WO2020004273A1 - Conductive particles, conductive material, and connecting structure - Google Patents

Conductive particles, conductive material, and connecting structure Download PDF

Info

Publication number
WO2020004273A1
WO2020004273A1 PCT/JP2019/024743 JP2019024743W WO2020004273A1 WO 2020004273 A1 WO2020004273 A1 WO 2020004273A1 JP 2019024743 W JP2019024743 W JP 2019024743W WO 2020004273 A1 WO2020004273 A1 WO 2020004273A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive particles
soft magnetic
insulating
Prior art date
Application number
PCT/JP2019/024743
Other languages
French (fr)
Japanese (ja)
Inventor
理 杉本
脇屋 武司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020527481A priority Critical patent/JP7280880B2/en
Priority to KR1020207031840A priority patent/KR102647120B1/en
Priority to CN202310216345.XA priority patent/CN116189963A/en
Priority to CN201980040888.2A priority patent/CN112313758B/en
Publication of WO2020004273A1 publication Critical patent/WO2020004273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to a conductive particle having a conductive portion disposed on the surface of a base particle.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • conductive particles obtained by subjecting a surface of a conductive layer to insulation treatment are used as the conductive particles.
  • the anisotropic conductive material is used to obtain various connection structures.
  • Examples of the connection using the anisotropic conductive material include connection between a flexible printed board and a glass substrate (FOG (Film @ on @ Glass)), connection between a semiconductor chip and a flexible printed board (COF (Chip @ on @ Film)), The connection between a semiconductor chip and a glass substrate (COG (Chip @ on Glass)), the connection between a flexible printed board and a glass epoxy substrate (FOB (Film @ on @ Board)), and the like can be given.
  • Patent Literature 1 discloses a conductive particle including a base particle having a plating layer, and insulating particles covering the surface of the base particle.
  • the base particles are particles in which the surface of a plastic core is covered with the plating layer.
  • the plating layer has at least a nickel / phosphorus alloy layer.
  • the particle diameter of the base particles is 2.0 ⁇ m or more and 3.0 ⁇ m or less.
  • the base particles have a saturation magnetization of 45 emu / cm 3 or less.
  • the particle diameter of the insulating particles is 180 nm or more and 500 nm or less.
  • Patent Document 1 the saturation magnetization of the base particles is 45 emu / cm 3 or less.
  • Patent Literature 1 merely describes that the saturation magnetization is controlled to a specific range, and does not describe any residual magnetization.
  • Conventional conductive particles have a conductive metal such as nickel on the surface by plating or the like, and are used for electrical connection between electrodes. Further, in the conventional conductive particles, a metal such as nickel having magnetism is magnetized in a surrounding environment or a manufacturing process, and the conductive particles may aggregate (magnetic aggregation).
  • a method for solving the above-mentioned problem as described in Patent Literature 1 and the like, a method of containing phosphorus in a plating layer to reduce saturation magnetization and the like can be mentioned.
  • the connection resistance between the electrodes may also increase. .
  • the conventional conductive particles can reduce the saturation magnetization, it is sometimes difficult to sufficiently reduce the residual magnetization. In order to suppress the magnetic aggregation of the conductive particles, it is necessary to reduce not only the saturation magnetization but also the residual magnetization. With conventional conductive particles, it is difficult to achieve both a reduction in connection resistance between electrodes and a suppression of magnetic aggregation.
  • a conductive particle comprising: a base particle; and a conductive portion disposed on a surface of the base particle, wherein a ratio of a residual magnetization to a saturation magnetization is 0.6 or less.
  • the residual magnetization is 0.02 A / m or less.
  • the conductive particles include a soft magnetic body disposed on an outer surface of the conductive unit.
  • the conductive particles include an insulating portion disposed between the conductive portion and the soft magnetic material portion, the soft magnetic material portion, the conductive material via the insulating portion Located on the outer surface of the part.
  • a distance between the conductive portion and the soft magnetic material portion is 10 nm or more and 500 nm or less.
  • the conductive particles include a plurality of the soft magnetic material portions, a plurality of the soft magnetic material portions are separated, and are disposed on an outer surface of the conductive portion. ing.
  • an area of a portion of the surface of the conductive portion covered by the soft magnetic material portion with respect to an entire surface area of the conductive portion is 30% or more.
  • an area of a portion of the surface of the conductive portion covered by the soft magnetic material portion with respect to an entire surface area of the conductive portion is 40% or more.
  • the conductive particles include a plurality of insulating particles arranged on an outer surface of the conductive portion.
  • a conductive material including the above-described conductive particles and a binder resin.
  • a first connection target member having a first electrode on a surface
  • a second connection target member having a second electrode on a surface
  • the first connection target member A connection portion connecting the second connection target member, and the material of the connection portion is the above-described conductive particles, or a conductive material including the conductive particles and a binder resin.
  • a connection structure is provided in which the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles.
  • the conductive particles according to the present invention include base particles and conductive portions disposed on the surface of the base particles.
  • the ratio of the residual magnetization to the saturation magnetization is 0.6 or less. Since the conductive particles according to the present invention have the above-described configuration, the connection resistance between the electrodes can be effectively reduced, and the magnetic aggregation can be effectively suppressed.
  • the conductive particles according to the present invention include base particles, and a conductive part disposed on the surface of the base particles.
  • the ratio of the residual magnetization to the saturation magnetization is 0.6 or less.
  • the conductive particles according to the present invention have the above configuration, the connection resistance between the electrodes can be effectively reduced, and the magnetic aggregation can be effectively suppressed.
  • a metal such as nickel having magnetism is magnetized in the surrounding environment or a manufacturing process, and the conductive particles may aggregate (magnetic aggregation).
  • a method of suppressing the aggregation (magnetic aggregation) of the conductive particles a method of reducing saturation magnetization by adding phosphorus to the plating layer can be cited.
  • the resistance value of the conductive particles significantly increases, and when the electrodes are electrically connected using the conductive particles, the connection resistance between the electrodes may also increase. .
  • the present inventors have found that by using specific conductive particles, it is possible to achieve both a low connection resistance between electrodes and a suppression of magnetic aggregation of the conductive particles.
  • the connection resistance between the electrodes can be effectively reduced, and the magnetic aggregation of the conductive particles can be effectively suppressed.
  • the ratio of the residual magnetization to the saturation magnetization is: 0.6 or less.
  • the ratio (residual magnetization / saturation magnetization) is preferably 0.5 or less, more preferably 0.3 or less, and most preferably 0.0.
  • the ratio (residual magnetization / saturation magnetization) is preferably as close to 0.0 as possible from the viewpoint of more effectively reducing the connection resistance between the electrodes and suppressing the magnetic aggregation more effectively.
  • the ratio (residual magnetization / saturation magnetization) is equal to or less than the upper limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed.
  • the lower limit of the ratio (remanent magnetization / saturation magnetization) is not particularly limited.
  • the ratio (residual magnetization / saturation magnetization) is, for example, preferably 0.001 or more, and more preferably 0.01 or more.
  • the residual magnetization of the conductive particles is preferably 0.02 A / m (20 emu / cm 3 ) or less.
  • the residual magnetization is preferably 0.015A / m (15emu / cm 3 ) or less, more preferably 0.01A / m (10emu / cm 3 ) or less, more preferably 0.005A / m (5emu / cm 3 ) Or less, most preferably 0.0000 A / m (0.0 emu / cm 3 ).
  • the above-mentioned residual magnetization is preferably as close to 0.0000 A / m (0.0 emu / cm 3 ) as possible.
  • the residual magnetization is equal to or less than the upper limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed.
  • the lower limit of the residual magnetization of the conductive particles is not particularly limited.
  • the residual magnetization is preferably, for example, not less than 0.0001 A / m (0.1 emu / cm 3 ).
  • the residual magnetization of the conductive particles can be controlled, for example, by adjusting the coverage by a soft magnetic material portion described later.
  • the remanence can be reduced by increasing the coverage by the soft magnetic material portion, and the remnant magnetization can be increased by reducing the coverage by the soft magnetic material portion.
  • the saturation magnetization of the conductive particles is preferably 0.2 A / m (200 emu / cm 3 ) or less.
  • the saturation magnetization is preferably 0.1 A / m (100 emu / cm 3 ) or less, more preferably 0.08 A / m (80 emu / cm 3 ) or less, and even more preferably 0.05 A / m (50 emu / cm 3 ). It is as follows. When the saturation magnetization is equal to or less than the upper limit, magnetic aggregation can be more effectively suppressed.
  • the saturation magnetization of the conductive particles is preferably 0.001 A / m (1 emu / cm 3 ) or more.
  • the saturation magnetization is preferably 0.005A / m (5emu / cm 3 ) or more, more preferably 0.01A / m (10emu / cm 3 ) or more, more preferably 0.015A / m (15emu / cm 3 ) That is all.
  • the saturation magnetization is at least the lower limit, the conductive particles in the anisotropic conductive material can be efficiently arranged by the external magnetic field.
  • the saturation magnetization of the conductive particles can be controlled, for example, by adjusting the thickness of the conductive layer or the conductive portion.
  • the saturation magnetization can be increased by increasing the thickness of the conductive layer or the conductive portion, and the saturation magnetization can be reduced by decreasing the thickness of the conductive layer or the conductive portion.
  • the residual magnetization and saturation magnetization of the conductive particles can be measured using a vibrating sample magnetometer (“PV-300-5” manufactured by Toei Kagaku Sangyo Co., Ltd.). Specifically, it can be measured as follows.
  • ⁇ ⁇ ⁇ ⁇ Calibrate the vibrating sample magnetometer using the nickel powder encapsulated capsule as a calibration sample for the device.
  • the conductive particles are weighed into a capsule and attached to a sample holder.
  • the sample holder is set on the magnetometer main body, and a magnetization curve is obtained by measurement at a temperature of 20 ° C. (constant temperature), a maximum applied magnetic field of 20 kOe, and a speed of 3 minutes / loop.
  • the residual magnetization and the saturation magnetization (A / m) are determined from the obtained magnetization curve.
  • the particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, even more preferably 30 ⁇ m or less, further preferably 10 ⁇ m or less, particularly preferably. Is 5 ⁇ m or less.
  • the particle size of the conductive particles is equal to or greater than the lower limit and equal to or less than the upper limit, when connecting the electrodes using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, In addition, aggregated conductive particles are less likely to be formed when forming the conductive portion. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the base particles.
  • the particle diameter of the conductive particles is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle size of the conductive particles is, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each conductive particle, or performing laser diffraction type particle size distribution measurement. Or by going.
  • the particle diameter of one conductive particle is determined as a particle diameter in a circle equivalent diameter.
  • the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter.
  • the particle diameter of one conductive particle is obtained as a particle diameter in a sphere equivalent diameter.
  • the particle size of the conductive particles is preferably calculated by a laser diffraction type particle size distribution measurement.
  • the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less.
  • the variation coefficient of the particle diameter of the conductive particles is equal to or less than the upper limit, the reliability of conduction between the electrodes and the reliability of insulation can be more effectively improved.
  • the coefficient of variation (CV value) can be measured as follows.
  • the shape of the conductive particles is not particularly limited.
  • the shape of the conductive particles may be spherical or may be other than spherical, such as flat.
  • FIG. 1 is a cross-sectional view showing the conductive particles according to the first embodiment of the present invention.
  • the conductive particles 1 shown in FIG. 1 include the base particles 2 and the conductive portions 3.
  • the conductive part 3 is a conductive layer.
  • the conductive portion 3 covers the surface of the base particles 2.
  • the conductive particles 1 are coated particles in which the surfaces of the base particles 2 are coated with the conductive portions 3.
  • the conductive particles 1 have a conductive portion 3 on the surface.
  • the conductive part 3 is a single-layer conductive part (conductive layer).
  • the conductive portion may cover the entire surface of the base particle, or the conductive portion may cover a part of the surface of the base particle.
  • the conductive portion may be a single-layer conductive portion or a multilayer conductive portion including two or more layers.
  • the conductive particles 1 have no core material unlike the conductive particles 51 described below.
  • the conductive particles 1 do not have protrusions on the conductive surface, and do not have protrusions on the outer surface of the conductive portion 3.
  • the conductive particles 1 are spherical. However, the conductive particles 1 may have a core substance, may have protrusions on the conductive surface, or may have protrusions on the outer surface of the conductive portion 3.
  • the conductive particles need not have protrusions on the conductive surface, may not have protrusions on the outer surface of the conductive portion, and may be spherical.
  • the conductive particles 1 have no insulating particles, unlike the conductive particles 11, 21, 41, and 51 described below. However, the conductive particles 1 may have insulating particles arranged on the outer surface of the conductive portion 3.
  • FIG. 2 is a cross-sectional view showing the conductive particles according to the second embodiment of the present invention.
  • the conductive particles 11 are different from the conductive particles 1 and have a soft magnetic material portion 12 and insulating particles 13.
  • the conductive particles 11 include the insulating particles 13 that are not in contact with the soft magnetic body 12.
  • the conductive particles may have a soft magnetic part or may not have a soft magnetic part.
  • the conductive particles may have insulating particles or may not have insulating particles.
  • the soft magnetic part is disposed on an outer surface of the conductive part. It is preferable that the soft magnetic part is not in contact with the conductive part.
  • the insulating particles are preferably arranged on an outer surface of the conductive part.
  • FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
  • the insulating portion 42 is a material having an insulating property.
  • the insulating part 42 is an insulating particle.
  • the insulating part 42 is disposed on the outer surface of the conductive part 3, and the soft magnetic body part 12 is disposed on the outer surface of the insulating part 42. Therefore, the insulating part 42 is arranged between the conductive part 3 and the soft magnetic part 12.
  • the soft magnetic part 12 is not in contact with the conductive part 3.
  • the insulating portion only needs to cover at least a part of the surface of the conductive portion, and need not cover the entire surface of the conductive portion.
  • the soft magnetic material portion is disposed on an outer surface of the conductive portion via the insulating portion. It is preferable that the insulating section is disposed between the conductive section and the soft magnetic body section.
  • the conductive particles may have insulating particles or may not have insulating particles.
  • the conductive particles 51 are different from the conductive particles 21 and have a plurality of core substances 62 arranged on the surface of the base particles 2.
  • the conductive portion 61 covers the base particles 2 and the core substance 62. Since the conductive portion 61 covers the core substance 62, the conductive particles 51 have a plurality of protrusions 63 on the surface.
  • the surface of the conductive portion 61 is raised by the core substance 62, and a plurality of protrusions 63 are formed.
  • the core material may be used or the core material may not be used to form the protrusions.
  • the conductive particles need not have the core material.
  • the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, Phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamide imide, polyetheretherketone, Polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and
  • the divinylbenzene-based copolymer examples include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylate copolymer. Since the hardness of the resin particles can be easily controlled to a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.
  • the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer. And a crosslinkable monomer.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method.
  • the method include a method of performing suspension polymerization in the presence of a radical polymerization initiator and a method of performing polymerization by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the conductive portion is a powder sample prepared using the same material as the material constituting the conductive portion, and the powder sample is manufactured using a “powder resistivity measurement system” manufactured by Mitsubishi Chemical Corporation.
  • the volume resistivity is measured, it is defined as a portion where the volume resistivity is 0.005 ⁇ ⁇ cm or less.
  • the conductive portion and the outer surface portion of the conductive portion contain nickel.
  • the content of nickel in 100% by weight of the conductive portion containing nickel is preferably at least 10% by weight, more preferably at least 50% by weight, still more preferably at least 60% by weight, further preferably at least 70% by weight, and particularly preferably. Is 90% by weight or more.
  • the content of nickel in the conductive portion 100% by weight containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.
  • Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive material include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene.
  • Examples of the non-conductive substance include silica, alumina, and zirconia. From the viewpoint of further improving the conduction reliability between the electrodes, the core material is preferably a metal.
  • Examples of the polyolefin compound include polyethylene, an ethylene-vinyl acetate copolymer, and an ethylene-acrylate copolymer.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB-type styrene-butadiene block copolymer, SBS-type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include a vinyl polymer and a vinyl copolymer.
  • thermosetting resin examples include an epoxy resin, a phenol resin, and a melamine resin.
  • crosslinked product of the thermoplastic resin include introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, and alkoxylated pentaerythritol methacrylate.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose.
  • a chain transfer agent may be used for adjusting the degree of polymerization. Examples of the chain transfer agent include thiol and carbon tetrachloride.
  • the soft magnetic portion may be soft magnetic particles or a soft magnetic layer.
  • the number of the soft magnetic portions that are apart is preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, and particularly preferably 10 or more.
  • the number of the soft magnetic material portions that exist apart can be appropriately set according to the surface area of the conductive particles and the like.
  • the particle diameter of the soft magnetic material part is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle diameter of the soft magnetic material portion can be determined using a particle size distribution measuring device or the like. It is preferable that the particle diameter of the soft magnetic material part is obtained by observing 50 arbitrary soft magnetic material parts with an electron microscope or an optical microscope and calculating an average value. When measuring the particle diameter of the soft magnetic material part in the conductive particles, for example, the measurement can be performed as follows.
  • the conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection.
  • the cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • the image magnification is set to 50,000 times, 50 conductive particles are randomly selected, and the soft magnetic material portion of each conductive particle is selected. Observe.
  • the particle diameter of the soft magnetic material part in each conductive particle is measured, and the arithmetic average is used as the particle diameter of the soft magnetic material part.
  • the thickness of the soft magnetic body is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness can be measured, for example, as follows.
  • the conductive part and the soft magnetic part are separated from each other.
  • the distance between the conductive part and the soft magnetic part is preferably at least 10 nm, more preferably at least 30 nm, further preferably at least 50 nm, preferably at most 800 nm, more preferably at most 500 nm.
  • the distance between the conductive part and the soft magnetic material part was set to an image magnification of 50,000 times using a field emission scanning electron microscope (FE-SEM), and 50 conductive particles were set.
  • the area of the portion of the surface of the conductive portion covered by the soft magnetic material portion (coverage by the soft magnetic material portion) in the entire surface area of the conductive portion is preferably 5% or more, more preferably 10% or more. , Even more preferably at least 20%, further preferably at least 30%, even more preferably at least 40%, particularly preferably at least 45%, most preferably at least 50%.
  • the coverage by the soft magnetic material portion may be 80% or less. When the coverage by the soft magnetic material portion is equal to or more than the lower limit, magnetic aggregation can be more effectively suppressed. From the viewpoint of maintaining the connection resistance between the electrodes more effectively low, the coverage ratio of the soft magnetic material portion may be 95% or less, 90% or less, or 80% or less. Or 70% or less.
  • the conductive particles include an insulating portion disposed between the conductive portion and the soft magnetic material portion.
  • the soft magnetic material portion is disposed on an outer surface of the conductive portion via the insulating portion. It is preferable that the soft magnetic part is not in contact with the conductive part. It is preferable that the insulating section is disposed between the conductive section and the soft magnetic body section.
  • the insulating portion is different from the insulating particles described above.
  • the insulating particles are used to prevent a short circuit between adjacent electrodes.
  • the insulating section is used to prevent contact between the soft magnetic body section and the conductive section.
  • the insulating portion is not particularly limited as long as it is a material having an insulating property.
  • Examples of the insulating portion include an insulating resin.
  • Examples of the insulating portion include the above-described materials of the insulating particles.
  • the method of arranging the soft magnetic body and the insulating part on the outer surface of the conductive part is not particularly limited.
  • a method of arranging the soft magnetic material part and the insulating part on the outer surface of the conductive part a method of arranging the insulating particles on the surface of the conductive part can be used.
  • examples of a method for arranging the soft magnetic body portion and the insulating portion on the outer surface of the conductive portion include the following methods.
  • a method of covering the surface of the soft magnetic material portion with the insulating portion to obtain an insulating portion-coated soft magnetic material portion, and then disposing the insulating portion-coated soft magnetic material portion on the outer surface of the conductive portion (in this case, the insulating portion-covered soft magnetic material portion may have a form including a plurality of soft magnetic material portions, such as “FG @ beads” (registered trademark) manufactured by Tamagawa Seiki Co., Ltd.).
  • the thickness of the insulating portion is preferably 10 nm or more, more preferably 30 nm or more, further preferably 50 nm or more, preferably 800 nm or less, more preferably 500 nm or less.
  • the thickness of the insulating portion is equal to or larger than the lower limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed.
  • the thickness of the insulating portion corresponds to the diameter of the particle.
  • the thickness of the insulating portion is preferably obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness can be measured, for example, as follows.
  • the conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection.
  • the cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • the insulating portion-coated soft magnetic material portion is an insulating layer-coated soft magnetic material particle.
  • the soft magnetic particles coated with an insulating layer are obtained by coating the surface of the soft magnetic particles with an insulating layer. That is, it is preferable that the soft magnetic particles coated with the insulating layer are arranged on the outer surface of the conductive portion.
  • the average particle diameter of the soft magnetic particles coated with the insulating layer is preferably 25 nm or more, more preferably 50 nm or more, preferably 800 nm or less, more preferably 500 nm or less, and further preferably 150 nm or less.
  • the average particle diameter of the insulating layer-coated soft magnetic particles is equal to or larger than the lower limit, when the conductive particles are dispersed in the binder resin, the conductive layers of the plurality of conductive particles are hardly in contact with each other, and can be obtained. The insulation reliability of the connection structure is improved.
  • the average particle diameter of the soft magnetic particles coated with the insulating layer is equal to or less than the upper limit, the soft magnetic particles are hardly detached from the surface of the conductive particles, and the magnetic aggregation can be effectively suppressed.
  • the average particle size of the insulating layer-coated soft magnetic particles can be measured, for example, according to the following procedure.
  • the conductive particles are added to “Technobit 4000” manufactured by Kulzer Co., Ltd. so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for conductive particle inspection.
  • the cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the outer surface of the conductive layer of each conductive particle was selected.
  • FE-SEM field emission scanning electron microscope
  • the particle size of the soft magnetic particles coated with the insulating layer in each conductive particle is measured and arithmetically averaged to obtain the average particle size of the soft magnetic particles coated with the insulating layer.
  • the conductive material according to the present invention includes the above-described conductive particles and a binder resin.
  • the conductive particles are preferably used by being dispersed in a binder resin, and are preferably used by being dispersed in a binder resin as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a circuit-connecting conductive material. Since the above-described conductive particles are used in the conductive material, the reliability of insulation between the electrodes and the reliability of conduction can be further improved. In the conductive material, since the conductive particles described above are used, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be suppressed more effectively.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • binder resin examples include a vinyl resin, a thermoplastic resin, a curable resin, a thermoplastic block copolymer, and an elastomer.
  • the binder resin may be used alone or in combination of two or more.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include a polyolefin resin, an ethylene-vinyl acetate copolymer, and a polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a light curable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer, and styrene-isoprene.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material may be, for example, a filler, a bulking agent, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer, in addition to the conductive particles and the binder resin.
  • various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
  • the method of dispersing the conductive particles in the binder resin may be a conventionally known dispersion method, and is not particularly limited.
  • Examples of a method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin, and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, and kneaded with a planetary mixer or the like to be dispersed. After diluting the binder resin with water or an organic solvent, the conductive particles are added, and the mixture is kneaded and dispersed by a planetary mixer or the like.
  • the viscosity ( ⁇ 25) at 25 ° C of the conductive material is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the types and amounts of the components.
  • the viscosity ( ⁇ 25) can be measured, for example, using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.
  • E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film containing no conductive particles may be laminated on a conductive film containing conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, further preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is equal to or more than the lower limit and equal to or less than the upper limit, conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased. Can be.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. %, More preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the conductive particles is equal to or greater than the lower limit and equal to or less than the upper limit, conduction reliability and insulation reliability between electrodes can be further improved.
  • the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation is more effectively suppressed. Can be.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, And a connection portion connecting the second connection target member.
  • the material of the connection portion is the above-described conductive particles or a conductive material including the above-described conductive particles and a binder resin (the above-described conductive material).
  • the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles.
  • FIG. 7 is a cross-sectional view schematically showing a connection structure using the conductive particles according to the first embodiment of the present invention.
  • connection structure 81 shown in FIG. 7 includes a first connection target member 82, a second connection target member 83, and a connection portion connecting the first connection target member 82 and the second connection target member 83.
  • the connection portion 84 is formed of a conductive material including the conductive particles 1.
  • the connection portion 84 is preferably formed by curing a conductive material including a plurality of conductive particles 1.
  • the conductive particles 1 are schematically illustrated for convenience of illustration.
  • the conductive particles 11, 21, 31, 41 or 51 may be used instead of the conductive particles 1.
  • the first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface).
  • the second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface).
  • the first electrode 82a and the second electrode 83a are electrically connected by one or more conductive particles 1. Therefore, the first connection target member 82 and the second connection target member 83 are electrically connected by the conductive portion of the conductive particles 1.
  • the method of manufacturing the connection structure is not particularly limited.
  • the conductive material is arranged between the first connection target member and the second connection target member, and after obtaining a laminate, the laminate is heated and pressed. Method and the like.
  • the pressure of the thermocompression bonding is preferably at least 40 MPa, more preferably at least 60 MPa, preferably at most 90 MPa, more preferably at most 70 MPa.
  • the heating temperature of the thermocompression bonding is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the reliability of conduction between the electrodes can be further improved.
  • the conductive particles have the insulating particles, the insulating particles can be easily detached from the surface of the conductive particles at the time of conductive connection.
  • the conductive particles when the laminate is heated and pressurized, the conductive particles are present between the first electrode and the second electrode.
  • the above insulating particles can be eliminated.
  • the conductive particles, the insulating particles present between the first electrode and the second electrode, from the surface of the conductive particles Easily detached.
  • some of the insulating particles may be detached from the surface of the conductive particles, and the surface of the conductive portion may be partially exposed. A portion where the surface of the conductive part is exposed contacts the first electrode and the second electrode, thereby electrically connecting the first electrode and the second electrode via the conductive particles. be able to.
  • the first connection target member and the second connection target member are not particularly limited.
  • the first connection target member and the second connection target member include electronic components such as a semiconductor chip, a semiconductor package, an LED chip, an LED package, a capacitor and a diode, a resin film, a printed board, and a flexible board.
  • Examples include electronic components such as a printed circuit board, a flexible flat cable, a rigid flexible substrate, a circuit board such as a glass epoxy substrate and a glass substrate. It is preferable that the first connection target member and the second connection target member are electronic components.
  • Examples of the electrodes provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode When the electrode is an aluminum electrode, the electrode may be an electrode formed only of aluminum, or may be an electrode in which an aluminum layer is laminated on a surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Production of Conductive Particle Main Body Particles having a particle diameter of 3 ⁇ m and formed of a copolymer resin of tetramethylolmethanetetraacrylate and divinylbenzene were prepared. After 10 parts by weight of the base particles were dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the solution was filtered to take out the base particles. Next, the base particles were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the base particles.
  • the dispersion was added to 500 parts by weight of distilled water and dispersed to obtain a dispersion.
  • 1 part by weight of a nickel particle slurry (average particle diameter: 100 nm) was added to the above dispersion over 3 minutes to obtain a suspension containing base particles to which a core substance was attached.
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane, and 0.5 mol / L of sodium citrate was prepared.
  • the ultrasonic irradiation machine After putting the composition containing the following polymerizable compound into a 500 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe, the ultrasonic irradiation machine is used. Emulsified. Thereafter, the mixture was stirred at 200 rpm and polymerized at 50 ° C. for 5 hours in a nitrogen atmosphere.
  • the composition was composed of 200 parts by weight of distilled water, 5.2 parts by weight of iron oxide nanoparticles having a diameter of 30 nm (composition: maghemite or magnetite, manufactured by Sigma-Aldrich), and 2,2′-azobis ⁇ 2- [N- (2-carboxyethyl) amidino] propane (0.1 parts by weight). Further, the composition contains 0.1 parts by weight of polyoxyethylene lauryl ether (“Emulgen 106” manufactured by Kao Corporation), 1.7 parts by weight of methyl methacrylate, and 0.1 part by weight of ethylene glycol dimethacrylate. .
  • the mixture After the completion of the reaction, the mixture is cooled, solid-liquid separation is performed twice by a centrifuge, excess polymerizable compound is removed by washing, and the entire surface of the soft magnetic material particles is covered by the coating formed by the polymerizable compound. Soft magnetic particles (particle diameter 50 nm) covered with the insulating layer were obtained.
  • particles (A) the obtained soft magnetic particles coated with an insulating layer.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolak type epoxy resin 30
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer such that the electrodes faced each other.
  • the pressure heating head is placed on the upper surface of the semiconductor chip, and the pressure of 60 MPa is applied to remove the anisotropic conductive paste layer.
  • the composition was cured at 100 ° C. to obtain a connection structure.
  • Examples 2 to 7, 10 to 12 and Comparative Examples 3 and 4 The type of the soft magnetic material portion, the coverage by the soft magnetic material portion, the thickness of the insulating portion, the amount of methyl methacrylate added when coating the surface of the soft magnetic material particles with the insulating layer, and the average particle size of the particles (A) Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that the settings were as shown in Table 1 below.
  • Example 10 permalloy particles having an average particle diameter of 30 nm formed by a dry pulverizer such as a hammer mill and a ball mill were used instead of the iron oxide nanoparticles.
  • Example 12 permezur particles (average particle diameter: 30 nm) obtained by molding permezur powder (manufactured by Daido Steel Co., Ltd.) with a dry pulverizer of a hammer mill and a ball mill were used.
  • Comparative Example 4 a nickel slurry having an average particle diameter of 30 nm was used.
  • the coverage by the soft magnetic material portions of Examples 2 to 7, 10 to 12 and Comparative Examples 3 and 4 was such that 10% by weight of the particles (A) was used when the conductive particles with the soft magnetic particles coated with the insulating layer were prepared. It was adjusted by changing the amount of the aqueous dispersion added.
  • Example 8 (1) Production of Conductive Particle Main Body In the same manner as in Example 1, a conductive particle main body was produced.
  • the ultrasonic irradiation machine After putting the composition containing the following polymerizable compound into a 500 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe, the ultrasonic irradiation machine is used. Emulsified. Thereafter, the mixture was stirred at 200 rpm and polymerized at 50 ° C. for 5 hours in a nitrogen atmosphere.
  • the above composition was prepared by adding 200 parts by weight of distilled water, 20 parts by weight of the obtained conductive particles, and 0.01 part by weight of 2,2′-azobis ⁇ 2- [N- (2-carboxyethyl) amidino] propane ⁇ And parts.
  • the composition contains 0.1 parts by weight of polyoxyethylene lauryl ether (“Emulgen 106” manufactured by Kao Corporation), 0.1 parts by weight of methyl methacrylate, and 0.1 parts by weight of ethylene glycol dimethacrylate. .
  • the mixture is cooled, solid-liquid separation is performed twice with a centrifuge, excess polymerizable compound is removed by washing, and the entire surface of the conductive particle body is covered by the coating formed by the polymerizable compound.
  • the covered insulating part-covered conductive particles (the thickness of the insulating layer was 50 nm) were obtained.
  • Iron oxide nanoparticles having a diameter of 30 nm were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion. 10 parts by weight of the obtained insulating portion-coated conductive particles were dispersed in 100 parts by weight of distilled water, 1 part by weight of a 10% by weight aqueous dispersion of iron oxide nanoparticles was added, and the mixture was stirred at room temperature for 8 hours.
  • conductive particles conductive particles including an insulating layer and soft magnetic material particles
  • iron oxide nanoparticles are attached to insulating portion-coated conductive particles.
  • connection structure was obtained in the same manner as in Example 1 except that the obtained conductive material was used.
  • Insulating particles coated with soft magnetic particles Insulating particles were formed as follows.
  • Example 1 The conductive particle main body of Example 1 was prepared as conductive particles. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
  • the obtained conductive particles are observed from one direction with a scanning electron microscope (SEM), and the outer peripheral portion of the surface of the conductive portion occupies the entire area within the circle of the outer peripheral portion of the surface of the conductive portion in the observation image. It was calculated from the total area of the soft magnetic portions in the circle. The coverage of the soft magnetic material portion was calculated as an average coverage obtained by observing 20 conductive particles and averaging the measurement results of each conductive particle.
  • SEM scanning electron microscope
  • the conductive particles obtained in Examples 1 to 7, and 10 to 12 exhibited lower connection resistance than the conductive particles obtained in Example 9. This is because, in the conductive particles of Example 9, the average particle diameter of the soft magnetic particle-coated insulating particles in which iron oxide nanoparticles having an average particle diameter of 30 nm adhere to insulating particles having an average particle diameter of 300 nm (300 nm). On the other hand, in the conductive particles of Examples 1 to 7, 10 to 12, the average particle diameter of the soft magnetic particles coated with the insulating layer is small (the average particle diameter of 50 to 130 nm).

