WO2021249215A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021249215A1
WO2021249215A1 PCT/CN2021/097052 CN2021097052W WO2021249215A1 WO 2021249215 A1 WO2021249215 A1 WO 2021249215A1 CN 2021097052 W CN2021097052 W CN 2021097052W WO 2021249215 A1 WO2021249215 A1 WO 2021249215A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
signal
frame
frames
communication device
Prior art date
Application number
PCT/CN2021/097052
Other languages
English (en)
French (fr)
Inventor
汪宇
罗禾佳
乔云飞
李榕
王俊
王斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21821948.3A priority Critical patent/EP4156809A4/en
Publication of WO2021249215A1 publication Critical patent/WO2021249215A1/zh
Priority to US18/064,109 priority patent/US20230107174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • Non-terrestrial communication network has significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical conditions. It has been widely used in maritime communication, positioning and navigation, and anti-risk Disaster relief, scientific experiments, video broadcasting and earth observation and other fields.
  • the Internet of Things is a global infrastructure of the information society, which connects physical and virtual things to provide better services. Compared with the traditional cellular network for communication between people, the Internet of Things has the distinctive features of enhanced coverage, low power consumption, low cost and large connections. Therefore, the combination of the Internet of Things and NTN can better meet the business needs of the Internet of Things terminal.
  • the Internet of Things protocol in the prior art supports the following three deployment modes: 1) Independent deployment, which is suitable for the global system for mobile communications (GSM) frequency band and occupies a GSM frequency band. 2) Guard band deployment, using unused bandwidth resources in the long term evolution (LTE) edge guard band to deploy IoT networks. 3) In-band deployment, using any resource block (PRB) in the middle of the LTE carrier to deploy the IoT network.
  • GSM global system for mobile communications
  • LTE long term evolution
  • PRB resource block
  • the deployment methods of the above three IoT networks are all based on the full frequency multiplexing design of the ground cellular network. However, if the above three deployment methods are adopted in the NTN IoT network, the interference on the edge of the cell will be greater, and the broadcast signal block will be difficult to receive reliably.
  • the present application provides a communication method and device to reduce interference between beams and ensure reliable transmission of resources.
  • an embodiment of the present application provides a communication method.
  • This method can be executed by the communication device in the embodiment of the present application.
  • the communication device may be a terminal device, or may also be another device with functions similar to the terminal device.
  • the communication device may receive the first signal, and detect F frames of the first signal to obtain the first resource.
  • F can be a reuse factor, such as a frequency/polarization reuse factor.
  • the communication device may perform detection according to the frame number of the first resource to obtain the second resource.
  • the first resource and the second resource may be the same resource.
  • the communication device can detect the first signal according to the multiplexing factor of the network device to obtain the first resource and the second resource.
  • the communication device detects that the frame numbers of the first resource and the second resource are different, which can reduce interference between cells and ensure reliable signal transmission.
  • the first resource may include at least one of the following: narrowband primary synchronization signal (NPSS), narrowband secondary synchronization signal (NSSS), narrowband physical broadcast channel (narrowband physical broadcast channel, NPBCH).
  • NPSS narrowband primary synchronization signal
  • NSSS narrowband secondary synchronization signal
  • NPBCH narrowband physical broadcast channel
  • the communication device can detect the first signal to obtain NPSS, NSSS or NPBCH according to the multiplexing factor of the network device.
  • the multiplexing factor is different, the frame number of the NPSS, NSSS or NPBCH in the first signal may be different. Therefore, the frame numbers detected by the communication device will also be different, which can reduce the interference between cells and ensure the reliable transmission of NPSS, NSSS or NPBCH.
  • the communication device may detect F frames of the first signal to obtain the NPSS.
  • the communication device can obtain NSSS and NPBCH according to NPSS.
  • the communication device may perform blind detection on the first signal and detect F frames of the first signal to obtain NPSS.
  • the communication device can obtain information such as the frame number of the NPSS, and the communication device can determine the frame numbers of the NSSS and NPBCH according to the frame number of the NPSS, and detect the frame numbers of the NSSS and NPBCH to obtain the NSSS and NPBCH.
  • the communication device can determine the frame numbers of the NSSS and the NPBCH according to the frame numbers of the NPSS, and can detect the frame numbers of the NSSS and the NPBCH to obtain the NSSS and the NPBCH.
  • the communication device can perform detection based on the relationship between the frame numbers of NPSS, NSSS and NPBCH during detection, which can reduce the complexity of the communication device in detecting frame numbers.
  • NPSS, NSSS and NPBCH are in the same frame of the first signal.
  • the communication device may perform blind detection on the first signal and detect F frames of the first signal.
  • the communication device can obtain information such as the frame number of the NPSS.
  • the communication device can detect the frame number of the NPSS to obtain the NSSS and NPBCH.
  • NPSS can be carried in subframe 5
  • NSSS can be carried in subframe 9
  • NPBCH can be carried in subframe 0.
  • the NPSS, NSSS, and NPBCH are in the same frame of the first signal.
  • the communication device detects the NPSS, it can detect the frame number of the NPSS to obtain the NSSS and NPBCH, which can reduce the complexity of detecting the frame number by the communication device.
  • the communication device may obtain the second resource on the N1+F*Nth frame.
  • N1 is the frame number of the first resource
  • N is a positive integer
  • N 1, 2,....
  • the communication device detects F frames of the first signal and obtains the first resource from the N1th frame. Therefore, the communication device can detect the N1+F*Nth frame to obtain the second resource.
  • the communication device when the communication device detects the second resource, the first signal can be detected according to the frame number of the first resource, and it is not necessary to detect every frame of the first signal, which can reduce the complexity of detection by the communication device. Spend.
  • the frame numbers of the second resources detected by the communication device are different, which can reduce interference between cells.
  • F can be 3 or F can be 4.
  • the communication device may detect 3 frames of the first signal, and obtain the first resource on frame 0.
  • the communication device may also detect the first signal, detect the third frame, the sixth frame, and the 3*Nth frame of the first signal to obtain the second resource.
  • the communication device when the communication device detects the first resource, it can detect F frames of the first signal to obtain the first resource, and according to the frame number N1 of the first resource, perform detection on N1+F*N to obtain the second resource. resource. Due to the different reuse factors, the frame numbers of the second resources detected by the communication device are different, which can reduce interference between cells.
  • the reuse factor F is related to a physical cell identifier (PCI) of the network device.
  • PCI physical cell identifier
  • each PCI may correspond to a multiplexing factor, and PCIs with the same multiplexing factor may carry different frame numbers of the first resource in the F frames of the first signal.
  • the multiplexing factor of cell1 can be 4, and the first resource can be carried in frame 0 of the first signal; the multiplexing factor of cell2 can be 4, and the first resource can be carried in frame 1 of the first signal.
  • the PCI communication device of the network device can obtain the multiplexing factor of the network device, thereby detecting the first signal according to the multiplexing factor and the frame number of the first resource to obtain the second resource.
  • the communication device may detect the time domain symbols of F frames of the first signal to obtain the first resource.
  • the communication device may also detect the first signal according to the frame number and the time domain symbol of the first resource to obtain the second resource. For example, the communication device detects the time domain symbols of F frames of the first signal to obtain the first resource, and the first resource is on the time domain symbols 3, 4, and 7 of frame 0.
  • the communication device may determine the frame number of the second resource according to frame 0, and detect the time domain symbols 3, 4, and 7 of the frame number of the second resource to obtain the second resource.
  • the first resource and the second resource can be diluted in the time domain, that is, only the first resource and the second resource are carried on the designated time domain symbol, and the time domain symbol carrying the first resource and the second resource can be compared with
  • the reuse factor is related, so the signal interference between cells can be reduced.
  • the communication device may detect the subcarriers of F frames of the first signal to obtain the first resource.
  • the communication device may also detect the first signal according to the frame number and subcarrier of the first resource to obtain the second resource.
  • the communication device may detect the subcarriers of F frames of the first signal to obtain the first resource, and the first resource is on the subcarrier (1, 2) of frame 0.
  • the communication device may determine the frame number of the second resource according to frame 0, and detect the subcarriers (1, 2) of the frame number of the second resource to obtain the second resource.
  • the first resource and the second resource can be diluted in the frequency domain, that is, only the first resource and the second resource are carried on the designated subcarrier, and the subcarrier carrying the first resource and the second resource can be multiplexed with The factors are correlated, so the signal interference between cells can be reduced.
  • the embodiment of the present application also provides a communication method.
  • the method may be executed by the network device in the embodiment of the present application, or executed by other devices with similar functions to the network device.
  • the network device can send the first signal.
  • F frames of the first signal carry the first resource
  • the first signal also carries the second resource
  • the frame number of the first resource is related to the frame number of the second resource; the F is a multiplexing factor.
  • the network device can carry the first resource on the F frames of the first signal according to the multiplexing factor, and determine the frame number carrying the second resource according to the frame number of the first resource, thereby realizing different multiplexing factors
  • the frame numbers that carry the first resource and the second resource are different, which can reduce signal interference between cells.
  • the first resource may include at least one of the following: NPSS, NSSS, or NPBCH. It should be understood that the second resource and the first resource may be the same resource, and therefore, the second resource may also be at least one of the foregoing NPSS, NSSS, or NPBCH. The first resource and the second resource may be any one or any combination of NPSS, NSSS, or NPBCH.
  • network equipment can ensure reliable transmission of NPSS, NSSS or NPBCH, and reduce signal interference between cells when NPSS, NSSS or NPBCH is transmitted.
  • the NPSS, the NSSS, and the NPBCH are carried in the same frame of the first signal.
  • subframe 0 of frame 0 of the first signal may carry NPBCH
  • subframe 5 of frame 0 may carry NPSS
  • subframe 9 of frame 0 may carry NSSS.
  • the subframe carrying the first resource may be stipulated by the protocol.
  • network equipment can carry NPSS, NSSS, and NPBCH in the same frame, so that the communication device can obtain NPSS, NSSS, and NPBCH by detecting one frame during detection, which can reduce the complexity of detecting resources of the communication device.
  • the second resource is carried on the N1+F*Nth frame, where N1 is the frame number of the first resource, F is the multiplexing factor, and N is a positive integer.
  • N1 is the frame number of the first resource
  • F is the multiplexing factor
  • N is a positive integer.
  • frame A of the first signal carries the first resource
  • frame A+F*N of the first signal carries the second resource.
  • the network device can determine the frame number carrying the second resource according to the frame number N1 of the first resource and the above expression N1+F*N, so that the frame number of the second resource is the same as the frame number of the first resource and the complex
  • the factor F is used for correlation, so that the frame numbers of the second resources carried by different reuse factors F can be different, which can reduce the signal interference between cells with different reuse factors F.
  • the frame number N1 of the first resource may be related to the physical cell identity.
  • mod represents a modulo operation.
  • the frame number that carries the first resource can be determined according to the PCI of the network device. Since the frame number of the first resource is not the same when the PCI is different, the frame number of the second resource can also be different, which can reduce the number of differences. Signal interference between cells.
  • the reuse factor F may be related to the physical cell identity of the network device.
  • one physical cell identity can be bound to one F, or multiple physical cell identities can be bound to one F.
  • the reuse factor F can be related to the PCI of the network device. Therefore, F can be different for different cells, which can reduce signal interference when different cells transmit the first resource and the second resource.
  • the first resource is carried on the designated time domain symbols of the F frames of the first signal. Therefore, the second resource may be carried on the designated time domain symbol of the N1+F*Nth frame of the first signal.
  • the multiplexing factor F is 3
  • the 3rd and 4th time domain symbols of frame 0 of the first signal carry the first resource, so the 3rd and 4th time domain symbols of the 0+3*N frame of the first signal
  • the second resource is carried on the domain symbol.
  • the first resource and the second resource can be transmitted in a time-domain dilution manner. Since different cells transmit the first resource and the second resource with different time-domain symbols, it can reduce the transmission of the first resource and the second resource in different cells. Signal interference in the second resource.
  • the second resource is carried on designated subcarriers of F frames of the first signal. Therefore, the second resource can be carried on the designated subcarrier of the N1+F*Nth frame of the first signal.
  • the multiplexing factor F is 3
  • the first resource is carried on the subcarriers (1, 2) of frame 0 of the first signal, so the subcarriers (1, 2) of the 0+3*Nth frame of the first signal are 2)
  • the second resource is carried on it.
  • the frequency domain dilution method can be used to transmit the first resource and the second resource. Since different cells transmit the first resource and the second resource with different subcarriers, it can reduce the transmission of the first resource and the second resource in different cells. 2. Signal interference during resource time.
  • an embodiment of the present application also provides a communication device that can be used to perform the operations in the first aspect and any possible implementation manners of the first aspect.
  • the communication device may include modules or units for performing the above-mentioned first aspect or any possible implementation of the first aspect.
  • it may include a processing unit and a communication unit.
  • an embodiment of the present application also provides a communication device, which can be used to perform operations in the foregoing second aspect and any possible implementation manner of the second aspect.
  • the communication device may include modules or units for performing the above-mentioned second aspect or any possible implementation of the second aspect.
  • it may include a processing unit and a communication unit.
  • the embodiments of the present application provide a chip system, including a processor, and optionally a memory; wherein the memory stores a computer program, and the processor is used to call and run the computer program from the memory, so that the chip is installed
  • the communication device of the system executes any one of the above-mentioned first aspect or any of the possible implementations of the first aspect; and/or enables the communication device installed with the chip system to execute any of the above-mentioned second aspect or any possible method of the second aspect Any method of implementation.
  • an embodiment of the present application also provides a communication system, which may include the communication device described in the third aspect and the communication device described in the fourth aspect.
  • the embodiments of the present application provide a computer program product, including computer program code.
  • the communication device can execute the above-mentioned One aspect or any method in any possible implementation manner of the first aspect; and/or, so that the communication device can execute any method in the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores a program, and the program causes the communication device to execute the first aspect or any of the possible implementation manners of the first aspect. Method; and/or to cause the communication device to perform any method in the foregoing second aspect or any possible implementation of the second aspect.
  • Figure 1 is a schematic diagram of a satellite communication system provided by an embodiment of the application.
  • Fig. 2 is a schematic diagram of a transmission mode of a first resource and a second resource in the prior art
  • Fig. 3 is an exemplary flowchart of a communication method provided by an embodiment of the application.
  • FIG. 4 is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 5 is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 6 is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 7 is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 8A is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 8B is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 8C is one of the schematic diagrams of the first signal provided by the embodiment of this application.
  • FIG. 8D is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 9A is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 9B is one of the schematic diagrams of the first signal provided by the embodiment of this application.
  • FIG. 9C is one of the schematic diagrams of the first signal provided by the embodiment of this application.
  • FIG. 10 is one of the schematic diagrams of the first signal provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a first signal transmission mode of a satellite beam provided by an embodiment of the application.
  • FIG. 12 is one of the schematic diagrams of a communication device provided by an embodiment of this application.
  • FIG. 13 is one of the schematic diagrams of a communication device provided by an embodiment of this application.
  • FIG. 14 is one of the schematic diagrams of a communication device provided by an embodiment of this application.
  • Fig. 15 is a block diagram of a communication device provided by an embodiment of the application.
  • Frame number also known as system frame number (SFN).
  • SFN system frame number
  • the value range of the SFN of any cell can be from 0-4095, and the SFN of each frame is increased by 1. When the SFN is 4095, the SFN of the next frame becomes 0, so the cycle repeats.
  • the value range of the SFN of the cell can be from 0 to 1023, and the SFN of each frame is increased by 1, and when the SFN is 1023, the SFN of the next frame becomes 0, so the cycle repeats.
  • the value of the SFN of the cell may be predefined according to the standard, which is not specifically limited in this application.
  • the frame number of the first signal mentioned in the embodiment of the present application is exemplary, and does not mean that the frame number of the first signal in practice is Frame 0, Frame 1, or Frame 2.
