WO2021253557A1 - 一种触觉效果的实现方法及设备、计算机可读存储介质 - Google Patents

一种触觉效果的实现方法及设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2021253557A1
WO2021253557A1 PCT/CN2020/102898 CN2020102898W WO2021253557A1 WO 2021253557 A1 WO2021253557 A1 WO 2021253557A1 CN 2020102898 W CN2020102898 W CN 2020102898W WO 2021253557 A1 WO2021253557 A1 WO 2021253557A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration waveform
adaptive
waveform
vibration
frame
Prior art date
Application number
PCT/CN2020/102898
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021253557A1 publication Critical patent/WO2021253557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system

Definitions

  • the present invention relates to the technical field of tactile feedback, in particular to a method and equipment for realizing tactile effects, and a computer-readable storage medium.
  • the vibration effect that is not the designer's expectation can be achieved without any difference. If the vibration effect desired by the designer exceeds the output capacity of the motor, the vibration effect cannot be fully realized, and certain optimizations must be made to the desired vibration effect to optimize it to the output capacity of the motor.
  • the current vibration effect design mainly relies on the designer's design experience to artificially optimize the vibration waveform. It cannot be applied and automated design, and it is impossible to design an ideal achievable tactile effect.
  • the present invention mainly provides a method and equipment for realizing haptic effects, and a computer-readable storage medium.
  • the design that can solve the vibration effect in the prior art mainly relies on the designer's design experience to artificially optimize the vibration waveform, and cannot be applied and automated design. , The problem of not being able to design an ideal achievable tactile effect.
  • a technical solution adopted by the present invention is to provide a method for realizing haptic effects, the realizing method includes: obtaining a vibration waveform of the haptic effect; generating an adaptive limit frame according to the length of the vibration waveform; The vibration waveform is optimized according to the adaptive limit framework to generate an optimized vibration waveform; an equalized voltage corresponding to the device is calculated according to the optimized vibration waveform, so that the device is based on the equalized voltage Play haptic effects.
  • optimizing the vibration waveform according to the adaptive restriction frame to generate an optimized vibration waveform includes: determining whether the value of the vibration waveform is greater than the adaptive restriction frame; if the determination is yes, then The vibration waveform and the adaptive restriction frame are calculated to obtain the optimized vibration waveform.
  • generating the adaptive restriction frame according to the length of the vibration waveform includes: acquiring the duration of the vibration waveform; determining whether the duration is greater than a preset threshold duration value; if it is greater than, generating a first adaptive restriction frame; If it is less than, a second adaptive restriction frame is generated.
  • T0 is the preset threshold
  • Tc is the total duration of the vibration waveform
  • M is the first adaptive limit frame
  • M2 (cos(2(t-T0)/T0*exp(-2(t-T0/2)/T0)+pi)+1)/2; (T0/2 ⁇ t ⁇ T0)
  • t is the time interval [0, T0]
  • T0 is the preset threshold value
  • M is the second adaptive limit frame.
  • the vibration waveform is kept unchanged.
  • m represents the mass of the actual play of the motor mover
  • c denotes the actual playback motor mechanical damping
  • k denotes a real play motor spring coefficient
  • BL represents the electromechanical coupling coefficient
  • R e represent the actual playback of the motor coil resistance
  • L e is a real play motor Coil inductance
  • i is the current
  • u is the equilibrium voltage
  • x is the displacement
  • Is the speed
  • Is acceleration acceleration
  • the vibration waveform includes one of an acceleration waveform, a velocity waveform, and a displacement waveform.
  • the device for realizing haptic effects includes a processor and a memory, and the memory stores computer instructions, and the processor Coupled with the memory, the processor executes the computer instructions during work to implement the foregoing implementation method.
  • another technical solution adopted by the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned implementation method.
  • the present invention provides a method and device for realizing haptic effects, and a computer-readable storage medium, which automatically adjusts the length and shape of the self-adaptive limit by generating the vibration waveform of the haptic effect Frame, and optimize the original vibration waveform according to the adaptive limit frame, which can limit the vibration waveform within the output capacity of the motor, calculate the equalized voltage through the equalization algorithm and excite the motor to obtain the desired haptic effect.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for implementing haptic effects provided by the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of step S200 in FIG. 1 of the present invention.