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are conductive particles capable of effectively reducing connection resistance between electrodes and effectively suppressing magnetic aggregation. The conductive particles each comprise a substrate particle and a conductive part disposed on the surface of the substrate particle, and the proportion of residual magnetization to saturation magnetization is 0.6 or less.

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive material and connection structure
 本発明は、基材粒子の表面上に導電部が配置されている導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to a conductive particle having a conductive portion disposed on the surface of a base particle. The present invention also relates to a conductive material and a connection structure using the conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。また、導電性粒子として、導電層の表面に絶縁処理が施された導電性粒子が用いられることがある。 異 方 性 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin. In some cases, conductive particles obtained by subjecting a surface of a conductive layer to insulation treatment are used as the conductive particles.
 上記異方性導電材料は、各種の接続構造体を得るために用いられている。上記異方性導電材料を用いる接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The anisotropic conductive material is used to obtain various connection structures. Examples of the connection using the anisotropic conductive material include connection between a flexible printed board and a glass substrate (FOG (Film @ on @ Glass)), connection between a semiconductor chip and a flexible printed board (COF (Chip @ on @ Film)), The connection between a semiconductor chip and a glass substrate (COG (Chip @ on Glass)), the connection between a flexible printed board and a glass epoxy substrate (FOB (Film @ on @ Board)), and the like can be given.
 上記導電性粒子の一例として、下記の特許文献1には、めっき層を有する母粒子と、該母粒子の表面を被覆する絶縁性子粒子とを備える導電粒子が開示されている。上記母粒子は、プラスチック核体の表面が上記めっき層により被覆された粒子である。上記めっき層は、ニッケル/リン合金層を少なくとも有する。上記母粒子の粒子径は、2.0μm以上3.0μm以下である。上記母粒子の飽和磁化は、45emu/cm以下である。上記絶縁性子粒子の粒子径は、180nm以上500nm以下である。 As an example of the conductive particles, Patent Literature 1 below discloses a conductive particle including a base particle having a plating layer, and insulating particles covering the surface of the base particle. The base particles are particles in which the surface of a plastic core is covered with the plating layer. The plating layer has at least a nickel / phosphorus alloy layer. The particle diameter of the base particles is 2.0 μm or more and 3.0 μm or less. The base particles have a saturation magnetization of 45 emu / cm 3 or less. The particle diameter of the insulating particles is 180 nm or more and 500 nm or less.
特開2013-258138号公報JP 2013-258138 A
 上記の特許文献1では、上記母粒子の飽和磁化は、45emu/cm以下である。しかしながら、特許文献1では、飽和磁化を特定の範囲に制御することが記載されているに留まり、残留磁化については一切記載されていない。 In Patent Document 1 described above, the saturation magnetization of the base particles is 45 emu / cm 3 or less. However, Patent Literature 1 merely describes that the saturation magnetization is controlled to a specific range, and does not describe any residual magnetization.
 従来の導電性粒子は、めっき等によりニッケル等の導電性の金属を表面に有し、電極間の電気的な接続に用いられる。また、従来の導電性粒子では、磁性を有するニッケル等の金属が周辺環境や製造工程等で磁化され、導電性粒子が凝集(磁性凝集)することがある。上記の課題を解決する方法としては、特許文献1等に記載されているように、めっき層にリンを含有させて、飽和磁化を低減させる方法等が挙げられる。しかしながら、めっき層のリン含有率が高くなると、導電性粒子の抵抗値が著しく上昇し、該導電性粒子を用いて電極間を電気的に接続すると、電極間の接続抵抗も高くなることがある。 Conventional conductive particles have a conductive metal such as nickel on the surface by plating or the like, and are used for electrical connection between electrodes. Further, in the conventional conductive particles, a metal such as nickel having magnetism is magnetized in a surrounding environment or a manufacturing process, and the conductive particles may aggregate (magnetic aggregation). As a method for solving the above-mentioned problem, as described in Patent Literature 1 and the like, a method of containing phosphorus in a plating layer to reduce saturation magnetization and the like can be mentioned. However, when the phosphorus content of the plating layer increases, the resistance value of the conductive particles significantly increases, and when the electrodes are electrically connected using the conductive particles, the connection resistance between the electrodes may also increase. .
 また、従来の導電性粒子では、飽和磁化を低減させることができるものの、残留磁化を十分に低減させることが困難なことがある。導電性粒子の磁性凝集を抑制するためには、飽和磁化を低減させるだけではなく、残留磁化も低減させる必要がある。従来の導電性粒子では、電極間の接続抵抗を低くすることと、磁性凝集を抑制することとを両立させることは困難である。 Although the conventional conductive particles can reduce the saturation magnetization, it is sometimes difficult to sufficiently reduce the residual magnetization. In order to suppress the magnetic aggregation of the conductive particles, it is necessary to reduce not only the saturation magnetization but also the residual magnetization. With conventional conductive particles, it is difficult to achieve both a reduction in connection resistance between electrodes and a suppression of magnetic aggregation.
 本発明の目的は、電極間の接続抵抗を効果的に低くすることができ、かつ、磁性凝集を効果的に抑制することができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 の An object of the present invention is to provide a conductive particle capable of effectively reducing the connection resistance between electrodes and effectively suppressing magnetic aggregation. Another object of the present invention is to provide a conductive material and a connection structure using the conductive particles.
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された導電部とを備え、残留磁化の飽和磁化に対する比が、0.6以下である、導電性粒子が提供される。 According to a broad aspect of the present invention, a conductive particle comprising: a base particle; and a conductive portion disposed on a surface of the base particle, wherein a ratio of a residual magnetization to a saturation magnetization is 0.6 or less. Is provided.
 本発明に係る導電性粒子のある特定の局面では、前記残留磁化が、0.02A/m以下である。 で は In a specific aspect of the conductive particles according to the present invention, the residual magnetization is 0.02 A / m or less.
 本発明に係る導電性粒子のある特定の局面では、前記導電部の外表面上に配置された軟質磁性体部を備える。 で は In a specific aspect of the conductive particles according to the present invention, the conductive particles include a soft magnetic body disposed on an outer surface of the conductive unit.
 本発明に係る導電性粒子のある特定の局面では、前記導電部と前記軟質磁性体部との間に配置された絶縁部を備え、前記軟質磁性体部が、前記絶縁部を介して前記導電部の外表面上に配置されている。 In a specific aspect of the conductive particles according to the present invention, the conductive particles include an insulating portion disposed between the conductive portion and the soft magnetic material portion, the soft magnetic material portion, the conductive material via the insulating portion Located on the outer surface of the part.
 本発明に係る導電性粒子のある特定の局面では、前記導電部と前記軟質磁性体部との離れている距離が、10nm以上500nm以下である。 で は In a specific aspect of the conductive particles according to the present invention, a distance between the conductive portion and the soft magnetic material portion is 10 nm or more and 500 nm or less.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記軟質磁性体部を複数備え、複数の前記軟質磁性体部が離れて、前記導電部の外表面上に配置されている。 In one specific aspect of the conductive particles according to the present invention, the conductive particles include a plurality of the soft magnetic material portions, a plurality of the soft magnetic material portions are separated, and are disposed on an outer surface of the conductive portion. ing.
 本発明に係る導電性粒子のある特定の局面では、前記導電部の表面積全体に占める前記導電部の表面の前記軟質磁性体部により覆われている部分の面積が、30%以上である。 In a specific aspect of the conductive particles according to the present invention, an area of a portion of the surface of the conductive portion covered by the soft magnetic material portion with respect to an entire surface area of the conductive portion is 30% or more.
 本発明に係る導電性粒子のある特定の局面では、前記導電部の表面積全体に占める前記導電部の表面の前記軟質磁性体部により覆われている部分の面積が、40%以上である。 In a specific aspect of the conductive particles according to the present invention, an area of a portion of the surface of the conductive portion covered by the soft magnetic material portion with respect to an entire surface area of the conductive portion is 40% or more.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面上に配置された複数の絶縁性粒子を備える。 で は In one specific aspect of the conductive particles according to the present invention, the conductive particles include a plurality of insulating particles arranged on an outer surface of the conductive portion.
 本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 According to a broad aspect of the present invention, there is provided a conductive material including the above-described conductive particles and a binder resin.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電性粒子であるか、又は前記導電性粒子とバインダー樹脂とを含む導電材料であり、前記第1の電極と前記第2の電極とが、前記導電性粒子における前記導電部により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member having a first electrode on a surface, a second connection target member having a second electrode on a surface, the first connection target member, A connection portion connecting the second connection target member, and the material of the connection portion is the above-described conductive particles, or a conductive material including the conductive particles and a binder resin. A connection structure is provided in which the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles.
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。本発明に係る導電性粒子では、残留磁化の飽和磁化に対する比が、0.6以下である。本発明に係る導電性粒子では、上記の構成が備えられているので、電極間の接続抵抗を効果的に低くすることができ、かつ、磁性凝集を効果的に抑制することができる。 導電 The conductive particles according to the present invention include base particles and conductive portions disposed on the surface of the base particles. In the conductive particles according to the present invention, the ratio of the residual magnetization to the saturation magnetization is 0.6 or less. Since the conductive particles according to the present invention have the above-described configuration, the connection resistance between the electrodes can be effectively reduced, and the magnetic aggregation can be effectively suppressed.
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a sectional view showing the conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view illustrating a conductive particle according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view illustrating a conductive particle according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る導電性粒子を示す断面図である。FIG. 4 is a cross-sectional view illustrating a conductive particle according to a fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係る導電性粒子を示す断面図である。FIG. 5 is a cross-sectional view illustrating a conductive particle according to a fifth embodiment of the present invention. 図6は、本発明の第6の実施形態に係る導電性粒子を示す断面図である。FIG. 6 is a sectional view showing a conductive particle according to the sixth embodiment of the present invention. 図7は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a connection structure using the conductive particles according to the first embodiment of the present invention.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (導電性粒子)
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。本発明に係る導電性粒子では、残留磁化の飽和磁化に対する比が、0.6以下である。
(Conductive particles)
The conductive particles according to the present invention include base particles, and a conductive part disposed on the surface of the base particles. In the conductive particles according to the present invention, the ratio of the residual magnetization to the saturation magnetization is 0.6 or less.
 本発明に係る導電性粒子では、上記の構成が備えられているので、電極間の接続抵抗を効果的に低くすることができ、かつ、磁性凝集を効果的に抑制することができる。 導電 Since the conductive particles according to the present invention have the above configuration, the connection resistance between the electrodes can be effectively reduced, and the magnetic aggregation can be effectively suppressed.
 従来の導電性粒子では、磁性を有するニッケル等の金属が周辺環境や製造工程等で磁化され、導電性粒子が凝集(磁性凝集)することがある。導電性粒子の凝集(磁性凝集)を抑制する方法としては、めっき層にリンを含有させて、飽和磁化を低減させる方法等が挙げられる。しかしながら、めっき層のリン含有率が高くなると、導電性粒子の抵抗値が著しく上昇し、該導電性粒子を用いて電極間を電気的に接続すると、電極間の接続抵抗も高くなることがある。 In the conventional conductive particles, a metal such as nickel having magnetism is magnetized in the surrounding environment or a manufacturing process, and the conductive particles may aggregate (magnetic aggregation). As a method of suppressing the aggregation (magnetic aggregation) of the conductive particles, a method of reducing saturation magnetization by adding phosphorus to the plating layer can be cited. However, when the phosphorus content of the plating layer increases, the resistance value of the conductive particles significantly increases, and when the electrodes are electrically connected using the conductive particles, the connection resistance between the electrodes may also increase. .
 また、従来の導電性粒子では、飽和磁化を低減させても、残留磁化が十分に低減していないことがある。本発明者は、導電性粒子の磁性凝集を抑制するためには、残留磁化を低減させる必要があることを見出した。従来の導電性粒子では、電極間の接続抵抗を低くすることと、磁性凝集を抑制することとを両立させることが困難なことがある。 で は In the conventional conductive particles, the residual magnetization may not be sufficiently reduced even if the saturation magnetization is reduced. The present inventors have found that it is necessary to reduce the residual magnetization in order to suppress the magnetic aggregation of the conductive particles. With conventional conductive particles, it may be difficult to achieve both a reduction in connection resistance between electrodes and a suppression of magnetic aggregation.
 本発明者らは、特定の導電性粒子を用いることで、電極間の接続抵抗を低くすることと、導電性粒子の磁性凝集を抑制することとの双方を両立させることができることを見出した。本発明では、上記の構成が備えられているので、電極間の接続抵抗を効果的に低くすることができ、かつ、導電性粒子の磁性凝集を効果的に抑制することができる。 The present inventors have found that by using specific conductive particles, it is possible to achieve both a low connection resistance between electrodes and a suppression of magnetic aggregation of the conductive particles. In the present invention, since the above configuration is provided, the connection resistance between the electrodes can be effectively reduced, and the magnetic aggregation of the conductive particles can be effectively suppressed.
 本発明では、上記のような効果を得るために、特定の導電性粒子を用いることは大きく寄与する。 で は In the present invention, the use of specific conductive particles greatly contributes to obtaining the above-described effects.
 電極間の接続抵抗を効果的に低くし、かつ、磁性凝集を効果的に抑制する観点から、本発明に係る導電性粒子では、残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)が、0.6以下である。上記比(残留磁化/飽和磁化)は、好ましくは0.5以下、より好ましくは0.3以下、最も好ましくは0.0である。電極間の接続抵抗をより一層効果的に低くし、かつ、磁性凝集をより一層効果的に抑制する観点から、上記比(残留磁化/飽和磁化)は、0.0に近いほど好ましい。上記比(残留磁化/飽和磁化)が、上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。なお、上記比(残留磁化/飽和磁化)の下限は特に限定されない。上記比(残留磁化/飽和磁化)は、例えば、0.001以上であることが好ましく、0.01以上であることがより好ましい。 From the viewpoint of effectively lowering the connection resistance between the electrodes and effectively suppressing magnetic aggregation, in the conductive particles according to the present invention, the ratio of the residual magnetization to the saturation magnetization (residual magnetization / saturation magnetization) is: 0.6 or less. The ratio (residual magnetization / saturation magnetization) is preferably 0.5 or less, more preferably 0.3 or less, and most preferably 0.0. The ratio (residual magnetization / saturation magnetization) is preferably as close to 0.0 as possible from the viewpoint of more effectively reducing the connection resistance between the electrodes and suppressing the magnetic aggregation more effectively. When the ratio (residual magnetization / saturation magnetization) is equal to or less than the upper limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed. . The lower limit of the ratio (remanent magnetization / saturation magnetization) is not particularly limited. The ratio (residual magnetization / saturation magnetization) is, for example, preferably 0.001 or more, and more preferably 0.01 or more.
 磁性凝集をより一層効果的に抑制する観点からは、上記導電性粒子の残留磁化は、0.02A/m(20emu/cm)以下であることが好ましい。上記残留磁化は、好ましくは0.015A/m(15emu/cm)以下、より好ましくは0.01A/m(10emu/cm)以下、さらに好ましくは0.005A/m(5emu/cm)以下であり、最も好ましくは0.0000A/m(0.0emu/cm)である。磁性凝集をより一層効果的に抑制する観点から、上記残留磁化は、0.0000A/m(0.0emu/cm)に近いほど好ましい。上記残留磁化が、上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。なお、上記導電性粒子の残留磁化の下限は特に限定されない。上記残留磁化は、例えば、0.0001A/m(0.1emu/cm)以上であることが好ましい。 From the viewpoint of more effectively suppressing magnetic aggregation, the residual magnetization of the conductive particles is preferably 0.02 A / m (20 emu / cm 3 ) or less. The residual magnetization is preferably 0.015A / m (15emu / cm 3 ) or less, more preferably 0.01A / m (10emu / cm 3 ) or less, more preferably 0.005A / m (5emu / cm 3 ) Or less, most preferably 0.0000 A / m (0.0 emu / cm 3 ). From the viewpoint of more effectively suppressing magnetic aggregation, the above-mentioned residual magnetization is preferably as close to 0.0000 A / m (0.0 emu / cm 3 ) as possible. When the residual magnetization is equal to or less than the upper limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed. The lower limit of the residual magnetization of the conductive particles is not particularly limited. The residual magnetization is preferably, for example, not less than 0.0001 A / m (0.1 emu / cm 3 ).
 上記導電性粒子の残留磁化は、例えば、後述の軟質磁性体部による被覆率を調整することで制御することができる。例えば、軟質磁性体部による被覆率を大きくすると、上記残留磁化を小さくすることができ、また、軟質磁性体部による被覆率を小さくすると、上記残留磁化を大きくすることができる。 残留 The residual magnetization of the conductive particles can be controlled, for example, by adjusting the coverage by a soft magnetic material portion described later. For example, the remanence can be reduced by increasing the coverage by the soft magnetic material portion, and the remnant magnetization can be increased by reducing the coverage by the soft magnetic material portion.
 磁性凝集をより一層効果的に抑制する観点からは、上記導電性粒子の飽和磁化は、0.2A/m(200emu/cm)以下であることが好ましい。上記飽和磁化は、好ましくは0.1A/m(100emu/cm)以下、より好ましくは0.08A/m(80emu/cm)以下、さらに好ましくは0.05A/m(50emu/cm)以下である。上記飽和磁化が、上記上限以下であると、磁性凝集をより一層効果的に抑制することができる。集磁力の観点からは、上記導電性粒子の飽和磁化は、0.001A/m(1emu/cm)以上であることが好ましい。上記飽和磁化は、好ましくは0.005A/m(5emu/cm)以上、より好ましくは0.01A/m(10emu/cm)以上、さらに好ましくは0.015A/m(15emu/cm)以上である。上記飽和磁化が、上記下限以上であると、外部磁場によって異方導電材料中の導電性粒子を効率的に配列させることができる。 From the viewpoint of more effectively suppressing magnetic aggregation, the saturation magnetization of the conductive particles is preferably 0.2 A / m (200 emu / cm 3 ) or less. The saturation magnetization is preferably 0.1 A / m (100 emu / cm 3 ) or less, more preferably 0.08 A / m (80 emu / cm 3 ) or less, and even more preferably 0.05 A / m (50 emu / cm 3 ). It is as follows. When the saturation magnetization is equal to or less than the upper limit, magnetic aggregation can be more effectively suppressed. From the viewpoint of the magnetic attraction, the saturation magnetization of the conductive particles is preferably 0.001 A / m (1 emu / cm 3 ) or more. The saturation magnetization is preferably 0.005A / m (5emu / cm 3 ) or more, more preferably 0.01A / m (10emu / cm 3 ) or more, more preferably 0.015A / m (15emu / cm 3 ) That is all. When the saturation magnetization is at least the lower limit, the conductive particles in the anisotropic conductive material can be efficiently arranged by the external magnetic field.
 上記導電性粒子の飽和磁化は、例えば、導電層又は導電部の厚みを調整することで制御することができる。例えば、導電層又は導電部の厚みを厚くすると、上記飽和磁化を大きくすることができ、また、導電層又は導電部の厚みを薄くすると、上記飽和磁化を小さくすることができる。 飽和 The saturation magnetization of the conductive particles can be controlled, for example, by adjusting the thickness of the conductive layer or the conductive portion. For example, the saturation magnetization can be increased by increasing the thickness of the conductive layer or the conductive portion, and the saturation magnetization can be reduced by decreasing the thickness of the conductive layer or the conductive portion.
 上記導電性粒子の残留磁化及び飽和磁化は、振動試料型磁力計(東栄科学産業社製「PV-300-5」)を用いて測定することができる。具体的には、以下のようにして測定することができる。 残留 The residual magnetization and saturation magnetization of the conductive particles can be measured using a vibrating sample magnetometer (“PV-300-5” manufactured by Toei Kagaku Sangyo Co., Ltd.). Specifically, it can be measured as follows.
 ニッケル粉を封入したカプセルを装置の校正試料として使用し、振動試料型磁力計の校正を行う。次に、導電性粒子をカプセルに秤量し、サンプルホルダーに取り付ける。該サンプルホルダーを磁力計本体に設置し、温度20℃(定温)、最大印加磁界20kOe、速度3分/loopの条件下での測定により、磁化曲線を得る。得られた磁化曲線から残留磁化及び飽和磁化(A/m)を求める。 カ プ セ ル Calibrate the vibrating sample magnetometer using the nickel powder encapsulated capsule as a calibration sample for the device. Next, the conductive particles are weighed into a capsule and attached to a sample holder. The sample holder is set on the magnetometer main body, and a magnetization curve is obtained by measurement at a temperature of 20 ° C. (constant temperature), a maximum applied magnetic field of 20 kOe, and a speed of 3 minutes / loop. The residual magnetization and the saturation magnetization (A / m) are determined from the obtained magnetization curve.
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、より一層好ましくは30μm以下、さらに好ましくは10μm以下、特に好ましくは5μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くなる。 The particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 60 μm or less, even more preferably 30 μm or less, further preferably 10 μm or less, particularly preferably. Is 5 μm or less. When the particle size of the conductive particles is equal to or greater than the lower limit and equal to or less than the upper limit, when connecting the electrodes using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, In addition, aggregated conductive particles are less likely to be formed when forming the conductive portion. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the base particles.
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出したり、レーザー回折式粒度分布測定を行ったりすることにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 粒子 The particle diameter of the conductive particles is preferably an average particle diameter, and more preferably a number average particle diameter. The particle size of the conductive particles is, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each conductive particle, or performing laser diffraction type particle size distribution measurement. Or by going. In observation with an electron microscope or an optical microscope, the particle diameter of one conductive particle is determined as a particle diameter in a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent sphere diameter. In the laser diffraction type particle size distribution measurement, the particle diameter of one conductive particle is obtained as a particle diameter in a sphere equivalent diameter. The particle size of the conductive particles is preferably calculated by a laser diffraction type particle size distribution measurement.
 上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が、上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。 変 動 The coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less. When the variation coefficient of the particle diameter of the conductive particles is equal to or less than the upper limit, the reliability of conduction between the electrodes and the reliability of insulation can be more effectively improved.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of conductive particles Dn: Average value of particle size of conductive particles
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状等の球形状以外の形状であってもよい。 形状 The shape of the conductive particles is not particularly limited. The shape of the conductive particles may be spherical or may be other than spherical, such as flat.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 FIG. 1 is a cross-sectional view showing the conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、基材粒子2と、導電部3とを備える。導電性粒子1においては、導電部3は導電層である。導電部3は、基材粒子2の表面を覆っている。導電性粒子1は、基材粒子2の表面が導電部3により被覆された被覆粒子である。導電性粒子1は、表面に導電部3を有する。導電性粒子1では、導電部3は、単層の導電部(導電層)である。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記導電性粒子では、上記導電部は、単層の導電部であってもよく、2層以上の層から構成される多層の導電部であってもよい。 導電 The conductive particles 1 shown in FIG. 1 include the base particles 2 and the conductive portions 3. In the conductive particles 1, the conductive part 3 is a conductive layer. The conductive portion 3 covers the surface of the base particles 2. The conductive particles 1 are coated particles in which the surfaces of the base particles 2 are coated with the conductive portions 3. The conductive particles 1 have a conductive portion 3 on the surface. In the conductive particles 1, the conductive part 3 is a single-layer conductive part (conductive layer). In the conductive particles, the conductive portion may cover the entire surface of the base particle, or the conductive portion may cover a part of the surface of the base particle. In the conductive particles, the conductive portion may be a single-layer conductive portion or a multilayer conductive portion including two or more layers.
