WO2022009880A1 - 光硬化性組成物、立体造形物、及び歯科用製品 - Google Patents

光硬化性組成物、立体造形物、及び歯科用製品 Download PDF

Info

Publication number
WO2022009880A1
WO2022009880A1 PCT/JP2021/025460 JP2021025460W WO2022009880A1 WO 2022009880 A1 WO2022009880 A1 WO 2022009880A1 JP 2021025460 W JP2021025460 W JP 2021025460W WO 2022009880 A1 WO2022009880 A1 WO 2022009880A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic monomer
photocurable composition
mass
oxygen atom
Prior art date
Application number
PCT/JP2021/025460
Other languages
English (en)
French (fr)
Inventor
孝曉 林
俊一 酒巻
万依 木村
博紀 村井
卓 遠藤
栄司 小林
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US18/004,185 priority Critical patent/US20230242785A1/en
Priority to JP2022535345A priority patent/JP7429783B2/ja
Priority to CN202180047792.6A priority patent/CN115768806A/zh
Priority to EP21837231.6A priority patent/EP4163308A4/en
Publication of WO2022009880A1 publication Critical patent/WO2022009880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/34Making or working of models, e.g. preliminary castings, trial dentures; Dowel pins [4]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/08Mouthpiece-type retainers or positioners, e.g. for both the lower and upper arch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • B29L2031/7536Artificial teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • This disclosure relates to photocurable compositions, three-dimensional objects, and dental products.
  • Patent Document 1 Japanese Patent No. 4160311
  • dental products for example, dental surgical guides, mouthpieces, or dental models
  • dental products for example, dental surgical guides, mouthpieces, or dental models
  • a three-dimensional model which is a cured product of a photocurable composition
  • the dimensional accuracy of the three-dimensional model may be impaired due to deformation due to heat sterilization. Therefore, dimensional accuracy after heat sterilization may be required for a three-dimensional model that is a cured product of a photocurable composition used as at least a part of a dental product.
  • the cured product (three-dimensional model) of the photocurable composition used for applications other than dental products may also be required to have dimensional accuracy after heating (for example, after heat sterilization).
  • An object of one aspect of the present disclosure is to provide a photocurable composition capable of producing a three-dimensional model having excellent dimensional accuracy after heating, and a three-dimensional object and a dental product having excellent dimensional accuracy after heating. ..
  • the means for solving the above problems include the following aspects. ⁇ 1> A photocurable composition containing a photopolymerizable component and a photopolymerization initiator. By irradiating the photocurable composition with visible light having a wavelength of 405 nm at an irradiation amount of 11 mJ / cm 2, a cured layer P1 having a thickness of 50 ⁇ m is formed, and the cured layer P1 is laminated in the thickness direction.
  • a rectangular plate-shaped test piece P1 having a length of 40 mm, a width of 10 mm, and a thickness of 0.5 mm was prepared by and when measuring storage modulus at temperature increase while the conditions of measurement frequency 1Hz at a temperature rise rate 3 ° C. / min, a storage modulus at 135 ° C. is at 3.0 ⁇ 10 8 Pa or more, Photocurable composition.
  • the photopolymerizable component is An oxygen atom having two (meth) acryloyloxy groups and a cyclic structure, forming an oxy group in one (meth) acryloyloxy group, and an oxy group in the other (meth) acryloyloxy group.
  • Di (meth) acrylic monomer (A) the distance between the forming oxygen atom and the oxygen atom is 15.0 ⁇ or more.
  • Di (meth) acrylic monomer (B) with a distance of less than 15.0 ⁇ , and Poly (meth) acrylic monomer (C) having three or more (meth) acryloyloxy groups The photocurable composition according to ⁇ 1> or ⁇ 2>, which comprises at least one of.
  • the photopolymerizable component is The two types of diaza having different distances between the oxygen atom forming an oxy group in one (meth) acryloyloxy group and the oxygen atom forming an oxy group in the other (meth) acryloyloxy group. Does it contain (meth) acrylic monomer (A)? Or, The di (meth) acrylic monomer (A), the mono (meth) acrylic monomer (D) having one (meth) acryloyloxy group and at least one of a branched structure and a cyclic structure, and the di (meth) acrylic monomer ( B), including at least one of, The photocurable composition according to ⁇ 3>.
  • the photopolymerizable component contains the di (meth) acrylic monomer (B) and Containing two or more of the di (meth) acrylic monomers (B), Containing a mono (meth) acrylic monomer having one (meth) acryloyloxy group, and Satisfying at least one of containing a di (meth) acrylic monomer other than the di (meth) acrylic monomer (B) having two (meth) acryloyloxy groups.
  • the photopolymerizable component is With the poly (meth) acrylic monomer (C), At least one of a mono (meth) acrylic monomer having one (meth) acryloyloxy group and a di (meth) acrylic monomer having two (meth) acryloyloxy groups.
  • the total content of the di (meth) acrylic monomer (A), the di (meth) acrylic monomer (B), and the poly (meth) acrylic monomer (C) is the total amount of the (meth) acrylic monomer component. 50% by mass or more,
  • the photopolymerizable component is An oxygen atom having two (meth) acryloyloxy groups and a cyclic structure, forming an oxy group in one (meth) acryloyloxy group, and an oxy group in the other (meth) acryloyloxy group.
  • a di (meth) acrylic monomer (X) having a distance of 17.0 ⁇ or more between the forming oxygen atom and the di (meth) acrylic monomer (X).
  • the total content of the di (meth) acrylic monomer (X) and the di (meth) acrylic monomer (Y) is 50% by mass or more with respect to the total amount of the (meth) acrylic monomer component, ⁇ 8.
  • the photocurable composition according to. ⁇ 10> The light according to ⁇ 8> or ⁇ 9>, wherein the content of the di (meth) acrylic monomer (X) is 50% by mass to 90% by mass with respect to the total amount of the (meth) acrylic monomer component. Curable composition.
  • ⁇ 11> Any one of ⁇ 8> to ⁇ 10>, wherein the content of the di (meth) acrylic monomer (Y) is 10% by mass to 50% by mass with respect to the total amount of the (meth) acrylic monomer component.
  • the photocurable composition according to one. ⁇ 12> The viscosity measured by an E-type viscometer under the conditions of 25 ° C. and 50 rpm is 5 mPa ⁇ s to 6000 mPa ⁇ s.
  • ⁇ 13> The photocurable composition according to any one of ⁇ 1> to ⁇ 12>, which is a photocurable composition for stereolithography.
  • ⁇ 14> The photocurable composition according to any one of ⁇ 1> to ⁇ 13>, which is used for manufacturing a dental product by stereolithography.
  • ⁇ 15> A three-dimensional model which is a cured product of the photocurable composition according to any one of ⁇ 1> to ⁇ 14>.
  • ⁇ 16> A dental product containing the three-dimensional object according to ⁇ 15>.
  • ⁇ 17> The dental product according to ⁇ 15>, which is a dental surgical guide, a dental tray, a mouthpiece, or a dental model.
  • a photocurable composition capable of producing a three-dimensional model having excellent dimensional accuracy after heating (for example, after heat sterilization; the same applies hereinafter), and a three-dimensional model having excellent dimensional accuracy after heating. And dental products are provided.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the amount of each component contained in the composition is the sum of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means quantity.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • "light” is a concept including active energy rays such as ultraviolet rays and visible light.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylic means acrylic or methacrylic.
  • the photocurable compositions of the present disclosure are: A photocurable composition containing a photopolymerizable component and a photopolymerization initiator.
  • the photocurable composition is irradiated with visible light having a wavelength of 405 nm at an irradiation dose of 11 mJ / cm 2, to form a cured layer P1 having a thickness of 50 ⁇ m, and the cured layer P1 is laminated in the thickness direction to form a length.
  • a rectangular plate-shaped test piece P1 having a length of 40 mm, a width of 10 mm, and a thickness of 0.5 mm was prepared, and the prepared test piece P1 was subjected to a temperature rise range of 25 ° C to 300 ° C and a rise by dynamic elastic modulus measurement.
  • a storage modulus at 135 ° C. is at 3.0 ⁇ 10 8 Pa or more, It is a photocurable composition.
  • the photocurable composition of the present disclosure it is possible to produce a three-dimensional model having excellent dimensional accuracy after heating. Why such an effect is exhibited, by a storage modulus at the 135 ° C. is 3.0 ⁇ 10 8 Pa or more, can produce a three-dimensional object excellent in dimensional accuracy during manufacture, and the produced solid This is thought to be because the deformation of the three-dimensional model at the stage of heating the model can be suppressed.
  • the heating temperature is preferably 80 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C., and even more preferably 110 ° C. to 160 ° C.
  • the heating time is preferably 0.3 to 120 minutes, more preferably 0.5 to 60 minutes, and even more preferably 1 to 20 minutes.
  • An example of the above heating is heat sterilization by an autoclave.
  • the production conditions for producing a three-dimensional model using the photocurable composition of the present disclosure are not particularly limited, and are not necessarily the same as the production conditions for the test piece P1. Even if the manufacturing conditions of the three-dimensional model and the production conditions of the test piece P1 are different, the storage elastic modulus at 135 ° C., the dimensional accuracy during the production of the three-dimensional model, and the deformation during heating of the three-dimensional model There is a correlation between difficulty and. That is, the storage elastic modulus at 135 ° C. is an index of the dimensional accuracy at the time of manufacturing and the resistance to deformation of the three-dimensional model manufactured by using the photocurable composition of the present disclosure. be.
  • stereolithography As a production method when producing a three-dimensional model using the photocurable composition of the present disclosure, stereolithography is preferable.
  • the photocurable composition of the present disclosure has a stronger correlation between the storage elastic modulus at 135 ° C., the dimensional accuracy during the production of the three-dimensional model, and the difficulty of deformation during heating of the three-dimensional model.
  • the effect of the object (that is, the effect of excellent dimensional accuracy when the three-dimensional object is heated) is more effectively exhibited.
  • the photocurable composition of the present disclosure is preferably a photocurable composition for stereolithography, in other words, a three-dimensional model produced by using the photocurable composition of the present disclosure is preferable. Is a stereolithographic object (that is, a cured product by stereolithography).
  • Stereolithography is a method of laminating the cured layers to obtain a cured product (that is, a stereolithographic product) by repeating an operation of irradiating the photocurable composition with light to form a cured layer.
  • the stereolithography may be an inkjet type stereolithography or a liquid tank type stereolithography (that is, a liquid tank stereolithography). From the viewpoint that the effect of the photocurable composition of the present disclosure is more effectively exerted, the stereolithography is preferably a liquid tank type stereolithography.
  • a droplet of a photocurable composition is ejected from an inkjet nozzle onto a substrate, and the droplets adhering to the substrate are irradiated with light to obtain a cured product of the photocurable composition.
  • the photocurable composition is ejected from the inkjet nozzle to the substrate while scanning the head provided with the inkjet nozzle and the light source in a plane, and the ejected photocurable composition.
  • a cured layer is formed by irradiating an object with light, and these operations are repeated to sequentially stack the cured layers to obtain a cured product (that is, a photo-shaped product).
  • the stereolithography of the liquid tank method is different from the stereolithography of the inkjet method in that a liquid tank is used.
  • Examples of the liquid tank stereolithography include DLP (Digital Light Processing) stereolithography and SLA (Stereolithography) stereolithography.
  • DLP Digital Light Processing
  • SLA Stepolithography
  • the stereolithography of the liquid tank method is preferably the DLP method.
  • a build table that can be moved vertically, A tray (ie, a liquid tank) that is located below the build table (on the gravity direction side; the same applies hereinafter), contains a light-transmitting portion, and contains a photocurable composition.
  • a light source for example, an LED light source
  • 3D printers eg, "Cala Print 4.0" manufactured by Kulzer, "Max UV” manufactured by Asiga, etc.
  • a one-layer gap is provided between the build table and the tray, and this gap is filled with the photocurable composition.
  • the photocurable composition filled in the gap is irradiated with surface-like light from below through the light-transmitting portion of the tray, and the area irradiated with the light is cured to cure the first layer. Form a hardened layer.
  • the gap between the build table and the tray is then widened by the next layer and the resulting space is filled with the photocurable composition.
  • the photocurable composition filled in the space is irradiated with light in the same manner as in the case of curing the first layer to form a second cured layer.
  • the cured layers are laminated to produce a three-dimensional model.
  • the three-dimensional model may be further cured by further irradiating the manufactured three-dimensional object with light.
  • the description of Japanese Patent No. 5111880 and Japanese Patent No. 5235506 may be referred to.
  • the use of the photocurable composition of the present disclosure is not particularly limited.
  • the photocurable composition of the present disclosure is preferably a photocurable composition used for manufacturing a dental product by stereolithography from the viewpoint of further improving the dimensional accuracy at the time of heating of the three-dimensional model.
  • dental products include dental prostheses, medical instruments used in the oral cavity, dental models, vanishing casting models, and the like.
  • dental prostheses include inlays, crowns, bridges, temporary crowns, temporary bridges and the like.
  • Medical instruments used in the oral cavity include dentures (eg, complete dentures (full dentures), partial dentures (partial dentures), etc.), mouthpieces (eg, sports mouthguards, occlusal sprints, etc.), etc.
  • Examples include orthodontic appliances, impression taking trays, dental surgical guides, and the like.
  • Examples of the dental model include a tooth jaw model and the like.
  • the photocurable compositions of the present disclosure can also be used in the manufacture of industrial products other than dental products, for example, molding dies, housings or parts in automobiles, home appliances, or precision equipment, or these. It can be used for prototyping of housings or parts.
  • Dental products that are used by heating are preferable.
  • the test piece P1 produced by using the photocurable composition of the present disclosure is heated in a temperature rising range of 25 ° C. to 300 ° C. and a temperature rising rate of 3 ° C./min by dynamic viscoelasticity measurement.
  • the storage modulus at 135 ° C. is 3.0 ⁇ 10 8 Pa or more.
  • the storage elastic modulus at 135 ° C. is preferably 3.5 ⁇ 10 8 Pa or more, more preferably 4.0 ⁇ 10 8 Pa or more, from the viewpoint of being superior in dimensional accuracy after heating of the three-dimensional model to be manufactured. , and still more preferably 4.5 ⁇ 10 8 Pa or more.
  • the upper limit of the storage elastic modulus at the 135 ° C. is preferably 3.5 ⁇ 10 9 Pa, more It is preferably 3.1 ⁇ 10 9 Pa, more preferably 3.0 ⁇ 10 9 Pa, still more preferably 2.0 ⁇ 10 9 Pa, and even more preferably 1.0 ⁇ 10 9 Pa. ..
  • the excellent toughness of the three-dimensional model is advantageous from the viewpoint of improving the crack resistance of the three-dimensional model (for example, improving the crack resistance required for dental products).
  • Test piece P1 is a rectangular plate-shaped test piece having a length of 40 mm, a width of 10 mm, and a thickness of 0.5 mm.
  • the test piece P1 irradiates the photocurable composition of the present disclosure with visible light having a wavelength of 405 nm at an irradiation amount of 11 mJ / cm 2 to form a cured layer P1 having a thickness of 50 ⁇ m, and the cured layer P1 is formed in the thickness direction.
  • the model P1 is irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 3 J / cm 2 . It is produced by optical modeling under the conditions to be used.
  • the test piece P1 can be produced, for example, according to an example of the above-mentioned DLP method stereolithography. In the examples described later, a test piece P1 was produced using "Cala Print 4.0" manufactured by Kulzer, which is a DLP type 3D printer.
  • the storage elastic modulus at 135 ° C. in the present disclosure is, in detail, under the condition of a measurement frequency of 1 Hz while raising the temperature in a temperature rise range of 25 ° C to 300 ° C and a temperature rise rate of 3 ° C / min by dynamic viscoelastic measurement. It is the storage elastic modulus at 135 ° C. when the storage elastic modulus is measured.
  • a dynamic viscoelasticity measuring device “DVA-225” manufactured by IT Measurement Control Co., Ltd. was used as a device for measuring dynamic viscoelasticity.
  • the photocurable composition of the present disclosure contains at least one photopolymerizable component.
  • the photopolymerizable component include compounds containing an ethylenic double bond.
  • the compound containing an ethylenically double bond include (meth) acrylic monomer, styrene, a styrene derivative, (meth) acrylonitrile, and the like.
  • the photopolymerizable component As the photopolymerizable component, the photopolymerizable component described in paragraphs 0030 to 0059 of International Publication No. 2019/189652 may be used.
  • the content of the photopolymerizable component with respect to the total amount of the photocurable composition of the present disclosure is preferably 60% by mass or more, preferably 80% by mass. The above is more preferable, and 90% by mass or more is further preferable.
  • the photopolymerizable component preferably contains at least one (meth) acrylic monomer.
  • the (meth) acrylic monomer means a monomer having one or more (meth) acryloyl groups.
  • the (meth) acrylic monomer a monomer having one or more (meth) acryloyloxy groups is preferable.
  • all (meth) acrylic monomers contained in the photocurable composition may be referred to as "(meth) acrylic monomer component", and all contained in the photocurable composition of the present disclosure.
  • the total content of the (meth) acrylic monomer may be referred to as "the total amount of the (meth) acrylic monomer component”.
  • the total amount of the (meth) acrylic monomer component with respect to the total amount of the photopolymerizable component in the photocurable composition of the present disclosure is 80% by mass or more. It is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 95% by mass or more.
  • the total amount of the (meth) acrylic monomer component with respect to the total amount of the photocurable composition of the present disclosure is preferably 60% by mass or more, preferably 80% by mass. % Or more, more preferably 90% by mass or more.
  • the (meth) acrylic monomer constituting the (meth) acrylic monomer component may be a monomer having one or more (meth) acryloyl groups, and is not particularly limited.
  • (Meta) acrylic monomer is It may be a mono (meth) acrylic monomer having one (meth) acryloyl group (hereinafter, also referred to as “monofunctional (meth) acrylic monomer”). It may be a di (meth) acrylic monomer having two (meth) acryloyl groups (hereinafter, also referred to as “bifunctional (meth) acrylic monomer”). It may be a poly (meth) acrylic monomer having three or more (meth) acryloyl groups (hereinafter, also referred to as “polyfunctional (meth) acrylic monomer”).
  • the mono (meth) acrylic monomer a mono (meth) acrylic monomer having one (meth) acryloyloxy group is preferable.
  • the di (meth) acrylic monomer a di (meth) acrylic monomer having two (meth) acryloyloxy groups is preferable.
  • the tri (meth) acrylic monomer a poly (meth) acrylic monomer having three or more (meth) acryloyloxy groups is preferable.
  • the photopolymerizable component is An oxygen atom having two (meth) acryloyloxy groups and a cyclic structure, forming an oxy group in one (meth) acryloyloxy group, and an oxy group in the other (meth) acryloyloxy group.
  • Di (meth) acrylic monomer (A) the distance between the forming oxygen atom and the oxygen atom is 15.0 ⁇ or more.
  • a storage modulus at 135 ° C. is 3.0 ⁇ 10 8 Pa or more.
  • the di (meth) acrylic monomer (A) has two (meth) acryloyloxy groups, a cyclic structure, an oxygen atom forming an oxy group in one (meth) acryloyloxy group, and the other.
  • the distance between d1 ie, the oxygen atom forming the oxy group in one (meth) acryloyloxy group and the oxygen atom forming the oxy group in the other (meth) acryloyloxy group.
  • d1 means a value obtained by using the "display distance measurement" function in "Chem 3D” (version 18.2.0.48) manufactured by PerkinElmer.
  • the upper limit of d1 in the di (meth) acrylic monomer (A) is not particularly limited, but the upper limit is, for example, 25.0 ⁇ .
  • the number of rings in the cyclic structure contained in the di (meth) acrylic monomer (A) may be only one or two or more.
  • the cyclic structure contained in the di (meth) acrylic monomer (A) may be either an aromatic ring structure or an alicyclic structure, but it is preferable to include an aromatic ring structure.
  • the cyclic structure contained in the di (meth) acrylic monomer (A) is particularly preferably a bisphenol A structure.
  • the di (meth) acrylic monomer (A) may contain at least one of an ethyleneoxy group and a propyleneoxy group in total.
  • the molecular weight of the di (meth) acrylic monomer (A) is preferably 400 to 1000, more preferably 400 to 800, and even more preferably 400 to 700.
  • the di (meth) acrylic monomer (A) is preferably a dimethacrylic monomer having two methacryloyloxy groups.
  • the di (meth) acrylic monomer (B) has two (meth) acryloyloxy groups, an oxygen atom forming an oxy group in one (meth) acryloyloxy group and the other (meth).
  • the d1 in the di (meth) acrylic monomer (B) is preferably 10.0 ⁇ or less.
  • the lower limit of d1 in the di (meth) acrylic monomer (B) is not particularly limited, but the lower limit is, for example, 3.0 ⁇ .
  • the molecular weight of the di (meth) acrylic monomer (B) is preferably 150 to 400, more preferably 170 to 350.
  • di (meth) acrylic monomer (B) examples include neopentyl glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, dimethylol-tricyclodecandi (meth) acrylate, and dioxane glycol di.
  • examples include acrylate.
  • the poly (meth) acrylic monomer (C) is a poly (meth) acrylic monomer having three or more (meth) acryloyloxy groups.
  • the molecular weight of the poly (meth) acrylic monomer (C) is preferably 5000 or less, more preferably 3000 or less, and further preferably 2500 or less.
  • the lower limit of the molecular weight of the poly (meth) acrylic monomer (C) is not particularly limited as long as it is a poly (meth) acrylic monomer having three or more (meth) acryloyloxy groups.
  • the lower limit of the molecular weight of the poly (meth) acrylic monomer (C) is, for example, 200, preferably 250.
  • the total content of the di (meth) acrylic monomer (A), the di (meth) acrylic monomer (B), and the poly (meth) acrylic monomer (C) is (meth) acrylic. It is preferably 30% by mass or more, more preferably 40% by mass or more, based on the total amount of the monomer components (that is, the total content of all (meth) acrylic monomers contained in the photocurable composition). More preferably, it is 50% by mass or more.
  • the total content may be 100% by mass or less than 100% by mass (for example, 95% by mass or less, 90% by mass or less, etc.).
  • the photopolymerizable component is added to at least one of the above-mentioned di (meth) acrylic monomer (A), di (meth) acrylic monomer (B), and poly (meth) acrylic monomer (C), as well as mono (mono (meth) acrylic monomer (C). Meta) Acrylic monomer may be contained.
  • the mono (meth) acrylic monomer a mono (meth) acrylic monomer having one (meth) acryloyloxy group is preferable.
