WO2021246523A1 - Conductive parti cles, conductive material, and connection structure - Google Patents

Conductive parti cles, conductive material, and connection structure Download PDF

Info

Publication number
WO2021246523A1
WO2021246523A1 PCT/JP2021/021408 JP2021021408W WO2021246523A1 WO 2021246523 A1 WO2021246523 A1 WO 2021246523A1 JP 2021021408 W JP2021021408 W JP 2021021408W WO 2021246523 A1 WO2021246523 A1 WO 2021246523A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive particles
weight
resin
Prior art date
Application number
PCT/JP2021/021408
Other languages
French (fr)
Japanese (ja)
Inventor
秀平 大日方
寛人 松浦
武司 脇屋
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022528916A priority Critical patent/JPWO2021246523A1/ja
Priority to KR1020227036521A priority patent/KR20230019815A/en
Priority to CN202180039684.4A priority patent/CN115699218A/en
Publication of WO2021246523A1 publication Critical patent/WO2021246523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to conductive particles that can be used for electrical connection between electrodes and the like.
  • the present invention also relates to a conductive material and a connecting structure using the above conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known.
  • the conductive particles are dispersed in the binder resin.
  • conductive particles having a base material particles and a conductive portion arranged on the surface of the base material particles may be used.
  • the anisotropic conductive material is used to obtain various connection structures. Connections using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip. And the connection between the glass substrate and the glass substrate (COG (Chip on Glass)), and the connection between the flexible printed circuit board and the glass epoxy substrate (FOB (Film on Board)) and the like.
  • FOG Flexible printed circuit board and a glass substrate
  • COF Chip on Film
  • conductive particles as shown in the following Patent Documents 1 and 2, magnetic conductive particles may be used.
  • Patent Document 1 describes, as the above-mentioned magnetic conductive particles, magnetic conductive particles that are at least partially composed of a magnetic material and can be magnetized. Further, Patent Document 1 describes gold / nickel-coated resin particles, nickel-coated resin particles, nickel metal particles, phosphorus element-containing nickel-coated resin particles, and the like as the magnetic conductive particles.
  • Patent Document 2 discloses conductive particles including mother particles and insulating child particles that cover the surface of the mother particles.
  • the mother particle has a plastic nuclei and a plating layer that covers the surface of the plastic nuclei.
  • the plating layer has a nickel / phosphorus alloy layer.
  • the particle size of the mother particle is 2.0 ⁇ m or more and 3.0 ⁇ m or less, the saturation magnetization of the mother particle is 45 emu / cm 3 or less, and the particle size of the insulating child particle is 180 nm or more and 500 nm or less.
  • magnetic conductive particles may be used.
  • the conventional conductive particles as described in Patent Documents 1 and 2 it is difficult to exhibit both the characteristics of increasing the saturation magnetization and decreasing the residual magnetization.
  • conductive particles having a high residual magnetization for example, magnetic aggregation of the conductive particles is likely to occur.
  • a conductive particle comprising a resin particle and a conductive portion arranged outside the outer surface of the resin particle, and having the following constitution A, structure B, or structure C. Will be done.
  • Configuration A A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
  • Configuration B The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
  • Configuration C The resin particles contain a magnetic substance.
  • the conductive particles include the configuration A.
  • the conductive particles include the configuration B.
  • the conductive particles include the configuration C.
  • the content of the magnetic substance contained in the conductive particles is 5% by volume or more and 85% by volume or less in 100% by volume of the conductive particles.
  • the content of the magnetic substance contained in the conductive particles is 10% by weight or more and 99% by weight or less in 100% by weight of the conductive particles.
  • the particle size of the conductive particles is 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the magnetic material is a metal or a metal oxide.
  • the magnetic material comprises iron, cobalt, ferrite, nickel or an alloy thereof.
  • the conductive particles further include an insulating substance disposed on the outer surface of the conductive portion.
  • the conductive particles have protrusions on the outer surface of the conductive portion.
  • a conductive material including the above-mentioned conductive particles and a binder resin is provided.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder resin.
  • the conductive particles are the above-mentioned conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
  • the conductive particles according to the present invention include resin particles and a conductive portion arranged on the outside of the outer surface of the resin particles, and have the following configurations A, B, or C.
  • Configuration A A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
  • Configuration B The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
  • Configuration C The resin particles contain a magnetic substance. Since the conductive particles according to the present invention have the above-mentioned structure, the saturation magnetization can be increased, the residual magnetization can be decreased, and the electrodes are electrically connected to each other. Conduction reliability can be improved.
  • FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing the conductive particles according to the fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • the conductive particles according to the present invention include resin particles and a conductive portion arranged outside the outer surface of the resin particles, and include the following configurations A, B, or C.
  • Configuration A A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
  • Configuration B The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
  • Configuration C The resin particles contain a magnetic substance.
  • the saturation magnetization can be increased, the residual magnetization can be decreased, and the electrodes are electrically connected to each other. Conduction reliability can be improved.
  • the conductive particles according to the present invention can have a high saturation magnetization, even if the conductive material has a high viscosity, a vertical electrode to which the conductive particles contained in the conductive material should be connected by a magnetic field. It can be arranged well in between.
  • the residual magnetization can be lowered, so that the magnetic aggregation of the conductive particles can be effectively suppressed.
  • the conductive particles according to the present invention can enhance the conduction reliability.
  • the connection resistance between the electrodes in the vertical direction to be connected can be effectively reduced, and the lateral electrodes must not be connected.
  • the insulation reliability between the electrodes in the direction can be improved.
  • the conductive particles according to the present invention have at least one of the above-mentioned constitution A, the above-mentioned structure B, and the above-mentioned structure C.
  • the conductive particles according to the present invention may have only the above-mentioned structure A, may have only the above-mentioned structure B, or may have only the above-mentioned structure C.
  • the conductive particles according to the present invention may have at least two configurations of the above-mentioned constitution A, the above-mentioned structure B, and the above-mentioned structure C.
  • the conductive particles according to the present invention may have the above-mentioned structure A and the above-mentioned structure B, may have the above-mentioned structure B and the above-mentioned structure C, and may have the above-mentioned structure A and the above-mentioned structure C. You may.
  • the conductive particles according to the present invention may have the above-mentioned structure A, the above-mentioned structure B, and the above-mentioned structure C.
  • the ratio (residual magnetization / saturation magnetization) of the residual magnetization in the conductive particles to the saturated magnetization is 0.4 or less. If the above ratio (residual magnetization / saturation magnetization) exceeds 0.4, magnetic aggregation may easily occur or conduction reliability may decrease.
  • the ratio of the residual magnetization to the saturation magnetization is preferably 0.3 or less, more preferably less than 0.1, and further preferably 0. It is less than 05.
  • the ratio (residual magnetization / saturation magnetization) is equal to or less than the upper limit or less than the upper limit, magnetic aggregation can be suppressed more effectively, and conduction reliability can be further improved.
  • the ratio of the residual magnetization to the saturation magnetization may be 0.01 or more.
  • the ratio of the residual magnetization to the saturation magnetization is preferably 0.4 or less, more preferably 0.3 or less, still more preferably less than 0.1, particularly. It is preferably less than 0.05.
  • the ratio (residual magnetization / saturation magnetization) is equal to or less than the upper limit or less than the upper limit, magnetic aggregation can be suppressed more effectively, and conduction reliability can be further improved.
  • the ratio of the residual magnetization to the saturation magnetization may be 0.01 or more.
  • the residual magnetization of the conductive particles is preferably less than 2.0 emu / g, more preferably 1.8 emu / g or less, still more preferably 1.5 emu. It is less than / g, particularly preferably less than 1.2 emu / g.
  • the residual magnetization of the conductive particles may be 0.5 emu / g or more, or 1.0 emu / g or more.
  • the saturation magnetization of the conductive particles is preferably 15 emu / g or more, more preferably 20 emu / g or more, still more preferably 25 emu / g or more, and particularly preferably. Is 30 emu / g or more.
  • the saturation magnetization of the conductive particles may be 50 emu / g or less.
  • the residual magnetization and saturation magnetization of the conductive particles can be measured using a magnetic property measuring device (for example, "MPMS2" manufactured by Japan Quantum Design Co., Ltd.). Specifically, it can be measured as follows.
  • the sample holder is installed in the main body of the apparatus, and a magnetization curve is obtained by measurement under the conditions of a temperature of 25 ° C. (constant temperature) and a maximum applied magnetic field of 10 kOe.
  • the residual magnetization and saturation magnetization are obtained from the obtained magnetization curve.
  • the particle size of the conductive particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, still more. It is preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductivity is increased. It becomes difficult to form agglomerated conductive particles when forming a portion.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle diameter of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than the spherical shape, it is assumed to be a true sphere corresponding to the volume thereof. Means the diameter of.
  • the particle size of the conductive particles is preferably an average particle size, more preferably a number average particle size.
  • observe 50 arbitrary conductive particles with an electron microscope or an optical microscope calculate the average value of the particle size of each conductive particle, or use a particle size distribution measuring device. Desired. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of each conductive particle is determined as the particle size in the equivalent diameter of a sphere. The particle size of the conductive particles is preferably calculated using a particle size distribution measuring device.
  • the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • the coefficient of variation (CV value) of the particle size of the conductive particles may be 1% or more.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of conductive particles Dn: Average value of particle size of conductive particles
  • 10% K value of the conductive particles is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 25000N / mm 2 or less, more It is preferably 20000 N / mm 2 or less.
  • the 10% K value of the conductive particles is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be lowered more effectively, and the occurrence of cracking of the conductive particles is even more effective. It is possible to further effectively improve the connection reliability between the electrodes.
  • 30% K value of the conductive particles is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 15000 N / mm 2 or less, more It is preferably 10000 N / mm 2 or less.
  • the 30% K value of the conductive particles is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be lowered more effectively, and the occurrence of cracking of the conductive particles is even more effective. It is possible to further effectively improve the connection reliability between the electrodes.
  • the ratio of the 10% K value of the conductive particles to the 30% K value of the conductive particles (10% K value of the conductive particles / 30% K value of the conductive particles) is preferably 1.5 or more. It is more preferably 1.55 or more, preferably 5 or less, and more preferably 4.5 or less.
  • the connection resistance between the electrodes can be further effectively lowered. The occurrence of cracking of the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be further effectively improved.
  • the 10% K value and the 30% K value in the conductive particles can be measured as follows.
  • the compressive elastic modulus 10% K value and 30% K value
  • the 10% K value and the 30% K value in the conductive particles can be calculated by arithmetically averaging the 10% K value and the 30% K value of 50 arbitrarily selected conductive particles. preferable.
  • the compressive elastic modulus universally and quantitatively represents the hardness of the conductive particles.
  • the hardness of the conductive particles can be quantitatively and uniquely expressed.
  • the above ratio (10% K value of the conductive particles / 30% K value of the conductive particles) can quantitatively and uniquely represent the physical properties of the conductive particles at the time of initial compression.
  • the shape of the conductive particles is not particularly limited.
  • the shape of the conductive particles may be spherical, non-spherical, flat or the like.
  • FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
  • the conductive particles 1 shown in FIG. 1 are conductive particles having the above configuration A.
  • the conductive particle 1 has a resin particle 2, a conductive portion 3, and a magnetic material portion 4.
  • the magnetic material portion 4 contains a magnetic material.
  • the conductive portion 3 is arranged on the outside of the outer surface of the resin particles 2.
  • the magnetic material portion 4 is arranged between the resin particles 2 and the conductive portion 3. Therefore, in the conductive particles 1, the magnetic material portion 4 is arranged on the outer surface of the resin particles 2, and the conductive material portion 3 is arranged on the outer surface of the magnetic material portion 4.
  • the conductive portion 3 is a single conductive layer.
  • the magnetic material portion 4 is a single-layer magnetic layer.
  • the conductive portion may be a single conductive layer or a multilayer conductive layer composed of two or more layers.
  • the magnetic material portion may be a single magnetic layer or a multi-layered magnetic layer composed of two or more layers.
  • FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention.
  • the conductive particles 1A shown in FIG. 2 are conductive particles having the above configuration B.
  • the conductive particles 1A have resin particles 2A and a conductive portion 3A.
  • the conductive portion 3A contains a magnetic material.
  • the conductive portion 3A is arranged on the outer surface of the resin particles 2A.
  • the conductive portion 3A is a single conductive layer.
  • the conductive portion 3A is a single magnetic layer.
  • the conductive portion may be a single-layer conductive layer, or may be a multi-layered conductive layer composed of two or more layers.
  • FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention.
  • the conductive particles 1B shown in FIG. 3 are conductive particles having the above configuration C.
  • the conductive particles 1B have resin particles 2B and a conductive portion 3B.
  • the resin particles 2B include a magnetic material 4B.
  • the resin particles 2B contain a magnetic material 4B.
  • the resin particles 2B and the magnetic material 4B constitute magnetic inclusion resin particles.
  • the conductive portion 3B is arranged on the outer surface of the resin particles 2B.
  • FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention.
  • the conductive particles 1C shown in FIG. 4 are conductive particles having the above configuration C.
  • the conductive particles 1C have resin particles 2C, a conductive portion 3C, a plurality of core substances 5, and a plurality of insulating substances 6.
  • the resin particles 2C include a magnetic material 4C.
  • the resin particles 2C contain a magnetic material 4C.
  • the resin particles 2C and the magnetic material 4C constitute magnetic inclusion resin particles.
  • the conductive portion 3C is arranged on the outer surface of the resin particles 2C so as to be in contact with the resin particles 2C.
  • the conductive portion may be a single conductive layer or a multilayer conductive layer composed of two or more layers.
  • the conductive particles 1C have a plurality of protrusions 1Ca on the conductive surface.
  • the conductive portion 3C has a plurality of protrusions 3Ca on the outer surface.
  • a plurality of core substances 5 are arranged on the surface of the resin particles 2C.
  • the plurality of core substances 5 are embedded in the conductive portion 3C.
  • the core substance 5 is arranged inside the protrusions 1Ca and 3Ca.
  • the conductive portion 3C covers a plurality of core substances 5.
  • the outer surface of the conductive portion 3C is raised by the plurality of core substances 5, and the protrusions 1Ca and 3Ca are formed.
  • the conductive particles 1C have an insulating substance 6 arranged on the outer surface of the conductive portion 3C. At least a part of the outer surface of the conductive portion 3C is covered with the insulating substance 6.
  • the insulating substance 6 is formed of an insulating material and is an insulating particle.
  • the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention do not necessarily have an insulating substance.
  • FIG. 5 is a cross-sectional view showing conductive particles according to a fifth embodiment of the present invention.
  • the conductive particles 1D shown in FIG. 5 are conductive particles having the above configuration A.
  • the conductive particle 1D has a resin particle 2D, a conductive portion 3D, a magnetic material portion 4D, a plurality of core substances 5, and a plurality of insulating substances 6.
  • the conductive portion 3D is arranged on the outside of the outer surface of the resin particles 2D.
  • the magnetic material portion 4D is arranged between the resin particles 2D and the conductive portion 3D. Therefore, in the conductive particles 1D, the magnetic material portion 4D is arranged on the outer surface of the resin particles 2D, and the conductive portion 3D is arranged on the outer surface of the magnetic material portion 4D.
  • the conductive portion 3D is a single conductive layer.
  • the magnetic material portion 4D is a single-layer magnetic layer.
  • the conductive portion may be a single conductive layer or a multilayer conductive layer composed of two or more layers. Further, in the conductive particles, the magnetic material portion may be a single magnetic layer or a multi-layered magnetic layer composed of two or more layers.
  • the conductive particles 1D have a plurality of protrusions 1Da on the conductive surface.
  • the conductive portion 3D has a plurality of protrusions 3Da on the outer surface.
  • the magnetic material portion 4D has a plurality of protrusions 4Da on the outer surface.
  • a plurality of core substances 5 are arranged on the surface of the resin particles 2D.
  • the plurality of core substances 5 are embedded in the conductive portion 3D and the magnetic material portion 4D.
  • the core material 5 is arranged inside the protrusions 1Da, 3Da, 4Da.
  • the magnetic material portion 4D covers a plurality of core substances 5.
  • the outer surfaces of the conductive portion 3D and the magnetic body portion 4D are raised by the plurality of core substances 5, and protrusions 1Da, 3Da, and 4Da are formed.
  • the conductive particles 1D have an insulating substance 6 arranged on the outer surface of the conductive portion 3D. At least a part of the outer surface of the conductive portion 3D is covered with the insulating substance 6.
  • the insulating substance 6 is formed of an insulating material and is an insulating particle.
  • the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention do not necessarily have an insulating substance.
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”
  • (meth) acrylic means one or both of “acrylic” and “methacrylic”.
  • resin particles examples of the material of the resin particles include conventionally known organic materials.
  • organic material examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene
  • acrylic resins such as polymethylmethacrylate and polymethylacrylate
  • polycarbonate polyamide, phenolformaldehyde resin and melamine.
  • Formaldehyde resin benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Examples thereof include a polyether ether ketone, a polyether sulfone, a divinylbenzene polymer, and a divinylbenzene copolymer.
  • the divinylbenzene copolymer include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer.
  • the material of the resin particles is preferably a polymer obtained by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group.
  • the above polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation), addition condensation, living polymerization, and living radical polymerization. Further, as another polymerization method, suspension polymerization in the presence of a radical polymerization initiator can be mentioned.
  • the particle size of the resin particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 20 ⁇ m or less, and further. It is more preferably 10 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the particle diameter of the resin particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes becomes large, so that the conduction reliability between the electrodes can be further improved, and the conductive particles can be obtained.
  • the connection resistance between the electrodes connected via the electrodes can be further reduced.
  • the conductive portion or the magnetic material portion is formed on the surface of the resin particles by electroless plating, it is possible to make it difficult for the aggregated conductive particles to be formed.
  • the particle size of the resin particles is not more than the above upper limit, the conductive particles are easily sufficiently compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further reduced. ..
  • the particle diameter of the resin particles means a diameter when the resin particles are spherical, and when the resin particles have a shape other than the spherical shape, it is assumed to be a true sphere corresponding to the volume thereof. Means diameter.
  • the particle size of the resin particles is preferably an average particle size, more preferably a number average particle size.
  • the particle size of the resin particles can be obtained by observing 50 arbitrary resin particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each resin particle, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each resin particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 resin particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of each resin particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the particle size of the resin particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the resin particles in the conductive particles, for example, the measurement can be performed as follows.
  • the coefficient of variation (CV value) of the particle size of the resin particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less. When the coefficient of variation of the particle size of the resin particles is not more than the upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved.
  • the coefficient of variation (CV value) of the particle size of the resin particles may be 1% or more.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of the particle size of the resin particles Dn: Average value of the particle size of the resin particles
  • the conductive particles include a conductive portion arranged on the outside of the outer surface of the resin particles. Further, whether the conductive particles include a magnetic material portion containing a magnetic material arranged between the resin particles and the conductive portion (Structure A), or whether the conductive portion contains a magnetic material (Structure B). Or, the resin particles contain a magnetic substance (Structure C).
  • the conductive portion may contain a magnetic material.
  • the conductive portion preferably contains a magnetic material.
  • the conductive portion it is preferable that the conductive portion contains a magnetic material. That is, the conductive particles preferably include the above-mentioned structure A and the above-mentioned structure B, and preferably include the above-mentioned structure B and the above-mentioned structure C.
  • the magnetic material contained in the magnetic material portion and the magnetic material contained in the conductive portion may be the same or different. ..
  • the magnetic material contained in the resin particles and the magnetic material contained in the conductive portion may be the same or different.
  • the conductive portion preferably contains a metal. Further, the conductive portion may contain a substance other than metal. Hereinafter, the metal contained in the conductive portion may be referred to as "metal constituting the conductive portion" for convenience. Further, the "metal constituting the conductive portion” also includes a compound of the metal, for example, an oxide of the metal.
  • the metal constituting the conductive portion is not particularly limited, but gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, and germanium. , Cadmium, silicon, tungsten, molybdenum and alloys thereof. Examples of the metal constituting the conductive portion include tin-doped indium oxide (ITO) and solder. As the metal constituting the conductive portion, only one kind may be used, or two or more kinds may be used in combination.
  • ITO tin-doped indium oxide
  • the conductive portion preferably contains nickel, gold, palladium, silver or copper, more preferably nickel, gold or palladium, and nickel. Is particularly preferable.
  • the content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, and particularly preferably. Is 90% by weight or more.
  • the content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, 98% by weight or more, 100%. It may be% by weight.
  • hydroxyl groups are present on the surface of the conductive portion due to oxidation.
  • a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation.
  • An insulating substance can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.
  • the conductive portion may be formed by one layer.
  • the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers.
  • the metal constituting the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferred.
  • the connection resistance between the electrodes is further lowered.
  • the metal constituting the outermost layer is gold, the corrosion resistance is further improved.
  • the metal constituting the outermost layer may be nickel.
  • the thickness of the conductive portion is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. Can be made to.
  • the thickness of the conductive portion of the outermost layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably. Is 0.1 ⁇ m or less.
  • the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficiently lowered. be able to.
  • the thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the magnetic material is preferably a metal or a metal oxide, and more preferably a ferromagnetic material or a paramagnetic material. Only one kind of the above magnetic material may be used, or two or more kinds may be used in combination.
  • the magnetic material examples include iron, cobalt, nickel, ruthenium, lanthanoid, ferrite and the like.
  • ferrite chromite into mug ( ⁇ Fe 2 O 3), and MFe compounds represented by 2 O 4 (in MFe 2 O 4, M is, Co, Ni, Mn, Zn , Mg, Cu, Fe, Li 0.5 Fe 0.5 etc.).
  • the magnetic material may be an alloy.
  • the alloy include nickel-cobalt alloy, cobalt-tungsten alloy, iron-platinum alloy, iron-cobalt alloy and the like.
  • the metal may be a metal ion.
  • the magnetic material preferably contains iron, cobalt, ferrite, nickel or an alloy thereof, more preferably iron, cobalt, or ferrite, and iron, cobalt, or iron. It is more preferable to contain triiron tetroxide (Fe 3 O 4).
  • the content of the magnetic material contained in the magnetic material portion is contained in the total 100% by volume of the content of the resin particles and the content of the magnetic material portion (A1). ).
  • the content (A1) is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more. It is particularly preferably 20% by volume or more, preferably 45% by volume or less, more preferably 40% by volume or less, and further preferably 35% by volume or less.
  • the content of the magnetic material contained in the magnetic material portion is contained in 100% by weight of the total of the content of the resin particles and the content of the magnetic material portion (A2). ).