  • the time domain symbol 1, time domain symbol 2, or time domain symbol 3, and subcarrier 1, subcarrier 2, or subcarrier 3 mentioned in the embodiments of the present application are also exemplary, and do not represent actual practice.
  • multiple refers to two or more.
  • words such as “first” and “second” are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor can it be understood as indicating Or imply the order.
  • FIG. 1 is a schematic diagram of a possible satellite communication system architecture applicable to this application. If you compare a satellite communication system with a terrestrial communication system, you can think of a satellite as one or more network devices on the ground, such as base station, access point 1, access point 2, or even access point 3 to access point n (Not marked in the picture). Satellites provide communication services to terminal equipment, and satellites can also be connected to core network equipment (such as AMF). The satellite may be a non-geostationary earth (NGEO) satellite or a geostationary earth (GEO) satellite. This application can also be applied to terrestrial communication systems.
  • NGEO non-geostationary earth
  • GEO geostationary earth
  • Satellite base stations mainly provide wireless access services for terminal devices, dispatch wireless resources to connected terminal devices, and provide reliable wireless transmission protocols and data encryption protocols.
  • Satellite base stations refer to base stations that use artificial earth satellites and high-altitude aircraft as wireless communications, such as evolved base stations (eNB) and base stations (gNB) in the fifth generation (5th Generation, 5G) communication system.
  • the satellite base station can be a geostationary earth orbit (GEO) satellite, or a non-geostationary earth orbit (NGEO) medium orbit (MEO) satellite and a low earth orbit (LEO) satellite Satellites can also be High Altitude Platform Station (HAPS), etc.
  • GEO geostationary earth orbit
  • NGEO non-geostationary earth orbit
  • MEO medium orbit
  • HAPS High Altitude Platform Station
  • the operating attitude of the satellite equipment includes: the non-gazing attitude toward the ground and the gazing attitude toward the ground; among them, the satellite beams emitted by the satellite equipment in the non-gazing attitude toward the ground follow the movement of the satellite.
  • the fixed point on the ground will experience more frequent beam switching during the satellite overhead period.
  • the flashlight simulates the satellite orbit moving around the globe, and the angle of the beam emitted by the flashlight will not change.
  • the satellite equipment rotates faster than the earth It's even faster. Therefore, in addition to geostationary satellites, the relationship between a satellite in a geostationary orbit and the earth can be imagined as the earth is stationary, and the satellite equipment makes periodic circular motions around the earth.
  • the light beam emitted by the flashlight can sweep the globe one round; while staring at the satellite system, the angle of each beam emitted by the satellite is adjusted in a certain way to achieve continuous observation of fixed points on the ground.
  • the flashlight simulates the movement of the satellite orbit around the globe.
  • the angle of each beam emitted is adjustable.
  • the communication device described in this application may be a terminal device.
  • the terminal device includes a device that provides voice and/or data connectivity to the user. Specifically, it includes a device that provides voice to the user or includes a device that provides data connectivity to the user. Or include devices that provide users with voice and data connectivity. For example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal may include user equipment (UE), wireless terminal, mobile terminal, device-to-device communication (device-to-device, D2D) terminal, vehicle to everything (V2X) terminal, machine-to-machine/ Machine-to-machine/machine-type communications (M2M/MTC) terminals, Internet of things (IoT) terminals, subscriber units, subscriber stations, mobile stations station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or User equipment (user device), etc.
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine/ Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber units subscriber stations, mobile stations station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access
  • a mobile phone or called a "cellular" phone
  • a computer with a mobile terminal, portable, pocket-sized, handheld, and a mobile device with a built-in computer, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is the general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, bracelets, Clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminals described above if they are located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be regarded as a vehicle-mounted terminal.
  • the vehicle-mounted terminal is, for example, also called an on-board unit (OBU).
  • OBU on-board unit
  • the device used to implement the function of the terminal device may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is an example to describe the technical solutions provided by the embodiments of the present application.
  • the current transmission method of broadcast information is as follows:
  • Narrowband primary synchronization signal (NPSS): The period is 10ms, and it is transmitted in subframe 5 of each frame. It occupies 11 symbols in the time domain and 11 subcarriers in the frequency domain.
  • Narrowband secondary synchronization signal The period is 20ms, and it is transmitted in subframe 9 of each even-numbered frame (such as frame 0, frame 8, etc. in Figure 1). It occupies 11 symbols in the time domain, and the frequency domain The upper occupies the entire physical resource block (PRB) bandwidth, that is, 12 subcarriers.
  • PRB physical resource block
  • NPBCH Narrowband physical broadcast channel
  • the existing transmission method of broadcast information is the full frequency multiplexing method.
  • multiple beams are configured in a satellite, and each beam can be regarded as a beam in a cell or a separate cell. Since the signal strength between the center position and the edge position of the satellite beam is not much different, if the full-frequency multiplexing method is used for communication, strong interference will occur between adjacent beams. Therefore, in satellite communication systems, multi-color multiplexing (including frequency multiplexing and polarization multiplexing) is usually used to reduce interference between satellite beams. For example, in the time unit T1, the frequency bands corresponding to the four beams 0, 1, 4, and 5 are different.
  • the system bandwidth can be equally divided into four frequency bands, and the center frequency points of each frequency band are f1, f2, f3, and f4, beams 0, 1, 4, and 5 correspond to frequency bands with center frequency points of f1, f2, f3, and f4, respectively.
  • the adjacent beams in the satellite use different frequencies to communicate with the terminal equipment, so as to achieve the effect of suppressing interference.
  • the embodiments of the present application provide a communication method.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as terrestrial communication systems, non-terrestrial communication systems, such as satellite communication systems.
  • the satellite communication system can be integrated with a traditional mobile communication system.
  • the mobile communication system may be a fourth-generation (4th Generation, 4G) communication system (for example, a long-term evolution (LTE) system), an Internet of Things communication system, and a worldwide interoperability for microwave access, WiMAX) communication systems, 5G communication systems (for example, new radio (NR) systems), and future mobile communication systems, etc.
  • 4G fourth-generation
  • LTE long-term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G communication systems for example, new radio (NR) systems
  • future mobile communication systems etc.
  • the communication method provided in the embodiment of the present application is introduced by taking the communication device as a terminal device as an example. It should be understood that the communication device in the embodiments of the present application may also be other devices with functions similar to terminal devices. When other devices communicate with the network device, they can also communicate with the network device using the communication method provided in the embodiments of the present application.
  • Fig. 3 is an exemplary flow chart of the communication method provided by an embodiment of the present application from the perspective of device interaction. As shown in Figure 3, the method may include:
  • Step 301 The network device sends the first signal.
  • the terminal device receives the first signal.
  • the first signal may carry the first resource on F frames.
  • the first signal may be carried in one of frame 0 to frame f of the first signal.
  • frame 1 of the four frames from frame 0 to frame 3 of the first signal carries the first resource.
  • the multiplexing factor F of the network device is pre-configured.
  • the reuse factor F may be bound to the physical cell identifier (PCI) of the network device.
  • PCI physical cell identifier
  • One PCI can be bound to a multiplexing factor F or multiple PCIs can be bound to a multiplexing factor F.
  • the reuse factor F may be bound to the unique identifier of the network device, and one unique identifier may be bound to one reuse factor F or multiple unique identifiers may be bound to one reuse factor F.
  • the reuse factor F of the network device may also be predefined according to the standard.
  • the multiplexing factor F is the same and the frame numbers of the first resources carried in the first signals of adjacent network devices may be different.
  • the reuse factor F of cell 1, cell 2, and cell 3 are all 3, and cell 1 is adjacent to cell 2, and cell 2 is adjacent to cell 3.
  • frame 0 in the first signal of cell 1 carries the first resource
  • frame 1 in the first signal of cell 2 carries the first resource
  • frame 2 in the first signal of cell 3 carries the first resource.
  • the frame numbers of the first resources carried in the first signals of every F adjacent network devices may be the same. For example, cell 1 is adjacent to cell 2, cell 2 is adjacent to cell 3, cell 3 is adjacent to cell 4, cell 4 is adjacent to cell 5, and cell 5 is adjacent to cell 6.
  • the reuse factor F of cell 1 to cell 6 is all 3. Therefore, the frame number of the first resource carried in the first signal of cell 1 and cell 4 may be the same, for example, the first resource may be carried in frame 0.
  • the frame numbers carrying the first resource in the first signal of cell 2 and cell 5 may be the same.
  • frame 1 may carry the first resource.
  • the frame numbers carrying the first resource in the first signal of cell 3 and cell 6 may be the same, for example, the first resource may be carried in frame 2.
  • the first signal may also carry a second resource, and the frame number of the second resource is related to the first resource. It should be understood that the second resource and the first resource may be the same resource.
  • the following specifically introduces an implementation manner in which the first signal carries the first resource and the second resource.
  • the N1th frame of the first signal carries the first resource
  • the N1+F*Nth frame of the first signal carries the second resource.
  • N 1,2,....
  • the N1th frame of the first signal carries the second resource
  • the N1+F frame, N1+2F frame, N1+3F frame...N1+F*Nth frame of the first signal can all carry the second resource.
  • the frame number N1 of the first resource may be pre-configured.
  • the frame number N1 of the first resource may be bound to the unique identifier of the network device, one unique identifier may be bound to one N1, or multiple unique identifiers may be bound to one N1.
  • the frame number N1 of the first resource may be predefined according to the standard.
  • the frame number N1 of the first resource may also be related to the aforementioned PCI. For example, N1 and PCI can satisfy the following relationship:
  • N1 PCI mod F, where mod represents modulo operation.
  • the PCI of cell 1 in FIG. 5 is 6, the PCI of cell 2 is 4, and the PCI of cell 3 is 5.
  • One resource is exemplary, and the PCI of the cell may also be other values, which is not specifically limited in this application.
  • the reuse factor F of cell 1, cell 2, cell 3, and cell 4 are all 4, and cell 1 is adjacent to cell 2, cell 2 is adjacent to cell 3, and cell 3 is adjacent to cell 4.
  • frame 0 of the first signal of cell 1 carries the first resource
  • the 0+4*1 frame of the first signal of cell 1 that is, frame 4 carries the second resource
  • the 0+4*2 frame that is Frame 8 carries the second resource
  • frame 0+4*N carries the second resource.
  • Frame 1 of the first signal of cell 2 carries the first resource
  • frame 1+4*1 of the first signal of cell 2 carries the second resource on frame 5, and so on, the frame of the first signal of cell 2 9 (not shown in the figure), frame 13 (not shown in the figure), frame 17 (not shown in the figure), and frame 1+4*N carries the second resource.
  • Frame 2 of the first signal of cell 3 carries the first resource
  • frame 2+4*1 that is, frame 6 carries the second resource
  • frame 14 (not shown in the figure) carries the second resource.
  • Frame 3 of the first signal of cell 4 carries the first resource
  • the 3+4*1 frame of the first signal of cell 4 that is, frame 7 carries the second resource
  • the first signal of cell 4 Frame 11, frame 15, and frame 3+4*N carry the second resource
  • the reuse factor F of cell 1, cell 2 and cell 3 are all 3, and cell 1 is adjacent to cell 2, and cell 2 is adjacent to cell 3.
  • frame 0 of the first signal of cell 1 carries the first resource
  • the 0+3*1 frame of the first signal of cell 1 that is, frame 3 carries the second resource
  • the 0+th frame of the first signal of cell 1 Frame 3*2 frame 6 carries the second resource
  • the 0+3*N frame of the first signal of cell 1 carries the second resource.
  • Frame 1 of the first signal of cell 2 carries the first resource
  • frame 1+3*1 of the first signal of cell 2 that is, frame 4 carries the second resource
  • frame 1+3* of the first signal of cell 2 Frame 2
  • frame 2+3*1 of the first signal of cell 3 that is, frame 5 carries the second resource
  • frame 2+3* of the first signal of cell 3 Frame 2
  • frame 8 carries the second resource
  • the 2+3*N frame of the first signal of cell 3 carries the second resource.
  • first resource and second resource may be a narrowband primary synchronization signal (NPSS), a narrowband secondary synchronization signal (NSSS), or a narrowband physical broadcast channel (narrowband physical). broadcast channel, NPBCH) any one or any combination.
  • NPSS narrowband primary synchronization signal
  • NSSS narrowband secondary synchronization signal
  • NPBCH narrowband physical broadcast channel
  • the subframe carrying the first resource and the second resource may be specified by the protocol, or may also be instructed by the network device.
  • the network device may indicate which subframe the NPSS, NSSS, and NPBCH are respectively carried on through the first indication information.
  • the first signals of multiple cells with a multiplexing factor F of 4 are respectively shown.
  • cell 1 is adjacent to cell 2
  • cell 2 is adjacent to cell 3
  • cell 3 is adjacent to cell 4.
  • frame 0 of the first signal of cell 1 carries the first resource.
  • subframe 0 of frame 0 carries NPBCH (specifically corresponding to the first data block of NPBCH, namely NPBCH Block1)
  • subframe 5 of frame 0 carries NPSS
  • subframe 9 of frame 0 carries NSSS. Therefore, the 0+4*N frame of the first signal of cell 1, that is, frame 4N may carry the second resource.
  • subframe 0 of frame 4N carries NPBCH
  • subframe 5 of frame 4N carries NPSS
  • frame 1 of the first signal of cell 2 carries the first resource.
  • subframe 0 of frame 1 carries NPBCH
  • subframe 5 of frame 1 carries NPSS
  • subframe 9 of frame 1 carries NSSS. Therefore, the 1+4*N frame of the first signal of cell 2, that is, frame 1+4*N may carry the second resource.
  • subframe 0 of frame 1+4*N carries NPBCH
  • subframe 5 of frame 1+4*N carries NPSS
  • subframe 9 of frame 1+4*2*N carries NSSS.
  • frame 2 of the first signal of cell 3 carries the first resource.
  • subframe 0 of frame 2 carries NPBCH
  • subframe 5 of frame 2 carries NPSS
  • subframe 9 of frame 2 carries NSSS. Therefore, the 2+4*N frame of the first signal of the cell 3, that is, the frame 2+4*N may carry the second resource.
  • subframe 0 of frame 2+4*N carries NPBCH
  • subframe 5 of frame 2+4*N carries NPSS
  • subframe 9 of frame 2+4*2*N carries NSSS.
  • frame 3 of the first signal of cell 4 carries the first resource.
  • subframe 0 of frame 3 carries NPBCH
  • subframe 5 of frame 3 carries NPSS
  • subframe 9 of frame 3 carries NSSS. Therefore, the 3+4*N frame of the first signal of the cell 4, that is, the frame 3+4*N may carry the second resource.
  • subframe 0 of frame 3+4*N carries NPBCH
  • subframe 5 of frame 3+4*N carries NPSS
  • subframe 9 of frame 3+4*2*N carries NSSS.
  • the first signals of multiple cells with a reuse factor F of 3 are respectively shown.
  • cell 1 is adjacent to cell 2
  • cell 2 is adjacent to cell 3.
  • frame 0 of the first signal of cell 1 carries the first resource.
  • subframe 0 of frame 0 carries NPBCH (specifically corresponding to the first data block of NPBCH, namely NPBCH Block1)
  • subframe 5 of frame 0 carries NPSS
  • subframe 9 of frame 0 carries NSSS. Therefore, the 0+3*N frame of the first signal of cell 1, that is, frame 3N carries the second resource.
  • subframe 0 of frame 3N carries NPBCH
  • subframe 5 of frame 3N carries NPSS
  • subframe 9 of frame 3*2*N carries NSSS.
  • frame 1 of the first signal of cell 2 carries the first resource.
  • subframe 0 of frame 1 carries NPBCH
  • subframe 5 of frame 1 carries NPSS
  • subframe 9 of frame 1 carries NSSS. Therefore, the 1+3*N frame of the first signal of the cell 2, that is, the frame 1+3*N carries the second resource.