  • the molecular weight of the mono (meth) acrylic monomer is preferably 80 to 600, more preferably 100 to 400, and further preferably 100 to 300.
  • a mono (meth) acrylic monomer (D) having one (meth) acryloyloxy group and at least one of a branched structure and a cyclic structure is more preferable.
  • Examples of the mono (meth) acrylic monomer (D) include tertiary butyl (meth) acrylate. Cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, norbornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 4-acryloylmorpholine, dicyclopentanylmethyl (meth) acrylate, etc. Can be mentioned.
  • aspects A to C which are preferred embodiments of the photocurable composition of the present disclosure, are shown. However, at least two of aspects A to C may have overlapping portions.
  • Aspect A which is one of the preferred embodiments of the photocurable composition, is The photopolymerizable component Does it contain two kinds of di (meth) acrylic monomers (A) having different distances (d1)? Or, Di (meth) acrylic monomer (A), mono (meth) acrylic monomer having one (meth) acryloyloxy group, and di (meth) acrylic monomer (A) having two (meth) acryloyloxy groups. It is an embodiment including at least one of (meth) acrylic monomers.
  • the content of the di (meth) acrylic monomer (A) is the total amount of the (meth) acrylic monomer component (that is, the total content of all the (meth) acrylic monomers contained in the photocurable composition). On the other hand, it is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and particularly preferably 75% by mass or more.
  • the content of the di (meth) acrylic monomer (A) with respect to the total amount of the (meth) acrylic monomer component may be 90% by mass or less, or may be 80% by mass or less.
  • the (meth) acrylic monomer component which includes two types of di (meth) acrylic monomers (A) having different distances (d1) (hereinafter, also referred to as “aspect A1”), the (meth) acrylic monomer component.
  • the content of the di (meth) acrylic monomer (A) with respect to the total amount may be 100% by mass or less than 100% by mass.
  • the content of the methacrylic monomer with respect to the total content of the acrylic monomer and the methacrylic monomer is preferably 50% by mass or more, preferably 75% by mass or more, and preferably 85% by mass or more. Is more preferable.
  • the mono (meth) acrylic monomer having one (meth) acryloyloxy group includes a mono (meth) acrylic monomer (D) (that is, a branched structure and a cyclic structure with one (meth) acryloyloxy group.
  • a mono (meth) acrylic monomer having at least one of them) is preferable.
  • the di (meth) acrylic monomer (B) is preferable as the di (meth) acrylic monomer other than the di (meth) acrylic monomer (A).
  • the di (meth) acrylic monomer (B) contains at least one selected from the group consisting of diethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, and dipropylene glycol diacrylate
  • the (meth) acrylic monomer The content of the di (meth) acrylic monomer (A) is preferably 79% by mass or more, more preferably 80% by mass or more, based on the total amount of the components. Further, it is preferable that the upper limit of d1 of the di (meth) acrylic monomer (A) is 18.0 ⁇ .
  • the di (meth) acrylic monomer (B) contains at least one selected from the group consisting of isobornyl acrylate, dicyclopentanyl acrylate and cyclohexyl acrylate, the total content of the acrylic monomer and the methacrylic monomer is contained.
  • the content of the methacrylic monomer with respect to the amount is preferably 85% by mass or more.
  • the upper limit of d1 of the di (meth) acrylic monomer (A) is 18.0 ⁇ .
  • the content of the methacrylic monomer with respect to the total content of the acrylic monomer and the methacrylic monomer is preferably 85% by mass or more. Further, it is preferable that the upper limit of d1 of the di (meth) acrylic monomer (A) is 18.0 ⁇ .
  • the aspect A1 containing the two types of di (meth) acrylic monomers (A) having different distances (d1) is preferable.
  • the dimensional accuracy after heating and the toughness of the three-dimensional model (for example, the crack resistance required for a dental product) can be more effectively compatible with each other.
  • the reason for this is that the di (meth) acrylic monomer (A) having the shorter d1 has the effect of improving the dimensional accuracy after heating, and the di (meth) acrylic monomer (A) having the longer d1 has three-dimensional modeling. This is thought to be because the effect of improving the toughness of the object can be obtained.
  • Aspect B which is one of the other preferred embodiments of the photocurable composition, is It is an embodiment in which the photopolymerizable component contains a di (meth) acrylic monomer (B) and satisfies at least one of the following conditions B1 to B3.
  • Condition B1 Two or more kinds of di (meth) acrylic monomers (B) are contained.
  • Condition B2 Contains a mono (meth) acrylic monomer having one (meth) acryloyloxy group.
  • Condition B3 A di (meth) acrylic monomer other than the di (meth) acrylic monomer (B) having two (meth) acryloyloxy groups is contained.
  • the content of the di (meth) acrylic monomer (B) is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably, with respect to the total amount of the (meth) acrylic monomer components. Is 50% by mass or more.
  • the content of the di (meth) acrylic monomer (B) with respect to the total amount of the (meth) acrylic monomer component is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the content of the methacrylic monomer with respect to the total content of the acrylic monomer and the methacrylic monomer is preferably 50% by mass or more, preferably 75% by mass or more, and preferably 85% by mass or more. Is more preferable.
  • the content of the (meth) acrylic monomer having a ring structure is 90% by mass or more with respect to the total amount of the (meth) acrylic monomer component.
  • the mono (meth) acrylic monomer having one (meth) acryloyloxy group is a mono (meth) acrylic monomer (D) (that is, a branched structure and a cyclic structure with one (meth) acryloyloxy group.
  • a mono (meth) acrylic monomer having at least one of them) is preferable.
  • the di (meth) acrylic monomer (A) is preferable as the di (meth) acrylic monomer other than the di (meth) acrylic monomer (B).
  • the content of the methacrylic monomer with respect to the total content of the acrylic monomer and the methacrylic monomer is 75% by mass or more. Is preferable.
  • the di (meth) acrylic monomer (B) contains a dimethylol-tricyclodecanedimethacrylate and a di (meth) acrylic monomer (B) other than the dimethylol-tricyclodecanedimethacrylate is contained
  • the dimethylol -The upper limit of d1 of the di (meth) acrylic monomer (B) other than tricyclodecanedimethacrylate is preferably 11.0 ⁇ .
  • Aspect C which is one of still more preferred embodiments of the photocurable composition, is The photopolymerizable component Poly (meth) acrylic monomer (C) and At least one of a mono (meth) acrylic monomer having one (meth) acryloyloxy group and a di (meth) acrylic monomer having two (meth) acryloyloxy groups. It is an aspect including.
  • the content of the poly (meth) acrylic monomer (C) is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably, with respect to the total amount of the (meth) acrylic monomer components. Is 50% by mass or more, and particularly preferably 70% by mass or more.
  • the content of the methacrylic monomer with respect to the total content of the acrylic monomer and the methacrylic monomer is preferably 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. Is more preferable.
  • the content of the poly (meth) acrylic monomer (C) with respect to the total amount of the (meth) acrylic monomer component is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the mono (meth) acrylic monomer having one (meth) acryloyloxy group includes a mono (meth) acrylic monomer (D) (that is, a branched structure and a cyclic structure with one (meth) acryloyloxy group.
  • a mono (meth) acrylic monomer having at least one of them) is preferable.
  • the di (meth) acrylic monomer at least one of the di (meth) acrylic monomer (A) and the di (meth) acrylic monomer (B) is preferable.
  • the di (meth) acrylic monomer (B) contains at least one selected from the group consisting of polyethylene glycol (400) diacrylate, lauryl acrylate and 1,12 dodecanediol diacrylate, the ring structure is formed. It is more preferable that the content of the (meth) acrylic monomer contained is 75% by mass or more.
  • poly (meth) acrylic monomer (C) when at least one selected from the group consisting of 1,9-nonanediol diacrylate and cyclohexyl acrylate is contained, or when trimethylolpropane triacrylate is contained as the poly (meth) acrylic monomer (C).
  • the content of the poly (meth) acrylic monomer (C) is preferably 75% by mass or more with respect to the total amount of the (meth) acrylic monomer component.
  • the photopolymerizable component is An oxygen atom having two (meth) acryloyloxy groups and a cyclic structure, forming an oxy group in one (meth) acryloyloxy group, and an oxy group in the other (meth) acryloyloxy group.
  • a di (meth) acrylic monomer (X) having a distance of 17.0 ⁇ or more between the forming oxygen atom and the di (meth) acrylic monomer (X).
  • the distance between the di (meth) acrylic monomer (Y), which is less than 17.0 ⁇ , and It is an aspect including.
  • the dimensional accuracy after heating and, for example, the improvement of crack resistance required for a dental product can be more effectively realized.
  • the reason for this is that the cyclic structure of the di (meth) acrylic monomer (Y) and the di (meth) acrylic monomer (X), in which d1 is relatively short, provides the effect of improving the dimensional accuracy after heating, and It is considered that the effect of improving the crack resistance can be obtained by the di (meth) acrylic monomer (X) having a relatively long d1.
  • the di (meth) acrylic monomer (X) has two (meth) acryloyloxy groups, a cyclic structure, an oxygen atom forming an oxy group in one (meth) acryloyloxy group, and the other. It is a di (meth) acrylic monomer in which the distance (d1) between the oxygen atom forming the oxy group in the (meth) acryloyloxy group is 17.0 ⁇ or more.
  • the di (meth) acrylic monomer (X) is the di (meth) acrylic monomer (A) described above in which d1 is limited to 17.0 ⁇ or more.
  • the preferred embodiment of the di (meth) acrylic monomer (X) is the same as the preferred embodiment of the di (meth) acrylic monomer (A) described above.
  • the di (meth) acrylic monomer (Y) has two (meth) acryloyloxy groups, an oxygen atom forming an oxy group in one (meth) acryloyloxy group and the other (meth).
  • the di (meth) acrylic monomer (Y) is obtained by expanding the range of d1 (less than 15.0 ⁇ ) in the above-mentioned di (meth) acrylic monomer (B) to less than 17.0 ⁇ .
  • the preferred embodiment of the di (meth) acrylic monomer (Y) is the same as the preferred embodiment of the di (meth) acrylic monomer (B) described above.
  • the di (meth) acrylic monomer (Y) may have a cyclic structure.
  • the di (meth) acrylic monomer (Y) having a cyclic structure may correspond to the di (meth) acrylic monomer (A) described above.
  • a preferred embodiment having a cyclic structure and d1 of 15.0 ⁇ or more and less than 17.0 ⁇ is the di (meth) acrylic monomer (A) described above. Of these, it is the same as the preferred embodiment when d1 is 15.0 ⁇ or more and less than 17.0 ⁇ .
  • the total content of the di (meth) acrylic monomer (X) and the di (meth) acrylic monomer (Y) is the total amount of the (meth) acrylic monomer component.
  • it is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more. More preferably, it is 95% by mass or more.
  • the ratio of the total content of the di (meth) acrylic monomer (X) and the di (meth) acrylic monomer (Y) to the total amount of the (meth) acrylic monomer component may be 100% by mass. It may be less than 100% by mass.
  • the content of the di (meth) acrylic monomer (X) is preferably 50% by mass to 90% by mass with respect to the total amount of the (meth) acrylic monomer component. %. From the viewpoint of more effectively obtaining the effect of the aspect XY, in the aspect XY, the content of the di (meth) acrylic monomer (Y) is preferably 10% by mass to 50% by mass with respect to the total amount of the (meth) acrylic monomer component. %.
  • the photocurable composition of the present disclosure contains at least one photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it generates radicals by irradiating it with light, but it is preferably one that generates radicals at the wavelength of light used for stereolithography.
  • the wavelength of light used in stereolithography is generally 365 nm to 500 nm, but practically preferably 365 nm to 430 nm, and more preferably 365 nm to 420 nm.
  • Examples of the photopolymerization initiator that generates a radical at the wavelength of light used in photoforming include an alkylphenone-based compound, an acylphosphine oxide-based compound, a titanosen-based compound, an oxime ester-based compound, a benzoin-based compound, and an acetophenone-based compound.
  • Examples thereof include ether compounds and anthraquinone compounds. Of these, alkylphenone-based compounds and acylphosphine oxide-based compounds are preferable from the viewpoint of reactivity and the like.
  • alkylphenone-based compound examples include 1-hydroxy-cyclohexyl-phenyl-ketone (Omnirad 184: manufactured by IGM Resins B.V.).
  • acylphosphine oxide-based compound examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphinoxide (Omnirad 819: manufactured by IGM Resins B.V.), 2,4,6-trimethylbenzoyl-. Examples thereof include diphenyl-phosphine oxide (Omnirad TPO: manufactured by IGM Resins B.V.).
  • the photocurable composition of the present disclosure may contain only one kind of photopolymerization initiator, or may contain two or more kinds of photopolymerization initiators.
  • the content of the photopolymerization initiator in the photocurable composition of the present disclosure (total content in the case of two or more kinds) is 0.1% by mass to 10% by mass with respect to the total amount of the photocurable composition. %, More preferably 0.2% by mass to 5% by mass, and particularly preferably 0.3% by mass to 3% by mass.
  • the photocurable composition of the present disclosure may contain one or more kinds of other components other than the above-mentioned components, if necessary.
  • the total mass of the di (meth) acrylic monomer (A), the acrylic monomer (B) and the photopolymerization initiator is based on the total amount of the photocurable composition. It is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. Is more preferable.
  • Examples of other components include monomers other than the di (meth) acrylic monomer (A) and the acrylic monomer (B).
  • the content of the monomer as the other component is the di (meth) acrylic monomer. It is preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and 10% by mass with respect to the total mass of (A) and the acrylic monomer (B). % Or less is particularly preferable.
  • the total content of the (meth) acrylic monomer containing a hydroxyl group and the (meth) acrylic monomer containing a carboxy group is preferably 5% by mass or less, preferably 1% by mass or less, based on the total amount of the (meth) acrylic monomer component. It is more preferable to have.
  • a coloring material such as a silane coupling agent (for example, 3-acryloxypropyltrimethoxysilane), a rubber agent, an ion trapping agent, an ion exchanger, a leveling agent, a plasticizer, and an erasing agent.
  • Additives such as foaming agents, thermal polymerization initiators and the like can also be mentioned.
  • the photocurable composition of the present disclosure contains a thermosetting initiator, both photocuring and thermosetting can be used in combination.
  • the thermal polymerization initiator include thermal radical generators and amine compounds.
  • the photocurable composition of the present disclosure does not contain an inorganic filler (for example, silica, barium borosilicate glass, etc., the same shall apply hereinafter), or is inorganic.
  • an inorganic filler for example, silica, barium borosilicate glass, etc., the same shall apply hereinafter
  • the content of the inorganic filler with respect to the total amount of the photocurable composition is 60% by mass or less (more preferably 40% by mass or less, still more preferably 20% by mass or less, still more preferably 10% by mass or less). ) Is preferable.
  • the method for preparing the photocurable composition of the present disclosure is not particularly limited.
  • a method for preparing the photocurable composition of the present disclosure for example, a method of mixing a di (meth) acrylic monomer (A) and an acrylic monomer (B), and a photopolymerization initiator (and other components if necessary).
  • the means for mixing each component is not particularly limited, and includes, for example, means for melting by ultrasonic waves, a dual-arm stirrer, a roll kneader, a twin-screw extruder, a ball mill kneader, a planetary stirrer, and the like.
  • the photocurable composition of the present disclosure may be prepared by mixing each component, filtering with a filter to remove impurities, and further performing a vacuum defoaming treatment.
  • the photocurable composition of the present disclosure preferably has a viscosity measured by an E-type viscometer at 25 ° C. and 50 rpm (hereinafter, also simply referred to as “viscosity”) of 5 mPa ⁇ s to 6000 mPa ⁇ s. ..
  • viscosity measured by an E-type viscometer at 25 ° C. and 50 rpm
  • rpm means revolutions per minute.
  • the viscosity is 5 mPa ⁇ s to 6000 mPa ⁇ s
  • the photocurable composition is excellent in handleability when producing a cured product (particularly, a stereolithographic product).
  • the viscosity is more preferably 10 mPa ⁇ s to 5000 mPa ⁇ s, further preferably 20 mPa ⁇ s to 5000 mPa ⁇ s, and even more preferably 50 mPa ⁇ s to 1000 mPa ⁇ s.
  • the three-dimensional model of the present disclosure is a cured product of the above-mentioned photocurable composition of the present disclosure. Therefore, the three-dimensional model of the present disclosure is excellent in dimensional accuracy after heating.
  • the three-dimensional model of the present disclosure is preferably a cured product by stereolithography (that is, a stereolithography product).
  • the method for manufacturing a three-dimensional model (for example, a stereolithography) is as described above.
  • the dental products of the present disclosure include the three-dimensional shaped objects of the present disclosure described above. Therefore, the dental products of the present disclosure are excellent in dimensional accuracy after heating. Specific examples of dental products are as described above. As mentioned above, as a dental product, Dental products that are used by heating are preferred. Dental surgical guides, dental trays, mouthpieces, or dental models are more preferred. Dental surgical guides that are heat sterilized and used are particularly preferred. The preferred ranges of heating temperature and heating time in heat sterilization are as described above.
  • Viscosity of photocurable composition The viscosity of the obtained photocurable composition was measured with an E-type viscometer under the conditions of 25 ° C. and 50 rpm. As a result, the viscosities of the photocurable compositions of Examples 1 to 26 were all in the range of 50 mPa ⁇ s to 1000 mPa ⁇ s.
  • a test piece P1 was prepared by the method described above, and the storage elastic modulus of the obtained test piece P1 at 135 ° C. was measured by the method described above.
  • the test piece P1 was produced using a DLP-type 3D printer (Kulzer, Cara Print 4.0), and the storage elastic modulus at 135 ° C. was measured by a dynamic viscoelasticity measuring device (ITY measurement control, DVA). -225) was used.
  • the three-dimensional model 10 shown in FIG. 1 was manufactured by DLP-type stereolithography.
  • the shape of the three-dimensional model 10 is a shape obtained by removing two adjacent faces from the six faces of the hollow cube.
  • the size (design value) of the three-dimensional model 10 is 40 mm in length L, 25 mm in width W, 25 mm in height H, and 2 mm in wall thickness.
  • the three-dimensional model 10 is produced by irradiating the photocurable composition with visible light having a wavelength of 405 nm at an irradiation amount of 11 mJ / cm 2 to form a cured layer having a thickness of 50 ⁇ m.
  • a model was formed by laminating the formed cured layers in the thickness direction, and the formed object was subjected to optical modeling under the condition of irradiating the formed model with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 3 J / cm 2. ..
  • the length L of the manufactured three-dimensional model 10 was measured with a caliper (CD-P15S manufactured by Mitutoyo Co., Ltd.) and found to be 40.0 mm.
  • the obtained three-dimensional model 10 was sterilized by heating in an autoclave at a temperature of 135 ° C. for 10 minutes.
  • the length L of the three-dimensional model 10 after heat sterilization was measured again with the above caliper, and the deviation (mm) from the design value (40 mm) was calculated (Tables 1 to 3). The smaller the deviation from the design value, the better the dimensional accuracy after heat sterilization.
  • ⁇ Mono (meth) acrylic monomer> the mono (meth) acrylic monomers are as follows. Among these mono (meth) acrylic monomers, compounds other than "HO-250" correspond to the mono (meth) acrylic monomer (D).
  • the di (meth) acrylic monomer (A) [that is, has two (meth) acryloyloxy groups and a cyclic structure, and d1 (that is, in one (meth) acryloyloxy group).
  • the distance between the oxygen atom forming the oxy group and the oxygen atom forming the oxy group in the other (meth) acryloyloxy group) is 15.0 ⁇ or more).
  • the di (meth) acrylic monomer (B) [i.e. has two (meth) acryloyloxy groups and forms the oxy group in d1 (ie, one (meth) acryloyloxy group).
  • the di (meth) acrylic monomer] in which the distance between the oxygen atom and the oxygen atom forming the oxy group in the other (meth) acryloyloxy group) is less than 15.0 ⁇ ] is as follows. be.
  • poly (meth) acrylic monomer (C) (that is, the poly (meth) acrylic monomer having three or more (meth) acryloyloxy groups) is as follows.
  • TMPA Trimethylolpropane triacrylate manufactured by Kyoeisha Chemical Co., Ltd.
  • A-TMMT Tetramethylolmethane tetraacrylate manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • U15HA 15-functional urethane acrylate manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • three-dimensional object produced using the photocurable composition of each example storage elastic modulus is 3.0 ⁇ 10 8 Pa or more at 135 ° C. is at 135 ° C.
  • a plate-shaped model of the photocurable composition shown in Table 4 having a length of 64 mm, a width of 10 mm, and a thickness of 3.3 mm was formed by 64 mm ⁇ .
  • the product was modeled under the condition that the 3.3 mm surface was in contact with the modeling table, the laminated width was 50 ⁇ m, and each layer was irradiated with visible light having a wavelength of 405 nm at 11 mJ / cm 2.
  • the obtained plate-shaped model was irradiated with ultraviolet rays having a wavelength of 365 nm under the condition of 3 J / cm 2, and the curable composition was mainly cured to obtain a cured product P2 of a test piece.
  • the obtained cured product P2 is flexed in a three-point bending mode using a tensile compression test device (manufactured by Intesco Co., Ltd., 210X) at a test temperature of 23 ° C., a distance between fulcrums of 50 mm, and a crosshead speed of 5 mm / min. The load was applied to the point where the value became 3 mm.
  • a tensile compression test device manufactured by Intesco Co., Ltd., 210X
  • the di (meth) acrylic monomer (X) [that is, has two (meth) acryloyloxy groups and a cyclic structure, and has d1 (that is, an oxy group in one (meth) acryloyloxy group).
  • the distance between the oxygen atom forming the oxy group and the oxygen atom forming the oxy group in the other (meth) acryloyloxy group) is 17.0 ⁇ or more.
  • the di (meth) acrylic monomer] is described above.
  • the di (meth) acrylic monomer (X) [ie, the oxygen atom having two (meth) acryloyloxy groups and forming the oxy group in d1 (ie, one (meth) acryloyloxy group).
  • the three-dimensional model produced by using the photocurable composition of Example 23 having a storage elastic modulus of less than 3.0 ⁇ 10 9 Pa at 135 ° C. has a crack resistance of C rating.
  • a storage modulus at 135 ° C. is not more than 3.0 ⁇ 10 9 Pa
  • examples 4,6,14, and three-dimensional object produced using the photocurable composition 25 crack resistance evaluation Was "A” or "B”.
  • Table 4 shows the three-dimensional shaped products produced by using the photocurable compositions of Examples 14 and 25 containing the di (meth) acrylic monomer (X) and the di (meth) acrylic monomer (Y).
  • the evaluation of crack resistance was "A", and it was already shown in Table 2, and the dimensional accuracy after heat sterilization was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)