  • the content (A2) is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 30% by weight or more, still more preferably 40% by weight or more, still more preferably 45% by weight or more. Particularly preferably 50% by weight or more, preferably 80% by weight or less, more preferably 75% by weight or less, still more preferably 70% by weight or less.
  • the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (A3). Therefore, in the above-mentioned content (A3), when the conductive particles contain the magnetic material in the portion other than the magnetic material portion (for example, the conductive portion or the resin particles), it is the content of the magnetic material including these.
  • the content (A3) is preferably 2% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 30% by volume or more, still more preferably 35% by volume or more.
  • the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (A4). Therefore, in the above content (A4), when the conductive particles contain a magnetic substance in a portion other than the magnetic substance portion (for example, the conductive portion or the resin particles), the content of the magnetic substance includes these as well.
  • the content (A4) is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, still more preferably 50% by weight or more, still more preferably 70% by weight or more. It is particularly preferably 75% by weight or more, most preferably 80% by weight or more, preferably 97% by weight or less, and more preferably 95% by weight or less. When the content (A4) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive portion is defined as the content (B1) in the total of 100% by volume of the content of the resin particles and the content of the conductive portion. do.
  • the content (B1) is preferably 3% by volume or more, more preferably 5% by volume or more, further preferably 7% by volume or more, particularly preferably 10% by volume or more, preferably 60% by volume or less, and more preferably 55. By volume or less, more preferably 50% by volume or less.
  • the content of the magnetic substance contained in the conductive portion is defined as the content (B2) in the total of 100% by weight of the content of the resin particles and the content of the conductive portion. do.
  • the content (B2) is preferably 10% by weight or more, more preferably 15% by weight or more, further preferably 20% by weight or more, preferably 98% by weight or less, more preferably 95% by weight or less, still more preferably 90% by weight. It is less than% by weight.
  • the content (B2) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (B3). Therefore, in the above-mentioned content (B3), when the conductive particles contain a magnetic material in a portion other than the above-mentioned conductive portion (for example, a magnetic material portion or a resin particle), it is the content of the magnetic material including these.
  • the content (B3) is preferably 2% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more.
  • the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (B4). Therefore, in the above-mentioned content (B4), when the conductive particles contain a magnetic material in a portion other than the above-mentioned conductive portion (for example, a magnetic material portion or a resin particle), it is the content of the magnetic material including these.
  • the content (B4) is preferably 3% by weight or more, more preferably 7% by weight or more, still more preferably 10% by weight or more, still more preferably 30% by weight or more, still more preferably 45% by weight or more. It is particularly preferably 50% by weight or more, and most preferably 60% by weight or more.
  • the content (B4) is preferably 99% by weight or less, more preferably 98% by weight or less, and further preferably 97% by weight or less.
  • the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the resin particles is defined as the content (C1) in the content of the resin particles of 100% by volume.
  • the content (C1) is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more. It is particularly preferably 20% by volume or more, preferably 85% by volume or less, and more preferably 80% by volume or less.
  • the content of the magnetic substance contained in the resin particles is defined as the content (C2) in the content of 100% by weight of the resin particles.
  • the content (C2) is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, still more preferably 40% by weight or more, still more preferably 45% by weight or more. Particularly preferably 50% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less, still more preferably 95% by weight or less.
  • the content (C2) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (C3). Therefore, in the above content (C3), when the conductive particles contain a magnetic substance in a portion other than the resin particles (for example, a conductive portion or a magnetic substance portion), the content is the content of the magnetic substance including these.
  • the content (C3) is preferably 3% by volume or more, more preferably 7% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more.
  • the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (C4). Therefore, in the above content (C4), when the conductive particles contain a magnetic substance in a portion other than the resin particles (for example, a conductive portion or a magnetic substance portion), the content is the content of the magnetic substance including these.
  • the content (C4) is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, still more preferably 30% by weight or more, still more preferably 60% by weight or more.
  • the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (D).
  • the content (D) is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 25% by volume or more, particularly preferably 50% by volume or more, preferably 50% by volume or more. It is 85% by volume or less.
  • the content (D) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
  • the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (E).
  • the content (E) is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 15% by weight or more, still more preferably 25% by weight or more, particularly preferably 40% by weight or more, preferably 40% by weight or more. It is 99% by weight or less, more preferably 97% by weight or less.
  • the contents (A1) to (A4), (B1) to (B4), (C1) to (C4), (D), and (E) can be measured by ICP emission spectrometry. Specifically, it can be measured as follows.
  • the conductive particles are completely dissolved using hydrochloric acid or the like, and the amount of metal ions contained in the conductive particles is quantified. From the quantified amount of metal ions, the content (% by weight) of the magnetic substance present in the conductive particles is calculated. In addition, the volume of the magnetic material can be calculated from the density of the magnetic material. The volume of the conductive particles can be calculated from the radius of the conductive particles measured by observing the cross section of the conductive particles, and the content (% by volume and% by weight) of the magnetic substance can be calculated.
  • the magnetic material portion may be a continuous layer or an aggregate layer which is an aggregate of magnetic material fine particles.
  • the magnetic material portion is preferably an aggregate layer which is an aggregate of magnetic material fine particles.
  • the primary average particle diameter of the magnetic fine particles constituting the aggregate layer which is an aggregate of the magnetic fine particles is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more. It is preferably 500 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, and particularly preferably 20 nm or less.
  • the primary average particle diameter of the magnetic material is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more, preferably 500 nm or less, still more preferably 100 nm or less, still more preferably. It is 50 nm or less, particularly preferably 20 nm or less.
  • the primary average particle size of the magnetic fine particles can be measured, for example, by observing with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the content of the conductive portion contained in the conductive particles is preferably 15% by weight or more in 100% by weight of the conductive particles. It is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 95% by weight or less, more preferably 85% by weight or less, still more preferably 75% by weight or less.
  • the content of the conductive portion contained in the conductive particles is equal to or higher than the lower limit and lower than the upper limit, and the primary average particle diameter of the magnetic fine particles constituting the aggregate layer is equal to or higher than the lower limit and lower than the upper limit.
  • the content of the conductive portion contained in the conductive particles in 100% by weight of the conductive particles is preferably 15% by weight or more, more preferably 30% by weight or more, still more preferably. Is 40% by weight or more, preferably 95% by weight or less, more preferably 85% by weight or less, still more preferably 75% by weight or less.
  • the content of the conductive portion contained in the conductive particles is not less than the above lower limit and not more than the above upper limit, the ratio of the residual magnetization to the saturation magnetization can be easily adjusted to 0.4 or less. That is, the conductive particles having the above configuration B can be obtained satisfactorily.
  • the content of the conductive portion contained in the conductive particles is preferably 15% by weight or more in 100% by weight of the conductive particles. It is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 95% by weight or less, more preferably 85% by weight or less, still more preferably 75% by weight or less.
  • the content of the conductive portion contained in the conductive particles is equal to or higher than the lower limit and lower than the upper limit, and the primary average particle diameter of the magnetic material is equal to or higher than the lower limit and lower than the upper limit, the residual magnetization is saturated. It is easy to adjust the ratio to magnetization to 0.4 or less. That is, the conductive particles having the above-mentioned structure C and the above-mentioned structure B can be satisfactorily obtained.
  • the content of the conductive portion contained in the conductive particles in 100% by weight of the conductive particles is energy dispersive X-ray analysis using an electric field radiation transmission electron microscope (“JEM-2010FEF” manufactured by JEOL Ltd.). It can be measured by EDX) and ICP emission analysis method. Specifically, it can be measured as follows.
  • Conductive particles are added to "Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for inspection containing the conductive particles.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the dispersed conductive particles in the embedded resin body for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • the conductive particles are completely dissolved using hydrochloric acid or the like, and the amount of metal ions contained in the conductive particles is quantified. From the quantified amount of metal ions, the content (% by weight) of the conductive portion present in the conductive particles is calculated. Further, the volume of the conductive portion can be calculated from the density of the metal contained in the conductive portion. The volume of the conductive particles can be calculated from the radius of the conductive particles measured by observing the cross section of the conductive particles, and the content (volume% and weight%) of the conductive portion can be calculated.
  • the thickness of the magnetic material portion is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0.3 ⁇ m or less. More preferably, it is 0.2 ⁇ m or less.
  • the thickness of the magnetic material portion is not less than the above lower limit and not more than the above upper limit, sufficient magnetic performance can be obtained and the effect of the present invention can be more effectively exhibited.
  • the thickness of the magnetic material portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the method of forming the conductive portion or the magnetic material portion on the surface of the resin particles is not particularly limited.
  • the method for forming the conductive portion or the magnetic material portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption. , And a method of coating the surface of the resin particles with a metal powder or a paste containing the metal powder and a binder.
  • the method for forming the conductive portion or the magnetic material portion is preferably electroless plating, electroplating, or a method by physical collision.
  • Examples of the method by physical vapor deposition include vacuum deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
  • the magnetic material may be dispersed inside the resin particles or may be present in layers. From the viewpoint of reducing the residual magnetization, it is preferable that the magnetic material is dispersed inside the resin particles in the conductive particles having the configuration C.
  • resin particles in which the magnetic material is dispersed inside can be obtained.
  • the resin particles having a solid structure and the magnetic material are mixed, the outer surface of the resin particles is coated with the magnetic material, and then the outer surface of the magnetic material is coated with a resin to obtain magnetism. It is possible to obtain resin particles in which the body is present in layers.
  • the conductive particles preferably have protrusions on the outer surface of the conductive portion.
  • the conductive particles preferably have protrusions on the conductive surface. It is preferable that the number of the protrusions is plurality.
  • the conductive particles preferably have a plurality of the protrusions.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by arranging the conductive particles between the electrodes and crimping them. Therefore, the electrodes and the conductive portion come into contact with each other more reliably, and the connection resistance between the electrodes becomes even lower.
  • the conductive particles include an insulating substance, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles between the conductive particles and the electrode. Insulating substances or binder resins can be eliminated even more effectively. Therefore, the connection resistance between the electrodes can be further reduced.
  • a method of adhering a core material to the surface of metal particles and then forming a conductive portion by electroless plating, and a method of forming a conductive portion by electroless plating on the surface of metal particles are performed. Examples thereof include a method of adhering a core material and further forming a conductive portion by electroless plating. Further, it is not necessary to use the core substance in order to form the protrusions.
  • a method of adding a core substance in the middle of forming a conductive portion on the surface of the metal particles can be mentioned.
  • the conductive portion is formed on the metal particles by electroless plating without using the above-mentioned core material, and then the plating is deposited in the shape of protrusions on the surface of the conductive portion, and further by electroless plating.
  • a method of forming a conductive portion or the like may be used.
  • a method of adhering the core substance to the surface of the metal particles a method of adding the core substance to the dispersion liquid of the metal particles and accumulating and adhering the core substance on the surface of the metal particles by van der Waals force, and a method of adhering the core substance to the surface of the metal particles.
  • Examples thereof include a method in which a core substance is added to a container containing metal particles and the core substance is attached to the surface of the metal particles by a mechanical action such as rotation of the container.
  • the method of adhering the core substance to the surface of the metal particles is preferably a method of accumulating and adhering the core substance to the surface of the metal particles in the dispersion liquid.
  • Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene and the like.
  • Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of more effectively removing the oxide film, it is preferable that the core substance is hard. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the core material is preferably a metal.
  • the above metals are not particularly limited.
  • the metals include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys.
  • examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy and tungsten carbide.
  • the metal is preferably nickel, copper, silver or gold.
  • the metal may be the same as or different from the metal constituting the conductive portion (conductive layer).
  • the metal may be the same as or different from the metal constituting the metal particles.
  • the shape of the core substance is not particularly limited.
  • the shape of the core material is preferably lumpy.
  • Examples of the core material include particulate lumps, agglomerates in which a plurality of fine particles are aggregated, and amorphous lumps.
  • the particle size of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the particle size of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
  • the particle size of the core substance is preferably an average particle size, more preferably a number average particle size.
  • the particle size of the core material can be obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope, calculating the average value of the particle size of each core material, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of the core material per piece is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core materials in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of the core substance per piece is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the core material is preferably calculated using a particle size distribution measuring device.
  • the number of the protrusions per one conductive particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of the protrusions is not particularly limited.
  • the upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles and the like. When the number of the protrusions is at least the above lower limit, the connection resistance between the electrodes can be further effectively lowered.
  • the number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope.
  • the number of protrusions is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average value of the number of protrusions in each conductive particle.
  • the height of the protrusions is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes can be further effectively lowered.
  • the height of the protrusions can be calculated by observing the protrusions on any conductive particle with an electron microscope or an optical microscope.
  • the height of the protrusions is preferably calculated by calculating the average value of the heights of all the protrusions per conductive particle as the height of the protrusions of one conductive particle.
  • the height of the protrusions is preferably obtained by calculating the average value of the heights of the protrusions of each conductive particle for 50 arbitrary conductive particles.
  • the conductive particles preferably include an insulating substance arranged on the outer surface of the conductive portion.
  • an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction instead of between the upper and lower electrodes.
  • the insulating substance is preferably insulating particles because the insulating substance can be more easily removed during crimping between the electrodes.
  • Examples of the material of the insulating substance include the above-mentioned resin and inorganic substances.
  • the material of the insulating substance is preferably the resin.
  • As the material of the insulating substance only one kind may be used, or two or more kinds may be used in combination.
  • Examples of the above-mentioned inorganic substances include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass and alumina silicate glass.
  • Other materials of the insulating substance include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, cross-linked products of thermoplastic resins, thermosetting resins and water-soluble materials. Examples include resin.
  • Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers.
  • thermosetting resin examples include epoxy resin, phenol resin, melamine resin and the like.
  • crosslinked product of the thermoplastic resin examples include the introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like.
  • a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
  • Examples of the method of arranging the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, an emulsion polymerization method and the like.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum vapor deposition. From the viewpoint of further effectively enhancing the insulation reliability and conduction reliability when the electrodes are electrically connected, the method of arranging the insulating substance on the surface of the conductive portion is a physical method. It is preferable to have.
  • the outer surface of the conductive portion and the outer surface of the insulating substance may each be coated with a compound having a reactive functional group.
  • the outer surface of the conductive portion and the outer surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating substance via a polyelectrolyte such as polyethyleneimine.
  • the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle, the application of the conductive particle, and the like.
  • the particle size of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, still more preferably 1500 nm or less. Particularly preferably, it is 1000 nm or less.
  • the particle size of the insulating particles is not more than the above lower limit, it becomes difficult for the conductive portions of the plurality of conductive particles to come into contact with each other when the conductive particles are dispersed in the binder resin.
  • the particle size of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating particles between the electrodes and the conductive particles at the time of connection between the electrodes, and the temperature is high. There is no need to heat it.
  • the particle size of the insulating particles is preferably an average particle size, and preferably a number average particle size.
  • the particle size of the insulating particles can be obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each insulating particle, or using a particle size distribution measuring device. Be done. In observation with an electron microscope or an optical microscope, the particle size of the insulating particles per particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter.
  • the particle size of each insulating particle is determined as the particle size at the equivalent sphere diameter.
  • the average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device.
  • the measurement can be performed as follows.
  • Conductive particles are added to "Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for inspection containing the conductive particles.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the insulating particles in the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the insulating particles of each conductive particle were selected. Observe. The particle size of the insulating particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.
  • FE-SEM field emission scanning electron microscope
  • the ratio of the particle diameter of the conductive particles to the particle diameter of the insulating particles is preferably 4 or more, more preferably 8 or more, and preferably 8 or more. It is 200 or less, more preferably 100 or less.
  • the conductive material according to the present invention includes the above-mentioned conductive particles and a binder resin. It is preferable that the conductive particles are dispersed in the binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is suitably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the above binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, elastomers and the like. Only one kind of the binder resin may be used, or two or more kinds thereof may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like.
  • the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins.
  • Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene.
  • -Hydrogen additives for styrene block copolymers and the like can be mentioned.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizing agent. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
  • a conventionally known dispersion method can be used as a method for dispersing the conductive particles in the binder resin.
  • the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded with a planetary mixer or the like to disperse the particles. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.
  • the viscosity ( ⁇ 25) of the conductive material at 25 ° C. is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, and more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the type and amount of the compounding component.
  • the viscosity ( ⁇ 25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material can be used as a conductive paste, a conductive film, or the like.
  • the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further improved.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, and more preferably 60% by weight. % Or less, more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes can be further effectively reduced. Can be enhanced.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It includes a connecting portion that connects to the second connection target member.
  • the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and the binder resin, and the conductive particles are described above. It is a conductive particle, and the first electrode and the second electrode are electrically connected by the conductive particles.
  • the connection structure includes a step of arranging the conductive particles or the conductive material between the first connection target member and the second connection target member, and a step of conducting a conductive connection by thermocompression bonding. Can be obtained through.
  • the conductive particles have the insulating substance, it is preferable that the insulating substance is desorbed from the conductive particles at the time of thermocompression bonding.
  • the connecting portion itself is the conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles.
  • the conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
  • FIG. 6 schematically shows a connection structure using conductive particles according to the first embodiment of the present invention in a front sectional view.
  • connection structure 51 shown in FIG. 6 has a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Be prepared.
  • the connecting portion 54 is formed by curing a conductive material containing the conductive particles 1.
  • the conductive particles 1 are shown schematically for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as the conductive particles 1A, 1B, 1C, and 1D may be used.
  • the manufacturing method of the above connection structure is not particularly limited.
  • the method for manufacturing the connection structure preferably includes the following steps.
  • a step of applying a magnetic field or a magnetic force before or after the second placement step is a step of applying a magnetic field or a magnetic force before or after the second placement step.
  • connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
  • thermocompression bonding step is performed after the second arrangement step and after the step of applying the magnetic field or the magnetic force.
  • the thermocompression bonding pressure is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less.
  • the heating temperature of the thermocompression bonding is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower.
  • the pressure and temperature of the thermocompression bonding are at least the above lower limit and at least the above upper limit, the conduction reliability and the insulation reliability between the electrodes can be further improved. Further, when the conductive particles have the insulating particles, the insulating particles can be easily desorbed from the surface of the conductive particles at the time of conductive connection.
  • the conductive particles When the conductive particles have the insulating particles, they are present between the conductive particles and the first electrode and the second electrode when the laminated body is heated and pressurized. It is possible to eliminate the above-mentioned insulating particles. For example, during the heating and pressurization, the insulating particles existing between the conductive particles and the first electrode and the second electrode are removed from the surface of the conductive particles. Easily detached. During the heating and pressurization, some of the insulating particles may be separated from the surface of the conductive particles, and the surface of the conductive portion may be partially exposed. When the exposed surface of the conductive portion comes into contact with the first electrode and the second electrode, the first electrode and the second electrode are electrically connected via the conductive particles. can do.
  • the first connection target member and the second connection target member are not particularly limited.
  • Specific examples of the first connection target member and the second connection target member include semiconductor chips, semiconductor packages, LED chips, LED packages, electronic components such as capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards.
  • the first connection target member and the second connection target member are preferably electronic components.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al and Ga.
  • Example 1 Preparation of Resin Particles Containing Magnetic Material
  • Polystyrene particles having an average particle diameter of 0.5 ⁇ m were prepared as seed particles.
  • a mixed solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
  • the emulsion was added to the mixed solution in the separable flask and stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles swollen by the monomer.
  • a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
  • the above nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Then, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer on the surface of the magnetic inclusion resin particles, and the conductive particles having a conductive portion on the surface are formed. Obtained.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolac type epoxy resin.
  • a conductive material anisotropic conductive paste was obtained by blending a weight portion and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), defoaming and stirring for 3 minutes.
  • a transparent glass substrate having an IZO electrode pattern (first electrode, Vickers hardness of metal on the surface of the electrode 100 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m formed on the upper surface was prepared. Further, a semiconductor chip having an Au electrode pattern (second electrode, Vickers hardness of metal on the surface of the electrode 50 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m formed on the lower surface was prepared.
  • the obtained anisotropic conductive paste was applied onto the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. Next, the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other.
  • the magnetizing process was performed from the upper part of the electrode. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., the pressurized heating head is placed on the upper surface of the semiconductor chip, and a pressure of 85 MPa is applied to form the anisotropic conductive paste layer. It was cured at 100 ° C. to obtain a connection structure.
  • Example 2 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the metal type of the conductive portion was changed to Ni—B / Au.
  • Example 3 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the metal type of the conductive portion was changed to Ni—B / Pd.
  • Example 4 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the metal type of the conductive portion was changed to Ni—B / Ag.
  • Example 5 The reducing agent used to prepare the conductive portion was changed from dimethylamine borane to sodium hypophosphite, and the concentration was further changed to 2.6 mol / L. The phosphorus content in the Ni plating film obtained at this time was 12% by weight. Furthermore, the metal type of the conductive part was changed to Ni-P / Au. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that these were changed. The obtained Ni—P / Au layer lost its function as a magnetic material.
  • Example 6 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 5 except that the metal type of the conductive portion was changed to Ni-P / Pd.
  • Example 7 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 5 except that the metal type of the conductive portion was changed to Ni-P / Ag.
  • Example 8 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride / tetrahydrate to be added was changed from 2 parts by weight to 5 parts by weight. ..
  • Example 9 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride / tetrahydrate to be added was changed from 2 parts by weight to 4 parts by weight. ..
  • Example 10 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride tetrahydrate to be added was changed from 2 parts by weight to 3 parts by weight. ..
  • Example 11 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride / tetrahydrate to be added was changed from 2 parts by weight to 1 part by weight. ..
  • Example 12 Conductive particles and conductive material in the same manner as in Example 1 except that the iron (II) chloride tetrahydrate and 28% aqueous ammonia to be added were changed to cobalt sulfate heptahydrate and dimethylamine borane. And a connection structure was obtained.
  • Example 13 Conductive particles and conductive material in the same manner as in Example 1 except that the iron (II) chloride tetrahydrate and 28% aqueous ammonia to be added were changed to nickel sulfate hexahydrate and dimethylamine borane. And a connection structure was obtained.
  • Example 14 Conductive particles and conductive material in the same manner as in Example 1 except that the iron (II) chloride tetrahydrate and 28% aqueous ammonia to be added were changed to iron sulfate heptahydrate and dimethylamine borane. And a connection structure was obtained.
  • Example 15 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight.
  • Example 16 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of divinylbenzene to be added was changed from 150 parts by weight to 40 parts by weight.
  • Example 17 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of the magnetic inclusion resin particles charged was changed from 10 parts by weight to 15 parts by weight.
  • Example 18 (1) Preparation of Resin Particles with Magnetic Material Parts Resin particles were obtained in the same manner as in Example 1 except that the solvent used for producing the resin particles was changed from toluene to ethanol. The average particle size of the obtained resin particles was 2.75 ⁇ m. Next, 2.0 g of the resin particles were ultrasonically dispersed in 40.0 g of ion-exchanged water to obtain a core particle dispersion.
