WO2021027518A1 - 处理数据的方法和通信装置 - Google Patents

处理数据的方法和通信装置 Download PDF

Info

Publication number
WO2021027518A1
WO2021027518A1 PCT/CN2020/103651 CN2020103651W WO2021027518A1 WO 2021027518 A1 WO2021027518 A1 WO 2021027518A1 CN 2020103651 W CN2020103651 W CN 2020103651W WO 2021027518 A1 WO2021027518 A1 WO 2021027518A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
field
information
indication
value
Prior art date
Application number
PCT/CN2020/103651
Other languages
English (en)
French (fr)
Inventor
施弘哲
纪刘榴
杭海存
王明哲
任翔
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021027518A1 publication Critical patent/WO2021027518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communications, and in particular to a method and communication device for processing data.
  • FDM frequency division multiplexing
  • TRP transmission and reception points
  • TRP transmission and reception points
  • the present application provides a method and a communication device for processing data, which can improve the efficiency of data processing by terminal equipment and improve the robustness of data transmission.
  • a method for processing data is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving first data on a first time-frequency resource and receiving second data on a second time-frequency resource, wherein the frequency domain resources of the first time-frequency resource and the second time-frequency resource are Do not overlap, or, the time domain resources of the first time-frequency resource and the second time-frequency resource do not overlap; receive indication information; determine whether the first data and the second data can be The soft bit information is combined and decoded.
  • the terminal device determines whether the first data and the second data can be combined and decoded with soft bit information according to the instruction information, which means that the terminal device determines whether the first data and the second data can be combined and decoded with the soft bit information according to the instruction information. .
  • the terminal device determines according to the instruction information that it can perform soft bit information combining and decoding on the first data and the second data; for another example, the terminal device determines that it cannot perform soft bit information combining and decoding on the first data and the second data according to the instruction information.
  • the content indicated by the indication information may be a transmission scheme; or, the indication information may indicate whether the terminal device can combine and decode soft bit information on data streams on different frequency domain resources; or, the indication information may indicate different terminal devices Whether data streams on frequency domain resources are associated with the same redundancy version (redundancy version, RV) or independent RVs.
  • RV redundancy version
  • the data can be replaced with a transport block (TB) or a code word (CW).
  • TB transport block
  • CW code word
  • the first data can be replaced with the first TB, or the first data can be replaced with the first CW.
  • the second data can be replaced with a second TB, or the second data can be replaced with a second CW.
  • the frequency domain resources of the first time-frequency resource and the second time-frequency resource do not overlap. It can be understood that the first time-frequency resource and the second time-frequency resource do not overlap in the frequency domain.
  • the first data and the second data may be sent to the terminal device in a frequency division multiplexing (FDM) manner.
  • FDM frequency division multiplexing
  • the time domain resources of the first time-frequency resource and the second time-frequency resource do not overlap. It can be understood that the first time-frequency resource and the second time-frequency resource do not overlap in the time domain.
  • the first data and the second data may be sent to the terminal device in a time division multiplexing (TDM) manner.
  • TDM time division multiplexing
  • the terminal device may first determine whether the first data and the second data can be combined and decoded by soft bit information according to the indication information, and then process the data received on different frequency domain resources or different time domain resources.
  • the terminal device directly processes the data received on different frequency domain resources or different time domain resources, it will not only reduce the efficiency of data processing, but also affect the robustness of data transmission. Therefore, through the present application, not only the efficiency of data processing by the terminal device can be improved, but also the transmission performance of the data can be improved to improve the transmission efficiency.
  • the first time-frequency resource and the second time-frequency resource are associated with different quasi co-located QCL information.
  • the first time-frequency resource and the second time-frequency resource are associated with different quasi-co-location QCL information, which can be understood as the first transmission unit and the second transmission unit are associated with different quasi-co-location (QCL), which can be expressed ,
  • QCL quasi-co-location
  • the QCL associated with the first transmission unit and the second transmission unit are different; or it can mean that the QCL associated with the first data received in the first transmission unit and the second data received in the second transmission unit is different from the QCL associated with the second transmission unit
  • the QCL associated with the received second data is different.
  • the QCL information may include: QCL type (type), reference signal resource type, reference signal resource index and other information.
  • QCL type type
  • reference signal resource type reference signal resource index
  • other information For different QCL information and the same QCL information, see the description of the following embodiments.
  • the terminal device can determine whether the first data and the second data can be combined and decoded with soft bit information according to the indication information.
  • the indication information is carried in any one or more of the following signaling: radio resource control RRC signaling, media access control-control element MAC- CE signaling, downlink control information DCI.
  • the indication information can be through any of radio resource control (RRC) signaling, media access control (MAC) signaling, and downlink control information (DCI).
  • RRC radio resource control
  • MAC media access control
  • DCI downlink control information
  • the signaling indication may also be combined indication of any two or three of RRC signaling, MAC-CE signaling, and DCI.
  • the method further includes: receiving downlink control information DCI for scheduling the first data and the second data, where the DCI includes a first TB indicator Domain and a second TB indication domain, the first TB indication domain is in an enabled state, and the second TB indication domain is in a disabling state; the indication information is carried in the second TB indication domain.
  • the first TB indication field is used to indicate the transmission parameters of the first data.
  • the network device may indicate the MCS of the first data through the modulation and coding scheme (MCS) field in the first TB indication field.
  • MCS modulation and coding scheme
  • the network device may indicate the RV of the first data through the RV field in the first TB indication field.
  • the network device may indicate that the first data is new transmission or retransmission through the NDI field in the first TB indication field.
  • the terminal device determines that the first data and the second data cannot be combined and decoded by soft bit information.
  • idle indication items that is, the TB indication field in the disabled state in the DCI
  • can be reused which can not only dynamically indicate the transmission scheme without adding additional signaling overhead, but also improve resource efficiency. Effective utilization.
  • the indication information is carried in the second TB indication field, including: the indication information is carried in any one or more of the following: new transmission
  • the data indicates the NDI field
  • the modulation and coding strategy indicates the MCS field
  • the redundancy version RV field is carried in any one or more of the following: new transmission
  • idle indicator items can be reused, such as the new data indicator (NDI) field in the TB indicator field in the disabled state, the MCS field in the TB indicator field in the disabled state, and the MCS field in the disabled state.
  • NDI new data indicator
  • One or more of the RV fields in the TB indication field of the status can not only dynamically indicate the transmission scheme without adding additional signaling overhead, but also can improve the effective utilization of resources.
  • the indication information is carried in the NDI domain.
  • the terminal device may determine that the second TB indication domain is in the disabled state based on the combination of MCS and RV values (26, 1).
  • the DCI for scheduling the first data and the second data includes a first TB indicator field and a second TB indicator field, and the first TB indicator
  • the domain is in the enabled state, and the second TB indicates that the domain is in the disabled state
  • the indication information includes first information, and the first information is used to notify the terminal device:
  • the MCS field is used to indicate the MCS of the second data, and/or the RV field in the second TB indication field is used to indicate the RV of the second data.
  • the terminal device may determine that the second TB indication field is in the disabled state through RRC signaling or newly added high-level signaling.
  • the terminal device may also determine that the second TB indication domain is in the disabled state according to the current transmission being FDM transmission. In other words, it can be assumed that under FDM transmission, as long as there are 2 TB indication fields, one of the TB indication fields is fixed in the disabled state.
  • the terminal device can determine the MCS of the second data by reading the MCS field in the second TB indicator field, and/or the terminal device can determine the MCS of the second data by reading the RV field in the second TB indicator field. Determine the RV of the second data.
  • the terminal device may determine a transmission scheme, or in other words, the terminal device may determine that the first data and the second data can be combined and decoded with soft bit information.
  • the terminal device may determine that the first data and the second data cannot be combined and decoded with soft bit information.
  • the terminal device determines the first data and the second Data cannot be combined and decoded with soft bit information.
  • the terminal device may determine the first The first data and the second data cannot be combined and decoded by the soft bit information; or the terminal device may determine that the first data and the second data can be combined and decoded by the soft bit information.
  • the terminal device determines that the first data and the second data cannot be combined and decoded by soft bit information.
  • the indication information further includes second information, and the second information is used to indicate the value of the NDI field in the second TB indication field;
  • the MCS field in the second TB indicator field is used to indicate the MCS of the second data
  • the second TB indicator field in the The RV field is used to indicate the RV of the second data; in the case where the NDI field in the second TB indicator field takes the second value, the MCS field and the RV field in the second TB indicator field are preset Leave; wherein, the first value and the second value are not equal.
  • the terminal device determines a transmission scheme according to the first information and whether the indication function of the second TB indication field is enabled, or in other words, determines whether the first data and the second data can be combined and decoded with soft bit information.
  • the terminal device can determine the MCS of the second data by reading the MCS field in the second TB indication field, and/or the terminal device can determine the MCS of the second data by reading the second TB indication field
  • the RV field can determine the RV of the second data.
  • the terminal device may determine that the first data and the second data can be combined and decoded with soft bit information.
  • the first value is 0 and the second value is 1; or, the first value is 1, and the second value is 0.
  • the indication information is carried in the DCI for scheduling the first data and the second data, and in the scheduling of the first data and the
  • the DCI of the second data contains two TB indicator fields, and one of the two TB indicator fields is in the disabled state, it is determined that the first data and the second data can be soft Combining and decoding bit information; when the DCI for scheduling the first data and the second data includes a TB indicator field, it is determined that the first data and the second data cannot be combined with soft bit information decoding.
  • the indication information is carried in the antenna port indication field in the DCI for scheduling the first data and the second data, wherein the antenna port indicates The domain indicates one DMRS port configuration in at least two demodulation reference signal DMRS port configurations, and the number of DMRS ports in the at least two DMRS port configurations is the same.
  • the demodulation reference signal (DMRS) port configuration has a corresponding relationship with the transmission scheme, and the terminal device determines the transmission scheme or determines the first data and the second data according to the received DMRS port configuration in combination with the corresponding relationship. Whether the data can be combined and decoded with soft bit information.
  • DMRS demodulation reference signal
  • redundant lines of DMRS can be multiplexed without adding additional signaling overhead, not only can realize the dynamic indication of the transmission scheme, but also the amount of protocol modification is extremely small.
  • the at least two DMRS port configurations meet any of the following conditions: the number of code division multiplexing CDM groups is the same, and the port numbers are different; the number of CDM groups is the same The number is the same, the port number is different, and different port numbers are from different CDM groups; the number of CDM groups is the same, the port numbers are different, and the different port numbers are from the same CDM group; or, the number of CDM groups is different, and The port numbers are the same.
  • the terminal device supports the ability of soft bit information merging, or the terminal device supports the first transmission scheme and the second transmission scheme.
  • the first transmission scheme indicates that two network devices respectively transmit a part of the same piece of data information, where the same piece of data information represents the same TB. That is to say, two network devices respectively transmit a TB of partial data information, that is, the first data and the second data.
  • the first data and the second data correspond to a codeword, and the corresponding codeword carries a redundancy version the same.
  • the second transmission scheme indicates that the two network devices transmit the same data information, where the same data information represents the same TB.
  • two network devices respectively transmit the same TB, that is, the first data and the second data, the redundancy version carried in the codeword corresponding to the first data, and the redundancy carried in the codeword corresponding to the second data
  • the version may be different.
  • the solution in the embodiment of the present application may be applied to a scenario where the terminal device supports both the first transmission solution and the second transmission solution.
  • the solutions of the embodiments of the present application can be applied to scenarios where the terminal device supports the ability of soft bit information merging.
  • the network device sends instruction information to the terminal device, and the terminal device determines whether the first data and the second data can be soft-bit information according to the instruction information Combine decoding.
  • the method further includes: reporting through a terminal device UE capability: the terminal device supports the ability of the soft bit information combination, or the terminal device supports The first transmission scheme and the second transmission scheme.
  • the terminal device can report through UE capabilities: whether it supports scheme A (scheme A) and scheme B (scheme B), or whether it supports soft bit information combination.
  • a method of processing data is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit or a chip system configured in the network device, which is not limited in this application.
  • the method may include: generating indication information for the terminal device to determine whether the first data and the second data can be combined and decoded by soft bit information, the first data is data transmitted on a first time-frequency resource, The second data is data transmitted on a second time-frequency resource, wherein the frequency domain resources of the first time-frequency resource and the second time-frequency resource do not overlap, or the first time-frequency resource Not overlapping with the time domain resource of the second time-frequency resource; sending the indication information.
  • the content indicated by the indication information may be a transmission scheme; or, the indication information may indicate whether the terminal device can combine and decode soft bit information on data streams on different frequency domain resources; or, the indication information may indicate different terminal devices Whether the data streams on the frequency domain resources are associated with the same RV or independent RVs.
  • the data can be replaced with TB or CW.
  • the first data can be replaced with the first TB, or the first data can be replaced with the first CW.
  • the second data can be replaced with a second TB, or the second data can be replaced with a second CW.
  • the terminal device can first determine whether the first data and the second data can be combined and decoded with soft bit information according to the instruction information issued by the network device, and then process the data received on different frequency domain resources or different time domain resources .
  • the terminal device may directly process the data received on different frequency domain resources or different time domain resources, which will not only reduce the efficiency of data processing, but also affect the robustness of data transmission. Therefore, through the present application, not only the efficiency of data processing by the terminal device can be improved, but also the transmission performance of the data can be improved to improve the transmission efficiency.
  • the first time-frequency resource and the second time-frequency resource are associated with different quasi co-located QCL information.
  • the first time-frequency resource and the second time-frequency resource are associated with different quasi-co-located QCL information. It can be understood that the first transmission unit and the second transmission unit are associated with different QCLs, which can mean that the first transmission unit and the second transmission unit are associated Or may indicate that the QCL associated with the first data received at the first transmission unit and the second data received at the second transmission unit is different from the QCL associated with the second data received at the second transmission unit.
  • the QCL information may include: QCL type, reference signal resource type, reference signal resource index and other information.
  • QCL type For different QCL information and the same QCL information, see the description of the following embodiments.
  • the terminal device can determine whether the first data and the second data can be combined and decoded with soft bit information according to the indication information.
  • the indication information is carried in any one or more of the following signaling: radio resource control RRC signaling, media access control-control element MAC- CE signaling, downlink control information DCI.
  • the network equipment can be indicated through any one of RRC signaling, MAC-CE signaling, and DCI, or through any two or three of RRC signaling, MAC-CE signaling, and DCI. Joint instructions.
  • the sending the indication information includes sending the downlink control information DCI for scheduling the first data and the second data, and the DCI includes The first transmission block TB indicator field and the second TB indicator field, the first TB indicator field is in the enabled state, the second TB indicator field is in the disabled state; the second TB indicator field carries the Instructions.
  • idle indication items that is, the TB indication field in the disabled state in the DCI
  • can be reused which can not only dynamically indicate the transmission scheme without adding additional signaling overhead, but also improve resource efficiency. Effective utilization.
  • the indication information carried in the second TB indication field includes: the indication is carried in any one of the following in the second TB indication field Information:
  • the newly transmitted data indicates the NDI field, the modulation and coding strategy indicates the MCS field, or the redundancy version RV field.
  • idle indicator items can be reused, such as the NDI field in the TB indicator field in the disabled state, the MCS field in the TB indicator field in the disabled state, and the RV field in the TB indicator field in the disabled state.
  • One or more of them can not only dynamically indicate the transmission scheme without adding additional signaling overhead, but also improve the effective utilization of resources.
  • the second TB when the MCS in the second TB indication field is configured to 26 and the RV is configured to 1, the second TB indicates the NDI field in the field Carry instruction information.
  • the terminal device may determine that the second TB indication domain is in the disabled state based on the combination of MCS and RV values (26, 1).
  • the DCI for scheduling the first data and the second data is sent, and the DCI includes a first TB indicator field and a second TB indicator field, so The first TB indicates that the domain is in the enabled state, and the second TB indicates that the domain is in the disabled state; the indication information includes first information, and the first information is used to notify the terminal device: the second The MCS field in the TB indication field is used to indicate the MCS of the second data, and/or the RV field in the second TB indication field is used to indicate the RV of the second data.
  • the network device may indicate to the terminal device that the second TB indicator field is in the disabled state through RRC signaling or newly added high-level signaling.
  • the indication information further includes second information, and the second information is used to indicate the value of the NDI field in the second TB indication field;
  • the MCS field in the second TB indicator field is used to indicate the MCS of the second data
  • the second TB indicator field in the The RV field is used to indicate the RV of the second data; in the case where the NDI field in the second TB indicator field takes the second value, the MCS field and the RV field in the second TB indicator field are preset Leave; wherein, the first value and the second value are not equal.
  • the first value is 0 and the second value is 1; or, the first value is 1, and the second value is 0.
  • the sending the instruction information includes:
  • the antenna port indicator field carries the indicator information; wherein the antenna port indicator field indicates at least two types A type of DMRS port configuration in the demodulation reference signal DMRS port configuration, and the number of DMRS ports in the at least two DMRS port configurations is the same.
  • the DMRS port configuration has a corresponding relationship with the transmission scheme, and the terminal device determines the transmission scheme or determines whether the first data and the second data can be combined and decoded with soft bit information according to the received DMRS port configuration and combined with the corresponding relationship.
  • DMRS demodulation reference signal
  • the at least two DMRS port configurations meet any of the following conditions: the number of code division multiplexing CDM groups is the same, and the port numbers are different; the number of CDM groups is different; The number is the same, the port number is different, and different port numbers are from different CDM groups; the number of CDM groups is the same, the port numbers are different, and the different port numbers are from the same CDM group; or, the number of CDM groups is different, and The port numbers are the same.
  • the terminal device supports the ability of soft bit information merging, or the terminal device supports the first transmission scheme and the second transmission scheme.
  • the first transmission scheme indicates that two network devices respectively transmit a part of the same piece of data information, where the same piece of data information represents the same TB. That is to say, two network devices respectively transmit a TB of partial data information, that is, the first data and the second data.
  • the first data and the second data correspond to a codeword, and the corresponding codeword carries a redundancy version the same.
  • the second transmission scheme indicates that the two network devices transmit the same data information, where the same data information represents the same TB.
  • two network devices respectively transmit the same TB, that is, the first data and the second data, the redundancy version carried in the codeword corresponding to the first data, and the redundancy carried in the codeword corresponding to the second data
  • the version may be different.
  • the solution in the embodiment of the present application may be applied to a scenario where the terminal device supports both the first transmission solution and the second transmission solution.
  • the solutions of the embodiments of the present application can be applied to scenarios where the terminal device supports the ability of soft bit information merging.
  • the network device sends instruction information to the terminal device, and the terminal device determines whether the first data and the second data can be soft-bit information according to the instruction information Combine decoding.
  • the method further includes: receiving a terminal device UE capability reported by the terminal device, the UE capability indicating that the terminal device supports the soft bit information The ability to merge, or, the terminal device supports the first transmission scheme and the second transmission scheme.
  • the terminal device can report through UE capabilities: whether it supports scheme A (scheme A) and scheme B (scheme B), or whether it supports soft bit information combination.
  • the third aspect provides a method for processing data.
  • the method may be executed by a terminal device, or may also be executed by a chip or circuit or chip system configured in the terminal device, which is not limited in this application.
  • the method may include: receiving first data on a first time-frequency resource and receiving second data on a second time-frequency resource; receiving downlink control information DCI, where the DCI includes a first transport block TB indicator field and a second TB Indicator field, the first TB indicator field is in the enabled state, and the second TB indicator field is in the disabled state; the MCS field of the second data can be determined by reading the modulation and coding strategy indicator MCS field in the second TB indicator field, and /Or, the RV of the second data can be determined by reading the redundancy version RV field in the second TB indication field.
  • DCI downlink control information
  • the DCI includes a first transport block TB indicator field and a second TB Indicator field, the first TB indicator field is in the enabled state, and the second TB indicator field is in the disabled state
  • the MCS field of the second data can be determined by reading the modulation and coding strategy indicator MCS field in the second TB indicator field
  • the RV of the second data can be determined by reading
  • the second TB indicator field in the disabled state is multiplexed, so that it can be compatible with the dynamic indicator of 2 or more MCS and 2 or more RV, and has a strong backward Scalability.
  • the method further includes: determining the MCS of the first data by reading the MCS field in the first TB indication field, and/or, by reading the first TB indicator field.
  • the RV field in the one TB indicator field can determine the RV of the first data.
  • the method further includes: in the case that the second TB indicator field is turned on, instructing the MCS field by reading the modulation and coding strategy in the second TB indicator field
  • the MCS of the second data can be determined, and/or the RV of the second data can be determined by reading the redundancy version RV field in the second TB indication field.
  • the second TB indicator field in the disabled state is reused.
  • the indicator function in the second TB indicator field can be turned on or off through signaling or NDI field, so that it can be compatible with 2 or 2
  • the dynamic indication of more than one MCS and two or more RVs has strong backward scalability.
  • a communication device is provided, and the communication device is configured to execute the communication method provided in the first aspect or the third aspect.
  • the communication device may include a module for executing the communication method provided in the first aspect or the third aspect.
  • a communication device is provided, and the communication device is configured to execute the communication method provided in the second aspect.
  • the communication device may include a module for executing the communication method provided in the second aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the communication method in any one of the first aspect or the third aspect described above in the first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the second aspect and the communication method in any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect or the third aspect, and the first or third aspect.
  • the communication method in any possible implementation of the three aspects.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the second aspect and any possible implementation of the second aspect The communication method in the mode.
  • a computer program product containing instructions which when executed by a computer causes a communication device to implement the communication method provided in the first aspect or the third aspect.
  • a computer program product containing instructions which when executed by a computer causes a communication device to implement the communication method provided in the second aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system suitable for an embodiment of the present application
  • FIG. 2 is a schematic diagram of multipoint transmission applicable to an embodiment of the present application
  • Fig. 3 is a schematic diagram of a method for processing data according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a method for processing data according to another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: fifth generation (5G) system or new radio (NR), long term evolution (LTE) system, LTE frequency Duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), etc.
  • 5G fifth generation
  • LTE long term evolution
  • LTE frequency Duplex frequency division duplex
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine type communication
  • car networking systems Communication the communication methods in the Internet of Vehicles system are collectively referred to as V2X (X stands for anything).
  • the V2X communication includes: vehicle-to-vehicle (V2V) communication, vehicle to roadside infrastructure (vehicle to infrastructure, V2I) ) Communication, vehicle-to-pedestrian (V2P) or vehicle-to-network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle to roadside infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111, the network device 112, and the network device 113 shown in FIG. 1, and the wireless communication system 100 may also include at least one terminal device, For example, the terminal device 121 and the terminal device 122 shown in FIG. 1. Both network equipment and terminal equipment can be configured with multiple antennas, and the network equipment and terminal equipment can communicate using multiple antenna technology.
  • the network device 111, the network device 112, and the network device 113 may be a transmission and reception point (TRP) in the same cell, or may be network devices in different cells, which are not limited in this application. It should be understood that the various embodiments of the present application can also be applied in a scenario where a multi-antenna panel of a network device is equivalent to multiple TRPs.
  • TRP transmission and reception point
  • the network device 111, the network device 112, and the network device 113 can communicate with each other through a backhaul link, which may be a wired backhaul link (for example, optical fiber, copper cable), It can also be a wireless backhaul link (such as microwave).
  • the network device 111 and the network device 112 can cooperate with each other to provide a service for the terminal device 121. Therefore, the terminal device 121 can communicate with the network device 111 and the network device 112 respectively through a wireless link.
  • the network device 111 and the network device 113 can cooperate with each other to provide services for the terminal device 122. Therefore, the terminal device 122 can communicate with the network device 111 and the network device 113 respectively through a wireless link.
  • the backhaul can be divided into ideal backhaul and non-ideal backhaul.
  • the communication delay between two transmission nodes under ideal backhaul can be at the microsecond level, which is negligible compared with the millisecond scheduling in NR; the communication delay between two transmission nodes under non-ideal backhaul can be milliseconds Compared with the millisecond-level scheduling in NR, it cannot be ignored.
  • the backhaul between the network device 111 and the network device 112 can be ideal, that is, it can be considered that there is basically no transmission delay between the network device 111 and the network device 112.
  • the terminal device 121 is in a cooperative transmission state of the network device 111 and the network device 112.
  • both the network device 111 and the network device 112 can send downlink control information and data to the terminal device 121, and similarly, the terminal device 121 can also send uplink data to the network device 111 or the network device 112. Since there is no interaction time delay between the network device 111 and the network device 112, the cooperative transmission between the network device 111 and the network device 112 and the terminal device 121 can be scheduled through the same control information.
  • one of the network devices (such as the network device 111 or the network device 112) sends downlink control information (downlink control information, DCI).
  • one or more of the network device 111 and the network device 112 may also use carrier aggregation technology to schedule a physical downlink share channel (PDSCH) for the terminal device 121 on one or more CCs.
  • PDSCH physical downlink share channel
  • the network device 111 may schedule PDSCH for the terminal device 121 on CC#1 and CC#2
  • the network device 112 may schedule the PDSCH for the terminal device 121 on CC#1 and CC#3.
  • the CCs scheduled by the network device 111 and the network device 112 may be the same or different, which is not limited in this application.
  • the terminal device 122 is in a cooperative transmission state of the network device 111 and the network device 113.
  • both the network device 111 and the network device 113 can send downlink control information and data to the terminal device 122.
  • the terminal device 122 can also send uplink data to the network device 111 or the network device 113. Due to the interaction delay between the network device 111 and the network device 113, the cooperative transmission between the network device 111 and the network device 113 and the terminal device 122 is generally independently scheduled by the respective network devices.
  • the network device 111 and the network device 113 each transmit DCI.
  • one or more of the network device 111 and the network device 113 may also use carrier aggregation technology to schedule PDSCH for the terminal device 122 on one or more CCs.
  • the network device 111 may schedule PDSCH for the terminal device 122 on CC#4 and CC#5
  • the network device 113 may schedule the PDSCH for the terminal device 122 on CC#4 and CC#6.
  • the CCs scheduled by the network device 111 and the network device 113 may be the same or different, which is not limited in this application.
  • the foregoing communication system may further include more or fewer network devices, or the foregoing communication system may further include more or less data terminal devices.
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or future networks, or future evolution of public land mobile communication networks (Public Land Mobile Network, PLMN) This is not limited by the embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may include: a radio resource control (Radio Resource Control, RRC) signaling interaction module, a media access control (media access control, MAC) signaling interaction module, and physical (PHY) signaling Interactive module.
  • RRC Radio Resource Control
  • MAC media access control
  • PHY physical
  • the RRC signaling interaction module may be: a module used by network equipment and terminal equipment to send and receive RRC signaling.
  • the MAC signaling interaction module may be a module used by network equipment and terminal equipment to send and receive media access control control element (MAC-CE) signaling.
  • the PHY signaling and data may be a module used by network equipment and terminal equipment to send and receive uplink control signaling or downlink control signaling, uplink and downlink data, or downlink data.
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a Global System of Mobile Communication (GSM) system or Code Division Multiple Access (CDMA)
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • BTS base station
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Base Station Evolution
  • NodeB eNB, or eNodeB
  • it can also be a wireless controller in Cloud Radio Access Network (CRAN) scenarios, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • CRAN Cloud Radio Access Network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the network equipment may also include: an RRC signaling interaction module, a MAC signaling interaction module, and a PHY signaling interaction module.
  • the network equipment may include a centralized unit (CU) and a distributed unit (DU).
  • the network device may also include an active antenna unit (AAU).
  • the CU implements part of the functions of the network equipment, and the DU implements some of the functions of the network equipment.
  • the CU is responsible for processing non-real-time protocols and services, and implements RRC, packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of radio link control (RLC) layer, MAC layer and PHY layer.
  • RLC radio link control
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the embodiment of the beam in the NR protocol can be a spatial filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit the signal can be called the transmission beam (Tx beam), can be called the spatial transmission filter (spatial domain transmit filter) or the spatial transmission parameter (spatial domain transmit parameter);
  • the beam used to receive the signal can be It is called a receive beam (reception beam, Rx beam), and can be called a spatial domain receive filter or a spatial domain receive parameter.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technologies.
  • the beamforming technology can specifically be digital beamforming technology, analog beamforming technology, or hybrid digital/analog beamforming technology, etc. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One beam corresponds to one or more antenna ports, which are used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports corresponding to a beam can also be regarded as an antenna port set.
  • the beam pairing relationship that is, the pairing relationship between the transmitting beam and the receiving beam, that is, the pairing relationship between the spatial transmitting filter and the spatial receiving filter.
  • a larger beamforming gain can be obtained by transmitting signals between the transmitting beam and the receiving beam with a beam pairing relationship.
  • the transmitting end and the receiving end may obtain the beam pairing relationship through beam training.
  • the transmitting end may send the reference signal through beam scanning, and the receiving end may also receive the reference signal through beam scanning.
  • the transmitting end can form beams with different directivities in space by beamforming, and can poll on multiple beams with different directivities to transmit reference signals through beams with different directivities, so that The power of the reference signal transmitted in the direction of the transmitting beam can reach the maximum.
  • the receiving end can also form beams with different directivities in space through beamforming, and can poll on multiple beams with different directivities to receive reference signals through beams with different directivities, so that the receiving end can receive The power of the reference signal can reach the maximum in the direction in which the receiving beam points.
  • the receiving end can perform channel measurement based on the received reference signal, and report the measurement result to the transmitting end through channel state information (CSI). For example, the receiving end can report a part of the reference signal resources with a larger reference signal receiving power (RSRP) to the sending end, such as reporting the identification of the reference signal resource, so that the sending end can use the channel when transmitting data or signaling.
  • RSRP reference signal receiving power
  • the antenna port is referred to as the port. It can be understood as a transmitting antenna recognized by the receiving end, or a transmitting antenna that can be distinguished in space.
  • One antenna port can be configured for each virtual antenna, and each virtual antenna can be a weighted combination of multiple physical antennas.
  • antenna ports can be divided into reference signal ports and data ports.
  • the reference signal port includes, but is not limited to, a demodulation reference signal (demodulation reference signal, DMRS) port, a zero-power channel state information reference signal trigger (channel state information reference signal, CSI-RS) port, etc.
  • the antenna port may refer to a DMRS port (DMRS port).
  • DMRS port DMRS port
  • the time-frequency resources occupied by the DMRS of different DMRS ports may be different, or the orthogonal cover codes may be different.
  • the terminal device may receive the DMRS based on the port indicated by the network device, and demodulate the PDCCH or PDSCH based on the received DMRS.
  • the parameters related to the antenna port may be a DMRS port, a DMRS port group (DMRS port group), or a DMRS code division multiplexing (CDM) group (DMRS CDM) group.
  • the terminal device may determine the DMRS port based on the antenna port indicated in the DCI, and then determine the DMRS port group or DMRS code division multiplexing group to which it belongs.
  • the DMRS port group and the DMRS code division multiplexing group can be understood to be obtained by grouping DMRS ports based on different methods.
  • Antenna ports, DMRS ports, DMRS port groups, and DMRS code division multiplexing groups can be distinguished by index, can also be distinguished by identification, or can also be distinguished by other information that can be used to distinguish different ports or different groups. This is not limited.
  • the port and the DMRS port are sometimes used alternately. It should be understood that in the embodiment of the present application, the port means a DMRS port.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average departure angle AOD, AOD extension, reception Antenna spatial correlation parameter, transmit antenna spatial correlation parameter, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or antenna ports that have the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or have different Antenna port number The antenna port for information transmission or reception in different time and/or frequency and/or code domain resources.
  • Resource identification can include: CSI-RS resource identification, or sounding reference signal (SRS) resource identification, or synchronization signal block (synchronization signal block, SSB) resource identification, or physical random access channel (Physical Random Access Channel) ,
  • SRS sounding reference signal
  • SSB synchronization signal block
  • Physical Random Access Channel Physical Random Access Channel
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, and delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D (type D): Space receiving parameters.
  • QCL involved in the embodiment of the present application is a type D QCL.
  • QCL can be understood as a QCL of type D, that is, a QCL defined based on spatial reception parameters.
  • a QCL relationship refers to a QCL relationship of type D, it can be considered as an airspace QCL.
  • the QCL relationship between the downlink signal port and the downlink signal port, or between the uplink signal port and the uplink signal port can be that the two signals have the same AOA or AOD. Yu means the same receiving beam or transmitting beam.
  • the AOA and AOD of the two signals may have a corresponding relationship, or the AOD and AOA of the two signals may have a corresponding relationship, that is, the beam can be used Reciprocity: Determine the uplink transmit beam according to the downlink receive beam, or determine the downlink receive beam according to the uplink transmit beam.
  • the two antenna ports are spatial QCL, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatial QCL, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam includes at least one of the following: the same receiving beam, the same transmitting beam, and the transmitting beam corresponding to the receiving beam (corresponding to the reciprocal Scene), the receiving beam corresponding to the transmitting beam (corresponding to the scene with reciprocity).
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as using the same spatial filter to receive or transmit the signal.
  • the spatial filter may be at least one of the following: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as having a corresponding beam pair link (BPL), and the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL The corresponding uplink BPL, the downlink BPL corresponding to the uplink BPL.
  • BPL beam pair link
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter for indicating the direction information of the reception beam.
  • TCI Transmission configuration indicator
  • the TCI status can be used to indicate the QCL relationship between two reference signals.
  • Each TCI state may include a serving cell index (ServeCellIndex), a bandwidth part (BWP) identifier (ID), and a reference signal resource identifier.
  • the reference signal resource identifier may be, for example, at least one of the following: Non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS reference signal resource set identifier (NZP-CSI-RS-ResourceSetId) or SSB Index (SSB-Index).
  • NZP Non-zero power
  • NZP-CSI-RS-ResourceId Non-zero power CSI-RS reference signal resource identifier
  • NZP-CSI-RS-ResourceSetId non-zero power CSI-RS reference signal resource set identifier
  • SSB-Index SSB Index
  • the terminal device may determine the receiving beam based on the TCI state indicated by the network device, and the network device may determine the transmitting beam based on the same TCI state.
  • the TCI state can be globally configured. In the TCI states configured for different cells and different BWPs, if the index of the TCI state is the same, the configuration of the corresponding TCI state is also the same.
  • time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resource may include one or more time domain units (or, it may also be referred to as a time unit), and in the frequency domain, the time-frequency resource may include one or more frequency domain units.
  • a time domain unit (also called a time unit) can be a symbol or several symbols, or a mini-slot, or a slot, or a subframe, Among them, the duration of a subframe in the time domain can be 1 millisecond (ms), a slot consists of 7 or 14 symbols, and a mini slot can include at least one symbol (for example, 2 symbols or 4 symbols). Symbol or 7 symbols, or any number of symbols less than or equal to 14 symbols).
  • the size of the time domain unit listed above is only for the convenience of understanding the solution of the application, and should not be understood as a limitation of the application. It is understandable that the size of the time domain unit may be other values, which is not limited by this application.
  • a frequency domain unit may be one or more resource elements (resource elements, RE), or resource blocks (resource block, RB), or a resource block group (resource block group, RBG), or a predefined subband ( subband), or precoding resource group (PRG), etc.
  • resource elements resource elements, RE
  • resource blocks resource block, RB
  • resource block group resource block group, RBG
  • predefined subband subband
  • PRG precoding resource group
  • Multipoint transmission technology can reduce interference between cells and increase user rate.
  • Multipoint transmission technologies can include: joint transmission (JT), dynamic cell/point selection (DCS/DPS), coordinated beam forming/scheduling (CB/CS), and Multi-DCI based multi-TRP transmission, etc.
  • multipoint transmission based on multiple DCIs means that multiple network devices, such as multiple TRPs, respectively send their own PDCCH to the same terminal device, and each PDCCH schedules a corresponding PDSCH.
  • multiple cells jointly send data to the terminal device, and the terminal device receives multiple copies of useful data, so the transmission rate of the edge terminal device can be improved.
  • the network dynamically selects a better transmission point to serve the terminal equipment, so that the terminal equipment can be served by the cell with the stronger signal. At this time, the signal of the weaker cell becomes interference.
  • the difference of the channels of each TRP can improve the signal to interference and noise ratio of the terminal equipment.