 導電性粒子1は、後述する導電性粒子51とは異なり、芯物質を有しない。導電性粒子1は導電性の表面に突起を有さず、導電部3の外表面に突起を有しない。導電性粒子1は球状である。但し、導電性粒子1は芯物質を有していてもよく、導電性の表面に突起を有していてもよく、導電部3の外表面に突起を有していてもよい。 The conductive particles 1 have no core material unlike the conductive particles 51 described below. The conductive particles 1 do not have protrusions on the conductive surface, and do not have protrusions on the outer surface of the conductive portion 3. The conductive particles 1 are spherical. However, the conductive particles 1 may have a core substance, may have protrusions on the conductive surface, or may have protrusions on the outer surface of the conductive portion 3.
 上記導電性粒子は、導電性の表面に突起を有していなくてもよく、導電部の外表面に突起を有していなくてもよく、球状であってもよい。また、導電性粒子1は、後述する導電性粒子11,21,41,51とは異なり、絶縁性粒子を有しない。但し、導電性粒子1は、導電部3の外表面上に配置された絶縁性粒子を有していてもよい。 The conductive particles need not have protrusions on the conductive surface, may not have protrusions on the outer surface of the conductive portion, and may be spherical. The conductive particles 1 have no insulating particles, unlike the conductive particles 11, 21, 41, and 51 described below. However, the conductive particles 1 may have insulating particles arranged on the outer surface of the conductive portion 3.
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing the conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子11は、基材粒子2と、導電部3と、軟質磁性体部12と、絶縁性粒子13とを備える。絶縁性粒子13は、絶縁性を有する材料により形成されている。 導電 The conductive particles 11 shown in FIG. 2 include the base particles 2, the conductive portions 3, the soft magnetic material portions 12, and the insulating particles 13. The insulating particles 13 are formed of a material having an insulating property.
 導電性粒子11は導電性粒子1とは異なり、軟質磁性体部12及び絶縁性粒子13を有する。導電性粒子11は、軟質磁性体部12と接触していない絶縁性粒子13を含む。 The conductive particles 11 are different from the conductive particles 1 and have a soft magnetic material portion 12 and insulating particles 13. The conductive particles 11 include the insulating particles 13 that are not in contact with the soft magnetic body 12.
 上記導電性粒子は、軟質磁性体部を有していてもよく、軟質磁性体部を有していなくてもよい。上記導電性粒子は、絶縁性粒子を有していてもよく、絶縁性粒子を有していなくてもよい。上記導電性粒子では、上記軟質磁性体部は、上記導電部の外表面に配置されていることが好ましい。上記軟質磁性体部は、上記導電部と接触していないことが好ましい。上記導電性粒子では、上記絶縁性粒子は、上記導電部の外表面上に配置されていることが好ましい。 The conductive particles may have a soft magnetic part or may not have a soft magnetic part. The conductive particles may have insulating particles or may not have insulating particles. In the conductive particles, it is preferable that the soft magnetic part is disposed on an outer surface of the conductive part. It is preferable that the soft magnetic part is not in contact with the conductive part. In the conductive particles, the insulating particles are preferably arranged on an outer surface of the conductive part.
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
 図3に示す導電性粒子21は、基材粒子2と、導電部3と、軟質磁性体部12と、絶縁性粒子13とを備える。 導電 The conductive particles 21 shown in FIG. 3 include the base particles 2, the conductive portions 3, the soft magnetic material portions 12, and the insulating particles 13.
 導電性粒子21は導電性粒子11とは異なり、軟質磁性体部12の表面を被覆している絶縁部22を有する。導電性粒子21は、軟質磁性体部12と接触していない絶縁性粒子13を含む。導電性粒子21は、絶縁部22と接触していない絶縁性粒子13を含む。 The conductive particles 21 are different from the conductive particles 11 in that they have an insulating portion 22 covering the surface of the soft magnetic material portion 12. The conductive particles 21 include the insulating particles 13 that are not in contact with the soft magnetic body 12. The conductive particles 21 include the insulating particles 13 that are not in contact with the insulating part 22.
 絶縁部22は、絶縁性を有する材料である。導電性粒子21では、絶縁部22は、軟質磁性体部12の表面の全部を覆っている。従って、導電部3と軟質磁性体部12との間に絶縁部22が配置されている。軟質磁性体部12は、導電部3と接触していない。上記絶縁部は、上記軟質磁性体部の表面の少なくとも一部を覆っていればよく、上記軟質磁性体部の表面の全部を覆っていなくてもよい。上記導電性粒子では、上記軟質磁性体部は、上記導電部の外表面上に配置されていることが好ましい。上記軟質磁性体部は、上記絶縁部を介して上記導電部の外表面上に配置されていることが好ましい。上記絶縁部は、上記導電部と上記軟質磁性体部との間に配置されていることが好ましい。上記導電性粒子は、絶縁性粒子を有していてもよく、絶縁性粒子を有していなくてもよい。 The insulating part 22 is a material having an insulating property. In the conductive particles 21, the insulating section 22 covers the entire surface of the soft magnetic body section 12. Therefore, the insulating part 22 is arranged between the conductive part 3 and the soft magnetic part 12. The soft magnetic part 12 is not in contact with the conductive part 3. The insulating portion only needs to cover at least a part of the surface of the soft magnetic body, and does not have to cover the entire surface of the soft magnetic body. In the conductive particles, it is preferable that the soft magnetic portion is disposed on an outer surface of the conductive portion. It is preferable that the soft magnetic part is disposed on an outer surface of the conductive part via the insulating part. It is preferable that the insulating section is disposed between the conductive section and the soft magnetic body section. The conductive particles may have insulating particles or may not have insulating particles.
 図4は、本発明の第4の実施形態に係る導電性粒子を示す断面図である。 FIG. 4 is a cross-sectional view showing a conductive particle according to the fourth embodiment of the present invention.
 図4に示す導電性粒子31は、基材粒子2と、導電部3と、軟質磁性体部12とを備える。 4 The conductive particles 31 shown in FIG. 4 include the base particles 2, the conductive part 3, and the soft magnetic part 12.
 導電性粒子31は導電性粒子11とは異なり、導電部3の表面を被覆している絶縁部32を有する。 The conductive particles 31 are different from the conductive particles 11 and have an insulating portion 32 covering the surface of the conductive portion 3.
 絶縁部32は、絶縁性を有する材料である。導電性粒子31では、絶縁部32は、導電部3の表面の全部を覆っている。従って、導電部3と軟質磁性体部12との間に絶縁部32が配置されている。軟質磁性体部12は、導電部3と接触していない。上記絶縁部は、上記導電部の表面の少なくとも一部を覆っていればよく、上記導電部の表面の全部を覆っていなくてもよい。上記導電性粒子では、上記軟質磁性体部は、上記絶縁部を介して上記導電部の外表面に配置されていることが好ましい。上記絶縁部は、上記導電部と上記軟質磁性体部との間に配置されていることが好ましい。上記導電性粒子は、上記導電部の外表面上に配置された絶縁性粒子を有していてもよい。 The insulating part 32 is a material having an insulating property. In the conductive particles 31, the insulating portion 32 covers the entire surface of the conductive portion 3. Therefore, the insulating part 32 is arranged between the conductive part 3 and the soft magnetic material part 12. The soft magnetic part 12 is not in contact with the conductive part 3. The insulating portion only needs to cover at least a part of the surface of the conductive portion, and need not cover the entire surface of the conductive portion. In the conductive particles, it is preferable that the soft magnetic material portion is disposed on an outer surface of the conductive portion via the insulating portion. It is preferable that the insulating section is disposed between the conductive section and the soft magnetic body section. The conductive particles may include insulating particles disposed on an outer surface of the conductive unit.
 図5は、本発明の第5の実施形態に係る導電性粒子を示す断面図である。 FIG. 5 is a cross-sectional view showing the conductive particles according to the fifth embodiment of the present invention.
 図5に示す導電性粒子41は、基材粒子2と、導電部3と、軟質磁性体部12と、絶縁性粒子13とを備える。 導電 The conductive particles 41 shown in FIG. 5 include the base particles 2, the conductive portions 3, the soft magnetic material portions 12, and the insulating particles 13.
 導電性粒子41は導電性粒子11とは異なり、導電部3の外表面上に配置された絶縁部42を有する。導電性粒子41は、軟質磁性体部12と接触していない絶縁性粒子13を含む。導電性粒子41は、絶縁部42と接触していない絶縁性粒子13を含む。 The conductive particles 41 are different from the conductive particles 11 in that they have an insulating portion 42 disposed on the outer surface of the conductive portion 3. The conductive particles 41 include the insulating particles 13 that are not in contact with the soft magnetic body 12. The conductive particles 41 include the insulating particles 13 that are not in contact with the insulating part 42.
 絶縁部42は、絶縁性を有する材料である。導電性粒子41では、絶縁部42は、絶縁性粒子である。導電性粒子41では、導電部3の外表面上に絶縁部42が配置されており、絶縁部42の外表面上に軟質磁性体部12が配置されている。従って、導電部3と軟質磁性体部12との間に絶縁部42が配置されている。軟質磁性体部12は、導電部3と接触していない。上記絶縁部は、上記導電部の表面の少なくとも一部を覆っていればよく、上記導電部の表面の全部を覆っていなくてもよい。上記導電性粒子では、上記軟質磁性体部は、上記絶縁部を介して上記導電部の外表面に配置されていることが好ましい。上記絶縁部は、上記導電部と上記軟質磁性体部との間に配置されていることが好ましい。上記導電性粒子は、絶縁性粒子を有していてもよく、絶縁性粒子を有していなくてもよい。 The insulating portion 42 is a material having an insulating property. In the conductive particles 41, the insulating part 42 is an insulating particle. In the conductive particles 41, the insulating part 42 is disposed on the outer surface of the conductive part 3, and the soft magnetic body part 12 is disposed on the outer surface of the insulating part 42. Therefore, the insulating part 42 is arranged between the conductive part 3 and the soft magnetic part 12. The soft magnetic part 12 is not in contact with the conductive part 3. The insulating portion only needs to cover at least a part of the surface of the conductive portion, and need not cover the entire surface of the conductive portion. In the conductive particles, it is preferable that the soft magnetic material portion is disposed on an outer surface of the conductive portion via the insulating portion. It is preferable that the insulating section is disposed between the conductive section and the soft magnetic body section. The conductive particles may have insulating particles or may not have insulating particles.
 図6は、本発明の第6の実施形態に係る導電性粒子を示す断面図である。 FIG. 6 is a cross-sectional view showing the conductive particles according to the sixth embodiment of the present invention.
 図6に示す導電性粒子51は、基材粒子2と、導電部61と、軟質磁性体部12と、絶縁性粒子13とを備える。 導電 The conductive particles 51 shown in FIG. 6 include the base particles 2, the conductive portions 61, the soft magnetic material portions 12, and the insulating particles 13.
 導電性粒子51は導電性粒子21とは異なり、基材粒子2の表面上に配置された複数の芯物質62を有する。導電部61は、基材粒子2と芯物質62とを被覆している。芯物質62を導電部61が被覆していることにより、導電性粒子51は、表面に複数の突起63を有する。導電性粒子51では、芯物質62により導電部61の表面が***されており、複数の突起63が形成されている。上記導電性粒子では、上記突起を形成するために、上記芯物質を用いてもよく、上記芯物質を用いなくてもよい。上記導電性粒子では、上記芯物質を有していなくてもよい。 The conductive particles 51 are different from the conductive particles 21 and have a plurality of core substances 62 arranged on the surface of the base particles 2. The conductive portion 61 covers the base particles 2 and the core substance 62. Since the conductive portion 61 covers the core substance 62, the conductive particles 51 have a plurality of protrusions 63 on the surface. In the conductive particles 51, the surface of the conductive portion 61 is raised by the core substance 62, and a plurality of protrusions 63 are formed. In the conductive particles, the core material may be used or the core material may not be used to form the protrusions. The conductive particles need not have the core material.
 以下、導電性粒子の他の詳細について説明する。 Hereinafter, other details of the conductive particles will be described.
 基材粒子:
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
Base particles:
Examples of the base particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The base particles are preferably base particles excluding metal particles, more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particles may be core-shell particles including a core and a shell disposed on the surface of the core. The core may be an organic core, and the shell may be an inorganic shell.
 上記樹脂粒子の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 種 々 Various organic substances are suitably used as the material of the resin particles. Examples of the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, Phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamide imide, polyetheretherketone, Polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and the like. Examples of the divinylbenzene-based copolymer include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylate copolymer. Since the hardness of the resin particles can be easily controlled to a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer. And a crosslinkable monomer.
 上記非架橋性の単量体としては、例えば、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, Alkyl (meth) acrylate compounds such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate Oxygen atom-containing (meth) acrylate compounds such as acrylate; nitrile-containing monomers such as (meth) acrylonitrile; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, and stearin Acid vinyl ester compounds such as vinyl acid; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene And other halogen-containing monomers.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, trimethylolpropanetri (meth) acrylate, and dipentane. Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, and 1,4-butanediol di (meth) acrylate; triallyl (iso) Annulate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallyl acrylamide, diallyl ether, and silane-containing monomers such as γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane Body and the like.
 「(メタ)アクリレート」は、「アクリレート」と「メタクリレート」との一方又は双方を意味する。「(メタ)アクリル」は、「アクリル」と「メタクリル」との一方又は双方を意味する。「(メタ)アクリロイル」は、「アクリロイル」と「メタクリロイル」との一方又は双方を意味する。 “(Meth) acrylate” means one or both of “acrylate” and “methacrylate”. “(Meth) acryl” means one or both of “acryl” and “methacryl”. “(Meth) acryloyl” means one or both of “acryloyl” and “methacryloyl”.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 上 記 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of the method include a method of performing suspension polymerization in the presence of a radical polymerization initiator and a method of performing polymerization by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the base particles are inorganic particles other than metals or organic-inorganic hybrid particles, examples of the inorganic material for forming the base particles include silica, alumina, barium titanate, zirconia, and carbon black. It is preferable that the inorganic substance is not a metal. The particles formed of the silica are not particularly limited. For example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, baking is optionally performed. Particles obtained by performing the method are mentioned. Examples of the organic-inorganic hybrid particles include, for example, organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. Preferably, the core is an organic core. Preferably, the shell is an inorganic shell. From the viewpoint of effectively lowering the connection resistance between the electrodes, the base particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 材料 Examples of the material of the organic core include the above-described materials of the resin particles.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 材料 As the material of the inorganic shell, the inorganic substances mentioned as the material of the base particles described above can be used. The material of the inorganic shell is preferably silica. The above-mentioned inorganic shell is preferably formed on the surface of the above-mentioned core by turning a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. Preferably, the inorganic shell is formed of a silane alkoxide.
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。 場合 When the base particles are metal particles, examples of the metal as a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
 上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。さらに基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。 (4) The particle diameter of the base particles is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 2 μm or more, preferably 100 μm or less, more preferably 60 μm or less, and still more preferably 50 μm or less. When the particle diameter of the base particles is equal to or greater than the lower limit and equal to or less than the upper limit, small conductive particles can be obtained even if the distance between the electrodes is reduced and the thickness of the conductive layer is increased. Further, when the conductive portion is formed on the surface of the base particles, it is difficult to aggregate, and the aggregated conductive particles are hardly formed.
 上記基材粒子の粒子径は、2μm以上50μm以下であることが特に好ましい。上記基材粒子の粒子径が、2μm以上50μm以下の範囲内であると、基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。 粒子 It is particularly preferable that the particle diameter of the base particles is 2 μm or more and 50 μm or less. When the particle diameter of the base particles is in the range of 2 μm or more and 50 μm or less, it is difficult to form a conductive part on the surface of the base particles, and it is difficult to form the conductive particles.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 粒子 The particle diameter of the base particles indicates a diameter when the base particles are truly spherical, and indicates a maximum diameter when the base particles are not true spherical.
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 粒子 The particle diameter of the above-mentioned base particles indicates a number average particle diameter. The particle size of the base particles is determined using a particle size distribution measuring device or the like. The particle diameter of the base particles is preferably determined by observing 50 arbitrary base particles with an electron microscope or an optical microscope and calculating an average value. In the case of measuring the particle size of the base particles in the conductive particles, the measurement can be performed, for example, as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 (4) Add the conductive particles to “Technobit 4000” manufactured by Kulzer Co., Ltd. so that the content of the conductive particles becomes 30% by weight, and disperse the conductive resin to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 25,000 times, 50 conductive particles were randomly selected, and the base particles of each conductive particle were observed. I do. The particle diameter of the base particles in each conductive particle is measured, and the arithmetic average thereof is used as the particle diameter of the base particles.
 導電部:
 上記導電部は、金属を含むことが好ましい。上記導電部を構成する金属は、特に限定されない。上記金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は、軟質磁性体であってもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。電極間の接続抵抗をより一層低くする観点からは、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。なお、本明細書において導電部とは、導電部を構成する材料と同じ材料を用いて粉体試料を作製し、三菱化学社製「粉体抵抗率測定システム」を用いて該粉体試料の体積抵抗値を測定したときに、該体積抵抗値が0.005Ω・cm以下である部分と定義される。
Conductive part:
Preferably, the conductive portion includes a metal. The metal constituting the conductive portion is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. The metal may be a soft magnetic material. One of the above metals may be used alone, or two or more thereof may be used in combination. From the viewpoint of further lowering the connection resistance between the electrodes, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable. Note that, in the present specification, the conductive portion is a powder sample prepared using the same material as the material constituting the conductive portion, and the powder sample is manufactured using a “powder resistivity measurement system” manufactured by Mitsubishi Chemical Corporation. When the volume resistivity is measured, it is defined as a portion where the volume resistivity is 0.005 Ω · cm or less.
 また、導通信頼性を効果的に高める観点からは、上記導電部及び上記導電部の外表面部分はニッケルを含むことが好ましい。ニッケルを含む導電部100重量%中のニッケルの含有量は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有量は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよい。 From the viewpoint of effectively improving conduction reliability, it is preferable that the conductive portion and the outer surface portion of the conductive portion contain nickel. The content of nickel in 100% by weight of the conductive portion containing nickel is preferably at least 10% by weight, more preferably at least 50% by weight, still more preferably at least 60% by weight, further preferably at least 70% by weight, and particularly preferably. Is 90% by weight or more. The content of nickel in the conductive portion 100% by weight containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.
 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性粒子を配置できる。 A hydroxyl group often exists on the surface of the conductive portion due to oxidation. Generally, a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation. Insulating particles can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.
 上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層を構成する金属は、金、ニッケル、パラジウム、銅又は錫と銀とを含む合金であることが好ましく、金であることがより好ましい。最外層を構成する金属がこれらの好ましい金属である場合には、電極間の接続抵抗がより一層低くなる。また、最外層を構成する金属が金である場合には、耐腐食性がより一層高くなる。 The conductive portion may be formed of one layer. The conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers. When the conductive portion is formed of a plurality of layers, the metal constituting the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferred. When the metal constituting the outermost layer is one of these preferable metals, the connection resistance between the electrodes is further reduced. Further, when the metal constituting the outermost layer is gold, the corrosion resistance is further improved.
 上記基材粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 方法 The method of forming the conductive portion on the surface of the base particles is not particularly limited. As a method of forming the conductive portion, for example, a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or A method of coating the surface of the base particles with a paste containing a metal powder and a binder may be used. The method of forming the conductive portion is preferably an electroless plating, an electroplating, or a physical collision method. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. In the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kosakusho) or the like is used.
 上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。 (4) The thickness of the conductive portion is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and still more preferably 0.3 μm or less. When the thickness of the conductive portion is equal to or greater than the lower limit and equal to or less than the upper limit, sufficient conductivity is obtained, and the conductive particles are not excessively hard, and the conductive particles are sufficiently formed at the time of connection between the electrodes. Can be deformed.
 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、最外層の導電部が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗を十分に低くすることができる。 When the conductive portion is formed by a plurality of layers, the thickness of the outermost conductive portion is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably Is 0.1 μm or less. When the thickness of the conductive portion of the outermost layer is equal to or more than the lower limit and equal to or less than the upper limit, the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficiently low. can do.
 上記導電部の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。 厚 み The thickness of the conductive portion can be measured by observing a cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
 芯物質:
 上記導電性粒子は、上記導電部の外表面に複数の突起を有することが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。
Core material:
The conductive particles preferably have a plurality of protrusions on the outer surface of the conductive portion. An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by arranging the conductive particles between the electrodes and pressing them. For this reason, the electrode and the conductive portion are more securely in contact with each other, and the connection resistance between the electrodes is further reduced. Furthermore, at the time of connection between the electrodes, the protrusions of the conductive particles can effectively eliminate the insulating particles between the conductive particles and the electrodes. For this reason, the conduction reliability between the electrodes is further improved.