  • a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
  • the above nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Then, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer on the surface of the resin particles containing the magnetic substance portion, and the conductive particles having the conductive portion on the surface.
  • connection structure was obtained in the same manner as in Example 1.
  • Example 19 Conductive particles, conductive materials, and connecting structures were prepared in the same manner as in Example 18, except that resin particles having an average particle diameter of 1.52 ⁇ m were used and the amount of magnetic fluid to be added was changed to 4 mL. Obtained.
  • Example 20 Conductive particles, conductive materials, and connecting structures were prepared in the same manner as in Example 18 except that resin particles having an average particle diameter of 1.08 ⁇ m were used and the amount of magnetic fluid to be added was changed to 2 mL. Obtained.
  • Example 21 The reducing agent used to prepare the conductive portion was changed from dimethylamine borane to sodium hypophosphite, and the concentration was further changed to 2.6 mol / L.
  • the phosphorus content in the Ni plating film obtained at this time was 12% by weight.
  • the metal type of the conductive part was changed to Ni-P / Au. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 18 except that these were changed.
  • the obtained Ni—P / Au layer lost its function as a magnetic material.
  • Example 22 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 21 except that the metal type of the conductive portion was changed to Ni-P / Pd.
  • Example 23 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 21 except that the metal type of the conductive portion was changed to Ni-P / Ag.
  • Example 24 The amount of 5% by weight polyvinyl alcohol aqueous solution to be added was changed from 490 parts by weight to 200 parts by weight, the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight, and the amount of magnetic inclusion resin particles charged.
  • conductive particles, a conductive material and a connecting structure were obtained, except that 10 parts by weight was changed to 15 parts by weight.
  • Example 25 The amount of 5% by weight polyvinyl alcohol aqueous solution to be added was changed from 490 parts by weight to 100 parts by weight, the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight, and the amount of magnetic inclusion resin particles charged.
  • conductive particles, a conductive material and a connecting structure were obtained, except that 10 parts by weight was changed to 15 parts by weight.
  • Example 26 The amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight, and after the catalytic treatment, 1 g of nickel particle slurry (average particle diameter 100 nm) was added to the above dispersion liquid over 3 minutes, and the core material was added. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that a suspension containing the adhered magnetic inclusion resin particles was obtained.
  • Example 27 Conductive particles were obtained in the same manner as in Example 1 except that the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight. Using these conductive particles, conductive particles with insulating particles were produced as follows.
  • the monomer composition comprises 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of parastyryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2'-azobis ⁇ 2- [N- (2). -Carboxyethyl) Amidino] Propane ⁇ Contains 1 mmol. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles (average particle diameter 360 nm) having a phosphorus atom derived from parastilyl diethylphosphine on the surface.
  • Example 28 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 27, except that Ni particles (average particle diameter of 100 nm) were attached to the resin particles at the time of producing the conductive particles.
  • Example 29 When the conductive layer was prepared, a mixed solution of copper sulfate 200 g / L, ethylenediaminetetraacetic acid 150 g / L, sodium gluconate 100 g / L, and formaldehyde 50 g / L was adjusted to pH 10.5 with ammonia. A plating solution was prepared. While stirring the suspension at 65 ° C., a copper plating solution was added dropwise to perform electroless copper plating. Then, the particles were taken out by filtration, washed with water, and dried to obtain conductive particles having a copper layer. Except for this, conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1.
  • Example 30 A tin plating solution was prepared in which a mixed solution containing 15 g / L of tin sulfate, 45 g / L of ethylenediaminetetraacetic acid and 1.5 g / L of phosphinic acid was adjusted to pH 8.5 with sodium hydroxide. Further, a reducing solution was prepared in which a solution containing 5 g / L of sodium borohydride was adjusted to pH 10.0 with sodium hydroxide. The tin plating solution was dropped, electroless tin plating was performed, and then the solution was reduced with a reducing solution. Then, the particles were taken out by filtration, washed with water, and dried to obtain conductive particles having a tin layer. Except for this, conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1.
  • Example 31 Conductive particles, conductive materials, and connecting structures were prepared in the same manner as in Example 30, except that the amount of iron (II) chloride tetrahydrate to be added was changed from 2 parts by weight to 0.5 parts by weight. Obtained.
  • Example 32 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 18 except that Cu plating was performed when forming the conductive layer.
  • Example 33 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 18 except that tin plating was performed when forming the conductive layer.
  • Example 34 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 33, except that the ultrasonic waves were not dispersed after the addition of the magnetic fluid.
  • Comparative Example 3 A conductive material and a connecting structure were obtained in the same manner as in Comparative Example 1 except that nickel fine particles (average particle diameter 3.0 ⁇ m, coefficient of variation 20%) were used as the conductive particles.
  • Comparative Example 4 The nickel fine particles used in Comparative Example 3 were Au-plated. A conductive material and a connecting structure were obtained in the same manner as in Comparative Example 1 except that the Au-plated nickel fine particles were used as the conductive particles.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of the particle size of the coefficient of variation Dn: Average value of the particle size of the coefficient of variation
  • FE-TEM electric field radiation transmission electron microscope
  • the content of the magnetic substance contained in the resin particles in 100% by volume or 100% by volume of the resin particles is (A3), (B3), (C3), (D). ) (Volume%), Content (A4), (B4), (C4), (E) (% by volume): In 100% by volume or 100% by weight of the conductive particles, of the magnetic material contained in the conductive particles Content
  • connection resistance value (between the upper and lower electrodes)
  • Connection resistance is 2.0 ⁇ or less ⁇ : Connection resistance is more than 2.0 ⁇ and 5.0 ⁇ or less ⁇ : Connection resistance is more than 5.0 ⁇ and 10 ⁇ or less ⁇ : Connection resistance is more than 10 ⁇
  • connection resistance value was measured with a tester to see if there was a leak between adjacent electrodes, and the resistance value was 10. The ratio of connection structures with 8 ⁇ or less was evaluated as the short circuit occurrence rate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are conductive particles that can increase saturation magnetization and reduce remanent magnetization, and can increase conduction reliability when electrically connecting electrodes. Each conductive particle according to the present invention comprises a resin particle and a conductive part disposed on an outer side of an outer surface of the resin particle, and also comprises a magnetic body part including a magnetic body disposed between the resin particle and the conductive part, and a ratio of the remanent magnetization to the saturation magnetization in the conductive particle is 0.4 or less (configuration A), or the conductive part comprises a magnetic body, and the ratio of the remanent magnetization to the saturation magnetization in the conductive particle is 0.4 or less (configuration B), or the resin particle comprises a magnetic body (configuration C).

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive materials and connecting structures
 本発明は、電極間の電気的な接続等に用いることができる導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles that can be used for electrical connection between electrodes and the like. The present invention also relates to a conductive material and a connecting structure using the above conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電部とを有する導電性粒子が用いられることがある。 Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the anisotropic conductive material, the conductive particles are dispersed in the binder resin. Further, as the conductive particles, conductive particles having a base material particles and a conductive portion arranged on the surface of the base material particles may be used.
 上記異方性導電材料は、各種の接続構造体を得るために用いられている。上記異方性導電材料を用いる接続としては、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The anisotropic conductive material is used to obtain various connection structures. Connections using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip. And the connection between the glass substrate and the glass substrate (COG (Chip on Glass)), and the connection between the flexible printed circuit board and the glass epoxy substrate (FOB (Film on Board)) and the like.
 また、上記導電性粒子として、下記の特許文献1,2に示すように、磁性を有する導電性粒子が用いられることがある。 Further, as the conductive particles, as shown in the following Patent Documents 1 and 2, magnetic conductive particles may be used.
 下記の特許文献1には、上記磁性を有する導電性粒子として、少なくとも一部が磁性材料から構成されており、磁化し得る磁性導電粒子が記載されている。また、特許文献1には、該磁性導電粒子として、金/ニッケル被覆樹脂粒子、ニッケル被覆樹脂粒子、ニッケル金属粒子、リン元素含有ニッケル被覆樹脂粒子等が記載されている。 The following Patent Document 1 describes, as the above-mentioned magnetic conductive particles, magnetic conductive particles that are at least partially composed of a magnetic material and can be magnetized. Further, Patent Document 1 describes gold / nickel-coated resin particles, nickel-coated resin particles, nickel metal particles, phosphorus element-containing nickel-coated resin particles, and the like as the magnetic conductive particles.
 下記の特許文献2には、母粒子と、該母粒子の表面を被覆する絶縁性子粒子とを備える導電粒子が開示されている。上記母粒子は、プラスチック核体、及び該プラスチック核体の表面を被覆するめっき層を有する。上記めっき層は、ニッケル/リン合金層を有する。上記母粒子の粒子径は2.0μm以上3.0μm以下であり、上記母粒子の飽和磁化は45emu/cm以下であり、上記絶縁性子粒子の粒子径は180nm以上500nm以下である。 Patent Document 2 below discloses conductive particles including mother particles and insulating child particles that cover the surface of the mother particles. The mother particle has a plastic nuclei and a plating layer that covers the surface of the plastic nuclei. The plating layer has a nickel / phosphorus alloy layer. The particle size of the mother particle is 2.0 μm or more and 3.0 μm or less, the saturation magnetization of the mother particle is 45 emu / cm 3 or less, and the particle size of the insulating child particle is 180 nm or more and 500 nm or less.
特開2012-069255号公報Japanese Unexamined Patent Publication No. 2012-06925 特開2013-258138号公報Japanese Unexamined Patent Publication No. 2013-258138
 導電性粒子として、磁性を有する導電性粒子が用いられることがある。しかしながら、特許文献1,2に記載のような従来の導電性粒子では、飽和磁化を高くすることと、残留磁化を低くすることとの双方の特性を発揮させることは困難である。 As the conductive particles, magnetic conductive particles may be used. However, with the conventional conductive particles as described in Patent Documents 1 and 2, it is difficult to exhibit both the characteristics of increasing the saturation magnetization and decreasing the residual magnetization.
 飽和磁化が低い導電性粒子では、例えば、磁場によって、導電性粒子を接続されるべき上下方向の電極間に良好に配列させることが困難である。 For conductive particles with low saturation magnetization, it is difficult to arrange the conductive particles well between the electrodes in the vertical direction to which they should be connected, for example, by a magnetic field.
 また、残留磁化が高い導電性粒子では、例えば、導電性粒子の磁性凝集が生じやすい。 Further, with conductive particles having a high residual magnetization, for example, magnetic aggregation of the conductive particles is likely to occur.
 さらに、従来の磁性を有する導電性粒子では、導電性粒子の粒子径の変動係数(CV値)を小さくすることは困難である。導電性粒子の粒子径の変動係数が大きい場合には、接続されてはならない横方向の電極間で短絡が発生することがあり、特にファインピッチ化された電極間では短絡が発生しやすい。 Furthermore, it is difficult to reduce the coefficient of variation (CV value) of the particle size of the conductive particles with the conventional conductive particles having magnetism. When the coefficient of variation of the particle size of the conductive particles is large, a short circuit may occur between the lateral electrodes that should not be connected, and a short circuit is likely to occur particularly between the electrodes having a fine pitch.
 本発明の目的は、飽和磁化を高くすることができ、かつ残留磁化を低くすることができ、更に電極間を電気的に接続した場合に、導通信頼性を高めることができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles capable of increasing saturation magnetization, decreasing residual magnetization, and further increasing conduction reliability when the electrodes are electrically connected. It is to be. Another object of the present invention is to provide a conductive material and a connecting structure using the above conductive particles.
 本発明の広い局面によれば、樹脂粒子と、前記樹脂粒子の外表面の外側に配置された導電部とを備え、以下の構成A、構成B、又は構成Cを備える、導電性粒子が提供される。 According to a broad aspect of the present invention, there is provided a conductive particle comprising a resin particle and a conductive portion arranged outside the outer surface of the resin particle, and having the following constitution A, structure B, or structure C. Will be done.
 構成A:前記樹脂粒子と前記導電部との間に配置された磁性体を含む磁性体部を備え、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。
 構成B:前記導電部が磁性体を含み、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。
 構成C:前記樹脂粒子が磁性体を含む。
Configuration A: A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
Configuration B: The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
Configuration C: The resin particles contain a magnetic substance.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記構成Aを備える。 In certain aspects of the conductive particles according to the present invention, the conductive particles include the configuration A.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記構成Bを備える。 In a specific aspect of the conductive particles according to the present invention, the conductive particles include the configuration B.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記構成Cを備える。 In certain aspects of the conductive particles according to the present invention, the conductive particles include the configuration C.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子100体積%中、前記導電性粒子に含まれる磁性体の含有量が、5体積%以上85体積%以下である。 In a specific aspect of the conductive particles according to the present invention, the content of the magnetic substance contained in the conductive particles is 5% by volume or more and 85% by volume or less in 100% by volume of the conductive particles.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子100重量%中、前記導電性粒子に含まれる磁性体の含有量が、10重量%以上99重量%以下である。 In a specific aspect of the conductive particles according to the present invention, the content of the magnetic substance contained in the conductive particles is 10% by weight or more and 99% by weight or less in 100% by weight of the conductive particles.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子の粒子径が、0.1μm以上1000μm以下である。 In a specific aspect of the conductive particles according to the present invention, the particle size of the conductive particles is 0.1 μm or more and 1000 μm or less.
 本発明に係る導電性粒子のある特定の局面では、前記磁性体が、金属又は金属酸化物である。 In certain aspects of the conductive particles according to the present invention, the magnetic material is a metal or a metal oxide.
 本発明に係る導電性粒子のある特定の局面では、前記磁性体が、鉄、コバルト、フェライト、ニッケル又はそれらの合金を含む。 In certain aspects of the conductive particles according to the present invention, the magnetic material comprises iron, cobalt, ferrite, nickel or an alloy thereof.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面上に配置された絶縁性物質をさらに備える。 In certain aspects of the conductive particles according to the present invention, the conductive particles further include an insulating substance disposed on the outer surface of the conductive portion.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面に突起を有する。 In a specific aspect of the conductive particles according to the present invention, the conductive particles have protrusions on the outer surface of the conductive portion.
 本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 According to a broad aspect of the present invention, a conductive material including the above-mentioned conductive particles and a binder resin is provided.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は、導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した導電性粒子であり、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder resin. Provided is a connection structure in which the conductive particles are the above-mentioned conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
 本発明に係る導電性粒子は、樹脂粒子と、上記樹脂粒子の外表面の外側に配置された導電部とを備え、以下の構成A、構成B、又は構成Cを備える。構成A:上記樹脂粒子と上記導電部との間に配置された磁性体を含む磁性体部を備え、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。構成B:上記導電部が磁性体を含み、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。構成C:上記樹脂粒子が磁性体を含む。本発明に係る導電性粒子では、上記の構成が備えられているので、飽和磁化を高くすることができ、かつ残留磁化を低くすることができ、更に電極間を電気的に接続した場合に、導通信頼性を高めることができる。 The conductive particles according to the present invention include resin particles and a conductive portion arranged on the outside of the outer surface of the resin particles, and have the following configurations A, B, or C. Configuration A: A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less. Configuration B: The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less. Configuration C: The resin particles contain a magnetic substance. Since the conductive particles according to the present invention have the above-mentioned structure, the saturation magnetization can be increased, the residual magnetization can be decreased, and the electrodes are electrically connected to each other. Conduction reliability can be improved.
図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the conductive particles according to the fifth embodiment of the present invention. 図6は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (導電性粒子)
 本発明に係る導電性粒子は、樹脂粒子と、上記樹脂粒子の外表面の外側に配置された導電部とを備え、以下の構成A、構成B、又は構成Cを備える。
(Conductive particles)
The conductive particles according to the present invention include resin particles and a conductive portion arranged outside the outer surface of the resin particles, and include the following configurations A, B, or C.
 構成A:上記樹脂粒子と上記導電部との間に配置された磁性体を含む磁性体部を備え、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。
 構成B:上記導電部が磁性体を含み、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。
 構成C:上記樹脂粒子が磁性体を含む。
Configuration A: A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
Configuration B: The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
Configuration C: The resin particles contain a magnetic substance.
 本発明に係る導電性粒子では、上記の構成が備えられているので、飽和磁化を高くすることができ、かつ残留磁化を低くすることができ、更に電極間を電気的に接続した場合に、導通信頼性を高めることができる。 Since the conductive particles according to the present invention have the above-mentioned structure, the saturation magnetization can be increased, the residual magnetization can be decreased, and the electrodes are electrically connected to each other. Conduction reliability can be improved.
 本発明に係る導電性粒子では、飽和磁化を高くすることができるので、粘度の高い導電材料であっても、磁場によって、該導電材料に含まれる導電性粒子を接続されるべき上下方向の電極間に良好に配列させることができる。 Since the conductive particles according to the present invention can have a high saturation magnetization, even if the conductive material has a high viscosity, a vertical electrode to which the conductive particles contained in the conductive material should be connected by a magnetic field. It can be arranged well in between.
 また、本発明に係る導電性粒子では、残留磁化を低くすることができるので、導電性粒子の磁性凝集を効果的に抑えることができる。 Further, in the conductive particles according to the present invention, the residual magnetization can be lowered, so that the magnetic aggregation of the conductive particles can be effectively suppressed.
 また、本発明に係る導電性粒子では、導通信頼性を高めることができる。本発明に係る導電性粒子では、電極間を電気的に接続した場合に、接続されるべき上下方向の電極間の接続抵抗を効果的に低くすることができ、かつ、接続されてはならない横方向の電極間の絶縁信頼性を高めることができる。 Further, the conductive particles according to the present invention can enhance the conduction reliability. In the conductive particles according to the present invention, when the electrodes are electrically connected, the connection resistance between the electrodes in the vertical direction to be connected can be effectively reduced, and the lateral electrodes must not be connected. The insulation reliability between the electrodes in the direction can be improved.
 本発明に係る導電性粒子は、上記構成A、上記構成B及び上記構成Cのうちの少なくとも1つの構成を備える。本発明に係る導電性粒子は、上記構成Aのみを備えていてもよく、上記構成Bのみを備えていてもよく、上記構成Cのみを備えていてもよい。本発明に係る導電性粒子は、上記構成A、上記構成B及び上記構成Cのうちの少なくとも2つの構成を備えていてもよい。本発明に係る導電性粒子は、上記構成Aと上記構成Bとを備えていてもよく、上記構成Bと上記構成Cとを備えていてもよく、上記構成Aと上記構成Cとを備えていてもよい。本発明に係る導電性粒子は、上記構成Aと上記構成Bと上記構成Cとを備えていてもよい。 The conductive particles according to the present invention have at least one of the above-mentioned constitution A, the above-mentioned structure B, and the above-mentioned structure C. The conductive particles according to the present invention may have only the above-mentioned structure A, may have only the above-mentioned structure B, or may have only the above-mentioned structure C. The conductive particles according to the present invention may have at least two configurations of the above-mentioned constitution A, the above-mentioned structure B, and the above-mentioned structure C. The conductive particles according to the present invention may have the above-mentioned structure A and the above-mentioned structure B, may have the above-mentioned structure B and the above-mentioned structure C, and may have the above-mentioned structure A and the above-mentioned structure C. You may. The conductive particles according to the present invention may have the above-mentioned structure A, the above-mentioned structure B, and the above-mentioned structure C.
 上記構成A又は上記構成Bを備える導電性粒子では、導電性粒子における残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)は0.4以下である。上記比(残留磁化/飽和磁化)が0.4を超えると、磁性凝集が生じやすくなったり、導通信頼性が低下したりすることがある。 In the conductive particles having the above configuration A or the above configuration B, the ratio (residual magnetization / saturation magnetization) of the residual magnetization in the conductive particles to the saturated magnetization is 0.4 or less. If the above ratio (residual magnetization / saturation magnetization) exceeds 0.4, magnetic aggregation may easily occur or conduction reliability may decrease.
 上記構成A又は上記構成Bを備える導電性粒子において、残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)は、好ましくは0.3以下、より好ましくは0.1未満、更に好ましくは0.05未満である。上記比(残留磁化/飽和磁化)が上記上限以下又は上記上限未満であると、磁性凝集をより一層効果的に抑えることができ、また、導通信頼性をより一層高めることができる。上記構成A又は上記構成Bを備える導電性粒子において、残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)は、0.01以上であってもよい。 In the conductive particles having the above configuration A or the above configuration B, the ratio of the residual magnetization to the saturation magnetization (residual magnetization / saturation magnetization) is preferably 0.3 or less, more preferably less than 0.1, and further preferably 0. It is less than 05. When the ratio (residual magnetization / saturation magnetization) is equal to or less than the upper limit or less than the upper limit, magnetic aggregation can be suppressed more effectively, and conduction reliability can be further improved. In the conductive particles having the above-mentioned structure A or the above-mentioned structure B, the ratio of the residual magnetization to the saturation magnetization (residual magnetization / saturation magnetization) may be 0.01 or more.
 上記構成Cを備える導電性粒子において、残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)は、好ましくは0.4以下、より好ましくは0.3以下、更に好ましくは0.1未満、特に好ましくは0.05未満である。上記比(残留磁化/飽和磁化)が上記上限以下又は上記上限未満であると、磁性凝集をより一層効果的に抑えることができ、また、導通信頼性をより一層高めることができる。上記構成Cを備える導電性粒子において、残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)は、0.01以上であってもよい。 In the conductive particles having the above configuration C, the ratio of the residual magnetization to the saturation magnetization (residual magnetization / saturation magnetization) is preferably 0.4 or less, more preferably 0.3 or less, still more preferably less than 0.1, particularly. It is preferably less than 0.05. When the ratio (residual magnetization / saturation magnetization) is equal to or less than the upper limit or less than the upper limit, magnetic aggregation can be suppressed more effectively, and conduction reliability can be further improved. In the conductive particles having the above configuration C, the ratio of the residual magnetization to the saturation magnetization (residual magnetization / saturation magnetization) may be 0.01 or more.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子の残留磁化は、好ましくは2.0emu/g未満、より好ましくは1.8emu/g以下、更に好ましくは1.5emu/g以下、特に好ましくは1.2emu/g未満である。上記導電性粒子の残留磁化は、0.5emu/g以上であってもよく、1.0emu/g以上であってもよい。 From the viewpoint of more effectively exerting the effect of the present invention, the residual magnetization of the conductive particles is preferably less than 2.0 emu / g, more preferably 1.8 emu / g or less, still more preferably 1.5 emu. It is less than / g, particularly preferably less than 1.2 emu / g. The residual magnetization of the conductive particles may be 0.5 emu / g or more, or 1.0 emu / g or more.