  • the multipoint transmission technology can be used to enhance the reliability of some services, such as ultra Reliable and low latency communication (ultra-reliable and low latency communication, URLLC) and other services.
  • URLLC's business types include: industrial automation control, remote driving, telemedicine, etc.
  • the reliability requirements are often more than 99.999%, and the end-to-end delay requirements are within a few milliseconds.
  • FIG. 2 shows a schematic diagram of multipoint transmission applicable to the present application.
  • a terminal device can be in a multipoint transmission cooperation mode with two network devices, such as TRP, and the two network devices can be located in different directions from the terminal device.
  • the data sent by the two network devices can be transmitted on different frequency domain resources.
  • two network devices can respectively send different parts of the same piece of data, so that they can enjoy the coding gain brought by a lower bit rate.
  • two network devices can also send the same data, so that the soft combination on the receiving side, that is, the terminal device, can bring additional coding gain.
  • network devices may transmit data to terminal devices in different ways as above, the way in which terminal devices process data also needs to be changed.
  • an embodiment of the present application proposes a method that can improve the efficiency of data processing by a terminal device and improve data communication performance.
  • FIG. 3 is a schematic interaction diagram of a method 300 for processing data provided by an embodiment of the present application.
  • the method 300 may include the following steps.
  • the terminal device receives the first data on the first time-frequency resource and receives the second data on the second time-frequency resource.
  • the frequency domain resources of the first time-frequency resource and the second time-frequency resource do not overlap. It can be understood that the first time-frequency resource and the second time-frequency resource do not overlap in the frequency domain.
  • the first data and the second data may be sent to the terminal device in a frequency division multiplexing (FDM) manner.
  • FDM frequency division multiplexing
  • the time domain resources of the first time-frequency resource and the second time-frequency resource do not overlap. It can be understood that the first time-frequency resource and the second time-frequency resource do not overlap in the time domain.
  • the first data and the second data may be sent to the terminal device in a time division multiplexing (TDM) manner.
  • TDM time division multiplexing
  • the first time-frequency resource and the second time-frequency resource are associated with different QCL information.
  • the first time-frequency resource includes a first transmission unit and the second time-frequency resource includes a second transmission unit
  • the first transmission unit and the second transmission unit are associated with different QCL information.
  • the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • a time domain unit for example, the transmission unit mentioned in the embodiment of the present application can be replaced with a time domain unit or a frequency domain unit. It can be replaced with a time-frequency unit.
  • time domain unit and frequency domain unit reference may be made to the above description.
  • the first transmission unit and the second transmission unit are associated with different QCL information. It can be understood that the first transmission unit and the second transmission unit are associated with two different TCI-states (that is, the TCI-state indexes are different). Different TCI-states may contain the same QCL information. Therefore, the first transmission unit and the second transmission unit are associated with different QCL information. It can also be understood that the first transmission unit and the second transmission unit are associated with two different QCL information. . Conversely, the same TCI-state (that is, the same TCI-state index) generally corresponds to the same QCL information.
  • the QCL information may include: QCL type, reference signal resource type, reference signal resource index and other information.
  • Different QCL information may include at least one of the following: different QCL types, different reference signal resource types, and different reference signal resource indexes.
  • different QCL may indicate that the index of the TCI-state associated with the data received by the terminal device is different; or different QCL may indicate that the QCL type in the TCI-state associated with the data received by the terminal device is different; or, QCL Different, it can mean that the QCL type in the TCI-state associated with the data received by the terminal device is the same, but the QCL information (QCL information, QCL-info) of the same type corresponds to different reference signal resource types (such as CSI-RS and SSB) or The reference signal resource index is different; or, the QCL is different, which can indicate that the reference signal resource type corresponding to the QCL-info of at least one QCL type in the TCI-state associated with the data received by the terminal device is different (such as CSI-RS and SSB) or reference The signal resource index is different.
  • QCL information QCL information, QCL-info
  • the same QCL may indicate that the index of the TCI-state associated with the data received by the terminal device is the same; or the same QCL may indicate that the QCL type in the TCI-state associated with the data received by the terminal device is the same; or, QCL
  • the same can mean that the QCL type in the TCI-state associated with the data received by the terminal device is the same, and the reference signal resource corresponding to the QCL-info of this type is the same (for example, the reference signal resource index is the same, and the reference signal resource type is the same), etc.;
  • the same QCL may indicate that the reference signal resources corresponding to all QCL-info included in the TCI-state associated with the data received by the terminal device are the same (for example, the reference signal resource index is the same), etc.
  • the embodiments of the present application mainly take FDM as an example for description.
  • Two network devices respectively transmit a part of the same data information, referred to as first data and second data for short.
  • a piece of data information can be considered as a codeword
  • a codeword can be considered as being generated by a transport block (TB).
  • TB transport block
  • the first data and the second data each carry one terabyte of partial information. It can be understood that the first data and the second data form a codeword and correspond to a redundancy version (RV).
  • RV redundancy version
  • Two network devices transmit the same data information, still referred to as first data and second data for short.
  • the same data information means that they carry the same TB information.
  • the codewords corresponding to the first data and the second data can be generated by the same TB, or can be generated by the same two TBs, each of which carries all the information of the TB.
  • the first data and the second data each correspond to a codeword, and each corresponds to a redundancy version, where the redundancy version may be the same or different.
  • the network device will first receive a TB from the upper layer, and then the TB will go through a series of physical layer processes, including cyclic redundancy check (CRC) addition, code block (code bloc, CB) cutting, and CB-based CRC is added, and then sent to the encoding module with CB as the encoding unit, and the rate matching process is performed.
  • CRC cyclic redundancy check
  • code bloc, CB code block
  • CB-based CRC is added
  • RV redundancy version
  • the CB can be spliced into a bit stream.
  • the bit stream is a code word in the traditional sense.
  • the codeword is modulated into a modulation symbol, and the modulation symbol is mapped to the time-frequency resource of the physical channel, which is referred to as data for short. Therefore, in a general sense, there is a one-to-one correspondence between TB and codewords, and only one redundant version can be added to a codeword.
  • the first and second data are used to describe. In this context, the data can also be replaced with TB or codewords.
  • first data and the second data are only exemplary descriptions, and the embodiments of the present application are not limited thereto.
  • it can also be more than two network devices.
  • more than two TRPs send data to the terminal device.
  • the terminal device can also receive more data.
  • the embodiment of the present application may be applicable to a scenario where a terminal device receives two pieces of data, and may also be applicable to a scenario where a terminal device receives more than two pieces of data.
  • the terminal device may also receive third data on the third time-frequency resource, where the frequency domain resources of the first time-frequency resource, the second time-frequency resource, and the third time-frequency resource do not overlap, or the first time-frequency resource The time domain resources of the frequency resource, the second time frequency resource, and the third time frequency resource do not overlap.
  • the QCLs associated with the two or more time-frequency resources may all be different, or may be partially different, which is not limited.
  • the terminal device receives data on 4 time-frequency resources, such as being respectively recorded as a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time-frequency resource.
  • time-frequency resources such as being respectively recorded as a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time-frequency resource.
  • the QCLs associated with the four time-frequency resources are all different. That is, the QCLs associated with the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource are all different;
  • the QCL parts associated with the four time-frequency resources are different.
  • there are two different QCLs associated with four time-frequency resources For example, the QCLs associated with the first time-frequency resource and the third time-frequency resource are the same, and the QCLs associated with the second time-frequency resource and the fourth time-frequency resource are the same.
  • the QCLs associated with the first time-frequency resource and the second time-frequency resource are different.
  • first time-frequency resource the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource are only examples, and their naming does not limit the protection scope of the embodiments of the present application.
  • the terminal device can also receive data on more time-frequency resources, which is not limited.
  • the following takes the terminal device receiving the first data and the second data as an example for description.
  • the terminal device receives the instruction information.
  • the content indicated by the indication information may be a transmission scheme, that is, the indication information may indicate whether the transmission scheme is scheme A or scheme B, or the content indicated by the indication information may be any of the following:
  • the indication information may indicate whether the terminal device can combine and decode soft bit information on data streams on different frequency domain resources.
  • the network device sends instruction information to the terminal device.
  • the instruction information indicates that the data streams on different frequency domain resources can be combined and decoded with soft bit information, and the terminal device can perform soft bit information on the data streams on different frequency domain resources.
  • Combine decoding In another example, the network device sends instruction information to the terminal device. The instruction information indicates that the data streams on different frequency domain resources cannot be combined and decoded with soft bit information, so the terminal device does not perform soft bit information on the data streams on different frequency domain resources. Combine decoding. It should be understood that what is mentioned here can mean that data on different frequency domain resources have conditions for soft bit information, and the terminal device can still decide whether to combine soft bit information according to its own capabilities or current transmission needs.
  • Soft bit information combination referred to as soft combining (soft combining).
  • Soft combining combines two or more data packets for decoding to improve the decoding accuracy.
  • the soft bit information merging in the embodiment of this application is soft merging. The technical method itself will not be repeated in this application, and the prior art can be referred to.
  • the indication information indicates whether the terminal device can combine and decode soft bit information on data streams on different frequency domain resources, which may be equivalent to the indication information indicating that the transmission scheme of the terminal device is scheme A or scheme B.
  • the first data and the second data in scheme A each carry part of one TB of information, so the terminal device cannot make soft bit information for the first data and second data when receiving merge. Therefore, the indication information indicates that the terminal device cannot perform soft bit information combining and decoding on data streams on different frequency domain resources, which may be equivalent to indicating transmission scheme A.
  • the first data and second data in scheme B respectively carry the complete information of the same TB, so the terminal can combine the first data and second data with soft bit information when receiving . Therefore, the indication information indicates that the terminal device can perform soft bit information combining and decoding on data streams on different frequency domain resources, which may be equivalent to indicating transmission scheme B.
  • the indication information can indicate whether data streams on different frequency domain resources of the terminal device are associated with the same RV or independent RVs.
  • the network device sends instruction information to the terminal device.
  • the instruction information indicates: the data streams on different frequency domain resources are associated with the same RV, then the terminal device can merge the data streams on different frequency domain resources with soft bit information decoding.
  • the network device sends instruction information to the terminal device.
  • the instruction information indicates that the data streams on different frequency domain resources are associated with independent RVs, so the terminal device does not merge soft bit information on the data streams on different frequency domain resources. decoding.
  • the independent RVs described herein, or referred to as multiple RVs may be the same RV version number, or may be different RV version numbers.
  • the two RVs can be two identical RV version numbers, such as RV0 and RV0, or the two RVs can be two different RV version numbers, such as RV1 and RV2, respectively. .
  • the indication information indicates whether the data streams on different frequency domain resources of the terminal device are associated with the same RV or independent RV, which may be equivalent to the indication information indicating that the terminal device transmission scheme is scheme A or scheme B.
  • the first data and second data in scheme A correspond to one codeword and one RV. Therefore, the indication information indicates that the data streams on different frequency domain resources of the terminal device are associated with the same RV. , Can be equivalent to indicating transmission scheme A.
  • the first data and second data in scheme B each correspond to a codeword and an RV, so the indication information indicates that the data streams on different frequency domain resources of the terminal device are associated with independent RVs.
  • the following mainly takes the indication information indicating scheme A or scheme B as an example to describe in detail various schemes of the indication information.
  • the terminal device determines, according to the instruction information, whether the first data and the second data can be combined and decoded with soft bit information.
  • the terminal device determines that the first data and the second data can be combined and decoded with soft bit information according to the instruction information, which means that the terminal device can perform combined decoding of the soft bit information on the first data and the second data.
  • the terminal device may perform the combined decoding of the soft bit information on the first data and the second data, or may not perform the combined decoding on the first data and the second data.
  • the data and the second data are combined and decoded with soft bit information, which is not limited in this embodiment of the present application.
  • the terminal device determines, according to the instruction information, whether the first data and the second data can be combined and decoded with soft bit information, or alternatively, the terminal device determines the transmission scheme according to the instruction information.
  • the terminal device when the terminal device determines that the transmission scheme is scheme A, the terminal device can separately process data received on different frequency domain resources. In other words, the terminal device cannot perform soft bit information combining and decoding on data received on different frequency domain resources.
  • the terminal equipment determines that the transmission scheme is scheme B
  • the terminal equipment determines that the data received on different frequency domain resources is repeated transmission of the same data
  • the terminal equipment can combine and process the data received on different frequency domain resources.
  • the terminal device can perform soft bit information combining and decoding on data received on different frequency domain resources.
  • the terminal device determines the transmission scheme based on the indication information, which can be replaced by the terminal device determining whether the first data and the second data can be combined and decoded with soft bit information according to the indication information. For example, if the terminal equipment determines that the transmission scheme is scheme A, it can be replaced with that the terminal equipment determines that the first data and the second data cannot perform soft bit information combining and decoding; for another example, the terminal equipment determines that the transmission scheme is scheme B, which can be replaced with the terminal equipment It is determined that the first data and the second data can perform soft bit information combining and decoding.
  • plan A Let's first introduce plan A and plan B.
  • Figure 4 is a schematic diagram of Scheme A.
  • two network devices respectively transmit a part of the same data information, referred to as first data and second data for short, as shown in FIG. 4 PDSCH1 and PDSCH2.
  • the information bit stream is mapped to different frequency domain resources according to certain rules.
  • PDSCH1 and PDSCH2 are different data information of the TB transmitted on different frequency domain resources.
  • two network devices respectively transmit part of data information of one TB, namely PDSCH1 and PDSCH2, and the PDSCH1 and PDSCH2 correspond to one codeword. Because one codeword corresponds to one redundancy version, correspondingly, the PDSCH1 and PDSCH2 correspond to one redundancy version.
  • Figure 5 is a schematic diagram of Scheme B.
  • scheme B two network devices transmit the same data information, which is still referred to as first data and second data for short, such as PDSCH1 and PDSCH2 as shown in FIG. 5.
  • the output codewords may carry different redundancy versions.
  • the two codewords are mapped to different frequency domain resources. .
  • the embodiment of the present application does not limit whether the network device uses plan A or plan B to transmit data.
  • the network device can use a relatively simple scheme A to ensure the robustness of data transmission.
  • the network device can use scheme B to further ensure the transmission robustness in this scenario.
  • the solution in the embodiment of the present application may be applied to a scenario where the terminal device supports both solution A and solution B.
  • the solutions of the embodiments of the present application can be applied to scenarios where the terminal device supports the ability of soft bit information merging.
  • the network device sends instruction information to the terminal device, and the terminal device determines whether the first data and the second data can be combined and decoded by soft bit information according to the instruction information.
  • the terminal device can report through UE capabilities: whether it supports scheme A (scheme A) and scheme B (scheme B), or whether it supports soft bit information combination.
  • the UE capability here can have the following two designs:
  • the reported UE capabilities include: scheme A (only) (only scheme A is supported).
  • the reported UE capabilities include scheme B (only) (only scheme B is supported).
  • the reported UE capabilities include: both (scheme A and scheme B) (both scheme A and scheme B are supported).
  • this UE capability may also include other transmission scheme options.
  • scheme A (such as FDM scheme A) and scheme B (such as FDM scheme B) respectively through different UE capability units.
  • scheme A and scheme B are reported through separate UE capabilities.
  • the possible forms at this time include: UE capability—scheme A, and UE capability—scheme B.
  • Each UE capability can include at least one switch.
  • the switch or it can also be called a status indication, can be understood as indicating whether the terminal device supports the corresponding transmission scheme.
  • Each switch can include two states: enable (enable) state and disable state. If the switch is in the enable state, it means that the terminal equipment supports the transmission scheme; if the switch is in the disable state, it means that the terminal equipment does not support the transmission scheme. Take UE capability-scheme A as an example. When the switch corresponding to UE capability-scheme A is in the enable state, it means that the terminal device supports scheme A; when the switch corresponding to UE capability-scheme A is in the disable state, it means that the terminal device does not support scheme A.
  • switch is only a naming, and this application does not exclude other naming methods to express the same meaning in the future.
  • the reported UE capability when the terminal device only supports scheme A, the reported UE capability includes: UE capability—scheme A (supporting scheme A), and the switch corresponding to the UE capability—scheme A is in the enable state.
  • the reported UE capability when the terminal device only supports scheme B, the reported UE capability includes: UE capability—scheme B (supporting scheme B), and the switch corresponding to the UE capability—scheme B is in the enable state.
  • the reported UE capabilities include: UE capability—scheme A (support scheme A) and UE capability—scheme B (support scheme B), and UE capability—scheme A and UE Capability—The switches corresponding to scheme B are all in the enable state.
  • the solution in the embodiment of the present application may be applicable to a scenario where the DCI includes one TB indication field, and may also be applicable to a scenario where the DCI includes multiple TB indication fields.
  • the first TB indicator field and the second TB indicator field are included in the DCI.
  • the first TB indicator field is in the enable state
  • the second TB indicator field is in the enable state. disable state.
  • the first TB indicator field and the second TB indicator field are only naming for distinction, that is, the first TB indicator field indicates the TB indicator field in the enable state
  • the second TB indicator field indicates the TB indicator field in the disabled state.
  • the scope of protection of the application examples is limited. For example, when one of the two TB indicator fields is in the disabled state, then the indicator field in the disabled state is recorded as the second TB indicator field.
  • the indication information can be carried in the TB indication field of the DCI.
  • Solution 1 may be applicable to a scenario where one TB indicator field is included in the DCI, and may also be applicable to a scenario where multiple TB indicator fields are included in the DCI.
  • Scenario 1 DCI includes 1 TB indicator field.
  • the current transmission scheme may be the scheme A by default.
  • a possible implementation manner can use RRC signaling, such as maxNrofCodeWordsScheduledByDCI (the maximum codeword scheduled by DCI), to indicate the number of TB indication fields in the current transmission DCI.
  • RRC signaling such as maxNrofCodeWordsScheduledByDCI (the maximum codeword scheduled by DCI)
  • the signaling value when the signaling value is 1, it means that the current transmission DCI can support at most 1 codeword. At this time, only one TB indication field is allocated in the DCI. Alternatively, it can also be understood that the first TB indicator field in the DCI will be allocated, and the second TB indicator field in the DCI will not be allocated. That is, the terminal device can only detect the first TB indication domain, but cannot detect the second TB indication domain.
  • the DCI includes multiple TB indication fields.
  • the transmission scheme can be indicated by one or more of the following indicator fields in the TB indicator field in the disabled state: modulation and coding scheme (modulation and coding scheme, MCS) field, new data indicator (NDI) field, RV field.
  • modulation and coding scheme modulation and coding scheme, MCS
  • NDI new data indicator
  • the terminal device receives the DCI for scheduling the first data and the second data, and the DCI includes a first TB indicator field and a second TB indicator field, where the first TB indicator field is in an enabled state (or in other words, Open state), the second TB indication field is in a disabled state (or off state), and the indication information may be carried in the second TB indication field.
  • the first TB indicator field is in an enabled state (or in other words, Open state)
  • the second TB indication field is in a disabled state (or off state)
  • the indication information may be carried in the second TB indication field.
  • One DCI can indicate transmission information of multiple TBs.
  • one DCI can support the transmission of 2 codewords, that is, the DCI can include 2 TB indicator fields, and the 2 TB indicator fields can indicate 2 TB transmission information.
  • a possible implementation is to use RRC signaling, such as maxNrofCodeWordsScheduledByDCI (the maximum codewords scheduled by DCI), to indicate the maximum number of codewords that can be supported by the current DCI transmission.
  • RRC signaling such as maxNrofCodeWordsScheduledByDCI (the maximum codewords scheduled by DCI)
  • the signaling value when the signaling value is 2, it means that the current transmission DCI can support at most 2 codewords. It can also be understood that 2 TB indication fields are allocated in the DCI. Alternatively, it can also be understood that both the first TB indicator field and the second TB indicator field in the DCI will be allocated normally. That is, the terminal device can detect the first TB indication domain and the second TB indication domain. It should be understood that the number of codewords indicated by RRC signaling is semi-statically configured, while the number of actually scheduled codewords is dynamically variable by channel conditions. Therefore, in actual communication, whether to schedule 1 codeword or 2 codewords can be further determined by the special combination value of MCS and RV in the TB indication field.
  • the terminal device will think that the TB indication field is in the disabled state, which can also be understood as the second code word has not been called, or in other words, only one code word has been called. It should be understood that the second TB indication field in the disabled state can be detected by the terminal device normally.
  • Scheme A corresponds to 1 codeword. Therefore, when the maxNrofCodeWordsScheduledByDCI value is 2, that is, when 2 TB indicator fields are allocated in the DCI, one of the TB indicator fields in the DCI is in the disabled state. That is to say, in scheme A, when multiple TB indication fields are allocated in DCI, only one TB indication field in DCI needs to be used, and the remaining TB indication fields must be in the disabled state, so that the terminal device will understand that the current system has only one TB Transmission.
  • Scheme B corresponds to two codewords that carry repeated information, but in scheme B, data streams on different frequency domain resources share the same DMRS port.
  • the maximum number of transmission layers will not exceed 4, so According to the restriction of the codeword to layer mapping rule, in the transmission scenario of less than or equal to 4 layers, the terminal device can only recognize the maximum codeword, even if the maxNrofCodeWordsScheduledByDCI value is 2, that is, 2 TB indicator fields are allocated in the DCI, and the DCI is still There is a TB indicating that the domain is in the disabled state.
  • scheme B when multiple TB indication fields are allocated in DCI, there is still only one TB indication field in DCI that needs to be used, and the remaining TB indication fields must be in the disabled state, and the terminal device will understand that the current system has only one TB Transmission.
  • the MCS in the second TB indication field is always 26 and the RV is always 1, that is, the combination of MCS and RV is always in the state of 26,1.
  • the TB indication field in the disabled state can be used to indicate the transmission scheme.
  • the indication information may be carried in any one of the following in the TB indication field in the disabled state: NDI field, MCS field, or RV field.
  • the indication information can be carried in the NDI domain. Or, it can also be understood that the indication information is the NDI domain.
  • the NDI field can be used to indicate whether the resources scheduled by the DCI are used for initial transmission or retransmission, or in other words, the NDI field can be used to indicate whether the data scheduled by the DCI (such as PDSCH data) is the initial transmission or retransmission. .
  • the NDI field can be indicated by whether the bit is flipped. When the bit is inverted, it means that the current data is initially transmitted; when the bit is not inverted, it means that the current data is retransmitted. Flip means that the value of the NDI field is different from before. For example, 0->1 means that the value of the NDI domain has changed from 0 to 1, or in other words, it is flipped from 0 to 1.
  • the value of the NDI field was 0 before, and the value of the NDI field is 1.
  • 1->0 means that the value of the NDI domain has changed from 1 to 0, or in other words, flipped from 1 to 0.
  • the value of the NDI field was 1 before, and the value of the NDI field is 0 now.
  • the terminal device may feed back a negative acknowledgement (NACK) message, and the network device can retransmit the failed data according to the schedule. In this case, the NDI bit in the DCI for scheduling this retransmission data will not be flipped. Conversely, if the initial transmission is successful, the terminal device may feedback an acknowledgement (ACK) information, and the NDI bit in the corresponding DCI will be reversed.
  • NACK negative acknowledgement
  • the DCI includes the first TB indicator field and the second TB indicator field as an example for description.
  • the first TB indication field is in the enable state
  • the second TB indication field is in the disable state
  • the indication information may be carried in the NDI field in the second TB indication field.
  • the network device can indicate the transmission scheme through the NDI field in the second TB indication field, and accordingly, the terminal device can determine the transmission scheme according to the NDI field in the second TB indication field.
  • the NDI field in the second TB indication field can be indicated by whether the bit is flipped.
  • the bit when the bit is inverted, it means that the transmission scheme is scheme A; when the bit is not inverted, it means that the transmission scheme is scheme B.
  • the bit when the bit is turned over, it means that the transmission scheme is scheme B; when the bit is not turned over, it means that the transmission scheme is scheme A.
  • the NDI field may include 1 indicator bit.
  • the transmission scheme can be regarded as scheme A; when the indicator bit is "1”, the transmission scheme can be regarded as scheme B.
  • the value of the NDI field when using scheme A to transmit the first data and second data, can be set to 0; when using scheme B to transmit the first data and second data, the value of the NDI field can be set to 1.
  • the current transmission scheme is scheme A; when the value of the received NDI field is 1, it can be determined that the current transmission scheme is scheme B.
  • the NDI field may include 1 indicator bit.
  • the transmission scheme can be regarded as scheme A; when the indicator bit is "0”, the transmission scheme can be regarded as scheme B.
  • the value of the NDI field when using scheme A to transmit the first data and second data, can be set to 1; when using scheme B to transmit the first data and second data, the value of the NDI field can be set to 0.
  • the current transmission scheme is scheme A; when the value of the received NDI field is 0, it can be determined that the current transmission scheme is scheme B.
  • the embodiment of the present application does not limit the manner in which the terminal device determines that the second TB indication domain is in the disabled state. Any manner that enables the terminal device to determine that the second TB indication domain is in the disabled state falls within the protection scope of the embodiments of the present application.
  • Manner (1) The terminal device determines that a certain TB indication domain is in the disabled state according to the combination of MCS and RV values.
  • the values of MCS and RV are 26 and 1 as a specific combination to determine whether the TB indicator field is in the disabled state.
  • the combined value can also take other values, such as 27 and 2.
  • the TB indicator field is often regarded as the second TB indicator field.
  • the indication information used to indicate the transmission scheme can be carried in the NDI field of the TB indication field.
  • the NDI field may include 1 indicator bit.
  • the transmission scheme can be regarded as scheme A; when the indicator bit is "1”, the transmission scheme can be regarded as scheme B.
  • the value of the NDI field in a certain TB indication field can be set to 0, and the MCS in the TB indication field is 26 and the RV is 1;
  • the value of the NDI field in a certain TB indicator field can be set to 1, and the MCS in the TB indicator field is 26 and the RV is 1.
  • the current transmission scheme can be determined according to the value of the NDI field in the TB indication field. If the value of the NDI field is 0, it can be determined that the current transmission scheme is scheme A; when the value of the NDI field is 1, it can be determined that the current transmission scheme is scheme B.
  • the network equipment can indicate that a certain TB indication domain is in the disabled state through RRC signaling or newly added high-level signaling.
  • the terminal device determines that a certain TB indication domain is in the disabled state according to the RRC signaling.
  • the network equipment can indicate that a certain TB indication field is in the disabled state through RRC signaling or newly added high-level signaling, instead of indicating the TB through the combination of MCS and RV in the TB indication field as (26,1) Indicates that the domain is in the disabled state. In this way (2), it can be understood that it is equivalent to releasing the indication function of the combination of MCS and RV of (26, 1).
  • the terminal device can determine that the current transmission is FDM transmission, and then can determine that under this transmission, one of the TB indication fields is in the disabled state.
  • the terminal device may determine that the transmission mode is FDM transmission through any of the following methods.
  • Method 1 The frequency domain-resource allocation (FD-RA) indication domain in DCI is explicitly divided into multiple indication domains for frequency domain indication of different frequency division resources, or the DCI is a new DCI Format, used for FDM transmission.
  • Method 2 Informing the terminal equipment that the current transmission mode is FDM through a signaling, and the signaling does not distinguish between scheme A and B.
  • the network device can notify the terminal device that the current transmission mode is FDM transmission through a high-level signaling.
  • the network device can also notify the terminal device that the current transmission mode is FDM transmission through a dynamic signaling. For example, through the indication field in the DCI or the format of the DCI.
  • the transmission scheme can be indicated without adding additional signaling overhead.
  • the indication information is carried in the RV domain. Or, it can also be understood that the indication information is the RV domain.
  • the DCI includes the first TB indicator field and the second TB indicator field as an example for description.
  • the first TB indication field is in the enable state
  • the second TB indication field is in the disable state
  • the indication information may be carried in the RV field in the second TB indication field.
  • the terminal device may determine that a certain TB indication domain is in the disabled state through the manner (2) or the manner (3) in the foregoing implementation manner A.
  • the terminal device may determine that a certain TB indication domain is in the disabled state through the manner (2) or the manner (3) in the foregoing implementation manner A.
  • mode (2) or mode (3) it is equivalent to releasing the indication function of the combination of MCS and RV of (26, 1), so the RV field can be used to indicate the transmission scheme.
  • the RV field in the second TB indication field in the disabled state can be used to indicate the transmission scheme.
  • One possible format is as follows:
  • the RV field in the second TB indicator field may include 2 indicator bits.
  • the transmission scheme can be regarded as scheme A; when the indicator bit is "10”, the transmission scheme can be regarded as scheme B.
  • the value of the RV domain when using plan A to transmit the first data and second data, the value of the RV domain can be set to 01; when using plan B to transmit the first data and second data, the value of the RV domain can be set to 10.
  • the received RV field has a value of 01
  • it can be determined that the current transmission scheme is scheme A
  • it can be determined that the current transmission scheme is scheme B.
  • the NDI field may include 2 indication bits.
  • the indicator bit is "00”
  • the transmission scheme can be regarded as scheme A; when the indicator bit is "11”, the transmission scheme can be regarded as scheme B.
  • the value in the RV field can be set to 00; when using plan B to transmit the first data and second data, you can set the value in the RV field The value is set to 11.
  • the current transmission scheme is scheme A
  • the current transmission scheme is scheme B
  • the transmission scheme when the transmission scheme is indicated through the RV field, it may also include indications of other transmission schemes, that is, scheme A and scheme B are only two of them. For example, if the transmission scheme is indicated through the RV field, a maximum of 4 transmission schemes can be selected. That is, there may be 4 candidate transmission schemes, and the RV field indicates which transmission scheme is currently being transmitted.
  • the RV domain is no longer combined with the MCS domain (ie, the combination of MCS and RV with values of (26, 1)) to indicate that a certain TB indicator domain is in the disabled state, or in other words, in the disabled state
  • the RV field in the TB indication field is released, so the transmission scheme can be indicated by the RV field in the TB indication field.
  • the transmission scheme can be indicated without adding additional signaling overhead.
  • the indication information is carried in the MCS domain. Or, it can also be understood that the indication information is the MCS domain.
  • the DCI includes the first TB indicator field and the second TB indicator field as an example for description.
  • the first TB indicates that the domain is in the enable state
  • the second TB indicates that the domain is in the disable state.
  • the indication information may be carried in the MCS domain in the second TB indication domain.
  • the terminal device may determine that a certain TB indication domain is in the disabled state through the manner (2) or the manner (3) in the foregoing implementation manner A.
  • mode (2) or mode (3) it is equivalent to releasing the indication function of the combination of MCS and RV of (26, 1), so the MCS field can be used to realize the indication of the transmission scheme.
  • the MCS field in the second TB indication field in the disabled state can be used to indicate the transmission scheme.
  • One possible format is as follows:
  • the MCS field in the second TB indicator field may include 5 indicator bits.
  • the transmission scheme can be regarded as scheme A; when the indicator bit is "11111”, the transmission scheme can be regarded as scheme B.
  • the received MCS field has a value of 00000
  • it can be determined that the current transmission scheme is scheme A
  • it can be determined that the current transmission scheme is scheme B.
  • the indication of other transmission schemes may also be included, that is, scheme A and scheme B are only two of them.
  • a maximum of 32 transmission schemes can be selected. That is, there may be 32 candidate transmission schemes, and the current transmission scheme is indicated by the RV field.
  • the MCS field is no longer combined with the RV field (ie, the combination of MCS and RV with the value (26, 1)) to indicate that a certain TB indicator field is in the disabled state, or in other words, in the disabled state
  • the MCS field in the TB indication field is released, so the transmission scheme can be indicated by the MCS field in the TB indication field.
  • the transmission scheme can be indicated without adding additional signaling overhead.
  • Implementation mode D the indication information is implemented through any two or three of the following: MCS domain, RV domain, and NDI domain.
  • the terminal device may determine that a certain TB indication domain is in the disabled state through the manner (2) or the manner (3) in the foregoing implementation manner A.
  • the transmission scheme is indicated by the combination of MCS and NDI values.
  • the value of MCS is 26, the value of NDI is 0, it means that the transmission scheme is scheme A, the value of MCS is 26, and the value of NDI is 1, which means the transmission scheme is scheme B; for another example, if the value of MCS is 26, NDI The value is 1, which means that the transmission scheme is scheme A, the value of MCS is 26, and the value of NDI is 0, which means the transmission scheme is scheme B.
  • the transmission scheme is indicated by the value combination of RV and NDI.
  • the value of RV is 1, the value of NDI is 0, it means that the transmission scheme is scheme A, the value of RV is 1, and the value of NDI is 1, which means the transmission scheme is scheme B; for another example, the value of RV is 1, NDI The value is 1, indicating that the transmission scheme is scheme A, the value of RV is 1, and the value of NDI is 0, indicating that the transmission scheme is scheme B.
  • the transmission scheme is indicated by the value combination of MCS and RV.
  • the value of MCS is 26 or 27, and the value of RV is 1, indicating that the transmission scheme is scheme A or scheme B.
  • the transmission scheme is indicated by a combination of values of MCS, RV, and NDI.
  • the value of MCS is 26, the value of NDI is 1, and the value of RV is 1 or 2, indicating that the transmission scheme is scheme A or scheme B.
  • implementation manner A, implementation manner B, and implementation manner C can be used alone or in combination.
  • the terminal device determines that a certain TB indication field is in the disabled state through the method (2) or the method (3) in the foregoing implementation manner A
  • the foregoing implementation manner A, implementation manner B, and implementation manner C can be used in combination.
  • the value of NDI is 1, and the value of RV is 11, indicating that the transmission scheme is scheme A.
  • idle indication items that is, the TB indication field in the disabled state in the DCI, such as the NDI field in the TB indication field in the disabled state, the MCS field in the TB indication field in the disabled state, and
  • One or more items in the RV field in the TB indicator field in the disabled state can not only dynamically indicate the transmission scheme without adding additional signaling overhead, but also can improve the effective utilization of resources.
  • the indication information includes first information, and the first information is used to notify the terminal device: the MCS field in the second TB indication field is used to indicate the MCS of the second data, and/or, the second TB indicates the RV field in the field Used to indicate the RV of the second data.
  • Solution 2 may be applicable to a scenario where one TB indicator field is included in the DCI, and may also be applicable to a scenario where multiple TB indicator fields are included in the DCI.
  • Scenario 1 DCI includes 1 TB indicator field.
  • the current transmission scheme may be the scheme A by default.
  • the DCI includes multiple TB indication fields.
  • the network device can indirectly indicate the transmission scheme through the first information.
  • the following takes the first TB indication field and the second TB indication field as examples to introduce the situation of scenario 2 in detail.
  • the terminal device can determine that a certain TB indication domain is in the disabled state through the method (2) or the method (3) in the implementation A of the above scheme 1.
  • the terminal device determines whether the first data and the second data can be combined and decoded with soft bit information according to the instruction information, which may include at least the following three implementation manners.
  • the terminal device can determine the transmission scheme according to the first information.
  • the network device indicates that a certain TB indication domain of the terminal device is in the disabled state through the method (2) in the implementation A of the above scheme 1. If the network device indicates that a certain TB indication domain is in the disable state through RRC signaling, then The first information may be carried on the RRC signaling. In other words, the RRC signaling may also be used to indicate: the MCS field in the second TB indication field indicates the MCS of the second data, and/or the RV field in the second TB indication field is used to indicate the second data RV, then the terminal device can determine that the current transmission scheme is scheme B.
  • the MCS field in the second TB indicator field is used to indicate the MCS of the second data
  • the RV field in the second TB indicator field is used to indicate the RV of the second data. It can indicate that the indicator function of the second TB indicator field is valid, but the The two TB indication field is still in the disabled state, that is, the information about the number of transmitted codewords of the terminal device is still the transmission of 1 codeword.
  • the MCS field in the second TB indicator field is used to indicate the MCS of the second data
  • the RV field in the second TB indicator field is used to indicate the RV of the second data, meaning that the terminal device reads the MCS in the second TB indicator field.
  • the content of the field and/or RV field can determine the MCS and/or RV of the second data.
  • the terminal device may also determine that the current transmission scheme is scheme B, or in other words, the terminal device may determine that the first data and the second data can be combined and decoded with soft bit information.
  • the RRC signaling can also be used to indicate that the MCS field in the second TB indicator field indicates the MCS of the second data, and/ Or, the RV field in the second TB indication field is used to indicate the RV of the second data.
  • the network device sends first information to the terminal device, where the first information is used to indicate that the MCS field in the second TB indication field indicates the MCS of the second data, and/or, the second TB indication field is The RV field is used to indicate the RV of the second data.
  • the terminal device may default to the second TB indication domain being in the disabled state, that is, the network device does not need to separately send RRC signaling to the terminal device to notify the terminal device that the second TB indication domain is in the disabled state.
  • the terminal device when the network device indicates that a certain TB indicator field is in the disabled state through RRC signaling, the terminal device can default: the MCS field in the second TB indicator field indicates the MCS of the second data, and/or the first The RV field in the two TB indication field is used to indicate the RV of the second data.
  • the terminal device may determine: the MCS field in the second TB indicator field indicates the MCS of the second data .
  • the condition may include that the MCS field does not point to a reserved value.
  • the terminal device may determine: the RV field in the second TB indicator field indicates the RV of the second data .
  • the condition may include that the RV field does not point to a reserved value.
  • the terminal device may determine that the current transmission scheme is scheme A.
  • the network device may not configure or generate the first information, that is, it will not send the first information to the terminal device.
  • the terminal device if the terminal device does not receive the first information, the terminal device can determine that the current transmission scheme is scheme A.
  • the first information can be used to indirectly indicate the transmission scheme.
  • the terminal device thinks that there is only one codeword transmission, but there are two different The RV version and/or two different MCSs can be regarded as repeated transmissions of different RV versions of the same TB, or the codewords of the different RV versions can also be transmitted based on different MCSs, so the transmission scheme can be indirectly judged as scheme B .
  • the terminal device determines the transmission scheme according to whether the MCS field points to the reserved value, and/or whether the RV field points to the reserved value.
  • the terminal device determines that the current transmission scheme is scheme A.
  • the MCS field points to a reserved value and the RV field points to a reserved value, it indicates that the current MCS and RV of the second TB are invalid, which can indirectly indicate that the current transmission scheme is scheme A.