  • Fig. 3 is a schematic diagram of an embodiment of the first adaptive restriction framework of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of the second adaptive restriction framework of the present invention.
  • FIG. 5 is a schematic flowchart of an embodiment of step S300 in FIG. 1 of the present invention.
  • Fig. 6a is a schematic diagram of an embodiment of the vibration waveform A0 of the present invention.
  • Fig. 6b is a schematic diagram of an embodiment of the adaptive restriction framework of the present invention.
  • 6c is a schematic diagram of the effect of an embodiment of the vibration waveform A1 after optimization of the present invention.
  • Fig. 7 is a schematic block diagram of an embodiment of a device for realizing haptic effects provided by the present invention.
  • Fig. 8 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for implementing haptic effects provided by the present invention.
  • the method for implementing haptic effects in this embodiment may specifically include:
  • the vibration waveform in the present invention is a specific intuitive quantized waveform of the haptic effect, which can be stored in a haptic effect library in advance, and the haptic effect library can be stored in the device memory or cloud storage.
  • the specific form of the vibration effect of the present invention may include one of the acceleration waveform curve of the mover of the vibration system, the velocity waveform curve of the mover of the vibration system, and the displacement waveform curve of the mover of the vibration system. In actual application scenarios, it can be based on the situation. Choose a suitable vibration waveform, there is no specific limitation here.
  • S200 Generate an adaptive limit frame according to the length of the vibration waveform.
  • FIG. 2 is a schematic flowchart of an embodiment of step S200 of the present invention. As shown in FIG. 2, step S200 of the present invention further includes the following sub-steps:
  • the vibration waveform A0 is a set of numbers, which can be a sine-like waveform, and the vibration of the waveform is 1, but A0 is a set of numbers from -1 to 1 point.
  • S220 Determine whether the duration is greater than a preset threshold duration value.
  • the duration of the vibration waveform A0 and the size of the preset threshold duration value T0 are further judged.
  • the preset threshold duration value T0 is currently generally an empirical value for electronic equipment motors. The stronger the motor capability, the smaller the preset threshold duration value.
  • the electronic device of the present invention can be any device with communication and storage functions, such as: tablet computer, mobile phone, e-reader, remote control, personal computer (Personal Computer, PC), notebook computer, in-vehicle device, network TV, wearable Smart devices with network functions such as devices.
  • the preset threshold duration value T0 can be set to 20 milliseconds. In other embodiments, different preset threshold duration values T0 can be set according to different electronic devices. There are no specific restrictions.
  • FIG. 3 is a schematic diagram of an embodiment of the first adaptive restriction framework of the present invention.
  • the first adaptive restriction frame as shown in FIG. 3 is generated, and the calculation formula of the first adaptive restriction frame is as follows:
  • t is the time axis of the vibration waveform
  • T0 is the preset threshold
  • Tc is the total duration of the vibration waveform
  • M is the first adaptive limit frame
  • the above-mentioned time unit is milliseconds.
  • FIG. 4 is a schematic diagram of an embodiment of the second adaptive restriction framework of the present invention.
  • a second adaptive restriction frame as shown in FIG. 4 is generated, and the calculation formula of the second adaptive restriction frame is as follows:
  • M2 (cos(2(t-T0)/T0*exp(-2(t-T0/2)/T0)+pi)+1)/2; (T0/2 ⁇ t ⁇ T0)
  • t is the time interval [0, T0]
  • T0 is the preset threshold value
  • M is the second adaptive limit frame.
  • M is the time length Ti of shifting M2 forward, taking the smaller two segments that M1 and M2 intersect after translation, and combining them.
  • the calculation method of the first adaptive restriction frame and the second adaptive restriction frame of the present invention is only used as a calculation demonstration.
  • other algorithms can also be used, and any modification of the above formula of the present invention All are within the protection scope of the present invention.
  • step S300 of the present invention further includes the following sub-steps:
  • S310 Determine whether the value of the vibration waveform is greater than the adaptive limit frame.