Abstract

光硬化性組成物であって、光硬化性組成物に対し波長405nmの可視光を照射量11mJ/cmにて照射して厚さ50μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の造形物P1を形成し、造形物P1に対し、波長365nmの紫外線を照射量3J/cmにて照射する条件の光造形により、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の試験片P1を作製し、試験片P1について、動的粘弾性測定により、昇温範囲25℃~300℃及び昇温速度3℃/分にて昇温しながら測定周波数1Hzにて貯蔵弾性率を測定した場合に、135℃における貯蔵弾性率が、3.0×10Pa以上である、光硬化性組成物。

Description

光硬化性組成物、立体造形物、及び歯科用製品
 本開示は、光硬化性組成物、立体造形物、及び歯科用製品に関する。
 近年、歯科用補綴物、口腔内で使用される器具などの歯科用製品に関する検討がなされている。例えば、これら歯科用製品の造形の効率の観点で、3Dプリンターを用いた光造形により歯科用製品等の立体造形物を製造する方法が知られている(例えば、特許文献1参照)。
 特許文献1:特許4160311号公報
 ところで、歯科用製品(例えば、歯科用サージカルガイド、マウスピース、又は歯科用模型)は、加熱滅菌して使用される場合がある。歯科用製品の少なくとも一部分として、光硬化性組成物の硬化物である立体造形物を用いる場合、加熱滅菌による変形により、立体造形物の寸法精度が損なわれる場合がある。
 従って、歯科用製品の少なくとも一部分として用いられる、光硬化性組成物の硬化物である立体造形物に対し、加熱滅菌後の寸法精度が要求される場合がある。
 また、歯科用製品以外の用途に用いる光硬化性組成物の硬化物(立体造形物)に対しても、加熱後(例えば加熱滅菌後)の寸法精度が要求される場合がある。
 本開示の一態様の目的は、加熱後の寸法精度に優れる立体造形物を製造できる光硬化性組成物、並びに、加熱後の寸法精度に優れる立体造形物及び歯科用製品を提供することである。
 上記課題を解決する手段には、以下の態様が含まれる。
<1> 光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、
 前記光硬化性組成物に対し波長405nmの可視光を照射量11mJ/cmにて照射して厚さ50μmの硬化層P1を形成し、前記硬化層P1を厚さ方向に積層させることにより、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の造形物P1を形成し、前記造形物P1に対し、波長365nmの紫外線を照射量3J/cmにて照射する条件の光造形により、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の試験片P1を作製し、作製された前記試験片P1について、動的粘弾性測定により、昇温範囲25℃~300℃及び昇温速度3℃/分にて昇温しながら測定周波数1Hzの条件にて貯蔵弾性率を測定した場合に、135℃における貯蔵弾性率が、3.0×10Pa以上である、
光硬化性組成物。
<2> 前記135℃における貯蔵弾性率が、3.5×10Pa以下である、<1>に記載の光硬化性組成物。
<3> 前記光重合性成分が、
 2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、15.0Å以上であるジ(メタ)アクリルモノマー(A)、
 2つの(メタ)アクリロイルオキシ基を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が15.0Å未満であるジ(メタ)アクリルモノマー(B)、及び、
 3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマー(C)
のうちの少なくとも1つを含む、<1>又は<2>に記載の光硬化性組成物。
<4> 前記光重合性成分が、
 前記一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が異なる2種類の前記ジ(メタ)アクリルモノマー(A)を含むか、
又は、
 前記ジ(メタ)アクリルモノマー(A)と、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー(D)及び前記ジ(メタ)アクリルモノマー(B)の少なくとも一方と、を含む、
<3>に記載の光硬化性組成物。
<5> 前記光重合性成分が、前記ジ(メタ)アクリルモノマー(B)を含み、かつ、
 前記ジ(メタ)アクリルモノマー(B)を2種以上含むこと、
 1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーを含むこと、及び、
 2つの(メタ)アクリロイルオキシ基を有する前記ジ(メタ)アクリルモノマー(B)以外のジ(メタ)アクリルモノマーを含むこと
のうちの少なくとも1つを満たす、
<3>に記載の光硬化性組成物。
<6> 前記光重合性成分が、
 前記ポリ(メタ)アクリルモノマー(C)と、
 1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマー及び2つの(メタ)アクリロイルオキシ基を有するジ(メタ)アクリルモノマーの少なくとも一方と、
を含む、<3>に記載の光硬化性組成物。
<7> 前記ジ(メタ)アクリルモノマー(A)、前記ジ(メタ)アクリルモノマー(B)、及び前記ポリ(メタ)アクリルモノマー(C)の総含有量が、(メタ)アクリルモノマー成分の全量に対し、50質量%以上である、
<3>~<6>のいずれか1つに記載の光硬化性組成物。
<8> 前記光重合性成分が、
 2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、17.0Å以上であるジ(メタ)アクリルモノマー(X)と、
 2つの(メタ)アクリロイルオキシ基を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、17.0Å未満であるジ(メタ)アクリルモノマー(Y)と、
を含む、<1>~<3>のいずれか1つに記載の光硬化性組成物。
<9> 前記ジ(メタ)アクリルモノマー(X)及び前記ジ(メタ)アクリルモノマー(Y)の総含有量が、(メタ)アクリルモノマー成分の全量に対し、50質量%以上である、<8>に記載の光硬化性組成物。
<10> 前記ジ(メタ)アクリルモノマー(X)の含有量が、(メタ)アクリルモノマー成分の全量に対し、50質量%~90質量%である、<8>又は<9>に記載の光硬化性組成物。
<11> 前記ジ(メタ)アクリルモノマー(Y)の含有量が、(メタ)アクリルモノマー成分の全量に対し、10質量%~50質量%である、<8>~<10>のいずれか1つに記載の光硬化性組成物。
 