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の導電部を形成した後、該第1の導電部上に芯物質を配置し、次に第2の導電部を形成する方法、並びに基材粒子の表面上に導電部(第1の導電部又は第2の導電部等)を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、基材粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。 As a method of forming the projections, a method of forming a conductive portion by electroless plating after attaching a core substance to the surface of the base particle, and a method of forming a conductive portion by electroless plating on the surface of the base particle Then, a method of attaching a core substance and further forming a conductive portion by electroless plating may be used. As another method of forming the above-mentioned projection, after forming a first conductive portion on the surface of the base particles, a core substance is disposed on the first conductive portion, and then the second conductive portion is formed. And a method of adding a core substance in the middle of forming a conductive part (such as the first conductive part or the second conductive part) on the surface of the base particles. Also, in order to form projections, without using the above-mentioned core substance, after forming a conductive portion on the base particles by electroless plating, plating is deposited in the form of protrusions on the surface of the conductive portion, and further electroless plating is performed. May be used to form a conductive portion.
 基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、基材粒子の表面に芯物質を付着させる方法は、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。 As a method of attaching the core substance to the surface of the base particles, for example, in a dispersion of the base particles, the core substance is added, the core substance is accumulated on the surface of the base particles by van der Waals force, Examples of the method include a method of attaching the core substance to a container containing the base particles, and a method of attaching the core substance to the surface of the base particles by mechanical action such as rotation of the container. From the viewpoint of controlling the amount of the core material to be attached, the method of attaching the core material to the surface of the base particles is a method of accumulating and attaching the core material to the surface of the base particles in the dispersion. preferable.
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記芯物質が金属であることが好ましい。 (4) Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance. Examples of the conductive material include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the non-conductive substance include silica, alumina, and zirconia. From the viewpoint of further improving the conduction reliability between the electrodes, the core material is preferably a metal.
 上記金属は特に限定されない。上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記金属は、ニッケル、銅、銀又は金が好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。 The metal is not particularly limited. Examples of the metal include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead. Alloys, such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and alloys composed of two or more metals such as tungsten carbide. From the viewpoint of further improving the conduction reliability between the electrodes, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal forming the conductive portion (conductive layer).
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 形状 The shape of the core material is not particularly limited. The shape of the core material is preferably a lump. Examples of the core substance include a particulate mass, an aggregate obtained by aggregating a plurality of fine particles, and an irregular mass.
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が、上記下限以上及び上限以下であると、電極間の接続抵抗を効果的に低くすることができる。 平均 The average diameter (average particle diameter) of the core material is preferably 0.001 µm or more, more preferably 0.05 µm or more, preferably 0.9 µm or less, more preferably 0.2 µm or less. When the average diameter of the core material is equal to or greater than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes can be effectively reduced.
 上記芯物質の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。芯物質の粒子径は、例えば、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出したり、レーザー回折式粒度分布測定を行ったりすることにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの芯物質の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の芯物質の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの芯物質の粒子径は、球相当径での粒子径として求められる。上記芯物質の粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 粒子 The core material preferably has an average particle size, more preferably a number average particle size. The particle diameter of the core substance is, for example, observing 50 arbitrary core substances with an electron microscope or an optical microscope, calculating the average value of the particle diameter of each core substance, or performing laser diffraction type particle size distribution measurement. It is required by In observation with an electron microscope or an optical microscope, the particle diameter of a core substance per piece is obtained as a particle diameter in a circle equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any of the 50 core materials in the circle equivalent diameter is almost equal to the average particle diameter in the sphere equivalent diameter. In the laser diffraction type particle size distribution measurement, the particle diameter of the core substance per piece is obtained as a particle diameter in a sphere equivalent diameter. The particle size of the core material is preferably calculated by a laser diffraction type particle size distribution measurement.
 絶縁性粒子:
 上記導電性粒子は、上記導電部の外表面上に配置された複数の絶縁性粒子を備えることが好ましい。この場合には、上記導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性粒子が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性粒子を容易に排除できる。さらに、導電部の外表面に複数の突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁性粒子をより一層容易に排除できる。
Insulating particles:
It is preferable that the conductive particles include a plurality of insulating particles disposed on an outer surface of the conductive portion. In this case, when the conductive particles are used for connection between electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when the plurality of conductive particles come into contact with each other, the insulating particles are present between the plurality of electrodes, so that a short circuit between not only the upper and lower electrodes but also horizontally adjacent electrodes can be prevented. When the conductive particles are pressurized by the two electrodes at the time of connection between the electrodes, the insulating particles between the conductive portion of the conductive particles and the electrode can be easily removed. Further, in the case of conductive particles having a plurality of protrusions on the outer surface of the conductive portion, insulating particles between the conductive portion and the electrode of the conductive particles can be more easily removed.
 上記絶縁性粒子の材料としては、上述した樹脂粒子の材料、及び上述した基材粒子の材料として挙げた無機物等が挙げられる。上記絶縁性粒子の材料は、上述した樹脂粒子の材料であることが好ましい。上記絶縁性粒子は、上述した樹脂粒子又は上述した有機無機ハイブリッド粒子であることが好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。 材料 Examples of the material of the insulating particles include the above-described materials of the resin particles and the above-described inorganic materials as the materials of the base particles. The material of the insulating particles is preferably the material of the resin particles described above. The insulating particles are preferably the resin particles described above or the organic-inorganic hybrid particles described above, and may be resin particles or organic-inorganic hybrid particles.
 上記絶縁性粒子の他の材料としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。上記絶縁性粒子の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Other materials for the insulating particles include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, thermosetting resins and water-soluble resins. Resins. As the material of the insulating particles, only one kind may be used, or two or more kinds may be used in combination.
 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリドデシル(メタ)アクリレート及びポリステアリル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記熱可塑性樹脂の架橋物としては、ポリエチレングリコールメタクリレート、アルコキシ化トリメチロールプロパンメタクリレートやアルコキシ化ペンタエリスリトールメタクリレート等の導入が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。また、重合度の調整に、連鎖移動剤を使用してもよい。連鎖移動剤としては、チオールや四塩化炭素等が挙げられる。 Examples of the polyolefin compound include polyethylene, an ethylene-vinyl acetate copolymer, and an ethylene-acrylate copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB-type styrene-butadiene block copolymer, SBS-type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include a vinyl polymer and a vinyl copolymer. Examples of the thermosetting resin include an epoxy resin, a phenol resin, and a melamine resin. Examples of the crosslinked product of the thermoplastic resin include introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, and alkoxylated pentaerythritol methacrylate. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Further, a chain transfer agent may be used for adjusting the degree of polymerization. Examples of the chain transfer agent include thiol and carbon tetrachloride.
 上記導電部の表面上に上記絶縁性粒子を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記導電部の表面上に上記絶縁性粒子を配置する方法は、物理的方法であることが好ましい。 方法 Examples of a method for disposing the insulating particles on the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. When the electrodes are electrically connected, from the viewpoint of more effectively improving insulation reliability and conduction reliability, the method of arranging the insulating particles on the surface of the conductive portion is a physical method. Preferably, there is.
 上記導電部の外表面、及び上記絶縁性粒子の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記導電部の外表面と上記絶縁性粒子の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の外表面の官能基と化学結合していても構わない。 外 The outer surface of the conductive portion and the outer surface of the insulating particles may be respectively coated with a compound having a reactive functional group. The outer surface of the conductive part and the outer surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group to the outer surface of the conductive portion, the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating particles via a polymer electrolyte such as polyethyleneimine.
 上記絶縁性粒子の粒子径は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは300nm以上、特に好ましくは500nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは1500nm以下、特に好ましくは1000nm以下である。絶縁性粒子の粒子径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなる。絶縁性粒子の粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 粒子 The particle size of the insulating particles can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles, and the like. The particle diameter of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, and still more preferably 1500 nm or less. And particularly preferably 1000 nm or less. When the particle size of the insulating particles is equal to or larger than the lower limit, when the conductive particles are dispersed in the binder resin, it is difficult for the conductive layers of the plurality of conductive particles to contact each other. When the particle diameter of the insulating particles is equal to or less than the above upper limit, when connecting the electrodes, in order to eliminate the insulating particles between the electrodes and the conductive particles, it is not necessary to excessively increase the pressure, high temperature There is no need for heating.
 上記絶縁性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。上記絶縁性粒子の粒子径は粒度分布測定装置等を用いて求められる。上記絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。上記導電性粒子において、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 粒子 The particle size of the insulating particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the insulating particles is determined using a particle size distribution analyzer or the like. The particle diameter of the insulating particles is preferably obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope and calculating an average value. When measuring the particle size of the insulating particles in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の絶縁性粒子を観察する。各導電性粒子における絶縁性粒子の粒子径を計測し、それらを算術平均して絶縁性粒子の粒子径とする。 (4) The conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the insulating particles of each conductive particle were observed. I do. The particle diameter of the insulating particles in each conductive particle is measured, and arithmetically averaged to obtain the particle diameter of the insulating particles.
 上記導電性粒子の粒子径の、上記絶縁性粒子の粒子径に対する比(導電性粒子の粒子径/絶縁性粒子の粒子径)は、好ましくは4以上、より好ましくは8以上であり、好ましくは200以下、より好ましくは100以下である。上記比(導電性粒子の粒子径/絶縁性粒子の粒子径)が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高めることができる。 The ratio of the particle size of the conductive particles to the particle size of the insulating particles (particle size of the conductive particles / particle size of the insulating particles) is preferably 4 or more, more preferably 8 or more, and preferably It is 200 or less, more preferably 100 or less. When the ratio (particle diameter of conductive particles / particle diameter of insulating particles) is equal to or more than the lower limit and equal to or less than the upper limit, when the electrodes are electrically connected, insulation reliability and conduction reliability are more improved. It can be more effectively increased.
 軟質磁性体部:
 上記導電性粒子は、上記導電部の外表面上に配置された軟質磁性体部を備えることが好ましい。上記導電性粒子が、上記軟質磁性体部を備えていると、上記導電部の導電性を損なうことなく、上記導電性粒子の残留磁化をより一層効果的に低減することができる。結果として、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。なお、本明細書において軟質磁性体部とは、外部磁場の影響下では磁化されるが、外部磁場を取り除くと速やかに磁力を失う部分と定義される。上記軟質磁性体部は、飽和磁化が0.00A/mを超え、かつ残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)が0.3未満であることが好ましい。上記軟質磁性体部の飽和磁化及び上記比(残留磁化/飽和磁化)は、以下の手順に従って測定することができる。上記軟質磁性体部を構成する材料と同じ材料を用いて粉体試料を作製する。該粉体試料を導電性粒子の残留磁化及び飽和磁化を測定するのと同様の手順で、振動試料型磁力計(東栄科学産業社製「PV-300-5」)を用いて測定する。得られた飽和磁化及び残留磁化から、上記軟質磁性体部の飽和磁化及び上記比(残留磁化/飽和磁化)が得られる。
Soft magnetic part:
The conductive particles preferably include a soft magnetic body disposed on the outer surface of the conductive unit. When the conductive particles include the soft magnetic material portion, the residual magnetization of the conductive particles can be reduced more effectively without impairing the conductivity of the conductive portion. As a result, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed. In this specification, the soft magnetic portion is defined as a portion that is magnetized under the influence of an external magnetic field, but loses magnetic force quickly when the external magnetic field is removed. Preferably, the soft magnetic portion has a saturation magnetization exceeding 0.00 A / m and a ratio of the residual magnetization to the saturation magnetization (residual magnetization / saturation magnetization) of less than 0.3. The saturation magnetization and the ratio (residual magnetization / saturation magnetization) of the soft magnetic body can be measured according to the following procedure. A powder sample is prepared using the same material as the material forming the soft magnetic body. The powder sample is measured using a vibrating sample magnetometer (“PV-300-5” manufactured by Toei Kagaku Sangyo Co., Ltd.) in the same procedure as that for measuring the residual magnetization and saturation magnetization of the conductive particles. From the obtained saturation magnetization and residual magnetization, the saturation magnetization of the soft magnetic material part and the ratio (remaining magnetization / saturation magnetization) are obtained.
 上記軟質磁性体部は、軟質磁性体粒子であってもよく、軟質磁性体層であってもよい。 The soft magnetic portion may be soft magnetic particles or a soft magnetic layer.
 電極間の接続抵抗をより一層効果的に低く維持しつつ、磁性凝集をより一層効果的に抑制する観点からは、上記導電性粒子は、上記軟質磁性体部を複数備えることが好ましい。より具体的には、軟質磁性体部が軟質磁性体粒子を含み、該軟質磁性体粒子を複数含むことが好ましい。他の具体的な態様としては、上記導電性粒子が1つの軟質磁性体部によって導電部の外表面の全体が覆われているのではなく、導電部が露出するように複数の軟質磁性体部がまだら模様に存在している態様が好ましい。上記導電性粒子では、複数の上記軟質磁性体部が離れて、上記導電部の外表面上に配置されていることが好ましい。離れて存在する軟質磁性体部の数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは10以上である。離れて存在する軟質磁性体部の数は、導電性粒子の表面積等に応じて、適宜設定することができる。 From the viewpoint of suppressing the magnetic aggregation more effectively while maintaining the connection resistance between the electrodes more effectively low, the conductive particles preferably include a plurality of the soft magnetic material portions. More specifically, it is preferable that the soft magnetic material portion includes soft magnetic material particles and that the soft magnetic material includes a plurality of soft magnetic material particles. In another specific embodiment, the conductive particles do not cover the entire outer surface of the conductive part with one soft magnetic part, but a plurality of soft magnetic parts so that the conductive part is exposed. Is preferably present in a mottled pattern. In the conductive particles, it is preferable that a plurality of the soft magnetic material portions are separated and arranged on an outer surface of the conductive portion. The number of the soft magnetic portions that are apart is preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, and particularly preferably 10 or more. The number of the soft magnetic material portions that exist apart can be appropriately set according to the surface area of the conductive particles and the like.
 上記軟質磁性体部は特に限定されない。上記軟質磁性体部の材料としては、純鉄、ケイ素鉄、パーマロイ、Fe-Si-Al、パーメンジュール、電磁ステンレス、アモルファス(鉄基アモルファス及びコバルト基アモルファス等)、ナノ結晶、並びにフェライト(マンガン亜鉛フェライト、ニッケル亜鉛フェライト、銅亜鉛フェライト、コバルトフェライト、マグヘマイト及びマグネタイト等)等が挙げられる。上記軟質磁性体部の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The soft magnetic body is not particularly limited. Examples of the material of the soft magnetic body include pure iron, silicon iron, permalloy, Fe—Si—Al, permendur, electromagnetic stainless steel, amorphous (iron-based amorphous and cobalt-based amorphous), nanocrystal, and ferrite (manganese). Zinc ferrite, nickel zinc ferrite, copper zinc ferrite, cobalt ferrite, maghemite, magnetite, etc.). As the material of the soft magnetic body, only one kind may be used, or two or more kinds may be used in combination.
 上記軟質磁性体部が粒子である場合に、上記軟質磁性体部の粒子径は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記軟質磁性体部の粒子径は、好ましくは5nm以上、より好ましくは10nm以上であり、好ましくは200nm以下、より好ましくは100nm以下である。上記軟質磁性体部の粒子径が上記下限以上であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。 (4) When the soft magnetic portion is a particle, the particle size of the soft magnetic portion can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles, and the like. The particle diameter of the soft magnetic material part is preferably 5 nm or more, more preferably 10 nm or more, preferably 200 nm or less, more preferably 100 nm or less. When the particle diameter of the soft magnetic portion is equal to or larger than the lower limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed.
 上記軟質磁性体部の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。上記軟質磁性体部の粒子径は粒度分布測定装置等を用いて求められる。上記軟質磁性体部の粒子径は、任意の軟質磁性体部50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。上記導電性粒子において、上記軟質磁性体部の粒子径を測定する場合には、例えば、以下のようにして測定できる。 粒子 The particle diameter of the soft magnetic material part is preferably an average particle diameter, and more preferably a number average particle diameter. The particle diameter of the soft magnetic material portion can be determined using a particle size distribution measuring device or the like. It is preferable that the particle diameter of the soft magnetic material part is obtained by observing 50 arbitrary soft magnetic material parts with an electron microscope or an optical microscope and calculating an average value. When measuring the particle diameter of the soft magnetic material part in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の軟質磁性体部を観察する。各導電性粒子における軟質磁性体部の粒子径を計測し、それらを算術平均して軟質磁性体部の粒子径とする。 (4) The conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 50 conductive particles are randomly selected, and the soft magnetic material portion of each conductive particle is selected. Observe. The particle diameter of the soft magnetic material part in each conductive particle is measured, and the arithmetic average is used as the particle diameter of the soft magnetic material part.
 上記軟質磁性体部が層である場合に、上記軟質磁性体部の厚みは、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記軟質磁性体部の厚みは、好ましくは5nm以上、より好ましくは10nm以上であり、好ましくは200nm以下、より好ましくは100nm以下である。 When the soft magnetic part is a layer, the thickness of the soft magnetic part can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles, and the like. The thickness of the soft magnetic part is preferably 5 nm or more, more preferably 10 nm or more, preferably 200 nm or less, more preferably 100 nm or less.
 上記軟質磁性体部の厚みは、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。上記導電性粒子において、上記軟質磁性体部の厚みを測定する場合には、例えば、以下のようにして測定できる。 厚 み The thickness of the soft magnetic body is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value. When measuring the thickness of the soft magnetic material portion in the conductive particles, the thickness can be measured, for example, as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の軟質磁性体部の厚みを観察する。各導電性粒子における軟質磁性体部の厚みを計測し、それらを算術平均して軟質磁性体部の厚みとする。 (4) The conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the soft magnetic material portion of each conductive particle was selected. Observe the thickness. The thickness of the soft magnetic part in each conductive particle is measured, and the arithmetic average of the thickness is used as the thickness of the soft magnetic part.
 磁性凝集をより一層効果的に抑制する観点からは、上記導電部と上記軟質磁性体部とは離れていることが好ましい。上記導電部と上記軟質磁性体部との離れている距離は、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上であり、好ましくは800nm以下、より好ましくは500nm以下である。上記離れている距離が上記下限以上であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。なお、上記導電部と上記軟質磁性体部との離れている距離は、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の導電部と軟質磁性体部との離れている距離を計測し、それらを算術平均して上記導電部と上記軟質磁性体部との離れている距離とする。なお、上記導電性粒子が、導電部と軟質磁性体部との間に配置された絶縁部を備える場合には、後述の絶縁部の厚みの測定方法に従って測定される絶縁部の厚みを、上記導電部と上記軟質磁性体部との離れている距離としてもよい。 か ら From the viewpoint of more effectively suppressing magnetic aggregation, it is preferable that the conductive part and the soft magnetic part are separated from each other. The distance between the conductive part and the soft magnetic part is preferably at least 10 nm, more preferably at least 30 nm, further preferably at least 50 nm, preferably at most 800 nm, more preferably at most 500 nm. When the distance is equal to or greater than the lower limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed. The distance between the conductive part and the soft magnetic material part was set to an image magnification of 50,000 times using a field emission scanning electron microscope (FE-SEM), and 50 conductive particles were set. Is randomly selected, the distance between the conductive part of each conductive particle and the soft magnetic part is measured, and the distance between the conductive part and the soft magnetic part is arithmetically averaged. And When the conductive particles include an insulating portion disposed between the conductive portion and the soft magnetic material portion, the thickness of the insulating portion measured according to a method for measuring the thickness of the insulating portion described below, The distance between the conductive portion and the soft magnetic material portion may be a distance.
 上記導電部の表面積全体に占める上記導電部の表面の上記軟質磁性体部により覆われている部分の面積(軟質磁性体部による被覆率)は、好ましくは5%以上、より好ましくは10%以上、より一層好ましくは20%以上、さらに好ましくは30%以上、さらに一層好ましくは40%以上、特に好ましくは45%以上、最も好ましくは50%以上である。上記軟質磁性体部による被覆率は80%以下であってもよい。上記軟質磁性体部による被覆率が上記下限以上であると、磁性凝集をより一層効果的に抑制することができる。電極間の接続抵抗をより一層効果的に低く維持する観点からは、上記軟質磁性体部による被覆率は、95%以下であてもよく、90%以下であってもよく、80%以下であってもよく、70%以下であってもよい。 The area of the portion of the surface of the conductive portion covered by the soft magnetic material portion (coverage by the soft magnetic material portion) in the entire surface area of the conductive portion is preferably 5% or more, more preferably 10% or more. , Even more preferably at least 20%, further preferably at least 30%, even more preferably at least 40%, particularly preferably at least 45%, most preferably at least 50%. The coverage by the soft magnetic material portion may be 80% or less. When the coverage by the soft magnetic material portion is equal to or more than the lower limit, magnetic aggregation can be more effectively suppressed. From the viewpoint of maintaining the connection resistance between the electrodes more effectively low, the coverage ratio of the soft magnetic material portion may be 95% or less, 90% or less, or 80% or less. Or 70% or less.