  • the number sequence of the vibration waveform A0 and the number sequence of the adaptive limit frame M are compared point by point, for example, the nth number in A0 is compared with the nth number in M, and the judgment condition is as long as A0 If there is n such that A0(n)>M(n), it is determined that the value of the vibration waveform is greater than the adaptive limit frame, and step S320 is entered, otherwise, step S330 is entered.
  • S320 Calculate the vibration waveform and the adaptive limit frame to obtain an optimized vibration waveform.
  • the value of the current point in the number series of the vibration waveform A0 and the value of the corresponding point in the number series of the adaptive limit frame M are calculated. Specifically, multiply the value of the nth number in A0 by the value of the nth number in M, where n is an integer from 1 to length(A0), where length(A0) is the number of A0 values .
  • FIG. 6a is a schematic diagram of an embodiment of the vibration waveform A0 of the present invention
  • FIG. 6b is a schematic diagram of an embodiment of the adaptive limit frame of the present invention
  • FIG. 6c is an embodiment of the optimized vibration waveform A1 of the present invention Schematic diagram of the effect.
  • an adaptive limit frame that automatically adjusts the length and shape is generated, and the original vibration waveform is optimized according to the adaptive limit frame, so that the vibration waveform can be limited to the output of the motor.
  • S400 Calculate the balanced voltage corresponding to the device according to the optimized vibration waveform, so that the device performs haptic effect playback based on the balanced voltage.
  • the equalized voltage corresponding to the device is obtained through an equalizing algorithm according to the optimized vibration waveform, so that the device can play the haptic effect based on the equalized voltage.
  • the equalization algorithm is a commonly used signal design method. According to the solution of the electromechanical coupling equation of the vibration system, the electromechanical coupling equation of the system is as follows:
  • m represents the mass of the actual play of the motor mover
  • c denotes the actual playback motor mechanical damping
  • k denotes a real play motor spring coefficient
  • BL represents the electromechanical coupling coefficient
  • R e represent the actual playback of the motor coil resistance
  • L e is a real play motor Coil inductance
  • i is the current
  • u is the equilibrium voltage
  • x is the displacement
  • Is the speed
  • Is acceleration the speed Acceleration Calculate one time and two leads respectively from the displacement x
  • the current is the intermediate coupling quantity i.
  • the optimized vibration waveform (one of acceleration waveform, velocity waveform or displacement waveform) of the present invention can be substituted into the above electromechanical coupling equation to obtain an equalized voltage, and then the equalized voltage can excite the motor to obtain the desired haptic effect.
  • the vibration waveform of the tactile effect generates an adaptive restriction frame that automatically adjusts the length and shape, and optimizes the original vibration waveform according to the adaptive restriction frame, so that the vibration waveform can be restricted within the output capability of the motor.
  • the equalization algorithm is used to calculate the equalization voltage and excite the motor to obtain the desired haptic effect.
  • FIG. 7 is a schematic block diagram of an embodiment of a device for implementing haptic effects provided by the present invention.
  • the device for implementing haptic effects in this embodiment includes a processor 310 and a memory 320.
  • the processor 310 is coupled to the memory 320, and the memory 320 Computer instructions are stored, and the processor 310 executes the computer instructions during work to implement the method for implementing the haptic effect in any of the foregoing embodiments.
  • the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 310 may be an integrated circuit chip with signal processing capabilities.
  • the processor 310 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component .
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, but is not limited to this.
  • FIG. 8 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • the computer-readable storage medium in this embodiment stores a computer program 410, which can be executed by a processor to realize the foregoing The realization method of the haptic effect in any embodiment.
  • the readable storage medium may be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc., which can store The medium of the program code, or a terminal device such as a computer, server, mobile phone, or tablet.
  • the embodiments of the present invention provide a method and device for realizing a haptic effect, and a computer-readable storage medium.