  • the MCS field in the second TB indication field points to a reserved value.
  • the MCS value is the last few values of the MCS table (MCS table), which may include the following situations.
  • the MCS field in the second TB indication field points to a reserved value, which can indicate that the current MCS of the second TB is invalid, and it can also indicate that the current transmission scheme is scheme A.
  • the RV field in the second TB indication field is not limited.
  • the RV field in the second TB indication field can be used for other indications or other functions.
  • the MCS field in the second TB indicator field points to a reserved value, and the RV field in the second TB indicator field is multiplexed, that is, the RV field in the second TB indicator field indicates the RV of the second data, which can indicate
  • the current transmission scheme is scheme B.
  • the MCS of the second data may be the same as the MCS of the first data. That is, the value of the MCS of the second data may be determined by the MCS field of the first TB indicator field.
  • the RV field in the second TB indication field points to a reserved value, which may include the following situations.
  • the RV field in the second TB indication field points to a reserved value, which can indicate that the current RV of the second TB is invalid, and it can also indicate that the current transmission scheme is scheme A.
  • the MCS field in the second TB indication field is not limited.
  • the MCS field in the second TB indication field can be used for other indications or other functions.
  • the RV field in the second TB indication field points to a reserved value
  • the MCS field in the second TB indication field is multiplexed, that is, the MCS field in the second TB indication field indicates the MCS of the second data, which can indicate
  • the current transmission scheme is scheme B.
  • the RV of the second data may be the same as the RV of the first data. That is, the value of the RV of the second data can be determined by the RV field of the first TB indicator field.
  • Manner 3 The terminal device determines the transmission scheme according to the first information and whether the indication function of the second TB indication field is enabled.
  • the terminal device determines that the current transmission scheme is scheme B.
  • the indication function of the second TB indication field is turned off, the terminal device determines that the current transmission scheme is scheme A.
  • the indication information also includes second information, which can be used to dynamically turn off or turn on the indication function of the second TB indication field.
  • the second information is the value of the NDI field in the second TB indication field. That is to say, considering that the NDI field in the second TB indication field is not used, it can be used to dynamically indicate that the indication function of the second TB indication field is turned on (or may also be called effective) or turned off.
  • the terminal device may determine whether the first data and the second data can be combined and decoded with soft bit information according to the value of the NDI field in the second TB indication field and the first information.
  • the terminal device determines that the second TB indication field is in the disabled state according to the first information, and the terminal device takes the value of the first value through the NDI field, and determines that the indication function of the second TB indication field is enabled. Therefore, the terminal device can determine the MCS and/or RV of the second data by reading the content of the MCS field and/or RV field in the second TB indication field. In addition, the terminal device may also determine that the current transmission scheme is scheme B, or in other words, the terminal device may determine that the first data and the second data can be combined and decoded with soft bit information.
  • the method of using the second TB indicator field is the same as that in the prior art.
  • the MCS field and the RV field in the second TB indicator field are reserved (or It is called closed), which is not limited.
  • the current transmission scheme can be considered as scheme A.
  • the first value is 0 and the second value is 1.
  • the first value is 1, and the second value is 0.
  • the terminal device determines that a certain TB indicator field is in the disabled state through the method (2) or method (3) in the implementation manner A, it may default to the indicator function of the second TB indicator field in the disabled state to take effect.
  • the terminal device may also determine that the current transmission scheme is scheme B according to the first information, or in other words, the terminal device determines that the first data and the second data can be combined and decoded with soft bit information.
  • the terminal device may determine the transmission scheme according to the first information; or, the terminal device may determine the transmission scheme according to whether the MCS field points to the reserved value, or whether the RV field points to the reserved value; Alternatively, the terminal device may determine the transmission scheme according to the first information and whether the indication function of the second TB indication field is enabled. It should be understood that the embodiments of the present application are not limited thereto.
  • the MCS field in the second TB indicator field indicates the MCS of the second data by default, and/or .
  • the RV field in the second TB indication field is used to indicate the RV of the second data, and the terminal device can determine the current transmission scheme according to the second information. If the second information indicates that the indication function of the second TB indication field is turned on, the transmission scheme is determined to be scheme B; when the second information indicates that the indication function of the second TB indication field is turned off, the transmission scheme is determined to be scheme A.
  • the transmission scheme is scheme B, that is, the terminal device determines that the first data and the second data can be combined and decoded with soft bit information.
  • Solution 3 The indication information can be carried in the antenna port indication field in the DCI.
  • the antenna port indication field sent by the network device to the terminal device may be used to indicate the transmission scheme, or in other words, to indicate whether the first data and the second data of the terminal device can perform soft bit information combining and decoding.
  • the antenna port indication field indicates one of the at least two DMRS port configurations, and the number of DMRS ports in the at least two DMRS port configurations is the same.
  • the at least two DMRS port configurations also meet any of the following conditions:
  • Condition 1 The number of CDM groups is the same, and the port numbers are different;
  • Condition 2 The number of CDM groups is the same, the port numbers are different, and the different port numbers are from different CDM groups;
  • Condition 3 The number of CDM groups is the same, the port numbers are different, and the different port numbers are from the same CDM group; or
  • Condition 4 The number of CDM groups is different, and the port numbers are the same.
  • the correspondence between the DMRS port configuration and the transmission scheme can be pre-defined.
  • the network device may indicate the corresponding DMRS port configuration through the antenna port indication field in the DCI based on the transmission scheme of the first data and the second data.
  • the terminal device determines the transmission scheme based on the DMRS port configuration and the corresponding relationship.
  • the antenna port indication field indicates two DMRS port configurations, for distinction, they are respectively recorded as the first DMRS port configuration and the second DMRS port configuration.
  • first DMRS port configuration and the second DMRS port configuration are just names for distinguishing, and do not limit the protection scope of the embodiments of the present application.
  • first DMRS port configuration may also be referred to as the first port configuration
  • second DMRS port configuration may also be referred to as the second port configuration.
  • the corresponding relationship may include: the corresponding relationship between the first DMRS port configuration and the solution A, and/or the corresponding relationship between the second DMRS port configuration and the solution B.
  • the correspondence relationship may only include the correspondence relationship between the first DMRS port configuration and solution A, and accordingly, the second DMRS port configuration corresponds to solution B.
  • the correspondence relationship may only include the correspondence relationship between the second DMRS port configuration and the solution B, and accordingly, the first DMRS port configuration corresponds to the solution A.
  • the corresponding relationship may include the corresponding relationship between the first DMRS port configuration and the solution A, and also include the corresponding relationship between the second DMRS port configuration and the solution B.
  • the corresponding relationship may be pre-defined, such as pre-defined by the protocol; or, the corresponding relationship may also be pre-configured by the network device, which is not limited.
  • the number of DMRS ports in the first DMRS port configuration and the second DMRS port configuration is the same.
  • the first DMRS port configuration and the second DMRS port configuration may also satisfy any one of the foregoing conditions 1 to 4. The following description is combined with different conditions.
  • Condition 1 The number of CDM groups is the same, and the port numbers are different.
  • the number of DMRS ports in the first DMRS port configuration and the second DMRS port configuration are the same, and the number of CDM groups in the first DMRS port configuration and the second DMRS port configuration are the same, and the port numbers are different.
  • the number of CDM groups is the same, but the port numbers are different, that is, the values in the second column as shown in Table 1 are the same, and the DMRS port numbers in the third column are different.
  • the number of CDM groups may also be referred to as DMRS rate matching (rate matching) value.
  • the number of CDM groups or the DMRS rate matching value may correspond to the second column in Table 1 above. In the embodiments of the present application, the number of CDM groups is uniformly expressed.
  • any combination of the following can be used to indicate the transmission scheme: value is 0, value is 1, and value is 3. And value is 4, value is 3 and value is 5, value is 5 and value is 6, value is 4 and value is 6, value is 3 and value is 6, value is 4 and value is 5.
  • the DMRS port configuration with a value of 3 and the DMRS port configuration with a value of 5 the same number of DMRS ports, the same number of CDM groups, and different port numbers. Therefore, the two lines of DMRS port configuration with value 3 and value 5 can be used to indicate the transmission scheme.
  • the first DMRS port configuration can select the row with value 3 in Table 1
  • the second DMRS port configuration can select the row with value 5 in Table 1, that is, the two rows with value 3 and value 5.
  • the DMRS port configuration can be used to indicate the transmission scheme.
  • the first corresponding relationship may include: a corresponding scheme A for DMRS port configuration with a value of 3, and a corresponding scheme B for DMRS port configuration with a value of 5.
  • the first correspondence may include: a DMRS port with a value of 3 is configured with a corresponding scheme A, and accordingly, a DMRS port with a value of 5 is configured with a corresponding scheme B.
  • the first correspondence may include: a DMRS port with a value of 5 is configured with a corresponding scheme B, and accordingly, a DMRS port with a value of 3 is configured with a corresponding scheme A.
  • a DMRS port configuration with a value of 3 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 3.
  • a DMRS port configuration with a value of 5 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 5.
  • the terminal device determines that the value is 3 based on the antenna port indication field in the DCI sent by the network device, and then it can be determined that the current transmission scheme is scheme A.
  • the terminal device can also obtain the information corresponding to the value 3 (for example, the DMRS port is 0) by reading the value 3 indicated by the antenna port indication field and then reading Table 1.
  • the terminal device determines that the value is 5 based on the antenna port indication field in the DCI sent by the network device, it can determine that the current transmission scheme is scheme B. In addition, the terminal device can also obtain the information corresponding to the value 5 (for example, the DMRS port is 2) by reading the table 1 through the value 5 indicated by the antenna port indication field.
  • the port number is different, and it can also mean that the port number combination is different.
  • the number of DMRS ports in the first DMRS port configuration and the second DMRS port configuration are the same, and the number of CDM groups in the first DMRS port configuration and the second DMRS port configuration are the same, and the port number combinations are different.
  • the first DMRS port configuration can select the row with value 20 in Table 2
  • the second DMRS port configuration can select the row with value 24 in Table 2.
  • the value of 20 corresponds to the DMRS port combination ⁇ 0,1 ⁇
  • the value of 24 corresponds to the DMRS port combination ⁇ 0,4 ⁇
  • the port number combination is different.
  • the two lines of DMRS port configuration with a value of 20 and a value of 24 can be used to indicate the transmission scheme.
  • the first correspondence may include: a DMRS port with a value of 20 configures a corresponding scheme A, and a DMRS port with a value of 24 configures a corresponding scheme B.
  • the first correspondence may include: a DMRS port with a value of 20 is configured with a corresponding scheme A, and accordingly, a DMRS port with a value of 24 is configured with a corresponding scheme B.
  • the first correspondence may include: a DMRS port with a value of 24 is configured with a corresponding scheme B, and accordingly, a DMRS port with a value of 20 is configured with a corresponding scheme A.
  • a DMRS port configuration with a value of 20 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 20.
  • a DMRS port configuration with a value of 24 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 24.
  • the terminal device determines that the value is 20 based on the antenna port indication field in the DCI sent by the network device, and then it can be determined that the current transmission scheme is scheme A. Or, if the terminal device determines that the value is 24 based on the antenna port indication field in the DCI sent by the network device, it can determine that the current transmission scheme is scheme B. In addition, the terminal device can also obtain the information corresponding to the value 20 or value 24 by reading the value 20 or the value 24 indicated by the antenna port indication field and then reading the table 2 (for example, the DMRS port combination corresponding to the value 20 is ⁇ 0,1 ⁇ , Value is the DMRS port combination ⁇ 0,4 ⁇ corresponding to 24).
  • Condition 2 The number of CDM groups is the same, the port numbers are different, and the different port numbers are from different CDM groups.
  • the number of DMRS ports in the first DMRS port configuration and the second DMRS port configuration is the same, and the number of CDM groups in the first DMRS port configuration and the second DMRS port configuration are the same, the port numbers are different, and the port numbers are different From different CDM groups.
  • any combination of the following can be used to indicate the transmission scheme: value Is 3 and value is 5, value is 4 and value is 6.
  • the DMRS port configuration with a value of 4 and the DMRS port configuration with a value of 6 the same number of DMRS ports, the same number of CDM groups, different port numbers, and different port numbers come from different CDM groups. Therefore, the two lines of DMRS port configuration with value 4 and value 6 can be used to indicate the transmission scheme.
  • the first DMRS port configuration can select the row with value 4 in Table 1
  • the second DMRS port configuration can select the row with value 6 in Table 1, that is, the two rows with value 4 and value 6.
  • the DMRS port configuration can be used to indicate the transmission scheme.
  • the first correspondence may include: a DMRS port configuration corresponding to a value of 4 scheme A, and a DMRS port configuration corresponding to a value of 6 scheme B.
  • the first correspondence may include: a DMRS port with a value of 4 is configured with a corresponding scheme A, and accordingly, a DMRS port with a value of 6 is configured with a corresponding scheme B.
  • the first correspondence may include: a DMRS port with a value of 6 is configured with a corresponding scheme B, and accordingly, a DMRS port with a value of 4 is configured with a corresponding scheme A.
  • a DMRS port configuration with a value of 4 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 4.
  • a DMRS port configuration with a value of 6 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 6.
  • the terminal device determines that the value is 4 based on the antenna port indication field in the DCI sent by the network device, and then it can be determined that the current transmission scheme is scheme A.
  • the terminal device can also obtain the information corresponding to the value 3 (for example, the DMRS port is 1) by reading the table 1 through the value 4 indicated by the antenna port indication field.
  • the terminal device determines that the value is 6 based on the antenna port indication field in the DCI sent by the network device, it can determine that the current transmission scheme is scheme B.
  • the terminal device may also obtain the information corresponding to the value 6 (for example, the DMRS port is 3) by reading the table 1 through the value 6 indicated by the antenna port indication field.
  • Condition 3 The number of CDM groups is the same, the port numbers are different, and the different port numbers are from the same CDM group.
  • the number of DMRS ports in the first DMRS port configuration and the second DMRS port configuration is the same, and the number of CDM groups in the first DMRS port configuration and the second DMRS port configuration are the same, the port numbers are different, and the port numbers are different From the same CDM group.
  • any combination of the following can be used to indicate the transmission scheme: value Is 0 and value is 1, value is 3 and value is 4, value is 5 and value is 6.
  • the DMRS port configuration with a value of 3 and the DMRS port configuration with a value of 4 the same number of DMRS ports, the same number of CDM groups, different port numbers, and different port numbers come from the same CDM group. Therefore, the two lines of DMRS port configuration with value 3 and value 4 can be used to indicate the transmission scheme.
  • the first DMRS port configuration can select the row with value 3 in Table 1
  • the second DMRS port configuration can select the row with value 4 in Table 1, that is, the two rows with value 3 and value 4.
  • the DMRS port configuration can be used to indicate the transmission scheme.
  • the first correspondence may include: a corresponding scheme A for DMRS port configuration with a value of 3, and a corresponding scheme B for DMRS port configuration with a value of 4.
  • the first correspondence relationship may include: a DMRS port with a value of 3 is configured with a corresponding scheme A, and accordingly, a DMRS port with a value of 4 is configured with a corresponding scheme B.
  • the first correspondence may include: a DMRS port with a value of 4 is configured with a corresponding scheme B, and accordingly, a DMRS port with a value of 3 is configured with a corresponding scheme A.
  • a DMRS port configuration with a value of 3 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 3.
  • a DMRS port configuration with a value of 4 can be used.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 4.
  • the terminal device determines that the value is 3 based on the antenna port indication field in the DCI sent by the network device, and then it can be determined that the current transmission scheme is scheme A.
  • the terminal device can also obtain the information corresponding to the value 3 (for example, the DMRS port is 0) by reading the value 3 indicated by the antenna port indication field and then reading Table 1.
  • the terminal device determines that the value is 4 based on the antenna port indication field in the DCI sent by the network device, it can determine that the current transmission scheme is scheme B. In addition, the terminal device can also obtain the information corresponding to the value 4 (for example, the DMRS port is 1) by reading the value 4 indicated by the antenna port indication field and then reading the table 1.
  • Condition 4 The number of CDM groups is different, and the port numbers are the same.
  • the number of DMRS ports in the first DMRS port configuration and the second DMRS port configuration is the same, and the number of CDM groups in the first DMRS port configuration and the second DMRS port configuration are different, and the port numbers are the same.
  • the number of CDM groups is different, and the port numbers are the same, that is, the values in the second column as shown in Table 1 are different, and the DMRS port numbers in the third column are the same.
  • any combination of the following can be used to indicate the transmission scheme: value is 0, value is 3, and value is 1. And the value is 4.
  • the first DMRS port configuration can select the row with value 1 in Table 1
  • the second DMRS port configuration can select the row with value 4 in Table 1, that is, the two rows with value 1 and value 4.
  • the DMRS port configuration can be used to indicate the transmission scheme.
  • the first correspondence relationship may include: a corresponding scheme A for DMRS port configuration with a value of 1, and a corresponding scheme B for DMRS port configuration with a value of 4.
  • the first correspondence may include: a DMRS port with a value of 1 is configured with a corresponding scheme A, and accordingly, a DMRS port with a value of 4 is configured with a corresponding scheme B.
  • the first correspondence may include: a DMRS port corresponding to a value of 1, then, correspondingly, a DMRS port corresponding to a value of 4, corresponding to a scheme A.
  • a DMRS port configuration with a value of 1 can be used for network equipment.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 1.
  • a DMRS port configuration with a value of 4 can be used when using scheme B for transmission.
  • the value indicated by the antenna port indication field in the DCI sent by the network device to the terminal device is 4.
  • the terminal device determines that the value is 1 based on the antenna port indication field in the DCI sent by the network device, and then it can be determined that the current transmission scheme is scheme A.
  • the terminal device can also obtain the information corresponding to the value 1 (for example, the DMRS port is 1) by reading the table 1 through the value 1 indicated by the antenna port indication field.
  • the terminal device determines that the value is 4 based on the antenna port indication field in the DCI sent by the network device, it can determine that the current transmission scheme is scheme B. In addition, the terminal device can also obtain the information corresponding to the value 4 (for example, the DMRS port is 1) by reading the value 4 indicated by the antenna port indication field and then reading the table 1.
  • first DMRS port configuration and the second DMRS port configuration are for illustration only, and in the actual communication process, the corresponding DMRS port can also be used directly based on any of the above conditions to implement the transmission scheme instruction.
  • DMRS port configuration with a value of x corresponds to a row configuration in the table. It should be understood that the specific value may vary from table to table, and the embodiment of this application does not protect the specific value value. It is the conditions listed above, and any DMRS port configuration that is applicable to the conditions listed above falls into the protection scope of the embodiments of the present application.
  • redundant lines of DMRS can be multiplexed without adding additional signaling overhead, not only can realize the dynamic indication of the transmission scheme, but also the protocol modification amount is extremely small.
  • Solution 4 The indication information can be carried in the DCI.
  • the transmission scheme is scheme A; when the DCI includes 2 or more TB indicator fields, the transmission scheme is scheme B.
  • step 330 the terminal device determines whether the first data and the second data can be combined and decoded with soft bit information according to the instruction information. Based on solution 4, step 330 can be understood as that when the terminal device determines that the DCI includes 1 TB indicator field, it determines that the first data and the second data cannot be combined and decoded by soft bit information; the terminal device determines that the DCI includes 2 or 2 When more than one TB indicator field, it is determined that the first data and the second data can be combined and decoded with soft bit information.
  • Solution 5 The indication information is an existing high-level parameter.
  • the network device may configure the maxNrofCodeWordsScheduledByDCI value to be 1, and accordingly, the terminal device determines that the transmission scheme is scheme A according to the maxNrofCodeWordsScheduledByDCI value as 1.
  • the network device may configure the maxNrofCodeWordsScheduledByDCI value to be 2.
  • the terminal device determines that the transmission scheme is scheme B according to the maxNrofCodeWordsScheduledByDCI value.
  • maxNrofCodeWordsScheduledByDCI is given a new meaning. That is to say, when maxNrofCodeWordsScheduledByDCI is given a new meaning, that is, when maxNrofCodeWordsScheduledByDCI is used to indicate the transmission scheme, the value of maxNrofCodeWordsScheduledByDCI does not mean that 2 TB indication fields are allocated in the DCI, but can indicate that the current transmission scheme is the scheme B.
  • the method described in scheme 5 can be restricted to the URLLC transmission service, or further restricted to the FDM transmission mode, that is, if and only in the above scenario, maxNrofCodeWordsScheduledByDCI can be reused As an indication method for transmission schemes A and B.
  • the specific method for determining the URLLC service or FDM transmission mode is not limited.
  • the indication information is a new high-level parameter.
  • a new high-level signaling can be introduced to indicate the transmission scheme.
  • the high-level signaling may also include indications of other transmission schemes, that is, scheme A and scheme B are only two of them.
  • a new high-level parameter is introduced, such as schemeinfo (transmission scheme indication), assuming that schemeinfo occupies 1 bit.
  • schemeinfo transmission scheme indication
  • the terminal equipment determines that the transmission scheme is scheme A; when the value of the schemeinfo is 1, the terminal equipment determines that the transmission scheme is scheme B.
  • Solution 7 The indication information is carried in the DCI of the new format.
  • a new DCI format may be introduced.
  • there may be a special DCI field that is, a special indication field for dynamic indication of the transmission scheme.
  • the indication field may also contain indications of other transmission schemes, that is, scheme A and scheme B are only two of them.
  • the terminal device can determine the transmission scheme, or in other words, the terminal device can determine whether the first data and the second data can be combined and decoded with soft bit information.
  • the indication information may be carried in any one or more of the following types of signaling: RRC signaling, MAC-CE signaling, and DCI.
  • the indication information is carried in RRC signaling and DCI.
  • the indication information includes first information and second information.
  • the first information may be notified to the terminal device through RRC signaling, and the second information may be notified to the terminal device through DCI.
  • the terminal device may also receive third data in the third time-frequency resource, receive fourth data in the fourth time-frequency resource, and so on.
  • first TB indication field and the second TB indication field are taken as examples for description, and the embodiments of the present application are not limited thereto.
  • the first TB indicator field and the second TB indicator field are just names for distinction, that is, the first TB indicator field is used to indicate the TB indicator field in the enable state, and the second TB indicator field is used to indicate the TB indicator field in the disable state. .
  • scenario 1 DCI includes one TB indicator field
  • scenario 2 DCI includes multiple TB indicator fields. Any one of the above solutions is applicable to both scenarios.
  • the transmission scheme is scheme A.
  • scenario 2 it can be implemented by any one of the above-mentioned schemes 1 to 3, and for details, please refer to the above description.
  • scheme 4 it can be determined by the default scheme in scheme 4 above, that is, when two or more TB indicator fields are included in the DCI, the transmission scheme is scheme B.
  • the network device can make the terminal device process the received data based on the transmission solution by indicating the transmission solution to the terminal device. For example, the terminal device determines whether to combine and process the data received on different frequency domain resources according to the instruction information. In this way, not only the efficiency of data processing by the terminal device can be improved, but also the transmission performance of the data can be improved to improve the transmission efficiency.
  • the transmission parameter of the corresponding TB is indicated by the second TB indication field in the disabled state.
  • the method 600 may include the following steps.
  • the terminal device receives first data on a first time-frequency resource and receives second data on a second time-frequency resource.
  • This step is similar to step 310 in method 300, and will not be repeated here.
  • the terminal device receives the DCI, where the DCI includes a first TB indicator field and a second TB indicator field, the first TB indicator field is in an enabled state, and the second TB indicator field is in a disabled state.
  • first TB indication field and the second TB indication field reference may be made to the description in the method 300, which will not be repeated here.
  • the first TB indication field can be used to determine the transmission information of the first data.
  • the network device may indicate the MCS of the first data through the MCS field in the first TB indication field.
  • the network device may indicate the RV of the first data through the RV field in the first TB indication field.
  • the network device may indicate that the first data is new transmission or retransmission through the NDI field in the first TB indication field.
  • the method 600 may further include: the terminal device determines that the second TB indication domain is in a disable state.
  • the network equipment can indicate that a certain TB indication domain is in the disabled state through RRC signaling or newly added high-level signaling. Or, it can also be defaulted under FDM transmission, as long as there are 2 TB indication fields, one of which is fixed in the disabled state.
  • the terminal device can determine the MCS of the second data by reading the MCS field in the second TB indicator field, and/or can determine the RV of the second data by reading the RV field in the second TB indicator field.
  • the terminal device may also determine the MCS of the second data by reading the MCS field in the second TB indication field when the second TB indication field is open, and/or, by reading the second TB
  • the RV field in the indication field can determine the RV of the second data.
  • the terminal device may also receive third data in the third time-frequency resource, receive fourth data in the fourth time-frequency resource, and so on.
  • the second TB indicator field in the disabled state is reused.
  • the indicator function in the second TB indicator field can be turned on or off through signaling or NDI field, etc., so as to be compatible with 2 or more
  • the dynamic indication of MCS and 2 or more RVs has strong backward scalability.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 700 may include a communication unit 710 and a processing unit 720.
  • the communication unit 710 can communicate with the outside, and the processing unit 720 is used for data processing.
  • the communication unit 710 may also be referred to as a communication interface or a transceiving unit.
  • the communication interface is used to input and/or output information, and the information includes at least one of instructions and data.
  • the communication device may be a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device 700 can implement the steps or processes performed by the terminal device corresponding to the above method embodiment.
  • it can be a terminal device, or a chip or circuit or chip configured in the terminal device. system.
  • the communication device 700 may be called a terminal device.
  • the communication unit 710 is configured to perform the transceiving-related operations on the terminal device side in the above method embodiment
  • the processing unit 720 is configured to perform the processing related operations on the terminal device in the above method embodiment.
  • the communication unit 710 is configured to: receive first data on a first time-frequency resource and receive second data on a second time-frequency resource, where the first time-frequency resource and the second time-frequency resource The frequency domain resources of the first time-frequency resource and the second time-frequency resource do not overlap; the communication unit 710 is further configured to: receive the indication information; the processing unit 720 is configured to: determine the first time-frequency resource according to the indication information Whether the data and the second data can be combined and decoded with soft bit information.
  • the first time-frequency resource and the second time-frequency resource are associated with different quasi co-located QCL information.
  • the indication information is carried in any one or more of the following signaling: radio resource control RRC signaling, medium access control-control element MAC-CE signaling, and downlink control information DCI.
  • the communication unit 710 is further configured to: receive downlink control information DCI for scheduling the first data and the second data, the DCI includes a first TB indicator field and a second TB indicator field, and the first TB indicator field is in an enabled state , The second TB indication field is in the disabled state; the indication information is carried in the second TB indication field.
  • the indication information is carried in the second TB indication field, including: the indication information is carried in any one of the following: newly transmitted data indication NDI field, modulation and coding strategy indication MCS field, or redundancy version RV field.
  • the DCI for scheduling the first data and the second data includes a first TB indicator field and a second TB indicator field, the first TB indicator field is in the enabled state, and the second TB indicator field is in the disabled state; indicates The information includes first information, and the first information is used to indicate the terminal device: the second TB indicates that the domain is in the disabled state.
  • the first information is also used to notify the terminal device: the MCS field in the second TB indication field is used to indicate the MCS of the second data, and/or the RV field in the second TB indication field is used to indicate the second RV of the data.
  • the indication information further includes second information.
  • the second information is the value of the NDI field in the second TB indication field.
  • the NDI field in the second TB indication field takes the first value
  • the second TB The MCS field in the indicator field is used to indicate the MCS of the second data
  • the RV field in the second TB indicator field is used to indicate the RV of the second data
  • the NDI field in the second TB indicator field takes the value of the second value
  • the MCS field and the RV field in the second TB indication field are reserved; wherein, the first value and the second value are not equal.
  • the indication information is carried in the DCI for scheduling the first data and the second data, and the DCI for scheduling the first data and the second data includes 2 TB indication fields, and one of the 2 TB indication fields indicates TB
  • the processing unit 720 is configured to: determine that the first data and the second data can be combined and decoded with soft bit information; the DCI that schedules the first data and the second data includes 1 TB indicator domain In this case, the processing unit 720 is configured to determine that the first data and the second data cannot be combined and decoded with soft bit information.
  • the indication information is carried in an antenna port indication field in the DCI for scheduling the first data and the second data, where the antenna port indication field indicates one of the at least two demodulation reference signal DMRS port configurations, At least two DMRS port configurations have the same number of DMRS ports.
  • At least two DMRS port configurations meet any of the following conditions: the number of CDM groups for code division multiplexing is the same, and the port numbers are different; the number of CDM groups is the same, the port numbers are different, and the different port numbers come from different The number of CDM groups is the same, and the port numbers are different, and different port numbers are from the same CDM group; or, the number of CDM groups is different, and the port numbers are the same.
  • the communication device 700 supports the ability to merge soft bit information, or the communication device 700 supports the first transmission scheme and the second transmission scheme.
  • the communication unit 710 is further configured to report through UE capabilities: the communication device 700 supports the ability of soft bit information merging, or the communication device 700 supports the first transmission scheme and the second transmission scheme.
  • the communication device 700 may implement the steps or processes performed by the terminal device in the method 300 and the method 600 according to the embodiments of the present application.
  • the communication device 700 may include methods for executing the method 300 in FIG. 3 and the method 600 in FIG.
  • the unit of the method performed by the terminal device is used to implement the corresponding processes of the method 300 in FIG. 3 and the method 600 in FIG. 6, respectively.
  • the communication unit 710 may be used to execute steps 310 and 320 in the method 300, and the processing unit 720 may be used to execute step 330 in the method 300.
  • the communication unit 710 can be used to execute steps 610 and 620 in the method 600, and the processing unit 720 can be used to execute step 630 in the method 600.
  • the communication unit 710 in the communication device 700 may be implemented by the transceiver 910 in the terminal device 900 shown in FIG. 9, and the processing unit 720 in the communication device 700 may be implemented by the terminal device shown in FIG.
  • the processor 920 in 900 is implemented.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • the communication unit 710 in the communication device 700 may also be an input/output interface.
  • the communication device 700 can implement the steps or processes performed by the network device corresponding to the above method embodiment.
  • it can be a network device, or a chip or circuit or circuit configured in the network device. Chip system.
  • the communication device 700 may be referred to as a network device.
  • the communication unit 710 is configured to perform the transceiving-related operations on the network device side in the above method embodiment
  • the processing unit 720 is configured to perform the processing related operations on the network device in the above method embodiment.
  • the processing unit 720 is configured to generate indication information, which is used by the terminal device to determine whether the first data and the second data can be combined and decoded with soft bit information, and the first data is on the first time-frequency resource
  • the second data is the data transmitted on the second time-frequency resource, where the frequency domain resources of the first time-frequency resource and the second time-frequency resource do not overlap, or the first time-frequency resource and the second time-frequency resource The time domain resources of the frequency resources do not overlap; the communication unit 710 is used to send instruction information.
  • the first time-frequency resource and the second time-frequency resource are associated with different quasi co-located QCL information.
  • the indication information is carried in any one or more of the following signaling: radio resource control RRC signaling, medium access control-control element MAC-CE signaling, and downlink control information DCI.
  • the communication unit 710 is specifically configured to send downlink control information DCI for scheduling the first data and the second data, the DCI includes a first TB indicator field and a second TB indicator field, and the first TB indicator field is in an enabled state , The second TB indicates that the domain is in the disabled state; the second TB indicates that the domain carries indication information.
  • the indication information carried in the second TB indication field includes: indication information carried in any of the following items in the second TB indication field: newly transmitted data indicating NDI field, modulation and coding strategy indicating MCS field, or redundancy Version RV domain.
  • the communication unit 710 is further configured to send the DCI for scheduling the first data and the second data, the DCI includes a first TB indicator field and a second TB indicator field, the first TB indicator field is in an enabled state, and the second The TB indicates that the domain is in the disabled state; the indication information includes first information, and the first information is used to indicate the terminal device: the second TB indicates that the domain is in the disabled state.
  • the first information is also used to notify the terminal device: the MCS field in the second TB indication field is used to indicate the MCS of the second data, and/or the RV field in the second TB indication field is used to indicate the second RV of the data.
  • the indication information further includes second information.
  • the second information is the value of the NDI field in the second TB indication field.
  • the NDI field in the second TB indication field takes the first value
  • the second TB The MCS field in the indicator field is used to indicate the MCS of the second data
  • the RV field in the second TB indicator field is used to indicate the RV of the second data
  • the NDI field in the second TB indicator field takes the value of the second value
  • the MCS field and the RV field in the second TB indication field are reserved; wherein, the first value and the second value are not equal.
  • the communication unit 710 is specifically configured to send the antenna port indication field in the DCI for scheduling the first data and the second data, the antenna port indication field carries indication information; wherein, the antenna port indication field indicates at least two types of demodulation A DMRS port configuration in the reference signal DMRS port configuration, at least two DMRS port configurations have the same number of DMRS ports.
  • At least two DMRS port configurations meet any of the following conditions: the number of CDM groups for code division multiplexing is the same, and the port numbers are different; the number of CDM groups is the same, the port numbers are different, and the different port numbers come from different The number of CDM groups is the same, and the port numbers are different, and different port numbers are from the same CDM group; or, the number of CDM groups is different, and the port numbers are the same.
  • the terminal device supports the ability to merge soft bit information, or the terminal device supports the first transmission scheme and the second transmission scheme.
  • the communication unit 710 is further configured to: receive terminal device UE capabilities reported by the terminal device, and UE capability indication: the terminal device supports the ability of soft bit information combination, or the terminal device supports the first transmission scheme and the second transmission scheme.
  • the communication device 700 may implement the steps or processes performed by the network device in the method 300 and the method 600 according to the embodiments of the present application.
  • the communication device 700 may include methods for executing the method 300 in FIG. 3 and the method 600 in FIG.
  • the unit of the method performed by the network device is used to implement the corresponding processes of the method 300 in FIG. 3 and the method 600 in FIG. 6, respectively.
  • the communication unit 710 may be used to execute step 310 and step 320 in the method 300.
  • the communication unit 710 may be used to execute steps 610 and 620 in the method 600.
  • the communication unit in the communication device 700 can be implemented by the transceiver 1010 in the network device 1000 shown in FIG. 10, and the processing unit 720 in the communication device 700 can be implemented by the network device shown in FIG.
  • the processor 1020 in 1000 is implemented.
  • the communication unit 710 in the communication device 700 may also be an input/output interface.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • FIG. 8 is another schematic block diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 includes a transceiver 810, a processor 820, and a memory 830.
  • the memory 830 stores a program.
  • the processor 820 is configured to execute the program stored in the memory 830 and execute the program stored in the memory 830. , So that the processor 820 is configured to execute the relevant processing steps in the above method embodiment, and execute the program stored in the memory 830, so that the processor 820 controls the transceiver 810 to execute the transceiving-related steps in the above method embodiment.
  • the communication device 800 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 830 enables the processor 820 to execute the above method embodiment.
  • the communication device 800 is used to perform the actions performed by the network device in the above method embodiment.
  • the execution of the program stored in the memory 830 enables the processor 820 to perform the above method implementation.
  • the processing steps on the network device side execute the programs stored in the memory 830, so that the processor 820 controls the transceiver 810 to execute the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides a communication device 900, which may be a terminal device or a chip.
  • the communication device 900 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 9 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 910 and a processing unit 920.
  • the transceiver unit 910 may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit 920 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 910 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiver unit 910 can be regarded as the sending unit, that is, the transceiver unit 910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 920 is configured to execute step 330 in FIG. 3 and step 630 in FIG. 6, and/or the processing unit 920 is further configured to execute the terminal device side in the embodiment of the present application.
  • the transceiving unit 910 is also used to perform steps 310 and 320 shown in FIG. 3, and steps 610 and 620 in FIG. 6, and/or the transceiving unit 910 is also used to perform other transceiving steps on the terminal device side.
  • FIG. 9 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 9.
  • the chip When the communication device 900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • An embodiment of the present application also provides a communication device 1000, which may be a network device or a chip.
  • the communication device 1000 can be used to perform actions performed by a network device in the foregoing method embodiments.
  • FIG. 10 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 1010 and part 1020.
  • the 1010 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1020 part is mainly used for baseband processing and control of base stations.
  • the 1010 part can generally be referred to as a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1020 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1010 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device used for implementing the receiving function in part 1010 can be regarded as the receiving unit, and the device used for implementing the sending function as the sending unit, that is, the part 1010 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • Part 1020 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, the boards can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 1010 is used to perform step 310 and step 320 shown in FIG. 3, and the sending operation on the network device side in step 610 and step 620 in FIG. 6, and/or
  • the transceiver unit of part 1010 is also used to perform other transceiver steps on the network device side in the embodiment of the present application.
  • the processing unit in part 1020 is used to execute the processing steps on the network device side in the embodiment of the present application.
  • FIG. 10 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 10.
  • the chip When the communication device 1000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example, including AAU, CU node and/or DU node, or BBU and adaptive radio unit (ARU), or BBU; It may also be a customer premises equipment (CPE), or other forms, which are not limited in this application.
  • AAU CU node and/or DU node
  • BBU and adaptive radio unit
  • ARU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the above-mentioned CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 6. The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 6 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program, and/or computer running on the processor.
  • application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种处理数据的方法和通信装置,可以提高终端设备处理数据的效率,提高数据传输的鲁棒性。该方法可以包括:终端设备在第一时频资源上接收第一数据和在第二时频资源上接收第二数据,其中,第一时频资源和第二时频资源的频域资源不重叠,或,第一时频资源和第二时频资源的时域资源不重叠;终端设备接收指示信息,该指示信息可以指示终端设备第一数据和第二数据的传输方案,或者,该指示信息可以指示第一数据和第二数据是否能够软比特信息合并解码。终端设备根据指示信息确定第一数据和第二数据能够软比特信息合并解码,或者,终端设备根据指示信息确定第一数据和第二数据不能软比特信息合并解码。