 上記軟質磁性体部による被覆率は以下のようにして求められる。 被覆 The coverage by the soft magnetic material is obtained as follows.
 導電性粒子を一方向から走査型電子顕微鏡(SEM)で観察し、観察画像における導電部の表面の外周縁部分の円内の面積全体に占める、導電部の表面の外周縁部分の円内における軟質磁性体部の合計の面積から算出する。上記軟質磁性体部による被覆率は、20個の導電性粒子を観察し、各導電性粒子の測定結果を平均した平均被覆率として算出することが好ましい。 The conductive particles are observed from one direction with a scanning electron microscope (SEM), and are occupied by the outer peripheral portion of the surface of the conductive portion within the circle of the outer peripheral portion of the surface of the conductive portion in the observation image. It is calculated from the total area of the soft magnetic body. It is preferable that the coverage by the soft magnetic material part is calculated as an average coverage by observing 20 conductive particles and averaging the measurement results of each conductive particle.
 絶縁部:
 上記導電性粒子は、上記導電部と上記軟質磁性体部との間に配置された絶縁部を備えることが好ましい。上記導電性粒子では、上記軟質磁性体部が、上記絶縁部を介して上記導電部の外表面に配置されていることが好ましい。上記軟質磁性体部は、上記導電部と接触していないことが好ましい。上記絶縁部は、上記導電部と上記軟質磁性体部との間に配置されていることが好ましい。上記導電性粒子が上記の好ましい態様を満足すると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。
Insulation part:
It is preferable that the conductive particles include an insulating portion disposed between the conductive portion and the soft magnetic material portion. In the conductive particles, it is preferable that the soft magnetic material portion is disposed on an outer surface of the conductive portion via the insulating portion. It is preferable that the soft magnetic part is not in contact with the conductive part. It is preferable that the insulating section is disposed between the conductive section and the soft magnetic body section. When the conductive particles satisfy the above-described preferred embodiment, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed.
 なお、上記絶縁部は、上述した絶縁性粒子とは異なる。上記絶縁性粒子は、隣接する電極間の短絡を防止するために用いられている。上記絶縁部は、上記軟質磁性体部と上記導電部との接触を防止するために用いられている。 Note that the insulating portion is different from the insulating particles described above. The insulating particles are used to prevent a short circuit between adjacent electrodes. The insulating section is used to prevent contact between the soft magnetic body section and the conductive section.
 上記絶縁部は、絶縁性を有する材料であれば特に限定されない。上記絶縁部としては、絶縁性の樹脂等が挙げられる。上記絶縁部としては、上述した絶縁性粒子の材料等が挙げられる。 The insulating portion is not particularly limited as long as it is a material having an insulating property. Examples of the insulating portion include an insulating resin. Examples of the insulating portion include the above-described materials of the insulating particles.
 上記導電部の外表面に上記軟質磁性体部及び上記絶縁部を配置する方法は特に限定されない。上記導電部の外表面に上記軟質磁性体部及び上記絶縁部を配置する方法は、上記導電部の表面上に上記絶縁性粒子を配置する方法を利用することができる。具体的には、上記導電部の外表面に上記軟質磁性体部及び上記絶縁部を配置する方法としては、以下の方法等が挙げられる。上記軟質磁性体部の表面を上記絶縁部により被覆して絶縁部被覆軟質磁性体部を得た後、該絶縁部被覆軟質磁性体部を上記導電部の外表面に配置する方法(この場合に、上記絶縁部被覆軟質磁性体部は、多摩川精機社製「FG beads」(登録商標)のように、複数個の軟質磁性体部を包含した形態であってもよい)。上記導電部の表面を上記絶縁部により被覆して絶縁部被覆導電性粒子を得た後、該絶縁部被覆導電性粒子の外表面に上記軟質磁性体部を配置する方法。上記絶縁部を用いて粒子を形成した後、該粒子の表面上に上記軟質磁性体部を配置させて軟質磁性体部付き粒子を得た後、該軟質磁性体部付き粒子を上記導電部の表面の外表面に配置する方法。 方法 The method of arranging the soft magnetic body and the insulating part on the outer surface of the conductive part is not particularly limited. As a method of arranging the soft magnetic material part and the insulating part on the outer surface of the conductive part, a method of arranging the insulating particles on the surface of the conductive part can be used. Specifically, examples of a method for arranging the soft magnetic body portion and the insulating portion on the outer surface of the conductive portion include the following methods. A method of covering the surface of the soft magnetic material portion with the insulating portion to obtain an insulating portion-coated soft magnetic material portion, and then disposing the insulating portion-coated soft magnetic material portion on the outer surface of the conductive portion (in this case, In addition, the insulating portion-covered soft magnetic material portion may have a form including a plurality of soft magnetic material portions, such as “FG @ beads” (registered trademark) manufactured by Tamagawa Seiki Co., Ltd.). A method of covering the surface of the conductive portion with the insulating portion to obtain insulating portion-coated conductive particles, and then arranging the soft magnetic material portion on the outer surface of the insulating portion-coated conductive particles. After forming particles using the insulating portion, the soft magnetic material portion is disposed on the surface of the particle to obtain particles with a soft magnetic material portion. How to place on the outer surface of the surface.
 上記絶縁部の厚みは、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上であり、好ましくは800nm以下、より好ましくは500nm以下である。上記絶縁部の厚みが上記下限以上であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。なお、上記絶縁部が粒子である場合には、上記絶縁部の厚みは該粒子の直径に相当する。 厚 み The thickness of the insulating portion is preferably 10 nm or more, more preferably 30 nm or more, further preferably 50 nm or more, preferably 800 nm or less, more preferably 500 nm or less. When the thickness of the insulating portion is equal to or larger than the lower limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be more effectively suppressed. When the insulating portion is a particle, the thickness of the insulating portion corresponds to the diameter of the particle.
 上記絶縁部の厚みは、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。上記導電性粒子において、上記絶縁部の厚みを測定する場合には、例えば、以下のようにして測定できる。 厚 み The thickness of the insulating portion is preferably obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value. When measuring the thickness of the insulating portion in the conductive particles, the thickness can be measured, for example, as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の絶縁部の厚みを観察する。各導電性粒子における絶縁部の厚みを計測し、それらを算術平均して絶縁部の厚みとする。 (4) The conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 50 conductive particles are randomly selected, and the thickness of the insulating portion of each conductive particle is reduced. Observe. The thickness of the insulating part in each conductive particle is measured, and the arithmetic average of them is used as the thickness of the insulating part.
 上記導電部の外表面に上記軟質磁性体部及び上記絶縁部を配置する方法として、上記軟質磁性体部の表面を上記絶縁部により被覆して絶縁部被覆軟質磁性体部を得た後、該絶縁部被覆軟質磁性体部を上記導電部の外表面に配置する方法が採用される場合には、絶縁部被覆軟質磁性体部は、絶縁層被覆軟質磁性体粒子であることが好ましい。上記絶縁層被覆軟質磁性体粒子は、軟質磁性体粒子の表面を絶縁層により被覆して得られる。すなわち、上記絶縁層被覆軟質磁性体粒子を、導電部の外表面に配置することが好ましい。この場合、上記絶縁層被覆軟質磁性体粒子の平均粒子径は、好ましくは25nm以上、より好ましくは50nm以上であり、好ましくは800nm以下、より好ましくは500nm以下、更に好ましくは150nm以下である。上記絶縁層被覆軟質磁性体粒子の平均粒子径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなり得られる接続構造体の絶縁信頼性が向上する。上記絶縁層被覆軟質磁性体粒子の平均粒子径が上記上限以下であると、導電性粒子表面から脱離し難く、磁性凝集を効果的に抑制することができる。 As a method of arranging the soft magnetic material portion and the insulating portion on the outer surface of the conductive portion, after obtaining the insulating portion-coated soft magnetic material portion by covering the surface of the soft magnetic material portion with the insulating portion, In the case where the method of arranging the insulating portion-coated soft magnetic material portion on the outer surface of the conductive portion is adopted, it is preferable that the insulating portion-coated soft magnetic material portion is an insulating layer-coated soft magnetic material particle. The soft magnetic particles coated with an insulating layer are obtained by coating the surface of the soft magnetic particles with an insulating layer. That is, it is preferable that the soft magnetic particles coated with the insulating layer are arranged on the outer surface of the conductive portion. In this case, the average particle diameter of the soft magnetic particles coated with the insulating layer is preferably 25 nm or more, more preferably 50 nm or more, preferably 800 nm or less, more preferably 500 nm or less, and further preferably 150 nm or less. When the average particle diameter of the insulating layer-coated soft magnetic particles is equal to or larger than the lower limit, when the conductive particles are dispersed in the binder resin, the conductive layers of the plurality of conductive particles are hardly in contact with each other, and can be obtained. The insulation reliability of the connection structure is improved. When the average particle diameter of the soft magnetic particles coated with the insulating layer is equal to or less than the upper limit, the soft magnetic particles are hardly detached from the surface of the conductive particles, and the magnetic aggregation can be effectively suppressed.
 なお、絶縁層被覆軟質磁性体粒子の平均粒子径は、例えば、以下の手順に従って測定できる。導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の導電層の外表面に配置されている絶縁層被覆軟質磁性体粒子の粒子径を観察する。各導電性粒子における絶縁層被覆軟質磁性体粒子の粒子径を計測し、それらを算術平均して絶縁層被覆軟質磁性体粒子の平均粒子径とする。 The average particle size of the insulating layer-coated soft magnetic particles can be measured, for example, according to the following procedure. The conductive particles are added to “Technobit 4000” manufactured by Kulzer Co., Ltd. so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the outer surface of the conductive layer of each conductive particle was selected. Observe the particle size of the soft magnetic particles coated with the insulating layer, which is disposed in the above. The particle size of the soft magnetic particles coated with the insulating layer in each conductive particle is measured and arithmetically averaged to obtain the average particle size of the soft magnetic particles coated with the insulating layer.
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散されて用いられることが好ましく、バインダー樹脂中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。上記導電材料では、上述した導電性粒子が用いられているので、電極間の絶縁信頼性及び導通信頼性をより一層高めることができる。上記導電材料では、上述した導電性粒子が用いられているので、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。
(Conductive material)
The conductive material according to the present invention includes the above-described conductive particles and a binder resin. The conductive particles are preferably used by being dispersed in a binder resin, and are preferably used by being dispersed in a binder resin as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a circuit-connecting conductive material. Since the above-described conductive particles are used in the conductive material, the reliability of insulation between the electrodes and the reliability of conduction can be further improved. In the conductive material, since the conductive particles described above are used, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation can be suppressed more effectively.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
 上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the binder resin include a vinyl resin, a thermoplastic resin, a curable resin, a thermoplastic block copolymer, and an elastomer. The binder resin may be used alone or in combination of two or more.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include a polyolefin resin, an ethylene-vinyl acetate copolymer, and a polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a light curable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer, and styrene-isoprene. A hydrogenated product of a styrene block copolymer. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 The conductive material may be, for example, a filler, a bulking agent, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer, in addition to the conductive particles and the binder resin. And various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ、特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 方法 The method of dispersing the conductive particles in the binder resin may be a conventionally known dispersion method, and is not particularly limited. Examples of a method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin, and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, and kneaded with a planetary mixer or the like to be dispersed. After diluting the binder resin with water or an organic solvent, the conductive particles are added, and the mixture is kneaded and dispersed by a planetary mixer or the like.
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(η25)が、上記下限以上及び上記上限以下であると、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 粘度 The viscosity (η25) at 25 ° C of the conductive material is preferably 30 Pa · s or more, more preferably 50 Pa · s or more, preferably 400 Pa · s or less, more preferably 300 Pa · s or less. When the viscosity (η25) is equal to or greater than the lower limit and equal to or less than the upper limit, insulation reliability between the electrodes can be more effectively increased, and conduction reliability between the electrodes can be more effectively increased. it can. The viscosity (η25) can be appropriately adjusted depending on the types and amounts of the components.
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured, for example, using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 導電 The conductive material according to the present invention can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on a conductive film containing conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性をより一層高めることができる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, further preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably Is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is equal to or more than the lower limit and equal to or less than the upper limit, conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased. Can be.
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層高めることができる。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、磁性凝集をより一層効果的に抑制することができる。 In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. %, More preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles is equal to or greater than the lower limit and equal to or less than the upper limit, conduction reliability and insulation reliability between electrodes can be further improved. When the content of the conductive particles is equal to or more than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes can be more effectively reduced, and the magnetic aggregation is more effectively suppressed. Can be.
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電性粒子であるか、又は上記導電性粒子とバインダー樹脂とを含む導電材料(上述した導電材料)である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記導電性粒子における上記導電部により電気的に接続されている。
(Connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, And a connection portion connecting the second connection target member. In the connection structure according to the present invention, the material of the connection portion is the above-described conductive particles or a conductive material including the above-described conductive particles and a binder resin (the above-described conductive material). In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles.
 上記接続構造体は、上記第1の接続対象部材と上記第2の接続対象部材との間に、上記導電性粒子又は上記導電材料を配置する工程と、熱圧着することにより、導電接続する工程とを経て、得ることができる。上記導電性粒子が上記絶縁性粒子を有する場合には、上記熱圧着時に、上記絶縁性粒子が上記導電性粒子から脱離することが好ましい。 A step of arranging the conductive particles or the conductive material between the first member to be connected and the second member to be connected, and a step of performing a conductive connection by thermocompression bonding between the first member to be connected and the second member to be connected And can be obtained. When the conductive particles have the insulating particles, it is preferable that the insulating particles be separated from the conductive particles during the thermocompression bonding.
 図7は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。 FIG. 7 is a cross-sectional view schematically showing a connection structure using the conductive particles according to the first embodiment of the present invention.
 図7に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82及び第2の接続対象部材83を接続している接続部84とを備える。接続部84は、導電性粒子1を含む導電材料により形成されている。接続部84は、導電性粒子1を複数含む導電材料を硬化させることにより形成されていることが好ましい。なお、図7では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子11、21、31、41又は51を用いてもよい。 The connection structure 81 shown in FIG. 7 includes a first connection target member 82, a second connection target member 83, and a connection portion connecting the first connection target member 82 and the second connection target member 83. 84. The connection portion 84 is formed of a conductive material including the conductive particles 1. The connection portion 84 is preferably formed by curing a conductive material including a plurality of conductive particles 1. In FIG. 7, the conductive particles 1 are schematically illustrated for convenience of illustration. The conductive particles 11, 21, 31, 41 or 51 may be used instead of the conductive particles 1.
 第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1の接続対象部材82及び第2の接続対象部材83が導電性粒子1における導電部により電気的に接続されている。 The first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface). The second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface). The first electrode 82a and the second electrode 83a are electrically connected by one or more conductive particles 1. Therefore, the first connection target member 82 and the second connection target member 83 are electrically connected by the conductive portion of the conductive particles 1.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記熱圧着の圧力は好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記熱圧着の加熱の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。上記熱圧着の圧力及び温度が、上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層高めることができる。また、上記導電性粒子が上記絶縁性粒子を有する場合には、導電接続時に導電性粒子の表面から絶縁性粒子が容易に脱離できる。 方法 The method of manufacturing the connection structure is not particularly limited. As an example of a method for manufacturing the connection structure, the conductive material is arranged between the first connection target member and the second connection target member, and after obtaining a laminate, the laminate is heated and pressed. Method and the like. The pressure of the thermocompression bonding is preferably at least 40 MPa, more preferably at least 60 MPa, preferably at most 90 MPa, more preferably at most 70 MPa. The heating temperature of the thermocompression bonding is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, more preferably 120 ° C. or lower. When the pressure and temperature of the thermocompression bonding are equal to or higher than the lower limit and equal to or lower than the upper limit, the reliability of conduction between the electrodes can be further improved. Further, when the conductive particles have the insulating particles, the insulating particles can be easily detached from the surface of the conductive particles at the time of conductive connection.
 上記導電性粒子が上記絶縁性粒子を有する場合には、上記積層体を加熱及び加圧する際に、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子を排除することができる。例えば、上記加熱及び加圧の際には、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子が、上記導電性粒子の表面から容易に脱離する。なお、上記加熱及び加圧の際には、上記導電性粒子の表面から一部の上記絶縁性粒子が脱離して、上記導電部の表面が部分的に露出することがある。上記導電部の表面が露出した部分が、上記第1電極及び上記第2の電極に接触することにより、上記導電性粒子を介して第1の電極と第2の電極とを電気的に接続することができる。 When the conductive particles have the insulating particles, when the laminate is heated and pressurized, the conductive particles are present between the first electrode and the second electrode. The above insulating particles can be eliminated. For example, at the time of the heating and pressurization, the conductive particles, the insulating particles present between the first electrode and the second electrode, from the surface of the conductive particles Easily detached. During the heating and pressurization, some of the insulating particles may be detached from the surface of the conductive particles, and the surface of the conductive portion may be partially exposed. A portion where the surface of the conductive part is exposed contacts the first electrode and the second electrode, thereby electrically connecting the first electrode and the second electrode via the conductive particles. be able to.
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。 The first connection target member and the second connection target member are not particularly limited. Specifically, the first connection target member and the second connection target member include electronic components such as a semiconductor chip, a semiconductor package, an LED chip, an LED package, a capacitor and a diode, a resin film, a printed board, and a flexible board. Examples include electronic components such as a printed circuit board, a flexible flat cable, a rigid flexible substrate, a circuit board such as a glass epoxy substrate and a glass substrate. It is preferable that the first connection target member and the second connection target member are electronic components.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 電極 Examples of the electrodes provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode. When the member to be connected is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. When the electrode is an aluminum electrode, the electrode may be an electrode formed only of aluminum, or may be an electrode in which an aluminum layer is laminated on a surface of a metal oxide layer. Examples of the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)導電性粒子本体の作製
 粒子径が3μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された基材粒子を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1重量部を3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
(Example 1)
(1) Production of Conductive Particle Main Body Particles having a particle diameter of 3 μm and formed of a copolymer resin of tetramethylolmethanetetraacrylate and divinylbenzene were prepared. After 10 parts by weight of the base particles were dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the solution was filtered to take out the base particles. Next, the base particles were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the base particles. After sufficiently washing the substrate particles having activated surfaces, the dispersion was added to 500 parts by weight of distilled water and dispersed to obtain a dispersion. Next, 1 part by weight of a nickel particle slurry (average particle diameter: 100 nm) was added to the above dispersion over 3 minutes to obtain a suspension containing base particles to which a core substance was attached.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 (4) A nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane, and 0.5 mol / L of sodium citrate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル-ボロン導電層(厚み0.15μm)が形成された導電性粒子本体を得た。 (4) While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to obtain a conductive particle body having a nickel-boron conductive layer (0.15 μm thick) formed on the surface of the base particles. Was.
 (2)絶縁層被覆軟質磁性体粒子の作製
 軟質磁性体粒子(軟質磁性体部)の表面を、以下のようにして絶縁層(絶縁部)で被覆した。
(2) Production of Soft Magnetic Particle Covered with Insulating Layer The surface of the soft magnetic particle (soft magnetic portion) was covered with an insulating layer (insulating portion) as follows.
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた500mLセパラブルフラスコに、下記の重合性化合物を含む組成物を入れた後、超音波照射機を用いて十分に乳化させた。その後、200rpmで攪拌し、窒素雰囲気下50℃で5時間重合を行った。上記組成物は、蒸留水200重量部と、直径30nmの酸化鉄ナノ粒子(組成:マグヘマイト又はマグネタイト、シグマアルドリッチ社製)5.2重量部と、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}0.1重量部とを含む。さらに、上記組成物は、ポリオキシエチレンラウリルエーテル(花王社製「エマルゲン106」)0.1重量部と、メタクリル酸メチル1.7重量部と、エチレングリコールジメタクリレート0.1重量部とを含む。反応終了後、冷却し、遠心分離機で固液分離を2回行い、余分な重合性化合物を洗浄により除去し、重合性化合物により形成された被覆部によって、軟質磁性体粒子の表面の全体が覆われた絶縁層被覆軟質磁性体粒子(粒子径50nm)を得た。 After putting the composition containing the following polymerizable compound into a 500 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe, the ultrasonic irradiation machine is used. Emulsified. Thereafter, the mixture was stirred at 200 rpm and polymerized at 50 ° C. for 5 hours in a nitrogen atmosphere. The composition was composed of 200 parts by weight of distilled water, 5.2 parts by weight of iron oxide nanoparticles having a diameter of 30 nm (composition: maghemite or magnetite, manufactured by Sigma-Aldrich), and 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane (0.1 parts by weight). Further, the composition contains 0.1 parts by weight of polyoxyethylene lauryl ether (“Emulgen 106” manufactured by Kao Corporation), 1.7 parts by weight of methyl methacrylate, and 0.1 part by weight of ethylene glycol dimethacrylate. . After the completion of the reaction, the mixture is cooled, solid-liquid separation is performed twice by a centrifuge, excess polymerizable compound is removed by washing, and the entire surface of the soft magnetic material particles is covered by the coating formed by the polymerizable compound. Soft magnetic particles (particle diameter 50 nm) covered with the insulating layer were obtained.