<12> E型粘度計により25℃及び50rpmの条件で測定される粘度が、5mPa・s~6000mPa・sである、
<1>~<11>のいずれか1つに記載の光硬化性組成物。
<13> 光造形用の光硬化性組成物である、<1>~<12>のいずれか1つに記載の光硬化性組成物。
<14> 光造形による歯科用製品の製造に用いられる、<1>~<13>のいずれか1つに記載の光硬化性組成物。
<15> <1>~<14>のいずれか1つに記載の光硬化性組成物の硬化物である、立体造形物。
<16> <15>に記載の立体造形物を含む、歯科用製品。
<17> 歯科用サージカルガイド、歯科用トレー、マウスピース、又は歯科用模型である、<15>に記載の歯科用製品。
 本開示の一態様によれば、加熱後(例えば加熱滅菌後。以下同じ。)の寸法精度に優れる立体造形物を製造できる光硬化性組成物、並びに、加熱後の寸法精度に優れる立体造形物及び歯科用製品が提供される。
本開示における立体造形物の一例を示す概略斜視図である。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、組成物に含有される各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「光」は、紫外線、可視光線等の活性エネルギー線を包含する概念である。
 本開示において、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味し、「(メタ)アクリロイル」はアクリロイル又はメタクリロイルを意味し、「(メタ)アクリル」はアクリル又はメタクリルを意味する。
 本開示の光硬化性組成物は、
 光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、
 上記光硬化性組成物に対し波長405nmの可視光を照射量11mJ/cmにて照射して厚さ50μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の造形物P1を形成し、上記造形物P1に対し、波長365nmの紫外線を照射量3J/cmにて照射する条件の光造形により、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の試験片P1を作製し、作製された試験片P1について、動的粘弾性測定により、昇温範囲25℃~300℃及び昇温速度3℃/分にて昇温しながら測定周波数1Hzの条件にて貯蔵弾性率を測定した場合に、135℃における貯蔵弾性率が、3.0×10Pa以上である、
光硬化性組成物である。
 本開示の光硬化性組成物によれば、加熱後の寸法精度に優れる立体造形物を製造できる。
 かかる効果が奏される理由は、上記135℃における貯蔵弾性率が3.0×10Pa以上であることにより、製造時における寸法精度に優れる立体造形物を製造でき、かつ、製造された立体造形物を加熱する段階における立体造形物の変形を抑制できるためと考えられる。
 上記加熱の温度として、好ましくは80℃~200℃であり、より好ましくは100℃~180℃であり、更に好ましくは110℃~160℃である。
 上記加熱の時間としては、好ましくは0.3分~120分であり、より好ましくは0.5分~60分であり、更に好ましくは1分~20分である。
 上記加熱の一例として、オートクレーブによる加熱滅菌が挙げられる。
 本開示の光硬化性組成物を用いて立体造形物を製造する際の製造条件には特に制限はなく、必ずしも、試験片P1の作製条件と同じである必要はない。立体造形物の製造条件と試験片P1の作製条件とが異なる場合であっても、上記135℃における貯蔵弾性率と、立体造形物の製造時における寸法精度及び立体造形物の加熱時の変形しにくさと、の間には相関がある。
 即ち、上記135℃における貯蔵弾性率は、本開示の光硬化性組成物を用いて製造される立体造形物の、製造時における寸法精度及び立体造形物の加熱時の変形しにくさの指標である。
 本開示の光硬化性組成物を用いて立体造形物を製造する際の製造方法として、好ましくは光造形である。この場合、上記135℃における貯蔵弾性率と、立体造形物の製造時における寸法精度及び立体造形物の加熱時の変形しにくさと、の相関がより強くなるので、本開示の光硬化性組成物による効果(即ち、立体造形物の加熱時の寸法精度に優れる効果)がより効果的に奏される。
 即ち、本開示の光硬化性組成物として、好ましくは、光造形用の光硬化性組成物であり、言い換えれば、本開示の光硬化性組成物を用いて製造される立体造形物は、好ましくは光造形物(即ち、光造形による硬化物)である。
 光造形は、光硬化性組成物に光を照射して硬化層を形成する操作を繰り返すことにより、硬化層を積層させて硬化物(即ち、光造形物)を得る方法である。
 光造形としては、インクジェット方式の光造形であっても液槽方式の光造形(即ち、液槽を用いる光造形)であってもよい。
 本開示の光硬化性組成物による効果がより効果的に奏される観点から、光造形として、好ましくは液槽方式の光造形である。
 インクジェット方式の光造形では、インクジェットノズルから光硬化性組成物の液滴を基材に吐出し、基材に付着した液滴に光を照射することにより、光硬化性組成物の硬化物である立体造形物を得る。
 インクジェット方式の光造形の一例では、例えば、インクジェットノズル及び光源を備えるヘッドを平面内で走査させつつ、インクジェットノズルから光硬化性組成物を基材に吐出し、かつ、吐出された光硬化性組成物に光を照射して硬化層を形成し、これらの操作を繰り返して、硬化層を順次積層させて硬化物(即ち、光造形物)を得る。
 液槽方式の光造形では、液槽内に収容された光硬化性組成物(即ち、液体状態の未硬化の光硬化性組成物。以下同じ。)の一部を光照射によって硬化させて硬化層を形成し、この操作を繰り返すことで硬化層を積層させ、硬化物(即ち、光造形物)を得る。液槽方式の光造形は、液槽を用いる点で、インクジェット方式の光造形とは異なる。
 液槽方式の光造形としては、DLP(Digital Light Processing)方式の光造形及びSLA(Stereolithography)方式の光造形が挙げられる。
 DLP方式では、液槽内の光硬化性組成物に対し、面状の光を照射する。
 SLA方式では、液槽内の光硬化性組成物に対し、レーザー光を走査する。
 本開示の光硬化性組成物による効果がより効果的に奏される観点から、液槽方式の光造形として、好ましくはDLP方式の光造形である。
 DLP方式の光造形の一例では、例えば、
 鉛直方向に移動可能なビルドテーブルと、
 ビルドテーブルの下方(重力方向側。以下同じ。)に配置され、光透過性部を含み、光硬化性組成物が収容されるトレー(即ち、液槽)と、
 トレーの下方に配置され、トレー内の光硬化性組成物に対し、トレーの光透過性部を介して面状の光を照射するための光源(例えば、LED光源)と、
を備える3Dプリンター(例えば、Kulzer社製の「Cara Print4.0」、Asiga社製の「Max UV」、等)が用いられる。
 この一例では、まず、ビルドテーブルとトレーとの間に一層分のギャップを設け、このギャップを、光硬化性組成物で満たす。次に、ギャップに満たされた光硬化性組成物に対し、下方から、トレーの光透過性部を介して面状の光を照射し、光が照射された領域を硬化させることにより、一層目の硬化層を形成する。次に、ビルドテーブルとトレーとのギャップを次の一層分広げ、生じた空間を光硬化性組成物で満たす。次に、空間に満たされた光硬化性組成物に対し、一層目の硬化と同様にして光を照射し、二層目の硬化層を形成する。以上の操作を繰り返すことにより、硬化層を積層させ、立体造形物を製造する。この一例において、製造された立体造形物に対し、更に光を照射することにより、立体造形物を更に硬化させてもよい。
 DLP方式の光造形については、例えば、特許第5111880号公報及び特許第5235056号公報の記載を参照してもよい。
<用途>
 本開示の光硬化性組成物の用途には特に制限はない。
 本開示の光硬化性組成物は、立体造形物の加熱時の寸法精度をより向上させる観点から、光造形による歯科用製品の製造に用いられる光硬化性組成物であることが好ましい。
 歯科用製品としては、歯科用補綴物、口腔内で使用する医療器具、歯科用模型、消失鋳造用模型、等が挙げられる。
 歯科用補綴物としては、インレー、クラウン、ブリッジ、テンポラリークラウン、テンポラリーブリッジ等が挙げられる。
 口腔内で使用する医療器具としては、デンチャー(例えば、コンプリートデンチャー(全部床義歯)、パーシャルデンチャー(部分床義歯)、等)、マウスピース(例えば、スポーツ用マウスガード、咬合用スプリント、等)、歯列矯正器具、印象採得用トレー、歯科用サージカルガイド等が挙げられる。
 歯科用模型としては、歯顎モデル等が挙げられる。
 本開示の光硬化性組成物は、歯科用製品以外の工業製品の製造にも用いることもでき、例えば、成形用の金型、自動車、家電、若しくは精密機器における筐体若しくは部品、又は、これらの筐体若しくは部品のプロトタイピングに用いることができる。
 歯科用製品としては、
加熱して用いられる歯科用製品が好ましく、
加熱して用いられ、かつ、加熱後の寸法精度に優れる要求が特に大きい、歯科用サージカルガイド、マウスピース、又は歯科用模型がより好ましく、
加熱滅菌して用いられ、かつ、加熱滅菌後の寸法精度に優れる要求が特に大きい、歯科用サージカルガイドが特に好ましい。
<135℃における貯蔵弾性率>
 上述した通り、本開示の光硬化性組成物を用いて作製された試験片P1について、動的粘弾性測定により、昇温範囲25℃~300℃及び昇温速度3℃/分にて昇温しながら測定周波数1Hzの条件にて貯蔵弾性率を測定した場合の、135℃における貯蔵弾性率は3.0×10Pa以上である。
 上記135℃における貯蔵弾性率は、製造される立体造形物の加熱後の寸法精度により優れる観点から、好ましくは3.5×10Pa以上であり、より好ましくは4.0×10Pa以上であり、更に好ましくは4.5×10Pa以上である。
 一方、上記135℃における貯蔵弾性率の上限には特に制限はないが、製造される立体造形物の靱性をより向上させる観点から、上限は、好ましくは3.5×10Paであり、より好ましくは3.1×10Paであり、更に好ましくは3.0×10Paであり、更に好ましくは2.0×10Paであり、更に好ましくは1.0×10Paである。
 立体造形物の靱性に優れることは、立体造形物の耐割れ性向上(例えば歯科用製品に求められる耐割れ性向上)の観点から見て有利である。
(試験片P1)
 試験片P1は、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の試験片である。
 試験片P1は、本開示の光硬化性組成物に対し波長405nmの可視光を照射量11mJ/cmにて照射して厚さ50μmの硬化層P1を形成し、硬化層P1を厚さ方向に積層させることにより、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の造形物P1を形成し、造形物P1に対し、波長365nmの紫外線を照射量3J/cmにて照射する条件の光造形によって作製される。
 試験片P1は、例えば、前述したDLP方式の光造形の一例に従って作製できる。
 後述の実施例では、DLP方式の3Dプリンターである、Kulzer社製「Cara Print4.0」を用い、試験片P1を作製した。
(135℃における貯蔵弾性率)
 本開示における135℃における貯蔵弾性率は、詳細には、動的粘弾性測定により、昇温範囲25℃~300℃及び昇温速度3℃/分にて昇温しながら測定周波数1Hzの条件にて貯蔵弾性率を測定した場合の、135℃における貯蔵弾性率である。
 後述の実施例では、動的粘弾性測定の装置として、アイティー計測制御社製の動的粘弾性測定装置「DVA-225」を用いた。
<光重合性成分>
 本開示の光硬化性組成物は、光重合性成分を少なくとも1種含有する。
 光重合性成分としては、エチレン性二重結合を含む化合物が挙げられる。
 エチレン性二重結合を含む化合物としては、(メタ)アクリルモノマー、スチレン、スチレン誘導体、(メタ)アクリロニトリル、等が挙げられる。
 光重合性成分としては、国際公開第2019/189652号の段落0030~段落0059に記載の光重合性成分を用いてもよい。
 製造される立体造形物の加熱時の寸法精度により優れる観点から、本開示の光硬化性組成物の全量に対する光重合性成分の含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 光重合性成分は、(メタ)アクリルモノマーを少なくとも1種含むことが好ましい。
 ここで、(メタ)アクリルモノマーとは、1つ以上の(メタ)アクリロイル基を有するモノマーを意味する。(メタ)アクリルモノマーとしては、1つ以上の(メタ)アクリロイルオキシ基を有するモノマーが好ましい。
 本開示では、光硬化性組成物に含有される全ての(メタ)アクリルモノマーを、「(メタ)アクリルモノマー成分」と称することがあり、本開示の光硬化性組成物に含有される全ての(メタ)アクリルモノマーの合計含有量を、「(メタ)アクリルモノマー成分の全量」と称することがある。
 製造される立体造形物の加熱時の寸法精度により優れる観点から、本開示の光硬化性組成物中の光重合性成分の全量に対する(メタ)アクリルモノマー成分の全量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 製造される立体造形物の加熱時の寸法精度により優れる観点から、本開示の光硬化性組成物の全量に対する(メタ)アクリルモノマー成分の全量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 (メタ)アクリルモノマー成分を構成する(メタ)アクリルモノマーとしては、1つ以上の(メタ)アクリロイル基を有するモノマーであればよく、その他には特に制限はない。
 (メタ)アクリルモノマーは、
1つの(メタ)アクリロイル基を有するモノ(メタ)アクリルモノマー(以下、「単官能(メタ)アクリルモノマー」ともいう)であってもよいし、
2つの(メタ)アクリロイル基を有するジ(メタ)アクリルモノマー(以下、「二官能(メタ)アクリルモノマー」ともいう)であってもよいし、
3つ以上の(メタ)アクリロイル基を有するポリ(メタ)アクリルモノマー(以下、「多官能(メタ)アクリルモノマー」ともいう)であってもよい。
 モノ(メタ)アクリルモノマーとしては、1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーが好ましい。
 ジ(メタ)アクリルモノマーとしては、2つの(メタ)アクリロイルオキシ基を有するジ(メタ)アクリルモノマーが好ましい。
 トリ(メタ)アクリルモノマーとしては、3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマーが好ましい。
 光重合性成分は、
 2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、15.0Å以上であるジ(メタ)アクリルモノマー(A)、
 2つの(メタ)アクリロイルオキシ基を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が15.0Å未満であるジ(メタ)アクリルモノマー(B)、及び、
 3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマー(C)
のうちの少なくとも1つを含むことが好ましい。
 かかる条件を満足する場合には、135℃における貯蔵弾性率が3.0×10Pa以上であることをより達成しやすい。
(ジ(メタ)アクリルモノマー(A))
 ジ(メタ)アクリルモノマー(A)は、2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離(以下、「d1」ともいう)が、15.0Å以上であるジ(メタ)アクリルモノマーである。
 本開示において、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)は、これら2つの酸素原子間の直線距離を意味する。
 d1は、パーキンエルマー社製の「Chem 3D」(バージョン18.2.0.48)における「display distance measurement」機能を用いて求められる値を意味する。
 ジ(メタ)アクリルモノマー(A)におけるd1の上限には特に制限はないが、上限は、例えば25.0Åである。
 ジ(メタ)アクリルモノマー(A)に含まれる環状構造における環の数は、1つのみであってもよいし2つ以上であってもよい。
 ジ(メタ)アクリルモノマー(A)に含まれる環状構造は、芳香環構造及び脂環構造のいずれであっても両方であってもよいが、芳香環構造を含むことが好ましい。
 ジ(メタ)アクリルモノマー(A)に含まれる環状構造は、ビスフェノールA構造が特に好ましい。
 ジ(メタ)アクリルモノマー(A)は、エチレンオキシ基及びプロピレンオキシ基の少なくとも一方を、合計で1つ以上含んでいてもよい。
 ジ(メタ)アクリルモノマー(A)の分子量は、好ましくは400~1000であり、より好ましくは400~800であり、更に好ましくは400~700である。
 ジ(メタ)アクリルモノマー(A)としては、エトキシ化ビスフェノールAジ(メタ)アクリレート(EO=2~4mol)、エトキシ化ビスフェノールFジアクリレート(EO=2~4mol)、ビスフェノールAジグリシジルジアクリレート、プロポキシ化ビスフェノールAジアクリレート(PO=2~4mol)等が挙げられる。
 ジ(メタ)アクリルモノマー(A)は、2つのメタクリロイルオキシ基を有するジメタクリルモノマーであることが好ましい。
(ジ(メタ)アクリルモノマー(B))
 ジ(メタ)アクリルモノマー(B)は、2つの(メタ)アクリロイルオキシ基を有し、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)が15.0Å未満であるジ(メタ)アクリルモノマーである。
 ジ(メタ)アクリルモノマー(B)におけるd1は、好ましくは10.0Å以下である。
 ジ(メタ)アクリルモノマー(B)におけるd1の下限には特に制限はないが、下限は、例えば3.0Åである。
 ジ(メタ)アクリルモノマー(B)の分子量は、好ましくは150~400であり、より好ましくは170~350である。
 ジ(メタ)アクリルモノマー(B)としては、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ジオキサングリコールジアクリレート、等が挙げられる。
(ポリ(メタ)アクリルモノマー(C))
 ポリ(メタ)アクリルモノマー(C)は、3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマーである。
 ポリ(メタ)アクリルモノマー(C)の分子量は、好ましくは5000以下であり、より好ましくは3000以下であり、更に好ましくは2500以下である。
 ポリ(メタ)アクリルモノマー(C)の分子量の下限は、3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマーである限り、特に制限はない。ポリ(メタ)アクリルモノマー(C)の分子量の下限は、例えば200であり、好ましくは250である。
 ポリ(メタ)アクリルモノマー(C)としては、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、3官能以上のウレタン(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート(EO=3mol)、プロポキシ化トリメチロールプロパントリアクリレート(PO=3mol)、プロポキシ化グリセリントリアクリレート(PO=3mol)、カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートトリアクリレート、等が挙げられる。
 本開示の光硬化性組成物において、ジ(メタ)アクリルモノマー(A)、ジ(メタ)アクリルモノマー(B)、及びポリ(メタ)アクリルモノマー(C)の総含有量は、(メタ)アクリルモノマー成分の全量(即ち、光硬化性組成物に含有される全ての(メタ)アクリルモノマーの総含有量)に対し、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは50質量%以上である。
