WO2021233045A1 - 一种电芯组件、电池、电池包及汽车 - Google Patents

一种电芯组件、电池、电池包及汽车 Download PDF

Info

Publication number
WO2021233045A1
WO2021233045A1 PCT/CN2021/088457 CN2021088457W WO2021233045A1 WO 2021233045 A1 WO2021233045 A1 WO 2021233045A1 CN 2021088457 W CN2021088457 W CN 2021088457W WO 2021233045 A1 WO2021233045 A1 WO 2021233045A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole core
cell assembly
electrode lead
pole
assembly according
Prior art date
Application number
PCT/CN2021/088457
Other languages
English (en)
French (fr)
Inventor
胡世超
朱燕
高新
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020227043915A priority Critical patent/KR20230011373A/ko
Priority to CA3178508A priority patent/CA3178508A1/en
Priority to EP21808137.0A priority patent/EP4138184A1/en
Priority to JP2022570575A priority patent/JP2023527294A/ja
Publication of WO2021233045A1 publication Critical patent/WO2021233045A1/zh
Priority to US17/988,006 priority patent/US20230069873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of batteries, and in particular to a battery cell assembly, a battery, a battery pack, and an automobile.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the technical solution of the present disclosure is:
  • a first aspect of the present disclosure provides a battery cell assembly, including a packaging film and a pole core set, the pole core set being located in a containing cavity surrounded by the packaging film, and the pole core set containing at least one pole core;
  • the pole core set is provided with two electrode lead-out components for drawing current and opposite polarities;
  • a spacer ring is also provided in the containing cavity, the spacer ring is located on the side of the pole core assembly where the electrode lead-out component is provided, and the spacer ring is provided with an electrode lead-out hole for leading out the electrode lead-out component .
  • electrolyte is injected into the accommodating cavity, at least one first reservoir is provided on the spacer, and the first reservoir extends from the outer surface of the spacer to The inner part of the spacer is recessed; the first liquid storage tank is in communication with the accommodating cavity.
  • a plurality of reinforcing ribs are provided in the first liquid storage tank to divide the first liquid storage tank into a plurality of liquid storage units.
  • the length of the pole core extends in a first direction
  • the thickness of the pole core extends in a second direction perpendicular to the first direction
  • the number of the first reservoir There is a plurality of, and a plurality of the first liquid storage tanks are arranged along the second direction.
  • the pole core set includes a pole core set main body and the electrode lead-out component electrically connected to the pole core set main body, and the length of the pole core set main body extends along a first direction;
  • the two electrode lead-out parts are respectively led out from opposite sides of the pole core group main body in the first direction, the number of the spacers is two, and the two spacers are respectively located in the pole core set
  • the main body is on opposite sides of the first direction.
  • the length of the pole core extends in a first direction
  • the thickness of the pole core extends in a second direction perpendicular to the first direction
  • the pole core group body contains at least two A pole core, the at least two pole cores are arranged along the second direction, and the pole cores are connected in series or in parallel.
  • each pole core includes a pole core body and two pole tabs that are electrically connected to the pole core body and have opposite polarities
  • the two tab pieces are respectively located on opposite sides of the pole core body in the first direction, and two adjacent tab pieces with the same polarity of the pole cores are located at the same side in the first direction.
  • two adjacent pole tabs with the same polarity are electrically connected to realize parallel connection of two adjacent pole cores.
  • the pole core set body further includes a tab support member located between two adjacent tabs with the same polarity, and the two adjacent poles with the same polarity
  • the lugs are respectively electrically connected to the lug supports;
  • Each of the electrode lead-out components is electrically connected to one of the tab supports located on one side of the pole core group main body in the first direction.
  • the connecting parts of the tab support member, the electrode lead-out component and the tab tab are respectively on different surfaces of the tab support member.
  • the tab support includes two opposite first surfaces, and the two first surfaces respectively face the two adjacent tabs with the same polarity. Two adjacent tabs with the same polarity are respectively directly attached to the two first surfaces of the tab support.