 本発明の効果をより一層効果的に発揮する観点からは、上記導電性粒子の飽和磁化は、好ましくは15emu/g以上、より好ましくは20emu/g以上、更に好ましくは25emu/g以上、特に好ましくは30emu/g以上である。上記導電性粒子の飽和磁化は、50emu/g以下であってもよい。 From the viewpoint of more effectively exerting the effect of the present invention, the saturation magnetization of the conductive particles is preferably 15 emu / g or more, more preferably 20 emu / g or more, still more preferably 25 emu / g or more, and particularly preferably. Is 30 emu / g or more. The saturation magnetization of the conductive particles may be 50 emu / g or less.
 上記導電性粒子の残留磁化及び飽和磁化は、磁気特性測定装置(例えば、日本カンタム・デザイン社製「MPMS2」)を用いて測定することができる。具体的には、以下のようにして測定することができる。 The residual magnetization and saturation magnetization of the conductive particles can be measured using a magnetic property measuring device (for example, "MPMS2" manufactured by Japan Quantum Design Co., Ltd.). Specifically, it can be measured as follows.
 導電性粒子をカプセルに秤量し、サンプルホルダーに取り付ける。該サンプルホルダーを装置本体に設置し、温度25℃(定温)、最大印加磁界10kOe条件下での測定により、磁化曲線を得る。得られた磁化曲線から残留磁化及び飽和磁化(emu/g)を求める。 Weigh the conductive particles into capsules and attach them to the sample holder. The sample holder is installed in the main body of the apparatus, and a magnetization curve is obtained by measurement under the conditions of a temperature of 25 ° C. (constant temperature) and a maximum applied magnetic field of 10 kOe. The residual magnetization and saturation magnetization (emu / g) are obtained from the obtained magnetization curve.
 上記導電性粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、更に好ましくは50μm以下、更に一層好ましくは20μm以下、特に好ましくは10μm以下である。上記導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が樹脂粒子の表面から剥離し難くなる。また、上記導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に用いることができる。 The particle size of the conductive particles is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, still more. It is preferably 20 μm or less, and particularly preferably 10 μm or less. When the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductivity is increased. It becomes difficult to form agglomerated conductive particles when forming a portion. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles. Further, when the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than the spherical shape, it is assumed to be a true sphere corresponding to the volume thereof. Means the diameter of.
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記導電性粒子の粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、粒度分布測定装置を用いて算出することが好ましい。 The particle size of the conductive particles is preferably an average particle size, more preferably a number average particle size. For the particle size of the conductive particles, observe 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculate the average value of the particle size of each conductive particle, or use a particle size distribution measuring device. Desired. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of each conductive particle is determined as the particle size in the equivalent diameter of a sphere. The particle size of the conductive particles is preferably calculated using a particle size distribution measuring device.
 上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。上記導電性粒子の粒子径の変動係数(CV値)は、1%以上であってもよい。 The coefficient of variation (CV value) of the particle size of the conductive particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less. When the coefficient of variation of the particle size of the conductive particles is not more than the upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved. The coefficient of variation (CV value) of the particle size of the conductive particles may be 1% or more.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of conductive particles Dn: Average value of particle size of conductive particles
 上記導電性粒子の10%K値(10%圧縮したときの圧縮弾性率)は、好ましくは100N/mm以上、より好ましくは1000N/mm以上であり、好ましくは25000N/mm以下、より好ましくは20000N/mm以下である。上記導電性粒子の10%K値が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子の割れの発生をより一層効果的に抑制することができ、電極間の接続信頼性をより一層効果的に高めることができる。 10% K value of the conductive particles (compression modulus of when compressed by 10%) is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 25000N / mm 2 or less, more It is preferably 20000 N / mm 2 or less. When the 10% K value of the conductive particles is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be lowered more effectively, and the occurrence of cracking of the conductive particles is even more effective. It is possible to further effectively improve the connection reliability between the electrodes.
 上記導電性粒子の30%K値(30%圧縮したときの圧縮弾性率)は、好ましくは100N/mm以上、より好ましくは1000N/mm以上であり、好ましくは15000N/mm以下、より好ましくは10000N/mm以下である。上記導電性粒子の30%K値が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子の割れの発生をより一層効果的に抑制することができ、電極間の接続信頼性をより一層効果的に高めることができる。 30% K value of the conductive particles (compression modulus of when compressed 30%) is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 15000 N / mm 2 or less, more It is preferably 10000 N / mm 2 or less. When the 30% K value of the conductive particles is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be lowered more effectively, and the occurrence of cracking of the conductive particles is even more effective. It is possible to further effectively improve the connection reliability between the electrodes.
 上記導電性粒子の10%K値の、上記導電性粒子の30%K値に対する比(導電性粒子の10%K値/導電性粒子の30%K値)は、好ましくは1.5以上、より好ましくは1.55以上であり、好ましくは5以下、より好ましくは4.5以下である。上記比(導電性粒子の10%K値/導電性粒子の30%K値)が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子の割れの発生をより一層効果的に抑制することができ、電極間の接続信頼性をより一層効果的に高めることができる。 The ratio of the 10% K value of the conductive particles to the 30% K value of the conductive particles (10% K value of the conductive particles / 30% K value of the conductive particles) is preferably 1.5 or more. It is more preferably 1.55 or more, preferably 5 or less, and more preferably 4.5 or less. When the above ratio (10% K value of conductive particles / 30% K value of conductive particles) is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be further effectively lowered. The occurrence of cracking of the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be further effectively improved.
 上記導電性粒子における上記10%K値及び上記30%K値は、以下のようにして測定できる。 The 10% K value and the 30% K value in the conductive particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で導電性粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値及び30%K値)を下記式により求めることができる。上記微小圧縮試験機としては、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記導電性粒子における上記10%K値及び上記30%K値は、任意に選択された50個の導電性粒子の10%K値及び30%K値を算術平均することにより、算出することが好ましい。 Using a microcompression tester, compress one conductive particle on a smooth indenter end face of a cylinder (diameter 100 μm, made of diamond) under the conditions of 25 ° C., compression speed 0.3 mN / sec, and maximum test load 20 mN. .. At this time, the load value (N) and the compressive displacement (mm) are measured. From the obtained measured values, the compressive elastic modulus (10% K value and 30% K value) can be obtained by the following formula. As the microcompression tester, "Fisherscope H-100" manufactured by Fisher Co., Ltd. is used. The 10% K value and the 30% K value in the conductive particles can be calculated by arithmetically averaging the 10% K value and the 30% K value of 50 arbitrarily selected conductive particles. preferable.
 10%K値及び30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:導電性粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子の半径(mm)
10% K value and 30% K value (N / mm 2 ) = (3/2 1/2 ) ・ F ・ S -3/2・ R- 1 / 2
F: Load value (N) when the conductive particles are compressed and deformed by 10% or 30%.
S: Compressive displacement (mm) when conductive particles are compressed and deformed by 10% or 30%
R: Radius of conductive particles (mm)
 上記圧縮弾性率は、導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、導電性粒子の硬さを定量的かつ一義的に表すことができる。また、上記比(導電性粒子の10%K値/導電性粒子の30%K値)は、導電性粒子の初期圧縮時の物性を定量的かつ一義的に表すことができる。 The compressive elastic modulus universally and quantitatively represents the hardness of the conductive particles. By using the compressive elastic modulus, the hardness of the conductive particles can be quantitatively and uniquely expressed. Further, the above ratio (10% K value of the conductive particles / 30% K value of the conductive particles) can quantitatively and uniquely represent the physical properties of the conductive particles at the time of initial compression.
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the conductive particles is not particularly limited. The shape of the conductive particles may be spherical, non-spherical, flat or the like.
 図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、上記構成Aを備える導電性粒子である。導電性粒子1は、樹脂粒子2と、導電部3と、磁性体部4とを有する。磁性体部4は、磁性体を含む。導電部3は、樹脂粒子2の外表面の外側に配置されている。磁性体部4は、樹脂粒子2と導電部3との間に配置されている。したがって、導電性粒子1では、樹脂粒子2の外表面上に磁性体部4が配置されており、磁性体部4の外表面上に導電部3が配置されている。導電部3は、単層の導電層である。磁性体部4は、単層の磁性層である。なお、上記導電性粒子では、上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。また、上記導電性粒子では、上記磁性体部は、単層の磁性層であってもよく、2層以上の層から構成される多層の磁性層であってもよい。 The conductive particles 1 shown in FIG. 1 are conductive particles having the above configuration A. The conductive particle 1 has a resin particle 2, a conductive portion 3, and a magnetic material portion 4. The magnetic material portion 4 contains a magnetic material. The conductive portion 3 is arranged on the outside of the outer surface of the resin particles 2. The magnetic material portion 4 is arranged between the resin particles 2 and the conductive portion 3. Therefore, in the conductive particles 1, the magnetic material portion 4 is arranged on the outer surface of the resin particles 2, and the conductive material portion 3 is arranged on the outer surface of the magnetic material portion 4. The conductive portion 3 is a single conductive layer. The magnetic material portion 4 is a single-layer magnetic layer. In the conductive particles, the conductive portion may be a single conductive layer or a multilayer conductive layer composed of two or more layers. Further, in the conductive particles, the magnetic material portion may be a single magnetic layer or a multi-layered magnetic layer composed of two or more layers.
 図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子1Aは、上記構成Bを備える導電性粒子である。導電性粒子1Aは、樹脂粒子2Aと、導電部3Aとを有する。導電部3Aは、磁性体を含む。導電部3Aは、樹脂粒子2Aの外表面上に配置されている。導電部3Aは、単層の導電層である。導電部3Aは、単層の磁性層である。上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。 The conductive particles 1A shown in FIG. 2 are conductive particles having the above configuration B. The conductive particles 1A have resin particles 2A and a conductive portion 3A. The conductive portion 3A contains a magnetic material. The conductive portion 3A is arranged on the outer surface of the resin particles 2A. The conductive portion 3A is a single conductive layer. The conductive portion 3A is a single magnetic layer. The conductive portion may be a single-layer conductive layer, or may be a multi-layered conductive layer composed of two or more layers.
 図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention.
 図3に示す導電性粒子1Bは、上記構成Cを備える導電性粒子である。導電性粒子1Bは、樹脂粒子2Bと、導電部3Bとを有する。樹脂粒子2Bは、磁性体4Bを含む。樹脂粒子2Bは、磁性体4Bを内包している。樹脂粒子2Bと、磁性体4Bとにより、磁性体内包樹脂粒子が構成されている。導電部3Bは、樹脂粒子2Bの外表面上に配置されている。 The conductive particles 1B shown in FIG. 3 are conductive particles having the above configuration C. The conductive particles 1B have resin particles 2B and a conductive portion 3B. The resin particles 2B include a magnetic material 4B. The resin particles 2B contain a magnetic material 4B. The resin particles 2B and the magnetic material 4B constitute magnetic inclusion resin particles. The conductive portion 3B is arranged on the outer surface of the resin particles 2B.
 図4は、本発明の第4の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention.
 図4に示す導電性粒子1Cは、上記構成Cを備える導電性粒子である。導電性粒子1Cは、樹脂粒子2Cと、導電部3Cと、複数の芯物質5と、複数の絶縁性物質6とを有する。樹脂粒子2Cは、磁性体4Cを含む。樹脂粒子2Cは、磁性体4Cを内包している。樹脂粒子2Cと、磁性体4Cとにより、磁性体内包樹脂粒子が構成されている。導電部3Cは、樹脂粒子2Cの外表面上に樹脂粒子2Cに接するように配置されている。上記導電性粒子では、上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。 The conductive particles 1C shown in FIG. 4 are conductive particles having the above configuration C. The conductive particles 1C have resin particles 2C, a conductive portion 3C, a plurality of core substances 5, and a plurality of insulating substances 6. The resin particles 2C include a magnetic material 4C. The resin particles 2C contain a magnetic material 4C. The resin particles 2C and the magnetic material 4C constitute magnetic inclusion resin particles. The conductive portion 3C is arranged on the outer surface of the resin particles 2C so as to be in contact with the resin particles 2C. In the conductive particles, the conductive portion may be a single conductive layer or a multilayer conductive layer composed of two or more layers.
 導電性粒子1Cは導電性の表面に、複数の突起1Caを有する。導電部3Cは外表面に、複数の突起3Caを有する。複数の芯物質5が、樹脂粒子2Cの表面上に配置されている。複数の芯物質5は、導電部3C内に埋め込まれている。芯物質5は、突起1Ca,3Caの内側に配置されている。導電部3Cは、複数の芯物質5を被覆している。複数の芯物質5により導電部3Cの外表面が***されており、突起1Ca,3Caが形成されている。 The conductive particles 1C have a plurality of protrusions 1Ca on the conductive surface. The conductive portion 3C has a plurality of protrusions 3Ca on the outer surface. A plurality of core substances 5 are arranged on the surface of the resin particles 2C. The plurality of core substances 5 are embedded in the conductive portion 3C. The core substance 5 is arranged inside the protrusions 1Ca and 3Ca. The conductive portion 3C covers a plurality of core substances 5. The outer surface of the conductive portion 3C is raised by the plurality of core substances 5, and the protrusions 1Ca and 3Ca are formed.
 導電性粒子1Cは、導電部3Cの外表面上に配置された絶縁性物質6を有する。導電部3Cの外表面の少なくとも一部の領域が、絶縁性物質6により被覆されている。絶縁性物質6は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電部の外表面上に配置された絶縁性物質を有していてもよい。但し、本発明に係る導電性粒子は、絶縁性物質を必ずしも有していなくてもよい。 The conductive particles 1C have an insulating substance 6 arranged on the outer surface of the conductive portion 3C. At least a part of the outer surface of the conductive portion 3C is covered with the insulating substance 6. The insulating substance 6 is formed of an insulating material and is an insulating particle. As described above, the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention do not necessarily have an insulating substance.
 図5は、本発明の第5の実施形態に係る導電性粒子を示す断面図である。 FIG. 5 is a cross-sectional view showing conductive particles according to a fifth embodiment of the present invention.
 図5に示す導電性粒子1Dは、上記構成Aを備える導電性粒子である。導電性粒子1Dは、樹脂粒子2Dと、導電部3Dと、磁性体部4Dと、複数の芯物質5と、複数の絶縁性物質6とを有する。 The conductive particles 1D shown in FIG. 5 are conductive particles having the above configuration A. The conductive particle 1D has a resin particle 2D, a conductive portion 3D, a magnetic material portion 4D, a plurality of core substances 5, and a plurality of insulating substances 6.
 導電部3Dは、樹脂粒子2Dの外表面の外側に配置されている。磁性体部4Dは、樹脂粒子2Dと導電部3Dとの間に配置されている。したがって、導電性粒子1Dでは、樹脂粒子2Dの外表面上に磁性体部4Dが配置されており、磁性体部4Dの外表面上に導電部3Dが配置されている。導電部3Dは、単層の導電層である。磁性体部4Dは、単層の磁性層である。なお、上記導電性粒子では、上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。また、上記導電性粒子では、上記磁性体部は、単層の磁性層であってもよく、2層以上の層から構成される多層の磁性層であってもよい。 The conductive portion 3D is arranged on the outside of the outer surface of the resin particles 2D. The magnetic material portion 4D is arranged between the resin particles 2D and the conductive portion 3D. Therefore, in the conductive particles 1D, the magnetic material portion 4D is arranged on the outer surface of the resin particles 2D, and the conductive portion 3D is arranged on the outer surface of the magnetic material portion 4D. The conductive portion 3D is a single conductive layer. The magnetic material portion 4D is a single-layer magnetic layer. In the conductive particles, the conductive portion may be a single conductive layer or a multilayer conductive layer composed of two or more layers. Further, in the conductive particles, the magnetic material portion may be a single magnetic layer or a multi-layered magnetic layer composed of two or more layers.
 導電性粒子1Dは導電性の表面に、複数の突起1Daを有する。導電部3Dは外表面に、複数の突起3Daを有する。磁性体部4Dは外表面に、複数の突起4Daを有する。複数の芯物質5が、樹脂粒子2Dの表面上に配置されている。複数の芯物質5は、導電部3D内及び磁性体部4D内に埋め込まれている。芯物質5は、突起1Da,3Da,4Daの内側に配置されている。磁性体部4Dは、複数の芯物質5を被覆している。複数の芯物質5により導電部3D及び磁性体部4Dの外表面が***されており、突起1Da,3Da,4Daが形成されている。 The conductive particles 1D have a plurality of protrusions 1Da on the conductive surface. The conductive portion 3D has a plurality of protrusions 3Da on the outer surface. The magnetic material portion 4D has a plurality of protrusions 4Da on the outer surface. A plurality of core substances 5 are arranged on the surface of the resin particles 2D. The plurality of core substances 5 are embedded in the conductive portion 3D and the magnetic material portion 4D. The core material 5 is arranged inside the protrusions 1Da, 3Da, 4Da. The magnetic material portion 4D covers a plurality of core substances 5. The outer surfaces of the conductive portion 3D and the magnetic body portion 4D are raised by the plurality of core substances 5, and protrusions 1Da, 3Da, and 4Da are formed.
 導電性粒子1Dは、導電部3Dの外表面上に配置された絶縁性物質6を有する。導電部3Dの外表面の少なくとも一部の領域が、絶縁性物質6により被覆されている。絶縁性物質6は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電部の外表面上に配置された絶縁性物質を有していてもよい。但し、本発明に係る導電性粒子は、絶縁性物質を必ずしも有していなくてもよい。 The conductive particles 1D have an insulating substance 6 arranged on the outer surface of the conductive portion 3D. At least a part of the outer surface of the conductive portion 3D is covered with the insulating substance 6. The insulating substance 6 is formed of an insulating material and is an insulating particle. As described above, the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention do not necessarily have an insulating substance.
 以下、導電性粒子の他の詳細について説明する。 Hereinafter, other details of the conductive particles will be described.
 なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。 In the present specification, "(meth) acrylate" means one or both of "acrylate" and "methacrylate", and "(meth) acrylic" means one or both of "acrylic" and "methacrylic". means.
 (樹脂粒子)
 上記樹脂粒子の材料として、従来公知の有機材料が挙げられる。
(Resin particles)
Examples of the material of the resin particles include conventionally known organic materials.
 上記有機材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン共重合体等が挙げられる。上記ジビニルベンゼン共重合体としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。 Examples of the organic material include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine. Formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Examples thereof include a polyether ether ketone, a polyether sulfone, a divinylbenzene polymer, and a divinylbenzene copolymer. Examples of the divinylbenzene copolymer include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer.
 圧縮特性を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Since the compression characteristics can be easily controlled in a suitable range, the material of the resin particles is preferably a polymer obtained by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group.
 上記樹脂粒子は、上記エチレン性不飽和基を有する重合性単量体を重合させることによって得ることができる。上記の重合方法としては特に限定されず、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法が挙げられる。また、他の重合方法としては、ラジカル重合開始剤の存在下での懸濁重合が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group. The above polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation), addition condensation, living polymerization, and living radical polymerization. Further, as another polymerization method, suspension polymerization in the presence of a radical polymerization initiator can be mentioned.
 上記樹脂粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、更に好ましくは20μm以下、更に一層好ましくは10μm以下、特に好ましくは3μm以下である。上記樹脂粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性をより一層高めることができ、導電性粒子を介して接続された電極間の接続抵抗をより一層低くすることができる。さらに、樹脂粒子の表面に導電部又は磁性体部を無電解めっきにより形成する際に、凝集した導電性粒子を形成され難くすることができる。上記樹脂粒子の粒子径が上記上限以下であると、導電性粒子が十分に圧縮されやすく、電極間の接続抵抗をより一層低くすることができ、さらに電極間の間隔をより小さくすることができる。 The particle size of the resin particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 100 μm or less, still more preferably 20 μm or less, and further. It is more preferably 10 μm or less, and particularly preferably 3 μm or less. When the particle diameter of the resin particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes becomes large, so that the conduction reliability between the electrodes can be further improved, and the conductive particles can be obtained. The connection resistance between the electrodes connected via the electrodes can be further reduced. Further, when the conductive portion or the magnetic material portion is formed on the surface of the resin particles by electroless plating, it is possible to make it difficult for the aggregated conductive particles to be formed. When the particle size of the resin particles is not more than the above upper limit, the conductive particles are easily sufficiently compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further reduced. ..
 上記樹脂粒子の粒子径は、上記樹脂粒子が真球状である場合には直径を意味し、上記樹脂粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the resin particles means a diameter when the resin particles are spherical, and when the resin particles have a shape other than the spherical shape, it is assumed to be a true sphere corresponding to the volume thereof. Means diameter.
 上記樹脂粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記樹脂粒子の粒子径は、任意の樹脂粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各樹脂粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの樹脂粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の樹脂粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの樹脂粒子の粒子径は、球相当径での粒子径として求められる。上記樹脂粒子の粒子径は、粒度分布測定装置を用いて算出することが好ましい。導電性粒子において、上記樹脂粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the resin particles is preferably an average particle size, more preferably a number average particle size. The particle size of the resin particles can be obtained by observing 50 arbitrary resin particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each resin particle, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each resin particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 resin particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of each resin particle is obtained as the particle size in the equivalent diameter of a sphere. The particle size of the resin particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the resin particles in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子を含む検査用埋め込み樹脂体を作製する。上記検査用埋め込み樹脂体中に分散した導電性粒子における樹脂粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子における樹脂粒子を観察する。各導電性粒子における樹脂粒子の粒子径を計測し、それらを算術平均して樹脂粒子の粒子径とする。 Add to "Technobit 4000" manufactured by Kulzer so that the content of the conductive particles is 30% by weight, and disperse the particles to prepare an embedded resin body for inspection containing the conductive particles. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the resin particles in the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 25,000 times, 50 conductive particles are randomly selected, and the resin particles in each conductive particle are observed. .. The particle size of the resin particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the resin particles.
 上記樹脂粒子の粒子径の変動係数(CV値)は、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下である。上記樹脂粒子の粒子径の変動係数が上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。上記樹脂粒子の粒子径の変動係数(CV値)は、1%以上であってもよい。 The coefficient of variation (CV value) of the particle size of the resin particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less. When the coefficient of variation of the particle size of the resin particles is not more than the upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved. The coefficient of variation (CV value) of the particle size of the resin particles may be 1% or more.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:樹脂粒子の粒子径の標準偏差
 Dn:樹脂粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of the particle size of the resin particles Dn: Average value of the particle size of the resin particles
 (導電部及び磁性体)
 上記導電性粒子は、上記樹脂粒子の外表面の外側に配置された導電部を備える。また、上記導電性粒子は、上記樹脂粒子と上記導電部との間に配置された磁性体を含む磁性体部を備えるか(構成A)、上記導電部が磁性体を含むか(構成B)、又は、上記樹脂粒子が磁性体を含む(構成C)。
(Conductive part and magnetic material)
The conductive particles include a conductive portion arranged on the outside of the outer surface of the resin particles. Further, whether the conductive particles include a magnetic material portion containing a magnetic material arranged between the resin particles and the conductive portion (Structure A), or whether the conductive portion contains a magnetic material (Structure B). Or, the resin particles contain a magnetic substance (Structure C).