  • the vibration waveform of the haptic effect generates an adaptive limit frame that automatically adjusts the length and shape, and according to the adaptive limit frame
  • the limit frame optimizes the original vibration waveform, which can limit the vibration waveform within the output capacity of the motor, and calculate the equalized voltage through the equalization algorithm and excite the motor to obtain the desired haptic effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • User Interface Of Digital Computer (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本申请提供一种触觉效果的实现方法及设备、计算机可读存储介质,该实现方法包括:获取触觉效果的振动波形;根据振动波形的长度生成自适应限制框架;根据自适应限制框架对振动波形进行优化,以生成优化后的振动波形;根据优化后的振动波形计算得到与设备对应的均衡电压,以使得设备基于所述均衡电压进行触觉效果播放。通过上述实施方式,本申请能够将振动波形限制在电机的输出能力范围内,获得期望的触觉效果。

Description

一种触觉效果的实现方法及设备、计算机可读存储介质 技术领域
本发明涉及触觉反馈技术领域,特别是涉及一种触觉效果的实现方法及设备、计算机可读存储介质。
背景技术
丰富的触觉效果(振动效果)已经成为各大电子设备厂商竞争的焦点,优秀的触觉效果可以给用户带来更完美的用户体验。如何设计出更丰富的触觉效果,对触觉效果设计人员也是提出了更大的挑战。特别是,设计触觉效果时,不得不考虑设备中电机的输出能力。
受限于设备中电子的输出能力,不是设计人员期望的振动效果一定能毫无差异的实现。若设计人员期望的振动效果超过了电机的输出能力,振动效果就不能完全实现,则需要对期望的振动效果做一定的优化,使其优化至电机的输出能力内。
目前振动效果的设计主要靠设计人员的设计经验对振动波形进行人为的优化,不能应用与自动化设计中,无法设计出理想的可实现的触觉效果。
发明内容
本发明主要是提供一种触觉效果的实现方法及设备、计算机可读存储介质,能够解决现有技术中振动效果的设计主要靠设计人员的设计经验对振动波形进行人为优化,不能应用与自动化设计中,无法设计出理想的可实现的触觉效果的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种触觉效果的实现方法,所述实现方法包括:获取触觉效果的振动波形;根据所述振动波形的长度生成自适应限制框架;根据所述自适应限制框架 对所述振动波形进行优化,以生成优化后的振动波形;根据所述优化后的振动波形计算得到与设备对应的均衡电压,以使得所述设备基于所述均衡电压进行触觉效果播放。
其中,所述根据所述自适应限制框架对所述振动波形进行优化,以生成优化后的振动波形包括:判断所述振动波形的数值是否大于所述自适应限制框架;若判断为是,则将所述振动波形和所述自适应限制框架进行计算以得到所述优化后的振动波形。
其中,所述根据所述振动波形的长度生成自适应限制框架包括:获取所述振动波形的时长;判断所述时长是否大于预设门限时长值;若大于,则生成第一自适应限制框架;若小于,则生成第二自适应限制框架。
其中,所述第一自适应限制框架的计算公式为:
M1=(2t/T0-1)*exp(-2t/T0*3)-1;  (t≤T0/2)
M2=1;  (T0/2<t<Tc-T0/2)
M3=(cos(2(t-Tc)/T0*exp(-2(t-Tc+T0/2)/T0)+pi)+1)/2(Tc-T0/2≤t≤Tc)
M=[M1,M2,M3];
其中,t为振动波形的时间轴,T0为预设门限值,Tc为所述振动波形的总时长,M为第一自适应限制框架;
所述第二自适应限制框架的计算公式为:
M1=(2t/T0-1)*exp(-2t/T0*3)-1;  (t≤T0/2)
M2=(cos(2(t-T0)/T0*exp(-2(t-T0/2)/T0)+pi)+1)/2;  (T0/2<t≤T0)
M=M1∪M2
其中,t为时间区间[0,T0],T0为所述预设门限值,M为第二自适应限制框架。
其中,若判断振动波形的数值小于自适应限制框架,则保持所述振动波形不变。
其中,所述均衡电压的计算采用振动***的机电耦合方程:
Figure PCTCN2020102898-appb-000001
其中,m表示实际播放马达动子的质量,c表示实际播放马达机械阻尼,k表示实际播放马达弹簧系数;BL表示机电耦合系数,R e表示实际 播放马达线圈电阻,L e为表示实际播放马达线圈电感,i为电流,u为均衡电压,x为位移,