  • At least one tab support connected to the electrode lead-out component is a square piece; the square piece includes two first surfaces and is located between the two first surfaces And facing a third surface of the pole core body and a fourth surface opposite to the third surface;
  • a tab support piece electrically connected to the electrode lead-out component is connected to the electrode lead-out component through the fourth surface.
  • the interior of at least one of the tab supports is a hollow cavity.
  • At least one cavity wall of the hollow cavity is provided with an opening to communicate with the electrode lead-out hole on the same side spacer, so that the hollow cavity forms a second liquid storage groove.
  • At least one of the tab support members is a U-shaped member, the opening of the U-shaped member is parallel to the first direction, and the U-shaped member includes two opposite side walls And a bottom wall located between two opposite side walls, the outer surfaces of the two opposite side walls are the two first surfaces respectively.
  • the opening of the U-shaped member faces the pole core main body, and the tab support that is electrically connected to the electrode lead-out component is connected to the electrode lead-out component through the bottom wall.
  • the opening of the U-shaped piece faces the spacer ring on the same side, and the tab support piece electrically connected to the electrode lead-out part is connected to the electrode through one of the side walls. Lead component connection.
  • the opening of the U-shaped member communicates with the electrode lead-out holes on the spacer on the same side, so that the internal cavity of the U-shaped member forms a second liquid storage tank.
  • an insulating spacer is provided between the tab support and the core body.
  • the opposite ends of the pole core body in the first direction are V-shaped end faces with pointed parts protruding outward, and the two pole tabs of each pole core are respectively located at two poles.
  • a V-shaped space is formed between the V-shaped end surfaces of the two adjacent pole core bodies at the same end in the first direction;
  • the insulating spacer is a V-shaped piece matching the shape of the V-shaped space, and the V-shaped piece is fitted in the V-shaped area.
  • the V-angle of the V-shaped space is 90-150 degrees.
  • the insulating spacer and the tab support are fixed by a buckle method.
  • the side of the spacer ring facing the main body of the pole core set has an accommodation space, and the two spacer rings are respectively sleeved on the opposite side of the main body of the pole core set in the first direction.
  • the pole core group main body is respectively embedded in the accommodating space of the corresponding spacer ring on the two opposite sides in the first direction.
  • a battery including a casing and at least one cell assembly encapsulated in the casing, and the cell assembly is any one of the foregoing cell assemblies.
  • a battery module including a plurality of the above-mentioned batteries.
  • a battery pack including a plurality of the above-mentioned batteries or a plurality of the above-mentioned battery modules.
  • an automobile including the above-mentioned battery module or the above-mentioned battery pack.
  • a spacer ring is arranged in the packaging film, and the spacer ring is located on the side of the electrode core assembly where the electrode lead-out component is provided.
  • the electrode lead-out hole of the electrode lead-out part, the electrode lead-out part penetrates from the electrode lead-out hole, so that the function of the spacer can help to fix the electrode lead-out part, making the electrode lead-out part difficult
  • the connection is stable and reliable, thereby helping to extend the service life of the battery cell assembly.
  • FIG. 1 is a schematic diagram of the structure of the battery cell assembly in the first embodiment of the disclosure
  • Figure 2 is a front view of the battery cell assembly in Figure 1;
  • Fig. 3 is a schematic cross-sectional view of the battery cell assembly in Fig. 2 at III-III;
  • FIG. 4 is a schematic diagram of the structure of the battery cell assembly in FIG. 1 after the packaging film is removed;
  • Fig. 5 is a schematic structural view of the battery cell assembly in Fig. 4 with the spacer ring removed;
  • Fig. 6 is an exploded schematic diagram of the battery cell assembly in the first embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the assembly of the insulating spacer, the tab support and the electrode lead-out component in the first embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of disassembly of Fig. 7;
  • Fig. 9 is a schematic structural diagram of a tab support in another embodiment.
