PDSCH
  • the TCI states associated with the packets are different.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the reception time of the second information.
  • the transceiver module 820 is configured to receive first information and receive DCI, where the first information is used to indicate that the CORESETPoolIndex corresponding to N CORESETs configured for the terminal has at least two different values, the N is an integer greater than or equal to 2, and the DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the hybrid automatic repeat request (HARQ) result corresponding to the scheduling PDSCH.
  • HARQ hybrid automatic repeat request
  • the location of the first time-frequency resource satisfies the first PDSCH processing capability in the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing delay corresponding to the second PDSCH processing capability is lower than the processing corresponding to the first PDSCH processing capability time delay; the processing module 810 is configured to determine the first time-frequency resource.
  • the transceiver module 820 is further configured to send first capability information, where the first capability information is used to indicate that the terminal supports the processing capability on the second PDSCH.
  • the transceiver module 820 is configured to receive first information and receive DCI, where the first information is used to indicate that the CORESETPoolIndex corresponding to N CORESETs configured for the terminal has at least two different values, the N is an integer greater than or equal to 2, the DCI is used to indicate the first time-frequency resource, the first time-frequency resource can be used to carry the HARQ result corresponding to the scheduled PDSCH, and the position of the first time-frequency resource satisfies the first time-frequency resource supported by the terminal.
  • the first information is used to indicate that the CORESETPoolIndex corresponding to N CORESETs configured for the terminal has at least two different values
  • the N is an integer greater than or equal to 2
  • the DCI is used to indicate the first time-frequency resource
  • the first time-frequency resource can be used to carry the HARQ result corresponding to the scheduled PDSCH
  • the position of the first time-frequency resource satisfies the first time-frequency resource supported by the terminal.
  • the processing delay corresponding to the second PDSCH processing capability is lower than the processing delay corresponding to the first PDSCH processing capability
  • the DCI includes at least one scheduling parameter, the at least one scheduling parameter is associated with the second PDSCH processing capability; the processing module 810 is configured to determine the first time-frequency resource.
  • the at least one scheduling parameter is associated with the second PDSCH processing capability, including: the at least one scheduling parameter satisfies one or more of the following preset conditions:
  • the at least one scheduling parameter includes a transmission bandwidth, and the preset condition includes that the transmission bandwidth is less than or equal to M resource block RBs, where M is pre-agreed or M is determined according to the second PDSCH processing capability supported by the terminal;
  • the at least one scheduling parameter includes MCS, and the preset condition includes that MCS is less than or equal to a first MCS threshold, the first MCS threshold is pre-agreed, or the first MCS threshold is determined according to the second PDSCH processing capability supported by the terminal of.
  • processing module 810 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication apparatus 800 can correspondingly implement the behaviors and functions of the base station in the foregoing method embodiments.
  • the communication apparatus 800 may be a network device, or may be a component (eg, a chip or a circuit) applied in the network device.
  • the transceiver module 820 may be configured to perform all the receiving or sending operations performed by the base station in any of the embodiments shown in FIG. 4 to FIG. 7 .
  • the processing module 810 is configured to perform all operations performed by the base station in any of the embodiments shown in FIG. 4-FIG. 7 except for the transceiving operations, and/or to support other processes of the techniques described herein .
  • the processing module 810 is configured to generate first information, where the first information is used for DAPS-HO reconfiguration; the transceiver module 820 is configured to send the first information, so that the N CORESETPoolIndex configured for the terminal
  • the configuration of the CORESET corresponding to the CORESETPoolIndex associated with the first value takes effect, and the N is an integer greater than or equal to 2.
  • the first value is predefined.
  • the transceiver module 820 is further configured to send second information, where the second information is used to indicate the first value.
  • the transceiver module 820 is further configured to receive first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process, wherein the second The information is determined according to the first capability information.
  • the second information includes the first value or first identification information, where the first identification information is used to indicate the first value.
  • the second information includes at least one bit, a value of the at least one bit is used to indicate the first value, and different values of the at least one bit correspond to different values of CORESETPoolIndex.
  • the first information and the second information are carried in the same signaling; or, the sending time of the first information is later than the sending time of the second information.
  • the processing module 810 is configured to generate first information, where the first information is used for reconfiguration based on DAPS-HO; the transceiver module 820 is configured to send the first information, so that the terminal is configured according to the first information in the N TCI states.
  • One TCI state receives PDSCH, the N TCI states are TCI states associated with code points in the TCI field in the received DCI, and N is an integer greater than or equal to 2.
  • the first TCI state is predefined.
  • the transceiver module 820 is further configured to receive second information, where the second information is used to indicate the first TCI state.
  • the transceiver module 820 is further configured to receive first capability information, where the first capability information is used to indicate that the terminal supports single TRP transmission in the DAPS-HO process.
  • the second information includes a first TCI state or first identification information, where the first identification information is used to indicate the first TCI state.
  • the second information includes at least one bit, a value of the at least one bit is used to indicate the first TCI state, and different values of the at least one bit correspond to different DMRSs of the PDSCH
  • the TCI states associated with the packets are different.
  • the first information and the second information are carried in the same signaling; or, the reception time of the first information is later than the reception time of the second information.
  • the processing module 810 is configured to determine the first time-frequency resource; the transceiver module 820 is configured to send first information and DCI, wherein the first information is used to configure N CORESETs for the terminal, the N CORESETs
  • the associated CORESETPoolIndex has at least two different values, the N is an integer greater than or equal to 2, the DCI is used to indicate the first time-frequency resource, and the first time-frequency resource can be used to carry the corresponding PDSCH scheduling.
  • the location of the first time-frequency resource satisfies the first PDSCH processing capability of the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing delay corresponding to the second PDSCH processing capability is lower than that of the first PDSCH processing capability The processing delay corresponding to the capability.
  • the transceiver module 820 is further configured to receive the first capability information, and the DCI is determined according to the first capability information.
  • the transceiver module 820 is configured to send first information and send DCI, where the first information is used to configure N CORESETs for the terminal, and the CORESETPoolIndex associated with the N CORESETs has at least two different values , the N is an integer greater than or equal to 2, the DCI is used to indicate a first time-frequency resource, and the first time-frequency resource can be used to carry a hybrid automatic repeat request (HARQ) corresponding to the scheduling PDSCH ) result, the position of the first time-frequency resource satisfies the first PDSCH processing capability in the first PDSCH processing capability and the second PDSCH processing capability supported by the terminal, and the processing delay corresponding to the second PDSCH processing capability is lower than the first PDSCH processing capability processing delay corresponding to the capability, and the DCI includes at least one scheduling parameter, and the at least one scheduling parameter is associated with the second PDSCH processing capability; the processing module 810 is configured to determine the first time-frequency resource.
  • HARQ hybrid automatic repeat request
  • the at least one scheduling parameter is associated with the second PDSCH processing capability, including: the at least one scheduling parameter satisfies one or more of the following preset conditions:
  • the at least one scheduling parameter includes a transmission bandwidth, and the preset condition includes that the transmission bandwidth is less than or equal to M RBs, where M is pre-agreed or M is determined according to the second PDSCH processing capability supported by the terminal;
  • the at least one scheduling parameter includes a modulation and coding strategy MCS, and the preset condition includes that the MCS is less than or equal to a first MCS threshold, the first MCS threshold is pre-agreed, or the first MCS threshold is based on a second MCS threshold supported by the terminal.
  • PDSCH processing capability is determined.
  • processing module 810 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • FIG. 9 shows a communication apparatus 900 provided in this embodiment of the present application, where the communication apparatus 900 may be a terminal capable of implementing the functions of the terminal in the method provided in this embodiment of the present application, or the communication apparatus 900 may be a network device capable of Implement the function of the network device in the method provided by the embodiment of the present application; the communication apparatus 900 may also be a device capable of supporting the terminal to implement the corresponding function in the method provided by the embodiment of the present application, or capable of supporting the network device to implement the function provided by the embodiment of the present application.
  • the communication device 900 may be a chip or a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 820 may be a transceiver, and the transceiver is integrated in the communication device 900 to form a communication interface 910 .
  • the communication apparatus 900 includes at least one processor 920, which is configured to implement or support the communication apparatus 900 to implement the function of the network device or terminal in the method provided in the embodiments of this application. For details, refer to the detailed description in the method example, which is not repeated here.
  • Communication apparatus 900 may also include at least one memory 930 for storing program instructions and/or data.
  • Memory 930 is coupled to processor 920 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 920 may cooperate with memory 930 .
  • the processor 920 may execute program instructions and/or data stored in the memory 930 to cause the communication device 900 to implement the corresponding method. At least one of the at least one memory may be included in the processor.
  • the communication apparatus 900 may further include a communication interface 910 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 900 may communicate with other devices.
  • a communication interface 910 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 900 may communicate with other devices.
  • the communication device is a terminal
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the processor 920 may use the communication interface 910 to send and receive data.
  • the communication interface 910 may specifically be a transceiver.
  • the specific connection medium between the communication interface 910 , the processor 920 , and the memory 930 is not limited in the embodiments of the present application.
  • the memory 930, the processor 920, and the communication interface 910 are connected through a bus 940 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor 920 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 930 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device in the above-mentioned embodiment may be a terminal or a circuit, or may be a chip applied in the terminal or other combined devices or components having the above-mentioned terminal function.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip or the chip system
  • the processing module may be a processor of the chip or the chip system.
  • FIG. 10 shows a schematic structural diagram of a simplified communication device.
  • the communication device is a base station as an example.
  • the base station may be applied to the system shown in FIG. 3 , and may be the transmitting end shown in FIG. 3 , performing the functions of the network device in the foregoing method embodiments.
  • the communication device 1000 may include a transceiver 1010 , a memory 1021 and a processor 1022 .
  • the transceiver 1010 can be used for communication by a communication device, such as for sending or receiving the above-mentioned indication information.
  • the memory 1021 is coupled to the processor 1022 and can be used to store programs and data necessary for the communication device 1000 to implement various functions.
  • the processor 1022 is configured to support the communication device 1000 to perform the corresponding functions in the above-mentioned methods, and the functions can be implemented by calling programs stored in the memory 1021 .
  • the transceiver 1010 may be a wireless transceiver, which may be used to support the communication device 1000 to receive and send signaling and/or data through a wireless air interface.
  • the transceiver 1010 may also be referred to as a transceiver unit or a communication unit, and the transceiver 1010 may include one or more radio frequency units 1012 and one or more antennas 1011, wherein the radio frequency unit is such as a remote radio unit (remote radio unit, RRU) Or an active antenna unit (active antenna unit, AAU), which can be specifically used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas can specifically be used for radiation and reception of radio frequency signals.
  • the transceiver 1010 may only include the above radio frequency unit 1012 , and then the communication device 1000 may include the transceiver 1010 , the memory 1021 , the processor 1022 and the antenna 1011 .
  • the memory 1021 and the processor 1022 can be integrated or independent from each other. As shown in FIG. 10 , the memory 1021 and the processor 1022 can be integrated into the control unit 1020 of the communication device 1000 .
  • the control unit 1020 may include a baseband unit (BBU) of an LTE base station, and the baseband unit may also be referred to as a digital unit (DU), or the control unit 1020 may include 5G and future wireless access A distributed unit (DU) and/or a centralized unit (CU) in a base station under the technology.
  • BBU baseband unit
  • DU digital unit
  • CU centralized unit
  • the above-mentioned control unit 1020 may be composed of one or more antenna panels, wherein, multiple antenna panels may jointly support a wireless access network (such as an LTE network) of a single access standard, and multiple antenna panels may also respectively support a wireless access network of different access standards. Radio access network (such as LTE network, 5G network or other network).
  • the memory 1021 and processor 1022 may serve one or more antenna panels. That is, the memory 1021 and the processor 1022 may be separately provided on each antenna panel. It is also possible that multiple antenna panels share the same memory 1021 and processor 1022 .
  • necessary circuits may be provided on each antenna panel, for example, the circuits may be used to realize the coupling between the memory 1021 and the processor 1022 .
  • the above transceiver 1010, processor 1022 and memory 1003 can be connected through a bus structure and/or other connection media.
  • the processor 1022 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit, and the radio frequency unit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna. It is sent in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1022, and the processor 1022 converts the baseband signal into data and sends the data to the data. to be processed.
  • the transceiver 1010 can be used to perform the above steps performed by the transceiver module 820 .
  • the processor 1022 may be used to invoke instructions in the memory 1021 to perform the steps performed by the processing module 810 above.
  • FIG. 11 shows a schematic structural diagram of a simplified terminal.
  • the terminal takes a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the vehicle-mounted unit, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 only one memory and processor are shown in FIG. 11 . In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as the transceiver unit of the apparatus, and the processor with the processing function may be regarded as the processing unit of the apparatus.
  • the apparatus includes a transceiver unit 1110 and a processing unit 1120 .
  • the transceiver unit 1110 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 1120 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1110 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1110 may be regarded as a transmitting unit, that is, the transceiver unit 1110 includes a receiving unit and a transmitting unit.
  • the transceiver unit 1110 may also be sometimes referred to as a transceiver, a transceiver, or a transceiver circuit or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • transceiving unit 1110 is configured to perform the sending and receiving operations on the terminal side in the above method embodiments
  • processing unit 1120 is configured to perform other operations on the terminal except the transceiving operations in the above method embodiments.
  • the transceiver unit 1110 may be configured to perform S401, S403, S404 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein; or the transceiver unit 1110 For performing S501, S502, S503 in the embodiment shown in FIG. 5, and/or for supporting other processes described herein; or the transceiver unit 1110 for performing S601 in the embodiment shown in FIG. 6 , S602, S603, S604, and/or other processes used to support the techniques described herein; or the transceiver unit 1110 is configured to perform S701, S702, S703, S704 in the embodiment shown in FIG. 7, and/or use for other processes in support of the techniques described herein.
  • the processing unit 1120 is configured to perform S402 in the embodiment shown in FIG. 4 , and/or other processes used to support the techniques described herein; or the processing unit 1120 is configured to perform S504 in the embodiment shown in FIG. 5 , and/or other processes for supporting the techniques described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit may be an integrated processor, a microprocessor or an integrated circuit.
  • the apparatus may perform functions similar to the processing module 810 in FIG. 8 .
  • the apparatus includes a processor 1210 , a transmit data processor 1220 , and a receive data processor 1230 .
  • the processing module 810 in the above-mentioned embodiment may be the processor 1210 in FIG. 12 and perform corresponding functions.