 なお、上記導電性粒子が上記構成A又は上記構成Cを備える場合に、上記導電部は磁性体を含んでいてもよい。上記導電性粒子が上記構成Aを備える場合に、上記導電部は磁性体を含むことが好ましい。上記導電性粒子が上記構成Cを備える場合に、上記導電部は磁性体を含むことが好ましい。すなわち、上記導電性粒子は、上記構成Aと上記構成Bとを備えることが好ましく、上記構成Bと上記構成Cとを備えることが好ましい。 When the conductive particles have the above-mentioned configuration A or the above-mentioned configuration C, the conductive portion may contain a magnetic material. When the conductive particles have the configuration A, the conductive portion preferably contains a magnetic material. When the conductive particles have the configuration C, it is preferable that the conductive portion contains a magnetic material. That is, the conductive particles preferably include the above-mentioned structure A and the above-mentioned structure B, and preferably include the above-mentioned structure B and the above-mentioned structure C.
 上記導電性粒子が上記構成Aと上記構成Bとを備える場合に、磁性体部に含まれる磁性体と、導電部に含まれる磁性体とは、同一であってもよく、異なっていてもよい。 When the conductive particles include the above-mentioned configuration A and the above-mentioned configuration B, the magnetic material contained in the magnetic material portion and the magnetic material contained in the conductive portion may be the same or different. ..
 上記導電性粒子が上記構成Bと上記構成Cとを備える場合に、樹脂粒子に含まれる磁性体と、導電部に含まれる磁性体とは、同一であってもよく、異なっていてもよい。 When the conductive particles include the above-mentioned configuration B and the above-mentioned configuration C, the magnetic material contained in the resin particles and the magnetic material contained in the conductive portion may be the same or different.
 上記導電部は金属を含むことが好ましい。また、上記導電部は金属以外の物質を含んでいてもよい。以下、上記導電部が含む金属を便宜上、「導電部を構成する金属」と称することがある。また、「導電部を構成する金属」には、該金属の化合物、例えば、該金属の酸化物なども含まれることとする。上記導電部を構成する金属は特に限定されないが、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記導電部を構成する金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。上記導電部を構成する金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The conductive portion preferably contains a metal. Further, the conductive portion may contain a substance other than metal. Hereinafter, the metal contained in the conductive portion may be referred to as "metal constituting the conductive portion" for convenience. Further, the "metal constituting the conductive portion" also includes a compound of the metal, for example, an oxide of the metal. The metal constituting the conductive portion is not particularly limited, but gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, and germanium. , Cadmium, silicon, tungsten, molybdenum and alloys thereof. Examples of the metal constituting the conductive portion include tin-doped indium oxide (ITO) and solder. As the metal constituting the conductive portion, only one kind may be used, or two or more kinds may be used in combination.
 電極間の接続抵抗をより一層効果的に低くする観点からは、上記導電部は、ニッケル、金、パラジウム、銀又は銅を含むことが好ましく、ニッケル、金又はパラジウムを含むことがより好ましく、ニッケルを含むことが特に好ましい。 From the viewpoint of further effectively lowering the connection resistance between the electrodes, the conductive portion preferably contains nickel, gold, palladium, silver or copper, more preferably nickel, gold or palladium, and nickel. Is particularly preferable.
 ニッケルを含む導電部100重量%中のニッケルの含有量は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有量は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよく、100重量%であってもよい。 The content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, and particularly preferably. Is 90% by weight or more. The content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, 98% by weight or more, 100%. It may be% by weight.
 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性物質を配置できる。 In many cases, hydroxyl groups are present on the surface of the conductive portion due to oxidation. Generally, a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation. An insulating substance can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.
 上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層を構成する金属は、金、ニッケル、パラジウム、銅又は錫と銀とを含む合金であることが好ましく、金であることがより好ましい。最外層を構成する金属がこれらの好ましい金属である場合には、電極間の接続抵抗がより一層低くなる。また、最外層を構成する金属が金である場合には、耐腐食性がより一層高くなる。最外層を構成する金属は、ニッケルであってもよい。 The conductive portion may be formed by one layer. The conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers. When the conductive portion is formed of a plurality of layers, the metal constituting the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferred. When the metal constituting the outermost layer is these preferable metals, the connection resistance between the electrodes is further lowered. Further, when the metal constituting the outermost layer is gold, the corrosion resistance is further improved. The metal constituting the outermost layer may be nickel.
 上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。上記導電部の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。 The thickness of the conductive portion is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, still more preferably 0.3 μm or less. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. Can be made to.
 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが上記下限以上及び上記上限以下であると、最外層の導電部が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗を十分に低くすることができる。 When the conductive portion is formed of a plurality of layers, the thickness of the conductive portion of the outermost layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably. Is 0.1 μm or less. When the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficiently lowered. be able to.
 上記導電部の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
 磁性体:
 上記磁性体は、金属又は金属酸化物であることが好ましく、強磁性体又は常磁性体であることがより好ましい。上記磁性体は、1種のみが用いられてもよく、2種以上併用されていてもよい。
Magnetic material:
The magnetic material is preferably a metal or a metal oxide, and more preferably a ferromagnetic material or a paramagnetic material. Only one kind of the above magnetic material may be used, or two or more kinds may be used in combination.
 上記磁性体としては、鉄、コバルト、ニッケル、ルテニウム、ランタノイド、及びフェライト等が挙げられる。上記フェライトとしては、マグへマイト(γFe)、及びMFeで表される化合物(MFe中、Mは、Co、Ni、Mn、Zn、Mg、Cu、Fe、Li0.5Fe0.5等)が挙げられる。上記磁性体は、合金であってもよい。上記合金としては、ニッケル-コバルト合金、コバルト-タングステン合金、鉄-白金合金、及び鉄-コバルト合金等が挙げられる。また、上記金属は、金属イオンであってもよい。 Examples of the magnetic material include iron, cobalt, nickel, ruthenium, lanthanoid, ferrite and the like. As the ferrite, chromite into mug (γFe 2 O 3), and MFe compounds represented by 2 O 4 (in MFe 2 O 4, M is, Co, Ni, Mn, Zn , Mg, Cu, Fe, Li 0.5 Fe 0.5 etc.). The magnetic material may be an alloy. Examples of the alloy include nickel-cobalt alloy, cobalt-tungsten alloy, iron-platinum alloy, iron-cobalt alloy and the like. Further, the metal may be a metal ion.
 集磁性をより一層高める観点からは、上記磁性体は、鉄、コバルト、フェライト、ニッケル又はそれらの合金を含むことが好ましく、鉄、コバルト、又はフェライトを含むことがより好ましく、鉄、コバルト、又は四酸化三鉄(Fe)を含むことが更に好ましい。 From the viewpoint of further enhancing the magnetic collection, the magnetic material preferably contains iron, cobalt, ferrite, nickel or an alloy thereof, more preferably iron, cobalt, or ferrite, and iron, cobalt, or iron. It is more preferable to contain triiron tetroxide (Fe 3 O 4).
 上記構成Aを備える導電性粒子において、上記樹脂粒子の含有量と、上記磁性体部の含有量との合計100体積%中、上記磁性体部に含まれる磁性体の含有量を含有量(A1)とする。上記含有量(A1)は、好ましくは3体積%以上、より好ましくは5体積%以上、より一層好ましくは10体積%以上、更に好ましくは15体積%以上、更により一層好ましくは18体積%以上、特に好ましくは20体積%以上、好ましくは45体積%以下、より好ましくは40体積%以下、更に好ましくは35体積%以下である。上記含有量(A1)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration A, the content of the magnetic material contained in the magnetic material portion is contained in the total 100% by volume of the content of the resin particles and the content of the magnetic material portion (A1). ). The content (A1) is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more. It is particularly preferably 20% by volume or more, preferably 45% by volume or less, more preferably 40% by volume or less, and further preferably 35% by volume or less. When the content (A1) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Aを備える導電性粒子において、上記樹脂粒子の含有量と、上記磁性体部の含有量との合計100重量%中、上記磁性体部に含まれる磁性体の含有量を含有量(A2)とする。上記含有量(A2)は、好ましくは10重量%以上、より好ましくは15重量%以上、より一層好ましくは30重量%以上、更に好ましくは40重量%以上、更により一層好ましくは45重量%以上、特に好ましくは50重量%以上、好ましくは80重量%以下、より好ましくは75重量%以下、更に好ましくは70重量%以下である。上記含有量(A2)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration A, the content of the magnetic material contained in the magnetic material portion is contained in 100% by weight of the total of the content of the resin particles and the content of the magnetic material portion (A2). ). The content (A2) is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 30% by weight or more, still more preferably 40% by weight or more, still more preferably 45% by weight or more. Particularly preferably 50% by weight or more, preferably 80% by weight or less, more preferably 75% by weight or less, still more preferably 70% by weight or less. When the content (A2) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Aを備える導電性粒子において、上記導電性粒子100体積%中、上記導電性粒子に含まれる磁性体の含有量を含有量(A3)とする。したがって、上記含有量(A3)では、導電性粒子が上記磁性体部以外の部分(例えば導電部又は樹脂粒子)に磁性体を含む場合には、これらも含む磁性体の含有量である。上記含有量(A3)は、好ましくは2体積%以上、より好ましくは5体積%以上、より一層好ましくは10体積%以上、更に好ましくは30体積%以上、更により一層好ましくは35体積%以上、特に好ましくは40体積%以上、好ましくは80体積%以下、より好ましくは75体積%以下、更に好ましくは70体積%以下である。上記含有量(A3)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration A, the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (A3). Therefore, in the above-mentioned content (A3), when the conductive particles contain the magnetic material in the portion other than the magnetic material portion (for example, the conductive portion or the resin particles), it is the content of the magnetic material including these. The content (A3) is preferably 2% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 30% by volume or more, still more preferably 35% by volume or more. Particularly preferably 40% by volume or more, preferably 80% by volume or less, more preferably 75% by volume or less, still more preferably 70% by volume or less. When the content (A3) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Aを備える導電性粒子において、上記導電性粒子100重量%中、上記導電性粒子に含まれる磁性体の含有量を含有量(A4)とする。したがって、上記含有量(A4)では、導電性粒子が上記磁性体部以外の部分(例えば導電部又は樹脂粒子)に磁性体を含む場合には、これらも含む磁性体の含有量である。上記含有量(A4)は、好ましくは3重量%以上、より好ましくは5重量%以上、より一層好ましくは10重量%以上、更に好ましくは50重量%以上、更により一層好ましくは70重量%以上、特に好ましくは75重量%以上、最も好ましくは80重量%以上、好ましくは97重量%以下、より好ましくは95重量%以下である。上記含有量(A4)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration A, the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (A4). Therefore, in the above content (A4), when the conductive particles contain a magnetic substance in a portion other than the magnetic substance portion (for example, the conductive portion or the resin particles), the content of the magnetic substance includes these as well. The content (A4) is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, still more preferably 50% by weight or more, still more preferably 70% by weight or more. It is particularly preferably 75% by weight or more, most preferably 80% by weight or more, preferably 97% by weight or less, and more preferably 95% by weight or less. When the content (A4) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Bを備える導電性粒子において、上記樹脂粒子の含有量と、上記導電部の含有量との合計100体積%中、上記導電部に含まれる磁性体の含有量を含有量(B1)とする。上記含有量(B1)は、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上、特に好ましくは10体積%以上、好ましくは60体積%以下、より好ましくは55体積%以下、更に好ましくは50体積%以下である。上記含有量(B1)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the configuration B, the content of the magnetic substance contained in the conductive portion is defined as the content (B1) in the total of 100% by volume of the content of the resin particles and the content of the conductive portion. do. The content (B1) is preferably 3% by volume or more, more preferably 5% by volume or more, further preferably 7% by volume or more, particularly preferably 10% by volume or more, preferably 60% by volume or less, and more preferably 55. By volume or less, more preferably 50% by volume or less. When the content (B1) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Bを備える導電性粒子において、上記樹脂粒子の含有量と、上記導電部の含有量との合計100重量%中、上記導電部に含まれる磁性体の含有量を含有量(B2)とする。上記含有量(B2)は、好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上、好ましくは98重量%以下、より好ましくは95重量%以下、更に好ましくは90重量%以下である。上記含有量(B2)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the configuration B, the content of the magnetic substance contained in the conductive portion is defined as the content (B2) in the total of 100% by weight of the content of the resin particles and the content of the conductive portion. do. The content (B2) is preferably 10% by weight or more, more preferably 15% by weight or more, further preferably 20% by weight or more, preferably 98% by weight or less, more preferably 95% by weight or less, still more preferably 90% by weight. It is less than% by weight. When the content (B2) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Bを備える導電性粒子において、上記導電性粒子100体積%中、上記導電性粒子に含まれる磁性体の含有量を含有量(B3)とする。したがって、上記含有量(B3)では、導電性粒子が上記導電部以外の部分(例えば磁性体部又は樹脂粒子)に磁性体を含む場合には、これらも含む磁性体の含有量である。上記含有量(B3)は、好ましくは2体積%以上、より好ましくは5体積%以上、より一層好ましくは10体積%以上、更に好ましくは15体積%以上、更により一層好ましくは18体積%以上、特に好ましくは20体積%以上、好ましくは95体積%以下、より好ましくは93体積%以下、更に好ましくは90体積%以下である。上記含有量(B3)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration B, the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (B3). Therefore, in the above-mentioned content (B3), when the conductive particles contain a magnetic material in a portion other than the above-mentioned conductive portion (for example, a magnetic material portion or a resin particle), it is the content of the magnetic material including these. The content (B3) is preferably 2% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more. It is particularly preferably 20% by volume or more, preferably 95% by volume or less, more preferably 93% by volume or less, and further preferably 90% by volume or less. When the content (B3) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Bを備える導電性粒子において、上記導電性粒子100重量%中、上記導電性粒子に含まれる磁性体の含有量を含有量(B4)とする。したがって、上記含有量(B4)では、導電性粒子が上記導電部以外の部分(例えば磁性体部又は樹脂粒子)に磁性体を含む場合には、これらも含む磁性体の含有量である。上記含有量(B4)は、好ましくは3重量%以上、より好ましくは7重量%以上、より一層好ましくは10重量%以上、更に好ましくは30重量%以上、更により一層好ましくは45重量%以上、特に好ましくは50重量%以上、最も好ましくは60重量%以上である。上記含有量(B4)は、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは97重量%以下である。上記含有量(B4)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration B, the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (B4). Therefore, in the above-mentioned content (B4), when the conductive particles contain a magnetic material in a portion other than the above-mentioned conductive portion (for example, a magnetic material portion or a resin particle), it is the content of the magnetic material including these. The content (B4) is preferably 3% by weight or more, more preferably 7% by weight or more, still more preferably 10% by weight or more, still more preferably 30% by weight or more, still more preferably 45% by weight or more. It is particularly preferably 50% by weight or more, and most preferably 60% by weight or more. The content (B4) is preferably 99% by weight or less, more preferably 98% by weight or less, and further preferably 97% by weight or less. When the content (B4) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Cを備える導電性粒子において、上記樹脂粒子の含有量100体積%中、上記樹脂粒子に含まれる磁性体の含有量を含有量(C1)とする。上記含有量(C1)は、好ましくは3体積%以上、より好ましくは5体積%以上、より一層好ましくは10体積%以上、更に好ましくは15体積%以上、更により一層好ましくは18体積%以上、特に好ましくは20体積%以上、好ましくは85体積%以下、より好ましくは80体積%以下である。上記含有量(C1)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration C, the content of the magnetic substance contained in the resin particles is defined as the content (C1) in the content of the resin particles of 100% by volume. The content (C1) is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more. It is particularly preferably 20% by volume or more, preferably 85% by volume or less, and more preferably 80% by volume or less. When the content (C1) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Cを備える導電性粒子において、上記樹脂粒子の含有量100重量%中、上記樹脂粒子に含まれる磁性体の含有量を含有量(C2)とする。上記含有量(C2)は、好ましくは10重量%以上、より好ましくは15重量%以上、より一層好ましくは20重量%以上、更に好ましくは40重量%以上、更により一層好ましくは45重量%以上、特に好ましくは50重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下、更に好ましくは95重量%以下である。上記含有量(C2)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration C, the content of the magnetic substance contained in the resin particles is defined as the content (C2) in the content of 100% by weight of the resin particles. The content (C2) is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, still more preferably 40% by weight or more, still more preferably 45% by weight or more. Particularly preferably 50% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less, still more preferably 95% by weight or less. When the content (C2) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Cを備える導電性粒子において、上記導電性粒子100体積%中、上記導電性粒子に含まれる磁性体の含有量を含有量(C3)とする。したがって、上記含有量(C3)では、導電性粒子が上記樹脂粒子以外の部分(例えば導電部又は磁性体部)に磁性体を含む場合には、これらも含む磁性体の含有量である。上記含有量(C3)は、好ましくは3体積%以上、より好ましくは7体積%以上、より一層好ましくは10体積%以上、更に好ましくは15体積%以上、更により一層好ましくは18体積%以上、特に好ましくは20体積%以上、好ましくは95体積%以下、より好ましくは90体積%以下、更に好ましくは88体積%以下である。上記含有量(C3)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration C, the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (C3). Therefore, in the above content (C3), when the conductive particles contain a magnetic substance in a portion other than the resin particles (for example, a conductive portion or a magnetic substance portion), the content is the content of the magnetic substance including these. The content (C3) is preferably 3% by volume or more, more preferably 7% by volume or more, still more preferably 10% by volume or more, still more preferably 15% by volume or more, still more preferably 18% by volume or more. It is particularly preferably 20% by volume or more, preferably 95% by volume or less, more preferably 90% by volume or less, and further preferably 88% by volume or less. When the content (C3) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記構成Cを備える導電性粒子において、上記導電性粒子100重量%中、上記導電性粒子に含まれる磁性体の含有量を含有量(C4)とする。したがって、上記含有量(C4)では、導電性粒子が上記樹脂粒子以外の部分(例えば導電部又は磁性体部)に磁性体を含む場合には、これらも含む磁性体の含有量である。上記含有量(C4)は、好ましくは3重量%以上、より好ましくは5重量%以上、より一層好ましくは10重量%以上、更に好ましくは30重量%以上、更により一層好ましくは60重量%以上、特に好ましくは65重量%以上、最も好ましくは70重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下である。上記含有量(C4)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles having the above configuration C, the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (C4). Therefore, in the above content (C4), when the conductive particles contain a magnetic substance in a portion other than the resin particles (for example, a conductive portion or a magnetic substance portion), the content is the content of the magnetic substance including these. The content (C4) is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, still more preferably 30% by weight or more, still more preferably 60% by weight or more. It is particularly preferably 65% by weight or more, most preferably 70% by weight or more, preferably 99% by weight or less, and more preferably 97% by weight or less. When the content (C4) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 導電性粒子において、上記導電性粒子100体積%中、上記導電性粒子に含まれる磁性体の含有量を含有量(D)とする。上記含有量(D)は、好ましくは3体積%以上、より好ましくは5体積%以上、より一層好ましくは10体積%以上、更に好ましくは25体積%以上、特に好ましくは50体積%以上、好ましくは85体積%以下である。上記含有量(D)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles, the content of the magnetic substance contained in the conductive particles in 100% by volume of the conductive particles is defined as the content (D). The content (D) is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more, still more preferably 25% by volume or more, particularly preferably 50% by volume or more, preferably 50% by volume or more. It is 85% by volume or less. When the content (D) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 導電性粒子において、上記導電性粒子100重量%中、上記導電性粒子に含まれる磁性体の含有量を含有量(E)とする。上記含有量(E)は、好ましくは5重量%以上、より好ましくは10重量%以上、より一層好ましくは15重量%以上、更に好ましくは25重量%以上、特に好ましくは40重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下である。上記含有量(E)が上記下限以上及び上記上限以下であると、集磁性をより一層高めることができる。 In the conductive particles, the content of the magnetic substance contained in the conductive particles in 100% by weight of the conductive particles is defined as the content (E). The content (E) is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 15% by weight or more, still more preferably 25% by weight or more, particularly preferably 40% by weight or more, preferably 40% by weight or more. It is 99% by weight or less, more preferably 97% by weight or less. When the content (E) is at least the above lower limit and at least the above upper limit, the magnetism collection can be further enhanced.
 上記含有量(A1)~(A4),(B1)~(B4),(C1)~(C4),(D),(E)は、ICP発光分析法により測定できる。具体的には、以下のようにして測定できる。 The contents (A1) to (A4), (B1) to (B4), (C1) to (C4), (D), and (E) can be measured by ICP emission spectrometry. Specifically, it can be measured as follows.
 塩酸等を用いて導電性粒子を完全に溶解し、導電性粒子に含まれる金属イオン量を定量する。定量された金属イオン量から、導電性粒子中に存在する磁性体の含有量(重量%)を計算する。また、磁性体の密度から、磁性体の体積を計算することができる。導電性粒子の断面の観察により測定される該導電性粒子の半径から導電性粒子の体積を算出し、磁性体の含有量(体積%及び重量%)を計算することができる。 The conductive particles are completely dissolved using hydrochloric acid or the like, and the amount of metal ions contained in the conductive particles is quantified. From the quantified amount of metal ions, the content (% by weight) of the magnetic substance present in the conductive particles is calculated. In addition, the volume of the magnetic material can be calculated from the density of the magnetic material. The volume of the conductive particles can be calculated from the radius of the conductive particles measured by observing the cross section of the conductive particles, and the content (% by volume and% by weight) of the magnetic substance can be calculated.
 上記構成Aを備える導電性粒子において、磁性体部は、連続層であってもよく、磁性体微粒子の集合体である凝集層であってもよい。上記構成Aを備える導電性粒子において、磁性体部は、磁性体微粒子の集合体である凝集層であることが好ましい。 In the conductive particles having the above configuration A, the magnetic material portion may be a continuous layer or an aggregate layer which is an aggregate of magnetic material fine particles. In the conductive particles having the above configuration A, the magnetic material portion is preferably an aggregate layer which is an aggregate of magnetic material fine particles.
 上記構成Aを備える導電性粒子において、上記磁性体微粒子の集合体である凝集層を構成する磁性体微粒子の一次平均粒子径は、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは5nm以上、好ましくは500nm以下、より好ましくは100nm以下、更に好ましくは50nm以下、特に好ましくは20nm以下である。 In the conductive particles having the above configuration A, the primary average particle diameter of the magnetic fine particles constituting the aggregate layer which is an aggregate of the magnetic fine particles is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more. It is preferably 500 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, and particularly preferably 20 nm or less.