Description

处理数据的方法和通信装置
本申请要求于2019年08月14日提交中国专利局、申请号为201910748755.2、申请名称为“处理数据的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种处理数据的方法和通信装置。
背景技术
在第五代(5th Generation,5G)通信***中,随着移动通信的快速发展,在***容量、瞬时峰值速率、频谱效率、小区边缘用户吞吐量以及时延等诸多方面有了更高的要求。在通信传输过程中有很多小包突发业务产生,例如,超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)等突发业务。以URLLC业务为例,一般情况下,URLLC业务可靠性的要求高达99.999%,因此通常采用分集的方案来进行数据传输。
为了保证数据传输的可靠性,提出了一些方案,例如频分复用(frequency division multiplexing,FDM)方案。FDM方案包括多种不同的传输方式。例如,多个网络设备,如多个发送接收点(transmission and reception point,TRP),分别传输同一份数据信息的一部分。又如,多个网络设备重复传输相同的数据信息,等等。
考虑到不同的传输方式,终端设备处理数据的方式也需要被考虑。
发明内容
本申请提供一种处理数据的方法和通信装置,可以提高终端设备处理数据的效率,提高数据传输的鲁棒性。
第一方面,提供了一种处理数据的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片***或电路执行,本申请对此不作限定。
该方法可以包括:在第一时频资源上接收第一数据和在第二时频资源上接收第二数据,其中,所述第一时频资源和所述第二时频资源的频域资源不重叠,或,所述第一时频资源和所述第二时频资源的时域资源不重叠;接收指示信息;根据所述指示信息确定所述第一数据和所述第二数据是否能够软比特信息合并解码。
可选地,终端设备根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码,即表示,终端设备根据指示信息确定是否能够对第一数据和第二数据执行软比特信息合并解码。例如,终端设备根据指示信息确定能够对第一数据和第二数据执行软比特信息合并解码;又如,终端设备根据指示信息确定不能对第一数据和第二数据执行软比特信息合并解码。
应理解,“能够”指的是不同频域资源上的数据具备进行软比特信息的条件,终端设 备仍然可以根据自身的能力或当前传输的需要决定是否做软比特信息合并。
可选地,指示信息指示的内容可以是传输方案;或者,指示信息可以指示终端设备是否能够对不同频域资源上的数据流进行软比特信息合并解码;或者,指示信息可以指示终端设备不同的频域资源上的数据流关联的是同一个冗余版本(redundancy version,RV),还是独立的RV。
可选地,在某些情况下,如区分多个发送接收点(transmission and reception point,TRP)发送的数据时,数据可以替换为传输块(transport block,TB)或码字(code word,CW)。例如,第一数据可以替换为第一TB,或者,第一数据可以替换为第一CW。又如,第二数据可以替换为第二TB,或者,第二数据可以替换为第二CW。
示例性地,第一时频资源和第二时频资源的频域资源不重叠,可以理解为,第一时频资源和第二时频资源在频域上不重叠。例如,第一数据和第二数据可以通过频分复用(frequency division multiplexing,FDM)的方式发送给终端设备。
示例性地,第一时频资源和第二时频资源的时域资源不重叠,可以理解为,第一时频资源和第二时频资源在时域上不重叠。例如,第一数据和第二数据可以通过时分复用(time division multiplexing,TDM)的方式发送给终端设备。
基于上述技术方案,终端设备可以先根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码,再处理不同频域资源或不同时域资源上接收到的数据。相反,终端设备如果直接分别处理在不同频域资源或不同时域资源上接收到的数据,不仅会降低处理数据的效率,也会影响数据传输的鲁棒性。因此,通过本申请,不仅可以提升终端设备处理数据的效率,也可以提升数据的传输性能进而提高传输效率。
结合第一方面,在第一方面的某些实现方式中,所述第一时频资源和所述第二时频资源关联不同的准共址QCL信息。
第一时频资源和第二时频资源关联不同的准共址QCL信息,可以理解为第一传输单元和第二传输单元关联不同的准共址(quasi-co-location,QCL),可以表示,第一传输单元和第二传输单元关联的QCL不同;或者可以表示,在第一传输单元接收到的第一数据和第二传输单元接收到的第二数据关联的QCL和在第二传输单元接收到的第二数据关联的QCL不同。
可选地,QCL信息可以包括:QCL类型(type)、参考信号资源类型、参考信号资源索引等信息。关于不同的QCL信息和相同的QCL信息见下文实施例描述。
基于上述方案,在多站传输场景下,终端设备可以根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码。
结合第一方面,在第一方面的某些实现方式中,所述指示信息承载于以下任意1种或多种以上信令中:无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、下行控制信息DCI。
也就是说,指示信息可以通过无线资源控制(radio resource control,RRC)信令、媒体接入控制(media access control,MAC)信令、下行控制信息(downlink control information,DCI)中的任意一种信令指示,也可以通过RRC信令、MAC-CE信令、DCI中的任意两种或三种联合指示。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:接收调度所述第一 数据和所述第二数据的下行控制信息DCI,所述DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;所述指示信息承载于所述第二TB指示域中。
可选地,第一TB指示域用于指示第一数据的传输参数。例如,网络设备可以通过第一TB指示域中的调制编码方案(modulation and coding scheme,MCS)域指示第一数据的MCS。又如,网络设备可以通过第一TB指示域中的RV域指示第一数据的RV。又如,网络设备可以通过第一TB指示域中的NDI域指示第一数据为新传或重传。
可选地,在DCI中仅包括一个TB指示域的情况下,终端设备确定第一数据和第二数据不能够软比特信息合并解码。
基于上述技术方案,可以复用闲置的指示项,即DCI中处于去使能(disable)状态的TB指示域,不仅可以动态地指示传输方案,无需增加额外的信令开销,而且可以提高资源的有效利用率。
结合第一方面,在第一方面的某些实现方式中,所述指示信息承载于所述第二TB指示域中,包括:所述指示信息承载于以下任意一项或多项中:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
基于上述技术方案,可以复用闲置的指示项,例如处于disable状态的TB指示域中的新数据指示(new data indicator,NDI)域、处于disable状态的TB指示域中的MCS域、以及处于disable状态的TB指示域中的RV域中的一项或多项,不仅可以动态地指示传输方案,无需增加额外的信令开销,而且可以提高资源的有效利用率。
结合第一方面,在第一方面的某些实现方式中,在所述第二TB指示域中的MCS配置为26、RV配置为1的情况下,所述指示信息承载于NDI域中。
可选地,终端设备可以基于MCS和RV取值为(26,1)的组合,来确定第二TB指示域处于去使能状态。
结合第一方面,在第一方面的某些实现方式中,调度所述第一数据和所述第二数据的DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;所述指示信息包括第一信息,所述第一信息用于通知所述终端设备:所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,和/或,所述第二TB指示域中的RV域用于指示所述第二数据的RV。
可选地,终端设备可以通过RRC信令或新增的高层信令,确定第二TB指示域处于去使能状态。
或者,可选地,终端设备也可以根据当前传输为FDM传输,确定第二TB指示域处于去使能状态。也就是说,可以默认在FDM传输下,只要有2个TB指示域,其中一个TB指示域固定处于去使能状态。
可选地,基于第一信息,终端设备通过读取第二TB指示域中的MCS域可以确定第二数据的MCS,和/或,终端设备通过读取第二TB指示域中的RV域可以确定第二数据的RV。
可选地,基于第一信息,终端设备可以确定传输方案,或者说,终端设备可以确定第一数据和第二数据能够软比特信息合并解码。相应地,终端设备未接收到第一信息,那么终端设备可以确定第一数据和第二数据不能够软比特信息合并解码。
可选地,第二TB指示域中的MCS域指向一个保留(reserved)的值,以及第二TB指示域中的RV域指向一个reserved的值的情况下,终端设备确定第一数据和第二数据不能够软比特信息合并解码。
可选地,第二TB指示域中的RV域指向一个reserved的值的情况下,或者,第二TB指示域中的MCS域指向一个保留(reserved)的值的情况下,终端设备可以确定第一数据和第二数据不能够软比特信息合并解码;或者,终端设备可以确定第一数据和第二数据能够软比特信息合并解码。
可选地,在DCI中仅包括一个TB指示域的情况下,终端设备确定第一数据和第二数据不能够软比特信息合并解码。
结合第一方面,在第一方面的某些实现方式中,所述指示信息还包括第二信息,所述第二信息用于指示所述第二TB指示域中的NDI域取值;在所述第二TB指示域中的NDI域取值为第一数值的情况,所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,所述第二TB指示域中的RV域用于指示所述第二数据的RV;在所述第二TB指示域中的NDI域取值为第二数值的情况,所述第二TB指示域中的MCS域和RV域为预留;其中,所述第一数值和所述第二数值不相等。
可选地,终端设备根据第一信息以及第二TB指示域的指示功能是否开启,确定传输方案,或者说,确定第一数据和第二数据是否能够软比特信息合并解码。
可选地,基于第一信息和第二信息,终端设备通过读取第二TB指示域中的MCS域可以确定第二数据的MCS,和/或,终端设备通过读取第二TB指示域中的RV域可以确定第二数据的RV。并且,终端设备可以确定第一数据和第二数据能够软比特信息合并解码。
可选地,第一数值为0,第二数值为1;或者,第一数值为1,第二数值为0。
结合第一方面,在第一方面的某些实现方式中,所述指示信息承载于调度所述第一数据和所述第二数据的DCI中,在所述调度所述第一数据和所述第二数据的DCI中包含2个TB指示域,且所述2个TB指示域中的一个TB指示域处于去使能状态的情况下,确定所述第一数据和所述第二数据能够软比特信息合并解码;在所述调度所述第一数据和所述第二数据的DCI中包含1个TB指示域的情况下,确定所述第一数据和所述第二数据不能软比特信息合并解码。
结合第一方面,在第一方面的某些实现方式中,所述指示信息承载于调度所述第一数据和所述第二数据的DCI中的天线端口指示域,其中,所述天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一个DMRS端口配置,所述至少两种DMRS端口配置中DMRS端口数量相同。
可选地,解调参考信号(demodulation reference signal,DMRS)端口配置与传输方案具有对应关系,终端设备根据接收到的DMRS端口配置,结合该对应关系,确定传输方案或者确定第一数据和第二数据是否能够软比特信息合并解码。
基于上述技术方案,可以通过复用DMRS的冗余行,无需增加额外的信令开销,不仅可以实现传输方案的动态指示,而且协议修改量极小。
结合第一方面,在第一方面的某些实现方式中,所述至少两种DMRS端口配置满足以下任一条件:码分复用CDM组的个数相同,且端口号不同;CDM组的个数相同,端 口号不同,且不同的端口号来自不同的CDM组;CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或,CDM组的个数不同,且端口号相同。
结合第一方面,在第一方面的某些实现方式中,终端设备支持软比特信息合并的能力,或,所述终端设备支持第一传输方案和第二传输方案。
可选地,第一传输方案表示:两个网络设备分别传输同一份数据信息的一部分,其中,同一份数据信息即表示同一个TB。也就是说,两个网络设备分别传输一个TB的部分数据信息,即第一数据和第二数据,该第一数据和第二数据对应一个码字,且对应的码字中携带的冗余版本相同。
可选地,第二传输方案表示:两个网络设备传输相同的数据信息,其中,相同的数据信息即表示相同的TB。也就是说,两个网络设备分别传输相同的TB,即第一数据和第二数据,第一数据对应的码字中携带的冗余版本,和第二数据对应的码字中携带的冗余版本可能不同。
可选地,本申请实施例的方案可以应用于终端设备既支持第一传输方案又支持第二传输方案的场景。或者说,本申请实施例的方案可以应用于终端设备支持软比特信息合并的能力的场景。或者说,在终端设备既支持第一传输方案又支持第二传输方案的情况下,网络设备向终端设备发送指示信息,终端设备根据该指示信息确定第一数据和第二数据是否能够软比特信息合并解码。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:通过终端设备UE能力上报:所述终端设备支持所述软比特信息合并的能力,或,所述终端设备支持所述第一传输方案和所述第二传输方案。
终端设备可以通过UE能力上报:是否支持方案A(scheme A)和方案B(scheme B),或者,是否支持软比特信息合并。
第二方面,提供了一种处理数据的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路或芯片***执行,本申请对此不作限定。
该方法可以包括:生成指示信息,所述指示信息用于终端设备确定第一数据和第二数据是否能够软比特信息合并解码,所述第一数据是在第一时频资源上传输的数据,所述第二数据是在第二时频资源上传输的数据,其中,所述第一时频资源和所述第二时频资源的频域资源不重叠,或,所述第一时频资源和所述第二时频资源的时域资源不重叠;发送所述指示信息。
可选地,指示信息指示的内容可以是传输方案;或者,指示信息可以指示终端设备是否能够对不同频域资源上的数据流进行软比特信息合并解码;或者,指示信息可以指示终端设备不同的频域资源上的数据流关联的是同一个RV,还是独立的RV。
可选地,在某些情况下,如区分多个TRP发送的数据时,数据可以替换为TB或CW。例如,第一数据可以替换为第一TB,或者,第一数据可以替换为第一CW。又如,第二数据可以替换为第二TB,或者,第二数据可以替换为第二CW。
基于上述技术方案,终端设备可以先根据网络设备下发的指示信息,确定第一数据和第二数据是否能够软比特信息合并解码,再处理不同频域资源或不同时域资源上接收到的数据。相反,如果网络设备不进行指示,终端设备可能直接分别处理在不同频域资源或不同时域资源上接收到的数据,不仅会降低处理数据的效率,也会影响数据传输的鲁棒性。 因此,通过本申请,不仅可以提升终端设备处理数据的效率,也可以提升数据的传输性能进而提高传输效率。
结合第二方面,在第二方面的某些实现方式中,所述第一时频资源和所述第二时频资源关联不同的准共址QCL信息。
第一时频资源和第二时频资源关联不同的准共址QCL信息,可以理解为第一传输单元和第二传输单元关联不同的QCL,可以表示,第一传输单元和第二传输单元关联的QCL不同;或者可以表示,在第一传输单元接收到的第一数据和第二传输单元接收到的第二数据关联的QCL和在第二传输单元接收到的第二数据关联的QCL不同。
可选地,QCL信息可以包括:QCL type、参考信号资源类型、参考信号资源索引等信息。关于不同的QCL信息和相同的QCL信息见下文实施例描述。
基于上述方案,在多站传输场景下,终端设备可以根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码。
结合第二方面,在第二方面的某些实现方式中,所述指示信息承载于以下任意1种或多种以上信令中:无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、下行控制信息DCI。
也就是说,网络设备可以通过RRC信令、MAC-CE信令、DCI中的任意一种信令指示,也可以通过RRC信令、MAC-CE信令、DCI中的任意两种或三种联合指示。
结合第二方面,在第二方面的某些实现方式中,所述发送所述指示信息,包括:发送调度所述第一数据和所述第二数据的下行控制信息DCI,所述DCI中包括第一传输块TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;所述第二TB指示域中携带所述指示信息。
基于上述技术方案,可以复用闲置的指示项,即DCI中处于去使能(disable)状态的TB指示域,不仅可以动态地指示传输方案,无需增加额外的信令开销,而且可以提高资源的有效利用率。
结合第二方面,在第二方面的某些实现方式中,所述第二TB指示域中携带所述指示信息,包括:所述第二TB指示域中的以下任意一项中携带所述指示信息:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
基于上述技术方案,可以复用闲置的指示项,例如处于disable状态的TB指示域中的NDI域、处于disable状态的TB指示域中的MCS域、以及处于disable状态的TB指示域中的RV域中的一项或多项,不仅可以动态地指示传输方案,无需增加额外的信令开销,而且可以提高资源的有效利用率。
结合第二方面,在第二方面的某些实现方式中,在所述第二TB指示域中的MCS配置为26、RV配置为1的情况下,所述第二TB指示域中的NDI域中携带指示信息。
可选地,终端设备可以基于MCS和RV取值为(26,1)的组合,来确定第二TB指示域处于去使能状态。
结合第二方面,在第二方面的某些实现方式中,发送调度所述第一数据和所述第二数据的DCI,所述DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;所述指示信息包括第一信息,所述第一信息用于通知所述终端设备:所述第二TB指示域中的MCS域用于指示所述第二数据的 MCS,和/或,所述第二TB指示域中的RV域用于指示所述第二数据的RV。
可选地,网络设备可以通过RRC信令或新增的高层信令,向终端设备指示第二TB指示域处于去使能状态。
结合第二方面,在第二方面的某些实现方式中,所述指示信息还包括第二信息,所述第二信息用于指示所述第二TB指示域中的NDI域取值;在所述第二TB指示域中的NDI域取值为第一数值的情况,所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,所述第二TB指示域中的RV域用于指示所述第二数据的RV;在所述第二TB指示域中的NDI域取值为第二数值的情况,所述第二TB指示域中的MCS域和RV域为预留;其中,所述第一数值和所述第二数值不相等。
可选地,第一数值为0,第二数值为1;或者,第一数值为1,第二数值为0。
结合第二方面,在第二方面的某些实现方式中,所述发送所述指示信息,包括:
发送调度所述第一数据和所述第二数据的下行控制信息DCI中的天线端口指示域,所述天线端口指示域中携带所述指示信息;其中,所述天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,所述至少两种DMRS端口配置中DMRS端口数量相同。
可选地,DMRS端口配置与传输方案具有对应关系,终端设备根据接收到的DMRS端口配置,结合该对应关系,确定传输方案或者确定第一数据和第二数据是否能够软比特信息合并解码。
基于上述技术方案,可以通过复用解调参考信号(demodulation reference signal,DMRS)的冗余行,无需增加额外的信令开销,不仅可以实现传输方案的动态指示,而且协议修改量极小。
结合第二方面,在第二方面的某些实现方式中,所述至少两种DMRS端口配置满足以下任一条件:码分复用CDM组的个数相同,且端口号不同;CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或,CDM组的个数不同,且端口号相同。
结合第二方面,在第二方面的某些实现方式中,所述终端设备支持软比特信息合并的能力,或,所述终端设备支持第一传输方案和第二传输方案。
可选地,第一传输方案表示:两个网络设备分别传输同一份数据信息的一部分,其中,同一份数据信息即表示同一个TB。也就是说,两个网络设备分别传输一个TB的部分数据信息,即第一数据和第二数据,该第一数据和第二数据对应一个码字,且对应的码字中携带的冗余版本相同。
可选地,第二传输方案表示:两个网络设备传输相同的数据信息,其中,相同的数据信息即表示相同的TB。也就是说,两个网络设备分别传输相同的TB,即第一数据和第二数据,第一数据对应的码字中携带的冗余版本,和第二数据对应的码字中携带的冗余版本可能不同。
可选地,本申请实施例的方案可以应用于终端设备既支持第一传输方案又支持第二传输方案的场景。或者说,本申请实施例的方案可以应用于终端设备支持软比特信息合并的能力的场景。或者说,在终端设备既支持第一传输方案又支持第二传输方案的情况下,网络设备向终端设备发送指示信息,终端设备根据该指示信息确定第一数据和第二数据是否 能够软比特信息合并解码。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收所述终端设备上报的终端设备UE能力,所述UE能力指示:所述终端设备支持所述软比特信息合并的能力,或,所述终端设备支持所述第一传输方案和所述第二传输方案。
终端设备可以通过UE能力上报:是否支持方案A(scheme A)和方案B(scheme B),或者,是否支持软比特信息合并。
第三方面,提供了一种处理数据的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路或芯片***执行,本申请对此不作限定。
该方法可以包括:在第一时频资源上接收第一数据和在第二时频资源上接收第二数据;接收下行控制信息DCI,该DCI中包括第一传输块TB指示域和第二TB指示域,第一TB指示域处于使能状态,第二TB指示域处于去使能状态;通过读取第二TB指示域中的调制与编码策略指示MCS域可以确定第二数据的MCS,和/或,通过读取第二TB指示域中的冗余版本RV域可以确定第二数据的RV。
基于上述技术方案,复用了处于去使能状态的第二TB指示域,从而可以兼容2个或2个以上的MCS以及2个或2个以上的RV的动态指示,有很强的后向扩展性。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:通过读取第一TB指示域中的MCS域可以确定第一数据的MCS,和/或,通过读取第一TB指示域中的RV域可以确定第一数据的RV。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:在第二TB指示域开启的情况下,通过读取第二TB指示域中的调制与编码策略指示MCS域可以确定第二数据的MCS,和/或,通过读取第二TB指示域中的冗余版本RV域可以确定第二数据的RV。
基于上述技术方案,复用了处于去使能状态的第二TB指示域,例如,可以通过信令或NDI域等开启或关闭第二TB指示域中的指示功能,从而可以兼容2个或2个以上的MCS以及2个或2个以上的RV的动态指示,有很强的后向扩展性。
结合第三方面,在第三方面的某些实现方式中,根据第二TB指示域中的新传数据指示NDI域,确定第二TB指示域是否开启。
第四方面,提供一种通信装置,所述通信装置用于执行上述第一方面或第三方面提供的通信方法。具体地,所述通信装置可以包括用于执行第一方面或第三方面提供的通信方法的模块。
第五方面,提供一种通信装置,所述通信装置用于执行上述第二方面提供的通信方法。具体地,所述通信装置可以包括用于执行第二方面提供的通信方法的模块。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面以第一方面或第三方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片***。当该通信装置为芯片或芯片***时,所述通信接口可以是输入/输出接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片***。当该通信装置为芯片或芯片***时,所述通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面或第三方面,以及第一方面或第三方面的任一可能的实现方式中的通信方法。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面,以及第二方面的任一可能的实现方式中的通信方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面或第三方面提供的通信方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面提供的通信方法。
第十二方面,提供了一种通信***,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信***的一示意图;
图2是适用于本申请实施例的多点传输的一示意图;
图3是根据本申请一实施例的处理数据的方法的示意图;
图4和图5是适用于本申请实施例的传输方案的示意图;
图6是根据本申请又一实施例的处理数据的方法的示意图;
图7是本申请实施例提供的通信装置的一示意性框图;
图8是本申请实施例提供的通信装置的又一示意性框图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:第五代(5th generation,5G)***或新无线(new radio,NR)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)等。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网***中的通信。其中,车联网***中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信***。
图1是适用于本申请实施例的无线通信***100的一示意图。如1图所示,该无线通信***100可以包括至少一个网络设备,例如图1所示的网络设备111、网络设备112、以及网络设备113,该无线通信***100还可以包括至少一个终端设备,例如图1所示的终端设备121和终端设备122。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
网络设备111、网络设备112、以及网络设备113,可以是同一小区中的发送接收点(transmission and reception point,TRP),也可以是不同小区中的网络设备,本申请对此不作限定。应理解,本申请各实施例还可以应用在一个网络设备的多天线面板相当于多TRP的场景下。
在通信***100中,网络设备111、网络设备112、以及网络设备113,彼此之间可通过回程(backhaul)链路通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。网络设备111和网络设备112可以进行相互协同,来为终端设备121提供服务,因此,终端设备121可通过无线链路分别与网络设备111和网络设备112通信。网络设备111和网络设备113可以进行相互协同,来为终端设备122提供服务,因此,终端设备122可通过无线链路分别与网络设备111和网络设备113通信。
按照收发点之间的通信时延分类,可以将回程分为理想回程(ideal backhaul)和非理想回程(non-ideal backhaul)。理想回程下的两传输节点之间,通信时延可以是微秒级别,与NR中毫秒级别的调度相比,可以忽略不计;非理想回程下的两传输节点之间,通信时延可以是毫秒级别,与NR中毫秒级别的调度相比,无法忽略。
在通信***100中,网络设备111和网络设备112之间可以理想回程,即可以认为网络设备111和网络设备112之间基本没有传输时延。网络设备111和网络设备113之间可以为非理想回程,意味着网络设备111和网络设备113之间存在一定的传输时延。
示例性地,在通信***100中,终端设备121处于网络设备111和网络设备112的协作传输状态下。换句话说,网络设备111和网络设备112均可以向终端设备121发送下行控制信息和数据,同样,终端设备121也可以向网络设备111或网络设备112发送上行数据。由于网络设备111和网络设备112之间没有交互时延,因此网络设备111和网络设备112与终端设备121的协作传输可以通过同一个控制信息调度。例如,由其中一个网络设备(如网络设备111或网络设备112)发送下行控制信息(downlink control information,DCI)。
此外,网络设备111和网络设备112中的一个或多个还可以分别采用载波聚合技术,在一个或多个CC上为终端设备121调度物理下行共享信道(physical downlink share channel,PDSCH)。例如,网络设备111可以在CC#1和CC#2上为终端设备121调度PDSCH,网络设备112可以在CC#1和CC#3上为终端设备121调度PDSCH。网络设备111和网络设备112所调度的CC可以是相同的,也可以是不同的,本申请对此不作限定。
示例性地,在通信***100中,终端设备122处于网络设备111和网络设备113的协作传输状态下。换句话说,网络设备111和网络设备113均可以向终端设备122发送下行控制信息和数据,同样,终端设备122也可以向网络设备111或网络设备113发送上行数据。由于网络设备111和网络设备113之间存在交互时延,因此网络设备111和网络设备113与终端设备122的协作传输一般由各自网络设备分别独立调度。例如网络设备111和网络设备113各自发送DCI。
此外,网络设备111和网络设备113中的一个或多个还可以分别采用载波聚合技术,在一个或多个CC上为终端设备122调度PDSCH。例如,网络设备111可以在CC#4和CC#5上为终端设备122调度PDSCH,网络设备113可以在CC#4和CC#6上为终端设备122调度PDSCH。网络设备111和网络设备113所调度的CC可以是相同的,也可以是不同的,本申请对此不作限定。
应理解,上述应用于本申请实施例的通信***仅是举例说明,适用本申请实施例的通信***并不局限于此。
还应理解,上述通信***中还可以包括更多或更少数量的网络设备,或者,上述通信***中还可以包括更多或更少数据的终端设备。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络或未来网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
示例性地,终端设备中可以包括:无线资源控制(radio resource control,RRC)信令交互模块、媒体接入控制(media access control,MAC)信令交互模块、以及物理(physical,PHY)信令交互模块。其中,RRC信令交互模块可以为:网络设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块可以为:网络设备和终端设备用于发送及接 收媒体接入控制控制元素(media access control control element,MAC-CE)信令的模块。PHY信令及数据可以为:网络设备和终端设备用于发送及接收上行控制信令或下行控制信令、上下行数据或下行数据的模块。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
示例性地,网络设备中也可以包括:RRC信令交互模块、MAC信令交互模块、以及PHY信令交互模块。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。网络设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU负责处理非实时协议和服务,实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和PHY层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发射波束(transmission beam,Tx beam),可以称为空间发送滤波器(spatial domain transmit filter)或空间发射参数(spatial domain transmit parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receive parameter)。
发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形 技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。一个波束对应的一个或多个天线端口也可以看作是一个天线端口集。
2、波束配对关系
波束配对关系,即,发射波束与接收波束之间的配对关系,也就是空间发射滤波器与空间接收滤波器之间的配对关系。在具有波束配对关系的发射波束和接收波束之间传输信号可以获得较大的波束赋形增益。
在一种实现方式中,发送端和接收端可以通过波束训练来获得波束配对关系。具体地,发送端可通过波束扫描的方式发送参考信号,接收端也可通过波束扫描的方式接收参考信号。具体地,发送端可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束将参考信号发射出去,使得参考信号在发射波束所指向的方向上发射参考信号的功率可以达到最大。接收端也可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束接收参考信号,使得该接收端接收参考信号的功率在接收波束所指向的方向上可以达到最大。
通过遍历各发射波束和接收波束,接收端可基于接收到的参考信号进行信道测量,并将测量得到的结果通过信道状态信息(channel state information,CSI)上报发送端。例如,接收端可以将参考信号接收功率(reference signal receiving power,RSRP)较大的部分参考信号资源上报给发送端,如上报参考信号资源的标识,以便发送端在传输数据或信令时采用信道质量较好的波束配对关系来收发信号。
3、天线端口(antenna port)
天线端口简称端口。可以理解为被接收端所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合。根据所承载的信号的不同,天线端口可以分为参考信号端口和数据端口。其中,参考信号端口例如包括但不限于,解调参考信号(demodulation reference signal,DMRS)端口、零功率信道状态信息参考信号触发(channel state information reference signal,CSI-RS)端口等。
在本申请实施例中,该天线端口可以是指DMRS端口(DMRS port)。不同DMRS端口的DMRS占用的时频资源可能不同,或者,正交覆盖码不同。当网络设备向终端设备指示端口时,终端设备可以基于网络设备所指示的端口接收DMRS,并基于接收到的DMRS解调PDCCH或PDSCH。
此外,与该天线端口相关的参数可以是DMRS端口、DMRS端口组(DMRS port group)或DMRS码分复用(code division multiplexing,CDM)组(DMRS CDM group)。终端设备可以基于DCI中指示的天线端口确定DMRS端口,进而确定所属的DMRS端口组或DMRS码分复用组。
需要说明的是,DMRS端口组和DMRS码分复用组可以理解为基于不同的方式对DMRS端口进行分组而得到。天线端口、DMRS端口、DMRS端口组和DMRS码分复用 组可以通过索引来区分,也可以通过标识来区分,或者还可通过其他可用于区分不同端口或不同组的信息来区分,本申请对此不作限定。
下文实施例中,端口和DMRS端口有时交替使用,应理解,在本申请实施例中,端口表示DMRS端口。
4、准共址(quasi-co-location,QCL)
准共址或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或探测参考信号(sounding reference signal,SRS)资源标识,或同步信号块(synchronization signal block,SSB)资源标识,或物理随机接入信道(Physical Random Access Channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
本申请实施例所涉及的QCL为类型D的QCL。下文中在没有特别说明的情况下,QCL可以理解为类型D的QCL,即,基于空间接收参数定义的QCL。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
5、传输配置指示(transmission configuration indicator,TCI)状态
TCI状态可用于指示两种参考信号之间的QCL关系。每个TCI状态中可以包括服务小区的索引(ServeCellIndex)、带宽部分(band width part,BWP)标识(identifier,ID)和参考信号资源标识,其中,参考信号资源标识例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功率CSI-RS参考信号资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。
在此后的通信过程中,终端设备可以基于网络设备所指示的TCI状态确定接收波束,网络设备可以基于同一TCI状态确定发射波束。
此外,TCI状态可以是全局配置的。在为不同的小区、不同的BWP配置的TCI状态中,若TCI状态的索引相同,则所对应的TCI状态的配置也相同。
6、时频资源
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单元(或者,也可以称为时间单位),在频域上,时频资源可以包括一个或多个频域单元。
其中,一个时域单元(也可称为时间单元)可以是一个符号或者几个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或4个符号或者7个符号,或者小于等于14个符号的任意数目符号)。列举的上述时域单元大小仅仅是为了方便理解本申请的方案,不应理解对本申请的限定,可以理解的是,上述时域单元大小可以为其它值,本申请不做限定。
一个频域单元可以是一个或多个资源单元(resource element,RE),或者资源块(resource block,RB),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband),或者预编码资源组(precoding resource group,PRG)等。
7、多点传输技术
通过多点传输技术可以降低小区之间的干扰,提高用户速率。多点传输技术可以包括:联合传输(Joint transmission,JT)、动态点/小区选择(Dynamic cell/Point selection,DCS/DPS)、协调波束/调度(Coordinated beam forming/scheduling,CB/CS)、以及基于 多DCI的多点传输(Multi-DCI based multi-TRP transmission)等。
其中,基于多DCI的多点传输,表示多个网络设备,如多个TRP,分别向同一个终端设备发送各自的PDCCH,每个PDCCH调度对应的PDSCH。
其中,基于CB/CS技术,通过给有用信号增加波束赋形的方式,可以避免在强干扰方向给边缘终端设备发送信号,从而达到协调邻区的干扰的目的。
其中,基于JT技术,多个小区联合给终端设备发送数据,终端设备收到多份有用数据,因此可以提升边缘终端设备的传输速率。
其中,基于DCS/DPS技术,网络动态选择更好的传输点为终端设备服务,这样使得终端设备能够被信号更强的小区服务,此时强度较弱的小区信号则成为干扰,利用这种多个TRP的信道的差异,可以提高终端设备的信号信干噪比。
8、基于多点传输技术的鲁棒性传输方案
多点传输技术下,来自多个传输点的信道之间存在信道多样性,采用重复发送的方式可以提升通信链路的可靠性,因此多点传输技术可用于增强一些业务的可靠性,如超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)等业务。URLLC的业务类型包括:工业自动化控制、远程驾驶、远程医疗等,可靠性的要求往往在99.999%以上,端到端时延要求在数个毫秒以内。
图2示出了适用于本申请的多点传输的一示意图。如图2所示,一个终端设备可以与两个网络设备,如TRP,处于多点传输协作模式,两个网络设备可以分别位于终端设备的不同方向。
两个网络设备发送的数据可以在不同频域资源上进行传输。其中,两个网络设备可以分别发送同一份数据的不同部分,这样可以享受较低码率带来的编码增益。或者,两个网络设备也可以发送相同的数据,这样可以在接收侧,即终端设备,做软合并带来额外的编码增益。
考虑到网络设备可能会采用如上不同的方式向终端设备传输数据,终端设备处理数据的方式也需要改变。
有鉴于此,本申请实施例提出一种方法,可以提高终端设备处理数据的效率,提高数据通信性能。
下面将结合附图详细说明本申请提供的各个实施例。
图3是本申请实施例提供的一种处理数据的方法300的示意***互图。方法300可以包括如下步骤。
310,终端设备在第一时频资源上接收第一数据和在第二时频资源上接收第二数据。
示例性地,第一时频资源和第二时频资源的频域资源不重叠,可以理解为,第一时频资源和第二时频资源在频域上不重叠。例如,第一数据和第二数据可以通过频分复用(frequency division multiplexing,FDM)的方式发送给终端设备。
示例性地,第一时频资源和第二时频资源的时域资源不重叠,可以理解为,第一时频资源和第二时频资源在时域上不重叠。例如,第一数据和第二数据可以通过时分复用(time division multiplexing,TDM)的方式发送给终端设备。
可选地,第一时频资源和第二时频资源关联不同的QCL信息。
假设第一时频资源包括第一传输单元,第二时频资源包括第二传输单元,第一传输单 元和第二传输单元关联不同的QCL信息。
传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元,例如,本申请实施例中提及的传输单元可以替换为时域单元,也可以替换为频域单元,也可以替换成时频单元。关于时域单元和频域单元可参考上文的描述。
第一传输单元和第二传输单元关联不同的QCL信息,可以理解为,第一传输单元和第二传输单元关联两个不同的TCI-state(即TCI-state索引不同)。不同的TCI-state中,可能包含相同的QCL信息,因此第一传输单元和第二传输单元关联不同的QCL信息,还可以理解为第一传输单元和第二传输单元关联两个不同的QCL信息。反之,相同的TCI-state(即TCI-state索引相同)一般都对应相同的QCL信息。