 以下、得られた絶縁層被覆軟質磁性体粒子を、粒子(A)と記載することがある。 Hereinafter, the obtained soft magnetic particles coated with an insulating layer may be referred to as particles (A).
 (3)導電性粒子(絶縁層被覆軟質磁性体粒子付き導電性粒子)の作製
 得られた粒子(A)を超音波照射下で蒸留水に分散させ、粒子(A)の10重量%水分散液を得た。得られた導電部を表面に有する基材粒子(導電性粒子本体)10重量部を蒸留水100重量部に分散させ、粒子(A)の10重量%水分散液1重量部を添加し、室温で8時間攪拌した。5μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、導電性粒子本体に粒子(A)が付着した導電性粒子を得た。
(3) Preparation of Conductive Particles (Conductive Particles with Soft Magnetic Particles Coated with an Insulating Layer) The obtained particles (A) are dispersed in distilled water under ultrasonic irradiation, and the particles (A) are dispersed in 10% by weight of water. A liquid was obtained. 10 parts by weight of the obtained base particles having a conductive part on the surface (conductive particle body) are dispersed in 100 parts by weight of distilled water, and 1 part by weight of a 10% by weight aqueous dispersion of the particles (A) is added. For 8 hours. After filtration through a 5 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having the particles (A) adhered to the conductive particle body.
 (4)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(4) Preparation of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolak type epoxy resin 30 A conductive material (anisotropic conductive paste) was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
 (5)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。
(5) Preparation of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, Vickers hardness of metal on the electrode surface of 100 Hv) having an L / S of 10 μm / 10 μm formed on the upper surface was prepared. In addition, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of the electrode surface was 50 Hv) having an L / S of 10 μm / 10 μm was formed on the lower surface.
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、60MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。 (4) The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer such that the electrodes faced each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., the pressure heating head is placed on the upper surface of the semiconductor chip, and the pressure of 60 MPa is applied to remove the anisotropic conductive paste layer. The composition was cured at 100 ° C. to obtain a connection structure.
 (実施例2~7,10~12及び比較例3,4)
 軟質磁性体部の種類、軟質磁性体部による被覆率、絶縁部の厚み、軟質磁性体粒子の表面を絶縁層で被覆する際のメタクリル酸メチルの添加量及び粒子(A)の平均粒子径を、下記の表1に示すように設定したこと以外は実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Examples 2 to 7, 10 to 12 and Comparative Examples 3 and 4)
The type of the soft magnetic material portion, the coverage by the soft magnetic material portion, the thickness of the insulating portion, the amount of methyl methacrylate added when coating the surface of the soft magnetic material particles with the insulating layer, and the average particle size of the particles (A) Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1, except that the settings were as shown in Table 1 below.
 なお、実施例10では、酸化鉄ナノ粒子に代えて、ハンマーミル・ボールミルの乾式粉砕装置で成形した平均粒子径30nmのパーマロイ粒子を用いた。また、実施例12では、パーメジュール粉体(大同特殊鋼社製)をハンマーミル・ボールミルの乾式粉砕装置で成形した平均粒子径30nmのパーメジュール粒子を用いた。また、比較例4では平均粒子径30nmのニッケルスラリーを用いた。また、実施例2~7,10~12及び比較例3,4の軟質磁性体部による被覆率は、絶縁層被覆軟質磁性体粒子付き導電性粒子の作製時に、粒子(A)の10重量%水分散液の添加量を変化させることで調整した。 In Example 10, permalloy particles having an average particle diameter of 30 nm formed by a dry pulverizer such as a hammer mill and a ball mill were used instead of the iron oxide nanoparticles. In Example 12, permezur particles (average particle diameter: 30 nm) obtained by molding permezur powder (manufactured by Daido Steel Co., Ltd.) with a dry pulverizer of a hammer mill and a ball mill were used. In Comparative Example 4, a nickel slurry having an average particle diameter of 30 nm was used. The coverage by the soft magnetic material portions of Examples 2 to 7, 10 to 12 and Comparative Examples 3 and 4 was such that 10% by weight of the particles (A) was used when the conductive particles with the soft magnetic particles coated with the insulating layer were prepared. It was adjusted by changing the amount of the aqueous dispersion added.
 (実施例8)
 (1)導電性粒子本体の作製
 実施例1と同様にして、導電性粒子本体を作製した。
(Example 8)
(1) Production of Conductive Particle Main Body In the same manner as in Example 1, a conductive particle main body was produced.
 (2)絶縁部被覆導電性粒子の作製
 導電性粒子本体の表面を、以下のようにして絶縁層(絶縁部)で被覆した。
(2) Preparation of Insulating Part Covering Conductive Particle The surface of the conductive particle body was covered with an insulating layer (insulating part) as follows.
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた500mLセパラブルフラスコに、下記の重合性化合物を含む組成物を入れた後、超音波照射機を用いて十分に乳化させた。その後、200rpmで攪拌し、窒素雰囲気下50℃で5時間重合を行った。上記組成物は、蒸留水200重量部と、得られた導電性粒子本体20重量部と、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}0.01重量部とを含む。さらに、上記組成物は、ポリオキシエチレンラウリルエーテル(花王社製「エマルゲン106」)0.1重量部と、メタクリル酸メチル0.1重量部と、エチレングリコールジメタクリレート0.1重量部とを含む。反応終了後、冷却し、遠心分離機で固液分離を2回行い、余分な重合性化合物を洗浄により除去し、重合性化合物により形成された被覆部によって、導電性粒子本体の表面の全体が覆われた絶縁部被覆導電性粒子(絶縁層の厚み50nm)を得た。 After putting the composition containing the following polymerizable compound into a 500 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe, the ultrasonic irradiation machine is used. Emulsified. Thereafter, the mixture was stirred at 200 rpm and polymerized at 50 ° C. for 5 hours in a nitrogen atmosphere. The above composition was prepared by adding 200 parts by weight of distilled water, 20 parts by weight of the obtained conductive particles, and 0.01 part by weight of 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} And parts. Further, the composition contains 0.1 parts by weight of polyoxyethylene lauryl ether (“Emulgen 106” manufactured by Kao Corporation), 0.1 parts by weight of methyl methacrylate, and 0.1 parts by weight of ethylene glycol dimethacrylate. . After the completion of the reaction, the mixture is cooled, solid-liquid separation is performed twice with a centrifuge, excess polymerizable compound is removed by washing, and the entire surface of the conductive particle body is covered by the coating formed by the polymerizable compound. The covered insulating part-covered conductive particles (the thickness of the insulating layer was 50 nm) were obtained.
 (3)導電性粒子(絶縁層及び軟質磁性体粒子を備える導電性粒子)の作製
 絶縁部被覆導電性粒子における絶縁層の表面を、以下のようにして軟質磁性体粒子(軟質磁性体部)で被覆した。
(3) Preparation of Conductive Particles (Conductive Particles Containing Insulating Layer and Soft Magnetic Particles) The surface of the insulating layer in the insulating portion-coated conductive particles is made of soft magnetic particles (soft magnetic portion) as follows. Covered.
 直径30nmの酸化鉄ナノ粒子(組成:マグヘマイト又はマグネタイト、シグマアルドリッチ社製)を超音波照射下で蒸留水に分散させ、10重量%水分散液を得た。得られた絶縁部被覆導電性粒子10重量部を蒸留水100重量部に分散させ、酸化鉄ナノ粒子の10重量%水分散液1重量部を添加し、室温で8時間攪拌した。5μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁部被覆導電性粒子に酸化鉄ナノ粒子が付着した導電性粒子(絶縁層及び軟質磁性体粒子を備える導電性粒子)を得た。 (3) Iron oxide nanoparticles having a diameter of 30 nm (composition: maghemite or magnetite, manufactured by Sigma-Aldrich) were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion. 10 parts by weight of the obtained insulating portion-coated conductive particles were dispersed in 100 parts by weight of distilled water, 1 part by weight of a 10% by weight aqueous dispersion of iron oxide nanoparticles was added, and the mixture was stirred at room temperature for 8 hours. After filtration through a 5 μm mesh filter, the resultant is further washed with methanol and dried to obtain conductive particles (conductive particles including an insulating layer and soft magnetic material particles) in which iron oxide nanoparticles are attached to insulating portion-coated conductive particles. Was.
 (4)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料を得た。
(4) Production of conductive material (anisotropic conductive paste) A conductive material was obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (5)接続構造体の作製
 得られた導電材料を用いたこと以外は、実施例1と同様にして、接続構造体を得た。
(5) Preparation of connection structure A connection structure was obtained in the same manner as in Example 1 except that the obtained conductive material was used.
 (実施例9)
 (1)導電性粒子本体の作製
 実施例1と同様にして、導電性粒子本体を作製した。
(Example 9)
(1) Production of Conductive Particle Main Body In the same manner as in Example 1, a conductive particle main body was produced.
 (2)軟質磁性体粒子被覆絶縁性粒子の作製
 以下のようにして絶縁性粒子を形成した。
(2) Production of insulating particles coated with soft magnetic particles Insulating particles were formed as follows.
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた500mLセパラブルフラスコに、下記の重合性化合物を含む組成物を入れた後、200rpmで攪拌し、窒素雰囲気下50℃で5時間重合を行った。上記組成物は、蒸留水200重量部と、アシッドホスホオキシポリオキシエチレングリコールメタクリレート0.2重量部と、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}0.2重量部と、メタクリル酸メチル20重量部と、エチレングリコールジメタクリレート1重量部とを含む。反応終了後、冷却し、遠心分離機で固液分離を2回行い、余分な重合性化合物を洗浄により除去し、絶縁性粒子(粒子径300nm)を得た。 A composition containing the following polymerizable compound was placed in a 500 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe, and then stirred at 200 rpm, and then stirred under a nitrogen atmosphere. Polymerization was performed at a temperature of 5 ° C. for 5 hours. The composition comprises 200 parts by weight of distilled water, 0.2 parts by weight of acid phosphooxypolyoxyethylene glycol methacrylate, and 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} 0. 0.2 parts by weight, 20 parts by weight of methyl methacrylate, and 1 part by weight of ethylene glycol dimethacrylate. After the completion of the reaction, the mixture was cooled, and solid-liquid separation was performed twice using a centrifugal separator. Excess polymerizable compounds were removed by washing to obtain insulating particles (particle diameter: 300 nm).
 得られた絶縁性粒子の表面を、以下のようにして軟質磁性体粒子(軟質磁性体部)で被覆した。 表面 The surface of the obtained insulating particles was covered with soft magnetic particles (soft magnetic portion) as follows.
 直径30nmの酸化鉄ナノ粒子(組成:マグヘマイト又はマグネタイト、シグマアルドリッチ社製)を超音波照射下で蒸留水に分散させ、10重量%水分散液を得た。得られた絶縁性粒子10重量部を蒸留水100重量部に分散させ、酸化鉄ナノ粒子の10重量%水分散液1重量部を添加し、室温で8時間攪拌した。5μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子に酸化鉄ナノ粒子が付着した軟質磁性体粒子被覆絶縁性粒子を得た。 (3) Iron oxide nanoparticles having a diameter of 30 nm (composition: maghemite or magnetite, manufactured by Sigma-Aldrich) were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion. 10 parts by weight of the obtained insulating particles were dispersed in 100 parts by weight of distilled water, 1 part by weight of a 10% by weight aqueous dispersion of iron oxide nanoparticles was added, and the mixture was stirred at room temperature for 8 hours. After filtration with a 5 μm mesh filter, the resultant was further washed with methanol and dried to obtain soft magnetic material-coated insulating particles in which iron oxide nanoparticles adhered to the insulating particles.
 (3)導電性粒子(軟質磁性体粒子被覆絶縁性粒子付き導電性粒子)の作製
 導電性粒子本体の表面を、以下のようにして軟質磁性体粒子被覆絶縁性粒子で被覆した。
(3) Preparation of conductive particles (conductive particles with insulating particles coated with soft magnetic particles) The surfaces of the conductive particles were coated with the insulating particles coated with soft magnetic particles as follows.
 得られた軟質磁性体粒子被覆絶縁性粒子を超音波照射下で蒸留水に分散させ、10重量%水分散液を得た。導電性粒子本体10重量部を蒸留水100重量部に分散させ、軟質磁性体粒子被覆絶縁性粒子の10重量%水分散液1重量部を添加し、室温で8時間攪拌した。5μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、導電性粒子本体に軟質磁性体粒子被覆絶縁性粒子が付着した導電性粒子(軟質磁性体粒子被覆絶縁性粒子付き導電性粒子)を得た。 The obtained soft magnetic particles-coated insulating particles were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion. 10 parts by weight of the conductive particle main body was dispersed in 100 parts by weight of distilled water, 1 part by weight of a 10% by weight aqueous dispersion of the soft magnetic particle-coated insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtration with a 5 μm mesh filter, further washing with methanol and drying, conductive particles having soft magnetic particles coated with insulating particles adhered to the conductive particles (conductive particles with soft magnetic particles coated with insulating particles) Got.
 (4)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料を得た。
(4) Production of conductive material (anisotropic conductive paste) A conductive material was obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (5)接続構造体の作製
 得られた導電材料を用いたこと以外は、実施例1と同様にして、接続構造体を得た。
(5) Preparation of connection structure A connection structure was obtained in the same manner as in Example 1 except that the obtained conductive material was used.
 (比較例1)
 実施例1の導電性粒子本体を導電性粒子として用意した。この導電性粒子を用いたこと以外は実施例1と同様にして、導電材料、及び接続構造体を得た。
(Comparative Example 1)
The conductive particle main body of Example 1 was prepared as conductive particles. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
 (比較例2)
 (1)導電性粒子本体の作製
 実施例1と同様にして、導電性粒子本体を作製した。
(Comparative Example 2)
(1) Production of Conductive Particle Main Body In the same manner as in Example 1, a conductive particle main body was produced.
 (2)導電性粒子(軟質磁性体粒子被覆導電性粒子の作製)
 導電性粒子本体の表面を、以下のようにして軟質磁性体粒子で被覆した。
(2) Conductive particles (preparation of conductive particles coated with soft magnetic material particles)
The surface of the conductive particle body was covered with soft magnetic particles as follows.
 直径30nmの酸化鉄ナノ粒子(組成:マグヘマイト又はマグネタイト、シグマアルドリッチ社製)を超音波照射下で蒸留水に分散させ、10重量%水分散液を得た。導電性粒子本体10重量部を蒸留水100重量部に分散させ、酸化鉄ナノ粒子の10重量%水分散液1重量部を添加し、室温で8時間攪拌した。5μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、導電性粒子本体に酸化鉄ナノ粒子が付着した軟質磁性体粒子被覆導電性粒子を得た。 (3) Iron oxide nanoparticles having a diameter of 30 nm (composition: maghemite or magnetite, manufactured by Sigma-Aldrich) were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion. 10 parts by weight of the conductive particle body was dispersed in 100 parts by weight of distilled water, 1 part by weight of a 10% by weight aqueous dispersion of iron oxide nanoparticles was added, and the mixture was stirred at room temperature for 8 hours. After filtration through a 5 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles coated with soft magnetic particles in which iron oxide nanoparticles were adhered to the conductive particles.
 (3)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料を得た。
(3) Production of conductive material (anisotropic conductive paste) A conductive material was obtained in the same manner as in Example 1, except that the obtained conductive particles were used.
 (4)接続構造体の作製
 得られた導電材料を用いたこと以外は、実施例1と同様にして、接続構造体を得た。
(4) Preparation of connection structure A connection structure was obtained in the same manner as in Example 1 except that the obtained conductive material was used.
 (評価)
 (1)導電性粒子の残留磁化及び飽和磁化
 ニッケル粉を封入したカプセルを装置の校正試料として使用し、振動試料型磁力計(東栄科学産業社製「PV-300-5」)の校正を行った。得られた導電性粒子をカプセルに秤量し、サンプルホルダーに取り付けた。該サンプルホルダーを磁力計本体に設置し、温度20℃(定温)、最大印加磁界20kOe、速度3分/loopの条件下での測定により、磁化曲線を得た。得られた磁化曲線から、導電性粒子の残留磁化及び飽和磁化を求めた。
(Evaluation)
(1) Residual magnetization and saturation magnetization of conductive particles A capsule filled with nickel powder is used as a calibration sample of the apparatus, and a vibration sample magnetometer (“PV-300-5” manufactured by Toei Kagaku Sangyo Co., Ltd.) is calibrated. Was. The obtained conductive particles were weighed into a capsule and attached to a sample holder. The sample holder was set on the magnetometer main body, and a magnetization curve was obtained by measurement under the conditions of a temperature of 20 ° C. (constant temperature), a maximum applied magnetic field of 20 kOe, and a speed of 3 minutes / loop. From the obtained magnetization curve, the residual magnetization and the saturation magnetization of the conductive particles were determined.
 また、測定結果から、残留磁化の飽和磁化に対する比(残留磁化/飽和磁化)を算出した。 比 From the measurement results, the ratio of residual magnetization to saturated magnetization (residual magnetization / saturated magnetization) was calculated.
 (2)軟質磁性体部による被覆率
 得られた導電性粒子の導電部の表面積全体に占める導電部の表面の軟質磁性体部により覆われている部分の面積(軟質磁性体部による被覆率)を測定した。
(2) Coverage ratio by soft magnetic material portion Area of the portion of the obtained conductive particles covered by the soft magnetic material portion on the surface of the conductive portion occupying the entire surface area of the conductive portion (coverage ratio by soft magnetic material portion) Was measured.
 軟質磁性体部による被覆率を以下のようにして求めた。 被覆 The coverage by the soft magnetic material was determined as follows.
 得られた導電性粒子を一方向から走査型電子顕微鏡(SEM)で観察し、観察画像における導電部の表面の外周縁部分の円内の面積全体に占める、導電部の表面の外周縁部分の円内における軟質磁性体部の合計の面積から算出した。軟質磁性体部の被覆率は、20個の導電性粒子を観察し、各導電性粒子の測定結果を平均した平均被覆率として算出した。 The obtained conductive particles are observed from one direction with a scanning electron microscope (SEM), and the outer peripheral portion of the surface of the conductive portion occupies the entire area within the circle of the outer peripheral portion of the surface of the conductive portion in the observation image. It was calculated from the total area of the soft magnetic portions in the circle. The coverage of the soft magnetic material portion was calculated as an average coverage obtained by observing 20 conductive particles and averaging the measurement results of each conductive particle.
 (3)絶縁部の厚み
 得られた導電性粒子の絶縁部の厚みを、以下のようにして測定した。
(3) Thickness of insulating part The thickness of the insulating part of the obtained conductive particles was measured as follows.
 得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の絶縁部の厚みを観察した。各導電性粒子における絶縁部の厚みを計測し、それらを算術平均して絶縁部の厚みとした。 (4) The obtained conductive particles were added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for conductive particle inspection. The cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 50 conductive particles are randomly selected, and the thickness of the insulating portion of each conductive particle is reduced. Observed. The thickness of the insulating portion of each conductive particle was measured, and the arithmetic average of the thickness was used as the thickness of the insulating portion.
 (4)導電性粒子の磁性凝集
 得られた導電材料を観察し、導電性粒子の磁性凝集が発生しているか否かを確認した。導電性粒子の磁性凝集を下記の条件で判定した。
(4) Magnetic aggregation of conductive particles The obtained conductive material was observed, and it was confirmed whether or not magnetic aggregation of the conductive particles had occurred. The magnetic aggregation of the conductive particles was determined under the following conditions.
 [導電性粒子の磁性凝集の判定基準]
 ○○:導電性粒子の磁性凝集が発生していない
 ○:導電性粒子の磁性凝集が僅かに発生しているが抑制効果が認められる
 ×:導電性粒子の磁性凝集が発生している
[Criteria for magnetic aggregation of conductive particles]
○: Magnetic aggregation of the conductive particles did not occur. :: Magnetic aggregation of the conductive particles slightly occurred, but the suppression effect was observed. X: Magnetic aggregation of the conductive particles occurred.
 (5)接続抵抗(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続抵抗を下記の基準で判定した。
(5) Connection resistance (between upper and lower electrodes)
The connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the four-terminal method. The connection resistance can be determined by measuring the voltage when a constant current flows from the relationship of voltage = current × resistance. The connection resistance was determined based on the following criteria.
 [接続抵抗の判定基準]
 ○○○:接続抵抗が1.5Ω以下
 ○○:接続抵抗が1.5Ωを超え2.0Ω以下
 ○:接続抵抗が2.0Ωを超え5.0Ω以下
 △:接続抵抗が5.0Ωを超え10Ω以下
 ×:接続抵抗が10Ωを超える
[Criteria for connection resistance]
○○○: Connection resistance is 1.5Ω or less ○○: Connection resistance exceeds 1.5Ω and 2.0Ω or less ○: Connection resistance exceeds 2.0Ω and 5.0Ω or less △: Connection resistance exceeds 5.0Ω 10Ω or less ×: Connection resistance exceeds 10Ω
 (6)絶縁信頼性(横方向に隣り合う電極間)
 上記(5)導通信頼性の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗値を測定することにより評価した。絶縁信頼性を下記の基準で評価した。
(6) Insulation reliability (between horizontally adjacent electrodes)
In the 20 connection structures obtained in the above (5) evaluation of conduction reliability, the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester. The insulation reliability was evaluated based on the following criteria.
 [絶縁信頼性の判定基準]
 ○○○:抵抗値が10Ω以上の接続構造体の個数が、20個
 ○○:抵抗値が10Ω以上の接続構造体の個数が、18個以上20個未満
 ○:抵抗値が10Ω以上の接続構造体の個数が、15個以上18個未満
 △:抵抗値が10Ω以上の接続構造体の個数が、10個以上15個未満
 ×:抵抗値が10Ω以上の接続構造体の個数が、10個未満
[Insulation reliability criteria]
○: The number of connection structures having a resistance value of 10 8 Ω or more is 20 ○: The number of connection structures having a resistance value of 10 8 Ω or more is 18 or more and less than 20 :: The resistance value is The number of connection structures of 10 8 Ω or more is 15 or more and less than 18 Δ: The number of connection structures of 10 8 Ω or more is 10 or more and less than 15 ×: The resistance value is 10 8 Ω or more Less than 10 connection structures
 詳細及び結果を下記の表1,2に示す。 Details and results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12で得られた導電性粒子は、比較例1~4で得られた導電性粒子よりも導電性粒子の磁性凝集が抑制されていた。 (4) The conductive particles obtained in Examples 1 to 12 had more suppressed magnetic aggregation of the conductive particles than the conductive particles obtained in Comparative Examples 1 to 4.
 また、実施例1~7,10~12で得られた導電性粒子は、実施例8で得られた導電性粒子よりも低い接続抵抗を示した。これは、実施例8で得られた導電性粒子では、導電性粒子本体の表面の全体が絶縁部で被覆されているため導電層の露出が少なかったのに対して、実施例1~7,10~12で得られた導電性粒子では、絶縁層被覆軟質磁性体粒子によって被覆されているため導電層の露出が多かったためと考えられる。 In addition, the conductive particles obtained in Examples 1 to 7, and 10 to 12 exhibited lower connection resistance than the conductive particles obtained in Example 8. This is because, in the conductive particles obtained in Example 8, the entire surface of the conductive particle body was covered with the insulating portion, so that the conductive layer was less exposed, whereas in Examples 1 to 7, It is considered that the conductive particles obtained in 10 to 12 were covered with the insulating layer-coated soft magnetic particles, so that the conductive layer was largely exposed.
 また、実施例1~7,10~12で得られた導電性粒子は、実施例9で得られた導電性粒子よりも低い接続抵抗を示した。これは、実施例9の導電性粒子では、平均粒子径300nmの絶縁性粒子に平均粒子径30nmの酸化鉄ナノ粒子が付着した軟質磁性体粒子被覆絶縁性粒子の平均粒子径が大きい(300nmを超える平均粒子径)のに対して、実施例1~7,10~12の導電性粒子では、絶縁層被覆軟質磁性体粒子の平均粒子径が小さい(50nm~130nmの平均粒子径)ためと考えられる。このため、接続構造体の作製時の熱圧着の際に、実施例9の導電性粒子では、絶縁性粒子が導電性粒子表面から脱離しにくいことに対して、実施例1~7,10~12の導電性粒子では、絶縁層被覆軟質磁性体粒子が導電性粒子表面から容易に脱離したためと考えられる。 In addition, the conductive particles obtained in Examples 1 to 7, and 10 to 12 exhibited lower connection resistance than the conductive particles obtained in Example 9. This is because, in the conductive particles of Example 9, the average particle diameter of the soft magnetic particle-coated insulating particles in which iron oxide nanoparticles having an average particle diameter of 30 nm adhere to insulating particles having an average particle diameter of 300 nm (300 nm On the other hand, in the conductive particles of Examples 1 to 7, 10 to 12, the average particle diameter of the soft magnetic particles coated with the insulating layer is small (the average particle diameter of 50 to 130 nm). Can be For this reason, in the conductive particles of Example 9, the insulating particles are less likely to be detached from the surface of the conductive particles during the thermocompression bonding at the time of manufacturing the connection structure. It is considered that in the conductive particles of No. 12, the insulating layer-coated soft magnetic particles were easily detached from the surface of the conductive particles.
 1…導電性粒子
 2…基材粒子
 3…導電部
 11…導電性粒子
 12…軟質磁性体部
 13…絶縁性粒子
 21…導電性粒子
 22…絶縁部
 31…導電性粒子
 32…絶縁部
 41…導電性粒子
 42…絶縁部
 51…導電性粒子
 52…絶縁部
 61…導電部
 62…芯物質
 63…突起
 81…接続構造体
 82…第1の接続対象部材
 82a…第1の電極
 83…第2の接続対象部材
 83a…第2の電極
 84…接続部
DESCRIPTION OF SYMBOLS 1 ... Conductive particle 2 ... Base particle 3 ... Conductive part 11 ... Conductive particle 12 ... Soft magnetic material part 13 ... Insulating particle 21 ... Conductive particle 22 ... Insulating part 31 ... Conductive particle 32 ... Insulating part 41 ... Conductive particles 42 Insulating part 51 Conductive particles 52 Insulating part 61 Conductive part 62 Core substance 63 Projection 81 Connection structure 82 First member to be connected 82a First electrode 83 Second Connection target member 83a ... second electrode 84 ... connection part