 上記構成Cを備える導電性粒子において、磁性体の一次平均粒子径は、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは5nm以上、好ましくは500nm以下、より好ましくは100nm以下、更に好ましくは50nm以下、特に好ましくは20nm以下である。 In the conductive particles having the above configuration C, the primary average particle diameter of the magnetic material is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more, preferably 500 nm or less, still more preferably 100 nm or less, still more preferably. It is 50 nm or less, particularly preferably 20 nm or less.
 上記磁性体微粒子の一次平均粒径は、例えば、透過型電子顕微鏡(TEM)を用いて観察することにより測定できる。 The primary average particle size of the magnetic fine particles can be measured, for example, by observing with a transmission electron microscope (TEM).
 上記構成Aを備える導電性粒子が上記導電部に磁性体を含む場合、上記導電性粒子100重量%中、上記導電性粒子に含まれる導電部の含有量は、好ましくは15重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上、好ましくは95重量%以下、より好ましくは85重量%以下、更に好ましくは75重量%以下である。特に上記導電性粒子に含まれる導電部の含有量が上記下限以上及び上記上限以下であり、かつ、上記凝集層を構成する磁性体微粒子の一次平均粒子径が上記下限以上及び上記上限以下であると、残留磁化の飽和磁化に対する比を0.4以下に調整しやすい。すなわち、上記構成Aと上記構成Bとを備える導電性粒子を良好に得ることができる。 When the conductive particles having the configuration A contain a magnetic substance in the conductive portion, the content of the conductive portion contained in the conductive particles is preferably 15% by weight or more in 100% by weight of the conductive particles. It is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 95% by weight or less, more preferably 85% by weight or less, still more preferably 75% by weight or less. In particular, the content of the conductive portion contained in the conductive particles is equal to or higher than the lower limit and lower than the upper limit, and the primary average particle diameter of the magnetic fine particles constituting the aggregate layer is equal to or higher than the lower limit and lower than the upper limit. And, it is easy to adjust the ratio of the residual magnetization to the saturation magnetization to 0.4 or less. That is, the conductive particles having the above-mentioned structure A and the above-mentioned structure B can be satisfactorily obtained.
 上記構成Bを備える導電性粒子において、上記導電性粒子100重量%中、上記導電性粒子に含まれる導電部の含有量は、好ましくは15重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上、好ましくは95重量%以下、より好ましくは85重量%以下、更に好ましくは75重量%以下である。上記導電性粒子に含まれる導電部の含有量が上記下限以上及び上記上限以下であると、残留磁化の飽和磁化に対する比を0.4以下に調整しやすい。すなわち、上記構成Bを備える導電性粒子を良好に得ることができる。 In the conductive particles having the above configuration B, the content of the conductive portion contained in the conductive particles in 100% by weight of the conductive particles is preferably 15% by weight or more, more preferably 30% by weight or more, still more preferably. Is 40% by weight or more, preferably 95% by weight or less, more preferably 85% by weight or less, still more preferably 75% by weight or less. When the content of the conductive portion contained in the conductive particles is not less than the above lower limit and not more than the above upper limit, the ratio of the residual magnetization to the saturation magnetization can be easily adjusted to 0.4 or less. That is, the conductive particles having the above configuration B can be obtained satisfactorily.
 上記構成Cを備える導電性粒子が上記導電部に磁性体を含む場合、上記導電性粒子100重量%中、上記導電性粒子に含まれる導電部の含有量は、好ましくは15重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上、好ましくは95重量%以下、より好ましくは85重量%以下、更に好ましくは75重量%以下である。特に上記導電性粒子に含まれる導電部の含有量が上記下限以上及び上記上限以下であり、かつ、上記磁性体の一次平均粒子径が上記下限以上及び上記上限以下であると、残留磁化の飽和磁化に対する比を0.4以下調整しやすい。すなわち、上記構成Cと上記構成Bとを備える導電性粒子を良好に得ることができる。 When the conductive particles having the configuration C contain a magnetic substance in the conductive portion, the content of the conductive portion contained in the conductive particles is preferably 15% by weight or more in 100% by weight of the conductive particles. It is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 95% by weight or less, more preferably 85% by weight or less, still more preferably 75% by weight or less. In particular, when the content of the conductive portion contained in the conductive particles is equal to or higher than the lower limit and lower than the upper limit, and the primary average particle diameter of the magnetic material is equal to or higher than the lower limit and lower than the upper limit, the residual magnetization is saturated. It is easy to adjust the ratio to magnetization to 0.4 or less. That is, the conductive particles having the above-mentioned structure C and the above-mentioned structure B can be satisfactorily obtained.
 上記導電性粒子100重量%中、上記導電性粒子に含まれる導電部の含有量は、電界放射型透過電子顕微鏡(日本電子社製「JEM-2010FEF」)を用いたエネルギー分散型X線分析(EDX)及びICP発光分析法により測定できる。具体的には、以下のようにして測定できる。 The content of the conductive portion contained in the conductive particles in 100% by weight of the conductive particles is energy dispersive X-ray analysis using an electric field radiation transmission electron microscope (“JEM-2010FEF” manufactured by JEOL Ltd.). It can be measured by EDX) and ICP emission analysis method. Specifically, it can be measured as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子を含む検査用埋め込み樹脂体を作製する。上記検査用埋め込み樹脂体中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。電界放射型透過電子顕微鏡(日本電子社製「JEM-2010FEF」)を用いたエネルギー分散型X線分析(EDX)により、導電性粒子中の導電部に含まれる金属の分布と種類を測定することができる。 Conductive particles are added to "Technobit 4000" manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for inspection containing the conductive particles. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the dispersed conductive particles in the embedded resin body for inspection. To measure the distribution and type of metal contained in the conductive part in the conductive particles by energy dispersive X-ray analysis (EDX) using a field emission transmission electron microscope (“JEM-2010FEF” manufactured by JEOL Ltd.). Can be done.
 塩酸等を用いて導電性粒子を完全に溶解し、導電性粒子に含まれる金属イオン量を定量する。定量された金属イオン量から、導電性粒子中に存在する導電部の含有量(重量%)を計算する。また、導電部に含まれる金属の密度から、導電部の体積を計算することができる。導電性粒子の断面の観察により測定される該導電性粒子の半径から導電性粒子の体積を算出し、導電部の含有量(体積%及び重量%)を計算することができる。 The conductive particles are completely dissolved using hydrochloric acid or the like, and the amount of metal ions contained in the conductive particles is quantified. From the quantified amount of metal ions, the content (% by weight) of the conductive portion present in the conductive particles is calculated. Further, the volume of the conductive portion can be calculated from the density of the metal contained in the conductive portion. The volume of the conductive particles can be calculated from the radius of the conductive particles measured by observing the cross section of the conductive particles, and the content (volume% and weight%) of the conductive portion can be calculated.
 上記構成Aを備える導電性粒子において、上記磁性体部の厚みは、好ましくは0.05μm以上、より好ましくは0.1μm以上であり、好ましくは0.5μm以下、より好ましくは0.3μm以下、更に好ましくは0.2μm以下である。上記磁性体部の厚みが上記下限以上及び上記上限以下であると、十分な磁性能が得られ、本発明の効果をより一層効果的に発揮することができる。 In the conductive particles having the above configuration A, the thickness of the magnetic material portion is preferably 0.05 μm or more, more preferably 0.1 μm or more, preferably 0.5 μm or less, more preferably 0.3 μm or less. More preferably, it is 0.2 μm or less. When the thickness of the magnetic material portion is not less than the above lower limit and not more than the above upper limit, sufficient magnetic performance can be obtained and the effect of the present invention can be more effectively exhibited.
 上記磁性体部の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the magnetic material portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
 上記構成A又は上記構成Bを備える導電性粒子において、上記樹脂粒子の表面上に導電部又は磁性体部を形成する方法は特に限定されない。上記導電部又は上記磁性体部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを樹脂粒子の表面にコーティングする方法等が挙げられる。上記導電部又は上記磁性体部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 In the conductive particles having the above-mentioned configuration A or the above-mentioned configuration B, the method of forming the conductive portion or the magnetic material portion on the surface of the resin particles is not particularly limited. Examples of the method for forming the conductive portion or the magnetic material portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption. , And a method of coating the surface of the resin particles with a metal powder or a paste containing the metal powder and a binder. The method for forming the conductive portion or the magnetic material portion is preferably electroless plating, electroplating, or a method by physical collision. Examples of the method by physical vapor deposition include vacuum deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
 上記構成Cを備える導電性粒子において、上記磁性体は、上記樹脂粒子の内部に分散して存在していてもよく、層状に存在していてもよい。残留磁化を小さくする観点からは、上記構成Cを備える導電性粒子において、上記磁性体は、上記樹脂粒子の内部に分散して存在していることが好ましい。 In the conductive particles having the configuration C, the magnetic material may be dispersed inside the resin particles or may be present in layers. From the viewpoint of reducing the residual magnetization, it is preferable that the magnetic material is dispersed inside the resin particles in the conductive particles having the configuration C.
 例えば、多孔質構造を有する上記樹脂粒子と、上記磁性体とを混合し、該樹脂粒子の内部に該磁性体を導入することで、磁性体が内部に分散して存在する樹脂粒子を得ることができる。また、例えば、中実構造を有する上記樹脂粒子と上記磁性体を混合し、該樹脂粒子の外表面に該磁性体を被覆し、次いで該磁性体の外表面を樹脂で被覆することにより、磁性体が層状に存在する樹脂粒子を得ることができる。 For example, by mixing the resin particles having a porous structure with the magnetic material and introducing the magnetic material into the resin particles, resin particles in which the magnetic material is dispersed inside can be obtained. Can be done. Further, for example, the resin particles having a solid structure and the magnetic material are mixed, the outer surface of the resin particles is coated with the magnetic material, and then the outer surface of the magnetic material is coated with a resin to obtain magnetism. It is possible to obtain resin particles in which the body is present in layers.
 (芯物質)
 上記導電性粒子は、上記導電部の外表面に突起を有することが好ましい。上記導電性粒子は、導電性の表面に突起を有することが好ましい。上記突起は、複数であることが好ましい。上記導電性粒子は、上記突起を複数有することが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、導電性粒子が絶縁性物質を備える場合に、又は、導電性粒子がバインダー樹脂に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂をより一層効果的に排除できる。このため、電極間の接続抵抗をより一層低くすることができる。
(Core substance)
The conductive particles preferably have protrusions on the outer surface of the conductive portion. The conductive particles preferably have protrusions on the conductive surface. It is preferable that the number of the protrusions is plurality. The conductive particles preferably have a plurality of the protrusions. An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by arranging the conductive particles between the electrodes and crimping them. Therefore, the electrodes and the conductive portion come into contact with each other more reliably, and the connection resistance between the electrodes becomes even lower. Further, when the conductive particles include an insulating substance, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles between the conductive particles and the electrode. Insulating substances or binder resins can be eliminated even more effectively. Therefore, the connection resistance between the electrodes can be further reduced.
 上記突起を形成する方法としては、金属粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに金属粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。また、上記突起を形成するために、上記芯物質を用いなくてもよい。 As a method of forming the above-mentioned protrusions, a method of adhering a core material to the surface of metal particles and then forming a conductive portion by electroless plating, and a method of forming a conductive portion by electroless plating on the surface of metal particles are performed. Examples thereof include a method of adhering a core material and further forming a conductive portion by electroless plating. Further, it is not necessary to use the core substance in order to form the protrusions.
 上記突起を形成する他の方法としては、金属粒子の表面上に導電部を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、金属粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。 As another method for forming the above-mentioned protrusions, a method of adding a core substance in the middle of forming a conductive portion on the surface of the metal particles can be mentioned. Further, in order to form the protrusions, the conductive portion is formed on the metal particles by electroless plating without using the above-mentioned core material, and then the plating is deposited in the shape of protrusions on the surface of the conductive portion, and further by electroless plating. A method of forming a conductive portion or the like may be used.
 金属粒子の表面に芯物質を付着させる方法としては、金属粒子の分散液中に、芯物質を添加し、金属粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに金属粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により金属粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、金属粒子の表面に芯物質を付着させる方法は、分散液中の金属粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。 As a method of adhering the core substance to the surface of the metal particles, a method of adding the core substance to the dispersion liquid of the metal particles and accumulating and adhering the core substance on the surface of the metal particles by van der Waals force, and a method of adhering the core substance to the surface of the metal particles. Examples thereof include a method in which a core substance is added to a container containing metal particles and the core substance is attached to the surface of the metal particles by a mechanical action such as rotation of the container. From the viewpoint of controlling the amount of the core substance to be adhered, the method of adhering the core substance to the surface of the metal particles is preferably a method of accumulating and adhering the core substance to the surface of the metal particles in the dispersion liquid.
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。酸化被膜をより一層効果的に排除する観点からは、上記芯物質は硬い方が好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記芯物質は、金属であることが好ましい。 Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene and the like. Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of more effectively removing the oxide film, it is preferable that the core substance is hard. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the core material is preferably a metal.
 上記金属は特に限定されない。上記金属としては、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の接続抵抗をより一層効果的に低くする観点からは、上記金属は、ニッケル、銅、銀又は金であることが好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。上記金属は、上記金属粒子を構成する金属と同じであってもよく、異なっていてもよい。 The above metals are not particularly limited. Examples of the metals include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys. Examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy and tungsten carbide. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal constituting the conductive portion (conductive layer). The metal may be the same as or different from the metal constituting the metal particles.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core material is preferably lumpy. Examples of the core material include particulate lumps, agglomerates in which a plurality of fine particles are aggregated, and amorphous lumps.
 上記芯物質の粒子径は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の粒子径が上記下限以上及び上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The particle size of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, and more preferably 0.2 μm or less. When the particle size of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
 上記芯物質の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。芯物質の粒子径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの芯物質の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の芯物質の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの芯物質の粒子径は、球相当径での粒子径として求められる。上記芯物質の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。 The particle size of the core substance is preferably an average particle size, more preferably a number average particle size. The particle size of the core material can be obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope, calculating the average value of the particle size of each core material, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of the core material per piece is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core materials in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of the core substance per piece is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the core material is preferably calculated using a particle size distribution measuring device.
 上記導電性粒子1個当たりの上記突起の数は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。上記突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。上記突起の数が上記下限以上であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The number of the protrusions per one conductive particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of the protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles and the like. When the number of the protrusions is at least the above lower limit, the connection resistance between the electrodes can be further effectively lowered.
 上記突起の数は、任意の導電性粒子を電子顕微鏡又は光学顕微鏡にて観察して算出することができる。上記突起の数は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子における突起の数の平均値を算出することにより求めることが好ましい。 The number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope. The number of protrusions is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average value of the number of protrusions in each conductive particle.
 上記突起の高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The height of the protrusions is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, and more preferably 0.2 μm or less. When the height of the protrusion is not less than the lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively lowered.
 上記突起の高さは、任意の導電性粒子における突起を電子顕微鏡又は光学顕微鏡にて観察して算出することができる。上記突起の高さは、導電性粒子1個当たりのすべての突起の高さの平均値を1個の導電性粒子の突起の高さとして算出することが好ましい。上記突起の高さは、任意の導電性粒子50個について、各導電性粒子の突起の高さの平均値を算出することにより求めることが好ましい。 The height of the protrusions can be calculated by observing the protrusions on any conductive particle with an electron microscope or an optical microscope. The height of the protrusions is preferably calculated by calculating the average value of the heights of all the protrusions per conductive particle as the height of the protrusions of one conductive particle. The height of the protrusions is preferably obtained by calculating the average value of the heights of the protrusions of each conductive particle for 50 arbitrary conductive particles.
 (絶縁性物質)
 上記導電性粒子は、上記導電部の外表面上に配置された絶縁性物質を備えることが好ましい。この場合には、上記導電性粒子を電極間の接続に用いると、隣接する電極間の短絡をより一層効果的に防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。さらに、導電部の外表面に突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁性物質をより一層容易に排除できる。
(Insulating substance)
The conductive particles preferably include an insulating substance arranged on the outer surface of the conductive portion. In this case, if the conductive particles are used for the connection between the electrodes, a short circuit between the adjacent electrodes can be prevented more effectively. Specifically, when a plurality of conductive particles come into contact with each other, an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction instead of between the upper and lower electrodes. By pressurizing the conductive particles with the two electrodes at the time of connection between the electrodes, the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily removed. Further, in the case of the conductive particles having protrusions on the outer surface of the conductive portion, the insulating substance between the conductive portion of the conductive portion and the electrode can be more easily removed.
 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。 The insulating substance is preferably insulating particles because the insulating substance can be more easily removed during crimping between the electrodes.
 上記絶縁性物質の材料としては、上述した樹脂、及び無機物等が挙げられる。上記絶縁性物質の材料は、上記樹脂であることが好ましい。上記絶縁性物質の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the material of the insulating substance include the above-mentioned resin and inorganic substances. The material of the insulating substance is preferably the resin. As the material of the insulating substance, only one kind may be used, or two or more kinds may be used in combination.
 上記無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア、カーボンブラック、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス及びアルミナシリケートガラス等が挙げられる。 Examples of the above-mentioned inorganic substances include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass and alumina silicate glass.
 上記絶縁性物質の他の材料としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Other materials of the insulating substance include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, cross-linked products of thermoplastic resins, thermosetting resins and water-soluble materials. Examples include resin.
 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリドデシル(メタ)アクリレート及びポリステアリル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記熱可塑性樹脂の架橋物としては、ポリエチレングリコールメタクリレート、アルコキシ化トリメチロールプロパンメタクリレートやアルコキシ化ペンタエリスリトールメタクリレート等の導入が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。また、重合度の調整に、連鎖移動剤を使用してもよい。連鎖移動剤としては、チオールや四塩化炭素等が挙げられる。 Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin and the like. Examples of the crosslinked product of the thermoplastic resin include the introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like. Further, a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
 上記導電部の表面上に上記絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記導電部の表面上に上記絶縁性物質を配置する方法は、物理的方法であることが好ましい。 Examples of the method of arranging the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, an emulsion polymerization method and the like. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum vapor deposition. From the viewpoint of further effectively enhancing the insulation reliability and conduction reliability when the electrodes are electrically connected, the method of arranging the insulating substance on the surface of the conductive portion is a physical method. It is preferable to have.
 上記導電部の外表面、及び上記絶縁性物質の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記導電部の外表面と上記絶縁性物質の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性物質の外表面の官能基と化学結合していてもよい。 The outer surface of the conductive portion and the outer surface of the insulating substance may each be coated with a compound having a reactive functional group. The outer surface of the conductive portion and the outer surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group on the outer surface of the conductive portion, the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating substance via a polyelectrolyte such as polyethyleneimine.
 上記絶縁性物質が絶縁性粒子である場合、上記絶縁性粒子の粒子径は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは10nm以上、より好ましくは100nm以上、更に好ましくは300nm以上、特に好ましくは500nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、更に好ましくは1500nm以下、特に好ましくは1000nm以下である。絶縁性粒子の粒子径が上記下限以上であると導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電部同士が接触し難くなる。絶縁性粒子の粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 When the insulating substance is an insulating particle, the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle, the application of the conductive particle, and the like. The particle size of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, still more preferably 1500 nm or less. Particularly preferably, it is 1000 nm or less. When the particle size of the insulating particles is not more than the above lower limit, it becomes difficult for the conductive portions of the plurality of conductive particles to come into contact with each other when the conductive particles are dispersed in the binder resin. When the particle size of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating particles between the electrodes and the conductive particles at the time of connection between the electrodes, and the temperature is high. There is no need to heat it.
 上記絶縁性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各絶縁性粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの絶縁性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の絶縁性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの絶縁性粒子の粒子径は、球相当径での粒子径として求められる。上記絶縁性粒子の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。上記導電性粒子において、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the insulating particles is preferably an average particle size, and preferably a number average particle size. The particle size of the insulating particles can be obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each insulating particle, or using a particle size distribution measuring device. Be done. In observation with an electron microscope or an optical microscope, the particle size of the insulating particles per particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the particle size distribution measuring device, the particle size of each insulating particle is determined as the particle size at the equivalent sphere diameter. The average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the insulating particles in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子を含む検査用埋め込み樹脂体を作製する。上記検査用埋め込み樹脂体中に分散した導電性粒子における絶縁性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の絶縁性粒子を観察する。各導電性粒子における絶縁性粒子の粒子径を計測し、それらを算術平均して絶縁性粒子の粒子径とする。 Conductive particles are added to "Technobit 4000" manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for inspection containing the conductive particles. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the insulating particles in the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the insulating particles of each conductive particle were selected. Observe. The particle size of the insulating particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.
 上記導電性粒子の粒子径の、上記絶縁性粒子の粒子径に対する比(導電性粒子の粒子径/絶縁性粒子の粒子径)は、好ましくは4以上、より好ましくは8以上であり、好ましくは200以下、より好ましくは100以下である。上記比(導電性粒子の粒子径/絶縁性粒子の粒子径)が上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高めることができる。 The ratio of the particle diameter of the conductive particles to the particle diameter of the insulating particles (particle diameter of the conductive particles / particle diameter of the insulating particles) is preferably 4 or more, more preferably 8 or more, and preferably 8 or more. It is 200 or less, more preferably 100 or less. When the above ratio (particle size of conductive particles / particle size of insulating particles) is equal to or higher than the lower limit and lower than the upper limit, the insulation reliability and conduction reliability are further improved when the electrodes are electrically connected. Can be effectively enhanced.
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention includes the above-mentioned conductive particles and a binder resin. It is preferable that the conductive particles are dispersed in the binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is suitably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, elastomers and the like. Only one kind of the binder resin may be used, or two or more kinds thereof may be used in combination.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like. Examples of the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogen additives for styrene block copolymers and the like can be mentioned. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizing agent. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
 上記バインダー樹脂中に上記導電性粒子を分散させる方法として、従来公知の分散方法を用いることができる。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 As a method for dispersing the conductive particles in the binder resin, a conventionally known dispersion method can be used. Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded with a planetary mixer or the like to disperse the particles. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が上記下限以上及び上記上限以下であると、電極間の接続信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 The viscosity (η25) of the conductive material at 25 ° C. is preferably 30 Pa · s or more, more preferably 50 Pa · s or more, preferably 400 Pa · s or less, and more preferably 300 Pa · s or less. When the viscosity of the conductive material at 25 ° C. is equal to or higher than the lower limit and lower than the upper limit, the connection reliability between the electrodes can be further effectively improved. The viscosity (η25) can be appropriately adjusted depending on the type and amount of the compounding component.