 上記総含有量は、100質量%であってもよいし、100質量%未満(例えば、95質量%以下、90質量%以下、等)であってもよい。
(モノ(メタ)アクリルモノマー)
 光重合性成分は、上述した、ジ(メタ)アクリルモノマー(A)、ジ(メタ)アクリルモノマー(B)、及びポリ(メタ)アクリルモノマー(C)のうちの少なくとも1つに加え、モノ(メタ)アクリルモノマーを含んでいてもよい。
 モノ(メタ)アクリルモノマーとしては、1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーが好ましい。
 モノ(メタ)アクリルモノマーの分子量は、好ましくは80~600であり、より好ましくは100~400であり、更に好ましくは100~300である。
 モノ(メタ)アクリルモノマーとしては、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー(D)がより好ましい。
 モノ(メタ)アクリルモノマー(D)(即ち、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー)としては、ターシャリーブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、4-アクリロイルモルフォリン、ジシクロペンタニルメチル(メタ)アクリレート、等が挙げられる。
 次に、本開示の光硬化性組成物の好ましい態様である態様A~態様Cを示す。
 但し、態様A~態様Cのうちの少なくとも2つが、重複する部分を有することがあってもよい。
(態様A)
 光硬化性組成物の好ましい態様の一つである態様Aは、
 光重合性成分が、
 上記距離(d1)が異なる2種のジ(メタ)アクリルモノマー(A)を含むか、
又は、
 ジ(メタ)アクリルモノマー(A)と、1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマー及び2つの(メタ)アクリロイルオキシ基を有するジ(メタ)アクリルモノマー(A)以外のジ(メタ)アクリルモノマーの少なくとも一方と、を含む
態様である。
 態様Aにおいて、ジ(メタ)アクリルモノマー(A)の含有量は、(メタ)アクリルモノマー成分の全量(即ち、光硬化性組成物に含有される全ての(メタ)アクリルモノマーの総含有量)に対し、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは50質量%以上、特に好ましくは75質量%以上である。
 また、態様Aにおいて、(メタ)アクリルモノマー成分の全量に対するジ(メタ)アクリルモノマー(A)の含有量は、90質量%以下であってもよく、80質量%以下であってもよい。
 態様Aであって、距離(d1)が異なる2種のジ(メタ)アクリルモノマー(A)を含む態様(以下、「態様A1」ともいう)である場合には、(メタ)アクリルモノマー成分の全量に対するジ(メタ)アクリルモノマー(A)の含有量は、100質量%であってもよいし、100質量%未満であってもよい。
 また、態様Aにおいて、アクリルモノマー及びメタクリルモノマーの総含有量に対するメタクリルモノマーの含有量が、50質量%以上であることが好ましく、75質量%以上であることが好ましく、85質量%以上であることがより好ましい。
 態様Aにおいて、1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーとしては、モノ(メタ)アクリルモノマー(D)(即ち、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー)が好ましい。
 態様Aにおいて、ジ(メタ)アクリルモノマー(A)以外のジ(メタ)アクリルモノマーとしては、ジ(メタ)アクリルモノマー(B)が好ましい。
 態様Aにおいて、ジ(メタ)アクリルモノマー(B)として、ジエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、及びジプロピレングリコールジアクリレートからなる群から選択される少なくとも1つを含む場合、(メタ)アクリルモノマー成分の全量に対し、ジ(メタ)アクリルモノマー(A)の含有量が、79質量%以上であることが好ましく、80質量%以上であることがより好ましい。また、ジ(メタ)アクリルモノマー(A)のd1の上限が、18.0Åであることが好ましい。
 態様Aにおいて、ジ(メタ)アクリルモノマー(B)として、イソボルニルアクリレート、ジシクロペンタニルアクリレート及びシクロヘキシルアクリレートからなる群から選択される少なくとも1つを含む場合、アクリルモノマー及びメタクリルモノマーの総含有量に対するメタクリルモノマーの含有量が85質量%以上であることが好ましい。また、ジ(メタ)アクリルモノマー(A)のd1の上限が、18.0Åであることが好ましい。
 態様Aにおいて、ジ(メタ)アクリルモノマー(B)として、ラウリルアクリレートを含む場合、アクリルモノマー及びメタクリルモノマーの総含有量に対するメタクリルモノマーの含有量が85質量%以上であることが好ましい。また、ジ(メタ)アクリルモノマー(A)のd1の上限が、18.0Åであることが好ましい。
-態様A1-
 態様Aとしては、上記距離(d1)が異なる2種のジ(メタ)アクリルモノマー(A)を含む態様A1が好ましい。
 態様A1によれば、加熱後の寸法精度と、立体造形物の靱性(例えば歯科用製品に求められる耐割れ性)と、がより効果的に両立され得る。
 この理由は、d1が短い方のジ(メタ)アクリルモノマー(A)によって加熱後の寸法精度向上の効果が得られ、かつ、d1が長い方のジ(メタ)アクリルモノマー(A)によって立体造形物の靱性が向上する効果が得られるためと考えられる。
(態様B)
 光硬化性組成物の別の好ましい態様の一つである態様Bは、
 光重合性成分が、ジ(メタ)アクリルモノマー(B)を含み、かつ、下記条件B1~B3の少なくとも1つを満たす態様である。
 条件B1 … ジ(メタ)アクリルモノマー(B)を2種以上含むこと。
 条件B2 … 1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーを含むこと。
 条件B3 … 2つの(メタ)アクリロイルオキシ基を有するジ(メタ)アクリルモノマー(B)以外のジ(メタ)アクリルモノマーを含むこと。
 態様Bにおいて、ジ(メタ)アクリルモノマー(B)の含有量は、(メタ)アクリルモノマー成分の全量に対し、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは50質量%以上である。
 また、態様Bにおいて、(メタ)アクリルモノマー成分の全量に対するジ(メタ)アクリルモノマー(B)の含有量は、好ましくは90質量%以下であり、より好ましくは80質量%以下である。
 また、態様Bにおいて、アクリルモノマー及びメタクリルモノマーの総含有量に対するメタクリルモノマーの含有量が、50質量%以上であることが好ましく、75質量%以上であることが好ましく、85質量%以上であることがより好ましい。
 また、態様Bにおいて、(メタ)アクリルモノマー成分の全量に対し、環構造を有する(メタ)アクリルモノマーの含有量が、90質量%以上であることがより好ましい。
 態様Bにおいて、1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーとしては、モノ(メタ)アクリルモノマー(D)(即ち、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー)が好ましい。
 態様Bにおいて、ジ(メタ)アクリルモノマー(B)以外のジ(メタ)アクリルモノマーとしては、ジ(メタ)アクリルモノマー(A)が好ましい。
 態様Bにおいて、ジ(メタ)アクリルモノマー(B)として、ジメチロール-トリシクロデカンジメタクリレートを含む場合、アクリルモノマー及びメタクリルモノマーの総含有量に対するメタクリルモノマーの含有量が、75質量%以上であることが好ましい。
 態様Bにおいて、ジ(メタ)アクリルモノマー(B)として、ジメチロール-トリシクロデカンジメタクリレートを含み、かつ、ジメチロール-トリシクロデカンジメタクリレート以外のジ(メタ)アクリルモノマー(B)を含む場合、ジメチロール-トリシクロデカンジメタクリレート以外のジ(メタ)アクリルモノマー(B)のd1の上限が、11.0Åであることが好ましい。
(態様C)
 光硬化性組成物の更に別の好ましい態様の一つである態様Cは、
 光重合性成分が、
 ポリ(メタ)アクリルモノマー(C)と、
 1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマー及び2つの(メタ)アクリロイルオキシ基を有するジ(メタ)アクリルモノマーの少なくとも一方と、
を含む態様である。
 態様Cにおいて、ポリ(メタ)アクリルモノマー(C)の含有量は、(メタ)アクリルモノマー成分の全量に対し、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは50質量%以上であり、特に好ましくは70質量%以上である。
 また、態様Cにおいて、アクリルモノマー及びメタクリルモノマーの総含有量に対するメタクリルモノマーの含有量が、50質量%以上であることが好ましく、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 また、態様Cにおいて、(メタ)アクリルモノマー成分の全量に対するポリ(メタ)アクリルモノマー(C)の含有量は、好ましくは90質量%以下であり、より好ましくは80質量%以下である。
 態様Cにおいて、1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーとしては、モノ(メタ)アクリルモノマー(D)(即ち、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー)が好ましい。
 態様Cにおいて、ジ(メタ)アクリルモノマーとしては、ジ(メタ)アクリルモノマー(A)及びジ(メタ)アクリルモノマー(B)の少なくとも一方が好ましい。
 態様Cにおいて、ジ(メタ)アクリルモノマー(B)として、ポリエチレングリコール(400)ジアクリレート、ラウリルアクリレート及び1,12ドデカンジオールジアクリレートからなる群から選択される少なくとも1つを含む場合、環構造を有する(メタ)アクリルモノマーの含有量が、75質量%以上であることがより好ましい。
 態様Cにおいて、1,9-ノナンジオールジアクリレート及びシクロヘキシルアクリレートからなる群から選択される少なくとも1つを含む場合、又は、ポリ(メタ)アクリルモノマー(C)としてトリメチロールプロパントリアクリレートを含む場合、ポリ(メタ)アクリルモノマー(C)の含有量は、(メタ)アクリルモノマー成分の全量に対し、好ましくは75質量%以上である。
(態様XY)
 次に、本開示の光硬化性組成物の更に別の好ましい態様である態様XYを示す。
 態様XYは、光重合性成分が、
 2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、17.0Å以上であるジ(メタ)アクリルモノマー(X)と、
 2つの(メタ)アクリロイルオキシ基を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、17.0Å未満であるジ(メタ)アクリルモノマー(Y)と、
を含む態様である。
 態様XYの範囲と態様A1の範囲とには、重複部分が存在する。
 従って、
態様XY及び態様A1の両方に該当することがあってもよいし、
態様XYに該当するが態様A1に該当しないことがあってもよいし、
態様A1に該当するが態様XYに該当しないことがあってもよい。
 態様XYによれば、加熱後の寸法精度と、例えば歯科用製品に求められる耐割れ性向上と、がより効果的に実現され得る。
 この理由は、d1が相対的に短いジ(メタ)アクリルモノマー(Y)と、ジ(メタ)アクリルモノマー(X)の環状構造と、によって加熱後の寸法精度向上の効果が得られ、かつ、d1が相対的に長いジ(メタ)アクリルモノマー(X)によって耐割れ性が向上する効果が得られるためと考えられる。
-ジ(メタ)アクリルモノマー(X)-
 ジ(メタ)アクリルモノマー(X)は、2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離(d1)が、17.0Å以上であるジ(メタ)アクリルモノマーである。
 ジ(メタ)アクリルモノマー(X)は、前述したジ(メタ)アクリルモノマー(A)のうち、d1が17.0Å以上に限定されたものである。この点以外、ジ(メタ)アクリルモノマー(X)の好ましい態様は、前述したジ(メタ)アクリルモノマー(A)の好ましい態様と同様である。
-ジ(メタ)アクリルモノマー(Y)-
 ジ(メタ)アクリルモノマー(Y)は、2つの(メタ)アクリロイルオキシ基を有し、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)が17.0Å未満であるジ(メタ)アクリルモノマーである。
 ジ(メタ)アクリルモノマー(Y)は、前述したジ(メタ)アクリルモノマー(B)におけるd1の範囲(15.0Å未満)が、17.0Å未満に拡張されたものである。この点以外、ジ(メタ)アクリルモノマー(Y)の好ましい態様は、前述したジ(メタ)アクリルモノマー(B)の好ましい態様と同様である。
 また、ジ(メタ)アクリルモノマー(Y)は、環状構造を有していてもよい。
 環状構造を有する場合のジ(メタ)アクリルモノマー(Y)は、前述したジ(メタ)アクリルモノマー(A)に該当していてもよい。
 ジ(メタ)アクリルモノマー(Y)のうち、環状構造を有し、かつ、d1が15.0Å以上17.0Å未満である場合の好ましい態様は、前述したジ(メタ)アクリルモノマー(A)のうち、d1が15.0Å以上17.0Å未満である場合の好ましい態様と同様である。
 態様XYの効果をより効果的に得る観点から、態様XYにおいて、ジ(メタ)アクリルモノマー(X)及びジ(メタ)アクリルモノマー(Y)の総含有量は、(メタ)アクリルモノマー成分の全量に対し、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは50質量%以上、更に好ましくは80質量%以上であり、更に好ましくは90質量%以上であり、更に好ましくは95質量%以上である。
 態様XYにおいて、(メタ)アクリルモノマー成分の全量に対するジ(メタ)アクリルモノマー(X)及びジ(メタ)アクリルモノマー(Y)の総含有量の割合は、100質量%であってもよいし、100質量%未満であってもよい。
 態様XYの効果をより効果的に得る観点から、態様XYにおいて、ジ(メタ)アクリルモノマー(X)の含有量は、(メタ)アクリルモノマー成分の全量に対し、好ましくは50質量%~90質量%である。
 態様XYの効果をより効果的に得る観点から、態様XYにおいて、ジ(メタ)アクリルモノマー(Y)の含有量は、(メタ)アクリルモノマー成分の全量に対し、好ましくは10質量%~50質量%である。
<光重合開始剤>
 本開示の光硬化性組成物は、光重合開始剤を少なくとも1種含有する。
 光重合開始剤は、光を照射することでラジカルを発生するものであれば特に限定されないが、光造形の際に用いる光の波長でラジカルを発生するものであることが好ましい。
 光造形の際に用いる光の波長としては、一般的には365nm~500nmが挙げられるが、実用上好ましくは365nm~430nmであり、より好ましくは365nm~420nmである。
 光造形の際に用いる光の波長でラジカルを発生する光重合開始剤としては、例えば、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾイン系化合物、アセトフェノン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、α-アシロキシムエステル系化合物、フェニルグリオキシレート系化合物、ベンジル系化合物、アゾ系化合物、ジフェニルスルフィド系化合物、有機色素系化合物、鉄-フタロシアニン系化合物、ベンゾインエーテル系化合物、アントラキノン系化合物等が挙げられる。
 これらのうち、反応性等の観点から、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物が好ましい。
 アルキルフェノン系化合物としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(Omnirad 184:IGM Resins B.V.社製)が挙げられる。
 アシルフォスフィンオキサイド系化合物としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(Omnirad 819:IGM Resins B.V.社製)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(Omnirad TPO:IGM Resins B.V.社製)が挙げられる。
 本開示の光硬化性組成物は、光重合開始剤を1種のみ含有していてもよいし、2種以上含有していてもよい。
 本開示の光硬化性組成物中における光重合開始剤の含有量(2種以上である場合には合計含有量)は、光硬化性組成物の全量に対し、0.1質量%~10質量%であることが好ましく、0.2質量%~5質量%であることがさらに好ましく、0.3質量%~3質量%であることが特に好ましい。
<その他の成分>
 本開示の光硬化性組成物は、必要に応じて、上述した成分以外のその他の成分を1種類以上含有していてもよい。
 光硬化性組成物が、その他の成分を含有する場合、ジ(メタ)アクリルモノマー(A)、アクリルモノマー(B)及び光重合開始剤の合計質量は、光硬化性組成物の全量に対し、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが更に好ましい。
 その他の成分としては、例えば、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)以外のモノマーが挙げられる。
 光硬化性組成物が、その他の成分としてジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)以外のモノマーを含む場合、その他の成分としてのモノマーの含有量は、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)の質量の合計に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
 (メタ)アクリルモノマー成分の全量に対し、水酸基を含む(メタ)アクリルモノマー及びカルボキシ基を含む(メタ)アクリルモノマーの総含有量が、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 その他の成分としては、例えば、色材、シランカップリング剤(例えば3-アクリロキシプロピルトリメトキシシラン)等のカップリング剤、ゴム剤、イオントラップ剤、イオン交換剤、レベリング剤、可塑剤、消泡剤等の添加剤、熱重合開始剤等も挙げられる。
 本開示の光硬化性組成物が熱重合開始剤を含有する場合には、光硬化と熱硬化との併用が可能となる。熱重合開始剤としては、例えば、熱ラジカル発生剤、アミン化合物などが挙げられる。
 その他の成分としては、無機フィラーも挙げられる。
 しかし、硬化物の造形精度をより向上させる観点から、本開示の光硬化性組成物は、無機フィラー(例えば、シリカ、バリウムボロシリケートガラス、等。以下同じ。)を含有しないか、又は、無機フィラーを含有する場合には、光硬化性組成物の全量に対する無機フィラーの含有量が60質量%以下(より好ましくは40質量%以下、更に好ましくは20質量%以下、更に好ましくは10質量%以下)であることが好ましい。
 本開示の光硬化性組成物の調製方法は特に制限されない。
 本開示の光硬化性組成物の調製方法としては、例えば、ジ(メタ)アクリルモノマー(A)及びアクリルモノマー(B)、及び光重合開始剤(及び必要に応じその他の成分)を混合する方法が挙げられる。
 各成分を混合する手段は特に限定されず、例えば、超音波による溶解、双腕式攪拌機、ロール混練機、2軸押出機、ボールミル混練機、及び遊星式撹拌機等の手段が含まれる。
 本開示の光硬化性組成物は、各成分を混合した後、フィルタでろ過して不純物を取り除き、さらに真空脱泡処理を施すことによって調製してもよい。
 