Claims (11)

  1.  基材粒子と、前記基材粒子の表面上に配置された導電部とを備え、
     残留磁化の飽和磁化に対する比が、0.6以下である、導電性粒子。
    Base particles, comprising a conductive portion disposed on the surface of the base particles,
    Conductive particles having a ratio of residual magnetization to saturation magnetization of 0.6 or less.
  2.  前記残留磁化が、0.02A/m以下である、請求項1に記載の導電性粒子。 The conductive particles according to claim 1, wherein the residual magnetization is 0.02 A / m or less.
  3.  前記導電部の外表面上に配置された軟質磁性体部を備える、請求項1又は2に記載の導電性粒子。 The conductive particles according to claim 1, further comprising: a soft magnetic portion disposed on an outer surface of the conductive portion.
  4.  前記導電部と前記軟質磁性体部との間に配置された絶縁部を備え、
     前記軟質磁性体部が、前記絶縁部を介して前記導電部の外表面上に配置されている、請求項3に記載の導電性粒子。
    An insulating unit disposed between the conductive unit and the soft magnetic unit,
    The conductive particles according to claim 3, wherein the soft magnetic material portion is disposed on an outer surface of the conductive portion via the insulating portion.
  5.  前記導電部と前記軟質磁性体部との離れている距離が、10nm以上500nm以下である、請求項4に記載の導電性粒子。 The conductive particles according to claim 4, wherein the distance between the conductive portion and the soft magnetic portion is not less than 10 nm and not more than 500 nm.
  6.  前記軟質磁性体部を複数備え、
     複数の前記軟質磁性体部が離れて、前記導電部の外表面上に配置されている、請求項3~5のいずれか1項に記載の導電性粒子。
    A plurality of the soft magnetic material parts,
    The conductive particle according to any one of claims 3 to 5, wherein a plurality of the soft magnetic material portions are arranged apart on the outer surface of the conductive portion.
  7.  前記導電部の表面積全体に占める前記導電部の表面の前記軟質磁性体部により覆われている部分の面積が、30%以上である、請求項3~6のいずれか1項に記載の導電性粒子。 The conductive material according to any one of claims 3 to 6, wherein an area of a portion of the surface of the conductive portion covered by the soft magnetic material portion with respect to an entire surface area of the conductive portion is 30% or more. particle.
  8.  前記導電部の表面積全体に占める前記導電部の表面の前記軟質磁性体部により覆われている部分の面積が、40%以上である、請求項7に記載の導電性粒子。 8. The conductive particles according to claim 7, wherein an area of a portion of the surface of the conductive portion covered by the soft magnetic material portion with respect to an entire surface area of the conductive portion is 40% or more. 9.
  9.  前記導電部の外表面上に配置された複数の絶縁性粒子を備える、請求項1~8のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 8, further comprising a plurality of insulating particles arranged on an outer surface of the conductive portion.
  10.  請求項1~9のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。 導電 A conductive material comprising the conductive particles according to any one of claims 1 to 9 and a binder resin.
  11.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~9のいずれか1項に記載の導電性粒子であるか、又は前記導電性粒子とバインダー樹脂とを含む導電材料であり、
     前記第1の電極と前記第2の電極とが、前記導電性粒子における前記導電部により電気的に接続されている、接続構造体。
    A first connection target member having a first electrode on a surface;
    A second member to be connected having a second electrode on its surface;
    The first connection target member, and a connection portion that connects the second connection target member,
    The material of the connection portion is the conductive particles according to any one of claims 1 to 9, or a conductive material containing the conductive particles and a binder resin,
    A connection structure, wherein the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles.
PCT/JP2019/024743 2018-06-25 2019-06-21 Conductive particles, conductive material, and connecting structure WO2020004273A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020527481A JP7280880B2 (en) 2018-06-25 2019-06-21 Conductive particles, conductive materials and connecting structures
KR1020207031840A KR102647120B1 (en) 2018-06-25 2019-06-21 Conductive particles, conductive materials and connection structures
CN202310216345.XA CN116189963A (en) 2018-06-25 2019-06-21 Conductive particle, conductive material, and connection structure
CN201980040888.2A CN112313758B (en) 2018-06-25 2019-06-21 Conductive particle, conductive material, and connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119894 2018-06-25
JP2018-119894 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020004273A1 true WO2020004273A1 (en) 2020-01-02