可选地,QCL信息可以包括:QCL type、参考信号资源类型、参考信号资源索引等信息。不同的QCL信息可以包括以下至少一项:不同的QCL type、不同的参考信号资源类型、不同的参考信号资源索引。
示例性地,QCL不同,可以表示终端设备收到的数据关联的TCI-state的索引不同;或者,QCL不同,可以表示终端设备收到的数据关联的TCI-state中QCL type不同;或者,QCL不同,可以表示终端设备收到的数据关联的TCI-state中QCL type相同,但相同type的QCL信息(QCL information,QCL-info)对应的参考信号资源类型不同(如CSI-RS和SSB)或参考信号资源索引不同;或者,QCL不同,可以表示终端设备收到的数据关联的TCI-state中至少一个QCL type的QCL-info对应的参考信号资源类型不同(如CSI-RS和SSB)或参考信号资源索引不同等。
示例性地,QCL相同,可以表示终端设备收到的数据关联的TCI-state的索引相同;或者,QCL相同,可以表示终端设备收到的数据关联的TCI-state中QCL type相同;或者,QCL相同,可以表示终端设备收到的数据关联的TCI-state中QCL type相同,且该type的QCL-info对应的参考信号资源相同(如参考信号资源索引相同,且参考信号资源类型相同)等;或者,QCL相同,可以表示终端设备收到的数据关联的TCI-state中包括的所有QCL-info对应的参考信号资源相同(如参考信号资源索引相同)等。
为便于描述,本申请实施例主要以FDM为例进行说明。
在FDM的传输方式下,包括两种传输方案,为区分,分别记为方案A(scheme A)和方案B(scheme B)。以两个网络设备,如两个TRP,向终端设备发送第一数据和第二数据为例。
方案A
两个网络设备分别传输同一份数据信息的一部分,简称为第一数据和第二数据。其中,一份数据信息可以认为是一个码字,一个码字可以认为由一个传输块(transport block,TB)生成。也就说,第一数据和第二数据各自携带了一个TB的部分信息。可以理解,该第一数据和第二数据组成一个码字,且对应一个冗余版本(redundancy version,RV)。
方案B
两个网络设备传输相同的数据信息,仍简称为第一数据和第二数据。其中,相同的数据信息表示它们携带的TB信息是相同的。这意味着第一数据和第二数据对应的码字可以由同一个TB生成,也可以分别由相同的两个TB生成,它们各自都携带了这个TB的全部信息。可以理解,第一数据和第二数据各自对应一个码字,且各自对应一个冗余版本, 这里冗余版本可以相同,也可以不同。
在上述描述中,涉及TB、码字和数据,在下文做统一解释。网络设备首先会从高层收到一个TB,然后这个TB会经历一系列物理层流程,包括循环冗余校验(cyclic redundancy check,CRC)添加,码块(code bloc,CB)切割,基于CB的CRC添加,然后以CB为编码单位送进编码模块,并且进行速率匹配过程,在速率匹配过程中可以添加冗余版本(RV),从编码模块出来之后的CB可以再拼接成一串比特流,该比特流便是传统意义上的码字。码字经过调制便成了调制符号,将调制符号映射到物理信道的时频资源上,简称为数据。因此,一般意义上,TB和码字有一一对应关系,且一个码字只能添加一个冗余版本。在本申请实施例中,当区分两个TRP发送的数据时,用第一、第二数据来描述,在这种语境下,数据也可以替换为TB或者码字。
下文详细介绍上述方案A和方案B。
应理解,第一数据、第二数据仅是示例性说明,本申请实施例并未限定于此。例如,也可以是2个以上的网络设备,如2个以上的TRP向终端设备发送数据,相应的,终端设备还可以接收更多的数据。可以理解,本申请实施例可以适用于终端设备接收2个数据的场景,也可以适用于终端设备接收2个以上的数据的场景。
例如,终端设备还可以在第三时频资源上接收第三数据,其中,第一时频资源、第二时频资源、以及第三时频资源的频域资源不重叠,或者,第一时频资源、第二时频资源、以及第三时频资源的时域资源不重叠。
应理解,当终端设备在2个以上的时频资源上接收数据时,该2个以上时频资源关联的QCL可以都不同,也可以部分不同,对此不作限定。
例如,终端设备4个时频资源上接收数据,如分别记为第一时频资源、第二时频资源、第三时频资源、第四时频资源。关于该4个时频资源关联的QCL是否相同,至少包括以下两种情况。
一情况,4个时频资源关联的QCL都不同。即,第一时频资源、第二时频资源、第三时频资源、第四时频资源关联的QCL均不同;
又一情况,4个时频资源关联的QCL部分不同。例如,4个时频资源关联的QCL有2个不同,如,第一时频资源和第三时频资源关联的QCL相同,第二时频资源和第四时频资源关联的QCL相同,第一时频资源和第二时频资源关联的QCL不同。
应理解,第一时频资源、第二时频资源、第三时频资源、第四时频资源均只是举例,其命名并不对本申请实施例的保护范围造成限定。
还应理解,终端设备还可以在更多的时频资源上接收数据,对此不作限定。
下文为便于描述,以终端设备接收第一数据和第二数据为例进行说明。
320,终端设备接收指示信息。
可选地,指示信息指示的内容可以是传输方案,即指示信息可以指示传输方案为方案A还是方案B,或者指示信息指示的内容可以为以下任意一项:
(1)该指示信息可以指示终端设备是否能够对不同频域资源上的数据流进行软比特信息合并解码。
例如,网络设备向终端设备发送指示信息,该指示信息指示:能够对不同频域资源上的数据流进行软比特信息合并解码,那么终端设备能够对不同频域资源上的数据流进行软 比特信息合并解码。又如,网络设备向终端设备发送指示信息,该指示信息指示:不能对不同频域资源上的数据流进行软比特信息合并解码,那么终端设备不对不同频域资源上的数据流进行软比特信息合并解码。应理解,这里所述的能够指的是不同频域资源上的数据具备进行软比特信息的条件,终端设备仍然可以根据自身的能力或当前传输的需要决定是否做软比特信息合并。
软比特信息合并,简称为软合并(soft combining)。软合并通过将两个或多个数据包合并译码,以提高译码正确率。本申请实施例中的软比特信息合并,即为软合并,对该技术方法本身不在本申请中赘述,可参考现有技术。
指示信息指示终端设备是否能够对不同频域资源上的数据流进行软比特信息合并解码,可以等同于指示信息指示终端设备传输方案为方案A或方案B。
由上文关于方案A的描述可知,方案A中第一数据和第二数据各自携带了一个TB的部分信息,因此终端设备接收的时候不可以对该第一数据和第二数据做软比特信息合并。因此,指示信息指示指示终端设备不能对不同频域资源上的数据流进行软比特信息合并解码,可以等同于在指示传输方案A。
由上文关于方案B的描述可知,方案B中第一数据和第二数据分别携带了相同的TB的完整信息,因此终端接收的时候可以对该第一数据和第二数据做软比特信息合并。因此,指示信息指示终端设备能够对不同频域资源上的数据流进行软比特信息合并解码,可以等同于在指示传输方案B。
(2)该指示信息可以指示终端设备不同的频域资源上的数据流关联的是同一个RV,还是独立的RV。
例如,网络设备向终端设备发送指示信息,该指示信息指示:不同的频域资源上的数据流关联的是同一个RV,那么终端设备能够对不同频域资源上的数据流进行软比特信息合并解码。又如,网络设备向终端设备发送指示信息,该指示信息指示:不同的频域资源上的数据流关联的是独立的RV,那么终端设备不对不同频域资源上的数据流进行软比特信息合并解码。
应理解,这里所述独立的RV,或者称为多个RV,可以是相同的RV版本号,也可以是不同的RV版本号。以2个RV为例,例如该2个RV可以是2个相同的RV版本号,如都是RV0和RV0,或者该2个RV可以是2个不同的RV版本号,如分别为RV1和RV2。
指示信息指示终端设备不同的频域资源上的数据流关联的是同一个RV还是独立的RV,可以等同于指示信息指示终端设备传输方案为方案A或方案B。
由上文关于方案A的描述可知,方案A中第一数据和第二数据对应一个码字和一个RV,因此,指示信息指示终端设备不同的频域资源上的数据流关联的是同一个RV,可以等同于在指示传输方案A。
由上文关于方案B的描述可知,方案B中第一数据和第二数据各自对应一个码字和一个RV,因此指示信息指示终端设备不同的频域资源上的数据流关联的是独立的RV,可以等同于在指示传输方案B。
应理解,上述方式(1)和(2)作为方案A和方案B的替代性特征描述,并非限定,符合上文方案A和方案B相关物理层流程的传输方案均应落入本申请指示信息方案的保护范围。
下文主要以指示信息指示方案A或方案B为例,详细说明指示信息的多种方案。
330,终端设备根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码。
终端设备根据指示信息确定第一数据和第二数据能够软比特信息合并解码,表示终端设备可以对第一数据和第二数据做软比特信息合并解码。实际通信中,终端设备根据指示信息确定第一数据和第二数据能够软比特信息合并解码的情况下,终端设备可能对第一数据和第二数据做软比特信息合并解码,也可能不对第一数据和第二数据做软比特信息合并解码,对此本申请实施例不作限定。
终端设备根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码,也可以替换为,终端设备根据指示信息确定传输方案。
示例性地,当终端设备确定传输方案为方案A时,终端设备可以单独处理在不同频域资源上接收到的数据。换句话说,终端设备不能对在不同频域资源上接收到的数据执行软比特信息合并解码。
示例性地,当终端设备确定传输方案为方案B时,终端设备确定在不同的频域资源上接收到的数据是相同数据的重复传输,终端设备能够合并处理在不同频域资源上接收到的数据。换句话说,终端设备能够对在不同频域资源上接收到的数据执行软比特信息合并解码。
下文为简洁,用终端设备基于指示信息确定传输方案为例进行说明。应理解,下文中,终端设备基于指示信息确定传输方案,均可替换为,终端设备根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码。如终端设备确定传输方案为方案A,可以替换为,终端设备确定第一数据和第二数据不能执行软比特信息合并解码;又如,终端设备确定传输方案为方案B,可以替换为,终端设备确定第一数据和第二数据能够执行软比特信息合并解码。
下文结合指示信息的具体方案详细说明。
下面首先介绍一下方案A和方案B。
以两个网络设备,如两个TRP,向终端设备发送PDSCH1和PDSCH2为例,结合图4和图5说明这两种传输方案。
图4为方案A的一示意图。
在方案A中,两个网络设备分别传输同一份数据信息的一部分,简称为第一数据和第二数据,如图4所示的PDSCH1和PDSCH2。待传输的TB组成一个CW后,信息比特流会按照一定的规则,分别映射到不同的频域资源上。如图4所示,PDSCH1和PDSCH2为在不同频域资源上传输的该TB的不同数据信息。
如图4所示,在方案A中,两个网络设备分别传输一个TB的部分数据信息,即PDSCH1和PDSCH2,该PDSCH1和PDSCH2对应一个码字。因为一个码字对应一个冗余版本,因此相应地,该PDSCH1和PDSCH2对应一个冗余版本。
图5为方案B的一示意图。
在方案B中,两个网络设备传输相同的数据信息,仍简称为第一数据和第二数据,如图5所示的PDSCH1和PDSCH2。在方案B中,相同的TB在经过速率匹配环节后,输出的码字可能会分别携带不同的冗余版本,在数据映射环节,这两个码字则是分别映射到不同的频域资源上。
如图5所示,在方案B中,两个网络设备分别传输相同的TB,即PDSCH1和PDSCH2,PDSCH1对应的码字中携带的冗余版本记为RV1,PDSCH2对应的码字中携带的冗余版本记为RV2。
本申请实施例对网络设备使用方案A还是方案B传输数据,不作限定。
例如,在网络设备(如TRP)之间信道条件接近的情况下,网络设备可以使用相对简单的方案A保证数据传输的鲁棒性。
又如,在网络设备(如TRP)之间有较大的路径损耗差异时,网络设备可以使用方案B来进一步保证这种场景下的传输鲁棒性。
可选地,本申请实施例的方案可以应用于终端设备既支持方案A又支持方案B的场景。或者说,本申请实施例的方案可以应用于终端设备支持软比特信息合并的能力的场景。或者说,在终端设备既支持方案A又支持方案B的情况下,网络设备向终端设备发送指示信息,终端设备根据该指示信息确定第一数据和第二数据是否能够软比特信息合并解码。
示例性地,终端设备可以通过UE能力上报:是否支持方案A(scheme A)和方案B(scheme B),或者,是否支持软比特信息合并。
此处的UE能力可以有如下的两种设计:
(1)通过一个UE能力单元上报以下任意一项:scheme A(only)、scheme B(only)、both(scheme A and scheme B)。
例如,当终端设备只支持方案A时,上报的UE能力包括:scheme A(only)(仅支持方案A)。又如,当终端设备只支持方案B时,上报的UE能力包括:scheme B(only)(仅支持方案B)。又如,当终端设备支持方案A和方案B时,上报的UE能力包括:both(scheme A and scheme B)(方案A和方案B均支持)。
应理解,这项UE能力中还可以包含其他的传输方案的选项。
(2)通过不同的UE能力单元分别上报scheme A(如FDM scheme A)和scheme B(如FDM scheme B),换句话说或,scheme A和scheme B通过各自单独的UE能力上报。此时可能的形式包括:UE能力—scheme A,和UE能力—scheme B。
各自的UE能力中可以至少包含一项开关。开关,或者也可以称为状态指示,可以理解为指示终端设备是否支持相应的传输方案。每项开关可以包括两种状态:使能(enable)状态和disable状态。如果该项开关处于enable状态,表示终端设备支持该传输方案;如果该项开关处于disable状态,表示终端设备不支持该传输方案。以UE能力—scheme A为例,当UE能力—scheme A对应的开关处于enable状态,说明终端设备支持方案A;当UE能力—scheme A对应的开关处于disable状态,说明终端设备不支持方案A。
应理解,“开关”仅是一种命名,本申请并不排除未来有其他的命名方式来表达相同的含义。
例如,当终端设备只支持方案A时,上报的UE能力包括:UE能力—scheme A(支持方案A),且该UE能力—scheme A对应的开关处于enable状态。又如,当终端设备只支持方案B时,上报的UE能力包括:UE能力—scheme B(支持方案B),且该UE能力—scheme B对应的开关处于enable状态。又如,当终端设备支持方案A和方案B时,上报的UE能力包括:UE能力—scheme A(支持方案A)和UE能力—scheme B(支持方 案B),且UE能力—scheme A和UE能力—scheme B对应的开关均处于enable状态。
上述以终端设备通过UE能力上报是否支持方案A或方案B为例进行了说明,应理解,终端设备是否支持软比特信息合并,也可以通过上述设计实现,此处不再赘述。
下面详细介绍指示信息的几种可能的方案。
应理解,本申请实施例的方案可以适用于DCI包括1个TB指示域的场景,也可以适用于DCI包括多个TB指示域的场景。
下文为便于描述,当DCI中包括多个TB指示域时,以第一TB指示域和第二TB指示域为例进行示例性说明,第一TB指示域处于enable状态,第二TB指示域处于disable状态。第一TB指示域和第二TB指示域只是为区分做的命名,即第一TB指示域表示处于enable状态的TB指示域,第二TB指示域表示处于disable状态的TB指示域,并不对本申请实施例的保护范围造成限定。例如,当2个TB指示域中有一个指示域是处于disable状态,那么将该处于disable状态的指示域记为第二TB指示域。
方案1:指示信息可以承载于DCI的TB指示域中。
方案1可以适用于DCI中包括1个TB指示域的场景,也可以适用于DCI中包括多个TB指示域的场景。
场景1:DCI中包括1个TB指示域。
在该场景下,即DCI中包括1个TB指示域的情况下,可以默认当前的传输方案为方案A。
一种可能的实现方式,可以通过RRC信令,如maxNrofCodeWordsScheduledByDCI(DCI调度的最大码字),来指示当前传输DCI中TB指示域的数量。
例如,当该信令取值为1时,表示当前传输DCI最多可以支持1个码字。此时,DCI中只分配一个TB指示域。或者,也可以理解为,DCI中第一TB指示域会分配,DCI中第二TB指示域是不会分配的。即,终端设备只能检测到第一TB指示域,检测不到第二TB指示域。
场景2:DCI中包括多个TB指示域。
在该场景下,即DCI中包括多个TB指示域的情况下,传输方案可以通过处于disable状态的TB指示域中的以下一项或多项指示域指示:调制编码方案(modulation and coding scheme,MCS)域、新数据指示(new data indicator,NDI)域、RV域。
下面以第一TB指示域和第二TB指示域为例,详细介绍场景2的情况。可选地,终端设备接收调度第一数据和第二数据的DCI,该DCI包括第一TB指示域和第二TB指示域,其中,第一TB指示域处于使能(enable)状态(或者说开启状态),第二TB指示域处于去使能(disable)状态(或者说关闭状态),指示信息可以承载于第二TB指示域。
一个DCI可以指示多个TB的传输信息。例如,一个DCI可以支持2个码字的传输,也就是说,DCI中可以包括2个TB指示域,该2个TB指示域可以指示2个TB的传输信息。
一种可能的实现方式,可以通过RRC信令,如maxNrofCodeWordsScheduledByDCI(DCI调度的最大码字),来指示当前传输DCI最多可以支持的码字数。
例如,当该信令取值为2时,表示当前传输DCI最多可以支持2个码字。也可以理解为,DCI中分配2个TB指示域。或者,也可以理解为,DCI中第一TB指示域和第二TB 指示域均会正常分配的。即,终端设备可以检测到第一TB指示域和第二TB指示域。应理解,通过RRC信令指示的码字数是半静态配置的,而实际调度的码字数是由信道状况动态可变的。因此,在实际通信中,调度1个码字还是2个码字,可以进一步由TB指示域中MCS和RV的特殊组合值确定。如当其中一TB指示域中的MCS为26(即MCS域指示该TB的MCS为26)、并且该TB指示域中的RV为1(即RV域指示该TB的RV为1)时,终端设备会认为该TB指示域处于disable状态,也可以理解为,第二个码字没有被调用,或者说,只有一个码字被调用。应理解,disable状态下的第二TB指示域是正常可以被终端设备检测到的。
方案A对应1个码字,因此,maxNrofCodeWordsScheduledByDCI取值为2时,即DCI中分配2个TB指示域时,DCI中有一个TB指示域是处于disable状态的。也就是说,在方案A下,DCI中分配多个TB指示域时,DCI中只有一个TB指示域需要被使用,其余的TB指示域必须处于disable状态,终端设备才会理解当前***只有一个TB的传输。
方案B对应2个携带重复信息的码字,但是在方案B中,不同频域资源上的数据流共用相同的DMRS端口,在大多数场景下,最大的传输层数不会超过4层,因此根据码字到层映射规则的限制,在小于或等于4层传输场景下,终端设备只能识别最大一个码字,即使maxNrofCodeWordsScheduledByDCI取值为2,即DCI中分配2个TB指示域,DCI中依然有一个TB指示域是处于disable状态的。也就是说,在方案B下,DCI中分配多个TB指示域时,DCI中仍然只有一个TB指示域需要被使用,其余TB指示域必须处于disable状态,终端设备才会理解当前***只有一个TB的传输。或者,也可以理解为,在一种实现方式中,第二TB指示域中的MCS总是26、RV总是1,即MCS和RV的组合总是处于26,1的状态。
由上可知,不管是方案A还是方案B,DCI中分配2个TB指示域时,DCI中总有一个TB指示域是处于disable状态的。因此,可以利用处于disable状态的TB指示域,来指示传输方案。例如,该指示信息可以携带于处于disable状态的TB指示域中的以下任意一项中:NDI域、MCS域、或RV域。
下面分别介绍。
实现方式A,指示信息可以携带于NDI域。或者,也可以理解为,指示信息为NDI域。
通常情况下,NDI域可用于指示此次DCI调度的资源是用于初传或重传,或者说,NDI域可用于指示此次DCI所调度的数据(如PDSCH数据)是初传还是重传。NDI域可以通过比特位是否翻转来指示。当该比特位翻转时,表示当前数据是初传;当该比特位未翻转时,表示当前数据是重传。翻转的意思是,NDI域取值与之前不同。例如,0->1,即表示NDI域取值从0变为1,或者说,从0翻转为1。或者,也可以理解为,之前NDI域取值为0,现在NDI域取值为1。又如,1->0,即表示NDI域取值从1变为0,或者说,从1翻转为0。或者,也可以理解为,之前NDI域取值为1,现在NDI域取值为0。
在数据传输失败的情况下,终端设备可能会反馈一个非确认(negative acknowledgement,NACK)信息,网络设备可以根据调度重传该传输失败的数据。在该情况下,调度这份重传数据的DCI中的NDI比特位不会翻转。反之,如果初传成功,终端设备可能会反馈一个确认(acknowledgement,ACK)信息,则相应的DCI中的NDI比特 会翻转。
示例性地,仍以DCI包括第一TB指示域和第二TB指示域为例进行说明。其中,第一TB指示域处于enable状态,第二TB指示域处于disable状态,指示信息可以承载于第二TB指示域中的NDI域中。
换句话说,网络设备可以通过第二TB指示域中的NDI域指示传输方案,相应地,终端设备可以根据第二TB指示域中的NDI域确定传输方案。
一种可能的格式如下:
for transport block 1(对于第一个TB):
-modulation and coding scheme—5bits
-new data indicator—1bit
-redundancy version—2bits
for transport block 2(对于第二个TB):
-modulation and coding scheme—5bits
-new data indicator—1bit(传输方案)
-redundancy version—2bits
第二个TB指示域中的NDI域可以通过比特位是否翻转来指示。
例如,当该比特位翻转时,表示传输方案为方案A;当该比特位未翻转时,表示传输方案为方案B。又如,当该比特位翻转时,表示传输方案为方案B;当该比特位未翻转时,表示传输方案为方案A。
示例性,该NDI域可以包括1个指示比特。当该指示比特为“0”时,可认为传输方案为方案A;当该指示比特为“1”时,可认为传输方案为方案B。
对于网络设备,当使用方案A传输第一数据和第二数据时,可以将NDI域取值设置为0;当使用方案B传输第一数据和第二数据时,可以将NDI域取值设置为1。
对于终端设备,当接收到的NDI域取值为0时,则可以确定当前的传输方案为方案A;当接收到的NDI域取值为1时,则可以确定当前的传输方案为方案B。
又如,该NDI域可以包括1个指示比特。当该指示比特为“1”时,可认为传输方案为方案A;当该指示比特为“0”时,可认为传输方案为方案B。
对于网络设备,当使用方案A传输第一数据和第二数据时,可以将NDI域取值设置为1;当使用方案B传输第一数据和第二数据时,可以将NDI域取值设置为0。
对于终端设备,当接收到的NDI域取值为1时,则可以确定当前的传输方案为方案A;当接收到的NDI域取值为0时,则可以确定当前的传输方案为方案B。
可选地,在该实现方式A下,本申请实施例对终端设备如何确定第二TB指示域处于disable状态的方式不作限定。任何可以使得终端设备确定第二TB指示域处于disable状态的方式都落入本申请实施例的保护范围。
下面示例性地介绍几种可能的实现方式。
方式(1),终端设备根据MCS和RV取值的组合确定某个TB指示域处于disable状态。
例如,将MCS和RV取值为26和1作为特定的组合,用于确定TB指示域是否处于disable状态,当然这个组合取值也可以取其他值,例如27和2。
可以理解,在某一个TB指示域中的MCS为26、RV为1的情况下,该TB指示域往往被认为是第二TB指示域。
在该方式(1)下,用于指示传输方案的指示信息可以承载于该TB指示域的NDI域中。
例如,该NDI域可以包括1个指示比特。当该指示比特为“0”时,可认为传输方案为方案A;当该指示比特为“1”时,可认为传输方案为方案B。
对于网络设备,当使用方案A传输第一数据和第二数据时,可以将某一TB指示域中的NDI域取值设置为0,且该TB指示域中的MCS为26、RV为1;当使用方案B传输第一数据和第二数据时,可以将某一TB指示域中的NDI域取值设置为1,且该TB指示域中的MCS为26、RV为1。
对于终端设备,当接收到的TB指示域中的MCS为26、RV为1时,可以根据该TB指示域中的NDI域取值确定当前的传输方案。如NDI域取值为0时,则可以确定当前的传输方案为方案A;当如NDI域取值为1时,则可以确定当前的传输方案为方案B。
一种可能的格式如下:
for transport block 1(对于第一个TB):
-modulation and coding scheme—5bits
-new data indicator—1bit
-redundancy version—2bits
for transport block 2(对于第二个TB):
-modulation and coding scheme—26
-new data indicator—1bit(传输方案)
-redundancy version—1
方式(2),网络设备可以通过RRC信令或新增的高层信令指示某个TB指示域处于disable状态。相应地,终端设备根据该RRC信令确定某个TB指示域处于disable状态。
网络设备可以通过RRC信令或新增的高层信令,来指示某一TB指示域处于disable状态,而不用通过该TB指示域中的MCS和RV为(26,1)的组合来指示该TB指示域处于disable状态。在该方式(2)下,可以理解,相当于释放了MCS和RV为(26,1)的组合的指示功能。
方式(3),在FDM传输下,只要有2个TB指示域,默认其中一个TB指示域固定处于disable状态。
终端设备可以确定当前传输为FDM传输,进而可以确定在该传输下,其中一个TB指示域是处于disable状态的。
可选地,终端设备可以通过以下任意一种方法确定传输模式为FDM传输。
方法1,DCI中的频域资源分配(frequency domain-resource allocation,FD-RA)指示域显式地分为多个指示域用于不同频分资源的频域指示,或者该DCI为新的DCI格式,用于FDM传输。方法2,通过一个信令通知终端设备当前为FDM的传输模式,该信令不区分方案A或B。
例如,网络设备可以通过一高层信令,通知终端设备当前所处的传输模式为FDM传输。
又如,网络设备也可以通过一动态信令,通知终端设备当前所处的传输模式为FDM传输。如通过DCI中的指示域或DCI的格式等。
应理解,上述两种方法仅是示例性说明,任何可以使得终端设备确定传输模式为FDM传输的方法都落入本申请实施例的保护范围。
基于上述实现方式A,通过利用处于disable状态的TB指示域中的NDI域,无需增加额外的信令开销,便可以指示传输方案。
实现方式B,指示信息携带于RV域。或者,也可以理解为,指示信息为RV域。
示例性地,仍以DCI包括第一TB指示域和第二TB指示域为例进行说明。其中,第一TB指示域处于enable状态,第二TB指示域处于disable状态,指示信息可以承载于第二TB指示域中的RV域中。
可选地,在该实现方式B下,终端设备可以通过上述实现方式A中的方式(2)或方式(3)确定某一TB指示域处于disable状态。在上述方式(2)或方式(3)下,相当于释放了MCS和RV为(26,1)的组合的指示功能,故可以利用RV域来实现传输方案的指示。
处于disable状态的第二TB指示域中的RV域可以用于指示传输方案。一种可能的格式如下:
for transport block 1(对于第一个TB):
-modulation and coding scheme—5bits
-new data indicator—1bit
-redundancy version—2bits
for transport block 2(对于第二个TB):
-modulation and coding scheme—5bits
-new data indicator—1bit
-redundancy version—2bits(传输方案)
例如,该第二个TB指示域中的RV域可以包括2个指示比特。当该指示比特为“01”时,可认为传输方案为方案A;当该指示比特为“10”时,可认为传输方案为方案B。
对于网络设备,当使用方案A传输第一数据和第二数据时,可以将RV域取值设置为01;当使用方案B传输第一数据和第二数据时,可以将RV域取值设置为10。
对于终端设备,当接收到的RV域取值为01时,则可以确定当前的传输方案为方案A;当接收到的RV域取值为10时,则可以确定当前的传输方案为方案B。
又如,该NDI域可以包括2个指示比特。当该指示比特为“00”时,可认为传输方案为方案A;当该指示比特为“11”时,可认为传输方案为方案B。
对于网络设备,当使用方案A传输第一数据和第二数据时,可以将RV域中的取值设置为00;当使用方案B传输第一数据和第二数据时,可以将RV域中的取值设置为11。
对于终端设备,当接收到的RV域取值为00时,则可以确定当前的传输方案为方案A;当接收到的RV域取值为11时,则可以确定当前的传输方案为方案B。
可以理解,通过RV域指示传输方案时,还可以包含其他的传输方案的指示,也就是说,方案A和方案B仅仅是其中的两项。例如,通过RV域指示传输方案是,最多可以支持4种传输方案的选择。即,可以有候选的4种传输方案,通过RV域指示当前传输的传输方案为哪个。
应理解,在该实现方式B下,RV域不再和MCS域组合(即MCS和RV取值为(26,1)的组合)以指示某TB指示域处于disable状态,或者说,处于disable状态的TB指示域中的RV域被释放,故可以通过该TB指示域中的RV域来实现传输方案的指示。
基于上述实现方式B,通过利用处于disable状态的TB指示域中的RV域,无需增加额外的信令开销,便可以指示传输方案。
实现方式C,指示信息携带于MCS域。或者,也可以理解为,指示信息为MCS域。
示例性地,仍以DCI包括第一TB指示域和第二TB指示域为例进行说明。其中,第一TB指示域处于enable状态,第二TB指示域处于disable状态,指示信息可以承载于第二TB指示域中的MCS域中。
可选地,在该实现方式C下,终端设备可以通过上述实现方式A中的方式(2)或方式(3)确定某一TB指示域处于disable状态。在上述方式(2)或方式(3)下,相当于释放了MCS和RV为(26,1)的组合的指示功能,故可以利用MCS域来实现传输方案的指示。
处于disable状态的第二TB指示域中的MCS域可以用于指示传输方案。一种可能的格式如下:
for transport block 1(对于第一个TB):
-modulation and coding scheme—5bits
-new data indicator—1bit
-redundancy version—2bits
for transport block 2(对于第二个TB):
-modulation and coding scheme—5bits(传输方案)
-new data indicator—1bit
-redundancy version—2bits
例如,该第二个TB指示域中的MCS域可以包括5个指示比特。当该指示比特为“00000”时,可认为传输方案为方案A;当该指示比特为“11111”时,可认为传输方案为方案B。
对于网络设备,当使用方案A传输第一数据和第二数据时,可以将MCS域取值设置为00000;当使用方案B传输第一数据和第二数据时,可以将MCS域取值设置为11111。
对于终端设备,当接收到的MCS域取值为00000时,则可以确定当前的传输方案为方案A;当接收到的MCS域取值为11111时,则可以确定当前的传输方案为方案B。
可以理解,通过MCS域指示传输方案时,还可以包含其他的传输方案的指示,也就是说,方案A和方案B仅仅是其中的两项。例如,通过MCS域指示传输方案是,最多可以支持32种传输方案的选择。即,可以有候选的32种传输方案,通过RV域指示当前传输的传输方案为哪个。
应理解,在该实现方式C下,MCS域不再和RV域组合(即MCS和RV取值为(26,1)的组合)以指示某TB指示域处于disable状态,或者说,处于disable状态的TB指示域中的MCS域被释放,故可以通过该TB指示域中的MCS域来实现传输方案的指示。
基于上述实现方式C,通过利用处于disable状态的TB指示域中的MCS域,无需增加额外的信令开销,便可以指示传输方案。
实现方式D,指示信息通过以下任意两项或三项实现:MCS域、RV域、NDI域。
可选地,在实现方式D中,终端设备可以通过上述实现方式A中的方式(2)或方式(3)确定某一TB指示域处于disable状态。
示例性地,通过MCS和NDI的取值组合来指示传输方案。
例如,MCS取值为26,NDI取值为0,表示传输方案为方案A,MCS取值为26,NDI取值为1,表示传输方案为方案B;又如,MCS取值为26,NDI取值为1,表示传输方案为方案A,MCS取值为26,NDI取值为0,表示传输方案为方案B。
示例性地,通过RV和NDI的取值组合来指示传输方案。
例如,RV取值为1,NDI取值为0,表示传输方案为方案A,RV取值为1,NDI取值为1,表示传输方案为方案B;又如,RV取值为1,NDI取值为1,表示传输方案为方案A,RV取值为1,NDI取值为0,表示传输方案为方案B。
示例性地,通过MCS和RV的取值组合来指示传输方案。
例如,MCS取值为26或27,RV取值为1,表示传输方案为方案A或方案B。
示例性地,通过MCS、RV、以及NDI的取值组合来指示传输方案。
例如,MCS取值为26,NDI取值为1,RV取值为1或2,表示传输方案为方案A或方案B。
应理解,上述几种示例仅是示例性说明,任何属于上述示例的变形方式都落入本申请实施例的保护范围。
还应理解,上述实现方式A、实现方式B、以及实现方式C可以单独使用,也可以结合使用。例如,当终端设备通过上述实现方式A中的方式(2)或方式(3)确定某一TB指示域处于disable状态时,上述实现方式A、实现方式B、实现方式C可以结合使用。例如,NDI取值为1,且RV取值为11,表示传输方案为方案A。
基于上述方案1,可以复用闲置的指示项,即DCI中处于disable状态的TB指示域,例如处于disable状态的TB指示域中的NDI域、处于disable状态的TB指示域中的MCS域、以及处于disable状态的TB指示域中的RV域中的一项或多项,不仅可以动态地指示传输方案,无需增加额外的信令开销,而且可以提高资源的有效利用率。
方案2:指示信息包括第一信息,第一信息用于通知终端设备:第二TB指示域中的MCS域用于指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV。
方案2可以适用于DCI中包括1个TB指示域的场景,也可以适用于DCI中包括多个TB指示域的场景。
场景1:DCI中包括1个TB指示域。
在该场景下,即DCI中包括1个TB指示域的情况下,可以默认当前的传输方案为方案A。
场景2:DCI中包括多个TB指示域。
在该场景下,即DCI中包括多个TB指示域的情况下,网络设备可以通过第一信息间接地指示传输方案。
下面以第一TB指示域和第二TB指示域为例,详细介绍场景2的情况。
在该方案2下,终端设备可以通过上述方案1的实现方式A中的方式(2)或方式(3) 确定某一TB指示域处于disable状态。
在方案2下,终端设备根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码,至少可以包括以下三种实现方式。
方式1:终端设备可以根据第一信息确定传输方案。
一示例,假设网络设备通过上述方案1的实现方式A中的方式(2)指示终端设备某一TB指示域处于disable状态,如网络设备通过RRC信令指示某一TB指示域处于disable状态,那么第一信息可以承载于该RRC信令上。也就是说,该RRC信令还可以用于指示:第二TB指示域中的MCS域指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV,那么终端设备可以确定当前传输方案为方案B。第二TB指示域中的MCS域用于指示第二数据的MCS,第二TB指示域中的RV域用于指示第二数据的RV,可以表示第二TB指示域的指示功能生效,但第二TB指示域仍然处于disable状态,即终端设备关于传输码字数的信息仍然为1个码字的传输。第二TB指示域中的MCS域用于指示第二数据的MCS,第二TB指示域中的RV域用于指示第二数据的RV,意味着终端设备通过读取第二TB指示域中MCS域和/或RV域的内容,可以确定第二数据的MCS和/或RV。并且,终端设备也可以确定当前传输方案是方案B,或者说,终端设备确定第一数据和第二数据能够软比特信息合并解码。
在该示例下,网络设备通过RRC信令指示某一TB指示域处于disable状态时,该RRC信令也可以用于指示,第二TB指示域中的MCS域指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV。
或者,在该示例下,网络设备向终端设备发送第一信息,该第一信息用于指示第二TB指示域中的MCS域指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV。终端设备接收到该第一信息,可以默认第二TB指示域处于disable状态,即网络设备不需要再单独向终端设备发送RRC信令,以通知终端设备第二TB指示域处于disable状态。
或者,在该示例下,网络设备通过RRC信令指示某一TB指示域处于disable状态时,终端设备可以默认:第二TB指示域中的MCS域指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV。
或者,在该示例下,网络设备通过RRC信令指示某一TB指示域处于disable状态、且满足条件的情况下,终端设备可以确定:第二TB指示域中的MCS域指示第二数据的MCS。其中,该条件可以包括MCS域没有指向预留(reserved)的值。
或者,在该示例下,网络设备通过RRC信令指示某一TB指示域处于disable状态、且满足条件的情况下,终端设备可以确定:第二TB指示域中的RV域指示第二数据的RV。其中,该条件可以包括RV域没有指向reserved的值。
又一示例,终端设备未接收到第一信息,那么终端设备可以确定当前传输方案为方案A。
例如,网络设备使用传输方案A进行传输,则网络设备可以不配置或生成第一信息,即不会向终端设备发送第一信息。对于终端设备,终端设备没有收到第一信息,则终端设备可以确定当前传输方案为方案A。
可以理解,该方式1下,第一信息可以用于间接地指示传输方案。因为,对于处于 disable状态的第二TB指示域,第二TB指示域的MCS域和/或RV域具备指示功能的情况下,终端设备认为只有一个码字的传输,但是却有两个不同的RV版本和/或两个不同的MCS,便可以认为是相同TB的不同RV版本的重复传输,或者该不同RV版本的码字还可以基于不同MCS传输,因此可以间接判断该传输方案为方案B。
方式2:终端设备根据MCS域是否指向reserved的值,和/或,RV域是否指向reserved的值,确定传输方案。
一示例,第二TB指示域中的MCS域指向一个reserved的值,以及第二TB指示域中的RV域也指向一个reserved的值的情况下,终端设备确定当前传输方案为方案A。
例如,MCS域指向一个reserved的值、RV域指向一个reserved的值的情况下,表示当前第二TB的MCS和RV无效,可以间接地表示当前传输方案为方案A。
又一示例,第二TB指示域中的MCS域指向一个reserved的值,如MCS的值为MCS表(MCS table)最后几个值(value),可能包括以下几种情况。
(1)第二TB指示域中的MCS域指向一个reserved的值,可以表示当前第二TB的MCS无效,那么也可以表示当前传输方案为方案A。在该情况下,关于第二TB指示域中的RV域不作限定,例如,第二TB指示域中的RV域可以被用于其他指示或者其他作用。
(2)第二TB指示域中的MCS域指向一个reserved的值,第二TB指示域中的RV域被复用,即第二TB指示域中的RV域指示第二数据的RV,可以表示当前传输方案为方案B。在该情况下,第二数据的MCS可以与第一数据的MCS相同。也就是说,第二数据的MCS的取值可以通过第一TB指示域的MCS域确定。
又一示例,第二TB指示域中的RV域指向一个reserved的值,可能包括以下几种情况。
(1)第二TB指示域中的RV域指向一个reserved的值,可以表示当前第二TB的RV无效,那么也可以表示当前传输方案为方案A。在该情况下,关于第二TB指示域中的MCS域不作限定,例如,第二TB指示域中的MCS域可以被用于其他指示或者其他作用。
(2)第二TB指示域中的RV域指向一个reserved的值,第二TB指示域中的MCS域被复用,即第二TB指示域中的MCS域指示第二数据的MCS,可以表示当前传输方案为方案B。在该情况下,第二数据的RV可以与第一数据的RV相同。也就是说,第二数据的RV的取值可以通过第一TB指示域的RV域确定。
应理解,上述各个示例仅是示例性说明,本申请实施例并未限定于此,任何属于上述各个示例的变形都落入本申请实施例的保护范围。
方式3:终端设备根据第一信息以及第二TB指示域的指示功能是否开启,确定传输方案。
示例性地,在第二TB指示域的指示功能开启的情况下,第二TB指示域中的MCS域指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV,终端设备确定当前传输方案为方案B。在第二TB指示域的指示功能关闭的情况下,终端设备确定当前传输方案为方案A。
应理解,在本申请实施例中,指示第二TB指示域的指示功能是否生效的方式有很多,本申请实施例对此不作限定,任何可以使得终端设备确定第二TB指示域的指示功能是否 生效的方式都落入本申请实施例的保护范围。下面列举几种可能的方式。
(一)、指示信息还包括第二信息,第二信息可以用于动态关闭或开启第二TB指示域的指示功能。
可选地,第二信息为第二TB指示域中的NDI域取值。也就是说,考虑到第二TB指示域中的NDI域没有被使用,故可以被用作动态指示第二TB指示域的指示功能开启(或者也可以称为生效)或关闭。
应理解,在该方式下,终端设备可以根据第二TB指示域中的NDI域取值和第一信息确定第一数据和第二数据是否能够软比特信息合并解码。
例如,NDI域取值为第一数值的情况下,第二TB指示域的指示功能开启。终端设备根据第一信息确定第二TB指示域处于disable状态,终端设备通过NDI域取值为第一数值,确定第二TB指示域的指示功能开启。因此,终端设备通过读取第二TB指示域中MCS域和/或RV域的内容,可以确定第二数据的MCS和/或RV。并且,终端设备也可以确定当前传输方案为方案B,或者说,终端设备确定第一数据和第二数据能够软比特信息合并解码。
又如,NDI域取值为第二数值的情况下,该第二TB指示域的使用方法和现有技术相同,或者说,第二TB指示域中的MCS域和RV域为预留(或称为关闭),对此不作限定。在该情况下,可以认为当前传输方案为方案A。
如,第一数值为0,第二数值为1。或者,第一数值为1,第二数值为0。
(二)、通过一DCI中的新增比特或复用其他比特指示第二TB指示域的指示功能是否生效。
应理解,上述列举的确定第二TB指示域的指示功能是否生效的2种方式仅是示例性说明,并不对本申请实施例的保护范围造成限定。例如,终端设备通过实现方式A中的方式(2)或方式(3)确定某一TB指示域处于disable状态后,可以默认该处于disable状态的第二TB指示域的指示功能生效。并且,终端设备也可以根据第一信息确定当前传输方案是方案B,或者说,终端设备确定第一数据和第二数据能够软比特信息合并解码。