Figure PCTCN2020102898-appb-000002
为速度,
Figure PCTCN2020102898-appb-000003
为加速度。
其中,所述振动波形包括加速度波形、速度波形以及位移波形中的一种。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种触觉效果的实现设备,所述触觉效果的实现设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现上述的实现方法。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述的实现方法。
本发明的有益效果是:区别于现有技术的情况,本发明提供一种触觉效果的实现方法及设备、计算机可读存储介质,通过触觉效果的振动波形生成自动调节长度和形状的自适应限制框架,并根据该自适应限制框架对原振动波形进行优化,能够将振动波形限制在电机的输出能力范围内,在通过均衡算法计算出均衡电压并激励电机以获得期望的触觉效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明提供的触觉效果的实现方法一实施例的流程示意图;
图2是本发明图1中步骤S200一实施方式的流程示意图;
图3是本发明第一自适应限制框架一实施方式的示意图;
图4是本发明第二自适应限制框架一实施方式的示意图;
图5是本发明图1中步骤S300一实施方式的流程示意图;
图6a是本发明振动波形A0一实施方式的示意图;
图6b是本发明自适应限制框架一实施方式的示意图;
图6c是本发明优化后振动波形A1一实施方式的效果示意图;
图7是本发明提供的触觉效果的实现设备实施例的示意框图;
图8是本发明提供的计算机可读存储介质实施例的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1,图1是本发明提供的触觉效果的实现方法一实施例的流程示意图,其中,本实施例中的触觉效果的实现方法可具体包括:
S100,获取触觉效果的振动波形。
可选地,本发明中振动波形为触觉效果的具体直观量化波形,其可以预先存储在触觉效果库中,该触觉效果库可存储在设备存储器或云存储器中。其中,本发明振动效果的具体形式可以包括振动***动子的加速度波形曲线、振动***动子的速度波形曲线以及振动***动子的位移波形曲线中的一种,在实际应用场景中可以根据情况选择合适的振动波形,此处不做具体限定。
S200,根据振动波形的长度生成自适应限制框架。
请一并结合图2,图2为本发明步骤S200一实施方式的流程示意图,如图2所示本发明步骤S200进一步包括如下子步骤:
S210,获取振动波形的时长。
获取振动波形A0的时长Tc,可以理解的是振动波形A0为一组数,可以是类似正弦的波形,且该波形的振动为1,但是A0是从-1到1点一组数。
S220,判断时长是否大于预设门限时长值。
进一步判断该振动波形A0的时长和预设门限时长值T0的大小,其 中,预设门限时长值T0目前一般为电子设备马达常用经验值,马达能力越强该预设门限时长值越小。且本发明电子设备可以是任何具备通信和存储功能的设备,例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。可选地,本发明实施例中以手机为例,其预设门限时长值T0可以设置为20毫秒,在其他实施方式中,可以根据不同的电子设备设置不同的预设门限时长值T0,此处不做具体限定。
S230,生成第一自适应限制框架。
进一步结合图3,图3为本发明第一自适应限制框架一实施方式的示意图。可选地,若判断振动波形A0的时长Tc大于设备的预设门限时长值T0,则生成如图3所示的第一自适应限制框架,且该第一自适应限制框架的计算公式如下:
M1=(2t/T0-1)*exp(-2t/T0*3)-1;  (t≤T0/2)
M2=1;  (T0/2<t<Tc-T0/2)
M3=(cos(2(t-Tc)/T0*exp(-2(t-Tc+T0/2)/T0)+pi)+1)/2(Tc-T0/2≤t≤Tc)
M=[M1,M2,M3];
其中,t为振动波形的时间轴,T0为预设门限值,Tc为振动波形的总时长,M为第一自适应限制框架,且上述时间单位为毫秒。
S240,生成第二自适应限制框架。
进一步结合图4,图4为本发明第二自适应限制框架一实施方式的示意图。可选地,若判断振动波形A0的时长Tc小于设备的预设门限时长值T0,则生成如图4所示的第二自适应限制框架,且该第二自适应限制框架的计算公式如下:
M1=(2t/T0-1)*exp(-2t/T0*3)-1;  (t≤T0/2)
M2=(cos(2(t-T0)/T0*exp(-2(t-T0/2)/T0)+pi)+1)/2;  (T0/2<t≤T0)
M=M1∪M2
其中,t为时间区间[0,T0],T0为所述预设门限值,M为第二自适应限制框架。其中,M为将M2向前平移时长Ti,取平移后M1与M2相交取较小的两段合并,平移时长满足Ti=T0-Tc,即保证M时长与振 动波形A0时长一致。
可选地,本发明的第一自适应限制框架和第二自适应限制框架的计算方式仅仅作为一种演算演示,在其他实施方式中还可以采用其他的算法,且凡是本发明上述公式的变形均在本发明的保护范围之内。