Family

ID=68986895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024743 WO2020004273A1 (en) 2018-06-25 2019-06-21 Conductive particles, conductive material, and connecting structure

Country Status (5)

Country Link
JP (1) JP7280880B2 (en)
KR (1) KR102647120B1 (en)
CN (2) CN116189963A (en)
TW (1) TWI820157B (en)
WO (1) WO2020004273A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200340936A1 (en) * 2019-04-26 2020-10-29 Nabtesco Corporation Sensor
WO2021246523A1 (en) * 2020-06-04 2021-12-09 積水化学工業株式会社 Conductive parti cles, conductive material, and connection structure
CN114121470A (en) * 2020-08-25 2022-03-01 株式会社村田制作所 Method for producing magnetic powder, method for producing pressed powder molded body, magnetic powder, and pressed powder molded body
US20220178857A1 (en) * 2019-04-26 2022-06-09 Nabtesco Corporation Sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190014A (en) * 1992-01-09 1993-07-30 Sekisui Fine Chem Kk Conductive micro sphere for connecting electrode
JP2011175951A (en) * 2009-08-06 2011-09-08 Hitachi Chem Co Ltd Conductive fine particles, and anisotropic conductive material
JP2012142223A (en) * 2011-01-05 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
WO2019027023A1 (en) * 2017-08-03 2019-02-07 パウダーテック株式会社 Composite particles, powder, resin composition and moulded body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157918A (en) * 2000-11-17 2002-05-31 Jsr Corp Conductive composite particle and applied product using it
DE60310739T2 (en) * 2002-08-27 2007-10-11 Jsr Corp. ANISOTROPE CONDUCTIVE FILM AND IMPEDANCE MEASURING PROBE
CA2418497A1 (en) * 2003-02-05 2004-08-05 Patrick Lemieux High performance soft magnetic parts made by powder metallurgy for ac applications
JP4967482B2 (en) * 2006-02-27 2012-07-04 日立化成工業株式会社 Conductive particles, adhesive composition and circuit connecting material
CN101260243A (en) * 2008-04-30 2008-09-10 杨力 Macromolecule composite conducting material electric wire core material and preparation method thereof
IT1399315B1 (en) * 2010-04-08 2013-04-16 Cappelli PROCEDURE FOR PLACING ON ANY PAINTABLE SURFACE, OF ELECTRIC LOAD CIRCUITS AND / OR GENERATORS AND CIRCUITS MADE WITH THIS PROCEDURE.
JP6079425B2 (en) * 2012-05-16 2017-02-15 日立化成株式会社 Conductive particles, anisotropic conductive adhesive film, and connection structure
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
KR101959536B1 (en) * 2016-04-05 2019-03-18 주식회사 아이에스시 Anisotropic sheet comprising conductive particles mixed different kind of particles
WO2019159799A1 (en) * 2018-02-13 2019-08-22 パウダーテック株式会社 Composite particle, powder, resin composition, and molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190014A (en) * 1992-01-09 1993-07-30 Sekisui Fine Chem Kk Conductive micro sphere for connecting electrode
JP2011175951A (en) * 2009-08-06 2011-09-08 Hitachi Chem Co Ltd Conductive fine particles, and anisotropic conductive material
JP2012142223A (en) * 2011-01-05 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
WO2019027023A1 (en) * 2017-08-03 2019-02-07 パウダーテック株式会社 Composite particles, powder, resin composition and moulded body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200340936A1 (en) * 2019-04-26 2020-10-29 Nabtesco Corporation Sensor
US20220178857A1 (en) * 2019-04-26 2022-06-09 Nabtesco Corporation Sensor
US11499931B2 (en) * 2019-04-26 2022-11-15 Nabtesco Corporation Sensor
US20230035518A1 (en) * 2019-04-26 2023-02-02 Nabtesco Corporation Sensor
WO2021246523A1 (en) * 2020-06-04 2021-12-09 積水化学工業株式会社 Conductive parti cles, conductive material, and connection structure
CN114121470A (en) * 2020-08-25 2022-03-01 株式会社村田制作所 Method for producing magnetic powder, method for producing pressed powder molded body, magnetic powder, and pressed powder molded body

Also Published As

Publication number Publication date
TW202015074A (en) 2020-04-16
CN112313758A (en) 2021-02-02
JPWO2020004273A1 (en) 2021-08-05
TWI820157B (en) 2023-11-01
JP7280880B2 (en) 2023-05-24
CN116189963A (en) 2023-05-30
KR20210022541A (en) 2021-03-03
KR102647120B1 (en) 2024-03-14
CN112313758B (en) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2020004273A1 (en) Conductive particles, conductive material, and connecting structure
JP5216165B1 (en) Conductive particles, conductive materials, and connection structures
JP6034177B2 (en) Conductive particles, conductive materials, and connection structures
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP6276351B2 (en) Conductive particles, conductive materials, and connection structures
WO2017051842A1 (en) Conductive particles, conductive material, and connection structure
WO2019194135A1 (en) Conductive particles having insulating particles, conductive material, and connection structure
JP7463069B2 (en) Conductive particles, conductive material, connection structure, and method for producing connection structure
JP6478308B2 (en) Conductive particles, conductive materials, and connection structures
JP2016154139A (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
WO2021246523A1 (en) Conductive parti cles, conductive material, and connection structure
JP6200318B2 (en) Conductive particles, conductive materials, and connection structures
JP2018137225A (en) Conductive particles, conductive material and connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
WO2022260158A1 (en) Coated particles, resin composition, and connection structure
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
JP7132112B2 (en) Conductive film and connection structure
WO2019194133A1 (en) Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
WO2019194134A1 (en) Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
JP6333624B2 (en) Connection structure
JP2015056306A (en) Electrically conductive particle, electrically conductive material, and connection structure
JP2020205258A (en) Conductive particle for connector joining, conductive material for connector joining and connector joint body
JP2020013787A (en) Conductive material and connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825852

Country of ref document: EP

Kind code of ref document: A1