  • subframe 0 of frame 1+3*N carries NPBCH
  • subframe 5 of frame 1+3*N carries NPSS
  • subframe 9 of frame 1+3*2*N carries NSSS.
  • frame 2 of the first signal of cell 3 carries the first resource.
  • subframe 0 of frame 2 carries NPBCH
  • subframe 5 of frame 2 carries NPSS
  • subframe 9 of frame 2 carries NSSS. Therefore, the 2+3*N frame of the first signal of the cell 3, that is, the frame 2+3*N carries the second resource.
  • subframe 0 of frame 2+3*N carries NPBCH
  • subframe 5 of frame 2+3*N carries NPSS
  • subframe 9 of frame 2+3*2*N carries NSSS.
  • NPBCH, NPSS, and NSSS are all on the same frame of the first signal.
  • NPBCH, NPSS, and NSSS may also be on different frames of the first signal.
  • the first signal of a cell with a reuse factor F of 4 is shown.
  • frame 0 of the first signal of cell 1 carries NPBCH. Therefore, in the 0+4*1 frame of the first signal of cell 1, frame 4 carries the NPBCH.
  • the 0+4N frame of the first signal of cell 1 that is, frame 4N carries the NPBCH.
  • frame 0 and frame 1 of the first signal of cell 1 carry NPSS. Therefore, the 0+4*2 frame of the first signal of cell 1, that is, frame 8 carries NPSS, and the 1+4*2 frame, that is, frame 9 also carries NPSS.
  • N in the N1+F*N frame of cell 1 should be (N+1), that is, the first of cell 1
  • the N1+F*(N+1)th frame of the signal carries the second resource.
  • the N1+F*(N+2)th frame of the first signal of cell 1 carries the second resource.
  • the M frames of the F frames of the signal carry the first resource, so the N1+F*(N+M-1)th frame of the first signal of the cell 1 can carry the second resource.
  • M is a positive integer.
  • frame 1 of the first signal of cell 1 carries NSSS. Therefore, considering the periodicity of the NSSS, the 1+4*2 frame of the first signal of the cell 1, that is, the frame 9 carries the NSSS.
  • the beam of the satellite may correspond to the cell of the aforementioned network device.
  • Figure 11 shows a schematic diagram of an 8-beam satellite system.
  • the multiplexing factor F of beam 1 to beam 8 is 4
  • the first signal of beam 1 and beam 2 may carry the same frame with the first resource
  • the first signal of beam 3 and beam 4 may carry the first resource.
  • the frames in the first signal of beam 5 and beam 6 may be the same
  • the frames in the first signal of beam 7 and beam 8 may be the same.
  • the first resource may be carried in the first signal in a time-domain dilution manner, for example, the first resource may be carried in designated time-domain symbols on F frames of the first signal.
  • the content is the same. Therefore, the S1th time domain symbol and the S2th time domain symbol can be combined, and the first resource is carried on the designated time domain symbols of the F frames.
  • the reuse factor F is 3
  • cell 1 can carry the first resource on the 3rd, 4th, and 7th time domain symbols of frame A of the first signal
  • cell 2 can carry the first resource on the 5th of frame B of the first signal.
  • cell 3 may carry the first resource on the 9th, 10th, and 12th time domain symbols of frame C of the first signal.
  • the same cell 1 can carry the second resource on the 3rd, 4th, and 7th time domain symbols of the frame A+3*N.
  • Cell 2 can carry the second resource on the 5th, 6th, and 8th time domain symbols of frame B+3*N of the first signal, and cell 3 can carry the second resource on the 9th, 10th, and 10th symbols of frame C+3*N of the first signal.
  • the second resource is carried on the 12 time domain symbol.
  • the embodiment of the present application may also combine the above-mentioned time-domain dilution method with the transmission method of the first resource in the prior art.
  • the network device may carry the first resource on the designated time domain symbol of the first frame of the first signal, that is, the designated time domain symbol of frame 0.
  • cell 1 can carry the first resource on the 3rd, 4th, and 7th time domain symbols of the first frame of the first signal
  • cell 2 can carry the first resource on the first frame of the first signal.
  • the first resource is carried on the 5, 6, and 8 time domain symbols
  • the cell 3 may carry the first resource on the 9th, 10th, and 12th time domains of the first frame of the first signal. Therefore, cell 1 can carry the second resource on the 3rd, 4th, and 7th time domain symbols of every frame except the first frame, and cell 2 can carry the second resource on the 5th, 6th, and 7th time domain symbols of every frame except the first frame.
  • the second resource is carried on the 8 time domain symbol, and the cell 3 may carry the second resource on the 9th, 10th, and 12th time domain symbols of every frame except the first frame. It should be understood that when the second resource is carried on other than the first frame of the first signal, the periodicity of the second resource should be considered.
  • the first resource may also be carried in the first signal by means of frequency domain dilution, for example, the first resource may be carried on designated subcarriers on F frames of the first signal.
  • NPSS occupies 11 sub-carriers in the frequency domain, so the transmission bandwidth of NPSS can be reduced by way of frequency domain dilution.
  • the reuse factor F is 4, cell 1 can carry the first resource on the subcarriers (1, 2) of frame 0, and cell 2 can carry the first resource on the subcarriers (4, 5) of frame 1, and cell 3 can carry the first resource on the subcarriers (7, 8) of frame 2, and cell 4 can carry the first resource on the subcarriers (10, 11) of frame 3.
  • the same cell 1 can carry the second resource on the subcarriers (1, 2) of the frame 4*N
  • the cell 2 can carry the second resource on the subcarriers (4, 5) of the frame 1+4*N
  • the cell 3 can carry the second resource on the subcarriers (7, 8) of the frame 2+4*N
  • the cell 4 can carry the second resource on the subcarriers (10, 11) of the frame 3+4*N.
  • NSSS occupies 12 sub-carriers in the frequency domain, so the transmission bandwidth of NSSS can also be reduced by way of frequency domain dilution.
  • the reuse factor F is 3
  • cell 1 can carry the first resource on the subcarriers (1, 4, 7, 10) of frame
  • cell 2 can carry the first resource on the subcarriers (2, 5, 8, 11) of frame 1.
  • Carries the first resource, and cell 3 may carry the first resource on the subcarriers (3, 6, 9, 10) of frame 2.
  • the same cell 1 can carry the second resource on the subcarriers (1, 4, 7, 10) of frame 3*N
  • cell 2 can carry the second resource on the subcarriers (2, 5, 8, and 10) of frame 1+3*N.
  • the second resource is carried on the cell 3, and the cell 3 may carry the second resource on the subcarriers (3, 6, 9, 10) of the frame 2+3*N.
  • the network device may combine the above-mentioned time-domain dilution and frequency-domain dilution methods to transmit the first resource and the second resource.
  • the reuse factor F of cell 1 is 3
  • the 3rd, 4th, and 7th time domain symbols and subcarriers (1,2) of frame A of the first signal of cell 1 carry the first NPSS
  • the first signal The second NPSS is carried on the 3rd, 4th, 7th time domain symbols and subcarriers (1,2) of the frame A+3*N.
  • the embodiment of the present application may also combine the above-mentioned frequency domain dilution with the transmission method of the first resource in the prior art.
  • the network device may carry the first resource on the designated subcarrier on the first frame of the first signal.
  • cell 1 may carry the first resource on the subcarriers (1, 4, 7, 10) of the first frame of the first signal
  • cell 2 may The first resource is carried on the subcarriers (2, 5, 8, 11)
  • the cell 3 may carry the first resource on the subcarriers (3, 6, 9, 10) of the first frame.
  • cell 1 can carry the second resource on the subcarriers (1, 4, 7, 10) of every frame except the first frame of the first signal
  • cell 2 can carry the second resource on the first signal except the first frame.
  • the second resource is carried on the sub-carriers (2, 5, 8, 11) of each frame of the first signal
  • cell 3 can be used in the sub-carriers (3, 6, 9, 10) of each frame except the first frame of the first signal. ) Carries the second resource.
  • Step 302 The terminal device detects F frames of the first signal to obtain the first resource.
  • F can be the multiplexing factor of the network device.
  • the terminal device may detect F frames from frame 0 to frame f of the first signal to obtain the first resource. As shown in FIG. 4, the terminal device detects four frames from frame 0 to frame 3 of the first signal to obtain the first resource, where the frame number of the first resource is frame 1.
  • F is the multiplexing factor of the network equipment.
  • Different network devices can have the same reuse factor F or different network devices can have different reuse factors F.
  • the reuse factor F may be bound to the physical cell identifier (PCI) of the network device.
  • PCI physical cell identifier
  • One PCI can be bound to a multiplexing factor F or multiple PCIs can be bound to a multiplexing factor F. Therefore, the terminal device can obtain the PCI of the network device and determine the multiplexing factor F of the network device, thereby detecting F frames of the first signal to obtain the first resource.
  • the PCI here can be sent by the network device to the terminal device. Wherein, the PCI may be sent using the same signaling as the first signal, or the PCI may also be sent using different signaling from the first signal.
  • the foregoing first resource may be any one or any combination of NPSS, NSSS, and NPBCH.
  • the terminal device can detect the first signal to obtain NPSS.
  • the NPSS may include the physical cell identity PCI of the network device, so the terminal device can determine the multiplexing factor F of the network device according to the PCI, and the terminal device can detect F frames of the first signal to obtain the NSSS and/or NPBCH.
  • the terminal device detects the first signal and obtains NPSS in frame 0 and frame 1.
  • the terminal device can determine that the multiplexing factor F of the network device is 4 according to the NPSS. Therefore, the terminal device can detect 4 frames of the first signal, and obtain the NPBCH in frame 0 and the NSSS in frame 1.
  • NPSS, NSSS, and NPBCH can be in the same frame of the first signal, so the terminal device can detect the first signal to obtain NPSS, NSSS, and NPBCH.
  • the subframes carrying NPSS, NSSS, and NPBCH may be specified in the protocol. As shown in FIG. NPSS is obtained in subframe 5 of 0, and NSSS is obtained in subframe 9 of frame 0.
  • Step 303 The terminal device detects the second resource according to the frame number of the first resource.
  • the second resource here can be the same as the first resource.
  • the following specifically introduces the implementation manner of obtaining the second resource through detection according to the frame number of the first resource.
  • the terminal device detects the first signal and obtains the first resource, and the frame number of the first resource is N1, the terminal device can detect the N1+F*Nth frame of the first signal to obtain the second resource.
  • N 1,2,....
  • the frame number of the first resource is N1, and the terminal device can detect the N1+F frame, the N1+2F frame, the N1+3F frame...the N1+F*N frame of the first signal to obtain the second resource.
  • the terminal device receives the first signal sent by cell 1, and the terminal device can detect 4 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 0. Therefore, the terminal device can detect the 0+4*1 frame of the first signal, that is, the frame 4, the 0+4*2 frame, that is, the frame 8 to obtain the second resource.
  • the terminal device can also detect frame 12 (not shown in the figure), frame 16 (not shown in the figure), and frame 0+4*N of the first signal to obtain the second resource. If the terminal device receives the first signal sent by cell 2, the terminal device can detect 4 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 1.
  • the terminal device can detect frame 1+4*1 of the first signal, that is, frame 5, and frame 1+4*2, that is, frame 9 (not shown in the figure) to obtain the second resource.
  • the terminal device can detect frame 13 (not shown in the figure), frame 17 (not shown in the figure) of the first signal, frame 1+4*N, and obtain the second resource. If the terminal device receives the first signal sent by cell 3, the terminal device can detect 4 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 2. Therefore, the terminal device can detect the 2+4*1 frame of the first signal, that is, frame 6, and the 2+4*2 frame, that is, frame 10 (not shown in the figure) to obtain the second resource.
  • the terminal device can detect frame 14 (not shown in the figure), frame 18 (not shown in the figure), and frame 2+4*N of the first signal to obtain the second resource. If the terminal device receives the first signal sent by the cell 4, the terminal device can detect 4 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 3. Therefore, the terminal device can detect the 3+4*1 frame of the first signal, that is, frame 7 to obtain the second resource.
  • the terminal device can also detect frame 11 (not shown in the figure), frame 15 (not shown in the figure), and frame 3+4*N of the first signal to obtain the second resource.
  • the terminal device can detect 3 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 0. Therefore, the terminal device can detect the 0+3*1 frame of the first signal, namely frame 3, and the 0+3*2 frame, namely frame 6, to obtain the second resource. By analogy, the terminal device can also detect frame 9, frame 12, and frame 3N of the first signal to obtain the second resource. If the terminal device receives the first signal sent by cell 2, the terminal device can detect 3 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 1.
  • the terminal device can detect the 1+3*1 frame of the first signal, namely frame 4, and the 1+3*2 frame, namely frame 7, to obtain the second resource.
  • the terminal device can also detect frame 10 and frame 13 of the first signal, and frame 1+3*N to obtain the second resource. If the terminal device receives the first signal sent by cell 3, the terminal device can detect 3 frames of the first signal to obtain the first resource.
  • the frame number of the first resource is frame 2. Therefore, the terminal device can detect the 2+3*1 frame of the first signal, namely frame 5, and the 2+3*2 frame, namely frame 8, to obtain the second resource.
  • the terminal device can also detect frame 11, frame 15, and frame 2+3*N of the first signal to obtain the second resource.
  • the aforementioned first resource and second resource may be any one or any combination of NPSS, NPBCH, or NSSS. It should be understood that the subframe carrying the first resource and the second resource may be specified by the protocol, or may also be instructed by the network device. For example, the network device may indicate which subframe the NPSS, NSSS, and NPBCH are respectively carried on through the first indication information.
  • the terminal device receives the first signal sent by cell 1.
  • the terminal device detects 4 frames of cell 1 and obtains the first resource.
  • subframe 0 of frame 0 carries NPBCH
  • subframe 5 of frame 0 carries NPSS
  • subframe 9 of frame 0 carries NSSS. Therefore, the terminal device can detect the 0+4*1 frame of the first signal, that is, frame 4 to obtain the second resource.
  • subframe 0 of frame 4N carries NPBCH
  • subframe 5 of frame 4N carries NPSS
  • the terminal device can receive the first signal sent by cell 1.
  • the terminal device can detect 3 frames of cell 1 to obtain the first resource.
  • subframe 0 of frame 0 carries NPBCH
  • subframe 5 of frame 0 carries NPSS
  • subframe 9 of frame 0 carries NSSS. Therefore, the terminal device can detect the 0+3*1 frame of the first signal, that is, frame 3 to obtain the second resource.
  • subframe 0 of frame 3 carries NPBCH
  • subframe 5 of frame 3 carries NPSS
  • subframe 9 of frame 3 carries NSSS.
  • the terminal device can also detect the 0+3*Nth frame of the first signal to obtain the second resource.
  • subframe 0 of frame 3N carries NPBCH
  • subframe 5 of frame 3N carries NPSS
  • subframe 9 of frame 3*2*N carries NSSS.
  • NPBCH, NPSS, and NSSS are all on the same frame of the first signal.
  • NPBCH, NPSS, and NSSS may also be on different frames of the first signal.
  • the terminal device receives the first signal sent by cell 1.
  • the terminal device detects 4 frames of the first signal and obtains the NPBCH.
  • the frame number of the NPBCH is frame 0, so the terminal device can detect the 0+4*1 frame of the first signal, that is, frame 4 to obtain the NPBCH.
  • the terminal device can detect frame 8, frame 12, and frame 4*N of the first signal to obtain the NPBCH.
  • the terminal device detects 4 frames of the first signal to obtain NPSS.
  • the frame numbers of the NPSS are frame 0 and frame 1.
  • the terminal device can detect the 0+4*2 frame of the first signal, that is, frame 8 to obtain the NPSS, and detect the first signal of the first signal. 1+4*2 frames, that is, frame 9 gets NPSS.
  • M frames of the F frames of the first signal carry NPSS
  • the terminal device can detect the N1+F*(N+M-1)th frame of the first signal to obtain the NPSS.
  • M is a positive integer.