  • the processing module 810 in the above embodiment may be the sending data processor 1220 and/or the receiving data processor 1230 in FIG. 12 .
  • the channel encoder and the channel decoder are shown in FIG. 12 , it should be understood that these modules do not constitute a limitative description of this embodiment, but are only illustrative.
  • FIG. 13 shows another form of this embodiment.
  • the communication device 1300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication apparatus in this embodiment may serve as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1303 and an interface 1304 .
  • the processor 1303 completes the functions of the above-mentioned processing module 810, and the interface 1304 implements the functions of the above-mentioned transceiver module 820.
  • the modulation subsystem includes a memory 1306, a processor 1303, and a program stored in the memory 1306 and executable on the processor. When the processor 1303 executes the program, the method of the terminal in the above method embodiment is implemented .
  • the memory 1306 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the communication device 1300, as long as the memory 1306 can be connected to the The processor 1303 is sufficient.
  • the embodiment of the present application further provides a communication system, specifically, the communication system includes a network device and a terminal, or may further include more network devices and multiple terminals.
  • the communication system includes a network device and a terminal for implementing the relevant functions of any of the foregoing embodiments in FIG. 4 to FIG. 7 .
  • the network devices are respectively used to implement the functions of the base station part related to any of the foregoing embodiments in FIG. 4 to FIG. 7 .
  • the terminal is used to implement the functions of the terminal related to any of the foregoing embodiments in FIG. 4 to FIG. 7 .
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method executed by the base station in any of the embodiments in FIG. 4 to FIG. 7 ; or when it runs on the computer When running, the computer is made to execute the method executed by the terminal in any of the embodiments of FIG. 4 to FIG. 7 .
  • Embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method executed by the base station in any of the embodiments in FIG. 4 to FIG. 7 ; or when it runs on the computer , so that the computer executes the method executed by the terminal in any of the embodiments in FIG. 4 to FIG. 7 .
  • the embodiments of the present application provide a chip system, which includes a processor and may also include a memory, for implementing the functions of the network device or terminal in the foregoing method; or for implementing the functions of the network device and the terminal in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及通信装置,该方法包括终端接收网络设备发送的第一信息,并确定监测N个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH,其中,第一信息用于基于DAPS-HO的重配置,N为大于或等于2的整数。由于终端在DAPS-HO过程中,可监测多个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH。即终端可只监测来自于同一个TRP的信息,而不需要监测来自多个TRP的信息,可降低终端的复杂度。

Description

一种通信方法及通信装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
新空口(New Radio,NR)即第五代(5th generation,5G)移动通信需要具有比***(4G)移动通信更高的性能。例如Release-16版本(5G的第二个版本)的终端可支持多收发点(transmission reception point,TRP)传输技术,也可支持双激活协议栈的切换(dual active protocol stack based handover,DAPS-HO)技术,也可支持更短的物理下行共享信道(physical downlink shared channel,PDSCH)处理时延。但是受终端的硬件处理能力限制,终端未必能够同时支持如上多种特性,例如终端未必同时支持DAPS-HO和多TRP传输。目前网络设备无法知道终端是否同时支持多种特性,也就无法合理地对终端进行配置或调度。
发明内容
本申请提供一种通信方法及通信装置,能够合理地为终端进行配置或调度。
第一方面,本申请实施例提供一种通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一信息,以及终端确定监测N个所配置的控制资源集合池索引(CORESETPoolIndex)中关联到第一值的CORESETPoolIndex所对应的物理下行控制信道(physical downlink control channel,PDCCH),其中,第一信息用于基于DAPS-HO的重配置,N为大于或等于2的整数。
第二方面,本申请实施例提供一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为网络设备为例进行描述。该方法包括:
网络设备生成第一信息,并发送该第一信息,该第一信息用于基于DAPS-HO的重配置,可使得为终端配置的N个CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的资源控制集合CORESET的配置生效,N为大于或等于2的整数。
在本申请实施例中,不管终端是否支持在DAPS-HO过程中进行多TRP传输,终端在DAPS-HO过程中,可监测多个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH。即终端可只监测来自于同一个TRP的信息,而不需要监测来自多个TRP的信息,可降低终端的复杂度。
在第一方面和第二方面的一种可能的实现方式中,不管终端是否支持在DAPS-HO过程中进行多TRP传输,可预先约定终端在DAPS-HO过程中进行单TRP传输,或者基站可告知终端,终端在DAPS-HO过程中进行单TRP传输。这样不管基站为终端配置的多个CORESET中所关联CORESETPoolIndex取值是否相同,终端只监测关联到第一的CORESETPoolIndex的PDCCH。
作为一种示例,所述第一值是预定义的。该方案,即预先约定终端在DAPS-HO过程中进行单TRP传输。
作为另一种示例,在第一方面的一种可能的实现方式中,所述方法还包括:终端接收第二信息,所述第二信息用于指示所述第一值。相应的,在第二方面的一种可能的实现方式中,所述方法还包括:网络设备发送该第二信息。该方案,即基站通知终端在DAPS-HO过程中进行单TRP传输。
在第一方面和第二方面的一种可能的实现方式中,第二信息包括所述第一值。该方案通过第二信息可直接指示第一值,简单明了。
当然,第二信息也可以间接指示第一值,本申请实施例对第二信息的具体实现形式不作限制,较为灵活。
作为一种间接指示方式,第二信息包括第一标识信息,该第一标识信息用于指示所述第一值。
作为另一种间接指示方式,第二信息包括至少一个比特,该至少一个比特的取值用于指示所述第一值,至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
在第一方面的一种可能的实现方式中,所述方法还包括:发送第一能力信息,该第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输;相应的,在第二方面的一种可能的实现方式中,所述方法还包括:网络设备接收该第一能力信息。应理解,第二信息是根据该第一能力信息确定的。该方案中,终端可向网络设备上报终端的第一能力信息,即终端是否支持在DAPS-HO过程中进行多TRP传输。例如第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输,可以理解为终端不支持在DAPS-HO过程中进行多TRP传输。网络设备根据第一能力信息确定第二信息,即根据终端的实际能力确定如何为终端进行配置,更为合理。
在第一方面的一种可能的实现方式中,所述第一信息和所述第二信息承载于同一信令;或者,第一信息的接收时刻晚于所述第二信息的接收时刻。该方案中,第二信息的发送时刻早于或等于第一信息的发送时刻,可保证终端在完成DAPS-HO之前,根据第二信息监测PDCCH,进而保证终端在DAPS-HO过程中可进行单TRP传输。
第三方面,本申请实施例提供一种通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一信息,以及终端确定按照N个传输配置指示(transmission configuration indicator,TCI)状态中的第一TCI状态接收PDSCH,其中,第一信息用于基于DAPS-HO的重配置,所述N个TCI状态为所接收的下行控制信息(downlink control information,DCI)中的TCI域的码点所关联的TCI状态,N为大于或等于2的整数。
第四方面,本申请实施例提供一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为网络设备为例进行描述。该方法包括:
网络设备生成第一信息,并发送该第一信息,该第一信息用于基于DAPS-HO的重配置,可使得为终端按照N个TCI状态中的第一TCI状态接收PDSCH,所述N个TCI状态为所接收的DCI中的TCI域的码点所关联的TCI状态,所述N为大于或等于2的整数。
应理解,对于单DCI的多TRP传输来说,不管终端是否支持在DAPS-HO过程中进行 多TRP传输,终端在DAPS-HO过程中,可按照N个TCI状态中的第一TCI状态接收PDSCH,不必按照N个TCI状态接收PDSCH,也可以说进行单TRP的接收而不是多TRP的接收,这样可降低终端的复杂度。
在第三方面或第四方面的一种可能的实现方式中,所述第一TCI状态是预定义的。
在第三方面的一种可能的实现方式中,所述方法还包括:终端接收第二信息,该第二信息用于指示所述第一TCI状态;相应的,在第四方面的一种可能的实现方式中,所述方法还包括:网络设备发送该第二信息。
在第三方面的一种可能的实现方式中,所述方法还包括:终端发送第一能力信息,该第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输;相应的,在第四方面的一种可能的实现方式中,所述方法还包括:网络设备接收该第一能力信息。
在第三方面或第四方面的一种可能的实现方式中,第二信息包括第一TCI状态或者第一标识信息,该第一标识信息用于指示所述第一TCI状态。
在第三方面或第四方面的一种可能的实现方式中,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一TCI状态,所述至少一个比特的不同取值对应的PDSCH的不同DMRS分组所关联的TCI状态不同。
在第三方面或第四方面的一种可能的实现方式中,所述第一信息和所述第二信息承载于同一信令;或者,所述第一信息的接收时刻晚于所述第二信息的接收时刻。
应理解,第一方面或第二方面的方案是针对多DCI的多TRP传输来说的,第三方面或第四方面的方案是针对单DCI的多TRP传输来说的,关于第三方面或第四方面或第三方面的各种可能的实施方式或第四方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第二方面或第一方面的各种可能的实施方式或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例提供一种通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一信息以及接收DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所关联的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延。
第六方面,本申请实施例提供一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为网络设备为例进行描述。该方法包括:
网络设备发送第一信息以及DCI,其中,第一信息用于为终端配置的N个CORESET,所述N个CORESET所关联的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一 PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延。
在本申请实施例中,在多TRP传输的情况下,无论终端知否支持PDSCH处理能力2,网络设备都可按照PDSCH处理能力1为终端进行配置。由于PDSCH处理能力2的处理时延低于PDSCH处理能力1的处理时延,所以可保证PDSHC处理时延不超过终端实际的PDSCH处理能力,终端可上报有效的HARQ结果。
在第五方面的一种可能的实现方式中,所述方法还包括:终端发送第一能力信息,该第一能力信息用于指示终端支持在第二PDSCH处理能力;相应的,在第六方面的一种可能的实现方式中,所述方法还包括:网络设备接收该第一能力信息,所述DCI是根据该第一能力信息确定的。该方案中,网络设备可根据终端上报的PDSCH处理能力为终端进行配置,更为合理。
第七方面,本申请实施例提供一种通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一信息以及接收DCI,其中,第一信息用于指示为终端配置的N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延,且所述DCI包括至少一种调度参数,所述至少一种调度参数与第二PDSCH处理能力关联。
第八方面,本申请实施例提供一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。下面以所述通信设备为网络设备为例进行描述。该方法包括:
网络设备发送第一信息以及DCI,其中,第一信息用于指示为终端配置的N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延,且所述DCI包括至少一种调度参数,所述至少一种调度参数与第二PDSCH处理能力关联。
在本申请实施例中,在多TRP传输的情况下,针对支持PDSCH处理能力2的终端,网络设备可按照PDSCH处理能力2为终端进行配置,但是同时网络设备可根据PDSCH处理能力2限制为终端配置的PUCCH时频资源的调度参数,以保证PDSHC处理时延不超过终端实际的PDSCH处理能力的同时,降低终端的复杂度。