还应理解,上述示例性地列举了:终端设备可以根据第一信息确定传输方案;或者,终端设备可以根据MCS域是否指向reserved的值,或者,RV域是否指向reserved的值,确定传输方案;或者,终端设备可以根据第一信息以及第二TB指示域的指示功能是否开启,确定传输方案。应理解,本申请实施例并未限定于此。例如,终端设备通过实现方式A中的方式(2)或方式(3)确定某一TB指示域处于disable状态后,默认第二TB指示域中的MCS域指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV,并且终端设备可以根据第二信息来确定当前传输方案。如第二信息指示第二TB指示域的指示功能开启的情况下,确定传输方案为方案B;第二信息指示第二TB指示域的指示功能关闭的情况下,确定传输方案为方案A。
基于上述方案2,通过确定第二TB指示域的指示功能生效,可以确定传输方案为方案B,即终端设备确定第一数据和第二数据能够软比特信息合并解码。
方案3:指示信息可以承载于DCI中的天线端口指示域。
可以理解为,网络设备向终端设备发送的天线端口指示域可以用于指示在传输方案,或者说,指示终端设备第一数据和第二数据是否能够执行软比特信息合并解码。
其中,天线端口指示域指示至少两种DMRS端口配置中的一种DMRS端口配置,至少两种DMRS端口配置中DMRS端口数量相同。
可选地,该至少两种DMRS端口配置还满足以下任一条件:
条件1:CDM组的个数相同,且端口号不同;
条件2:CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;
条件3:CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或
条件4:CDM组的个数不同,且端口号相同。
示例性地,可以预先规定DMRS端口配置与传输方案之间的对应关系。
网络设备可以基于第一数据和第二数据的传输方案,通过DCI中的天线端口指示域指示对应的DMRS端口配置。相应地,终端设备基于该DMRS端口配置,结合对应关系,确定传输方案。
假设天线端口指示域指示两种DMRS端口配置,为区分,分别记为第一DMRS端口配置和第二DMRS端口配置。
应理解,第一DMRS端口配置和第二DMRS端口配置,仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。例如,第一DMRS端口配置也可以称为第一端口配置,第二DMRS端口配置也可以称为第二端口配置。
对应关系可以包括:第一DMRS端口配置与方案A之间的对应关系,和/或,第二DMRS端口配置与方案B之间的对应关系。
可以理解,对应关系可以仅包括第一DMRS端口配置与方案A之间的对应关系,那么相应地,第二DMRS端口配置对应方案B。又或者,对应关系可以仅包括第二DMRS端口配置与方案B之间的对应关系,那么相应地,第一DMRS端口配置对应方案A。又或者,对应关系可以包括第一DMRS端口配置与方案A之间的对应关系,还包括第二DMRS端口配置与方案B之间的对应关系。
该对应关系可以是预先规定的,如协议预先定义的;或者,该对应关系也可以是网络设备预先配置的,对此不作限定。
第一DMRS端口配置和第二DMRS端口配置中DMRS端口数量相同。可选地,第一DMRS端口配置和第二DMRS端口配置还可以满足上述条件1至条件4中的任一条件。下面结合不同的条件进行说明。
示例性地,结合下表1说明。
条件1:CDM组的个数相同,且端口号不同。
也就是说,第一DMRS端口配置和第二DMRS端口配置中DMRS端口数量相同,且第一DMRS端口配置和第二DMRS端口配置的CDM组的个数相同,端口号不同。
结合表1所示的DMRS表格为例。
CDM组的个数相同,端口号不同,即如表1所示的第二列的数值相同、且第三列所示的DMRS端口号不同。
应理解,CDM组的个数,也可以称为DMRS速率匹配(rate matching)值。CDM组的个数或DMRS速率匹配值可以对应上述表1中的第二列。本申请实施例统一用CDM组的个数表示。
表1
Figure PCTCN2020103651-appb-000001
以下任意组合中,DMRS端口配置中:DMRS端口数量相同、CDM组的个数相同、且端口号不同,故以下任意组合均可以用于指示传输方案:value为0和value为1、value为3和value为4、value为3和value为5、value为5和value为6、value为4和value为6、value为3和value为6、value为4和value为5。
以value为3和value为5用于指示传输方案为例。从表1可知,value为3的DMRS端口配置和value为5的DMRS端口配置:DMRS端口数量相同、CDM组的个数相同且端口号不同。故value为3和value为5的两行DMRS端口配置可用于指示传输方案。
例如,第一DMRS端口配置可以选取表1中value为3的那一行,第二DMRS端口配置可以选取表1中value为5的那一行,也就是说,value为3和value为5的两行DMRS端口配置可用于指示传输方案。
第一对应关系可以包括:value为3的DMRS端口配置对应方案A,以及,value为5的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为3的DMRS端口配置对应方案A,那么,相应地,value为5的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为5的DMRS端口配置对应方案B,那么,相应地,value为3的DMRS端口配置对应方案A。
相应地,对于网络设备,当使用方案A传输时,可以采用value为3的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为3。或者,当使用方案B传输时,可以采用value为5的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为5。
相应地,对于终端设备,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为3,则可以确定当前的传输方案为方案A。此外,终端设备还可以通过天线端口指示域指示的value 3再通过读取表1获得该value为3对应的信息(如DMRS端口为0)。
或者,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为5,则可以确定当前的传输方案为方案B。此外,终端设备还可以通过天线端口指示域指示的value5再通过读取表1获得该value为5对应的信息(如DMRS端口为2)。
应理解,上述仅是示例性说明,本申请实施例并不限定于此。
在该条件1下,端口号不同,也可以指端口号组合不同。
也就是说,第一DMRS端口配置和第二DMRS端口配置中DMRS端口数量相同,且第一DMRS端口配置和第二DMRS端口配置的CDM组的个数相同,端口号组合不同。
结合表2所示的DMRS表格为例。
例如,第一DMRS端口配置可以选取表2中value为20的那一行,第二DMRS端口配置可以选取表2中value为24的那一行。其中,value为20对应的DMRS端口组合为{0,1},value为24对应的DMRS端口组合{0,4},其端口号组合不同。也就是说,value为20和value为24的两行DMRS端口配置可用于指示传输方案。
第一对应关系可以包括:value为20的DMRS端口配置对应方案A,以及,value为24的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为20的DMRS端口配置对应方案A,那么,相应地,value为24的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为24的DMRS端口配置对应方案B,那么,相应地,value为20的DMRS端口配置对应方案A。
相应地,对于网络设备,当使用方案A传输时,可以采用value为20的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为20。或者,当使用方案B传输时,可以采用value为24的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为24。
相应地,对于终端设备,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为20,则可以确定当前的传输方案为方案A。或者,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为24,则可以确定当前的传输方案为方案B。此外,终端设备还可以通过天线端口指示域指示的value 20或value 24再通过读取表2获得该value 20或value 24对应的信息(如value为20对应的DMRS端口组合为{0,1},value为24对应的DMRS端口组合{0,4})。
应理解,上述仅是示例性说明,本申请实施例并不限定于此。例如,对于其他可能的DMRS表格,可选的value组合可能与本实施例所列举的不同,应理解,规则或者说条件可以是相同的,也就是说,该条件可以适用于任何其他可能的DMRS表格。
条件2:CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组。
也就是说,第一DMRS端口配置和第二DMRS端口配置中DMRS端口数量相同,且第一DMRS端口配置和第二DMRS端口配置的CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组。
表2
Figure PCTCN2020103651-appb-000002
Figure PCTCN2020103651-appb-000003
结合表1所示的DMRS表格为例。
以下任意组合中,DMRS端口配置中:DMRS端口数量相同、CDM组的个数相同、端口号不同、且不同的端口号来自不同的CDM组,故以下任意组合均可以用于指示传输方案:value为3和value为5、value为4和value为6。
以value为4和value为6用于指示传输方案为例。从表1可知,value为4的DMRS端口配置和value为6的DMRS端口配置:DMRS端口数量相同、CDM组的个数相同、端口号不同、且不同的端口号来自不同的CDM组。故value为4和value为6的两行DMRS端口配置可用于指示传输方案。
例如,第一DMRS端口配置可以选取表1中value为4的那一行,第二DMRS端口配置可以选取表1中value为6的那一行,也就是说,value为4和value为6的两行DMRS端口配置可用于指示传输方案。
第一对应关系可以包括:value为4的DMRS端口配置对应方案A,以及,value为6的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为4的DMRS端口配置对应方案A,那么,相应地,value为6的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为6的DMRS端口配置对应方案B,那么,相应地,value为4的DMRS端口配置对应方案A。
相应地,对于网络设备,当使用方案A传输时,可以采用value为4的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为4。或者,当使用方案B传输时,可以采用value为6的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为6。
相应地,对于终端设备,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为4,则可以确定当前的传输方案为方案A。此外,终端设备还可以通过天线端口指示域指示的value 4再通过读取表1获得该value为3对应的信息(如DMRS端口为1)。
或者,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为6,则可以确定当前的传输方案为方案B。此外,终端设备还可以通过天线端口指示域指示的value6再通过读取表1获得该value为6对应的信息(如DMRS端口为3)。
应理解,上述仅是示例性说明,本申请实施例并不限定于此。例如,对于其他可能的DMRS表格,可选的value组合可能与本实施例所列举的不同,应理解,规则或者说条件可以是相同的,也就是说,该条件可以适用于任何其他可能的DMRS表格。
条件3:CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组。
也就是说,第一DMRS端口配置和第二DMRS端口配置中DMRS端口数量相同,且第一DMRS端口配置和第二DMRS端口配置的CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组。
结合表1所示的DMRS表格为例。
以下任意组合中,DMRS端口配置中:DMRS端口数量相同、CDM组的个数相同、端口号不同、且不同的端口号来自相同的CDM组,故以下任意组合均可以用于指示传输方案:value为0和value为1、value为3和value为4、value为5和value为6。
以value为3和value为4用于指示传输方案为例。从表1可知,value为3的DMRS端口配置和value为4的DMRS端口配置:DMRS端口数量相同、CDM组的个数相同、端口号不同、且不同的端口号来自相同的CDM组。故value为3和value为4的两行DMRS端口配置可用于指示传输方案。
例如,第一DMRS端口配置可以选取表1中value为3的那一行,第二DMRS端口配置可以选取表1中value为4的那一行,也就是说,value为3和value为4的两行DMRS端口配置可用于指示传输方案。
第一对应关系可以包括:value为3的DMRS端口配置对应方案A,以及,value为4的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为3的DMRS端口配置对应方案A,那么,相应地,value为4的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为4的DMRS端口配置对应方案B,那么,相应地,value为3的DMRS端口配置对应方案A。
相应地,对于网络设备,当使用方案A传输时,可以采用value为3的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为3。或者,当使用方案B传输时,可以采用value为4的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为4。
相应地,对于终端设备,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为3,则可以确定当前的传输方案为方案A。此外,终端设备还可以通过天线端口指示域指示的value 3再通过读取表1获得该value为3对应的信息(如DMRS端口为0)。
或者,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为4,则可以确定当前的传输方案为方案B。此外,终端设备还可以通过天线端口指示域指示的value4再通过读取表1获得该value为4对应的信息(如DMRS端口为1)。
应理解,上述仅是示例性说明,本申请实施例并不限定于此。例如,对于其他可能的DMRS表格,可选的value组合可能与本实施例所列举的不同,应理解,规则或者说条件可以是相同的,也就是说,该条件可以适用于任何其他可能的DMRS表格。
条件4:CDM组的个数不同,且端口号相同。
也就是说,第一DMRS端口配置和第二DMRS端口配置中DMRS端口数量相同,且第一DMRS端口配置和第二DMRS端口配置的CDM组的个数不同,端口号相同。
结合表1所示的DMRS表格为例。
CDM组的个数不同,端口号相同,即如表1所示的第二列的数值不同、且第三列所示的DMRS端口号相同。
以下任意组合中,DMRS端口配置中:DMRS端口数量相同、CDM组的个数不同、且端口号相同,故以下任意组合均可以用于指示传输方案:value为0和value为3、value为1和value为4。
以value为1和value为4用于指示传输方案为例。从表1可知,value为1的DMRS端口配置和value为4的DMRS端口配置:DMRS端口数量相同、CDM组的个数不同、 且端口号相同。故value为1和value为4的两行DMRS端口配置可用于指示传输方案。
例如,第一DMRS端口配置可以选取表1中value为1的那一行,第二DMRS端口配置可以选取表1中value为4的那一行,也就是说,value为1和value为4的两行DMRS端口配置可用于指示传输方案。
第一对应关系可以包括:value为1的DMRS端口配置对应方案A,以及,value为4的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为1的DMRS端口配置对应方案A,那么,相应地,value为4的DMRS端口配置对应方案B。或者,第一对应关系可以包括:value为1的DMRS端口对应方案B,那么,相应地,value为4的DMRS端口配置对应方案A。
相应地,对于网络设备,当使用方案A传输时,可以采用value为1的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为1。或者,当使用方案B传输时,可以采用value为4的DMRS端口配置。例如,网络设备向终端设备发送的DCI中的天线端口指示域指示的value为4。
相应地,对于终端设备,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为1,则可以确定当前的传输方案为方案A。此外,终端设备还可以通过天线端口指示域指示的value 1再通过读取表1获得该value为1对应的信息(如DMRS端口为1)。
或者,终端设备基于网络设备发送的DCI中的天线端口指示域确定value为4,则可以确定当前的传输方案为方案B。此外,终端设备还可以通过天线端口指示域指示的value4再通过读取表1获得该value为4对应的信息(如DMRS端口为1)。
应理解,上述仅是示例性说明,本申请实施例并不限定于此。
还应理解,上述列举的几种条件仅是结合示例性说明,任何属于该条件的变形都落入本申请实施例的保护范围。
还应理解,本申请实施例对对应关系的形式不作限定。例如,上述对应关系可以以表格的形式存在。
还应理解,第一DMRS端口配置和第二DMRS端口配置仅是为了说明,在实际通信过程中,也可以直接基于上述任一条件,使用相应的DMRS端口,实现传输方案的指示。
还应理解,value取值为x的DMRS端口配置对应为表格中的一行配置,应理解,具体的取值可能随着表格的不同而变化,本申请实施例并非保护具体的value取值,而是上述所列举的条件,任何适用于上述所列举的条件的DMRS端口配置都落入本申请实施例的保护范围。
基于上述方案3,可以通过复用DMRS的冗余行,无需增加额外的信令开销,不仅可以实现传输方案的动态指示,而且协议修改量极小。
方案4:指示信息可以承载于DCI中。
一种可能的情况,URLLC所有的传输方式都不支持两个码字的传输,或者说,终端设备只能最大识别一个码字。因此可以有如下的默认方法。
可以默认:在DCI中包括1个TB指示域的情况下,传输方案为方案A;在DCI中包括2个或2个以上的TB指示域的情况下,传输方案为方案B。
在步骤330,终端设备根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码。基于方案4,步骤330可以理解为,终端设备确定DCI中包括1个TB指示域时, 则确定第一数据和第二数据不能够软比特信息合并解码;终端设备确定DCI中包括2个或2个以上TB指示域时,则确定第一数据和第二数据能够软比特信息合并解码。
可选地,当终端设备确定maxNrofCodeWordsScheduledByDCI=1时,可以确定DCI中包括1个TB指示域,那么可以确定传输方案为方案A;当终端设备确定maxNrofCodeWordsScheduledByDCI=N时,可以确定DCI中包括N个TB指示域,那么可以确定传输方案为方案B,其中,N为大于2或等于2的整数。
方案5:指示信息为现有的高层参数。
如前所述,在FDM传输模式下,可能只有一个TB指示域被开启,可以理解为,maxNrofCodeWordsScheduledByDCI可以一直配置为1。因此,该高层参数也可以复用为用于指示传输方案的指示信息。
示例性地,在FDM传输模式下,默认只有一个TB指示域被开启,该高层参数maxNrofCodeWordsScheduledByDCI可以被重新赋予新的指示内容,即maxNrofCodeWordsScheduledByDCI用于指示传输方案。例如,当前传输方案为方案A时,网络设备可以配置maxNrofCodeWordsScheduledByDCI取值为1,相应地,终端设备根据该maxNrofCodeWordsScheduledByDCI取值为1,确定传输方案为方案A。又如,当前传输方案为方案B时,网络设备可以配置maxNrofCodeWordsScheduledByDCI取值为2,相应地,终端设备根据该maxNrofCodeWordsScheduledByDCI取值为2,确定传输方案为方案B。
应理解,在方案5中,maxNrofCodeWordsScheduledByDCI被赋予新的意义。也就是说,当maxNrofCodeWordsScheduledByDCI被赋予新的意义的情况下,即maxNrofCodeWordsScheduledByDCI用于指示传输方案时,maxNrofCodeWordsScheduledByDCI取值为2并不表示DCI中分配2个TB指示域,而是可以表示当前传输方案为方案B。
为了区别于现有技术中maxNrofCodeWordsScheduledByDCI的使用,方案5中所述方法可以限制在URLLC传输业务下,或者进一步限制在FDM传输模式下,即,当且仅当上述场景下,maxNrofCodeWordsScheduledByDCI才可以被复用作为传输方案A和B的指示方法。具体确定URLLC业务或FDM传输模式的方法不做限定。
方案6:指示信息为新的高层参数。
可以引入一个新的高层信令,用于指示传输方案。
应理解,该高层信令还可以包含其他的传输方案的指示,也就是说,方案A和方案B仅仅是其中的两项。
示例性地,引入一个新的高层参数,例如记为schemeinfo(传输方案指示),假设该schemeinfo占1bit。当该schemeinfo的取值为0时,终端设备确定传输方案为方案A;当该schemeinfo的取值为1时,终端设备确定传输方案为方案B。
应理解,上述示例仅是为便于理解做的示例性说明,本申请实施例并未限定于此。
方案7:指示信息携带于新格式的DCI中。
可以引入一个新的DCI格式,此时可能有一个专门的DCI域(field)(即一个专门的指示域)用于动态指示传输方案。
应理解,该指示域还可以包含其他的传输方案的指示,也就是说,方案A和方案B 仅仅是其中的两项。
上述示例性地介绍了指示信息的几种形式,即指示终端设备传输方案的几种方式。通过上述任意一种方式,终端设备均可以确定传输方案,或者说,终端设备可以确定第一数据和第二数据是否能够软比特信息合并解码。
可选地,指示信息可以承载于以下任意1种或多种以上信令中:RRC信令、MAC-CE信令、DCI。
如上述方案2,指示信息承载于RRC信令和DCI中。具体地,指示信息包括第一信息和第二信息,第一信息可以通过RRC信令通知终端设备,第二信息可以通过DCI通知给终端设备。
应理解,在上述一些实施例中,以第一数据和第二数据为例进行了说明,本申请实施例并未限定于此。例如,终端设备还可以在第三时频资源接收第三数据、在第四时频资源接收第四数据等等。
还应理解,在上述一些实施例中,以第一TB指示域和第二TB指示域为例进行了说明,本申请实施例并未限定于此。第一TB指示域和第二TB指示域只是为区分做的命名,即第一TB指示域用来表示处于enable状态的TB指示域,第二TB指示域用来表示处于disable状态的TB指示域。
还应理解,上述考虑了两种场景:场景1,DCI中包括1个TB指示域;场景2,DCI中包括多个TB指示域。上述任意一个方案均适用该两种场景。
示例性地,针对场景1。例如,可以通过上述的方案1或方案2中的任意一种方案实现,即DCI中包括1个TB指示域的情况下,传输方案为方案A。又如,可以通过上述的方案4中的默认方案确定,即当DCI中包括1个TB指示域时,传输方案为方案A。
示例性地,针对场景2。例如,可以通过上述的方案1至方案3中的任意一种方案实现,具体的可参考上文的描述。又如,可以通过上述的方案4中的默认方案确定,即当DCI中包括2个或2个以上的TB指示域时,传输方案为方案B。
基于上述技术方案,网络设备通过向终端设备指示传输方案,可以使得终端设备基于传输方案处理接收到的数据,如终端设备根据指示信息确定是否合并处理在不同频域资源上接收到的数据。从而不仅可以提升终端设备处理数据的效率,也可以提升数据的传输性能进而提高传输效率。
基于上述技术方案,通过各种巧妙的信令设计,如复用处于disable状态的TB指示域、或者DMRS表格中冗余的指示项、或者复用高层信令maxNrofCodeWordsScheduledByDCI、或者新的DCI格式中的新指示域、或者新的高层信令等等,不仅可以有效地指示传输方案,而且不增加额外信令开销,且可以提高资源利用率。
下面结合图6所示的方法600,详细描述,通过处于disable状态的第二TB指示域指示对应TB的传输参数。
方法600可以包括如下步骤。
610,终端设备在第一时频资源上接收第一数据和在第二时频资源上接收第二数据。
该步骤同方法300中的步骤310相似,此处不再赘述。
620,终端设备接收DCI,该DCI中包括第一TB指示域和第二TB指示域,第一TB指示域处于使能状态,第二TB指示域处于disable状态。
关于第一TB指示域和第二TB指示域可以参考方法300中的描述,此处不再赘述。
第一TB指示域可以用于确定第一数据的传输信息。例如,网络设备可以通过第一TB指示域中的MCS域指示第一数据的MCS。又如,网络设备可以通过第一TB指示域中的RV域指示第一数据的RV。又如,网络设备可以通过第一TB指示域中的NDI域指示第一数据为新传或重传。
方法600还可以包括:终端设备确定第二TB指示域处于disable状态。
例如,网络设备可以通过RRC信令或新增的高层信令,来指示某一TB指示域处于disable状态。或者,也可以默认在FDM传输下,只要有2个TB指示域,其中一个TB指示域固定处于disable状态。
终端设备确定TB指示域处于disable状态的方式,可以参考方法300中实现方式A中的方式(2)或方式(3)。此处不再赘述。
可以理解,在方法600中,不用通过TB指示域中的MCS和RV为(26,1)的组合来指示该TB指示域处于disable状态。相当于释放了MCS和RV为(26,1)的组合的指示功能。
630,终端设备通过读取第二TB指示域中的MCS域可以确定第二数据的MCS,和/或,通过读取第二TB指示域中的RV域可以确定第二数据的RV。
可选地,终端设备也可以确定第二TB指示域开启的情况下,再通过读取第二TB指示域中的MCS域可以确定第二数据的MCS,和/或,通过读取第二TB指示域中的RV域可以确定第二数据的RV。
终端设备确定第二TB指示域的指示功能是否开启的方式,可以参考上述方法300中的方案2中的描述,此处不再赘述。
应理解,上述实施例中,以第一数据和第二数据为例进行了说明,本申请实施例并未限定于此。例如,终端设备还可以在第三时频资源接收第三数据、在第四时频资源接收第四数据等等。
基于上述实施例,复用了处于disable状态的第二TB指示域,例如,可以通过信令或NDI域等开启或关闭第二TB指示域中的指示功能,从而可以兼容2个或2个以上的MCS以及2个或2个以上的RV的动态指示,有很强的后向扩展性。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图3至图6详细说明了本申请实施例提供的方法。以下,结合图7至图10详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件 的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图7是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置700可以包括通信单元710和处理单元720。通信单元710可以与外部进行通信,处理单元720用于进行数据处理。通信单元710还可以称为通信接口或收发单元。通信接口用于输入和/或输出信息,信息包括指令和数据中的至少一项。可选地,该通信装置可以为芯片或芯片***。当该通信装置为芯片或芯片***时,通信接口可以是输入/输出接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在一种可能的设计中,该通信装置700可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路或芯片***。这时,该通信装置700可以称为终端设备。通信单元710用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元720用于执行上文方法实施例中终端设备的处理相关操作。
一种可能的实现方式,通信单元710用于:在第一时频资源上接收第一数据和在第二时频资源上接收第二数据,其中,第一时频资源和第二时频资源的频域资源不重叠,或,第一时频资源和第二时频资源的时域资源不重叠;通信单元710还用于:接收指示信息;处理单元720用于:根据指示信息确定第一数据和第二数据是否能够软比特信息合并解码。
可选地,第一时频资源和第二时频资源关联不同的准共址QCL信息。
可选地,指示信息承载于以下任意1种或多种以上信令中:无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、下行控制信息DCI。
可选地,通信单元710还用于:接收调度第一数据和第二数据的下行控制信息DCI,DCI中包括第一TB指示域和第二TB指示域,第一TB指示域处于使能状态,第二TB指示域处于去使能状态;指示信息承载于第二TB指示域中。
可选地,指示信息承载于第二TB指示域中,包括:指示信息承载于以下任意一项中:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
可选地,调度第一数据和第二数据的DCI中包括第一TB指示域和第二TB指示域,第一TB指示域处于使能状态,第二TB指示域处于去使能状态;指示信息包括第一信息,第一信息用于指示终端设备:第二TB指示域处于去使能状态。
可选地,第一信息还用于通知终端设备:第二TB指示域中的MCS域用于指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV。
可选地,指示信息还包括第二信息,第二信息为第二TB指示域中的NDI域取值,在第二TB指示域中的NDI域取值为第一数值的情况,第二TB指示域中的MCS域用于指示第二数据的MCS,第二TB指示域中的RV域用于指示第二数据的RV;在第二TB指示域中的NDI域取值为第二数值的情况,第二TB指示域中的MCS域和RV域为预留;其中,第一数值和第二数值不相等。
可选地,指示信息承载于调度第一数据和第二数据的DCI中,在调度第一数据和第二数据的DCI中包含2个TB指示域,且2个TB指示域中的一个TB指示域处于去使能状态的情况下,处理单元720用于:确定第一数据和第二数据能够软比特信息合并解码;在调度第一数据和第二数据的DCI中包含1个TB指示域的情况下,处理单元720用于:确定第一数据和第二数据不能软比特信息合并解码。
可选地,指示信息承载于调度第一数据和第二数据的DCI中的天线端口指示域,其中,天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,至少两种DMRS端口配置中DMRS端口数量相同。
可选地,至少两种DMRS端口配置满足以下任一条件:码分复用CDM组的个数相同,且端口号不同;CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或,CDM组的个数不同,且端口号相同。
可选地,通信装置700支持软比特信息合并的能力,或,通信装置700支持第一传输方案和第二传输方案。
可选地,通信单元710还用于通过UE能力上报:通信装置700支持软比特信息合并的能力,或,通信装置700支持第一传输方案和所述第二传输方案。
该通信装置700可实现对应于根据本申请实施例的方法300和方法600中的终端设备执行的步骤或者流程,该通信装置700可以包括用于执行图3中的方法300和图6中方法600中的终端设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300和图6中方法600的相应流程。
其中,当该通信装置700用于执行图3中的方法300时,通信单元710可用于执行方法300中的步骤310和步骤320,处理单元720可用于执行方法300中的步骤330。
当该通信装置700用于执行图6中的方法600时,通信单元710可用于执行方法600中的步骤610和步骤620,处理单元720可用于执行方法600中的步骤630。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置700中的通信单元710可通过图9中示出的终端设备900中的收发器910实现,该通信装置700中的处理单元720可通过图9中示出的终端设备900中的处理器920实现。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
还应理解,该通信装置700中的通信单元710也可以为输入/输出接口。
在另一种可能的设计中,该通信装置700可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路或芯片***。这时,该通信装置700可以称为网络设备。通信单元710用于执行上文方法实施 例中网络设备侧的收发相关操作,处理单元720用于执行上文方法实施例中网络设备的处理相关操作。
一种可能的实现方式,处理单元720用于:生成指示信息,指示信息用于终端设备确定第一数据和第二数据是否能够软比特信息合并解码,第一数据是在第一时频资源上传输的数据,第二数据是在第二时频资源上传输的数据,其中,第一时频资源和第二时频资源的频域资源不重叠,或,第一时频资源和第二时频资源的时域资源不重叠;通信单元710用于:发送指示信息。
可选地,第一时频资源和第二时频资源关联不同的准共址QCL信息。
可选地,指示信息承载于以下任意1种或多种以上信令中:无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、下行控制信息DCI。
可选地,通信单元710具体用于:发送调度第一数据和第二数据的下行控制信息DCI,DCI中包括第一TB指示域和第二TB指示域,第一TB指示域处于使能状态,第二TB指示域处于去使能状态;第二TB指示域中携带指示信息。
可选地,第二TB指示域中携带指示信息,包括:第二TB指示域中的以下任意一项中携带指示信息:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
可选地,通信单元710还用于:发送调度第一数据和第二数据的DCI,DCI中包括第一TB指示域和第二TB指示域,第一TB指示域处于使能状态,第二TB指示域处于去使能状态;指示信息包括第一信息,第一信息用于指示终端设备:第二TB指示域处于去使能状态。
可选地,第一信息还用于通知终端设备:第二TB指示域中的MCS域用于指示第二数据的MCS,和/或,第二TB指示域中的RV域用于指示第二数据的RV。
可选地,指示信息还包括第二信息,第二信息为第二TB指示域中的NDI域取值,在第二TB指示域中的NDI域取值为第一数值的情况,第二TB指示域中的MCS域用于指示第二数据的MCS,第二TB指示域中的RV域用于指示第二数据的RV;在第二TB指示域中的NDI域取值为第二数值的情况,第二TB指示域中的MCS域和RV域为预留;其中,第一数值和第二数值不相等。
可选地,通信单元710具体用于:发送调度第一数据和第二数据的DCI中的天线端口指示域,天线端口指示域中携带指示信息;其中,天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,至少两种DMRS端口配置中DMRS端口数量相同。
可选地,至少两种DMRS端口配置满足以下任一条件:码分复用CDM组的个数相同,且端口号不同;CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或,CDM组的个数不同,且端口号相同。
可选地,终端设备支持软比特信息合并的能力,或,终端设备支持第一传输方案和第二传输方案。
可选地,通信单元710还用于:接收终端设备上报的终端设备UE能力,UE能力指示:终端设备支持软比特信息合并的能力,或,终端设备支持第一传输方案和第二传输方 案。
该通信装置700可实现对应于根据本申请实施例的方法300和方法600中的网络设备执行的步骤或者流程,该通信装置700可以包括用于执行图3中的方法300和图6中方法600中的网络设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300和图6中方法600的相应流程。
其中,当该通信装置700用于执行图3中的方法300时,通信单元710可用于执行方法300中的步骤310和步骤320。
当该通信装置700用于执行图6中的方法600时,通信单元710可用于执行方法600中的步骤610和步骤620。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置700中的通信单元为可通过图10中示出的网络设备1000中的收发器1010实现,该通信装置700中的处理单元720可通过图10中示出的网络设备1000中的处理器1020实现。
还应理解,该通信装置700中的通信单元710也可以为输入/输出接口。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
图8是本申请实施例提供的通信装置800的又一示意性框图。如图所示,通信装置800包括收发器810、处理器820、和存储器830,存储器830中存储有程序,处理器820用于执行存储器830中存储的程序,对存储器830中存储的程序的执行,使得处理器820用于执行上文方法实施例中的相关处理步骤,对存储器830中存储的程序的执行,使得处理器820控制收发器810执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信装置800用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器830中存储的程序的执行,使得处理器820用于执行上文方法实施例中终端设备侧的处理步骤,对存储器830中存储的程序的执行,使得处理器820控制收发器810执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信装置800用于执行上文方法实施例中网络设备所执行的动作,这时,对存储器830中存储的程序的执行,使得处理器820用于执行上文方法实施例中网络设备侧的处理步骤,对存储器830中存储的程序的执行,使得处理器820控制收发器810执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种通信装置900,该通信装置900可以是终端设备也可以是芯片。该通信装置900可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置900为终端设备时,图9示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图9中,终端设备以手机作为例子。如图9所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图9所示,终端设备包括收发单元910和处理单元920。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元920,用于执行图3中的步骤330和图6中的步骤630,和/或,处理单元920还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元910还用于执行图3中所示的步骤310和步骤320、和图6中的步骤610和步骤620,和/或收发单元910还用于执行终端设备侧的其他收发步骤。
应理解,图9仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图9所示的结构。
当该通信设备900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1000,该通信装置1000可以是网络设备也可以是芯片。该通信装置1000可以用于执行上述方法实施例中由网络设备所执行的动作。
当该通信装置1000为网络设备时,例如为基站。图10示出了一种简化的基站结构示意图。基站包括1010部分以及1020部分。1010部分主要用于射频信号的收发以及射频信号与基带信号的转换;1020部分主要用于基带处理,对基站进行控制等。1010部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1020部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1010部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将1010部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1010部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1020部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1010部分的收发单元用于执行图3中所示的步骤310和步骤320、和图6中的步骤610和步骤620中网络设备侧的发送操作,和/或1010部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。1020部分的处理单元用于执行本申请实施例中网络设备侧的处理步骤。
应理解,图10仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图10所示的结构。
当该通信装置1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括AAU,还可以包括CU节点和/或DU节点,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶 体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种***,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬 盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代 码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (60)