<光硬化性組成物の好ましい粘度>
 本開示の光硬化性組成物は、E型粘度計により25℃及び50rpmの条件で測定される粘度(以下、単に「粘度」ともいう)が、5mPa・s~6000mPa・sであることが好ましい。
 ここで、rpmは、revolutions per minute(回転毎分)を意味する。
 粘度が5mPa・s~6000mPa・sである場合には、硬化物(特に、光造形物)を製造する際の光硬化性組成物の取り扱い性に優れる。
 粘度は、10mPa・s~5000mPa・sであることがより好ましく、20mPa・s~5000mPa・sであることが更に好ましく、50mPa・s~1000mPa・sであることが更に好ましい。
〔立体造形物〕
 本開示の立体造形物は、上述した本開示の光硬化性組成物の硬化物である。
 このため、本開示の立体造形物は、加熱後の寸法精度に優れる。
 本開示の立体造形物は、光造形による硬化物(即ち、光造形物)であることが好ましい。
 立体造形物(例えば光造形物)を製造する方法については、前述したとおりである。
〔歯科用製品〕
 本開示の歯科用製品は、上述した本開示の立体造形物を含む。
 このため、本開示の歯科用製品は、加熱後の寸法精度に優れる。
 歯科用製品の具体例は前述したとおりである。
 前述したとおり、歯科用製品としては、
加熱されて使用される歯科用製品が好ましく、
歯科用サージカルガイド、歯科用トレー、マウスピース、又は歯科用模型がより好ましく、
加熱滅菌されて用いられる、歯科用サージカルガイドが特に好ましい。
 加熱滅菌における、加熱温度及び加熱時間の好ましい範囲は前述のとおりである。
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
〔実施例1~26、比較例1~2〕
<光硬化性組成物の調製>
 表1~表3に示す各成分を混合し、光硬化性組成物を得た。
<測定及び評価>
 得られた光硬化性組成物を用い、以下の測定及び評価を行った。
 結果を表1及び表2に示す。
(光硬化性組成物の粘度)
 得られた光硬化性組成物の粘度を、E型粘度計により、25℃、50rpmの条件で測定した。
 その結果、実施例1~26の光硬化性組成物の粘度は、いずれも、50mPa・s~1000mPa・sの範囲であった。
(135℃における貯蔵弾性率)
 得られた光硬化性組成物を用い、前述した方法によって試験片P1を作製し、得られた試験片P1について、135℃における貯蔵弾性率を、前述した方法によって測定した。
 試験片P1の作製は、DLP方式の3Dプリンター(Kulzer社、Cara Print4.0)を用いて行い、135℃における貯蔵弾性率の測定は、動的粘弾性測定装置(アイティー計測制御製、DVA-225)を用いて行った。
(加熱滅菌後における寸法精度の評価)
 DLP方式の3Dプリンター(Kulzer社、Cara Print4.0)を用い、DLP方式の光造形により、図1に示す立体造形物10を製造した。
 図1に示すように、立体造形物10の形状は、中空立方体における6面のうちの隣り合う2面を除去した形状である。立体造形物10のサイズ(設計値)は、長さLが40mmであり、幅Wが25mmであり、高さHが25mmであり、肉厚2mmである。
 立体造形物10の製造は、試験片P1の製造と同様に、光硬化性組成物に対し波長405nmの可視光を照射量11mJ/cmにて照射して厚さ50μmの硬化層を形成し、形成した硬化層を厚さ方向に積層させることにより造形物を形成し、形成された造形物に対し、波長365nmの紫外線を照射量3J/cmにて照射する条件の光造形によって行った。
 製造された立体造形物10の長さLを、ノギス(ミツトヨ社製、CD-P15S)で測定したところ、40.0mmであった。
 得られた立体造形物10を、オートクレーブにて、温度135℃にて10分間、加熱滅菌した。
 加熱滅菌後の立体造形物10の長さLを、再度、上記ノギスで測定し、更に、設計値(40mm)からのズレ(mm)を算出した(表1~表3)。
 設計値からのズレが小さい程、加熱滅菌後の寸法精度に優れる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003
 表1~表3中、各成分の欄の数字は、質量部を意味し、空欄は、該当する成分を含有しないことを意味する。
 表1~表3中、「135℃における貯蔵弾性率(Pa)」欄における「8.4E+08」等の表記は、8.4×10等を意味する。
<モノ(メタ)アクリルモノマー>
 表1~表3中、モノ(メタ)アクリルモノマーは、それぞれ以下のとおりである。
 これらのモノ(メタ)アクリルモノマーのうち、「HO-250」以外の化合物は、モノ(メタ)アクリルモノマー(D)に該当する。
Figure JPOXMLDOC01-appb-C000004
<ジ(メタ)アクリルモノマー(A)>
 表1~表3中、ジ(メタ)アクリルモノマー(A)〔即ち、2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)が、15.0Å以上であるジ(メタ)アクリルモノマー〕は、それぞれ以下のとおりである。
Figure JPOXMLDOC01-appb-C000005
<ジ(メタ)アクリルモノマー(B)>
 表1~表3中、ジ(メタ)アクリルモノマー(B)〔即ち、2つの(メタ)アクリロイルオキシ基を有し、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)が、15.0Å未満であるジ(メタ)アクリルモノマー〕は、それぞれ以下のとおりである。
Figure JPOXMLDOC01-appb-C000006