示例性的,所述至少一种调度参数与第二PDSCH处理能力关联,包括:所述至少一种调度参数满足以下一项或多项预设条件:
所述至少一种调度参数包括传输带宽,所述预设条件包括所述传输带宽小于或等于M个资源块RB,M是预先约定的或者M是根据终端支持的第二PDSCH处理能力确定的;
所述至少一种调度参数包括调制与编码策略MCS,所述预设条件包括MCS小于或等 于第一MCS门限,第一MCS门限是预先约定的,或者第一MCS门限是根据终端支持的第二PDSCH处理能力确定的。
上述第一方面、第三方面、第五方面以及第七方面所述的通信方法可分别独立执行,也可以耦合执行。相应的,上述第二方面、第四方面、第六方面以及第八方面所述的通信方法可分别独立执行,也可以耦合执行。
第九方面,本申请实施例提供了一种通信装置,该通信装置可以是终端侧通信设备或能够支持终端侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述收发模块用于接收第一信息,该第一信息用于DAPS-HO的重配置;所述处理模块用于确定监测N个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH,所述N为大于或等于2的整数。
在一种可能的实现方式中,所述第一值是预定义的。
在一种可能的实现方式中,所述收发模块还用于:接收第二信息,该第二信息用于指示所述第一值。
在一种可能的实现方式中,所述收发模块还用于:发送第一能力信息,该第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
在一种可能的实现方式中,所述第二信息包括所述第一值或者第一标识信息,该第一标识信息用于指示所述第一值。
在一种可能的实现方式中,所述第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
在一种可能的实现方式中,所述第一信息和所述第二信息承载于同一信令;或者,
所述第一信息的接收时刻晚于所述第二信息的接收时刻。
第十方面,本申请实施例提供了一种通信装置,该通信装置可以是网络侧通信设备或能够支持网络侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述处理模块用于生成第一信息,该第一信息用于DAPS-HO的重配置;所述收发模块用于发送所述第一信息,以使得为终端配置的N个CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的CORESET的配置生效,所述N为大于或等于2的整数。
在一种可能的实现方式中,所述第一值是预定义的。
在一种可能的实现方式中,所述收发模块还用于:发送第二信息,该第二信息用于指示所述第一值。
在一种可能的实现方式中,所述收发模块还用于:接收第一能力信息,该第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
在一种可能的实现方式中,所述第二信息包括所述第一值或者第一标识信息,所述第一标识信息用于指示所述第一值。
在一种可能的实现方式中,所述第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
在一种可能的实现方式中,所述第一信息和所述第二信息承载于同一信令;或者,
所述第一信息的发送时刻晚于所述第二信息的发送时刻。
第十一方面,本申请实施例提供了一种通信装置,该通信装置可以是终端侧通信设备或能够支持终端侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述收发模块用于接收第一信息,该第一信息用于基于切换DAPS-HO的重配置;所述处理模块用于确定按照N个TCI状态中的第一TCI状态接收PDSCH,该N个TCI状态为所接收的DCI中的TCI域的码点所关联的TCI状态,N为大于或等于2的整数。
在可能的实现方式中,所述第一TCI状态是预定义的。
在可能的实现方式中,所述收发模块还用于接收第二信息,该第二信息用于指示所述第一TCI状态。
在可能的实现方式中,所述收发模块还用于发送第一能力信息,该第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输。
在可能的实现方式中,第二信息包括第一TCI状态或者第一标识信息,该第一标识信息用于指示所述第一TCI状态。
在可能的实现方式中,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一TCI状态,所述至少一个比特的不同取值对应的PDSCH的不同DMRS分组所关联的TCI状态不同。
在可能的实现方式中,所述第一信息和所述第二信息承载于同一信令;或者,所述第一信息的接收时刻晚于所述第二信息的接收时刻。
第十二方面,本申请实施例提供了一种通信装置,该通信装置可以是网络侧通信设备或能够支持网络侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述处理模块用于生成第一信息,该第一信息用于基于DAPS-HO的重配置;所述收发模块用于发送第一信息,以使得终端按照N个TCI状态中的第一TCI状态接收PDSCH,该N个TCI状态为所接收的DCI中的TCI域的码点所关联的TCI状态,所述N为大于或等于2的整数。
在可能的实现方式中,所述第一TCI状态是预定义的。
在可能的实现方式中,所述收发模块还用于接收第二信息,该第二信息用于指示所述第一TCI状态。
在可能的实现方式中,所述收发模块还用于接收第一能力信息,该第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输。
在可能的实现方式中,第二信息包括第一TCI状态或者第一标识信息,该第一标识信息用于指示所述第一TCI状态。
在可能的实现方式中,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一TCI状态,所述至少一个比特的不同取值对应的PDSCH的不同DMRS分组所关联的TCI状态不同。
在可能的实现方式中,所述第一信息和所述第二信息承载于同一信令;或者,所述第一信息的接收时刻晚于所述第二信息的接收时刻。
第十三方面,本申请实施例提供了一种通信装置,该通信装置可以是终端侧通信设备或能够支持终端侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该 通信装置可包括处理模块和收发模块,其中,所述收发模块用于接收第一信息以及接收DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所关联的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延;所述处理模块用于确定第一时频资源。
在可能的实现方式中,所述收发模块还用于发送第一能力信息,该第一能力信息用于指示终端支持在第二PDSCH处理能力。
第十四方面,本申请实施例提供了一种通信装置,该通信装置可以是网络侧通信设备或能够支持网络侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述处理模块用于确定第一时频资源;所述收发模块用于发送第一信息以及发送DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所关联的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延。
在可能的实现方式中,所述收发模块还用于接收该第一能力信息,所述DCI是根据该第一能力信息确定的。
第十五方面,本申请实施例提供了一种通信装置,该通信装置可以是终端侧通信设备或能够支持终端侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述收发模块用于接收第一信息以及接收DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延,且所述DCI包括至少一种调度参数,所述至少一种调度参数与第二PDSCH处理能力关联;所述处理模块用于确定第一时频资源。
在可能的实现方式中,所述至少一种调度参数与第二PDSCH处理能力关联,包括:所述至少一种调度参数满足以下一项或多项预设条件:
所述至少一种调度参数包括传输带宽,所述预设条件包括所述传输带宽小于或等于M个资源块RB,M是预先约定的或者M是根据终端支持的第二PDSCH处理能力确定的;
所述至少一种调度参数包括调制与编码策略MCS,所述预设条件包括MCS小于或等于第一MCS门限,第一MCS门限是预先约定的,或者第一MCS门限是根据终端支持的第二PDSCH处理能力确定的。
第十六方面,本申请实施例提供了一种通信装置,该通信装置可以是网络侧通信设备或能够支持网络侧通信设备实现该方法所需的功能的通信装置,例如芯片或芯片***。该通信装置可包括处理模块和收发模块,其中,所述收发模块用于发送第一信息以及发送DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的HARQ结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延,且所述DCI包括至少一种调度参数,所述至少一种调度参数与第二PDSCH处理能力关联;所述处理模块用于确定第一时频资源。
在可能的实现方式中,所述至少一种调度参数与第二PDSCH处理能力关联,包括:所述至少一种调度参数满足以下一项或多项预设条件:
所述至少一种调度参数包括传输带宽,所述预设条件包括所述传输带宽小于或等于M个资源块RB,M是预先约定的或者M是根据终端支持的第二PDSCH处理能力确定的;
所述至少一种调度参数包括调制与编码策略MCS,所述预设条件包括MCS小于或等于第一MCS门限,第一MCS门限是预先约定的,或者第一MCS门限是根据终端支持的第二PDSCH处理能力确定的。
第十七方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第九至第十六方面中任一方面中的通信装置,或者为设置在第九至第十六方面中任一方面中的通信装置中的芯片或芯片***。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述方法实施例中由终端或网络设备所执行的方法。
应理解,该通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备或终端中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出电路、管脚等,用于输入/输出指令、数据或信号。所述收发器用于该通信装置与其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。
第十八方面,本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现第九方面至第十六方面中任一方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片***还包括存储器,用于保存程序指令和/或数据。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第十九方面,本申请实施例提供了一种通信***,所述通信***包括第九方面所述的通信装置和第十方面所述的通信装置,或者所述通信***包括第十一方面所述的通信装置和第十二方面所述的通信装置,或者所述通信***包括第十三方面所述的通信装置和第十四方面所述的通信装置,或者所述通信***包括第十五方面所述的通信装置和第十六方面所述的通信装置。又或者所述通信***包括第九方面、第十一方面、第十三方面和第十五方面中一方面或多方面的通信装置,以及包括第十方面、第十二方面、第十四方面和第十六方面中一方面或多方面的通信装置。
第二十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端执行的方法;或实现上述各方面中由网络设备执行的方法。
第二十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由终端执行的方法被执行,或使得上述各方面中由网络设备执行的方法被执行。
上述第九方面至第二十一方面及其实现方式的有益效果可以参考对各个方面或各个方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例提供的两种多TRP传输的示意图;
图2为本申请实施例提供的DAPS-HO流程示意图;
图3为本申请实施例适用的网络架构示意图;
图4为本申请实施例提供的一通信方法的流程示意图;
图5为本申请实施例提供的另一通信方法的流程示意图;
图6为本申请实施例提供的又一通信方法的流程示意图;
图7为本申请实施例提供的又一通信方法的流程示意图;
图8为本申请实施例提供的通信装置的一种结构示意图;
图9为本申请实施例提供的通信装置的另一种结构示意图;
图10为本申请实施例提供的一通信装置的一种结构示意图;
图11为本申请实施例提供的另一通信装置的一种结构示意图;
图12为本申请实施例提供的另一通信装置的又一种结构示意图;
图13为本申请实施例提供的另一通信装置的再一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
应理解,Release-16版本(5G的第二个版本)的终端可支持多TRP传输,也可支持DAPS-HO,也可支持更短的PDSCH处理时延。终端可支持多TRP传输也可以认为终端具有支持多TRP传输的能力。同理终端可支持DAPS-HO可认为终端具有DAPS-HO能力,终端可支持更短的PDSCH处理时延,可认为终端具有PDSCH处理能力。需要说明的是,Release-16版本的终端可支持更短的PDSCH处理时延是相对4G中的终端支持的PDSCH处理时延而言的。在本文中,4G中的终端支持PDSCH处理时延对应的能力称为PDSCH处理能力1,将支持更多的PDSCH处理时延对应的能力称为PDSCH处理能力2。下面分别就多TRP传输、DAPS-HO以及PDSCH处理能力进行详细说明。
1)、多TRP传输,在Release-16版本引入,基于多TRP传输可提高下行链路性能。
具体来说,多TRP传输指的是可同时由多个TRP为同一个终端提供数据传输服务。在一些实施例中,这多个TRP中每个TRP向终端发送下行控制信息(downlink control information,DCI),每个DCI调度1个PDSCH,实现对终端的配置或调度。在另一些实 施例中,这多个TRP中的第一TRP向终端发送DCI,调度1个PDSCH,但是该PDSCH的部分层或者解调参考信号(demodulation reference signal,DMRS)端口由第一TRP发送,该PDSCH的另一部分层或者DMRS端口由这多个TRP中除第一TRP之外的TRP发送。为了便于理解,请参见图1,图1以2个TRP为同一个终端提供数据传输服务为例。
图1中的(a)中的TRP1和TRP2分别终端发送1个DCI,例如TRP1向终端发送DCI1,TRP2向终端发送DCI2。DCI1可用于调度PDSCH,以向终端发送数据1(Data1),DCI2可用于调度另一个PDSCH,以向终端发送Data2。即2个TRP分别向终端发送1个DCI,一个DCI用于调度1个PDSCH。应理解,每个TRP发送的DCI包括为终端配置的控制信道资源配置信息(PDCCH-Config),该控制信道资源配置信息用于指示发送PDCCH的配置信息。该控制信道资源配置信息包括多个控制资源集合CORESET,每个CORESET包括一个控制资源集合池索引(CORESETPoolIndex),CORESETPoolIndex可用于区分发送DCI的TRP。一个CORESET最多关联一个PDCCH,为终端配置的N个CORESET包括的CORESETPoolIndex可以具有相同值或者两个不同值。由于DCI承载于物理下行控制信道(physical downlink control channel,PDCCH),所以也可以认为CORESETPoolIndex可用于区分发送PDCCH的TRP。如果CORESETPoolIndex的取值不同,那么采用对应的控制资源集合发送PDCCH的TRP也不同。例如,DCI1所对应控制信道资源配置信息中的CORESETPoolIndex与DCI2所对应控制信道资源配置信息中的CORESETPoolIndex不同,那么发送DCI1和DCI2的TRP是不同的,即发送DCI1和DCI2的TRP是2个TRP。在图1中的(a)中,多个TRP分别向终端发送调度PDSCH的DCI,这种方式可以称为多DCI的多TRP传输模式。
与图1中的(a)不同,图1中的(b)中的2个TRP只有1个TRP发送DCI,调度1个PDSCH。例如TRP1发送DCI1,TRP2不发送DCI。在图1中的(b)中,所调度的PDSCH可用于承载TRP1向终端发送的Data1和TRP2向终端发送的Data2。换句话说,该PDSCH中的部分的层或者部分DMRS端口由一个TRP发送,该PDSCH中的另一部分层或者DMRS端口由另一个TRP发送。相较于图1中的(a)来说,在图1中的(b)中,多个TRP中的1个TRP向终端发送调度PDSCH的DCI,这种方式可称为单DCI的多TRP传输模式。
多DCI的多TRP传输模式和单DCI的多TRP传输模式对网络部署的要求是不同的。一般来说,单DCI的多TRP传输模式对网络部署的要求高于多DCI的多TRP传输模式对网络部署的要求。这是因为单DCI调度的PDSCH的不同层或者DMRS端口在不同的TRP上发送,为了能够实现TRP之间的发送参数和业务数据的实时交互,需要多个TRP之间严格同步,并且多个TRP之间需要有理想的回传链路,对网络部署的要求较高。相对而言,多DCI的多TRP传输模式,由于多个TRP可以分别发送DCI调度相应的PDSCH,所以这多个TRP之间不需要理想的回传链路,对网络部署的要求较低。
需要说明的是,在单DCI的调度方式中,由于PDSCH的层或DMRS端口是由不同TRP发送的,而不同的TRP发送的信号到达终端的时频偏移有所不同,这就需要补偿这些时频偏移。在一些实施例中,规定在单DCI的多TRP传输模式下,以2个TRP为例,网络侧设备可通过高层信令将DCI中的传输配置指示域,即“Transmission configuration indication”域的一个码点与2个不同的传输配置指示(transmission configure tionindication,TCI)状态的关联关系配置给终端,也就是,网络侧设备可通过DCI中的传输配置指示域同 时为终端指示2个不同的TCI状态。应理解,网络侧设备可通过高层信令指示传输配置指示(transmission configure tionindication,TCI)状态(state),每个TCI状态可用于配置PDSCH的一组DMRS端口与其他下行参考信号之间的准共站(Quasi co-location,QCL)关系,终端通过接收与当前PDSCH的层或DMRS端口具有QCL关系的下行参考信号,并估计这些下行参考信号的时频偏参数,基于估计得到的时频偏参数,可以用于补偿当前PDSCH的层或DMRS端口上的时频偏移。应理解,在单TRP传输模式下,DCI中的TCI域的一个码点只与1个TCI state关联。