S300:根据自适应限制框架对振动波形进行优化,以生成优化后的振动波形。
请进一步结合图5,图5为本发明步骤S300一实施方式的流程示意图,如图5本发明步骤S300进一步包括如下子步骤:
S310,判断振动波形的数值是否大于自适应限制框架。
具体地,将振动波形A0的数列和自适应限制框架M的数列中的数进行逐点对比,例如将A0中的第n个数和M中的第n个数进行比较,判断条件为只要A0中存在n使得A0(n)>M(n),则判断振动波形的数值大于自适应限制框架,进入步骤S320,反之则进入步骤S330。
S320,将振动波形和自适应限制框架进行计算以得到优化后的振动波形。
进一步,将所述振动波形A0的数列中当前点的值和自适应限制框架M的数列中对应点的值做计算。具体地,将A0中的第n个数的值乘以M中第n个数的值,其中,n取值为1到length(A0)的整数,其中length(A0)为A0值的个数。
S330,保持振动波形不变。
可选地,若判断振动波形A0的数值小于自适应限制框架M,则保持振动波形A0中所有数值不变。
请进一步结合图6a-6c,图6a是本发明振动波形A0一实施方式的示意图,图6b是本发明自适应限制框架一实施方式的示意图,图6c是本发明优化后振动波形A1一实施方式的效果示意图。具体地,本发明实施例中根据触觉效果的振动波形,生成自动调节长度和形状的自适应限制框架,并根据该自适应限制框架对原振动波形进行优化,能够将振动波形限制在电机的输出能力范围内。
S400:根据优化后的振动波形计算得到与设备对应的均衡电压,以 使得设备基于所述均衡电压进行触觉效果播放。
进一步,根据优化后的振动波形通过均衡算法得到设备对应的均衡电压,以使得设备基于所述均衡电压进行触觉效果播放。其中,均衡算法为一种常用的信号设计方法。根据振动***的机电耦合方程求解得到,***机电耦合方程如下:
Figure PCTCN2020102898-appb-000004
Figure PCTCN2020102898-appb-000005
其中,m表示实际播放马达动子的质量,c表示实际播放马达机械阻尼,k表示实际播放马达弹簧系数;BL表示机电耦合系数,R e表示实际播放马达线圈电阻,L e为表示实际播放马达线圈电感,i为电流,u为均衡电压,x为位移,
Figure PCTCN2020102898-appb-000006
为速度,
Figure PCTCN2020102898-appb-000007
为加速度。其中,速度
Figure PCTCN2020102898-appb-000008
加速度
Figure PCTCN2020102898-appb-000009
分别由位移x求一次、两次导得到;电流为中间耦合量i。如此将本发明优化后的振动波形(加速度波形、速度波形或者位移波形的一种)代入上述的机电耦合方程便可求得均衡电压,再将该均衡电压激励电机获得期望的触觉效果。
上述实施方式中,通过触觉效果的振动波形生成自动调节长度和形状的自适应限制框架,并根据该自适应限制框架对原振动波形进行优化,能够将振动波形限制在电机的输出能力范围内,在通过均衡算法计算出均衡电压并激励电机以获得期望的触觉效果。
参阅图7,图7是本发明提供的触觉效果的实现设备实施例的示意框图,本实施例中的触觉效果的实现设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的触觉效果的实现方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理 器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图8,图8是本发明提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的触觉效果的实现方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本发明实施例提供一种触觉效果的实现方法及设备、计算机可读存储介质,通过触觉效果的振动波形生成自动调节长度和形状的自适应限制框架,并根据该自适应限制框架对原振动波形进行优化,能够将振动波形限制在电机的输出能力范围内,在通过均衡算法计算出均衡电压并激励电机以获得期望的触觉效果。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种触觉效果的实现方法,其特征在于,所述实现方法包括:
    获取触觉效果的振动波形;
    根据所述振动波形的长度生成自适应限制框架;
    根据所述自适应限制框架对所述振动波形进行优化,以生成优化后的振动波形;
    根据所述优化后的振动波形计算得到与设备对应的均衡电压,以使得所述设备基于所述均衡电压进行触觉效果播放。
  2. 根据权利要求1所述的实现方法,其特征在于,所述根据所述自适应限制框架对所述振动波形进行优化,以生成优化后的振动波形包括:
    判断所述振动波形的数值是否大于所述自适应限制框架;
    若判断为是,则将所述振动波形和所述自适应限制框架进行计算以得到所述优化后的振动波形。
  3. 根据权利要求1所述的实现方法,其特征在于,所述根据所述振动波形的长度生成自适应限制框架包括:
    获取所述振动波形的时长;
    判断所述时长是否大于预设门限时长值;
    若大于,则生成第一自适应限制框架;
    若小于,则生成第二自适应限制框架。
  4. 根据权利要求3所述的实现方法,其特征在于,所述第一自适应框架的计算公式为:
    M1=(2t/T0-1)*exp(-2t/T0*3)-1;(t≤T0/2)
    M2=1;(T0/2<t<Tc-T0/2)
    M3=(cos(2(t-Tc)/T0*exp(-2(t-Tc+T0/2)/T0)+pi)+1)/2(Tc-T0/2≤t≤Tc)
    M=[M1,M2,M3];
    其中,t为振动波形的时间轴,T0为预设门限值,Tc为所述振动波形的总时长,M为第一自适应限制框架;
    所述第二自适应限制框架的计算公式为:
    M1=(2t/T0-1)*exp(-2t/T0*3)-1;(t≤T0/2)
    M2=(cos(2(t-T0)/T0*exp(-2(t-T0/2)/T0)+pi)+1)/2;(T0/2<t≤T0)
    M=M1∪M2
    其中,t为时间区间[0,T0],T0为所述预设门限值,M为第二自适应限制框架。
  5. 根据权利要求2所述的实现方法,其特征在于,若判断振动波形的数值小于自适应限制框架,则保持所述振动波形不变。
  6. 根据权利要求1所述的实现方法,其特征在于,所述均衡电压的计算采用振动***的机电耦合方程:
    Figure PCTCN2020102898-appb-100001
    其中,m表示实际播放马达动子的质量,c表示实际播放马达机械阻尼,k表示实际播放马达弹簧系数;BL表示机电耦合系数,R e表示实际播放马达线圈电阻,L e为表示实际播放马达线圈电感,i为电流,u为均衡电压,x为位移,
    Figure PCTCN2020102898-appb-100002
    为速度,
    Figure PCTCN2020102898-appb-100003
    为加速度。
  7. 根据权利要求1所述的实现方法,其特征在于,所述振动波形包括加速度波形、速度波形以及位移波形中的一种。
  8. 一种触觉效果的实现设备,其特征在于,所述触觉效果的实现设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如权利要求1~7中任一项所述的实现方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~7中任一项所述的实现方法。
PCT/CN2020/102898 2020-06-18 2020-07-19 一种触觉效果的实现方法及设备、计算机可读存储介质 WO2021253557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010560952.4A CN111694436B (zh) 2020-06-18 2020-06-18 一种触觉效果的实现方法及设备、计算机可读存储介质
CN202010560952.4 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021253557A1 true WO2021253557A1 (zh) 2021-12-23

Family

ID=72481971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102898 WO2021253557A1 (zh) 2020-06-18 2020-07-19 一种触觉效果的实现方法及设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111694436B (zh)
WO (1) WO2021253557A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120013220A1 (en) * 2010-07-15 2012-01-19 Hitachi, Ltd. Piezoelectric actuator drive unit
CN104915125A (zh) * 2015-06-15 2015-09-16 腾讯科技(深圳)有限公司 移动设备的控制方法、控制***及移动设备
CN105812567A (zh) * 2016-03-29 2016-07-27 努比亚技术有限公司 移动终端控制装置及方法
CN110266223A (zh) * 2019-05-14 2019-09-20 瑞声科技(新加坡)有限公司 马达的振动控制***、方法以及电子设备
CN111030412A (zh) * 2019-12-04 2020-04-17 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091948B2 (en) * 1997-04-25 2006-08-15 Immersion Corporation Design of force sensations for haptic feedback computer interfaces