  • the terminal device can detect 4 frames of the first signal to obtain the NSSS.
  • the frame number of the NSSS is frame 1. Therefore, considering the periodicity of the NSSS, the terminal device can detect the 1+4*2 frame of the first signal, that is, frame 9, the 1+F*2*N frame to obtain the NSSS.
  • the first signal may be detected in a time-domain dilution manner to obtain the first resource.
  • the terminal device may detect the designated time domain symbols on F frames to obtain the first resource.
  • the content is the same. Therefore, the network device may combine the S1-th time-domain symbol and the S2-th time-domain symbol, and carry the first resource on the designated time-domain symbols of the F frames.
  • the terminal device detects the first signal, it may also obtain the first resource on the designated time domain symbols on the F frames.
  • the cell 1 may carry the first resource on the 3rd, 4th, and 7th time domain symbols of the frame A of the first signal.
  • the terminal device can detect the 3rd, 4th, and 7th time domain symbols of the F frames to obtain the first resource.
  • the terminal device may also detect the 3rd, 4th, and 7th time domain symbols of the A+3*Nth frame of the first signal to obtain the second resource.
  • the terminal device may also detect the designated time domain symbol of the first frame of the first signal to obtain the first resource, and detect the designated time domain symbol of each frame except the first frame of the first signal to obtain the second resource.
  • the terminal device can detect the 3rd, 4th, and 7th time domain symbols of the first frame of the first signal to obtain the first resource, and detect the first signal except for the first frame.
  • the 3rd, 4th, and 7th time domain symbols of each frame get the second resource.
  • the terminal device may also detect the first signal in a frequency domain dilution manner to obtain the first resource.
  • the terminal device may detect designated subcarriers on F frames to obtain the first resource.
  • NPSS occupies 11 sub-carriers in the frequency domain, so the transmission bandwidth of NPSS can be reduced by way of frequency domain dilution.
  • the terminal device can detect the subcarriers (1, 2) of frame A to obtain the first resource. Therefore, the terminal device can detect the subcarriers (1, 2) of the frame A+4*N to obtain the second resource.
  • the terminal device can detect the subcarriers (4, 5) of frame B to obtain the first resource. Therefore, the terminal device can detect the subcarriers (4, 5) of frame B+4*N to obtain the second resource.
  • NSSS occupies 12 subcarriers in the frequency domain, and the transmission bandwidth of the NSSS can also be reduced by way of frequency domain dilution.
  • the terminal device can detect the subcarriers (1, 4, 7, 10) of frame A to obtain the first resource. Therefore, the terminal device can detect the subcarriers (1, 4, 7, 10) of the frame A+3*N to obtain the second resource.
  • the terminal device may also detect the designated time domain symbols and designated subcarriers of F frames of the first signal to obtain the first resource. For example, when the reuse factor F is 3, the terminal device can detect the first NPSS on the 3rd, 4th, and 7th time domain symbols of the frame A and on the subcarriers (1, 2). The terminal device can also detect the 3rd, 4th, and 7th time domain symbols of the frame A*3*N and on the subcarriers (1, 2) to obtain the second NPSS.
  • the reuse factor F is 3rd, 4th, and 7th time domain symbols of the frame A and on the subcarriers (1, 2).
  • the terminal device can also detect the 3rd, 4th, and 7th time domain symbols of the frame A*3*N and on the subcarriers (1, 2) to obtain the second NPSS.
  • the terminal device may also detect the designated subcarrier of the first frame of the first signal to obtain the first resource, and detect the designated subcarrier of each frame except the first frame of the first signal to obtain the second resource.
  • the terminal device can detect the subcarriers (1, 2) of the first frame of the first signal to obtain the first resource, and the terminal device can also detect the first signal except for the first frame.
  • the subcarriers (1, 2) of each frame other than those obtain the second resource.
  • the terminal device may also combine time domain dilution and frequency domain dilution to transmit the first resource and the second resource.
  • the terminal device can also detect the designated time domain symbol and designated subcarrier of the first frame of the first signal to obtain the first resource, and detect the designated time domain of each frame of the first signal except the first frame. The symbol and the designated subcarrier get the second resource.
  • the terminal device can detect the 3rd, 4th, and 7th time domain symbols and subcarriers (1, 2) of the first frame of the first signal to obtain the first NPSS, and the terminal device can also The third, fourth, and seventh time domain symbols and subcarriers (1, 2) of each frame except the first frame of the first signal are detected to obtain the second NPSS.
  • the communication device 1200 can perform various steps performed by the terminal device in the foregoing method, and in order to avoid repetition, the details are not described herein again.
  • the communication device 1200 includes: a communication unit 1210, a processing unit 1220, and optionally, a storage unit 1230; the processing unit 1220 can be respectively connected to the storage unit 1230 and the communication unit 1210, and the storage unit 1230 can also be connected to the communication unit 1210 Connected:
  • the storage unit 1230 is used to store computer programs
  • the communication unit 1210 is configured to receive the first signal.
  • the processing unit 1220 is configured to detect F frames of the first signal to obtain a first resource; and perform detection according to the frame number of the first resource to obtain a second resource.
  • F is the multiplexing factor.
  • the description of the reuse factor F, the first resource, the second resource, the frame number of the first resource and the frame number of the second resource can refer to the related description in the method embodiment shown in FIG. Repeat it again.
  • the processing unit 1220 when the processing unit 1220 detects F frames of the first signal to obtain the first resource, it is specifically configured to: the processing unit 1220 detects F frames of the first signal to obtain an NPSS.
  • the processing unit 1220 obtains NSSS and NPBCH according to the NPSS.
  • NPSS the NPSS
  • NSSS the NSSS
  • NPBCH the NPBCH
  • the processing unit 1220 when the processing unit 1220 detects the second resource according to the frame number of the first resource, it is specifically configured to: the processing unit 1220 obtains the second resource on the N1+F*Nth frame.
  • Resource where N1 is the frame number of the first resource, and N is a positive integer.
  • the F may be 3 or the F may also be 4.
  • the processing unit 1220 when the processing unit 1220 detects F frames of the first signal and obtains the first resource, it is specifically used to: the processing unit 1220 detects the time domain symbols of the F frames, Obtain the first resource.
  • the processing unit 1220 detects the second resource according to the frame number of the first resource, it is specifically configured to: the processing unit 1220 according to the frame number of the first resource and the time domain symbol of the first resource , Perform detection to obtain the second resource.
  • the processing unit 1220 when the processing unit 1220 detects F frames of the first signal to obtain the first resource, it is specifically used to: the processing unit 1220 detects the subcarriers of the F frames to obtain The first resource.
  • the processing unit 1220 detects the second resource according to the frame number of the first resource, it is specifically configured to: the processing unit 1220 according to the frame number of the first resource and the subcarrier of the first resource, Perform detection to obtain the second resource.
  • the above-mentioned communication device may also be a chip, wherein the communication unit may be an input/output circuit or interface of the chip, and the processing unit may be a logic circuit, and the logic circuit may process the data to be processed according to the steps described in the above method, and obtain the processed data.
  • the data to be processed may be data received by the input circuit/interface, such as the first signal.
  • the processed data may be data obtained according to the data to be processed, such as the first resource and the second resource.
  • the output circuit/interface is used to output the processed data.
  • the communication device 1300 can perform various steps in the above-mentioned method by the network device. In order to avoid repetition, the details are not described herein again.
  • the communication device 1300 includes: a communication unit 1310, a processing unit 1320, and optionally, a storage unit 1330; the processing unit 1320 can be connected to the storage unit 1330 and the communication unit 1310, and the storage unit 1330 can also be connected to the communication unit 1310 Connected:
  • the storage unit 1330 is used to store computer programs
  • the processing unit 1320 is configured to send a first signal according to the communication unit 1310.