2)、DAPS-HO的引入是为了缩短移动中断时间,该移动中断时间是指终端在小区切换过程中无法收发数据的一段时间。为了便于理解,请参见图2,为本申请实施例提供的DAPS-HO流程示意图。
源基站(源小区)会向终端发送测量控制消息,终端接收到该测量控制消息,对所有可能的目标小区的下行导频信号分别进行测量,并向源基站发送测量报告。源基站确定是否DAPS-HO,如果源基站确定DAPS-HO,源基站向目标基站发送DAPS-HO请求消息。目标基站接收到该DAPS-HO请求消息,目标基站使用准入控制器(admission control)允许DAPS-HO,并向源基站发送DAPS-HO请求响应消息。源基站接收到该DAPS-HO请求响应消息,向终端发送RRC链接重配置请求消息。终端接收到该RRC链接重配置请求消息,不会马上与源基站切断链接,而是持续在源基站的服务小区发送用户数据或接收用户数据。即DAPS-HO要求终端在接收到小区切换请求后,继续在源小区进行数据接收和发送。同时,目标小区的新的链接被建立起来之后,终端会与目标小区进行同步和随机接入,在此过程中,终端将与目标小区建立1个新的用户面协议栈,同时会在源小区保持一个源用户面协议栈处于激活状态,用于用户数据的发送与接收。即终端同时从源小区和目标小区接收数据,终端完成随机接入过程后,可持续发送用户数据,之后再切换到目标小区。可知,为了支持DAPS-HO,终端需要能够同时接收来自两个不同小区的数据。所以终端能够同时接收来自两个不同小区的数据,也可以认为终端具有DAPS-HO。
3)、PDSCH处理能力,主要用于说明PDSCH处理时延。
应理解,在NR中,可采用混合自动重传请求(hybrid automatic repeat request,HARQ),以保证信号发送的可靠性。终端可根据在信号中添加的校验位,确定接收的信号是否正确。终端确定接收的信号正确,终端可向TRP发送确认(acknowledgement,ACK)消息,相反,终端确定接收的信号错误,终端可向TRP发送(negative acknowledgement,NACK)消息,以通知TRP,终端接收的信号是错误的。TRP接收到NACK消息,TRP会重新向终端发送信号。终端会向TRP反馈HARQ结果,即终端会向TRP发送混合自动重传请求-确认(Hybrid automatic repeat request-Acknowledgement,HARQ-ACK)信息。应理解,终端接收到TRP重新发送的信号需要解析才能确定所接收的信号是否正确,如果信号不正确,终端向TRP反馈HARQ结果之前还需要对上行数据进行打包(组包)。如果终端没有足够的时间对PDSCH做接收处理以及上行数据的组包,那么终端可能无法向TRP提供有效的HARQ-ACK消息。因此,为了保证终端有足够的时间对PDSCH做接收处理以及上行数据的组包,以保证终端可提供有效的HARQ-ACK信息。NR规定了从PDSCH的最后一个符号结束时刻(结束位置)到承载HARQ-ACK信息的PUCCH的第一个上行符号的起始时刻(起始位置)之间的时间间隔(也可称为时间跨度)必须大于或等于一定门限。当该时间跨度大于等于一定门限,终端有足够的时间对PDSCH做接收处理以及上行数据的组包, 也就能够上报有效的HARQ-ACK信息。应理解,这里起始位置和结束位置指的时域位置。
上述的一定门限可以是根据终端上报的能力来确定。考虑分配的HARQ-ACK定时K1,以及使用的PUCCH资源由于定时提前的影响,在一些实施例中,规定携带HARQ-ACK信息的PUCCH的第一个上行符号的起始时刻不能早于L1,以使得上述时间跨度大于或等于一定门限。该L1大于或等于携带传输块(transport block,TB)的PDSCH的最后一个符号结束后的第一时长T proc,1,也就是下一个上行符号的循环前缀(cyclic prefix,CP)的起始时刻位于PDSCH的最后一个符号结束后的T proc,1之后。其中,T proc,1满足公式(1)。
T proc,1=(N 1+d 1,1)(2048+144)·k2 ·T c      (1)
在公式(1)中,N1是基于终端的PDSCH处理能力1和PDSCH处理能力2确定的。PDSCH处理能力1对应的PDSCH处理时间见如下表1-1,PDSCH处理能力2对应的PDSCH处理时间见如下表1-2。PDSCH处理能力1的μ值可根据表1-1确定,PDSCH处理能力2的μ值可根据表1-2确定。μ值指示子载波间隔,μ值对应使T proc,1的值最大的(μPDCCH,μPDSCH,μUL)中的一个。其中,μPDCCH对应调度PDSCH的PDCCH的子载波间隔,μPDSCH对应被调度的PDSCH的子载波间隔,μUL对应传输HARQ-ACK的上行信道的子载波间隔。
表1-1 PDSCH处理能力1对应的PDSCH处理时间
Figure PCTCN2020103907-appb-000001
表1-2 PDSCH处理能力2对应的PDSCH处理时间
Figure PCTCN2020103907-appb-000002
Figure PCTCN2020103907-appb-000003
从表1-1和表1-2可以看出,PDSCH处理能力2的处理时延比PDSCH处理能力1的处理时延更短。所以具有PDSCH处理能力2的终端相比具有PDSCH处理能力1的终端来说,对终端的处理能力要求更高。
虽然终端可能具有上述3种能力,但是受终端的硬件处理能力限制,终端未必能够同时支持如上多种特性,例如终端未必同时支持DAPS-HO和多TRP传输。目前网络设备无法知道终端是否同时具有多种能力,也就无法合理地对终端进行配置或调度。例如终端可能无法同时具有DAPS-HO能力和多TRP传输能力,如果网络设备在同一个时隙同时配置或者调度了DAPS-HO和多TRP传输,终端会由于没有足够的硬件资源支持导致终端发生***崩溃,无法实现DAPS-HO和多TRP传输的业务传输。
鉴于此,本申请实施例提供了一种通信方法,该方法中,网络设备可为按照不超过终端的实际处理能力,例如按照比终端的实际处理能力较低的处理能力为终端进行配置或者调度,以尽量避免由于终端的硬件资源不足而无法有足够的能力处理业务导致***崩溃,提高用户体验。或者,终端将自身具有的能力上报给网络设备,这样网络设备可清楚地知道终端同时具有的能力,以及具有哪些能力,从而实现网络设备合理地为终端进行配置或者调度。
本申请实施例提供的通信方法可以应用于包括发送端和接收端的各种通信***,例如NR***、LTE***、LTE-A***、全球微波互联接入(worldwide interoperability for microwave access,WiMAX),或无线局域网络(wireless local area networks,WLAN)以及5G***等。
示例性的,本申请实施例提供的通信方法可以应用于如图3所示的网络架构。在图3所示的网络架构中,发送端和接收端可通过无线电波来传输数据,也可以通过激光、红外或者光纤等传输介质来传输数据。应理解,通常将发送信号的设备称为发送端,将接收信号的设备称为接收端,但是本申请实施例中,发送端和接收端是相对而言。也就是,在一些实施例中,也可将发送端称为接收端,相对而言,那么接收端称为发送端。
作为一种示例,发送端可以是网络侧设备,接收端可以是终端侧设备。其中,网络侧设备也可称为网络设备,是网络侧中一种用于发射或接收信号的实体,如新一代基站(generation Node B,gNodeB)。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(wireless local area networks,WLAN)中的AP,长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者也可以包括5G NR***中的下一代节点B(next generation node B,gNB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或NR***中的gNodeB/gNB等。下面以网络设备是gNB为例。
gNB可以包括天线,基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU)。其中,BBU可以通过公共无线接口(common public radio interface,CPRI)或增强的CPRI(enhance CPRI,eCPRI)等与RRU相连,RRU可以通过馈线与天线相连。该天线可以为无源天线,其与RRU是分离的,之间可以通过电缆连接。或者该天线可以 为有源天线单元(active antenna unit,AAU),即AAU的天线单元和RRU是集成在一块的。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分离单元(distributed unit,DU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,DU可用于实现射频信号的收发,射频信号与基带信号的转换,以及部分基带处理。CU可用于进行基带处理,对基站进行控制等。在一些实施例中,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
终端侧设备也可以称为终端设备或者终端,可以是能够接收网络设备调度和指示的无线终端设备,终端侧设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端侧设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,与RAN交换语音和/或数据。该终端侧设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,终端可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。又例如,终端可包括虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。再例如,终端可包括个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。或者终端还可包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行 智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
在本申请的实施例中,网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端的应用场景不做限定。
本申请实施例可以适用于上行信号传输,还可以适用于D2D的信号传输。对于上行信号传输,发送设备是终端,对应的接收设备是网络设备;对于D2D的信号传输,发送设备是终端,接收设备也是终端。
应理解,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。或者还可以约定某一信息中携带或不携带某一标识,作为对待指示信息的指示。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
本申请实施例中,时域概念或时域单元可以包括帧、无线帧、***帧、子帧、半帧、 时隙、迷你时隙、符号等。
应理解,本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的指示信息,而并不是表示这两种信息的优先级、或者重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,在本申请实施例中,“示例性的”一词用于表示例子或说明。本申请实施例汇总被描述为“示例”的任何实施例或实现方案不应被解释为比其他实施例或实现方案更优选。也就是,使用“示例”一词旨在以具体方式呈现概念。
本申请实施例旨在使得网络设备为终端进行配置或者调度不超过终端的处理能力。换句话说,网络设备可按照终端实际具有的能力为终端进行的配置或者调度,也可以按照低于终端实际具有的能力来为终端进行配置或者调度。这样可避免终端根据网络设备的配置或者调度来进行业务传输的过程中可能发生的***崩溃等问题。
示例性的,终端不能同时支持DAPS-HO和多TRP传输,那么终端在DAPS-HO过程中不支持多TRP传输。这种情况下,如果网络设备为终端既配置了DAPS-HO的配置,又配置了多TRP传输的配置,例如网络设备为终端配置终端进行DAPS-HO的重配置,且网络设备为终端配置的CORESETPoolIndex包括两个不同的取值;或者网络设备为终端配置的CORESETPoolIndex的一个码点关联两个不同的TCI state。终端根据网络设备的配置在DAPS-HO过程中进行多TRP传输,由于没有足够的能力同时进行DAPS-HO和多TRP传输,可能会导致终端***崩溃等问题。这种情况下,网络设备可按照终端同时支持DAPS-HO和单TRP传输来为终端进行配置或调度,即按照终端的实际处理能力为终端进行配置或调度,尽量避免由于终端的处理能力不足导致终端***崩溃等问题。
示例性的,终端支持在DAPS-HO过程中进行多TRP传输,网络设备可为终端配置DAPS-HO的重配置,以及为终端配置多TRP传输的配置;或者网络设备可为终端配置DAPS-HO的重配置,以及为终端配置单TRP传输的配置。即按照不超过终端的实际处理能力为终端进行配置或调度,也可以避免由于终端的处理能力不足导致终端***崩溃等问题。
同理,在多TRP传输的情况下,无论终端知否支持PDSCH处理能力2,网络设备可按照PDSCH处理能力1配置,以保证PDSHC处理时延不超过终端实际的PDSCH处理能力,保证终端可上报有效的HARQ结果。
为了便于理解本申请实施例,下面结合附图对本申请实施例提供的通信方法进行详细 介绍。在下文的介绍过程中,以该方法应用于图3所示的通信***为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。为了便于介绍,在下文中,以该方法由基站和终端执行为例,也就是,以第一通信装置是基站、第二通信装置是终端为例。需要说明的是,本申请实施例只是以通过图3的通信***为例,并不限制于这种场景。
需要说明的是,下文中,以多TRP传输包括2个TRP的传输为例,也就是对于多DCI的多TRP传输来说,基站为终端配置的CORESETPoolIndex最多可包括两个值,例如第一值和第二值为例。对于单DCI的多TRP传输来说,基站向终端发送的DCI中的TCI域的码点关联的TCI state最多可包括两个TCI state,例如第一TCI state和第二TCI state。应理解,只是以多TRP传输为2个TRP传输为例,但是本申请不限制多TRP传输场景中包括的TRP的个数,如果多TRP传输场景包括3个或3个以上的TRP,也可以沿用本申请实施例。这种情况下,基站为终端配置的CORESETPoolIndex可包括至少3个值,同理,基站向终端发送的DCI中的TCI域的码点关联的TCI state可包括至少3个TCI state。
请参见图4,为本申请实施例提供的通信方法的流程图。该通信方法的具体流程描述如下。
S401、基站向终端发送第一信息,相应的,终端接收该第一信息,该第一信息用于DAPS-HO的重配置。
第一信息是可用于DAPS-HO重配置的信息。在一些实施例中,第一信息可承载在现有信令的一个或多个字段上,这样有利于兼容现有的信令。例如第一信息可以是上述的RRC链接重配置请求消息。
S402、终端确定监测N个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH,N为大于或等于2的整数。
终端接收该第一信息,根据该第一信息进行DAPS-HO过程。在终端完成DAPS-HO之前,基站还可以向终端发送为终端配置的PDCCH配置参数,该PDCCH配置参数包括CORESET中的CORESETPoolIndex。终端根据CORESETPoolIndex可确定要监测来自哪些TRP的信息,即终端根据CORESETPoolIndex进行多TRP传输或者单TRP传输。
在本申请实施例中,不管终端是否支持在DAPS-HO过程中进行多TRP传输,终端在DAPS-HO过程中可只监测来自于同一个TRP的信息,而不需要监测来自多个TRP的信息。也可以理解为,不管基站为终端配置的CORESETPoolIndex具有相同的取值,还是基站为终端配置的CORESETPoolIndex具有不同的取值,终端监测关联到某个值(本文中以第一值为例)的CORESETPoolIndex所对应的PDCCH,而对关联其他值的CORESETPoolIndex所对应的PDCCH不作监测。由于终端监测多个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH,所以可降低终端实现的复杂度。需要说明的是,对于多TRP传输来说,基站可配置CORESETPoolIndex具有多个不同的取值,例如有2个TRP,那么CORESETPoolIndex具有两个不同的取值,例如0和1,第一值可以是0,也可以是1。
在可能的实现方式中,本申请实施例可预先约定终端在DAPS-HO过程中进行单TRP传输,或者基站可告知终端,终端在DAPS-HO过程中进行单TRP传输。这样不管基站为终端配置的CORESETPoolIndex具有相同的取值,还是多个不同的取值,终端只监测关联到某个值的CORESETPoolIndex所关联的PDCCH。
举例来说,对于多DCI的多TRP传输,在终端完成DAPS-HO之前,基站向终端发送PDCCH,该PDCCH所关联的CORESET所对应的CORESETPoolIndex的取值为第一值,或者该PDCCH所关联的CORESET所对应的CORESETPoolIndex的取值包括两个不同的取值,例如第一值和第二值。终端在完成此次DAPS-HO之前,只需要监测关联到第一值的CORESETPoolIndex对应的PDCCH,也就是终端监测的PDCCH所关联的CORESET中的CORESETPoolInde的取值都为第一值。