KR20140023066A (ko) * 2012-08-16 2014-02-26 삼성전자주식회사 플렉서블 디스플레이 장치 및 그 피드백 제공 방법
US9846484B2 (en) * 2014-12-04 2017-12-19 Immersion Corporation Systems and methods for controlling haptic signals
CN107329576A (zh) * 2017-07-07 2017-11-07 瑞声科技(新加坡)有限公司 触觉反馈***以及触觉反馈的调整方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120013220A1 (en) * 2010-07-15 2012-01-19 Hitachi, Ltd. Piezoelectric actuator drive unit
CN104915125A (zh) * 2015-06-15 2015-09-16 腾讯科技(深圳)有限公司 移动设备的控制方法、控制***及移动设备
CN105812567A (zh) * 2016-03-29 2016-07-27 努比亚技术有限公司 移动终端控制装置及方法
CN110266223A (zh) * 2019-05-14 2019-09-20 瑞声科技(新加坡)有限公司 马达的振动控制***、方法以及电子设备
CN111030412A (zh) * 2019-12-04 2020-04-17 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达

Also Published As

Publication number Publication date
CN111694436A (zh) 2020-09-22
CN111694436B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US10331445B2 (en) Multifunction vector processor circuits
WO2021253576A1 (zh) 触觉效果的实现方法及设备、计算机可读存储介质
JP7009020B2 (ja) 学習方法、学習システム、学習装置、方法、適用装置、及びコンピュータプログラム
EP4383753A1 (en) Channel switching method and apparatus, and electronic device
CN107395149B (zh) 音频信号处理方法、装置和集成电路
TWI775210B (zh) 用於卷積運算的資料劃分方法及處理器
CN114091655A (zh) 神经网络量化方法、装置、存储介质以及终端
WO2023284434A1 (zh) 目标信息的推荐方法及装置、电子设备及存储介质
WO2021253557A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
Master et al. Adaptive prefetching in wireless computing
US11886832B2 (en) Operation device and operation method
CN113963248A (zh) 神经网络训练、场景决策的方法及装置、设备及存储介质
CN116911403B (zh) 联邦学习的服务器和客户端的一体化训练方法及相关设备
CN110880932B (zh) 一种逻辑电路近似实现方法
CN115098262B (zh) 一种多神经网络任务处理方法及装置
WO2022000638A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
US9438195B2 (en) Variable equalization
CN111766946B (zh) 触觉效果的优化方法及设备、计算机可读存储介质
CN108986198B (zh) 图像映射方法、装置、硬件装置和计算机可读存储介质
WO2022149364A1 (ja) 情報処理装置、情報処理方法、およびプログラム
JP6343585B2 (ja) 未知伝達系推定装置、未知伝達系推定方法、およびプログラム
JP7478833B2 (ja) ネットワークにおいてマルチパストラフィックの切り替えを管理する方法、並びにその装置、及びコンピュータプログラム
KR102561613B1 (ko) Ste 및 최적 중단시점 자동 결정 알고리즘을 적용한 dip를 사용하여 노이즈 이미지를 디노이징하는 방법 및 장치
CN110019567B (zh) 发现未知风险模式的方法、装置、电子设备及存储介质
JP4601657B2 (ja) トラヒックシェーピング装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941305

Country of ref document: EP

Kind code of ref document: A1