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。 The conductive material can be used as a conductive paste, a conductive film, or the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further improved.
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、より一層好ましくは40重量%以下、更に好ましくは20重量%以下、特に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。 The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, and more preferably 60% by weight. % Or less, more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes can be further effectively reduced. Can be enhanced.
 (接続構造体及び接続構造体の製造方法)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部が、導電性粒子により形成されているか、又は、導電性粒子とバインダー樹脂とを含む導電材料により形成されており、上記導電性粒子が、上述した導電性粒子であり、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されている。
(Connection structure and manufacturing method of connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It includes a connecting portion that connects to the second connection target member. In the connection structure according to the present invention, the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and the binder resin, and the conductive particles are described above. It is a conductive particle, and the first electrode and the second electrode are electrically connected by the conductive particles.
 上記接続構造体は、上記第1の接続対象部材と上記第2の接続対象部材との間に、上記導電性粒子又は上記導電材料を配置する工程と、熱圧着することにより導電接続する工程とを経て、得ることができる。上記導電性粒子が上記絶縁性物質を有する場合には、上記熱圧着時に、上記絶縁性物質が上記導電性粒子から脱離することが好ましい。 The connection structure includes a step of arranging the conductive particles or the conductive material between the first connection target member and the second connection target member, and a step of conducting a conductive connection by thermocompression bonding. Can be obtained through. When the conductive particles have the insulating substance, it is preferable that the insulating substance is desorbed from the conductive particles at the time of thermocompression bonding.
 上記導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。即ち、上記第1の接続対象部材と上記第2の接続対象部材とが上記導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。 When the above conductive particles are used alone, the connecting portion itself is the conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles. The conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
 図6に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に正面断面図で示す。 FIG. 6 schematically shows a connection structure using conductive particles according to the first embodiment of the present invention in a front sectional view.
 図6に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図6では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1に代えて、導電性粒子1A,1B,1C,1D等の他の導電性粒子を用いてもよい。 The connection structure 51 shown in FIG. 6 has a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Be prepared. The connecting portion 54 is formed by curing a conductive material containing the conductive particles 1. In FIG. 6, the conductive particles 1 are shown schematically for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as the conductive particles 1A, 1B, 1C, and 1D may be used.
 上記接続構造体の製造方法は特に限定されない。上記接続構造体の製造方法は、以下の工程を備えることが好ましい。 The manufacturing method of the above connection structure is not particularly limited. The method for manufacturing the connection structure preferably includes the following steps.
 第1の電極を表面に有する第1の接続対象部材の表面上に、上述した導電性粒子を配置するか、又は上記導電性粒子とバインダー樹脂とを含む導電材料を配置する第1の配置工程。 The first placement step of arranging the above-mentioned conductive particles on the surface of the first connection target member having the first electrode on the surface, or arranging the conductive material containing the above-mentioned conductive particles and the binder resin. ..
 上記導電性粒子又は上記導電材料の上記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を配置する第2の配置工程。 A second arrangement step of arranging the second connection target member having the second electrode on the surface on the surface of the conductive particles or the conductive material opposite to the first connection target member side.
 上記第2の配置工程の前又は後に、磁界又は磁力を適用する工程。 A step of applying a magnetic field or a magnetic force before or after the second placement step.
 このようにして、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されている接続構造体を得ることができる。 In this way, it is possible to obtain a connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
 また、上記接続構造体の製造方法は、上記第2の配置工程後、かつ、上記磁界又は磁力を適用する工程の後、熱圧着工程が行われることが好ましい。上記第1の接続対象部材と、導電性粒子又は導電材料と、上記第2の接続対象部材との積層体を熱圧着することにより、接続信頼性に優れた接続構造体を得ることができる。 Further, in the method for manufacturing the connection structure, it is preferable that the thermocompression bonding step is performed after the second arrangement step and after the step of applying the magnetic field or the magnetic force. By thermocompression bonding the laminate of the first connection target member, the conductive particles or the conductive material, and the second connection target member, a connection structure having excellent connection reliability can be obtained.
 上記熱圧着の圧力は、好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記熱圧着の加熱の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。上記熱圧着の圧力及び温度が上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層高めることができる。また、上記導電性粒子が上記絶縁性粒子を有する場合には、導電接続時に導電性粒子の表面から絶縁性粒子が容易に脱離できる。 The thermocompression bonding pressure is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less. The heating temperature of the thermocompression bonding is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower. When the pressure and temperature of the thermocompression bonding are at least the above lower limit and at least the above upper limit, the conduction reliability and the insulation reliability between the electrodes can be further improved. Further, when the conductive particles have the insulating particles, the insulating particles can be easily desorbed from the surface of the conductive particles at the time of conductive connection.
 上記導電性粒子が上記絶縁性粒子を有する場合には、上記積層体を加熱及び加圧する際に、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子を排除することができる。例えば、上記加熱及び加圧の際には、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子が、上記導電性粒子の表面から容易に脱離する。なお、上記加熱及び加圧の際には、上記導電性粒子の表面から一部の上記絶縁性粒子が脱離して、上記導電部の表面が部分的に露出することがある。上記導電部の表面が露出した部分が、上記第1の電極及び上記第2の電極に接触することにより、上記導電性粒子を介して第1の電極と第2の電極とを電気的に接続することができる。 When the conductive particles have the insulating particles, they are present between the conductive particles and the first electrode and the second electrode when the laminated body is heated and pressurized. It is possible to eliminate the above-mentioned insulating particles. For example, during the heating and pressurization, the insulating particles existing between the conductive particles and the first electrode and the second electrode are removed from the surface of the conductive particles. Easily detached. During the heating and pressurization, some of the insulating particles may be separated from the surface of the conductive particles, and the surface of the conductive portion may be partially exposed. When the exposed surface of the conductive portion comes into contact with the first electrode and the second electrode, the first electrode and the second electrode are electrically connected via the conductive particles. can do.
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。 The first connection target member and the second connection target member are not particularly limited. Specific examples of the first connection target member and the second connection target member include semiconductor chips, semiconductor packages, LED chips, LED packages, electronic components such as capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards. The first connection target member and the second connection target member are preferably electronic components.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the connection target member is a flexible printed substrate, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
 (実施例1)
 (1)磁性体を含む樹脂粒子の作製
 種粒子として平均粒子径0.5μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
(Example 1)
(1) Preparation of Resin Particles Containing Magnetic Material Polystyrene particles having an average particle diameter of 0.5 μm were prepared as seed particles. A mixed solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
 次に、ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)50重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide (NOF Corporation). Manufactured by "NOF BW") 2 parts by weight was mixed. Further, 9 parts by weight of triethanolamine lauryl sulfate, 50 parts by weight of toluene (solvent), and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーにより膨潤した種粒子を含む懸濁液を得た。 The emulsion was added to the mixed solution in the separable flask and stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles swollen by the monomer.
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、平均粒子径2.72μmの樹脂粒子を得た。 Then, 490 parts by weight of a 5 wt% polyvinyl alcohol aqueous solution was added, and heating was started and reacted at 85 ° C. for 9 hours to obtain resin particles having an average particle diameter of 2.72 μm.
 撹拌子を入れた300mL容のビーカーに、得られた樹脂粒子1重量部、20%硫酸10重量部を秤量した後、200rpmで撹拌し、25℃で1時間反応させた。 After weighing 1 part by weight of the obtained resin particles and 10 parts by weight of 20% sulfuric acid in a 300 mL beaker containing a stirrer, the mixture was stirred at 200 rpm and reacted at 25 ° C. for 1 hour.
 その後、撹拌子を入れた200mLビーカーに、上記樹脂粒子1重量部、塩化鉄(II)・4水和物2重量部、及び蒸留水25mLを秤量した後、室温下で200rpm、1時間撹拌した。続いて、ろ過及び蒸留水にて洗浄し、鉄(II)イオンが複合化された粒子を得た。その後、上記粒子及び28%アンモニア水(ナカライテスク社製)4重量部を秤量し、超音波照射下、25℃で1時間反応させ、磁性体として酸化鉄を含む樹脂粒子(磁性体内包樹脂粒子)を得た。 Then, 1 part by weight of the above resin particles, 2 parts by weight of iron (II) chloride / tetrahydrate, and 25 mL of distilled water were weighed in a 200 mL beaker containing a stirrer, and then stirred at 200 rpm for 1 hour at room temperature. .. Subsequently, the particles were filtered and washed with distilled water to obtain particles in which iron (II) ions were complexed. Then, the above particles and 4 parts by weight of 28% aqueous ammonia (manufactured by Nacalai Tesque) were weighed and reacted at 25 ° C. for 1 hour under ultrasonic irradiation, and resin particles containing iron oxide as a magnetic substance (magnetic encapsulating resin particles). ) Was obtained.
 (2)導電性粒子の作製
 得られた磁性体を含む樹脂粒子(磁性体内包樹脂粒子)を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、磁性体内包樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、磁性体内包樹脂粒子を取り出した。次いで、磁性体内包樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、磁性体内包樹脂粒子の表面を活性化させた。表面が活性化された磁性体内包樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。
(2) Preparation of Conductive Particles The obtained resin particles (magnetic inclusion resin particles) containing a magnetic substance are washed and dried, and then the magnetic inclusion is encapsulated in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution. After dispersing 10 parts by weight of the resin particles using an ultrasonic disperser, the magnetic inclusion resin particles were taken out by filtering the solution. Next, the magnetic inclusion resin particles were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surface of the magnetic inclusion resin particles. After thoroughly washing the surface-activated magnetic inclusion resin particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a dispersion liquid.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
 得られた懸濁液を60℃にて撹拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、磁性体内包樹脂粒子の表面にニッケル-ボロン導電層が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60 ° C., the above nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Then, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer on the surface of the magnetic inclusion resin particles, and the conductive particles having a conductive portion on the surface are formed. Obtained.
 (3)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び撹拌することで、導電材料(異方性導電ペースト)を得た。
(3) Preparation of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolac type epoxy resin. A conductive material (anisotropic conductive paste) was obtained by blending a weight portion and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), defoaming and stirring for 3 minutes.
 (4)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極の表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極の表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。次に電極の上部から着磁処理を行った。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、85MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
(4) Preparation of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, Vickers hardness of metal on the surface of the electrode 100 Hv) having an L / S of 10 μm / 10 μm formed on the upper surface was prepared. Further, a semiconductor chip having an Au electrode pattern (second electrode, Vickers hardness of metal on the surface of the electrode 50 Hv) having an L / S of 10 μm / 10 μm formed on the lower surface was prepared. The obtained anisotropic conductive paste was applied onto the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other. Next, the magnetizing process was performed from the upper part of the electrode. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., the pressurized heating head is placed on the upper surface of the semiconductor chip, and a pressure of 85 MPa is applied to form the anisotropic conductive paste layer. It was cured at 100 ° C. to obtain a connection structure.
 (実施例2)
 導電部の金属種をNi-B/Auに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 2)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the metal type of the conductive portion was changed to Ni—B / Au.
 (実施例3)
 導電部の金属種をNi-B/Pdに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 3)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the metal type of the conductive portion was changed to Ni—B / Pd.
 (実施例4)
 導電部の金属種をNi-B/Agに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 4)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the metal type of the conductive portion was changed to Ni—B / Ag.
 (実施例5)
 導電部を作製する際の還元剤をジメチルアミンボランから次亜リン酸ナトリウムに変更し、さらにその濃度を2.6mol/Lに変更した。このとき得られたNiめっき被膜中のリンの含有量は12重量%であった。さらに導電部の金属種をNi-P/Auに変更した。これらを変更したこと以外は実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。なお、得られたNi-P/Au層は、磁性体としての機能を失っていた。
(Example 5)
The reducing agent used to prepare the conductive portion was changed from dimethylamine borane to sodium hypophosphite, and the concentration was further changed to 2.6 mol / L. The phosphorus content in the Ni plating film obtained at this time was 12% by weight. Furthermore, the metal type of the conductive part was changed to Ni-P / Au. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that these were changed. The obtained Ni—P / Au layer lost its function as a magnetic material.
 (実施例6)
 導電部の金属種をNi-P/Pdに変更したこと以外は、実施例5と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 6)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 5 except that the metal type of the conductive portion was changed to Ni-P / Pd.
 (実施例7)
 導電部の金属種をNi-P/Agに変更したこと以外は、実施例5と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 7)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 5 except that the metal type of the conductive portion was changed to Ni-P / Ag.
 (実施例8)
 添加する塩化鉄(II)・4水和物の量を2重量部から5重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 8)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride / tetrahydrate to be added was changed from 2 parts by weight to 5 parts by weight. ..
 (実施例9)
 添加する塩化鉄(II)・4水和物の量を2重量部から4重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 9)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride / tetrahydrate to be added was changed from 2 parts by weight to 4 parts by weight. ..
 (実施例10)
 添加する塩化鉄(II)・4水和物の量を2重量部から3重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 10)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride tetrahydrate to be added was changed from 2 parts by weight to 3 parts by weight. ..
 (実施例11)
 添加する塩化鉄(II)・4水和物の量を2重量部から1重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 11)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of iron (II) chloride / tetrahydrate to be added was changed from 2 parts by weight to 1 part by weight. ..
 (実施例12)
 添加する塩化鉄(II)・4水和物および28%アンモニア水を硫酸コバルト・7水和物およびジメチルアミンボランに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 12)
Conductive particles and conductive material in the same manner as in Example 1 except that the iron (II) chloride tetrahydrate and 28% aqueous ammonia to be added were changed to cobalt sulfate heptahydrate and dimethylamine borane. And a connection structure was obtained.
 (実施例13)
 添加する塩化鉄(II)・4水和物および28%アンモニア水を硫酸ニッケル・6水和物およびジメチルアミンボランに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 13)
Conductive particles and conductive material in the same manner as in Example 1 except that the iron (II) chloride tetrahydrate and 28% aqueous ammonia to be added were changed to nickel sulfate hexahydrate and dimethylamine borane. And a connection structure was obtained.
 (実施例14)
 添加する塩化鉄(II)・4水和物および28%アンモニア水を硫酸鉄・7水和物およびジメチルアミンボランに変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 14)
Conductive particles and conductive material in the same manner as in Example 1 except that the iron (II) chloride tetrahydrate and 28% aqueous ammonia to be added were changed to iron sulfate heptahydrate and dimethylamine borane. And a connection structure was obtained.
 (実施例15)
 添加するジビニルベンゼンの量を150重量部から50重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 15)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight.
 (実施例16)
 添加するジビニルベンゼンの量を150重量部から40重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 16)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of divinylbenzene to be added was changed from 150 parts by weight to 40 parts by weight.
 (実施例17)
 磁性体内包樹脂粒子の仕込み量を10重量部から15重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 17)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the amount of the magnetic inclusion resin particles charged was changed from 10 parts by weight to 15 parts by weight.
 (実施例18)
 (1)磁性体部を備える樹脂粒子の作製
 樹脂粒子の作製時の溶媒をトルエンからエタノールに変更したこと以外は、実施例1と同様にして、樹脂粒子を得た。また、得られた樹脂粒子の平均粒子径は2.75μmであった。次に樹脂粒子2.0gをイオン交換水40.0gに超音波に分散し、コア粒子分散液を得た。
(Example 18)
(1) Preparation of Resin Particles with Magnetic Material Parts Resin particles were obtained in the same manner as in Example 1 except that the solvent used for producing the resin particles was changed from toluene to ethanol. The average particle size of the obtained resin particles was 2.75 μm. Next, 2.0 g of the resin particles were ultrasonically dispersed in 40.0 g of ion-exchanged water to obtain a core particle dispersion.
 次いで、超音波照射下で撹拌しながら、磁性流体(フェローテック社製、磁性体としてFeを含む)8.0mLを加え、更に30分間超音波分散した。得られた分散液を濾過し、イオン交換水で洗浄し、磁性体部を備える樹脂粒子(磁性体部含有樹脂粒子)を得た。 Then, while stirring under ultrasonic irradiation, 8.0 mL of a magnetic fluid (manufactured by Fellow Tech, including Fe 3 O 4 as a magnetic substance) was added, and ultrasonic dispersion was performed for another 30 minutes. The obtained dispersion was filtered and washed with ion-exchanged water to obtain resin particles having a magnetic material portion (resin particles containing the magnetic material portion).
 (2)導電性粒子の作製
 得られた磁性体部含有樹脂粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、磁性体部含有樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、磁性体部含有樹脂粒子を取り出した。次いで、磁性体部含有樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、磁性体部含有樹脂粒子の表面を活性化させた。表面が活性化された磁性体部含有樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。
(2) Preparation of Conductive Particles After washing and drying the obtained magnetic material-containing resin particles, 10 parts by weight of the magnetic material-containing resin particles are added to 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution. After dispersing the particles using an ultrasonic disperser, the resin particles containing the magnetic material were taken out by filtering the solution. Next, the magnetic material-containing resin particles were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surface of the magnetic material-containing resin particles. After thoroughly washing the surface-activated magnetic substance-containing resin particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a dispersion liquid.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
 得られた懸濁液を60℃にて撹拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、磁性体部含有樹脂粒子の表面にニッケル-ボロン導電層が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60 ° C., the above nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Then, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer on the surface of the resin particles containing the magnetic substance portion, and the conductive particles having the conductive portion on the surface. Got
 (3)導電材料(異方性導電ペースト)の作製
 実施例1と同様にして、導電材料を得た。
(3) Preparation of Conductive Material (Anisotropic Conductive Paste) A conductive material was obtained in the same manner as in Example 1.
 (4)接続構造体の作製
 実施例1と同様にして、接続構造体を得た。
(4) Preparation of Connection Structure A connection structure was obtained in the same manner as in Example 1.
 (実施例19)
 平均粒子径が1.52μmである樹脂粒子を用いたこと、添加する磁性流体の量を4mLに変更したこと以外は、実施例18と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 19)
Conductive particles, conductive materials, and connecting structures were prepared in the same manner as in Example 18, except that resin particles having an average particle diameter of 1.52 μm were used and the amount of magnetic fluid to be added was changed to 4 mL. Obtained.
 (実施例20)
 平均粒子径が1.08μmである樹脂粒子を用いたこと、添加する磁性流体の量を2mLに変更したこと以外は、実施例18と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 20)
Conductive particles, conductive materials, and connecting structures were prepared in the same manner as in Example 18 except that resin particles having an average particle diameter of 1.08 μm were used and the amount of magnetic fluid to be added was changed to 2 mL. Obtained.
 (実施例21)
 導電部を作製する際の還元剤をジメチルアミンボランから次亜リン酸ナトリウムに変更し、さらにその濃度を2.6mol/Lに変更した。このとき得られたNiめっき被膜中のリンの含有量は12重量%であった。さらに導電部の金属種をNi-P/Auに変更した。これらを変更したこと以外は実施例18と同様にして、導電性粒子、導電材料及び接続構造体を得た。なお、得られたNi-P/Au層は、磁性体としての機能を失っていた。
(Example 21)
The reducing agent used to prepare the conductive portion was changed from dimethylamine borane to sodium hypophosphite, and the concentration was further changed to 2.6 mol / L. The phosphorus content in the Ni plating film obtained at this time was 12% by weight. Furthermore, the metal type of the conductive part was changed to Ni-P / Au. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 18 except that these were changed. The obtained Ni—P / Au layer lost its function as a magnetic material.
 (実施例22)
 導電部の金属種をNi-P/Pdに変更したこと以外は、実施例21と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 22)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 21 except that the metal type of the conductive portion was changed to Ni-P / Pd.
 (実施例23)
 導電部の金属種をNi-P/Agに変更したこと以外は、実施例21と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 23)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 21 except that the metal type of the conductive portion was changed to Ni-P / Ag.
 (実施例24)
 添加する5重量%ポリビニルアルコール水溶液の量を490重量部から200重量部に変更したこと、添加するジビニルベンゼンの量を150重量部から50重量部に変更したこと、磁性体内包樹脂粒子の仕込み量を10重量部から15重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 24)
The amount of 5% by weight polyvinyl alcohol aqueous solution to be added was changed from 490 parts by weight to 200 parts by weight, the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight, and the amount of magnetic inclusion resin particles charged. In the same manner as in Example 1, conductive particles, a conductive material and a connecting structure were obtained, except that 10 parts by weight was changed to 15 parts by weight.
 (実施例25)
 添加する5重量%ポリビニルアルコール水溶液の量を490重量部から100重量部に変更したこと、添加するジビニルベンゼンの量を150重量部から50重量部に変更したこと、磁性体内包樹脂粒子の仕込み量を10重量部から15重量部に変更したこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 25)
The amount of 5% by weight polyvinyl alcohol aqueous solution to be added was changed from 490 parts by weight to 100 parts by weight, the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight, and the amount of magnetic inclusion resin particles charged. In the same manner as in Example 1, conductive particles, a conductive material and a connecting structure were obtained, except that 10 parts by weight was changed to 15 parts by weight.
 (実施例26)
 添加するジビニルベンゼンの量を150重量部から50重量部に変更したこと、触媒化処理をした後にニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された磁性体内包樹脂粒子を含む懸濁液を得たこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 26)
The amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight, and after the catalytic treatment, 1 g of nickel particle slurry (average particle diameter 100 nm) was added to the above dispersion liquid over 3 minutes, and the core material was added. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that a suspension containing the adhered magnetic inclusion resin particles was obtained.
 (実施例27)
 添加するジビニルベンゼンの量を150重量部から50重量部に変更したこと以外は、実施例1と同様にして導電性粒子を得た。この導電性粒子を用いて、以下のようにして、絶縁性粒子付き導電性粒子を作製した。
(Example 27)
Conductive particles were obtained in the same manner as in Example 1 except that the amount of divinylbenzene to be added was changed from 150 parts by weight to 50 parts by weight. Using these conductive particles, conductive particles with insulating particles were produced as follows.
 (1)絶縁性粒子の作製
 4つ口セパラブルカバー、撹拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで撹拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(平均粒子径360nm)を得た。
(1) Preparation of Insulating Particles After putting the following monomer composition in a 1000 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe, the following monomer composition Distilled water was added so that the solid content was 10% by weight, the mixture was stirred at 200 rpm, and polymerization was carried out at 60 ° C. for 24 hours under a nitrogen atmosphere. The monomer composition comprises 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of parastyryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2'-azobis {2- [N- (2). -Carboxyethyl) Amidino] Propane} Contains 1 mmol. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles (average particle diameter 360 nm) having a phosphorus atom derived from parastilyl diethylphosphine on the surface.
 (2)絶縁性粒子付き導電性粒子の作製
 上記(1)で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。また、得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間撹拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(2) Preparation of Conductive Particles with Insulating Particles The insulating particles obtained in (1) above were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles. Further, 10 g of the obtained conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtering with a 3 μm mesh filter, the mixture was further washed with methanol and dried to obtain conductive particles with insulating particles.