应理解,基站配置的CORESETPoolIndex的取值可包括第一值和第二值,终端只监测关联到第一值的CORESETPoolIndex对应的PDCCH。从终端的角度来说,可认为获得的第一值和第二值中,只有第一值是有用的。换句话说,终端可认为当CORESETPoolIndex的值为第一值,该CORESETPoolIndex对应的CORESET的配置生效,终端可根据CORESET监测PDCCH。从这个角度来说,预先约定终端在DAPS-HO过程中进行单TRP传输,也可以认为预先约定当CORESETPoolIndex的值为第一值,该CORESETPoolIndex对应的CORESET的配置生效。基站可告知终端,终端在DAPS-HO过程中进行单TRP传输,也可以认为,基站告知终端,当CORESETPoolIndex的值为第一值,该CORESETPoolIndex对应的CORESET的配置生效。
作为一种示例,***可预定义第一值,也就是***可预定义基于多DCI的多TRP传输中,CORESETPoolIndex为第一值,CORESETPoolIndex对应的CORESET配置生效。或者基站和终端可预先约定第一值,也就是基站和终端之间可预先约定基于多DCI的多TRP传输中,CORESETPoolIndex为第一值,CORESETPoolIndex对应的CORESET配置生效。
在一些实施例中,第一值可以是0,即预定义多DCI的多TRP传输中,CORESETPoolIndex为0,为0的CORESETPoolIndex对应的CORESET配置生效。这种情况下,基站向终端发送的PDCCH所关联的多个CORESET所对应的CORESETPoolIndex可以相同,也可以不同。基站向终端发送的PDCCH所关联的多个CORESET所对应的CORESETPoolIndex相同时,CORESETPoolIndex=0。基站向终端发送的PDCCH所关联的多个CORESET所对应的CORESETPoolIndex不同时,例如CORESETPoolIndex包括0和1。终端接收第一信息,根据第一信息进行DAPS-HO。由于约定CORESETPoolIndex=0的CORESET配置生效,终端在完成此次DAPS-HO之前,只监测CORESETPoolIndex=0所关联的PDCCH。由于预定义多DCI的多TRP传输中,当CORESET所关联的CORESETPoolIndex为0时,对应的CORESET配置生效,终端在接收第一信息之后,根据预定义,监测关联CORESETPoolIndex为0的CORESET内的PDCCH。也可以认为第一信息触发终端监测的信息来自关联到CORESETPoolIndex=0的TRP。
在另一些实施例中,第一值可以是1,即预定义基于多DCI的多TRP传输中,当CORESET所关联的CORESETPoolIndex为1时,对应的CORESET配置生效。
同理,这种情况下,基站向终端发送的PDCCH所关联的多个CORESET所对应的CORESETPoolIndex=1,或者基站向终端发送的PDCCH所关联的多个CORESET对应两个不同值的CORESETPoolIndex,例如包括0和1。终端接收第一信息,根据第一信息进行DAPS-HO,且在完成DAPS-HO之前,监测关联到1的CORESETPoolIndex对应的PDCCH。
作为另一种示例,上述第一值可以是基站告知终端的,即基站告知终端,多DCI的多TRP传输中,监测多个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex 所对应的PDCCH。也就是基站告知终端,CORESETPoolIndex为第一值,CORESETPoolIndex对应的CORESET配置生效。
在具体实现过程中,基站可通过第二信息指示第一值。第二信息可直接指示第一值,也可以间接指示第一值,例如通过与第一值相关的信息来间接指示第一值,从而在一定程度上降低指示开销。
具体来讲,S403、基站向终端发送第二信息,对应地,终端接收该第二信息,该第二信息可用于指示第一值。
与第一信息类型,第二信息也可以承载在现有信令的一个或多个字段上,这样有利于兼容现有的信令。例如第二信息承载在RRC信令,媒体访问控制元素(media access control control element,MAC CE)信令,DCI信令等中的一种或多种中。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者上行控制信息(uplink control information,UCI)信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或UCI字段。对此,本申请实施例不作限制。例如在一些实施例中,第二信息也可以承载在新定义的信令。
在一些实施例中,第二信息和第一信息可通过一条信令发送,例如第二信息可携带在第一信息中,这样通过一条信令实现两种信息的发送,可节约信令开销。应理解,第二信息和第一信息通过同一信令发送,第二信息和第一信息的发送时刻相同。当然第二信息也可以独立于第一信息发送给终端,即第一信息和第二信息分别发送给终端,上报第二信息的方式更为灵活。
如果第二信息和第一信息分别独立发送给终端,那么第二信息的发送时刻早于第一信息的发送时刻。需要说明的是,第二信息的发送时刻早于第一信息的发送时刻,也就是第二信息在第一信息之前发送。例如基站可在时刻T向终端发送第二信息(指示第一值或第一TCI state的高层信令),基站可在时刻T+Δ发送第一信息(用于DAPS-HO配置的高层信令),其中,Δ大于或等于0。对于终端来说,终端在时刻T接收第二信息,在时刻T+Δ接收第一信息,终端根据第二信息确定基站为终端配置的CORESETPoolIndex为第一值,那么终端在DAPS-HO过程中,可监测关联到第一值的CORESETPoolIndex的PDCCH,而对关联到其他值的CORESETPoolIndex的PDCCH不做监测。以上所述的“时刻”可以指一时域单元。
由于基站可在启动DAPS-HO之前或者在DAPS-HO开始的同时,为终端进行单TRP传输的DAPS-HO的重配置,这样可保证在HAPS-HO切换过程中,避免出现多TRP传输,超出终端的处理能力。
下面介绍几种第二信息指示第一值的具体指示方式,也就是第二信息的具体实现形式。
指示方式一,第二信息包括第一值,直接明了。
作为一种示例,第二信息可指示基站为终端配置单TRP传输方式。例如第二信息可以指示基站为终端配置的CORESET中的CORESETPoolIndex具有相同的取值,且该取值为第一值。
例如,对于多DCI的多TRP传输,第二信息可以是基站向终端发送的高层信令,该高层信令为终端配置的PDCCH-Config中的CORESET中的CORESETPoolIndex具有相同的值,且该取值为第一值。也就是第二信息包括基站为终端配置的PDCCH-Config中的CORESET中的CORESETPoolIndex包括的取值,该取值为第一值。这种情况下,终端接 收第二信息可确定监测的PDCCH所关联的CORESETPoolIndex等于第一值。
指示方式二、可通过第一标识信息来指定第一值,即通过第一标识信息间接指示第一值,较为灵活。
作为一种示例,第一标识信息可用于指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndex是否可包括多个不同的取值,即间接指示基站为终端配置多TRP传输或者单TRP传输。
例如,在一些实施例中,可约定携带该第一标识信息的第二信息,可指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndex等于预先约定的值,例如第一值。相反,不携带该第一标识信息的第二信息,可指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndex的取值不受限制。也就是,如果第二信息中不包括第一标识信息,那么可指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndexde值可以是1个(例如第一值),也可以是多个,以2个为例(例如第一值和第二值)。终端接收到第二信息后,可根据第二信息是否携带第一标识信息来确定要监测关联到CORESETPoolIndex为第一值的PDCCH,还是监测关联到CORESETPoolIndex为第一值和第二值的PDCCH。如果第二信息携带第一标识信息,那么终端只需要监测关联到CORESETPoolIndex为第一值的PDCCH,即监测来自同一个TRP的信息。
在另一些实施例中,也可约定携带该第一标识信息的第二信息,可指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndex的取值不受限制。不携带该第一标识信息的第二信息,可指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndex等于预先约定的值,例如第一值。
作为另一种示例,第一标识信息可以承载在第二信息包括的一个字段或多个字段,该第一标识信息可占用多个比特,通过这多个比特的取值(状态)指示终端在DAPS-HO过程中,监测的PDCCH关联的CORESETPoolIndex为多个值(例如第一值和第二值)中的哪个值,即间接指示基站为终端配置多TRP传输或者单TRP传输。应理解,这至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
示例性的,第一标识信息占用1比特,即第一标识信息具有两种状态,这两种状态分别为第一状态和第二状态。在一些实施例中,可预先定义,第一状态可用于指示终端在DAPS-HO过程中需要监测的CORESETPoolIndex的值为第一值,第二状态可用于指示终端在DAPS-HO过程中需要监测的CORESETPoolIndex的值为第二值。或者,在另一些实施例中,也可预先定义,第一状态可用于指示终端在DAPS-HO过程中需要监测的CORESETPoolIndex的值为第二值,第二状态可用于指示终端在DAPS-HO过程中需要监测的CORESETPoolIndex的值为第一值。
这种情况下,终端接收第二信息,如果第一标识信息指示终端在DAPS-HO过程中需要监测的CORESETPoolIndex的值为第一值,那么终端监测关联到第一值的CORESETPoolIndex对应的PDCCH;如果第一标识信息指示终端在DAPS-HO过程中需要监测的CORESETPoolIndex的值为第二值,那么终端监测关联到第二值的CORESETPoolIndex对应的PDCCH。
又一示例性的,第一标识信息占用多个比特,例如第一标识信息占用2比特,那么第一标识信息具有4种状态。在一些实施例中,可预先定义,第一标识信息的4种状态与终 端在DAPS-HO过程中需要监测的CORESETPoolIndex的对应关系。终端接收到第二信息,可根据第一标识信息标识的状态以及该对应关系,确定监测关联到某个值的CORESETPoolIndex对应的PDCCH。
例如,第一标识信息具有的4种状态分别为第一状态、第二状态、第三状态和第四状态。可预先定义,第一状态可用于指示终端在DAPS-HO过程中需要监测的PDCCH所关联的CORESETPoolIndex为第一值,第二状态可用于指示终端在DAPS-HO过程中需要监测的PDCCH所关联的CORESETPoolIndex为第二值,第三状态可用于指示终端在DAPS-HO过程中需要监测的PDCCH所关联的CORESETPoolIndex不受限制,例如包括第一值和第二值。由于本文以多TRP传输包括2个TRP为例,所以第四状态可认为是预留状态。
需要说明的是,上述第一标识信息可标识的4种状态与终端在DAPS-HO过程中需要监测的CORESETPoolIndex的对应关系仅是示例,具体何种状态对应CORESETPoolIndex的何种取值,本申请实施例不作限制。
指示方式三、第二信息也可以不包括第一值和第一标识信息,即缺省第一值和第一标识信息的情况下,第二信息可默认指示第一值。
示例性,第二信息也可以不包括第一值和第一标识信息,可认为基站为终端配置单TRP传输,即基站为终端配置的CORESETPoolIndex的值是预先约定的值。这种情况下,可预先定义该值为第一值。相较于上述指示方式一和指示方式二来说,这种指示方式可以认为是缺省第一值和第一标识信息的情况下,指示第一值的方式。
应理解,多DCI的多TRP传输中,CORESETPoolIndex为第一值,CORESETPoolIndex的CORESET配置生效,可以是预定义的,也可以是基站向终端指示的,所以第二信息不是基站必须向终端发送的,因此,在图4中,S403用虚线进行示意。需要说明的是,S403并不意味着是在S401或S402之后的步骤。
应理解,如果终端本身具有DAPS-HO能力和多TRP传输能力,但是预先约定终端在DAPS-HO过程中不允许进行多TRP传输,那么无法更好地利用终端所具有的能力。为此,在本申请实施例中,基站可根据终端本身具有的能力为终端进行配置和调度,即基站根据终端本身具有的能力向终端发送第二信息。由于第二信息是根据终端本身具有的能力确定的,所以第二信息的配置更为合理,这样既可避免为终端进行的配置超出终端本身具有的能力,又可尽量最大限度地利用终端本身具有的能力。
作为一种示例,S404、终端向基站发送第一能力信息,基站接收该第一能力信息,该第一能力信息用于指示终端是否支持在DAPS-HO过程中进行多TRP传输。
基站接收终端所发送的第一能力信息,如果确定第一能力信息指示终端支持在DAPS-HO过程中进行单TRP传输,也就是终端不支持在DAPS-HO过程中进行多TRP传输,那么基站向终端发送的第二信息可指示第一值。终端在DAPS-HO过程中,可监测所关联的CORESETPoolIndex为第一值的PDCCH,不监测所关联的CORESETPoolIndex为其他值的PDCCH。如果确定第一能力信息指示终端支持在DAPS-HO过程中进行多TRP传输,终端在DAPS-HO过程中,可监测关联CORESETPoolIndex为多个取值的PDCCH。需要说明的是,如果支持在DAPS-HO过程中进行多TRP传输,那么无需第二信息的指示。
需要说明的是,第一能力信息不是终端必须发送的,所以S404在图4中用虚线进行示意。另外,本申请实施例对S403和S404的先后顺序不作限制。即S404可在S403之前 执行,也可以在S403之后执行。
另外,如果终端不发送该第一能力信息,可默认终端不支持在DAPS-HO过程中进行多TRP传输。即缺省第一能力信息,可默认终端不支持在DAPS-HO过程中进行多TRP传输。
前述以多DCI的多TRP传输为例,介绍基站如何根据终端的实际能力为终端进行配置或调度。应理解,前述基站为终端的配置或调度同样适用于单DCI的多TRP传输场景,下面具体介绍。
请参见图5,为本申请实施例提供的另一通信方法的流程示意图。该方法适用于单DCI的多TRP传输,该方法的具体流程描述如下。
S501、基站向终端发送第一信息,相应的,终端接收该第一信息,该第一信息用于DAPS-HO的重配置。
具体与前述S401相同,可参考S401的相关描述,这里不再赘述。
S502、基站向终端发送第二信息,对应地,终端接收该第二信息,该第二信息可用于指示第一TCI状态。
具体可参考前述S403,与S403的不同之处在于,在单DCI的多TRP传输场景中,在终端完成DAPS-HO之前,基站还可以向终端发送DCI,该DCI可用于指示PDSCH的不同DMRS分组所关联的TCI状态(state)。例如该DCI中的TCI域的码点可关联TCI该DCI中的TCI域的码点所关联的TCI状态。终端可采用DCI指示的TCI state接收PDSCH。
与前述S403相同,在本申请实施例中,不管终端是否支持在DAPS-HO过程中进行多TRP传输,终端在DAPS-HO过程中可按照一种TCI状态接收PDSCH,而不需要按照多种TCI状态接收PDSCH。也可以理解为,不管基站为终端配置的DCI中的TCI域关联同一种TCI状态,还是基站为终端配置的DCI中的TCI域关联不同的TCI状态,终端在DAPS-HO过程中可按照一种TCI状态接收PDSCH,而不需要按照多种TCI状态接收PDSCH,可降低终端实现的复杂度。
需要说明的是,对于多TRP传输来说,基站可配置DCI中的TCI域关联不同的TCI状态,例如有2个TRP,那么DCI中的TCI域关联两种不同的TCI状态,例如第一TCI状态和第二TCI状态。基站向终端发送的DCI中的TCI域的码点所关联的2个TCI state中只有一个TCI state生效,例如可预先约定DCI中的TCI域的码点所关联的2个TCI state中的第一TCI state(TCI state1)生效。其中,第一TCI state可以是DCI中的TCI域的码点所关联的2个TCI state中的第一个TCI state,也可以是DCI中的TCI域的码点所关联的2个TCI state中的第二个TCI state(TCI state2)。
本申请实施例可预先约定终端在DAPS-HO过程中进行单TRP传输,或者基站可告知终端,终端在DAPS-HO过程中进行单TRP传输。这样不管基站为终端配置的DCI中的TCI域关联一种TCI状态,还是关联不同从TCI状态,终端按照其中的一种TCI状态接收PDSCH,例如终端按照第一TCI状态接收PDSCH。
应理解,基站为终端配置的DCI中的TCI域可关联第一TCI状态和第二TCI状态,终端只按照第一TCI状态接收PDSCH。从终端的角度来说,可认为获得的第一TCI状态和第二TCI状态中,只有第一TCI状态是有用的。换句话说,终端可认为DCI中的TCI域所关联的第一TCI状态生效。从这个角度来说,预先约定终端在DAPS-HO过程中进行单TRP传输,也可以认为预先约定DCI中的TCI域所关联的第一TCI状态生效。基站可 告知终端,终端在DAPS-HO过程中进行单TRP传输,也可以认为,基站告知终端,DCI中的TCI域所关联的第一TCI状态生效。
与多DCI多TRP传输类似,在本申请实施例中,第一TCI状态可以是预先约定的,也可以是基站告知终端的。由于预定义DCI中的TCI域所关联的第一TCI状态生效,终端在接收第一信息之后,根据预定义,按照第一TCI状态接收PDSCH,也可以认为第一信息触发第一TCI状态接收PDSCH。即第一信息使得终端按照多个TCI状态中的第一TCI状态接收PDSCH。
或者,基站可通过第二信息告知终端DCI中的TCI域所关联的第一TCI状态生效。即第二信息可指示第一TCI状态。与第二信息指示第一值类似,第二信息指示第一TCI状态包括直接指示方式和间接指示方式,下面分别介绍。
指示方式一,第二信息包括第一TCI状态,直接明了。