 
<その他のジ(メタ)アクリルモノマー>
 表1~表3中、その他のジ(メタ)アクリルモノマー(即ち、ジ(メタ)アクリルモノマー(A)及びジ(メタ)アクリルモノマー(B)以外のジ(メタ)アクリルモノマー)は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000007
<ポリ(メタ)アクリルモノマー(C)>
 表1~表3中、ポリ(メタ)アクリルモノマー(C)(即ち、3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマー)は、以下のとおりである。
 TMPA … 共栄社化学社製のトリメチロールプロパントリアクリレート。
 A-TMMT … 新中村化学工業社製のテトラメチロールメタンテトラアクリレート。
 U15HA … 新中村化学工業社製の15官能ウレタンアクリレート。
<光重合開始剤>
 表1~表3中の光重合開始剤は以下のとおりである。
Figure JPOXMLDOC01-appb-C000008
 819 … IGM Resins B.V.社製「Omnirad 819」(アシルフォスフィンオキサイド系化合物)。
 TPO … IGM Resins B.V.社製「Omnirad TPO」(アシルフォスフィンオキサイド系化合物)。
 表1~表3に示すように、135℃における貯蔵弾性率が3.0×10Pa以上である各実施例の光硬化性組成物を用いて製造された立体造形物は、135℃における貯蔵弾性率が3.0×10Pa未満である各比較例の光硬化性組成物を用いて製造された立体造形物は、加熱滅菌後の寸法精度に優れていた(即ち、長さLの設計値からのズレが低減されていた)。
〔硬化物の耐割れ性評価〕
 サージカルガイドや歯科用トレーなどの、口腔内に入れて用いられる器具は、口腔内や使用時において力が加わるため、その力に耐えうる程度の耐割れ性が求められる。
 そこで、以下に示す方法により、サージカルガイドや歯科用トレー等に対する適正を評価するために、耐割れ性試験を行った。
 DLP方式の3Dプリンター(Kulzer社、Cara Print4.0)により、表4に記載の光硬化性組成物の、長さ64mm、幅10mm、厚さ3.3mmの板状の造形物を、64mm×3.3mmの面が造形テーブルに接地する方向で、積層幅50μm、各層に波長405nmの可視光を11mJ/cm照射する条件で造形した。得られた板状の造形物に対し、波長365nmの紫外線を3J/cmの条件で照射して硬化性組成物を本硬化させることにより、試験片の硬化物P2を得た。
 得られた硬化物P2を、引張り圧縮試験装置((株)インテスコ製 、210X)を用い、3点曲げモードにて、試験温度23℃、支点間距離50mm、クロスヘッドスピード5mm/分で、たわみが3mmになるところまで荷重をかけた。
 各対象の光硬化性組成物につき、6本の試験を実施し、6本すべての試験片が割れなかったものはA、1~4本の割れの場合はB、5本以上割れたものをCと評価した。結果を表4に示す。
<ジ(メタ)アクリルモノマー(X)>
 表4中、ジ(メタ)アクリルモノマー(X)〔即ち、2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)が、17.0Å以上であるジ(メタ)アクリルモノマー〕は、上述のジ(メタ)アクリルモノマー(A)のうちのSR540である。
<ジ(メタ)アクリルモノマー(Y)>
 表4中、ジ(メタ)アクリルモノマー(X)〔即ち、2つの(メタ)アクリロイルオキシ基を有し、d1(即ち、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離)が、17.0Å未満であるジ(メタ)アクリルモノマー〕は、上述のジ(メタ)アクリルモノマー(A)のうちのSR348、及び、上述のジ(メタ)アクリルモノマー(B)のうちのNPである。
 表4中、モノ(メタ)アクリルモノマー、ポリ(メタ)アクリルモノマー(C)、光重合開始剤の欄は、表1~表3に記載のものと同様の意味である。
 表4中、各成分の欄の数字は、空欄は、「135℃における貯蔵弾性率(Pa)」の欄は、表1~3に記載のものと同様の意味である。
Figure JPOXMLDOC01-appb-T000009
 135℃における貯蔵弾性率が、3.0×10Pa未満である実施例23の光硬化性組成物を用いて製造された立体造形物は、耐割れ性がC評価であるのに対し、135℃における貯蔵弾性率が、3.0×10Pa以下である、実施例4、6、14、及び25の光硬化性組成物を用いて製造された立体造形物は、耐割れ性評価が「A」又は「B」であった。
 ジ(メタ)アクリルモノマー(X)とジ(メタ)アクリルモノマー(Y)とを含む実施例14及び実施例25の光硬化性組成物を用いて製造された立体造形物は、表4に示すように、耐割れ性の評価が「A」であり、かつ、表2で既に示したといり、加熱滅菌後の寸法精度に優れていた。これに対し、ジ(メタ)アクリルモノマー(X)を含まない実施例4及び6の光硬化性組成物を用いて製造された立体造形物は、表1で既に示したとおり、加熱滅菌後の寸法精度に優れているものの、表4に示すように、耐割れ性評価が「B」であった。
 2020年7月7日に出願された日本国特許出願2020-117229の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (17)