 次いで、実施例1と同様にして、導電材料及び接続構造体を得た。 Next, a conductive material and a connecting structure were obtained in the same manner as in Example 1.
 (実施例28)
 導電性粒子の作製時に、樹脂粒子にNi粒子(平均粒子径100nm)を付着させたこと以外は、実施例27と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 28)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 27, except that Ni particles (average particle diameter of 100 nm) were attached to the resin particles at the time of producing the conductive particles.
 (実施例29)
 導電層を作製する際に硫酸銅200g/Lと、エチレンジアミン四酢酸150g/Lと、グルコン酸ナトリウム100g/Lと、ホルムアルデヒド50g/Lとの混合液を、アンモニアにてpH10.5に調整した銅めっき液を用意した。懸濁液を65℃にて撹拌しながら、銅めっき液を滴下し、無電解銅めっきを行った。その後、ろ過することにより、粒子を取り出し、水洗し、乾燥させて銅層を有する導電性粒子を得た。それ以外は実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 29)
When the conductive layer was prepared, a mixed solution of copper sulfate 200 g / L, ethylenediaminetetraacetic acid 150 g / L, sodium gluconate 100 g / L, and formaldehyde 50 g / L was adjusted to pH 10.5 with ammonia. A plating solution was prepared. While stirring the suspension at 65 ° C., a copper plating solution was added dropwise to perform electroless copper plating. Then, the particles were taken out by filtration, washed with water, and dried to obtain conductive particles having a copper layer. Except for this, conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1.
 (実施例30)
 硫酸錫15g/L、エチレンジアミン四酢酸45g/L及びホスフィン酸1.5g/Lを含む混合液を、水酸化ナトリウムにてpH8.5に調整した錫めっき液を用意した。また、水素化ホウ素ナトリウム5g/Lを含む溶液を、水酸化ナトリウムにてpH10.0に調整した還元液を用意した。錫めっき液を滴下し、無電解錫めっきを行った後、還元液により還元させた。その後、ろ過することにより、粒子を取り出し、水洗し、乾燥させて錫層を有する導電性粒子を得た。それ以外は実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 30)
A tin plating solution was prepared in which a mixed solution containing 15 g / L of tin sulfate, 45 g / L of ethylenediaminetetraacetic acid and 1.5 g / L of phosphinic acid was adjusted to pH 8.5 with sodium hydroxide. Further, a reducing solution was prepared in which a solution containing 5 g / L of sodium borohydride was adjusted to pH 10.0 with sodium hydroxide. The tin plating solution was dropped, electroless tin plating was performed, and then the solution was reduced with a reducing solution. Then, the particles were taken out by filtration, washed with water, and dried to obtain conductive particles having a tin layer. Except for this, conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1.
 (実施例31)
 添加する塩化鉄(II)・4水和物の量を2重量部から0.5重量部に変更したこと以外は、実施例30と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 31)
Conductive particles, conductive materials, and connecting structures were prepared in the same manner as in Example 30, except that the amount of iron (II) chloride tetrahydrate to be added was changed from 2 parts by weight to 0.5 parts by weight. Obtained.
 (実施例32)
 導電層を形成する際にCuめっきを行ったこと以外は、実施例18と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 32)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 18 except that Cu plating was performed when forming the conductive layer.
 (実施例33)
 導電層を形成する際に錫めっきを行ったこと以外は、実施例18と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 33)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 18 except that tin plating was performed when forming the conductive layer.
 (実施例34)
 磁性流体添加後に超音波分散しなかったこと以外は、実施例33と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 34)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 33, except that the ultrasonic waves were not dispersed after the addition of the magnetic fluid.
 (比較例1)
 (1)樹脂粒子の作製
 樹脂粒子の作製時の溶媒をトルエンからエタノールに変えたこと以外は、実施例1と同様にして、樹脂粒子を得た。また樹脂粒子の平均粒子径は2.75μmであった。
(Comparative Example 1)
(1) Preparation of Resin Particles Resin particles were obtained in the same manner as in Example 1 except that the solvent used for preparing the resin particles was changed from toluene to ethanol. The average particle size of the resin particles was 2.75 μm.
 (2)導電性粒子の作製
 得られた樹脂粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。それ以降は実施例1と同様にして導電性粒子、導電材料及び接続構造体を得た。
(2) Preparation of Conductive Particles After washing and drying the obtained resin particles, 10 parts by weight of the resin particles were added to 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser. After dispersion, the resin particles were taken out by filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surface of the resin particles. The surface-activated resin particles were thoroughly washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion liquid. After that, conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1.
 (比較例2)
 導電性粒子の作製時に、硫酸ニッケル0.8mol/L、ジメチルアミンボラン2.0mol/L及びクエン酸ナトリウム1.0mol/Lを含むニッケルめっき液(pH8.5)を用意したこと以外は、比較例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Comparative Example 2)
Comparison except that a nickel plating solution (pH 8.5) containing nickel sulfate 0.8 mol / L, dimethylamine borane 2.0 mol / L and sodium citrate 1.0 mol / L was prepared at the time of producing the conductive particles. Conductive particles, conductive materials and connecting structures were obtained in the same manner as in Example 1.
 (比較例3)
 ニッケル微粒子(平均粒子径3.0μm、変動係数20%)を導電性粒子として用いたこと以外は、比較例1と同様にして、導電材料及び接続構造体を得た。
(Comparative Example 3)
A conductive material and a connecting structure were obtained in the same manner as in Comparative Example 1 except that nickel fine particles (average particle diameter 3.0 μm, coefficient of variation 20%) were used as the conductive particles.
 (比較例4)
 比較例3で用いたニッケル微粒子をAuめっきした。このAuめっきされたニッケル微粒を導電性粒子として用いたこと以外は、比較例1と同様にして、導電材料及び接続構造体を得た。
(Comparative Example 4)
The nickel fine particles used in Comparative Example 3 were Au-plated. A conductive material and a connecting structure were obtained in the same manner as in Comparative Example 1 except that the Au-plated nickel fine particles were used as the conductive particles.
 (比較例5)
 比較例1と同様にして、導電性粒子を得た。次いで、この導電性粒子を用いて、実施例27と同様にして、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
(Comparative Example 5)
Conductive particles were obtained in the same manner as in Comparative Example 1. Then, using the conductive particles, the conductive particles with insulating particles, the conductive material, and the connecting structure were obtained in the same manner as in Example 27.
 (比較例6)
 比較例2と同様にして、導電性粒子を得た。次いで、この導電性粒子を用いて、実施例27と同様にして、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
(Comparative Example 6)
Conductive particles were obtained in the same manner as in Comparative Example 2. Then, using the conductive particles, the conductive particles with insulating particles, the conductive material, and the connecting structure were obtained in the same manner as in Example 27.
 (評価)
 (1)導電性粒子の飽和磁化及び残留磁化
 磁気特性測定装置(日本カンタム・デザイン社製「MPMS2」)を用いて導電性粒子の飽和磁化及び残留磁化を以下のようにして測定した。導電性粒子をカプセルに秤量し、サンプルホルダーに取り付け、該サンプルホルダーを装置本体に設置し、温度25℃(定温)、最大印加磁界10kOe条件下での測定により、磁化曲線を得た。得られた磁化曲線から残留磁化及び飽和磁化を求めた。
(evaluation)
(1) Saturation Magnetization and Residual Magnetization of Conductive Particles The saturation magnetization and residual magnetization of conductive particles were measured as follows using a magnetic property measuring device (“MPMS2” manufactured by Quantum Design Japan Co., Ltd.). Conductive particles were weighed into capsules, attached to a sample holder, the sample holder was placed in the main body of the apparatus, and a magnetization curve was obtained by measurement under the conditions of a temperature of 25 ° C. (constant temperature) and a maximum applied magnetic field of 10 kOe. Remanent magnetization and saturation magnetization were obtained from the obtained magnetization curve.
 [飽和磁化の判定基準]
 ○○:30emu/g以上
 ○:20emu/g以上30emu/g未満
 △:15emu/g以上20emu/g未満
 ×:15emu/g未満
[Criteria for determining saturation magnetization]
○ ○: 30 emu / g or more ○: 20 emu / g or more and less than 30 emu / g Δ: 15 emu / g or more and less than 20 emu / g ×: 15 emu / g or less
 [残留磁化の判定基準]
 ○○:1.2emu/g未満
 ○:1.2emu/g以上2emu/g未満
 △:2emu/g以上5emu/g未満
 ×:5emu/g以上
[Criteria for determining residual magnetization]
○ ○: less than 1.2 emu / g ○: 1.2 emu / g or more and less than 2 emu / g Δ: 2 emu / g or more and less than 5 emu / g ×: 5 emu / g or more
 [比(残留磁化/飽和磁化)の判定基準]
 ○○:0以上0.05未満
 ○:0.05以上0.1未満
 △:0.1以上0.4以下
 ×:0.4を超える
[Criteria for determining ratio (residual magnetization / saturation magnetization)]
○ ○: 0 or more and less than 0.05 ○: 0.05 or more and less than 0.1 Δ: 0.1 or more and 0.4 or less ×: More than 0.4
 (2)導電性粒子の粒子径及び変動係数(CV値)
 得られた導電性粒子について、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の樹脂粒子の粒子径を測定し、平均値を算出した。また、導電性粒子の粒子径の測定結果から、導電性粒子の粒子径の変動係数(CV値)を下記式から算出した。
(2) Particle size and coefficient of variation (CV value) of conductive particles
With respect to the obtained conductive particles, the particle size of about 100,000 resin particles was measured using a particle size distribution measuring device (“Multisizer 4” manufactured by Beckman Coulter), and an average value was calculated. Further, from the measurement result of the particle size of the conductive particles, the coefficient of variation (CV value) of the particle size of the conductive particles was calculated from the following formula.
 CV値(%)=(ρ/Dn)×100
 ρ:変動係数の粒子径の標準偏差
 Dn:変動係数の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of the particle size of the coefficient of variation Dn: Average value of the particle size of the coefficient of variation
 [変動係数の判定基準]
 ○○:5%以下
 ○:5%を超え8%以下
 △:8%を超え10%以下
 ×:10%を超える
[Criteria for determining the coefficient of variation]
○ ○: 5% or less ○: 5% or more and 8% or less △: 8% or more and 10% or less ×: 10% or more
 (3)導電部及び磁性体部の厚み
 得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂体を作製した。その検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
(3) Thickness of Conductive Part and Magnetic Material Part The obtained conductive particles are added to "Technobit 4000" manufactured by Kulzer so as to have a content of 30% by weight, dispersed, and embedded resin for inspection. Was produced. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、それぞれの導電性粒子の導電部及び磁性体部を観察した。各導電性粒子における導電部の厚みを計測し、それを算術平均して導電部及び磁性体部の厚みとした。 Then, using an electric field radiation transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 50 conductive particles were randomly selected. The conductive part and the magnetic material part of each conductive particle were observed. The thickness of the conductive portion of each conductive particle was measured, and the thickness was arithmetically averaged to obtain the thickness of the conductive portion and the magnetic material portion.
 (4)磁性体の含有量
 ICP発光分析法により、上述した方法で以下の含有量を測定した。
(4) Content of magnetic material The following content was measured by the above-mentioned method by ICP emission spectrometry.
 含有量(A1)(体積%),含有量(A2)(重量%):構成Aを備える導電性粒子において、樹脂粒子の含有量と、磁性体部の含有量との合計100体積%中又は100重量%中、磁性体部に含まれる磁性体の含有量
 含有量(B1)(体積%),含有量(B2)(重量%):構成Bを備える導電性粒子において、樹脂粒子の含有量と、導電部の含有量との合計100体積%中又は100重量%中、導電部に含まれる磁性体の含有量
 含有量(C1)(体積%),含有量(C2)(重量%):構成Cを備える導電性粒子において、樹脂粒子の含有量100体積%中又は100重量%中、樹脂粒子に含まれる磁性体の含有量
 含有量(A3),(B3),(C3),(D)(体積%),含有量(A4),(B4),(C4),(E)(重量%):導電性粒子100体積%中又は100重量%中、導電性粒子に含まれる磁性体の含有量
Content (A1) (% by volume), Content (A2) (% by volume): In the conductive particles having the composition A, the content of the resin particles and the content of the magnetic material portion in the total of 100% by volume or Content of magnetic material contained in the magnetic material portion in 100% by weight Content (B1) (volume%), content (B2) (% by volume): Content of resin particles in the conductive particles having the configuration B. Content (C1) (volume%), content (C2) (% by volume) of magnetic material contained in the conductive portion in 100% by volume or 100% by volume in total of the content of the conductive portion. In the conductive particles having the configuration C, the content of the magnetic substance contained in the resin particles in 100% by volume or 100% by volume of the resin particles is (A3), (B3), (C3), (D). ) (Volume%), Content (A4), (B4), (C4), (E) (% by volume): In 100% by volume or 100% by weight of the conductive particles, of the magnetic material contained in the conductive particles Content
 (5)接続抵抗値(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定し、接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続抵抗を下記の基準で判定した。
(5) Connection resistance value (between the upper and lower electrodes)
The connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-terminal method, and the average value of the connection resistance was calculated. From the relationship of voltage = current × resistance, the connection resistance can be obtained by measuring the voltage when a constant current is passed. The connection resistance was judged according to the following criteria.
 [接続抵抗の判定基準]
 ○○:接続抵抗が2.0Ω以下
 ○:接続抵抗が2.0Ωを超え5.0Ω以下
 △:接続抵抗が5.0Ωを超え、10Ω以下
 ×:接続抵抗が10Ωを超える
[Criteria for connecting resistance]
○ ○: Connection resistance is 2.0Ω or less ○: Connection resistance is more than 2.0Ω and 5.0Ω or less △: Connection resistance is more than 5.0Ω and 10Ω or less ×: Connection resistance is more than 10Ω
 (6)ショート発生率
 上記(5)接続抵抗値の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗値を測定し、該抵抗値が10Ω以下となる接続構造体の割合をショート発生率として評価した。
(6) Short-circuit occurrence rate In the 20 connection structures obtained in the evaluation of the above (5) connection resistance value, the resistance value was measured with a tester to see if there was a leak between adjacent electrodes, and the resistance value was 10. The ratio of connection structures with 8 Ω or less was evaluated as the short circuit occurrence rate.
 [ショート発生率の判定基準]
 ○○○:0%
 ○○:0%を超え10%未満
 ○:10%以上20%未満
 △:20%以上50%未満
 ×:50%以上
[Criteria for determining the rate of short circuit]
○○○: 0%
○ ○: More than 0% and less than 10% ○: 10% or more and less than 20% △: 20% or more and less than 50% ×: 50% or more
 結果を下記の表1~8に示す。 The results are shown in Tables 1 to 8 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 1,1A,1B,1C,1D…導電性粒子
 1Ca,1Da…突起
 2,2A,2B,2C,2D…樹脂粒子
 3,3A,3B,3C,3D…導電部
 3Ca,3Da…突起
 4,4D…磁性体部
 4B,4C…磁性体
 4Da…突起
 5…芯物質
 6…絶縁性物質
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
1,1A, 1B, 1C, 1D ... Conductive particles 1Ca, 1Da ... Projections 2,2A, 2B, 2C, 2D ... Resin particles 3,3A, 3B, 3C, 3D ... Conductive parts 3Ca, 3Da ... Projections 4,4D ... Magnetic material 4B, 4C ... Magnetic material 4Da ... Protrusion 5 ... Core material 6 ... Insulating material 51 ... Connection structure 52 ... First connection target member 52a ... First electrode 53 ... Second connection target member 53a … Second electrode 54… Connection

Claims (13)

  1.  樹脂粒子と、前記樹脂粒子の外表面の外側に配置された導電部とを備え、
     以下の構成A、構成B、又は構成Cを備える、導電性粒子。
     構成A:前記樹脂粒子と前記導電部との間に配置された磁性体を含む磁性体部を備え、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。
     構成B:前記導電部が磁性体を含み、かつ、導電性粒子における残留磁化の飽和磁化に対する比が0.4以下である。
     構成C:前記樹脂粒子が磁性体を含む。
    A resin particle and a conductive portion arranged on the outside of the outer surface of the resin particle are provided.
    Conductive particles comprising the following configurations A, B, or C.
    Configuration A: A magnetic material portion including a magnetic material arranged between the resin particles and the conductive portion is provided, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
    Configuration B: The conductive portion contains a magnetic material, and the ratio of the residual magnetization in the conductive particles to the saturation magnetization is 0.4 or less.
    Configuration C: The resin particles contain a magnetic substance.
  2.  前記構成Aを備える、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, comprising the configuration A.
  3.  前記構成Bを備える、請求項1又は2に記載の導電性粒子。 The conductive particle according to claim 1 or 2, comprising the configuration B.
  4.  前記構成Cを備える、請求項1~3のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 3, comprising the configuration C.
  5.  導電性粒子100体積%中、前記導電性粒子に含まれる磁性体の含有量が、5体積%以上85体積%以下である、請求項1~4のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 4, wherein the content of the magnetic substance contained in the conductive particle is 5% by volume or more and 85% by volume or less in 100% by volume of the conductive particle.
  6.  導電性粒子100重量%中、前記導電性粒子に含まれる磁性体の含有量が、10重量%以上99重量%以下である、請求項1~5のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 5, wherein the content of the magnetic substance contained in the conductive particle is 10% by weight or more and 99% by weight or less in 100% by weight of the conductive particle.
  7.  導電性粒子の粒子径が、0.1μm以上1000μm以下である、請求項1~6のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 6, wherein the particle size of the conductive particle is 0.1 μm or more and 1000 μm or less.
  8.  前記磁性体が、金属又は金属酸化物である、請求項1~7のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 7, wherein the magnetic substance is a metal or a metal oxide.
  9.  前記磁性体が、鉄、コバルト、フェライト、ニッケル又はそれらの合金を含む、請求項1~8のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 8, wherein the magnetic material contains iron, cobalt, ferrite, nickel or an alloy thereof.
  10.  前記導電部の外表面上に配置された絶縁性物質をさらに備える、請求項1~9のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 9, further comprising an insulating substance arranged on the outer surface of the conductive portion.
  11.  前記導電部の外表面に突起を有する、請求項1~10のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 10, which has a protrusion on the outer surface of the conductive portion.
  12.  請求項1~11のいずれか1項に記載の導電性粒子と、
     バインダー樹脂とを含む、導電材料。
    The conductive particles according to any one of claims 1 to 11.
    Conductive material, including binder resin.
  13.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は、導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~11のいずれか1項に記載の導電性粒子であり、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection target member having a first electrode on its surface,
    A second connection target member having a second electrode on the surface,
    A connection portion connecting the first connection target member and the second connection target member is provided.
    The connection portion is formed of conductive particles or is formed of a conductive material containing conductive particles and a binder resin.
    The conductive particles according to any one of claims 1 to 11 are the conductive particles.
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2021/021408 2020-06-04 2021-06-04 Conductive parti cles, conductive material, and connection structure WO2021246523A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022528916A JPWO2021246523A1 (en) 2020-06-04 2021-06-04
KR1020227036521A KR20230019815A (en) 2020-06-04 2021-06-04 Conductive particles, conductive materials, and connected structures
CN202180039684.4A CN115699218A (en) 2020-06-04 2021-06-04 Conductive particle, conductive material, and connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-097966 2020-06-04
JP2020097966 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021246523A1 true WO2021246523A1 (en) 2021-12-09

Family

ID=78830278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021408 WO2021246523A1 (en) 2020-06-04 2021-06-04 Conductive parti cles, conductive material, and connection structure

Country Status (4)

Country Link
JP (1) JPWO2021246523A1 (en)
KR (1) KR20230019815A (en)
CN (1) CN115699218A (en)
WO (1) WO2021246523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043047A1 (en) * 2022-08-25 2024-02-29 日本化学工業株式会社 Conductive particles, production method therefor, and conductive member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263801A (en) * 1990-03-14 1991-11-25 Unitika Ltd Composite particle and manufacture thereof
JPH05190014A (en) * 1992-01-09 1993-07-30 Sekisui Fine Chem Kk Conductive micro sphere for connecting electrode
WO2020004273A1 (en) * 2018-06-25 2020-01-02 積水化学工業株式会社 Conductive particles, conductive material, and connecting structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505225B2 (en) 2010-09-21 2014-05-28 デクセリアルズ株式会社 Method for manufacturing connection structure
JP6079425B2 (en) 2012-05-16 2017-02-15 日立化成株式会社 Conductive particles, anisotropic conductive adhesive film, and connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263801A (en) * 1990-03-14 1991-11-25 Unitika Ltd Composite particle and manufacture thereof
JPH05190014A (en) * 1992-01-09 1993-07-30 Sekisui Fine Chem Kk Conductive micro sphere for connecting electrode
WO2020004273A1 (en) * 2018-06-25 2020-01-02 積水化学工業株式会社 Conductive particles, conductive material, and connecting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043047A1 (en) * 2022-08-25 2024-02-29 日本化学工業株式会社 Conductive particles, production method therefor, and conductive member

Also Published As

Publication number Publication date
KR20230019815A (en) 2023-02-09
CN115699218A (en) 2023-02-03
JPWO2021246523A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP5216165B1 (en) Conductive particles, conductive materials, and connection structures
TWI498405B (en) An electrically conductive particles having an insulating particle, an anisotropic conductive material, and a connecting structure
JP6333552B2 (en) Conductive particles, conductive materials, and connection structures
JP6009933B2 (en) Conductive particles, conductive materials, and connection structures
KR102647120B1 (en) Conductive particles, conductive materials and connection structures
JP5650611B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
JP2013149611A (en) Conductive particle, conductive material, and connection structure
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP2017069191A (en) Conductive particle, conductive material and connection structure
JP2020194794A (en) Conductive particle, conductive material, and connection structure
JP2011243456A (en) Conductive particles, anisotropic conductive materials, and connection structure
WO2021246523A1 (en) Conductive parti cles, conductive material, and connection structure
JPWO2019194135A1 (en) Conductive particles with insulating particles, conductive materials and connecting structures
JPWO2018181694A1 (en) Conductive particles, conductive material and connection structure
JPWO2020175691A1 (en) Conductive particles, conductive materials and connecting structures
TWI703584B (en) Conductive particles, conductive materials, and connection structures
JP7144472B2 (en) Conductive particles, conductive materials and connecting structures
JP2014150053A (en) Conductive particles, conductive material, and connection structure
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
WO2019194134A1 (en) Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
JP6333624B2 (en) Connection structure
JP2015057769A (en) Conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818331

Country of ref document: EP

Kind code of ref document: A1