与S403中的指示方式一类似,这里的第二信息可指示基站为终端配置单TRP传输方式。例如第二信息可以指示基站为终端配置的DCI的TCI域的码点所关联的TCI状态为一种TCI状态,且该TCI状态为第一TCI状态。
例如,第二信息可以是基站向终端发送的MAC-CE信令,该MAC-CE信令为终端配置的DCI中的TCI域的码点所关联的TCI状态为一种TCI状态,且该TCI状态为第一TCI状态。这种情况下,终端接收第二信息可确定按照第一TCI状态接收PDSCH。
指示方式二,可通过第一标识信息来指定第一TCI状态,即通过第一标识信息间接指示第一TCI状态,较为灵活。
作为一种示例,第一标识信息可用于指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state是否相同,即间接指示基站为终端配置多TRP传输或者单TRP传输。
例如,在一些实施例中,可约定携带该第一标识信息的第二信息,可指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state等于预先约定的值,例如第一TCI state。不携带该第一标识信息的第二信息可用于指示终端在DAPS-HO过程中,确定PDSCH的第一组DMRS分组对应DCI中的TCI域的码点所关联的第一个TCI state,PDSCH的第二组DMRS分组对应DCI中的TCI域的码点所关联的第二个TCI state。终端接收到第二信息后,可根据第二信息是否携带第一标识信息来确定接收PDSCH要使用的TCI state。如果第二信息携带第一标识信息,那么终端确定采用第一标识信息指示的TCI state接收PDSCH。
或者,可约定不携带该第一标识信息的第二信息,可指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state等于预先约定的值,例如第一TCI state。携带该第一标识信息的第二信息可用于指示终端在DAPS-HO过程中,确定PDSCH的第一组DMRS分组对应DCI中的TCI域的码点所关联的第一个TCI state,PDSCH的第二组DMRS分组对应DCI中的TCI域的码点所关联的第二个TCI state。
作为另一种示例,第一标识信息可以承载在第二信息包括的一个字段或多个字段,该第一标识信息可占用多个比特,通过这多个比特的取值(状态)指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state为多个TCI state(例如第一TCI state和第二TCI state)中的哪个TCI state,即间接指示基站为终端配置多TRP传输或者单TRP传输。应理解,这至少一个比特的不同取值对应的TCI状态不同。
示例性的,第一标识信息占用1比特,即第一标识信息具有两种状态,这两种状态分别为第一状态和第二状态。在一些实施例中,可预先定义,第一状态可用于指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state等于预先约定的值,例如第一TCI state。第二状态用于指示终端在DAPS-HO过程中,PDSCH的第一组DMRS分组对应DCI中的TCI域的码点所关联的第一个TCI state,PDSCH的第二组DMRS分组对应DCI中的TCI域的码点所关联的第二个TCI state。
或者,第一状态用于指示终端在DAPS-HO过程中,PDSCH的第一组DMRS分组对应DCI中的TCI域的码点所关联的第一个TCI state,PDSCH的第二组DMRS分组对应DCI中的TCI域的码点所关联的第二个TCI state。第二状态用于指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state等于预先约定的值,例如第一TCI state。
又一示例性的,第一标识信息占用多个比特,例如第一标识信息占用2比特,那么第一标识信息具有4种状态。在一些实施例中,可预先定义,第一标识信息的4种状态与终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state的对应关系。终端接收到第二信息,可根据第一标识信息标识的状态以及该对应关系,确定生效的TCI state,从而按照生效的TCI state接收PDSCH。
例如,第一标识信息具有的4种状态分别为第一状态、第二状态、第三状态和第四状态。可预先定义,第一状态可用于指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state为第一TCI state,第二状态可用于指示终端在DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state为第二TCI state,第三状态可用于终端在DAPS-HO过程中,PDSCH的第一组DMRS分组对应DCI中的TCI域的码点所关联的第一个TCI state,PDSCH的第二组DMRS分组对应DCI中的TCI域的码点所关联的第二个TCI state。由于本文以多TRP传输包括2个TRP为例,所以第四状态可认为是预留状态。
需要说明的是,上述第一标识信息可标识的4种状态与终端在最近一次的DAPS-HO过程中,PDSCH的不同DMRS分组所关联的TCI state的对应关系仅是示例,具体何种状态对应PDSCH的不同DMRS分组所关联的哪个TCI state,本申请实施例不作限制。
与多DCI的多TRP类似,在本申请实施例中,第二信息也可以不包括第一TCI state和第一标识信息,即缺省第一state和第一标识信息的情况下,第二信息可默认指示第一state。
应理解,关于单DCI的多TRP传输场景下,第二信息指示第一TCI state的方式,与在多DCI的多TRP传输场景下,第二信息指示第一值的方式类似,具体可参考前述图4所示的实施例中的描述,这里不再赘述。
与S403类似,在S502中,第二信息和第一信息可以通过同一条信令发送,也可以分别独立发送,对此,本申请实施例不作限制。应理解,基站可在时刻T向终端发送第二信息(在时刻T+Δ发送第一信息,其中,Δ大于或等于0。即基站可在启动DAPS-HO之前或者在DAPS-HO开始的同时,为终端进行单TRP传输的DAPS-HO的重配置,这样可保证在HAPS-HO切换过程中,避免出现多TRP传输,超出终端的处理能力。
应理解,S502也不是必不可少的,因此在图5中以虚线进行示意。
S503、终端向基站发送第一能力信息,基站接收该第一能力信息,该第一能力信息用于指示终端是否支持在DAPS-HO过程中进行多TRP传输。
具体与前述S404相同,可参考S404的相关描述,这里不再赘述。应理解,S503也不 是必不可少的,因此在图5中以虚线进行示意。另外,本申请实施例对S503和S502的先后顺序不作限制。即S503可在S502之前执行,也可以在S502之后执行。
S504、终端确定按照多个TCI状态中的第一TCI状态接收PDSCH。
对于单DCI的多TRP传输,如果约定或指示DCI中的TCI域的码点所关联的TCI state1生效。在终端完成DAPS-HO之前,基站向终端发送的DCI中的TCI域的码点所关联的TCI state为TCI state1,或者该DCI中的TCI域的码点所关联的TCI state包括TCI state1和TCI state2。终端接收第一信息,根据第一信息进行DAPS-HO。由于约定DCI中的TCI域的码点所关联的2个TCI state中的TCI state1生效,终端在完成DAPS-HO之前,只按照TCI state1接收PDSCH。
同理,如果约定或指示DCI中的TCI域的码点所关联的TCI state2生效。那么基站在终端完成DAPS-HO之前,向终端发送的DCI中的TCI域的码点所关联的TCI state为TCI state2,或者基站向终端发送的DCI中的TCI域的码点所关联的TCI state包括TCI state1和TCI state2。终端在完成DAPS-HO之前,只按照TCI state2接收PDSCH。
应理解,如果终端不支持在HAPS-HO过程中进行多TRP传输,那么终端按照单DCI传输的配置监测PDCCH,以及按照单DCI传输的配置接收PDSCH。即终端监测关联CORESETPoolIndex为第一值的CORESET内的PDCCH,且终端按照多个TCI状态中的第一TCI状态接收PDSCH。
如果终端支持在HAPS-HO过程中进行多TRP传输,终端可按照多DCI传输的配置和/或单DCI传输的配置监测PDCCH以及接收PDSCH。
示例性的,终端可按照多DCI传输的配置监测PDCCH,按照单DCI传输的配置接收PDSCH。例如,终端可监测关联到第一值和第二值的CORESETPoolIndex对应的CORESET内的PDCCH,按照多个TCI状态中的第一TCI状态接收PDSCH。
示例性的,终端也可按照单DCI传输的配置监测PDCCH,按照多DCI传输的配置接收PDSCH。例如,终端可监测关联CORESETPoolIndex为第一值的CORESET内的PDCCH,按照多个TCI状态接收PDSCH。
示例性的,终端也可按照多DCI传输的配置监测PDCCH,按照多DCI传输的配置接收PDSCH。例如,终端可监测关联到第一值和第二值的CORESETPoolIndex对应的CORESET内的PDCCH,按照多个TCI状态接收PDSCH。
示例性的,终端也可按照单DCI传输的配置监测PDCCH,按照单DCI传输的配置接收PDSCH。例如终端监测关联CORESETPoolIndex为第一值的CORESET内的PDCCH,且终端按照多个TCI状态中的第一TCI状态接收PDSCH。
在本申请实施例中,基站按照不超过终端本身具有的能力为终端进行配置或调度,能够避免由于终端的处理能力不足导致终端***崩溃等问题。
应理解,有的终端可支持PDSCH处理能力1(在本文中也称为第一PDSCH处理能力),有的终端可支持PDSCH处理能力2(在本文中也称为第二PDSCH处理能力)。如果基站为支持PDCSH处理能力1的终端配置的用于HARQ结果上报的PUCCH资源满足PDSCH处理能力2,不满足PDSCH处理能力1,那么终端将没有足够的时间反馈有效的HARQ结果。
为此,在本申请实施例中,无论终端是否支持PDSCH处理能力2,基站可按照PDSCH处理能力1为终端进行配置用于HARQ结果上报的PUCCH资源,以保证PDSHC处理时 延不超过终端实际的PDSCH处理能力。即基站为终端配置用于HARQ结果上报的PUCCH资源满足PDSCH处理能力1,这样终端就有足够的时间反馈HARQ结果。终端有足够的时间反馈HARQ结果,也可认为终端上报的HARQ结果是有效的,也就是终端上报有效的HARQ结果。或者,基站为终端配置用于HARQ结果上报的PUCCH资源满足PDSCH处理能力2,但是基站限制调度PDSCH的参数,例如调制与编码策略(modulation and coding scheme,MCS)、传输带宽等,这样终端也有足够的时间反馈有效的HARQ结果。
下面结合附图介绍在多TRP传输场景中,基站如何配置用于HARQ结果上报的PUCCH资源。
请参见图6,为本申请实施例提供的另一通信方法的流程示意图,该方法同样可适用于如图3所示的***。在下文的介绍中,以该方法基站和终端为例。且以多TRP传输包括2个TRP的传输为例,且以多DCI多TRP传输为例。该通信方法的具体流程描述如下。
S601、基站向终端发送第一信息,终端接收该第一信息,该第一信息可用于指示基站为终端配置的N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,N为大于或等于2的整数。
基站可为终端配置发送多个CORESET的配置信息ControlResourceSet,每个ControlResourceSet包含一个CORESETPoolIndex。如果终端支持多TRP传输,那么基站可为终端配置所有的资源控制集合ControlResourceSet中的CORESETPoolIndex具有两个不同的取值,例如0和1。
S602、基站向终端发送DCI,该DCI用于指示第一时频资源,该第一时频资源用于承载PDSCH所对应的HARQ结果,且,第一时频资源的位置满足终端支持的第一PDSCH处理能力。
应理解,对于多DCI的多TRP传输来说,基站可通过第一TRP向终端发送第一DCI,且基站可通过第二TRP向终端发送第二DCI。该第一DCI和第二DCI可用于指示第一时频资源。对于单DCI的多TRP传输来说,基站可通过2个TRP中的1个TRP向终端发送用于指示第一时频资源的DCI。
第一时频资源为调度的PDSCH所对应的HARQ结果上报所使用的PUCCH资源。例如基站可通过TRP1在关联于CORESETPoolIndex=0的CORESET的资源内向终端发送第一DCI(例如DCI_0),基站通过TRP2在关联于CORESETPoolIndex=1的CORESET的资源内向终端发送第二DCI(例如DCI_1)。第一DCI和第二DCI中包括用于指示第一时频资源的信息,应理解,第一时频资源是两个TRP对应的同一时频资源。
在本申请实施例中,无论终端是否支持PDSCH的处理能力2,基站为终端配置的第一时频资源的位置满足PDSHC处理能力1的要求。即第一时频资源的位置满足如上述表1-1所指示的PDSCH处理能力1的要求。
S603、终端在第一时频资源上向基站发送HARQ结果。
终端接收第一信息,可确定例如从TRP1接收第一DCI,并从TRP2接收第二DCI。之后,终端在关联于CORESETPoolIndex=0的CORESET的资源上完成PDCCH监测,可监测第一DCI。终端在关联于CORESETPoolIndex=1的CORESET的资源上完成PDCCH监测,可监测第二DCI。
对于支持PDSCH处理能力1的终端来说,根据上述表1-1可确定第一时频资源即PUCCH资源的第一个上行符号的起始位置,从该起始位置开始向基站上报HARQ结果。 由于第一时频资源的位置满足终端支持的PDSCH处理能力1,所以支持PDSCH处理能力1的终端按照上述表1-1确定PUCCH的第一个上行符号的起始位置开始,有足够的时间向基站上报有效的HARQ的结果。
对于支持PDSCH处理能力2的终端来说,也可根据上述表1-1也用于上报HARQ结果的PUCCH资源的第一个上行符号的起始位置,从该起始位置开始向基站上报HARQ结果。由于PDSCH处理能力2的处理时延低于PDSCH处理能力1的处理时延,所以支持PDSCH处理能力2的终端按照上述表1-1确定PUCCH的第一个上行符号的起始位置开始,有足够的时间向基站上报有效的HARQ的结果。
S604、终端向基站发送第一能力信息,基站接收该第一能力信息,该第一能力信息用于指示终端是否支持第二PDSCH处理能力。
如果基站默认为支持PDSCH处理能力2的终端按照上述表1-1为该终端配置用于上报HARQ结果的PUCCH资源,显然时延较长。为了减少时延,对于支持PDSCH处理能力2的终端来说,基站按照上述表1-2为该终端配置用于上报HARQ结果的PUCCH资源。
但是基站并不知道终端是否同时支持多TRP传输和PDSCH处理能力2。为此,在一些实施例中,终端可向基站上报自身的能力,例如是否同时支持多TRP传输和PDSCH处理能力2。
示例性的,终端可向基站发送第一能力信息,该第一能力信息可用于指示终端是否同时支持多TRP传输和PDSCH处理能力2。基站接收终端所发送的第一能力信息,如果确定第一能力信息指示终端同时支持多TRP传输和PDSCH处理能力1,也就是终端不支持基于PDSCH处理能力2进行多TRP传输,那么基站可配置DCI指示的第一时频资源的位置满足PDSCH处理能力1。如果确定第一能力信息指示终端同时支持多TRP传输和PDSCH处理能力2,那么基站可配置DCI指示的第一时频资源的位置满足PDSCH处理能力1,或者基站可配置DCI指示的第一时频资源的位置满足PDSCH处理能力2。
需要说明的是,第一能力信息不是终端必须发送的,所以S604在图6中用虚线进行示意。另外,本申请实施例对S604和S601-603的先后顺序不作限制。
另外,如果终端不发送该第一能力信息,可默认终端不支持基于PDSCH处理能力2进行多TRP传输。即缺省第一能力信息,可默认终端不支持基于PDSCH处理能力2进行多TRP传输。
请参见图7,为本申请实施例提供的另一通信方法的流程示意图,该方法同样可适用于如图3所示的***。在下文的介绍中,以该方法基站和终端为例。且以多TRP传输包括2个TRP的传输为例,且以多DCI多TRP传输为例。该通信方法的具体流程描述如下。
S701、基站向终端发送第一信息,终端接收该第一信息,该第一信息可用于指示基站为终端配置的N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,N为大于或等于2的整数。
S701的具体实现与前述S601相同,具体可参考S601,这里不再赘述。
S702、基站向终端发送DCI,该DCI用于指示第一时频资源,该第一时频资源用于承载PDSCH所对应的HARQ结果,且,第一时频资源的位置满足终端支持的第二PDSCH处理能力,该DCI包括至少一种调度参数,这至少一种调度参数与第二PDSCH处理能力相关。
在本申请实施例中,基站向终端发送DCI的方式可参考S602的相关描述。与S602的不同之处在于,该DCI指示的第一时频资源的位置满足终端支持的第二PDSCH处理能力。也就是基站按照前述表1-2为终端配置用于上报HARQ结果的PUCCH资源。这样对于支持PDSCH处理能力2的终端来说,虽然有足够的时间可上报有效的HARQ结果。但是为了降低终端的复杂度,基站可限制为终端配置的调度参数,以尽量不超过终端的实际处理能力。
由于至少一种调度参数是基于终端支持的PDSCH处理能力2,所以可认为至少一种调度参数与PDSCH处理能力2相关联。或者可认为至少一种调度参数满足预设条件,该预设条件是根据PDSCH处理能力2确定的。
示例性的,至少一种调度参数包括传输带宽,相应的预设条件包括该传输带宽小于或等于M个RB,其中,M是预先约定的或者M是根据PDSCH处理能力2确定的。例如M可以是136。
示例性的,至少一种调度参数包括MCS,相应的预设条件包括MCS小于或等于第一MCS门限,该第一MCS门限是预先约定的,或者第一MCS门限是根据PDSCH处理能力2确定的。
又一示例性的,可约定DCI调度的PDSCH前的N个符号内存在第二PDSCH,如果第二PDSCH满足预设条件,那么终端可跳过第二PDSCH的解码。例如预设条件可包括第二PDSCH的子载波间隔满足一定的条件,例如第二PDSCH的子载波间隔为30kHz、60kHz、120kHz或其他值等。又例如第二PDSCH占用的带宽大于K个RB,例如K=136、K=148或其他值等。又例如第二PDSCH的调度时延满足上述表1-1等。或者第二PDSCH需要满足的预设条件,为上述条件的一种或多种。例如第二PDSCH子载波间隔满足一定的条件,第二PDSCH占用的带宽大于K个RB,第二PDSCH的调度时延满足上述表1-1等。