  1.  光重合性成分と、光重合開始剤と、を含有する光硬化性組成物であって、
     前記光硬化性組成物に対し波長405nmの可視光を照射量11mJ/cmにて照射して厚さ50μmの硬化層P1を形成し、前記硬化層P1を厚さ方向に積層させることにより、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の造形物P1を形成し、前記造形物P1に対し、波長365nmの紫外線を照射量3J/cmにて照射する条件の光造形により、長さ40mm、幅10mm、厚さ0.5mmの矩形板形状の試験片P1を作製し、作製された前記試験片P1について、動的粘弾性測定により、昇温範囲25℃~300℃及び昇温速度3℃/分にて昇温しながら測定周波数1Hzの条件にて貯蔵弾性率を測定した場合に、135℃における貯蔵弾性率が、3.0×10Pa以上である、
    光硬化性組成物。
  2.  前記135℃における貯蔵弾性率が、3.5×10Pa以下である、請求項1に記載の光硬化性組成物。
  3.  前記光重合性成分が、
     2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、15.0Å以上であるジ(メタ)アクリルモノマー(A)、
     2つの(メタ)アクリロイルオキシ基を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が15.0Å未満であるジ(メタ)アクリルモノマー(B)、及び、
     3つ以上の(メタ)アクリロイルオキシ基を有するポリ(メタ)アクリルモノマー(C)
    のうちの少なくとも1つを含む、請求項1又は請求項2に記載の光硬化性組成物。
  4.  前記光重合性成分が、
     前記一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が異なる2種類の前記ジ(メタ)アクリルモノマー(A)を含むか、
    又は、
     前記ジ(メタ)アクリルモノマー(A)と、1つの(メタ)アクリロイルオキシ基と分岐構造及び環状構造の少なくとも一方とを有するモノ(メタ)アクリルモノマー(D)及び前記ジ(メタ)アクリルモノマー(B)の少なくとも一方と、を含む、
    請求項3に記載の光硬化性組成物。
  5.  前記光重合性成分が、前記ジ(メタ)アクリルモノマー(B)を含み、かつ、
     前記ジ(メタ)アクリルモノマー(B)を2種以上含むこと、
     1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマーを含むこと、及び、
     2つの(メタ)アクリロイルオキシ基を有する前記ジ(メタ)アクリルモノマー(B)以外のジ(メタ)アクリルモノマーを含むこと
    のうちの少なくとも1つを満たす、
    請求項3に記載の光硬化性組成物。
  6.  前記光重合性成分が、
     前記ポリ(メタ)アクリルモノマー(C)と、
     1つの(メタ)アクリロイルオキシ基を有するモノ(メタ)アクリルモノマー及び2つの(メタ)アクリロイルオキシ基を有するジ(メタ)アクリルモノマーの少なくとも一方と、
    を含む、請求項3に記載の光硬化性組成物。
  7.  前記ジ(メタ)アクリルモノマー(A)、前記ジ(メタ)アクリルモノマー(B)、及び前記ポリ(メタ)アクリルモノマー(C)の総含有量が、(メタ)アクリルモノマー成分の全量に対し、50質量%以上である、
    請求項3~請求項6のいずれか1項に記載の光硬化性組成物。
  8.  前記光重合性成分が、
     2つの(メタ)アクリロイルオキシ基と、環状構造と、を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、17.0Å以上であるジ(メタ)アクリルモノマー(X)と、
     2つの(メタ)アクリロイルオキシ基を有し、一方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、他方の(メタ)アクリロイルオキシ基中のオキシ基を形成する酸素原子と、の間の距離が、17.0Å未満であるジ(メタ)アクリルモノマー(Y)と、
    を含む、請求項1~請求項3のいずれか1項に記載の光硬化性組成物。
  9.  前記ジ(メタ)アクリルモノマー(X)及び前記ジ(メタ)アクリルモノマー(Y)の総含有量が、(メタ)アクリルモノマー成分の全量に対し、50質量%以上である、請求項8に記載の光硬化性組成物。
  10.  前記ジ(メタ)アクリルモノマー(X)の含有量が、(メタ)アクリルモノマー成分の全量に対し、50質量%~90質量%である、請求項8又は請求項9に記載の光硬化性組成物。
  11.  前記ジ(メタ)アクリルモノマー(Y)の含有量が、(メタ)アクリルモノマー成分の全量に対し、10質量%~50質量%である、請求項8~請求項10のいずれか1項に記載の光硬化性組成物。
  12.  E型粘度計により25℃及び50rpmの条件で測定される粘度が、5mPa・s~6000mPa・sである、
    請求項1~請求項9のいずれか1項に記載の光硬化性組成物。
  13.  光造形用の光硬化性組成物である、請求項1~請求項12のいずれか1項に記載の光硬化性組成物。
  14.  光造形による歯科用製品の製造に用いられる、請求項1~請求項13のいずれか1項に記載の光硬化性組成物。
  15.  請求項1~請求項14のいずれか1項に記載の光硬化性組成物の硬化物である、立体造形物。
  16.  請求項15に記載の立体造形物を含む、歯科用製品。
  17.  歯科用サージカルガイド、歯科用トレー、マウスピース、又は歯科用模型である、請求項16に記載の歯科用製品。
PCT/JP2021/025460 2020-07-07 2021-07-06 光硬化性組成物、立体造形物、及び歯科用製品 WO2022009880A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/004,185 US20230242785A1 (en) 2020-07-07 2021-07-06 Photocurable composition, three-dimensional modeling product, and dental product
JP2022535345A JP7429783B2 (ja) 2020-07-07 2021-07-06 光硬化性組成物、立体造形物、及び歯科用製品
CN202180047792.6A CN115768806A (zh) 2020-07-07 2021-07-06 光固化性组合物、立体造型物和牙科用制品
EP21837231.6A EP4163308A4 (en) 2020-07-07 2021-07-06 PHOTOCURABLE COMPOSITION, THREE-DIMENSIONAL SHAPED ARTICLE AND DENTAL PRODUCT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-117229 2020-07-07
JP2020117229 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022009880A1 true WO2022009880A1 (ja) 2022-01-13

Family

ID=79553193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025460 WO2022009880A1 (ja) 2020-07-07 2021-07-06 光硬化性組成物、立体造形物、及び歯科用製品

Country Status (5)

Country Link
US (1) US20230242785A1 (ja)
EP (1) EP4163308A4 (ja)
JP (1) JP7429783B2 (ja)
CN (1) CN115768806A (ja)
WO (1) WO2022009880A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173664B2 (en) * 2017-04-24 2021-11-16 The Boeing Company Nanostructures for process monitoring and feedback control

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277537A (ja) * 2006-03-13 2007-10-25 Mitsubishi Gas Chem Co Inc 防曇性塗料組成物
JP2008189782A (ja) * 2007-02-02 2008-08-21 Cmet Inc 面露光による光学的立体造形用樹脂組成物
JP4160311B2 (ja) 2001-03-12 2008-10-01 イボクラール ビバデント アクチェンゲゼルシャフト 合成材料部品の製造方法
JP2010176788A (ja) * 2008-12-29 2010-08-12 Nippon Shokubai Co Ltd 光ディスク用硬化性樹脂組成物および光ディスク
JP2012102226A (ja) * 2010-11-09 2012-05-31 Bridgestone Corp 接着性樹脂組成物
JP5235056B2 (ja) 2007-02-02 2013-07-10 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP2016525150A (ja) * 2014-01-13 2016-08-22 デンカ インク 光硬化性樹脂組成物ならびに人工歯および義歯床を製造するための3次元印刷におけるその使用方法
JP2016172796A (ja) * 2015-03-16 2016-09-29 東洋インキScホールディングス株式会社 光学的立体造形用活性エネルギー線重合性樹脂組成物、及び立体造形物
WO2017047693A1 (ja) * 2015-09-15 2017-03-23 日立マクセル株式会社 モデル材用樹脂組成物、光造形用インクセット、および、光造形品の製造方法
JP2018087317A (ja) * 2016-11-18 2018-06-07 住友電気工業株式会社 樹脂組成物、樹脂成形体および架橋樹脂成形体
WO2018105463A1 (ja) * 2016-12-05 2018-06-14 Dic株式会社 光学的立体造形用光硬化性樹脂組成物
JP2019521188A (ja) * 2016-06-20 2019-07-25 デンツプライ シロナ インコーポレイテッド 層状歯科用製品を製造するための3次元造形材料系および方法
WO2019189652A1 (ja) 2018-03-30 2019-10-03 三井化学株式会社 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
JP2020117229A (ja) 2019-01-18 2020-08-06 レンゴー株式会社 包装箱

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2965741A1 (de) * 2014-07-11 2016-01-13 Ivoclar Vivadent AG Komposite mit gesteuerter Netzwerkstruktur
WO2016149488A1 (en) * 2015-03-18 2016-09-22 University Of Kansas Co-initiator and co-monomer for use in preparing polymer related compositions, methods of manufacture, and methods of use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160311B2 (ja) 2001-03-12 2008-10-01 イボクラール ビバデント アクチェンゲゼルシャフト 合成材料部品の製造方法
JP2007277537A (ja) * 2006-03-13 2007-10-25 Mitsubishi Gas Chem Co Inc 防曇性塗料組成物
JP5111880B2 (ja) 2007-02-02 2013-01-09 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP2008189782A (ja) * 2007-02-02 2008-08-21 Cmet Inc 面露光による光学的立体造形用樹脂組成物
JP5235056B2 (ja) 2007-02-02 2013-07-10 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
JP2010176788A (ja) * 2008-12-29 2010-08-12 Nippon Shokubai Co Ltd 光ディスク用硬化性樹脂組成物および光ディスク
JP2012102226A (ja) * 2010-11-09 2012-05-31 Bridgestone Corp 接着性樹脂組成物
JP2016525150A (ja) * 2014-01-13 2016-08-22 デンカ インク 光硬化性樹脂組成物ならびに人工歯および義歯床を製造するための3次元印刷におけるその使用方法
JP2016172796A (ja) * 2015-03-16 2016-09-29 東洋インキScホールディングス株式会社 光学的立体造形用活性エネルギー線重合性樹脂組成物、及び立体造形物
WO2017047693A1 (ja) * 2015-09-15 2017-03-23 日立マクセル株式会社 モデル材用樹脂組成物、光造形用インクセット、および、光造形品の製造方法
JP2019521188A (ja) * 2016-06-20 2019-07-25 デンツプライ シロナ インコーポレイテッド 層状歯科用製品を製造するための3次元造形材料系および方法
JP2018087317A (ja) * 2016-11-18 2018-06-07 住友電気工業株式会社 樹脂組成物、樹脂成形体および架橋樹脂成形体
WO2018105463A1 (ja) * 2016-12-05 2018-06-14 Dic株式会社 光学的立体造形用光硬化性樹脂組成物
WO2019189652A1 (ja) 2018-03-30 2019-10-03 三井化学株式会社 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
JP2020117229A (ja) 2019-01-18 2020-08-06 レンゴー株式会社 包装箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163308A4

Also Published As

Publication number Publication date
JP7429783B2 (ja) 2024-02-08
US20230242785A1 (en) 2023-08-03
EP4163308A4 (en) 2024-07-24
CN115768806A (zh) 2023-03-07
JPWO2022009880A1 (ja) 2022-01-13
EP4163308A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
TWI685519B (zh) 光硬化性組成物、假牙床及有床假牙
TWI769987B (zh) 光硬化性組成物、假牙床及有床假牙
US10973742B2 (en) Photocurable composition, denture base, and plate denture
JP6688941B2 (ja) 光造形用硬化性組成物、消失模型及び立体造形物の製造方法
WO2022009880A1 (ja) 光硬化性組成物、立体造形物、及び歯科用製品
JP7412535B2 (ja) 光硬化性組成物、硬化物、及び歯科用製品
WO2023190071A1 (ja) 光硬化性組成物、立体造形物、鋳型、硬化物を製造する方法及び有床義歯の製造方法
CN116438081A (zh) 光硬化性树脂组合物、硬化物、树脂造形物及铸模的制造方法
WO2020196753A1 (ja) 光硬化性立体造形用組成物、立体造形物及び立体造形物の製造方法
JP7011741B1 (ja) 光硬化性樹脂組成物および鋳型作製用の樹脂型
JP7326590B2 (ja) 光硬化性組成物、立体造形物、及び歯科用製品
WO2021149520A1 (ja) 光硬化性組成物、立体造形物、及び歯科用製品
WO2023189684A1 (ja) 光硬化性組成物、立体造形物、歯科用製品及びスプリント
JP2023146822A (ja) 光造形物の加工方法及び光造形物の加工物
JP2023146821A (ja) 光造形用硬化性組成物、歯科用製品及び義歯床
JP2022135159A (ja) 光造形用硬化性組成物、及び歯科用製品
WO2023210328A1 (ja) 三次元光造形用光硬化性樹脂組成物
WO2023008233A1 (ja) 三次元造形物の製造方法
WO2024117203A1 (ja) 光硬化性組成物、立体造形物、歯科用製品及びスプリント
WO2023189780A1 (ja) 光硬化性組成物、立体造形物、及び口腔内に装着される器具
KR20240071217A (ko) 3d 프린팅용 광경화성 조성물 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535345

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021837231

Country of ref document: EP

Effective date: 20230103

NENP Non-entry into the national phase

Ref country code: DE