  • F frames of the first signal carry the first resource
  • the F is a multiplexing factor.
  • the first signal also carries a second resource
  • the frame number of the first resource is related to the frame number of the second resource.
  • the above-mentioned communication device may also be a chip, wherein the communication unit may be an input/output circuit or interface of the chip, and the processing unit may be a logic circuit, and the logic circuit may process the data to be processed according to the steps described in the above method, and obtain the processed data.
  • the data may be a chip, wherein the communication unit may be an input/output circuit or interface of the chip, and the processing unit may be a logic circuit, and the logic circuit may process the data to be processed according to the steps described in the above method, and obtain the processed data. The data.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 14 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the communication unit of the terminal device, and the processor with the processing function may be regarded as the processing unit of the terminal device.
  • the terminal device includes a communication unit 1410 and a processing unit 1420.
  • the communication unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the communication unit 1410 can be regarded as the receiving unit, and the device for implementing the sending function in the communication unit 1410 as the sending unit, that is, the communication unit 1410 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be referred to as a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the communication unit 1410 is used to perform sending operations and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1420 is used to perform other operations on the terminal device in the foregoing method embodiment except for receiving and sending operations.
  • the communication unit 1410 is used to perform the receiving operation on the terminal device side in step 301 in FIG. 3, and/or the communication unit 1410 is also used to perform other transceivers on the terminal device side in the embodiment of the present application.
  • step. The processing unit 1420 is configured to execute step 302 and/or step 303 in FIG. 3, and/or the processing unit 1420 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the device may include a communication unit and a processing unit.
  • the communication unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • a communication device 1500 provided in an embodiment of this application is used to implement the functions of the terminal device and the network device in the foregoing method.
  • the communication device may be a terminal device, a network device, a terminal device, a device of a network device, or a device that can be matched and used with a terminal device or a network device.
  • the communication device 1500 includes at least one processor 1520, configured to implement the functions of the terminal device and the network device in the method provided in the embodiment of the present application.
  • the communication device 1500 may further include a communication interface 1510.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 1510 is used for the device in the communication device 1500 to communicate with other devices.
  • the processor 1520 can complete the functions of the processing unit 1220 shown in FIG. 12, and the communication interface 1510 can complete the functions of the communication unit 1210 shown in FIG. 12.
  • the communication device 1500 is a network device
  • the processor 1520 can complete the functions of the processing unit 1320 shown in FIG. 13, and the communication interface 1510 can complete the functions of the communication unit 1310 shown in FIG. 13.
  • the communication device 1500 may also include at least one memory 1530 for storing program instructions and/or data.
  • the memory 1530 and the processor 1520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1520 may operate in cooperation with the memory 1530.
  • the processor 1520 may execute program instructions stored in the memory 1530. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1510, the processor 1520, and the memory 1530.
  • the memory 1530, the processor 1520, and the communication interface 1510 are connected by a bus 1540.
  • the bus is represented by a thick line in FIG. 15.
  • the connection mode between other components is only for schematic illustration , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 15 to represent it, but it does not mean that there is only one bus or one type of bus.
  • a computer-readable storage medium is provided with instructions stored thereon, and when the instructions are executed, the method on the terminal device side or the network device side in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the terminal device side or the network device side in the foregoing method embodiment is executed.
  • a communication system may include the foregoing at least one terminal device and the foregoing at least one network device.
  • the processor mentioned in the embodiment of the present invention may be a central processing unit (Central Processing Unit, CPU), or may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,用以减少小区之间的信号干扰。该方法中,终端设备接收第一信号,并检测第一信号的F个帧,得到第一资源。其中F可以是复用因子,比如频率/极化复用因子。终端设备根据第一资源的帧号,进行检测得到第二资源。其中,第一资源和第二资源可以是相同的资源。基于该方案,终端设备可以根据网络设备的复用因子对第一信号进行检测,得到第一资源和第二资源。针对复用因子不同的网络设备发送的第一信号,终端设备检测得到第一资源和第二资源的帧号可能不同,就可以降低小区间的干扰,保障信号的可靠传输。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年06月11日提交中国国家知识产权局、申请号为202010531209.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
非地面通信网络(non-terrestrial network,NTN)具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著的优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。
物联网(internet of things,IoT)是信息社会的一个全球基础设施,通过物理和虚拟的物物相连,提供更好的服务。与传统的蜂窝网络面向人与人之间的通信相比,物联网具有覆盖增强、低功耗、低成本和大连接的鲜明特点。因此,将物联网与NTN结合,可以更好地满足物联网终端的业务需求。
现有技术中物联网协议支持以下三种部署模式:1)、独立部署,适用于全球移动通信***(global system for mobile communications,GSM)频段,占用一个GSM频段。2)、保护带部署,利用长期演进计划(long term evolution,LTE)边缘保护带中未使用的带宽资源,部署IoT网络。3)、带内部署,利用LTE载波中间的任何一个资源块(public resource block,PRB)部署IoT网络。
上述三种IoT网络的部署方式均是基于地面蜂窝网络的全频复用设计。然而,如果在NTN IoT网络中采用上述三种部署方式会导致小区边缘所受到的干扰较大,广播信号块难以被可靠接收。
发明内容
本申请提供一种通信方法及装置,用以降低波束间的干扰,保障资源的可靠传输。
第一方面,本申请实施例提供一种通信方法。该方法可以由本申请实施例中的通信装置执行。其中,该通信装置可以是终端设备,或者也可以是类似于终端设备功能的其它装置。该方法中,通信装置可以接收第一信号,并检测第一信号的F个帧,得到第一资源。这里的F可以是复用因子,比如频率/极化复用因子。通信装置可以根据第一资源的帧号,进行检测得到第二资源。其中,第一资源和第二资源可以是相同的资源。
基于该方案,通信装置可以根据网络设备的复用因子对第一信号进行检测,得到第一资源和第二资源。不同的复用因子,通信装置检测得到第一资源和第二资源的帧号不同,就可以降低小区间的干扰,保障信号的可靠传输。
在一种可能的实现方式中,第一资源可以包括以下中的至少一个:窄带主同步信号 (narrowband primary synchronization signal,NPSS)、窄带次同步信号(narrowband secondary synchronization signal,NSSS)、窄带物理广播信道(narrowband physical broadcast channel,NPBCH)。
基于该方案,通信装置可以根据网络设备的复用因子,对第一信号进行检测得到NPSS、NSSS或NPBCH,复用因子不同时,NPSS、NSSS或NPBCH在第一信号的帧号就可能不同,因此通信装置检测的帧号也就会不同,可以降低小区间的干扰,保障NPSS、NSSS或NPBCH的可靠传输。
在一种可能的实现方式中,通信装置可以检测所述第一信号的F个帧,得到所述NPSS。通信装置可以根据NPSS得到NSSS和NPBCH。例如,通信装置可以对第一信号进行盲检,检测第一信号的F个帧,从而得到NPSS。此时,通信装置可以获取到NPSS的帧号等信息,通信装置可以根据NPSS的帧号,确定NSSS和NPBCH的帧号,并对NSSS和NPBCH的帧号进行检测,得到NSSS和NPBCH。
基于该方案,通信装置可以根据NPSS的帧号确定NSSS和NPBCH的帧号,并可以对NSSS和NPBCH的帧号进行检测,得到NSSS和NPBCH。通信装置在检测时就可以根据NPSS、NSSS和NPBCH的帧号的关系进行检测,可以减少通信装置在检测帧号时的复杂度。
在一种可能的实现方式中,NPSS、NSSS和NPBCH在所述第一信号的同一帧。例如,通信装置可以对第一信号进行盲检,检测第一信号的F个帧。此时,通信装置可以获取到NPSS的帧号等信息。通信装置可以检测NPSS的帧号,得到NSSS和NPBCH。其中,NPSS可以携带于子帧5,NSSS可以携带于子帧9,NPBCH可以携带于子帧0。
基于该方案,NPSS、NSSS和NPBCH在第一信号的同一帧,通信装置在检测得到NPSS时,可以对NPSS的帧号进行检测得到NSSS和NPBCH,可以降低通信装置检测帧号时的复杂度。
在一种可能的实现方式中,通信装置可以在第N1+F*N帧上得到第二资源。其中,N1是第一资源的帧号,N为正整数,N=1,2,…。例如,通信装置检测第一信号的F个帧,从第N1帧上得到了第一资源。因此,通信装置可以检测第N1+F*N帧,得到第二资源。
基于该方案,通信装置在检测第二资源时,可以根据第一资源的帧号对第一信号进行检测,可以不需要对第一信号的每一个帧都进行检测,可以减少通信装置检测的复杂度。另外,由于复用因子的不同,通信装置检测得到第二资源的帧号就不同,可以减少小区之间的干扰。
示例性的,F可以为3或者F为4。例如,通信装置可以检测第一信号的3个帧,在帧0上得到第一资源。通信装置还可以对第一信号进行检测,检测第一信号的第3个帧、第6个帧,第3*N个帧,得到第二资源。
基于该方案,通信装置在检测第一资源时,可以检测第一信号的F个帧得到第一资源,并根据第一资源的帧号N1,在第N1+F*N上进行检测得到第二资源。由于复用因子的不同,通信装置检测得到第二资源的帧号就不同,可以减少小区之间的干扰。
在一种可能的实现方式中,所述复用因子F与所述网络设备的物理小区标识(physical cell indentifier,PCI)相关。例如,每一个PCI可以对应一个复用因子,复用因子相同的PCI在第一信号的F个帧中携带第一资源的帧号可以不相同。举例来说,cell1的复用因子可以是4,并且可以在第一信号的帧0携带第一资源;cell2的复用因子可以是4,并且可 以在第一信号的帧1携带第一资源。
基于该方案,通过网络设备的PCI通信装置可以获取该网络设备的复用因子,从而根据复用因子和第一资源的帧号对第一信号进行检测,得到第二资源。
在一种可能的实现方式中,通信装置可以检测所述第一信号的F个帧的时域符号,得到第一资源。通信装置还可以根据第一资源的帧号和时域符号,对第一信号进行检测得到第二资源。例如,通信装置检测第一信号的F个帧的时域符号,得到第一资源,该第一资源在帧0的时域符号3、4和7上。通信装置可以根据帧0确定第二资源的帧号,并检测第二资源的帧号的时域符号3、4和7,得到第二资源。
基于该方案,可以将第一资源和第二资源进行时域稀释,即仅在指定时域符号上携带第一资源和第二资源,且携带第一资源和第二资源的时域符号可以与复用因子有关,因此可以减少小区之间的信号干扰。
在一种可能的实现方式中,通信装置可以检测所述第一信号的F个帧的子载波,得到第一资源。通信装置还可以根据第一资源的帧号和子载波,对第一信号进行检测得到第二资源。比如,通信装置可以检测第一信号的F个帧的子载波,得到第一资源,该第一资源在帧0的子载波(1、2)上。通信装置可以根据帧0确定第二资源的帧号,并检测第二资源的帧号的子载波(1、2),得到第二资源。
基于该方案,可以将第一资源和第二资源进行频域稀释,即仅在指定子载波上携带第一资源和第二资源,且携带第一资源和第二资源的子载波可以与复用因子相关,因此可以减少小区之间的信号干扰。
第二方面,本申请实施例还提供一种通信方法。该方法可以由本申请实施例中的网络设备执行,或者是类似于网络设备功能的其他设备执行。该方法中,网络设备可以发送第一信号。其中,第一信号的F个帧上携带第一资源,所述第一信号还携带第二资源,第一资源的帧号与第二资源的帧号相关;所述F为复用因子。
基于该方案,网络设备可以根据复用因子,在第一信号的F个帧上携带第一资源,并根据第一资源的帧号确定携带第二资源的帧号,从而实现不同的复用因子携带第一资源和第二资源的帧号不相同,可以减少小区之间的信号干扰。
在一种可能的实现方式中,所述第一资源可以包括以下中的至少一个:NPSS、NSSS、或NPBCH。应理解,第二资源和第一资源可以是相同的资源,因此第二资源也可以是上述NPSS、NSSS或NPBCH中的至少一个。第一资源和第二资源可以是NPSS、NSSS或NPBCH中的任意一个或者任意组合。
基于该方案,网络设备可以保障NPSS、NSSS或NPBCH的可靠传输,降低在传输NPSS、NSSS或NPBCH时的小区之间的信号干扰。
在一种可能的实现方式中,所述NPSS、所述NSSS和所述NPBCH携带在所述第一信号的同一帧。比如,第一信号的帧0的子帧0可以携带NPBCH,帧0的子帧5可以携带NPSS、帧0的子帧9可以携带NSSS。其中,携带第一资源的子帧可以是协议规定的。
基于该方案,网络设备可以在同一帧上携带NPSS、NSSS和NPBCH,这样可以使得通信装置在检测时检测一个帧就可以得到NPSS、NSSS和NPBCH,可以降低通信装置的检测资源时的复杂度。
在一种可能的实现方式中,在第N1+F*N帧上携带第二资源,其中N1为所述第一资源的帧号,F为复用因子,N为正整数。例如,第一信号的帧A上携带第一资源,因此第 一信号的帧A+F*N上携带第二资源。