进一步的,第二PDSCH所关联的CORESETPoolIndex的取值与第一PDSCH所关联的CORESETPoolIndex的取值不同。这样UE可采用独立的硬件资源来处理来自不同TRP的PDSCH。
S703、终端在至少一个调度参数满足预设条件的情况下,在第一时频资源上向基站发送HARQ结果。
终端在第一时频资源上向基站发送HARQ结果可参考前述S603,具体不再赘述。与S603的不同之处在于,终端在上报HARQ结果之前对至少一个调度参数进行判断,当至少一个调度参数满足上述一种或多种预设条件,终端在第一时频资源上向基站发送HARQ结果。
S704、终端向基站发送第一能力信息,基站接收该第一能力信息,该第一能力信息用于指示终端是否支持第二PDSCH处理能力。
S704的具体实现与前述S604类似,具体可参考S604的相关描述,这里不再赘述。
需要说明的是,在一些实施例中,终端还可以告知基站是否支持跳过第二PDSCH的解码,便于基站为终端配置合理的PUCCH资源。
示例性的,该第一能力信息还用于指示终端支持跳过第二PDSCH的解码。即支持跳过第二PDSCH的解码的能力信息和所述第一能力信息可一并发送给基站。或者,终端可单独向基站发送是否支持第二PDSCH解码的能力信息。
在本申请实施例中,基站可按照PDSCH处理能力1为终端进行配置用于HARQ结果 上报的PUCCH资源,以保证PDSHC处理时延不超过终端实际的PDSCH处理能力,终端有足够的时间反馈有效的HARQ结果。或者,对于支持PDSCH处理能力2的终端,基站为终端配置用于HARQ结果上报的PUCCH资源满足PDSCH处理能力2,但是基站限制调度PDSCH的参数,例如调制与编码策略(modulation and coding scheme,MCS)、传输带宽等,这样终端也有足够的时间反馈有效的HARQ结果,同时可降低终端的复杂度。
当然上述图4-图7所示的实施例可单独执行,也可以耦合执行,本申请实施例不作限制。N在不同实施例中的取值可以相同,也可以不同。第一信息、第二信息仅用于区分同一实施例中的不同信息,不同实施例中的第一信息、第二信息可以不同。
上述本申请提供的实施例中,分别从终端和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图8为本申请实施例提供的通信装置800的示意性框图。该通信装置800可以对应实现上述各个方法实施例中由终端或基站实现的功能或者步骤。该通信装置可以包括处理模块810和收发模块820。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块810和收发模块820可以与该存储单元耦合,例如,处理单元810可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置800能够对应实现上述方法实施例中终端的行为和功能。例如通信装置800可以为终端,也可以为应用于终端中的部件(例如芯片或者电路)。收发模块820可以用于执行图4-图7任一所示的实施例中由终端所执行的全部接收或发送操作。例如图4所示的实施例中的S401、S403、S404,和/或用于支持本文所描述的技术的其它过程;又例如图5所示的实施例中的S501、S502、S503,和/或用于支持本文所描述的技术的其它过程;又例如图6所示的实施例中的S601、S602、S603、S604,和/或用于支持本文所描述的技术的其它过程;又例如图7所示的实施例中的S701、S702、S703、S704,和/或用于支持本文所描述的技术的其它过程。其中,处理模块810用于执行如图4-图7任一所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图4所示的实施例中的S402,和/或用于支持本文所描述的技术的其它过程;又例如图5所示的实施例中的S504,和/或用于支持本文所描述的技术的其它过程。
作为一种示例,收发模块820用于接收第一信息,该第一信息用于DAPS-HO的重配置;处理模块810用于确定监测N个所配置的CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的PDCCH,所述N为大于或等于2的整数。
作为一种可选的实现方式,所述第一值是预定义的。
作为一种可选的实现方式,收发模块820还用于接收第二信息,该第二信息用于指示所述第一值。
作为一种可选的实现方式,收发模块820还用于发送第一能力信息,该第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据 所述第一能力信息确定的。
作为一种可选的实现方式,第二信息包括所述第一值或者第一标识信息,该第一标识信息用于指示所述第一值。
作为一种可选的实现方式,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
作为一种可选的实现方式,第一信息和第二信息承载于同一信令;或者,第一信息的接收时刻晚于第二信息的接收时刻。
作为另一种示例,收发模块820用于接收第一信息,该第一信息用于基于切换DAPS-HO的重配置;处理模块810用于确定按照N个TCI状态中的第一TCI状态接收PDSCH,该N个TCI状态为所接收的DCI中的TCI域的码点所关联的TCI状态,N为大于或等于2的整数。
作为一种可选的实现方式,所述第一TCI状态是预定义的。
作为一种可选的实现方式,收发模块820还用于接收第二信息,该第二信息用于指示所述第一TCI状态。
作为一种可选的实现方式,收发模块820还用于发送第一能力信息,该第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输。
作为一种可选的实现方式,第二信息包括第一TCI状态或者第一标识信息,该第一标识信息用于指示所述第一TCI状态。
作为一种可选的实现方式,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一TCI状态,所述至少一个比特的不同取值对应的PDSCH的不同DMRS分组所关联的TCI状态不同。
作为一种可选的实现方式,第一信息和第二信息承载于同一信令;或者,第一信息的接收时刻晚于第二信息的接收时刻。
作为再一种示例,收发模块820用于接收第一信息以及接收DCI,其中,第一信息用于指示为终端配置的N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延;处理模块810用于确定第一时频资源。
作为一种可选的实现方式,收发模块820还用于发送第一能力信息,该第一能力信息用于指示终端支持在第二PDSCH处理能力。
作为又一种示例,收发模块820用于接收第一信息以及接收DCI,其中,第一信息用于指示为终端配置的N个CORESET所对应的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的HARQ结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延,且所述DCI包括至少一种调度参数,所述至少一种调度参数与第二PDSCH处理能力关联;处理模块810用于确定第一时频资源。
作为一种可选的实现方式,所述至少一种调度参数与第二PDSCH处理能力关联,包括:所述至少一种调度参数满足以下一项或多项预设条件:
所述至少一种调度参数包括传输带宽,所述预设条件包括所述传输带宽小于或等于M个资源块RB,M是预先约定的或者M是根据终端支持的第二PDSCH处理能力确定的;
所述至少一种调度参数包括MCS,所述预设条件包括MCS小于或等于第一MCS门限,第一MCS门限是预先约定的,或者第一MCS门限是根据终端支持的第二PDSCH处理能力确定的。
应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件或者通信接口实现。
一些可能的实施方式中,通信装置800能够对应实现上述方法实施例中基站的行为和功能。例如通信装置800可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路)。收发模块820可以用于执行图4-图7任一所示的实施例中由基站所执行的全部接收或发送操作。例如图4所示的实施例中的S401、S403、S404,和/或用于支持本文所描述的技术的其它过程;又例如图5所示的实施例中的S501、S502、S503,和/或用于支持本文所描述的技术的其它过程;又例如图6所示的实施例中的S601、S602、S603、S604,和/或用于支持本文所描述的技术的其它过程;又例如图7所示的实施例中的S701、S702、S703、S704,和/或用于支持本文所描述的技术的其它过程。其中,处理模块810用于执行如图4-图7任一所示的实施例中由基站所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
作为一种示例,处理模块810用于生成第一信息,该第一信息用于DAPS-HO的重配置;收发模块820用于发送所述第一信息,以使得为终端配置的N个CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的CORESET的配置生效,所述N为大于或等于2的整数。
作为一种可选的实现方式,所述第一值是预定义的。
作为一种可选的实现方式,收发模块820还用于发送第二信息,该第二信息用于指示所述第一值。
作为一种可选的实现方式,收发模块820还用于接收第一能力信息,该第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
作为一种可选的实现方式,第二信息包括所述第一值或者第一标识信息,所述第一标识信息用于指示所述第一值。
作为一种可选的实现方式,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
作为一种可选的实现方式,第一信息和第二信息承载于同一信令;或者,第一信息的发送时刻晚于第二信息的发送时刻。
作为一种示例,处理模块810用于生成第一信息,该第一信息用于基于DAPS-HO的重配置;收发模块820用于发送第一信息,以使得终端按照N个TCI状态中的第一TCI状态接收PDSCH,该N个TCI状态为所接收的DCI中的TCI域的码点所关联的TCI状态,所述N为大于或等于2的整数。
作为一种可选的实现方式,所述第一TCI状态是预定义的。
作为一种可选的实现方式,收发模块820还用于接收第二信息,该第二信息用于指示所述第一TCI状态。
作为一种可选的实现方式,收发模块820还用于接收第一能力信息,该第一能力信息用于指示终端支持在DAPS-HO过程中进行单TRP传输。
作为一种可选的实现方式,第二信息包括第一TCI状态或者第一标识信息,该第一标识信息用于指示所述第一TCI状态。
作为一种可选的实现方式,第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一TCI状态,所述至少一个比特的不同取值对应的PDSCH的不同DMRS分组所关联的TCI状态不同。
作为一种可选的实现方式,第一信息和第二信息承载于同一信令;或者,第一信息的接收时刻晚于第二信息的接收时刻。
作为再一种示例,处理模块810用于确定第一时频资源;收发模块820用于发送第一信息以及发送DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所关联的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的HARQ结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延。
作为一种可选的实现方式,收发模块820还用于接收该第一能力信息,所述DCI是根据该第一能力信息确定的。
作为又一种示例,收发模块820用于发送第一信息以及发送DCI,其中,第一信息用于为终端配置N个CORESET,所述N个CORESET所关联的CORESETPoolIndex具有至少两个不同的取值,所述N为大于或等于2的整数,所述DCI用于指示第一时频资源,该第一时频资源可用于承载调度PDSCH所对应的混合自动重传请求(hybrid automatic repeat request,HARQ)结果,该第一时频资源的位置满足终端支持的第一PDSCH处理能力和第二PDSCH处理能力中的第一PDSCH处理能力,第二PDSCH处理能力对应的处理时延低于第一PDSCH处理能力对应的处理时延,且所述DCI包括至少一种调度参数,所述至少一种调度参数与第二PDSCH处理能力关联;处理模块810用于确定第一时频资源。
作为一种可选的实现方式,所述至少一种调度参数与第二PDSCH处理能力关联,包括:所述至少一种调度参数满足以下一项或多项预设条件:
所述至少一种调度参数包括传输带宽,所述预设条件包括所述传输带宽小于或等于M个RB,M是预先约定的或者M是根据终端支持的第二PDSCH处理能力确定的;
所述至少一种调度参数包括调制与编码策略MCS,所述预设条件包括MCS小于或等于第一MCS门限,第一MCS门限是预先约定的,或者第一MCS门限是根据终端支持的第二PDSCH处理能力确定的。
应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件或者通信接口实现。
如图9所示为本申请实施例提供的通信装置900,其中,通信装置900可以是终端,能够实现本申请实施例提供的方法中终端的功能,或者,通信装置900可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能;通信装置900也可以是能够支持终 端实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置900可以为芯片或芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块820可以为收发器,收发器集成在通信装置900中构成通信接口910。
通信装置900包括至少一个处理器920,用于实现或用于支持通信装置900实现本申请实施例提供的方法中网络设备或终端的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置900还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令和/或数据,以使得通信装置900实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置900还可以包括通信接口910,用于通过传输介质和其它设备进行通信,从而用于通信装置900中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。处理器920可以利用通信接口910收发数据。通信接口910具体可以是收发器。
本申请实施例中不限定上述通信接口910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及通信接口910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器920可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器930可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片或芯片***时,收发模块可以是芯片或芯片***的输入输出接口、处理模块可以是芯片或芯片***的处理器。
图10示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图10中,以通信装置是基站作为例子。该基站可应用于如图3所示的***中,可以为图3中的发送端,执行上述方法实施例中网络设备的功能。
该通信装置1000可包括收发器1010、存储器1021以及处理器1022。该收发器1010可以用于通信装置进行通信,如用于发送或接收上述指示信息等。该存储器1021与所述处理器1022耦合,可用于保存通信装置1000实现各功能所必要的程序和数据。该处理器1022被配置为支持通信装置1000执行上述方法中相应的功能,所述功能可通过调用存储器1021存储的程序实现。
具体的,该收发器1010可以是无线收发器,可用于支持通信装置1000通过无线空口进行接收和发送信令和/或数据。收发器1010也可被称为收发单元或通信单元,收发器1010可包括一个或多个射频单元1012以及一个或多个天线1011,其中,射频单元如远端射频单元(remote radio unit,RRU)或者有源天线单元(active antenna unit,AAU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线具体可用于进行射频信号的辐射和接收。可选的,收发器1010可以仅包括以上射频单元1012,则此时通信装置1000可包括收发器1010、存储器1021、处理器1022以及天线1011。
存储器1021以及处理器1022可集成于一体也可相互独立。如图10所示,可将存储器1021以及处理器1022集成于通信装置1000的控制单元1020。示例性的,控制单元1020可包括LTE基站的基带单元(baseband unit,BBU),基带单元也可称为数字单元(digital unit,DU),或者,该控制单元1020可包括5G和未来无线接入技术下基站中的分布式单元(distribute unit,DU)和/或集中单元(centralized unit,CU)。上述控制单元1020可由一个或多个天线面板构成,其中,多个天线面板可以共同支持单一接入制式的无线接入网(如LTE网络),多个天线面板也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述存储器1021和处理器1022可以服务于一个或多个天线面板。也就是说,可以每个天线面板上单独设置存储器1021和处理器1022。也可以是多个天线面板共用相同的存储器1021和处理器1022。此外每个天线面板上可以设置有必要的电路,如,该电路可用于实现存储器1021以及处理器1022的耦合。以上收发器1010、处理器1022以及存储器1003之间可通过总线(bus)结构和/或其他连接介质实现连接。