  1. 一种处理数据的方法,其特征在于,包括:
    在第一时频资源上接收第一数据和在第二时频资源上接收第二数据,
    其中,所述第一时频资源和所述第二时频资源的频域资源不重叠,或,所述第一时频资源和所述第二时频资源的时域资源不重叠;
    接收指示信息;
    根据所述指示信息确定所述第一数据和所述第二数据是否能够软比特信息合并解码。
  2. 根据权利要求1所述的方法,其特征在于,
    所述接收指示信息,包括:
    接收调度所述第一数据和所述第二数据的下行控制信息DCI,所述DCI中包括第一传输块TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述指示信息承载于所述第二TB指示域中。
  3. 根据权利要求2所述的方法,其特征在于,
    所述指示信息承载于所述第二TB指示域中,包括:
    所述指示信息承载于以下任意一项或多项中:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
  4. 根据权利要求1所述的方法,其特征在于,
    调度所述第一数据和所述第二数据的DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述指示信息包括第一信息,所述第一信息用于通知:
    所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,和/或,所述第二TB指示域中的RV域用于指示所述第二数据的RV。
  5. 根据权利要求4所述的方法,其特征在于,
    所述指示信息还包括第二信息,所述第二信息为所述第二TB指示域中的NDI域取值,
    在所述第二TB指示域中的NDI域取值为第一数值的情况,所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,所述第二TB指示域中的RV域用于指示所述第二数据的RV;
    在所述第二TB指示域中的NDI域取值为第二数值的情况,所述第二TB指示域中的MCS域和RV域为预留;
    其中,所述第一数值和所述第二数值不相等。
  6. 根据权利要求1所述的方法,其特征在于,所述指示信息承载于调度所述第一数据和所述第二数据的DCI中,
    在所述调度所述第一数据和所述第二数据的DCI中包含2个TB指示域,且所述2个TB指示域中的一个TB指示域处于去使能状态的情况下,确定所述第一数据和所述第二数据能够软比特信息合并解码;
    在所述调度所述第一数据和所述第二数据的DCI中包含1个TB指示域的情况下,确 定所述第一数据和所述第二数据不能软比特信息合并解码。
  7. 根据权利要求1所述的方法,其特征在于,
    所述指示信息承载于调度所述第一数据和所述第二数据的DCI中的天线端口指示域,
    其中,所述天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,所述至少两种DMRS端口配置中DMRS端口数量相同。
  8. 根据权利要求7所述的方法,其特征在于,
    所述至少两种DMRS端口配置满足以下任一条件:
    码分复用CDM组的个数相同,且端口号不同;
    CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;
    CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或
    CDM组的个数不同,且端口号相同。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    终端设备支持软比特信息合并的能力,或,所述终端设备支持第一传输方案和第二传输方案。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    通过终端设备UE能力上报:所述终端设备支持所述软比特信息合并的能力,或,所述终端设备支持所述第一传输方案和所述第二传输方案。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一时频资源和所述第二时频资源关联不同的准共址QCL信息。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,
    所述指示信息承载于以下任意1种或多种以上信令中:
    无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、或下行控制信息DCI。
  13. 一种处理数据的方法,其特征在于,包括:
    生成指示信息,所述指示信息用于终端设备确定第一数据和第二数据是否能够软比特信息合并解码,所述第一数据是在第一时频资源上传输的数据,所述第二数据是在第二时频资源上传输的数据,
    其中,所述第一时频资源和所述第二时频资源的频域资源不重叠,或,所述第一时频资源和所述第二时频资源的时域资源不重叠;
    发送所述指示信息。
  14. 根据权利要求13所述的方法,其特征在于,
    所述发送所述指示信息,包括:
    发送调度所述第一数据和所述第二数据的下行控制信息DCI,所述DCI中包括第一传输块TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述第二TB指示域中携带所述指示信息。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第二TB指示域中携带所述指示信息,包括:
    所述第二TB指示域中的以下任意一项中携带所述指示信息:新传数据指示NDI域、 调制与编码策略指示MCS域、或冗余版本RV域。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    发送调度所述第一数据和所述第二数据的DCI,所述DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述指示信息包括第一信息,所述第一信息用于通知所述终端设备:
    所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,和/或,所述第二TB指示域中的RV域用于指示所述第二数据的RV。
  17. 根据权利要求16所述的方法,其特征在于,
    所述指示信息还包括第二信息,所述第二信息为所述第二TB指示域中的NDI域取值,
    所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,所述第二TB指示域中的RV域用于指示所述第二数据的RV的情况下,所述第二TB指示域中的NDI域取值为第一数值;
    所述第二TB指示域中的MCS域和RV域为预留的情况下,所述第二TB指示域中的NDI域取值为第二数值;
    其中,所述第一数值和所述第二数值不相等。
  18. 根据权利要求13所述的方法,其特征在于,
    所述发送所述指示信息,包括:
    发送调度所述第一数据和所述第二数据的下行控制信息DCI中的天线端口指示域,所述天线端口指示域中携带所述指示信息;
    其中,所述天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,所述至少两种DMRS端口配置中DMRS端口数量相同。
  19. 根据权利要求18所述的方法,其特征在于,
    所述至少两种DMRS端口配置满足以下任一条件:
    码分复用CDM组的个数相同,且端口号不同;
    CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;
    CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或
    CDM组的个数不同,且端口号相同。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述方法还包括:
    接收终端设备上报的终端设备UE能力,所述UE能力指示:所述终端设备支持所述软比特信息合并的能力,或,所述终端设备支持所述第一传输方案和所述第二传输方案。
  21. 根据权利要求13至20中任一项所述的方法,其特征在于,所述第一时频资源和所述第二时频资源关联不同的准共址QCL信息。
  22. 根据权利要求13至21中任一项所述的方法,其特征在于,
    所述指示信息承载于以下任意1种或多种以上信令中:
    无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、或下行控制信息DCI。
  23. 一种通信装置,其特征在于,包括:处理单元和通信单元,
    所述通信单元用于:在第一时频资源上接收第一数据和在第二时频资源上接收第二数据,
    其中,所述第一时频资源和所述第二时频资源的频域资源不重叠,或,所述第一时频资源和所述第二时频资源的时域资源不重叠;
    所述通信单元还用于:接收指示信息;
    所述处理单元用于:根据所述指示信息确定所述第一数据和所述第二数据是否能够软比特信息合并解码。
  24. 根据权利要求23所述的通信装置,其特征在于,所述通信单元具体用于:
    接收调度所述第一数据和所述第二数据的下行控制信息DCI,所述DCI中包括第一传输块TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述指示信息承载于所述第二TB指示域中。
  25. 根据权利要求24所述的通信装置,其特征在于,
    所述指示信息承载于所述第二TB指示域中,包括:
    所述指示信息承载于以下任意一项或多项中:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
  26. 根据权利要求23所述的通信装置,其特征在于,
    调度所述第一数据和所述第二数据的DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述指示信息包括第一信息,所述第一信息用于通知所述通信装置:
    所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,和/或,所述第二TB指示域中的RV域用于指示所述第二数据的RV。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述指示信息还包括第二信息,所述第二信息为所述第二TB指示域中的NDI域取值,
    在所述第二TB指示域中的NDI域取值为第一数值的情况,所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,所述第二TB指示域中的RV域用于指示所述第二数据的RV;
    在所述第二TB指示域中的NDI域取值为第二数值的情况,所述第二TB指示域中的MCS域和RV域为预留;
    其中,所述第一数值和所述第二数值不相等。
  28. 根据权利要求23所述的通信装置,其特征在于,所述指示信息承载于调度所述第一数据和所述第二数据的DCI中,
    在所述调度所述第一数据和所述第二数据的DCI中包含2个TB指示域,且所述2个TB指示域中的一个TB指示域处于去使能状态的情况下,所述处理单元用于:确定所述第一数据和所述第二数据能够软比特信息合并解码;
    在所述调度所述第一数据和所述第二数据的DCI中包含1个TB指示域的情况下,所述处理单元用于:确定所述第一数据和所述第二数据不能软比特信息合并解码。
  29. 根据权利要求23所述的通信装置,其特征在于,
    所述指示信息承载于调度所述第一数据和所述第二数据的DCI中的天线端口指示域,
    其中,所述天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,所述至少两种DMRS端口配置中DMRS端口数量相同。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述至少两种DMRS端口配置满足以下任一条件:
    码分复用CDM组的个数相同,且端口号不同;
    CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;
    CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或
    CDM组的个数不同,且端口号相同。
  31. 根据权利要求23至30中任一项所述的通信装置,其特征在于,
    所述通信装置支持软比特信息合并的能力,或,所述通信装置支持第一传输方案和第二传输方案。
  32. 根据权利要求31所述的通信装置,其特征在于,所述通信单元还用于:
    通过终端设备UE能力上报:所述通信装置支持所述软比特信息合并的能力,或,所述通信装置支持所述第一传输方案和所述第二传输方案。
  33. 根据权利要求23至32中任一项所述的通信装置,其特征在于,所述第一时频资源和所述第二时频资源关联不同的准共址QCL信息。
  34. 根据权利要求23至33中任一项所述的通信装置,其特征在于,
    所述指示信息承载于以下任意1种或多种以上信令中:
    无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、或下行控制信息DCI。
  35. 根据权利要求23至34中任一项所述的通信装置,其特征在于,所述处理单元为处理器,所述通信单元为收发器。
  36. 根据权利要求23至35中任一项所述的通信装置,其特征在于,所述通信装置为以下任一项:终端设备、芯片或芯片***。
  37. 一种通信装置,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于:生成指示信息,所述指示信息用于终端设备确定第一数据和第二数据是否能够软比特信息合并解码,所述第一数据是在第一时频资源上传输的数据,所述第二数据是在第二时频资源上传输的数据,
    其中,所述第一时频资源和所述第二时频资源的频域资源不重叠,或,所述第一时频资源和所述第二时频资源的时域资源不重叠;
    所述通信单元用于:发送所述指示信息。
  38. 根据权利要求37所述的通信装置,其特征在于,
    所述通信单元具体用于:
    发送调度所述第一数据和所述第二数据的下行控制信息DCI,所述DCI中包括第一传输块TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述第二TB指示域中携带所述指示信息。
  39. 根据权利要求38所述的通信装置,其特征在于,
    所述第二TB指示域中携带所述指示信息,包括:
    所述第二TB指示域中的以下任意一项中携带所述指示信息:新传数据指示NDI域、调制与编码策略指示MCS域、或冗余版本RV域。
  40. 根据权利要求37所述的通信装置,其特征在于,所述通信单元还用于:
    发送调度所述第一数据和所述第二数据的DCI,所述DCI中包括第一TB指示域和第二TB指示域,所述第一TB指示域处于使能状态,所述第二TB指示域处于去使能状态;
    所述指示信息包括第一信息,所述第一信息用于通知所述终端设备:
    所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,和/或,所述第二TB指示域中的RV域用于指示所述第二数据的RV。
  41. 根据权利要求40所述的通信装置,其特征在于,
    所述指示信息还包括第二信息,所述第二信息为所述第二TB指示域中的NDI域取值,
    所述第二TB指示域中的MCS域用于指示所述第二数据的MCS,所述第二TB指示域中的RV域用于指示所述第二数据的RV的情况下,所述第二TB指示域中的NDI域取值为第一数值;
    所述第二TB指示域中的MCS域和RV域为预留的情况下,所述第二TB指示域中的NDI域取值为第二数值;
    其中,所述第一数值和所述第二数值不相等。
  42. 根据权利要求37所述的通信装置,其特征在于,
    所述通信单元具体用于:
    发送调度所述第一数据和所述第二数据的下行控制信息DCI中的天线端口指示域,所述天线端口指示域中携带所述指示信息;
    其中,所述天线端口指示域指示至少两种解调参考信号DMRS端口配置中的一种DMRS端口配置,所述至少两种DMRS端口配置中DMRS端口数量相同。
  43. 根据权利要求42所述的通信装置,其特征在于,
    所述至少两种DMRS端口配置满足以下任一条件:
    码分复用CDM组的个数相同,且端口号不同;
    CDM组的个数相同,端口号不同,且不同的端口号来自不同的CDM组;
    CDM组的个数相同,端口号不同,且不同的端口号来自相同的CDM组;或
    CDM组的个数不同,且端口号相同。
  44. 根据权利要求37至43中任一项所述的通信装置,其特征在于,所述通信单元还用于:
    接收所述终端设备上报的终端设备UE能力,所述UE能力指示:所述终端设备支持所述软比特信息合并的能力,或,所述终端设备支持所述第一传输方案和所述第二传输方案。
  45. 根据权利要求37至44中任一项所述的通信装置,其特征在于,所述第一时频资源和所述第二时频资源关联不同的准共址QCL信息。
  46. 根据权利要求37至45中任一项所述的通信装置,其特征在于,
    所述指示信息承载于以下任意1种或多种以上信令中:
    无线资源控制RRC信令、媒体接入控制-控制元素MAC-CE信令、或下行控制信息DCI。
  47. 根据权利要求37至46中任一项所述的通信装置,其特征在于,所述处理单元为处理器,所述通信单元为收发器。
  48. 根据权利要求37至47中任一项所述的通信装置,其特征在于,所述通信装置为以下任一项:网络设备、芯片或芯片***。
  49. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至12中任一项所述的方法。
  50. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求13至22中任一项所述的方法。
  51. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至12中任一项所述的方法。
  52. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求13至22中任一项所述的方法。
  53. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至12中任一项所述的方法。
  54. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求13至22中任一项所述的方法。
  55. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至12中任一项所述的方法。
  56. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求13至22中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求13至22中任一项所述的方法。
  59. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的方法。
  60. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求13至22中任一项所述的方法。
PCT/CN2020/103651 2019-08-14 2020-07-23 处理数据的方法和通信装置 WO2021027518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748755.2A CN112399566B (zh) 2019-08-14 2019-08-14 处理数据的方法和通信装置
CN201910748755.2 2019-08-14