基于该方案,网络设备可以根据第一资源的帧号N1,以及上述表达式N1+F*N确定携带第二资源的帧号,使得第二资源的帧号与第一资源的帧号以及复用因子F相关,这样不同的复用因子F携带第二资源的帧号就可以不同,可以降低复用因子F不同的小区之间的信号干扰。
在一种可能的实现方式中,第一资源的帧号N1可以与物理小区标识相关。例如,N1可以与物理小区标识PCI满足以下公式:N1=PCI mod F,其中mod表示取模操作。举例来说,小区1的PCI为4,小区2的PCI为6,小区1和小区2的复用因子F均为3。因此,可以通过上述公式计算得到小区1的N1_1=4 mod 3=1,因此小区1的第一信号的帧1携带第一资源。根据上述公式还可以计算得到小区2的N1_2=6mod 3=0,因此小区2的第一信号的帧0携带第一资源。
基于该方案,可以根据网络设备的PCI确定携带第一资源的帧号,由于PCI不同时第一资源的帧号也不相同,因此,第二资源的帧号也可以不相同,可以减少不同的小区之间的信号干扰。
在一种可能的实现方式中,复用因子F可以与网络设备的物理小区标识相关。例如,一个物理小区标识可以绑定一个F,或者多个物理小区标识可以绑定一个F。
基于该方案,复用因子F可以与网络设备的PCI相关,因此不同的小区,F可以不同,就可以降低不同的小区在传输第一资源和第二资源时的信号干扰。
在一种可能的实现方式中,第一信号的F个帧的指定时域符号上携带所述第一资源。因此,第一信号的第N1+F*N帧的指定时域符号上可以携带第二资源。例如,在复用因子F为3时,第一信号的帧0的第3、4时域符号上携带了第一资源,因此第一信号的第0+3*N帧的第3、4时域符号上携带了第二资源。
基于该方案,可以采用时域稀释的方式传输第一资源和第二资源,由于不同的小区传输第一资源和第二资源的时域符号不同,因此可以减少不同的小区在传输第一资源和第二资源时的信号干扰。
在一种可能的实现方式中,第一信号的F个帧的指定子载波上携带所述第二资源。因此,第一信号的第N1+F*N帧的指定子载波上可以携带第二资源。例如,在复用因子F为3时,第一信号的帧0的子载波(1、2)上携带了第一资源,因此第一信号的第0+3*N帧的子载波(1、2)上携带了第二资源。
基于该方案,可以采用频域稀释的方式传输第一资源和第二资源,由于不同的小区传输第一资源和第二资源的子载波不同,因此可以减少不同的小区在传输第一资源和第二资源时的信号干扰。
第三方面,本申请实施例还提供一种通信装置,可以用来执行上述第一方面及第一方面的任意可能的实现方式中的操作。例如,通信装置可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的各个操作的模块或单元。比如可以包括处理单元和通信单元。
第四方面,本申请实施例还提供一种通信装置,可以用来执行上述第二方面及第二方面的任意可能的实现方式中的操作。例如,通信装置可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的各个操作的模块或单元。比如可以包括处理单元和通信单元。
第五方面,本申请实施例提供了一种芯片***,包括处理器,可选的还可以包括存储器;其中,存储器存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片***的通信装置执行上述第一方面或第一方面的任意可能的实现方式中的任一方法;和/或,使得安装有芯片***的通信装置执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
第六方面,本申请实施例还提供一种通信***,可以包括上述第三方面所述的通信装置和第四方面所述的通信装置。
第七方面,本申请实施例提供了一种计算机程序产品,包括计算机程序代码,当计算机程序代码被通信装置的通信单元、处理单元或收发器、处理器运行时,使得通信装置可以执行上述第一方面或第一方面的任意可能的实现方式中的任一方法;和/或,使得通信装置可以执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有程序,程序使得通信装置执行上述第一方面或第一方面的任意可能的实现方式中的任一方法;和/或,使得通信装置执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
上述第三方面至第八方面可以达到的技术效果,请参照上述第一方面或第二方面中各个设计可以带来的技术效果描述,这里不再重复赘述。
附图说明
图1为本申请实施例提供的卫星通信***示意图;
图2为现有技术中第一资源和第二资源的传输方式示意图;
图3为本申请实施例提供的通信方法的示例性流程图;
图4为本申请实施例提供的第一信号的示意图之一;
图5为本申请实施例提供的第一信号的示意图之一;
图6为本申请实施例提供的第一信号的示意图之一;
图7为本申请实施例提供的第一信号的示意图之一;
图8A为本申请实施例提供的第一信号的示意图之一;
图8B为本申请实施例提供的第一信号的示意图之一;
图8C为本申请实施例提供的第一信号的示意图之一;
图8D为本申请实施例提供的第一信号的示意图之一;
图9A为本申请实施例提供的第一信号的示意图之一;
图9B为本申请实施例提供的第一信号的示意图之一;
图9C为本申请实施例提供的第一信号的示意图之一;
图10为本申请实施例提供的第一信号的示意图之一;
图11为本申请实施例提供的卫星波束的第一信号传输方式示意图;
图12为本申请实施例提供的一种通信装置的示意图之一;
图13为本申请实施例提供的一种通信装置的示意图之一;
图14为本申请实施例提供的一种通信装置的示意图之一;
图15为本申请实施例提供的通信装置的框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)复用因子F,指每隔F个相邻的网络设备复用相同的频率、极化等维度的资源,其中F=i^2+ij+j^2,其中i和j为非负整数。
2)帧号,又称***帧号(system frame number,SFN)。例如:任何一个小区的SFN的取值范围可以是从0-4095,每帧SFN加1,当SFN为4095之后,下帧SFN变为0,这样周而复始。又例如:小区的SFN的取值范围可以是从0-1023,每帧SFN加1,当SFN为1023之后,下帧SFN变为0,这样周而复始。其中,小区的SFN的取值可以是根据标准预先定义的,本申请不做具体限定。
需要说明的是,本申请实施例中提及的第一信号的帧号,例如帧0、帧1或帧2等均是示例性的,并不能够代表在实际中第一信号的帧号就是帧0、帧1或帧2。此外,本申请实施例中提及的时域符号1、时域符号2或者时域符号3以及子载波1、子载波2或子载波3等也均是示例性的,并不能够代表实际中时域符号的编号或者子载波的编号。
另外,本申请实施例中,多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
应理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或实现方案不应被解释为比其它实施例或实现方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。图1为本申请适用的一种可能的卫星通信***架构示意图。如果将卫星通信***与地面通信***做类比,可以将卫星看做是地面的一个或多个网络设备,例如基站、接入点1、接入点2、甚至接入点3至接入点n(图中未标出)。卫星向终端设备提供通信服务,卫星还可以连接到核心网设备(例如AMF)。卫星可以为非静止轨道(non-geostationary earth orbit,NGEO)卫星或静止轨道(geostationary earth orbit,GEO)卫星。本申请也可以适用于地面通信***。
卫星基站主要为终端设备提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等。卫星基站是指将人造地球卫星和高空飞行器等作为无线通信的基站,例如演进型基站(eNB)和第五代(5th Generation,5G)通信***中的基站(gNB)等。卫星基站可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。卫星设备的运行姿态包括:对地非凝视姿态和对地凝视姿态;其中,对地非凝视姿态的卫星设备发射的卫星波束随着卫星运动,在卫星看来自身发射各波束的角度不会随时间改变,地面固定点在卫星过顶期间会经历较为频繁的波束切换,比如,手电筒模拟卫星轨道绕着地球仪运动,手电筒发射的光束的角度不会改变,同时,由于卫星设备比地球自转的速度还要快,因此除同步卫星外,对于静止轨道的卫星与地球的关系,可以想像为地球静止不动,卫星设备绕着地球做周期性圆周运动。因此,该手电筒 发射的光束能够扫过地球仪一周;而凝视卫星***,卫星发射各波束的角度按一定方式调整,以实现对地面固定点的连续观测。比如,手电筒模拟卫星轨道绕着地球仪运动,在手电筒运行过程中,通过调节发射各光束的角度来实在对同一区域的持续观测(手电筒照亮的区域并不改变),可以理解的是,该手电筒发射的各光束的角度是可调的。
本申请所述的通信装置可以为终端设备,终端设备包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端可以包括用户设备(user equipment,UE)、无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车到一切(vehicle to everything,V2X)终端、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internet of things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、手环、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,用于实现终端设备功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片***,该装置可以被安装在终端中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例 提供的技术方案对于类似的技术问题,同样适用。
如图2所示,目前广播信息的传输方式如下:
窄带主同步信号(narrowband primary synchronization signal,NPSS):周期10ms,在每个帧的子帧5传输,时域上占用11个符号,频域上占用11个子载波。
窄带次同步信号(narrowband secondary synchronization signal,NSSS):周期20ms,在每个偶数帧(如图1中的帧0、帧8等)的子帧9传输,时域上占用11个符号,频域上占用整个物理资源块(physical resource block,PRB)带宽,即12个子载波。
窄带物理广播信道(narrowband physical broadcast channel,NPBCH):周期640ms,在每个帧的子帧0传输,时域上占用11个符号,频域上占用整个PRB带宽,即12个子载波。在一个周期内,NPBCH分为8个传输块传输,其中每一个传输块的内容不同。每个传输块的内容连续重复传输8次后,再传输下一个传输块。如图1所示,从帧0-帧7可以传输第一传输块,帧8-帧15可以传输第二传输块,以此类推,将NPBCH的8个传输块全部传输。
可见,现有的广播信息的传输方法是全频复用方法。然而,在卫星通信网络中,一个卫星中配置多个波束,每个波束可以看作是一个小区中的波束或一个单独的小区。由于卫星波束的中心位置与边缘位置的信号强度差别不大,若采用全频复用的方式进行通信,则相邻波束间会产生强干扰。因此,在卫星通信***中,通常采用多色复用(包含频率复用和极化复用)的方式来减少卫星波束之间的干扰。例如,在时间单元T1内,0、1、4、5四个波束对应的频段不同,例如可以将***带宽等分为四个频段,每个频段的中心频点分别为f1、f2、f3和f4,则波束0、1、4、5分别对应中心频点分别为f1、f2、f3和f4的频段。卫星中相邻的波束使用不同的频率与终端设备进行通信,从而达到抑制干扰的效果。
但是,若采用上述的多色复用的方式,采用不同的频率传输广播信息,小区与小区之间的广播信息的传输可能还是会存在强干扰,可能无法保证广播信息的可靠传输。
有鉴于此,本申请实施例提供一种通信方法,本申请实施例的技术方案可以应用于各种通信***,例如:地面通信***,非地面通信***,例如卫星通信***。其中,所述卫星通信***可以与传统的移动通信***相融合。例如:所述移动通信***可以为***(4th Generation,4G)通信***(例如,长期演进(long term evolution,LTE)***),物联网通信***、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***,5G通信***(例如,新无线(new radio,NR)***),及未来的移动通信***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
以下,不失一般性的,以通信装置为终端设备为例介绍本申请实施例提供的通信方法。应理解,本申请实施例中的通信装置还可以是类似于终端设备功能的其它设备。其它设备在与网络设备进行通信时,也可以本申请实施例提供的通信方法与网络设备进行通信。图 3是从设备交互的角度示出的本申请实施例提供的通信方法的示例性流程图。如图3所示,该方法可以包括:
步骤301:网络设备发送第一信号。相应的,终端设备接收第一信号。
第一信号可以在F个帧上携带有第一资源。其中,可以在第一信号的帧0至帧f中的一个帧上携带第一信号。如图4所示,第一信号的帧0至帧3的四个帧中的帧1上携带有第一资源。
另外需要说明的是,网络设备的复用因子F是预先配置的。例如,可以将复用因子F与网络设备的物理小区标识(physical cell identifier,PCI)绑定。一个PCI可以绑定一个复用因子F或者多个PCI可以绑定一个复用因子F。或者,还可以将复用因子F与网络设备的唯一标识绑定,一个唯一标识可以绑定一个复用因子F或者多个唯一标识可以绑定一个复用因子F。此外,网络设备的复用因子F还可以是根据标准预定义的。
其中,复用因子F相同且相邻的网络设备的第一信号中携带第一资源的帧号可以是不同的。如图5所示,小区1、小区2和小区3的复用因子F皆为3,且小区1与小区2相邻,小区2与小区3相邻。其中,小区1的第一信号中帧0携带了第一资源,小区2的第一信号中帧1携带了第一资源,小区3的第一信号中帧2携带了第一资源。应理解,每隔F个相邻的网络设备的第一信号中携带第一资源的帧号可以是相同的。比如,小区1与小区2相邻,小区2与小区3相邻,小区3与小区4相邻,小区4与小区5相邻,小区5与小区6相邻。其中,小区1-小区6的复用因子F均为3。因此,小区1与小区4的第一信号中携带第一资源的帧号可以是相同的,比如可以在帧0携带第一资源。小区2与小区5的第一信号中携带第一资源的帧号可以是相同的,比如可以在帧1携带第一资源。小区3与小区6的第一信号中携带第一资源的帧号可以是相同的,比如可以在帧2携带第一资源。
本申请实施例中第一信号还可以携带第二资源,第二资源的帧号与第一资源相关。应理解,第二资源与第一资源可以是相同的资源。
以下具体介绍第一信号携带第一资源和第二资源的实现方式。
如果第一信号的第N1帧上携带第一资源,则第一信号的第N1+F*N帧上携带第二资源。其中,N=1,2,…。例如,第一信号的第N1帧上携带第二资源,第一信号的第N1+F帧、第N1+2F帧、第N1+3F帧…第N1+F*N帧上都可以携带有第二资源。
其中,第一资源的帧号N1可以是预先配置的。例如,可以将第一资源的帧号N1与网络设备的唯一标识绑定,一个唯一标识可以绑定一个N1,或者多个唯一标识可以绑定一个N1。或者,第一资源的帧号N1可以是根据标准预定义的。又或者,第一资源的帧号N1还可以与前述PCI相关。例如,N1与PCI可以满足如下关系:
N1=PCI mod F,其中mod表示取模操作。如图5所示,图5中的小区1的PCI为6,小区2的PCI为4,小区3的PCI为5。根据上述公式可以计算得到小区1的N1_1=6mod3=0,小区2的N1_2=4 mod 3=1,小区3的N1_3=5 mod 3=2。因此,如图5所示,小区1的第一信号的帧0可以携带第一资源,小区2的第一信号的帧1可以携带第一资源,小区3的第一信号的帧2可以携带第一资源。应理解,上述PCI的取值是示例性的,小区的PCI还可以是其他的值,本申请不做具体限定。
参阅图6,小区1、小区2、小区3和小区4的复用因子F均为4,且小区1与小区2相邻,小区2与小区3相邻,小区3与小区4相邻。其中,小区1的第一信号的帧0携带第一资源,那么小区1的第一信号的第0+4*1帧,即帧4上携带第二资源,第0+4*2帧, 即帧8上携带第二资源,以此类推,小区1的第一信号的帧12(图中未示出)、帧16(图中未示出),帧0+4*N上携带第二资源。小区2的第一信号的帧1携带第一资源,那么小区2的第一信号的第1+4*1帧,帧5上携带第二资源,以此类推,小区2的第一信号的帧9(图中未示出)、帧13(图中未示出)、帧17(图中未示出),帧1+4*N上携带第二资源。小区3的第一信号的帧2携带第一资源,第2+4*1帧,即帧6上携带第二资源,以此类推,小区3的第一信号的帧10(图中未示出)、帧14(图中未示出)携带第二资源。小区4的第一信号的帧3携带第一资源,那么小区4的第一信号的第3+4*1帧,即帧7上携带第二资源,以此类推,小区4的第一信号的帧11、帧15,帧3+4*N上携带第二资源。
参阅图7,小区1、小区2和小区3的复用因子F均为3,且小区1与小区2相邻,小区2与小区3相邻。其中,小区1的第一信号的帧0携带第一资源,那么小区1的第一信号的第0+3*1帧,即帧3携带第二资源,小区1的第一信号的第0+3*2帧,帧6携带第二资源,以此类推,小区1的第一信号的第0+3*N帧携带第二资源。小区2的第一信号的帧1携带第一资源,那么小区2的第一信号的第1+3*1帧,即帧4携带第二资源,小区2的第一信号的第1+3*2帧,即帧7携带第二资源,以此类推,小区2的第一信号的第1+3*N帧携带第二资源。小区3的第一信号的帧2携带第一资源,那么小区3的第一信号的第2+3*1帧,即帧5携带第二资源,小区3的第一信号的第2+3*2帧,即帧8携带第二资源,以此类推,小区3的第一信号的第2+3*N帧携带第二资源。
另外需要说明的是,前述的第一资源和第二资源可以是窄带主同步信号(narrowband primary synchronization signal,NPSS)、窄带次同步信号(narrowband secondary synchronization signal,NSSS)或窄带物理广播信道(narrowband physical broadcast channel,NPBCH)中的任意一个或任意组合。应理解,携带第一资源和第二资源的子帧可以是协议规定的,或者也可以是网络设备指示的。比如,网络设备可以通过第一指示信息指示NPSS、NSSS和NPBCH分别携带于哪一子帧上。
参阅图8A-图8D,分别示出了复用因子F为4的多个小区的第一信号。其中,小区1与小区2相邻,小区2与小区3相邻,小区3与小区4相邻。如图8A所示,小区1的第一信号的帧0携带第一资源。其中,帧0的子帧0携带NPBCH(具体对应NPBCH第一数据块,即NPBCH Block1),帧0的子帧5携带NPSS,帧0的子帧9携带NSSS。因此,小区1的第一信号的第0+4*N帧,即帧4N可以携带第二资源。考虑到NPBCH、NPSS和NSSS的周期性不同,本实施方式中,帧4N的子帧0携带NPBCH,帧4N的子帧5携带NPSS,帧4*2*N的子帧9携带NSSS。可以看出,F=4时,帧长为10ms,对应的NPBCH、NPSS和NSSS的周期分别为2560ms、40ms和80ms。
参阅图8B,小区2的第一信号的帧1携带第一资源。其中,帧1的子帧0携带NPBCH,帧1的子帧5携带NPSS,帧1的子帧9携带NSSS。因此,小区2的第一信号的第1+4*N帧,即帧1+4*N可以携带第二资源。其中,帧1+4*N的子帧0携带NPBCH,帧1+4*N的子帧5携带NPSS,帧1+4*2*N的子帧9携带NSSS。
参阅图8C,小区3的第一信号的帧2携带第一资源。其中,帧2的子帧0携带NPBCH,帧2的子帧5携带NPSS,帧2的子帧9携带NSSS。因此,小区3的第一信号的第2+4*N帧,即帧2+4*N可以携带第二资源。其中,帧2+4*N的子帧0携带NPBCH,帧2+4*N的子帧5携带NPSS,帧2+4*2*N的子帧9携带NSSS。
参阅图8D,小区4的第一信号的帧3携带第一资源。其中,帧3的子帧0携带NPBCH, 帧3的子帧5携带NPSS,帧3的子帧9携带NSSS。因此,小区4的第一信号的第3+4*N帧,即帧3+4*N可以携带第二资源。其中,帧3+4*N的子帧0携带NPBCH,帧3+4*N的子帧5携带NPSS,帧3+4*2*N的子帧9携带NSSS。
参阅图9A-图9C,分别示出了复用因子F为3的多个小区的第一信号。其中,小区1与小区2相邻,小区2与小区3相邻。如图9A所示,小区1的第一信号的帧0携带第一资源。其中,帧0的子帧0携带NPBCH(具体对应NPBCH第一数据块,即NPBCH Block1),帧0的子帧5携带NPSS,帧0的子帧9携带NSSS。因此,小区1的第一信号的第0+3*N帧,即帧3N携带第二资源。考虑到NPBCH、NPSS和NSSS的周期性不同,本实施方式中,帧3N的子帧0携带NPBCH,帧3N的子帧5携带NPSS,帧3*2*N的子帧9携带NSSS。
参阅图9B,小区2的第一信号的帧1携带第一资源。其中,帧1的子帧0携带NPBCH,帧1的子帧5携带NPSS,帧1的子帧9携带NSSS。因此,小区2的第一信号的第1+3*N帧,即帧1+3*N携带第二资源。其中,帧1+3*N的子帧0携带NPBCH,帧1+3*N的子帧5携带NPSS,帧1+3*2*N的子帧9携带NSSS。