基于图10所示结构,当通信装置1000需要发送数据时,处理器1022可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1000时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1022,处理器1022将基带信号转换为数据并对该数据进行处理。
基于如图10所示结构,收发器1010可用于执行以上由收发模块820所执行的步骤。和/或,处理器1022可用于调用存储器1021中的指令以执行以上由处理模块810所执行的步骤。
图11示出了一种简化的终端的结构示意图。便于理解和图示方便,图11中,该终端以手机作为例子。如图11所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形 式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图11所示,该装置包括收发单元1110和处理单元1120。收发单元1110也可以称为收发器、收发机、收发装置等。处理单元1120也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元1110有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1110用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1110可以用于执行图4所示的实施例中的S401、S403、S404,和/或用于支持本文所描述的技术的其它过程;或者收发单元1110用于执行图5所示的实施例中的S501、S502、S503,和/或用于支持本文所描述的技术的其它过程;或者收发单元1110用于执行图6所示的实施例中的S601、S602、S603、S604,和/或用于支持本文所描述的技术的其它过程;或者收发单元1110用于执行图7所示的实施例中的S701、S702、S703、S704,和/或用于支持本文所描述的技术的其它过程。处理单元1120用于执行图4所示的实施例中的S402,和/或用于支持本文所描述的技术的其它过程;或者处理单元1120用于执行图5所示的实施例中的S504,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中,可以参照图12所示的装置。作为一个例子,该装置可以完成类似于图8中处理模块810的功能。在图12中,该装置包括处理器1210,发送数据处理器1220,接收数据处理器1230。上述实施例中的处理模块810可以是图12中的该处理器1210,并完成相应的功能。上述实施例中的处理模块810可以是图12中的发送数据处理器1220,和/或接收数据处理器1230。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图13示出本实施例的另一种形式。通信装置1300中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信装置可以作为其中的调制子***。具体的,该调制子***可以包括处理器1303,接口1304。其中处理器1303完成上述处理模块810的 功能,接口1304完成上述收发模块820的功能。作为另一种变形,该调制子***包括存储器1306、处理器1303及存储在存储器1306上并可在处理器上运行的程序,该处理器1303执行该程序时实现上述方法实施例中终端的方法。需要注意的是,所述存储器1306可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于通信装置1300中,只要该存储器1306可以连接到所述处理器1303即可。
本申请实施例还提供一种通信***,具体的,通信***包括网络设备和终端,或者还可以包括更多个网络设备和多个终端。示例性的,通信***包括用于实现上述图4-图7任一实施例的相关功能的网络设备和终端。
所述网络设备分别用于实现上述图4-图7任一实施例相关基站部分的功能。所述终端用于实现上述图4-图7任一实施例相关终端的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图4-图7任一实施例中基站执行的方法;或者当其在计算机上运行时,使得计算机执行图4-图7任一实施例中终端执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图4-图7任一实施例中基站执行的方法;或者当其在计算机上运行时,使得计算机执行图4-图7任一实施例中终端执行的方法。
本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现前述方法中网络设备或终端的功能;或者用于实现前述方法中网络设备和终端的功能。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种通信方法,其特征在于,包括:
    接收第一信息,所述第一信息用于基于双激活协议栈的切换DAPS-HO的重配置;
    确定监测N个所配置的控制资源集合池索引CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的物理下行控制信道PDCCH,所述N为大于或等于2的整数。
  2. 如权利要求1所述的方法,其特征在于,所述第一值是预定义的。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于指示所述第一值。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    发送第一能力信息,所述第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
  5. 如权利要求3或4所述的方法,其特征在于,所述第二信息包括所述第一值或者第一标识信息,所述第一标识信息用于指示所述第一值。
  6. 如权利要求3或4所述的方法,其特征在于,所述第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述第一信息和所述第二信息承载于同一信令;或者,
    所述第一信息的接收时刻晚于所述第二信息的接收时刻。
  8. 一种通信方法,其特征在于,包括:
    生成第一信息,所述第一信息用于基于双激活协议栈的切换DAPS-HO的重配置;
    发送所述第一信息,以使得为终端配置的N个控制资源集合池索引CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的资源控制集合CORESET的配置生效,所述N为大于或等于2的整数。
  9. 如权利要求8所述的方法,其特征在于,所述第一值是预定义的。
  10. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息用于指示所述第一值。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    接收第一能力信息,所述第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
  12. 如权利要求10或11所述的方法,其特征在于,所述第二信息包括所述第一值或者第一标识信息,所述第一标识信息用于指示所述第一值。
  13. 如权利要求10或11所述的方法,其特征在于,所述第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
  14. 如权利要求8~13任一项所述的方法,其特征在于,所述第一信息和所述第二信息承载于同一信令;或者,
    所述第一信息的发送时刻晚于所述第二信息的发送时刻。
  15. 一种通信装置,其特征在于,包括收发模块和处理模块,其中,
    所述收发模块,用于接收第一信息,所述第一信息用于基于双激活协议栈的切换DAPS-HO的重配置;
    所述处理模块,用于确定监测N个所配置的控制资源集合池索引CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的物理下行控制信道PDCCH,所述N为大于或等于2的整数。
  16. 如权利要求15所述的通信装置,其特征在于,所述第一值是预定义的。
  17. 如权利要求15所述的通信装置,其特征在于,所述收发模块还用于:
    接收第二信息,所述第二信息用于指示所述第一值。
  18. 如权利要求17所述的通信装置,其特征在于,所述收发模块还用于:
    发送第一能力信息,所述第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
  19. 如权利要求17或18所述的通信装置,其特征在于,所述第二信息包括所述第一值或者第一标识信息,所述第一标识信息用于指示所述第一值。
  20. 如权利要求17或18所述的通信装置,其特征在于,所述第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
  21. 如权利要求15~20任一项所述的通信装置,其特征在于,所述第一信息和所述第二信息承载于同一信令;或者,
    所述第一信息的接收时刻晚于所述第二信息的接收时刻。
  22. 一种通信装置,其特征在于,包括收发模块和处理模块,其中,
    所述处理模块,用于生成第一信息,所述第一信息用于基于双激活协议栈的切换DAPS-HO的重配置;
    所述收发模块,用于发送所述第一信息,以使得为终端配置的N个控制资源集合池索引CORESETPoolIndex中关联到第一值的CORESETPoolIndex所对应的资源控制集合CORESET的配置生效,所述N为大于或等于2的整数。
  23. 如权利要求22所述的通信装置,其特征在于,所述第一值是预定义的。
  24. 如权利要求22所述的通信装置,其特征在于,所述收发模块还用于:
    发送第二信息,所述第二信息用于指示所述第一值。
  25. 如权利要求24所述的通信装置,其特征在于,所述收发模块还用于:
    接收第一能力信息,所述第一能力信息用于指示所述终端支持在DAPS-HO过程中进行单TRP传输,其中,所述第二信息是根据所述第一能力信息确定的。
  26. 如权利要求24或25所述的通信装置,其特征在于,所述第二信息包括所述第一值或者第一标识信息,所述第一标识信息用于指示所述第一值。
  27. 如权利要求24或25所述的通信装置,其特征在于,所述第二信息包括至少一个比特,所述至少一个比特的取值用于指示所述第一值,所述至少一个比特的不同取值对应的CORESETPoolIndex的值不同。
  28. 如权利要求22~27任一项所述的通信装置,其特征在于,所述第一信息和所述第二信息承载于同一信令;或者,
    所述第一信息的发送时刻晚于所述第二信息的发送时刻。
  29. 如权利要求15~21或22~28任一项所述的通信装置,其特征在于,所述处理模块 为处理器,和/或所述收发模块为收发器。
  30. 如权利要求15~21或22~28任一所述的通信装置,其特征在于,所述通信装置为芯片或芯片***。
  31. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行存储在所述存储器上的计算机程序,使得所述装置执行如权利要求1~7或8~14中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述通信接口用于输入和/或输出信息,所述处理器用于执行计算机程序,使得所述装置执行如权利要求1~7或8~14中任一项所述的方法。
  33. 一种通信***,其特征在于,所述通信***包括如权利要求15~21之一的通信装置和如权利要求22~28之一的通信装置。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~7或8~14中任意一项所述的方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~7或8~14中任意一项所述的方法。
PCT/CN2020/103907 2020-07-23 2020-07-23 一种通信方法及通信装置 WO2022016477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103907 WO2022016477A1 (zh) 2020-07-23 2020-07-23 一种通信方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103907 WO2022016477A1 (zh) 2020-07-23 2020-07-23 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022016477A1 true WO2022016477A1 (zh) 2022-01-27

Family

ID=79729952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103907 WO2022016477A1 (zh) 2020-07-23 2020-07-23 一种通信方法及通信装置

Country Status (1)

Country Link
WO (1) WO2022016477A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200022035A1 (en) * 2018-07-10 2020-01-16 Qualcomm Incorporated Performing a combination of handover techniques
CN111315018A (zh) * 2020-02-11 2020-06-19 展讯通信(上海)有限公司 资源配置方法和设备
CN111386728A (zh) * 2018-10-31 2020-07-07 联发科技(新加坡)私人有限公司 无线网络中使用双协议重新排序以减少移动性中断

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200022035A1 (en) * 2018-07-10 2020-01-16 Qualcomm Incorporated Performing a combination of handover techniques
CN111386728A (zh) * 2018-10-31 2020-07-07 联发科技(新加坡)私人有限公司 无线网络中使用双协议重新排序以减少移动性中断
CN111315018A (zh) * 2020-02-11 2020-06-19 展讯通信(上海)有限公司 资源配置方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT&T, NTT DOCOMO, INC.: "RAN1 UE features list for Rel-16 NR", 3GPP TSG RAN WG1 #100-E, R1-2000930, 2 March 2020 (2020-03-02), XP051858883 *

Similar Documents

Publication Publication Date Title
US11528099B2 (en) Communication method and apparatus
US11425697B2 (en) Dynamic management of uplink control signaling resources in wireless network
US9497682B2 (en) Central processing unit and methods for supporting coordinated multipoint transmission in an LTE network
US20160337086A1 (en) Method for configuring physical uplink channel, base station and user equipment
WO2021027518A1 (zh) 处理数据的方法和通信装置
WO2021043174A1 (zh) 一种通信方法及装置
CN108521320B (zh) 下行反馈信息的传输方法、基站以及终端设备
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
KR20190070980A (ko) 송신 타이밍 정보를 전송 및 수신하기 위한 방법 및 디바이스
CN110932820A (zh) 发送和接收上行控制信息的方法以及通信装置
WO2021057805A1 (zh) 一种通信方法及装置
WO2013034042A1 (zh) 传输控制信息的方法、基站和用户设备
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN104969499B (zh) 一种数据传输资源配置的方法和设备
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2020199778A1 (zh) 一种通信方法及通信装置
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和***
TW201347587A (zh) 處理分時雙工系統中資源配置的方法及其通訊裝置
US20220368505A1 (en) Data feedback method and apparatus
US9893870B2 (en) Communication control device to control automatic repeat request processes
WO2022016477A1 (zh) 一种通信方法及通信装置
WO2021088063A1 (zh) 一种通信方法及装置
CN113840380A (zh) 一种波束指示方法及通信装置
CN113939019A (zh) 通信方法及通信设备
CN114503721A (zh) 一种混合自动重传请求反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945799

Country of ref document: EP

Kind code of ref document: A1