Publications (1)

Publication Number Publication Date
WO2021027518A1 true WO2021027518A1 (zh) 2021-02-18

Family

ID=74569497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103651 WO2021027518A1 (zh) 2019-08-14 2020-07-23 处理数据的方法和通信装置

Country Status (2)

Country Link
CN (1) CN112399566B (zh)
WO (1) WO2021027518A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087099A (zh) * 2022-08-19 2022-09-20 翱捷科技股份有限公司 一种寻呼信道的增强接收装置和方法
US20230006763A1 (en) * 2021-06-30 2023-01-05 Qualcomm Incorporated Dynamic demodulation reference signal configuration signaling for adaptation with different transmission modes
CN116112132A (zh) * 2021-11-11 2023-05-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2023125420A1 (zh) * 2021-12-28 2023-07-06 维沃移动通信有限公司 参考信号端口指示方法、终端及网络侧设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278852A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 信号传输方法及通信装置
CN115484675A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 资源配置的方法及装置
WO2023206288A1 (zh) * 2022-04-28 2023-11-02 北京小米移动软件有限公司 传输方式指示方法、装置、通信设备及存储介质
CN117812740A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种协作传输的数据调度的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291209A (zh) * 2010-06-20 2011-12-21 上海贝尔股份有限公司 增强长期演进的管理设备中控制上行传输的方法及装置
CN108260208A (zh) * 2016-12-29 2018-07-06 华为技术有限公司 一种多载波中传输数据的方法、终端设备和网络设备
US20190230697A1 (en) * 2018-01-22 2019-07-25 Qualcomm Incorporated Physical downlink control channel (pdcch) repetition and decoding for ultra-reliability low latency communication (urllc)
CN110352574A (zh) * 2017-03-01 2019-10-18 瑞典爱立信有限公司 改进的确认信令
CN111294143A (zh) * 2019-01-11 2020-06-16 展讯半导体(南京)有限公司 Pdsch软合并方法及装置、存储介质、用户终端、基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018001113A1 (zh) * 2016-06-29 2018-01-04 华为技术有限公司 通信方法、装置和***
CN108023841B (zh) * 2016-11-04 2024-01-05 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN108809507B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 用于数据传输的方法、终端和网络设备
US10979988B2 (en) * 2017-11-07 2021-04-13 Apple Inc. Methods of limited buffer rate-matching (LBRM), pre-emption, and sidelink synchronization in new radio (NR) systems
US11711171B2 (en) * 2018-01-11 2023-07-25 Huawei Technologies Co., Ltd. System and method for reliable transmission over network resources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291209A (zh) * 2010-06-20 2011-12-21 上海贝尔股份有限公司 增强长期演进的管理设备中控制上行传输的方法及装置
CN108260208A (zh) * 2016-12-29 2018-07-06 华为技术有限公司 一种多载波中传输数据的方法、终端设备和网络设备
CN110352574A (zh) * 2017-03-01 2019-10-18 瑞典爱立信有限公司 改进的确认信令
US20190230697A1 (en) * 2018-01-22 2019-07-25 Qualcomm Incorporated Physical downlink control channel (pdcch) repetition and decoding for ultra-reliability low latency communication (urllc)
CN111294143A (zh) * 2019-01-11 2020-06-16 展讯半导体(南京)有限公司 Pdsch软合并方法及装置、存储介质、用户终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Further Discussion on Multi-TRP Transmission", 3GPP DRAFT; R1-1905610_FURTHER DISCUSSION ON MULTI TRP TRANSMISSION, vol. RAN WG1, 5 April 2019 (2019-04-05), Xi’an, China, pages 1 - 14, XP051707668 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230006763A1 (en) * 2021-06-30 2023-01-05 Qualcomm Incorporated Dynamic demodulation reference signal configuration signaling for adaptation with different transmission modes
US11695499B2 (en) * 2021-06-30 2023-07-04 Qualcomm Incorporated Dynamic demodulation reference signal configuration signaling for adaptation with different transmission modes
CN116112132A (zh) * 2021-11-11 2023-05-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2023125420A1 (zh) * 2021-12-28 2023-07-06 维沃移动通信有限公司 参考信号端口指示方法、终端及网络侧设备
CN115087099A (zh) * 2022-08-19 2022-09-20 翱捷科技股份有限公司 一种寻呼信道的增强接收装置和方法
CN115087099B (zh) * 2022-08-19 2022-11-15 翱捷科技股份有限公司 一种寻呼信道的增强接收装置和方法

Also Published As

Publication number Publication date
CN112399566A (zh) 2021-02-23
CN112399566B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN109392152B (zh) 通信方法和通信装置
WO2021027518A1 (zh) 处理数据的方法和通信装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN110463099B (zh) 接收用于相位噪声消除的ptrs的方法及其装置
EP2606617B1 (en) Transmission of reference signals
US9686776B2 (en) Method and device for processing information
JP2017184284A (ja) 協調マルチポイント(CoMP)システムのための周期的チャネル状態情報レポート
CN111194086B (zh) 发送和接收数据的方法和通信装置
WO2020199856A1 (zh) 信息传输的方法和通信装置
WO2018126960A1 (zh) 通信方法、网络侧设备和终端设备
US20230057836A1 (en) Apparatus and method for transmitting or receiving signal in wireless communication system
US20220046694A1 (en) Method and apparatus for control and data information resource mapping in wireless cellular communication system
US20230345376A1 (en) Method for determining feature of terminal and communication apparatus
WO2021065153A1 (ja) 端末及び通信方法
CN112152761B (zh) 一种通信方法、装置及存储介质
CN114175758A (zh) 用于处理无线通信***中的传输冲突的装置和方法
US11968047B2 (en) Method and apparatus for sending feedback information, and method and apparatus for receiving feedback information
CN112398515B (zh) 用于下行数据传输的方法、终端设备以及网络设备
CN115037342B (zh) Ue配对方法、装置和存储介质
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2022215299A1 (ja) 基地局、端末、及び、通信方法
WO2023208211A1 (zh) 一种通信方法及装置
WO2023013522A1 (ja) 基地局、端末、及び、通信方法
CN113395764B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021065154A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853469

Country of ref document: EP

Kind code of ref document: A1