参阅图9C,小区3的第一信号的帧2携带第一资源。其中,帧2的子帧0携带NPBCH,帧2的子帧5携带NPSS,帧2的子帧9携带NSSS。因此,小区3的第一信号的第2+3*N帧,即帧2+3*N携带第二资源。其中,帧2+3*N的子帧0携带NPBCH,帧2+3*N的子帧5携带NPSS,帧2+3*2*N的子帧9携带NSSS。
如图8A-8D和9A-9C所示,NPBCH、NPSS和NSSS均在第一信号的同一帧上。在本申请实施例中,NPBCH、NPSS和NSSS也可以在第一信号的不同帧上。如图10所示,示出了复用因子F为4的小区的第一信号。其中,小区1的第一信号的帧0携带NPBCH。因此,小区1的第一信号的第0+4*1帧,帧4携带NPBCH。以此类推,小区1的第一信号的第0+4N帧,即帧4N携带NPBCH。
如图10所示,小区1的第一信号的帧0和帧1携带NPSS。因此,小区1的第一信号的第0+4*2帧,即帧8携带NPSS,以及第1+4*2帧,即帧9也携带NPSS。其中,由于第一信号的F个帧中的两个帧携带了第一资源,因此,小区1的第N1+F*N帧中的N应该是(N+1),即小区1的第一信号的第N1+F*(N+1)帧携带第二资源。以此类推,如果第一信号的F个帧中的三个帧携带了第一资源,那么小区1的第一信号的第N1+F*(N+2)帧携带第二资源,如果第一信号的F个帧中的M个帧携带了第一资源,那么小区1的第一信号的第N1+F*(N+M-1)帧可以携带第二资源。其中,M为正整数。如图10所示,小区1的第一信号的帧1携带NSSS。因此,考虑到NSSS的周期性,小区1的第一信号的第1+4*2帧,即帧9携带NSSS。
另外需要说明的是,在非地面通信***,例如卫星通信***中,卫星的波束可以对应于前述的网络设备的小区。参阅图11,图11示出了8波束卫星***示意图。其中,波束1-波束8的复用因子F为4,波束1和波束2的第一信号中携带第一资源的帧可以是相同的,波束3和波束4的第一信号中携带第一资源的帧可以是相同的,波束5和波束6的第一信号中携带第一资源的帧可以是相同的,波束7和波束8的第一信号中携带第一资源的帧可以是相同的。
在本申请实施例中,可以通过时域稀释的方式在第一信号中携带第一资源,例如第一信号的F个帧上的指定时域符号上携带第一资源。
举例来说,NPSS在第S1=(3、4、5、6、9、10、11)时域符号上传输的内容相同, 在第S2=(7、8、12)时域符号上传输的内容相同。因此,可以将第S1时域符号和第S2时域符号进行组合,在F个帧的指定时域符号上携带第一资源。例如,在复用因子F为3时,小区1可以在第一信号的帧A的第3、4、7时域符号上携带第一资源,小区2可以在第一信号的帧B的第5、6、8时域符号上携带第一资源,小区3可以在第一信号的帧C的第9、10、12时域符号上携带第一资源。那么,同样的小区1的可以在帧A+3*N的第3、4、7时域符号上携带第二资源。小区2可以在第一信号的帧B+3*N的第5、6、8时域符号上携带第二资源,小区3可以在第一信号的帧C+3*N的第9、10、12时域符号上携带第二资源。
可选的,本申请实施例还可以将上述时域稀释方式和现有技术的第一资源的传输方法相结合。如图2所示,每一个帧的一个子帧上可以有多个时域符号。网络设备可以在第一信号的第一帧的指定时域符号上,即帧0的指定时域符号上可以携带第一资源。在复用因子F为3时,小区1可以在第一信号的第一帧的第3、4、7时域符号上携带第一资源,小区2可以在第一信号的第一个帧的第5、6、8时域符号上携带第一资源,小区3可以在第一信号的第一个帧的第9、10、12时域上携带第一资源。因此,小区1可以在除第一帧以外的每一个帧的第3、4、7时域符号上携带第二资源,小区2可以在除第一帧以外的每一个帧的第5、6、8时域符号上携带第二资源,小区3可以在除第一帧以外的每一个帧的第9、10、12时域符号上携带第二资源。应理解,在第一信号的除第一帧以外的其他上携带第二资源时,应考虑第二资源的周期性。
在另一个可能实现的方式中,还可以通过频域稀释的方式在第一信号中携带第一资源,例如第一信号的F个帧上的指定子载波上携带第一资源。
举例来说,NPSS在频域上占用11个子载波,因此可以通过频域稀释的方式减少NPSS的传输带宽。例如,参阅图6,每一个帧的一个子帧上有多个子载波。在复用因子F为4时,小区1可以在帧0的子载波(1、2)上携带第一资源,小区2可以在帧1的子载波(4、5)上携带第一资源,小区3可以在帧2的子载波(7、8)上携带第一资源,小区4可以在帧3的子载波(10、11)上携带第一资源。
因此,同样的小区1可以在帧4*N的子载波(1、2)上携带第二资源,小区2可以在帧1+4*N的子载波(4、5)上携带第二资源,小区3可以在帧2+4*N的子载波(7、8)上携带第二资源,小区4可以在帧3+4*N的子载波(10、11)上携带第二资源。
又例如,NSSS占用频域上的12个子载波,因此也可以通过频域稀释的方式减少NSSS的传输带宽。例如,参阅图5,每一个帧的一个子帧上有多个子载波。在复用因子F为3时,小区1可以在帧0的子载波(1、4、7、10)上携带第一资源,小区2可以在帧1的子载波(2、5、8、11)上携带第一资源,小区3可以在帧2的子载波(3、6、9、10)上携带第一资源。因此,同样的小区1可以在帧3*N的子载波(1、4、7、10)上携带第二资源,小区2可以在帧1+3*N的子载波(2、5、8、11)上携带第二资源,小区3可以在帧2+3*N的子载波(3、6、9、10)上携带第二资源。
在一个示例中,网络设备可以将上述时域稀释和频域稀释的方法相结合传输第一资源和第二资源。例如,在小区1的复用因子F为3时,小区1的第一信号的帧A的第3、4、7时域符号和子载波(1,2)上携带第一NPSS,在第一信号的帧A+3*N的第3、4、7时域符号和子载波(1,2)上携带第二NPSS。
可选的,本申请实施例还可以将上述频域稀释与现有技术的第一资源的传输方法相结 合。如图2所示,每一个帧的一个子帧上有多个子载波和多个时域符号。网络设备可以在第一信号的第一个帧上的指定子载波携带第一资源。举例来说,在复用因子F为3时,小区1可以在第一信号的第一帧的子载波(1、4、7、10)上携带第一资源,小区2可以在第一帧的子载波(2、5、8、11)上携带第一资源,小区3可以在第一帧的子载波(3、6、9、10)上携带第一资源。因此,小区1可以在第一信号的除第一帧以外的每一个帧的子载波(1、4、7、10)上携带第二资源,小区2可以在第一信号的除第一帧以外的每一个帧的子载波(2、5、8、11)上携带第二资源,小区3可以在第一信号的除第一帧以外的每一个帧的子载波(3、6、9、10)上携带第二资源。
步骤302:所述终端设备检测所述第一信号的F个帧,得到第一资源。
这里的F可以是网络设备的复用因子。其中,终端设备可以对第一信号的帧0至帧f的F个帧进行检测,得到第一资源。如图4所示,终端设备对第一信号的帧0至帧3的四个帧进行检测,得到了第一资源,其中第一资源的帧号为帧1。
另外需要说明的是,F是网络设备的复用因子。不同的网络设备可以有相同的复用因子F或者不同的网络设备可以有不同的复用因子F。例如,可以将复用因子F与网络设备的物理小区标识(physical cell identifier,PCI)绑定。一个PCI可以绑定一个复用因子F或者多个PCI可以绑定一个复用因子F。因此,终端设备可以获取网络设备的PCI,并确定网络设备的复用因子F,从而检测第一信号的F个帧,得到第一资源。这里的PCI可以是网络设备发送给终端设备的。其中,PCI可以与第一信号使用相同的信令发送,或者PCI也可以与第一信号使用不同的信令发送。
其中,上述第一资源可以是NPSS、NSSS和NPBCH中的任意一个或者任意组合。在一个示例中,终端设备可以检测第一信号,得到NPSS。其中,该NPSS中可以包括网络设备的物理小区标识PCI,因此终端设备可以根据该PCI确定网络设备的复用因子F,终端设备可以检测第一信号的F个帧,得到NSSS和/或NPBCH。如图10所示,终端设备对第一信号进行检测,在帧0和帧1得到了NPSS。终端设备可以根据该NPSS确定网络设备的复用因子F为4,因此终端设备可以检测第一信号的4个帧,在帧0得到NPBCH,在帧1得到NSSS。
在另一示例中,NPSS、NSSS和NPBCH可以在第一信号的同一帧,因此终端设备可以对第一信号进行检测,得到NPSS、NSSS和NPBCH。应理解,携带NPSS、NSSS和NPBCH的子帧可以是协议规定的,如图8A所示,终端设备可以对第一信号的F个帧进行检测,在帧0的子帧0得到NPBCH,在帧0的子帧5得到NPSS,在帧0的子帧9得到NSSS。
步骤303:所述终端设备根据所述第一资源的帧号,进行检测得到第二资源。
这里的第二资源可以与第一资源相同。以下具体介绍根据第一资源的帧号,进行检测得到第二资源的实现方式。
如果终端设备对第一信号进行检测得到了第一资源,该第一资源的帧号是N1,那么终端设备可以检测第一信号的第N1+F*N帧得到第二资源。其中,N=1,2,…。例如,第一资源的帧号是N1,终端设备可以检测第一信号的第N1+F帧、第N1+2F帧、第N1+3F帧…第N1+F*N帧,得到第二资源。
参阅图6,终端设备接收小区1发送的第一信号,终端设备可以检测第一信号的4个帧,得到第一资源。该第一资源的帧号为帧0。因此,终端设备可以检测第一信号的第0+4*1 帧,即帧4、第0+4*2帧,即帧8进行检测得到第二资源。以此类推,终端设备还可以检测第一信号的帧12(图中未示出)、帧16(图中未示出)、帧0+4*N,得到第二资源。如果终端设备接收小区2发送的第一信号,终端设备可以检测第一信号的4个帧,得到第一资源。该第一资源的帧号为帧1。因此,终端设备可以检测第一信号的第1+4*1帧,即帧5、第1+4*2帧,即帧9(图中未示出),得到第二资源。以此类推,终端设备可以检测第一信号的帧13(图中未示出)、帧17(图中未示出),帧1+4*N,得到的第二资源。如果终端设备接收小区3发送的第一信号,终端设备可以检测第一信号的4个帧,得到第一资源。该第一资源的帧号为帧2。因此,终端设备可以检测第一信号的第2+4*1帧,即帧6、第2+4*2帧,即帧10(图中未示出),得到第二资源。以此类推,终端设备可以检测第一信号的帧14(图中未示出)、帧18(图中未示出)、帧2+4*N,得到第二资源。如果终端设备接收下小区4发送的第一信号,终端设备可以检测第一信号的4个帧,得到第一资源。该第一资源的帧号为帧3。因此,终端设备可以检测第一信号的第3+4*1帧,即帧7得到第二资源。以此类推,终端设备还可以检测第一信号的帧11(图中未示出)、帧15(图中未示出)、帧3+4*N,得到第二资源。
参阅图7,如果终端设备接收小区1发送的第一信号,终端设备可以检测第一信号的3个帧,得到第一资源。该第一资源的帧号为帧0。因此,终端设备可以检测第一信号的第0+3*1帧,即帧3、第0+3*2帧,即帧6,得到第二资源。以此类推,终端设备还可以检测第一信号的帧9、帧12、帧3N得到第二资源。如果终端设备接收小区2发送的第一信号,终端设备可以检测第一信号的3个帧,得到第一资源。该第一资源的帧号为帧1。因此,终端设备可以检测第一信号的第1+3*1帧,即帧4、第1+3*2帧,即帧7,得到第二资源。以此类推,终端设备还可以检测第一信号的帧10、帧13,帧1+3*N得到第二资源。如果终端设备接收小区3发送的第一信号,终端设备可以检测第一信号的3个帧,得到第一资源。该第一资源的帧号为帧2。因此,终端设备可以检测第一信号的第2+3*1帧,即帧5,第2+3*2帧,即帧8,得到第二资源。以此类推,终端设备还可以检测第一信号的帧11、帧15、帧2+3*N,得到第二资源。
其中,前述的第一资源和第二资源可以是NPSS、NPBCH或NSSS中的任意一个或者任意组合。应理解,携带第一资源和第二资源的子帧可以是协议规定的,或者也可以是网络设备指示的。比如,网络设备可以通过第一指示信息指示NPSS、NSSS和NPBCH分别携带于哪一子帧上。
参阅图8A,终端设备接收小区1发送的第一信号。终端设备检测小区1的4个帧,得到第一资源。其中,帧0的子帧0携带NPBCH,帧0的子帧5携带NPSS,帧0的子帧9携带NSSS。因此,终端设备可以检测第一信号的第0+4*1帧,即帧4得到第二资源。考虑到NPBCH、NPSS和NSSS的周期性不同,本实施方式中,帧4N的子帧0携带NPBCH,帧4N的子帧5携带NPSS,帧4*2*N的子帧9携带NSSS。可以看出,F=4时,帧长为10ms,对应的NPBCH、NPSS和NSSS的周期分别为2560ms、40ms和80ms。
参阅图9A,终端设备可以接收小区1发送的第一信号。终端设备可以检测小区1的3个帧,得到第一资源。其中,帧0的子帧0携带NPBCH,帧0的子帧5携带NPSS,帧0的子帧9携带NSSS。因此,终端设备可以检测第一信号的第0+3*1帧,即帧3得到第二资源。其中,帧3的子帧0携带NPBCH,帧3的子帧5携带NPSS,帧3的子帧9携带NSSS。以此类推,终端设备还可以检测第一信号的第0+3*N帧得到第二资源。考虑到 NPBCH、NPSS和NSSS的周期性不同,本实施方式中,帧3N的子帧0携带NPBCH,帧3N的子帧5携带NPSS,帧3*2*N的子帧9携带NSSS。
如图8A-8D和9A-9C所示,NPBCH、NPSS和NSSS均在第一信号的同一帧上。在本申请实施例中,NPBCH、NPSS和NSSS也可以在第一信号的不同帧上。如图10所示,终端设备接收小区1发送的第一信号。终端设备检测该第一信号的4个帧,得到了NPBCH。该NPBCH的帧号为帧0,因此终端设备可以检测第一信号的第0+4*1帧,即帧4得到NPBCH。以此类推,终端设备可以检测第一信号的帧8、帧12、帧4*N得到NPBCH。
如图10所示,终端设备检测第一信号的4个帧,得到NPSS。其中,该NPSS的帧号为帧0和帧1。其中,由于第一信号的4个帧中的两个帧携带了NPSS,因此,终端设备可以检测第一信号的第0+4*2帧,即帧8得到NPSS,以及检测第一信号的第1+4*2帧,即帧9得到NPSS。以此类推,如果第一信号的F个帧中M个帧携带了NPSS,终端设备可以检测第一信号的第N1+F*(N+M-1)帧得到NPSS。其中,M为正整数。如图10所示,终端设备可以检测第一信号的4个帧,得到NSSS。其中该NSSS的帧号为帧1。因此,考虑到NSSS的周期性,终端设备可以检测第一信号的第1+4*2帧,即帧9、第1+F*2*N帧得到NSSS。
在本申请实施例中,可以通过时域稀释的方式检测第一信号得到第一资源。例如,终端设备可以检测F个帧上的指定时域符号得到第一资源。
举例来说,NPSS在第S1=(3、4、5、6、9、10、11)时域符号上传输的内容相同,在第S2=(7、8、12)时域符号上传输的内容相同。因此,网络设备可以将第S1时域符号和第S2时域符号进行组合,在F个帧的指定时域符号上携带第一资源。终端设备在检测第一信号时,也可以在F个帧上的指定时域符号上得到第一资源。例如,在复用因子F为3时,小区1可以在第一信号的帧A的第3、4、7时域符号上携带第一资源。终端设备可以检测F个帧的第3、4、7时域符号得到第一资源。终端设备还可以检测第一信号的第A+3*N帧的第3、4、7时域符号得到第二资源。
可选的,如图2所示,第一信号的每一个帧的一个子帧上可以有多个时域符号。终端设备还可以检测第一信号的第一帧的指定时域符号得到第一资源,检测第一信号的除第一帧以外的每一个帧的指定时域符号得到第二资源。举例来说,在复用因子F为3时,终端设备可以检测第一信号的第一帧的第3、4、7时域符号得到第一资源,检测第一信号的除第一帧以外的每一个帧的第3、4、7时域符号得到第二资源。
在另一个可能的实现方式中,终端设备还可以通过频域稀释的方式检测第一信号得到第一资源。例如,终端设备可以检测F个帧上的指定子载波得到第一资源。
举例来说,NPSS在频域上占用11个子载波,因此可以通过频域稀释的方式减少NPSS的传输带宽。例如,在复用因子F为4时,终端设备可以检测帧A的子载波(1、2)得到第一资源。因此,终端设备可以检测帧A+4*N的子载波(1、2)得到第二资源。或者,复用因子F为4时,终端设备可以检测帧B的子载波(4、5)得到第一资源。因此,终端设备可以检测帧B+4*N的子载波(4、5)得到第二资源。又例如,NSSS在频域上占用12个子载波,也可以通过频域稀释的方式减少NSSS的传输带宽。例如,复用因子F为3时,终端设备可以检测帧A的子载波(1、4、7、10)得到第一资源。因此,终端设备可以检测帧A+3*N的子载波(1、4、7、10)得到第二资源。
在一个示例中,终端设备还可以检测第一信号的F个帧的指定时域符号和指定子载波 得到第一资源。举例来说,在复用因子F为3时,终端设备可以在帧A的第3、4、7时域符号上和在子载波(1、2)上检测得到第一NPSS。终端设备还可以在帧A*3*N的第3、4、7时域符号和在子载波(1、2)上检测得到第二NPSS。
可选的,如图2所示,第一信号的每一个帧的一个子帧上可以有多个子载波。终端设备还可以检测第一信号的第一帧的指定子载波得到第一资源,检测第一信号的除第一帧以外的每一个帧的指定子载波得到第二资源。举例来说,在复用因子F为4时,终端设备可以检测第一信号的第一帧的子载波(1、2)得到第一资源,终端设备还可以检测第一信号的除第一帧以外的每个帧的子载波(1、2)得到第二资源。
在一示例中,终端设备还可以将时域稀释和频域稀释相结合,传输第一资源和第二资源。如图2所示,终端设备还可以检测第一信号的第一帧的指定时域符号和指定子载波得到第一资源,检测第一信号的除第一帧以外的每一个帧的指定时域符号和指定子载波得到第二资源。举例来说,在复用因子F为3时,终端设备可以检测第一信号的第一帧的第3、4、7时域符号和子载波(1、2)得到第一NPSS,终端设备还可以检测第一信号的除第一帧以外的每一个帧的第3、4、7时域符号和子载波(1、2)得到第二NPSS。
前文介绍了本申请实施例的通信的方法,下文中将介绍本申请实施例中的通信的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于与上述通信方法的同一技术构思,如图12所示,提供了一种通信装置1200。通信装置1200能够上述方法中由终端设备执行的各个步骤,为了避免重复,此处不再详述。通信装置1200包括:通信单元1210、处理单元1220,可选的,还包括,存储单元1230;处理单元1220可以分别与存储单元1230和通信单元1210相连,所述存储单元1230也可以与通信单元1210相连:
所述存储单元1230,用于存储计算机程序;
示例的,所述通信单元1210,用于接收第一信号。
所述处理单元1220,用于检测所述第一信号的F个帧,得到第一资源;以及根据所述第一资源的帧号,进行检测得到第二资源。其中,F为复用因子。这里的复用因子F、第一资源、第二资源以及第一资源的帧号和第二资源的帧号的描述可以参见上述如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种可能的实现中,所述处理单元1220在检测第一信号的F个帧,得到第一资源时,具体用于:所述处理单元1220检测第一信号的F个帧,得到NPSS。所述处理单元1220根据所述NPSS,得到NSSS和NPBCH。其中,所述NPSS、所述NSSS和所述NPBCH的描述可以参见上述如图3所示的方法实施例中的相关描述。
在一种可能的实现中,所述处理单元1220根据第一资源的帧号,进行检测得到第二资源时,具体用于:所述处理单元1220在第N1+F*N帧上得到第二资源,其中所述N1为第一资源的帧号,N为正整数。其中,所述F可以是3或者所述F也可以是4,相关描述可以参见上述如图3所示的方法实施例中的描述。
在一种可能的实现中,所述处理单元1220在检测所述第一信号的F个帧,得到第一资源时具体用于:所述处理单元1220检测所述F个帧的时域符号,得到所述第一资源。所述处理单元1220在根据第一资源的帧号,进行检测得到第二资源时,具体用于:所述 处理单元1220根据所述第一资源的帧号和所述第一资源的时域符号,进行检测得到第二资源。
在一种可能的实现中,所述处理单元1220在检测所述第一信号的F个帧,得到第一资源时具体用于:所述处理单元1220检测所述F个帧的子载波,得到所述第一资源。所述处理单元1220在根据第一资源的帧号,进行检测得到第二资源时,具体用于:所述处理单元1220根据所述第一资源的帧号和所述第一资源的子载波,进行检测得到第二资源。
上述通信装置还可以为芯片,其中通信单元可以为芯片的输入/输出电路或者接口,处理单元可以为逻辑电路,逻辑电路可以根据上述方法方面所描述的步骤对待处理的数据进行处理,获取处理后的数据。待处理的数据可以是输入电路/接口接收的数据,比如第一信号。处理后的数据可以是根据待处理的数据得到的数据,比如第一资源和第二资源。输出电路/接口用于输出处理后的数据。
基于与上述通信方法的同一技术构思,如图13所示,提供了一种通信装置1300。通信装置1300能够上述方法中由网络设备执行的各个步骤,为了避免重复,此处不再详述。通信装置1300包括:通信单元1310、处理单元1320,可选的,还包括,存储单元1330;处理单元1320可以分别与存储单元1330和通信单元1310相连,所述存储单元1330也可以与通信单元1310相连:
所述存储单元1330,用于存储计算机程序;
示例的,所述处理单元1320,用于根据所述通信单元1310发送第一信号。其中,所述第一信号的F个帧上携带第一资源,所述F为复用因子。所述第一信号还携带第二资源,所述第一资源的帧号与所述第二资源的帧号相关。其中,所述复用因子F、第一资源、第二资源以及第一资源的帧号和第二资源的帧号的描述可以参见上述如图3所示的方法实施例的相关描述。
上述通信装置还可以为芯片,其中通信单元可以为芯片的输入/输出电路或者接口,处理单元可以为逻辑电路,逻辑电路可以根据上述方法方面所描述的步骤对待处理的数据进行处理,获取处理后的数据。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当通信装置为终端设备时,图14示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图14中,终端设备以手机作为例子。如图14所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带 信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的通信单元,将具有处理功能的处理器视为终端设备的处理单元。如图14所示,终端设备包括通信单元1410和处理单元1420。通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1410中用于实现接收功能的器件视为接收单元,将通信单元1410中用于实现发送功能的器件视为发送单元,即通信单元1410包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,通信单元1410用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1420用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,通信单元1410用于执行图3中的步骤301中终端设备侧的接收操作,和/或通信单元1410还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1420,用于执行图3的步骤302和/或步骤303,和/或处理单元1420还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该终端设备为芯片类的装置或者电路时,该装置可以包括通信单元和处理单元。其中,所述通信单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
如图15所示为本申请实施例提供的通信装置1500,用于实现上述方法中终端设备、网络设备的功能。该通信装置可以是终端设备、网络设备,也可以是终端设备、网络设备的装置,或者是能够和终端设备、网络设备匹配使用的装置。
通信装置1500包括至少一个处理器1520,用于实现本申请实施例提供的方法中终端设备、网络设备的功能。通信装置1500还可以包括通信接口1510。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1510用于通信装置1500中的装置可以和其它设备进行通信。该通信装置1500是终端设备时,所述处理器1520可以完成如图12所示的处理单元1220的功能,所述通信接口1510可以完成如图12所示的通信单元1210的功能。当该通信装置1500是网络设备时,所述处理器1520可以完成如图13所示的处理单元1320的功能,所述通信接口1510可以完成如图13所示的通信单元1310的功能。
通信装置1500还可以包括至少一个存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1520可能和存储器1530协同操作。处理器1520可能执行存储器1530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1510、处理器1520以及存储器1530之间的具体连接介质。本申请实施例在图15中以存储器1530、处理器1520以及通信接口1510之间 通过总线1540连接,总线在图15中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧或者网络设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧或者网络设备侧的方法。
作为本实施例的另一种形式,提供一种通信***,该***可以包括上述至少一个终端设备和上述至少一个网络设备。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    通信装置接收第一信号;
    所述通信装置检测所述第一信号的F个帧,得到第一资源;其中所述F为复用因子,F为非负整数;
    所述通信装置根据所述第一资源的帧号,进行检测得到第二资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源包括以下中的至少一个:
    窄带主同步信号NPSS、窄带次同步信号NSSS、窄带物理广播信道NPBCH。
  3. 根据权利要求2所述的方法,其特征在于,所述通信装置检测所述第一信号的F个帧,得到第一资源,包括:
    所述通信装置检测所述第一信号的F个帧,得到所述NPSS;
    所述通信装置根据所述NPSS,得到所述NSSS和所述NPBCH。
  4. 根据权利要求2或3所述的方法,其特征在于,所述NPSS、所述NSSS和所述NPBCH在所述第一信号的同一帧。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述通信装置根据所述第一资源的帧号,进行检测得到第二资源,包括:
    所述通信装置在第N1+F*N帧上得到第二资源,其中所述N1为第一资源的帧号,N为正整数。
  6. 根据权利要去5所述的方法,其特征在于,所述F为3或者所述F为4。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述复用因子与所述网络设备的物理小区标识相关。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述通信装置检测所述第一信号的F个帧,得到第一资源,包括:
    所述通信装置检测所述F个帧的时域符号,得到所述第一资源;
    所述通信装置根据所述第一资源的帧号,进行检测得到第二资源,包括:
    所述通信装置根据所述第一资源的帧号和所述第一资源的时域符号,进行检测得到所述第二资源。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述通信装置检测所述第一信号的F个帧,得到第一资源,包括:
    所述通信装置检测所述F个帧的子载波,得到所述第一资源;
    所述通信装置根据所述第一资源的帧号,进行检测得到第二资源,包括:
    所述通信装置根据所述第一资源的帧号和所述第一资源的子载波,进行检测得到所述第二资源。
  10. 一种通信方法,其特征在于,包括:
    网络设备发送第一信号;
    所述第一信号的F个帧上携带第一资源;所述F为复用因子;
    所述第一信号还携带第二资源,所述第一资源的帧号与所述第二资源的帧号相关。
  11. 根据权利要求10所述的方法,其特征在于,所述第一资源包括以下中的至少一个:
    窄带主同步信号NPSS、窄带次同步信号NSSS、窄带物理广播信道NPBCH。
  12. 根据权利要求11所述的方法,其特征在于,所述NPSS、所述NSSS和所述NPBCH携带在所述第一信号的同一帧。
  13. 根据权利要求10-12任一所述的方法,其特征在于,所述第一资源的帧号与所述第二资源的帧号相关,包括:
    在第N1+F*N帧上携带第二资源,其中N1为所述第一资源的帧号,F为复用因子,N为正整数。
  14. 根据权利要求13所述的方法,其特征在于,所述N1与所述网络设备的物理小区标识相关。
  15. 根据权利要求14所述的方法,其特征在于,所述N1与所述网络设备的物理小区标识相关,具体包括:
    所述N1与所述物理小区标识PCI满足以下关系:
    N1=PCI mod F,其中mod表示取模操作。
  16. 根据权利要求10-15任一所述的方法,其特征在于,所述F与所述网络设备的物理小区标识相关。
  17. 根据权利要求10-16任一所述的方法,其特征在于,所述第一信号的F个帧上携带第一资源,包括:
    所述第一信号的F个帧上的指定时域符号上携带所述第一资源。
  18. 根据权利要求10-17任一所述的方法,其特征在于,所述第一信号的F个帧上携带第一资源,包括:
    所述第一信号的F个帧上的指定子载波上携带所述第一资源。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于接收第一信号;
    处理单元,用于检测所述第一信号的F个帧,得到第一资源;其中所述F为复用因子;以及,根据所述第一资源的帧号,进行检测得到第二资源。
  20. 根据权利要求19所述的装置,其特征在于,所述第一资源包括以下中的至少一个:
    窄带主同步信号NPSS、窄带次同步信号NSSS、窄带物理广播信道NPBCH。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元在检测所述第一信号的F个帧,得到第一资源时,具体用于:
    检测所述第一信号的F个帧,得到所述NPSS;
    根据所述NPSS,得到所述NSSS和所述NPBCH。
  22. 根据权利要求20或21所述的装置,其特征在于,所述NPSS、所述NSSS和所述NPBCH在所述第一信号的同一帧。
  23. 根据权利要求19-22任一所述的装置,其特征在于,所述处理单元在根据所述第一资源的帧号,进行检测得到第二资源时,具体用于:
    在第N1+F*N帧上得到第二资源,其中所述N1为第一资源的帧号,N为正整数。
  24. 根据权利要求23所述的装置,其特征在于,所述F为3或者所述F为4。
  25. 根据权利要求19-24任一所述的装置,其特征在于,所述复用因子与所述网络设备的物理小区标识相关。
  26. 根据权利要求19-25任一所述的装置,其特征在于,所述处理单元在检测所述第一信号的F个帧,得到第一资源时,具体用于:
    检测所述F个帧的时域符号,得到所述第一资源;
    所述处理单元在根据所述第一资源的帧号,进行检测得到第二资源时,具体用于:
    根据所述第一资源的帧号和所述第一资源的时域符号,进行检测得到所述第二资源。
  27. 根据权利要求19-26任一所述的装置,其特征在于,所述处理单元在检测所述第一信号的F个帧,得到第一资源时,具体用于:
    检测所述F个帧的子载波,得到所述第一资源;
    所述处理单元在根据所述第一资源的帧号,进行检测得到第二资源时,具体用于:
    根据所述第一资源的帧号和所述第一资源的子载波,进行检测得到所述第二资源。
  28. 一种通信装置,其特征在于,包括:
    处理单元,用于通过通信单元发送第一信号;所述第一信号的F个帧上携带第一资源;所述F为复用因子,所述第一信号还携带第二资源,所述第一资源的帧号与所述第二资源的帧号相关。
  29. 根据权利要求28所述的装置,其特征在于,所述第一资源包括以下中的至少一个:
    窄带主同步信号NPSS、窄带次同步信号NSSS、窄带物理广播信道NPBCH。
  30. 根据权利要求29所述的装置,其特征在于,所述NPSS、所述NSSS和所述NPBCH携带在所述第一信号的同一帧。
  31. 根据权利要求28-30任一所述的装置,其特征在于,所述第一资源的帧号与所述第二资源的帧号相关,包括:
    在第N1+F*N帧上携带第二资源,其中N1为所述第一资源的帧号,F为复用因子,N为正整数。
  32. 根据权利要求31所述的装置,其特征在于,所述N1与所述网络设备的物理小区标识相关。
  33. 根据权利要求32所述的装置,其特征在于,所述N1与所述网络设备的物理小区标识相关,包括:
    所述N1与所述物理小区标识PCI满足以下关系:
    N1=PCI mod F,其中mod表示取模操作。
  34. 根据权利要求28-33任一所述的装置,其特征在于,所述F与所述网络设备的物理小区标识相关。
  35. 根据权利要求28-34任一所述的装置,其特征在于,所述第一信号的F个帧上携带第一资源,包括:
    所述第一信号的F个帧上的指定时域符号上携带所述第一资源。
  36. 根据权利要求28-35任一所述的装置,其特征在于,所述第一信号的F个帧上携带第一资源,包括:
    所述第一信号的F个帧上的指定子载波上携带所述第一资源。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述装置:
    执行如权利要求1-9中任一项所述的方法;或者,
    执行如权利要求10-18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,存储有计算机可执行指令,当所述计算机可执行指令在计算机上运行时,使得:
    权利要求1-9中任一项所述的方法被执行;或者,
    权利要求10-18中任一项所述的方法被执行。
  39. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得:
    权利要求1-9中任一项所述的方法被执行;或者,
    权利要求10-18中任一项所述的方法被执行。
  40. 一种通信装置,其特征在于,用于执行权利要求1-9任一项所述的方法。
  41. 一种通信装置,其特征在于,用于执行权利要求10-18任一项所述的方法。
  42. 一种通信***,其特征在于,包括权利要求19-27任一项所述的通信装置以及权利要求28-36任一项所述的通信装置;或者包括权利要求37所述的通信装置;或者包括权利要求40所述的通信装置和权利要求41所述的通信装置。
PCT/CN2021/097052 2020-06-11 2021-05-29 一种通信方法及装置 WO2021249215A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21821948.3A EP4156809A4 (en) 2020-06-11 2021-05-29 COMMUNICATION METHOD AND DEVICE
US18/064,109 US20230107174A1 (en) 2020-06-11 2022-12-09 Communication Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010531209.6 2020-06-11
CN202010531209.6A CN113810922B (zh) 2020-06-11 2020-06-11 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,109 Continuation US20230107174A1 (en) 2020-06-11 2022-12-09 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021249215A1 true WO2021249215A1 (zh) 2021-12-16

Family

ID=78845193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097052 WO2021249215A1 (zh) 2020-06-11 2021-05-29 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230107174A1 (zh)
EP (1) EP4156809A4 (zh)
CN (1) CN113810922B (zh)
WO (1) WO2021249215A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117917127A (zh) * 2023-11-21 2024-04-19 上海移远通信技术股份有限公司 用于无线通信的方法、终端设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528671A (zh) * 2017-08-23 2017-12-29 重庆邮电大学 一种用于窄带物联网NB‑IoT的***帧号检测方法
US20190313481A1 (en) * 2018-06-25 2019-10-10 Huaning Niu Unlicensed band iot systems
CN110710243A (zh) * 2017-08-10 2020-01-17 华为技术有限公司 一种信号发送、接收方法及装置
CN110731121A (zh) * 2017-03-23 2020-01-24 英特尔Ip公司 窄带物联网(nb-iot)增强

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860995B1 (en) * 2013-10-11 2018-01-10 HTC Corporation Method of extending transmission coverage and base station using the same and user equipment using the same
CN104639492B (zh) * 2015-02-03 2018-02-27 重庆邮电大学 一种td‑lte上下行子帧配置的快速检测***及方法
US10194410B2 (en) * 2017-02-16 2019-01-29 Qualcomm Incorporated Synchronization signal blocks
CN109391453B (zh) * 2017-08-11 2022-07-12 夏普株式会社 用户设备、基站和相关方法
WO2019138561A1 (ja) * 2018-01-12 2019-07-18 株式会社Nttドコモ 無線基地局およびユーザ端末
US10743371B2 (en) * 2018-01-29 2020-08-11 Apple Inc. Syncrhonization signals for multefire narrowband internet-of-things (MF NB-IoT) operation in unlicensed spectrum
WO2019203526A1 (ko) * 2018-04-17 2019-10-24 엘지전자 주식회사 참조 신호를 송수신하는 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110731121A (zh) * 2017-03-23 2020-01-24 英特尔Ip公司 窄带物联网(nb-iot)增强
CN110710243A (zh) * 2017-08-10 2020-01-17 华为技术有限公司 一种信号发送、接收方法及装置
CN107528671A (zh) * 2017-08-23 2017-12-29 重庆邮电大学 一种用于窄带物联网NB‑IoT的***帧号检测方法
US20190313481A1 (en) * 2018-06-25 2019-10-10 Huaning Niu Unlicensed band iot systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156809A4 *

Also Published As

Publication number Publication date
US20230107174A1 (en) 2023-04-06
CN113810922A (zh) 2021-12-17
CN113810922B (zh) 2023-07-11
EP4156809A4 (en) 2024-01-24
EP4156809A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP2020507282A (ja) 5g/lteデュアルコネクティビティ
EP3413655B1 (en) Wireless communication device, communication method, computer program, and wireless communication system
CN111512685B (zh) 信道状态信息测量方法、装置及计算机存储介质
CN110495203B (zh) 共存干扰上报方法及装置、移动终端及存储介质
CN109076321B (zh) 车联网设备之间的***信息传输方法、装置及***
CN113950068A (zh) 定位信号发送方法及装置
EP3337256A1 (en) Method and device for processing proximity services in multiple carriers
WO2021249215A1 (zh) 一种通信方法及装置
WO2021036569A1 (zh) 一种通信方法及装置
CN114503696B (zh) 一种通信方法及装置
US20220394503A1 (en) Wireless communication method and device
CN113518322A (zh) 无线通信方法和通信装置
WO2023010406A1 (en) Method for processing delay for pdcch repetitions
EP4175343A1 (en) Electronic device, wireless communication method and non-transitory computer-readable storage medium
CN110933746A (zh) 一种能力信息发送、接收方法及设备
US20240064787A1 (en) Method for information processing, communication device, and non-transitory computer storage medium
WO2021159511A1 (zh) 一种资源指示和确定方法及相关装置
CN115811715A (zh) 一种通信方法和通信装置
CN114071667A (zh) 通信的方法、通信装置及***
CN114586386A (zh) 通信方法和装置
CN113383509A (zh) 通信方法、装置及***
WO2022068416A1 (zh) 一种反馈信息的传输方法和通信设备
WO2022184121A1 (zh) 通信方法和通信装置
WO2024061031A1 (zh) 一种通信的方法和装置
CN112584343B (zh) 通信方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821948

Country of ref document: EP

Effective date: 20221220