  • FIG. 10 is a schematic diagram of the structure of the battery cell assembly in the second embodiment of the disclosure.
  • Figure 11 is a front view of the battery cell assembly in Figure 10;
  • Figure 12 is a schematic cross-sectional view of the cell assembly in Figure 11 at XII-XII;
  • FIG. 13 is a schematic diagram of the three-dimensional structure of the spacer in one direction in the second embodiment of the present disclosure.
  • Fig. 14 is a left side view of the spacer in the second embodiment of the present disclosure.
  • Figure 15 is a schematic cross-sectional view of Figure 14 at XV-XV;
  • 16 is a schematic view of the three-dimensional structure of the spacer in another direction in the second embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a battery in an embodiment of the disclosure without a casing
  • FIG. 18 is a schematic structural diagram of a battery including a casing in an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a battery pack in an embodiment of the disclosure.
  • FIG. 20 is a schematic diagram of the structure of an automobile in an embodiment of the disclosure.
  • Cell assembly 10 packaging film 11, accommodating cavity 110, pole core assembly 12, pole core 121, pole core body 1211, pole tab 1213, electrode lead-out component 122, contact portion 1221, lead-out portion 1223, pole core assembly body 123 , Tab support 124, hollow cavity 1240, first surface 1241, third surface 1243, fourth surface 1244, bottom wall 1248, opening 1245, side wall 1247, insulating spacer 125, clamping hole 1246, buckle 1251 , Spacer 13, opening 130, electrode lead-out hole 131, first reservoir 132, reinforcing rib 1321, reservoir unit 1322, internal cavity 133, accommodating space 134, battery 100, battery pack 200, tray 22, housing 20, 300 cars.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed may be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the present disclosure provides a battery cell assembly 10, which is applied to a single battery 100 and is packaged in a housing 20 of the single battery 100 as the battery core of the single battery 100, which includes at least one battery
  • the core assembly 10 the cell assembly 10 includes a packaging film 11 and a pole core set 12, the pole core set 12 is located in a containing cavity 110 surrounded by the packaging film 11, and the pole core set 12 includes at least one pole core 121;
  • the pole core set 12 is provided with two electrode lead-out components 122 for drawing current and opposite polarities;
  • the accommodating cavity 110 is also provided with a spacer 13 which is located on the side of the electrode core assembly 12 where the electrode lead-out part 122 is provided.
  • the spacer 13 is provided with an electrode lead-out hole 131 for leading the electrode lead-out part 122.
  • the electrode lead-out hole 131 penetrates the spacer 13.
  • a spacer 13 is provided in the packaging film 11, and the spacer 13 is located on the side of the electrode core assembly 12 where the electrode lead-out part 122 is provided.
  • the spacer 13 is provided with an electrode lead-out for leading the electrode lead-out part 122 Hole 131, the electrode lead-out component 122 passes through the electrode lead-out hole 131, so that the spacer 13 can help to fix the electrode lead-out component 122, so that the electrode lead-out component 122 is not prone to shaking or moving, and the connection is stable and reliable. Therefore, it is beneficial to extend the service life of the battery cell assembly 10.
  • FIG. 1 is a schematic diagram of the structure of the cell assembly 10 in the first embodiment of the present disclosure
  • FIG. 2 is a front view of the cell assembly 10 in FIG. 1
  • FIG. 3 is FIG. 2
  • the cell assembly 10 includes a packaging film 11 and a pole core group 12.
  • the packaging film 11 surrounds and forms a containing cavity 110
  • the pole core set 12 is located in the containing cavity 110
  • the pole core set 12 includes at least one pole core 121.
  • FIGS. 4 and 5 is a schematic diagram of the structure of the cell assembly 10 in FIG.
  • FIG. 5 is the cell assembly 10 in FIG. 4 removed Schematic diagram of the structure of the spacer 13.
  • the pole core assembly 12 is provided with two electrode lead-out parts 122 for drawing current and opposite polarities.
  • One of the two electrode lead-out parts 122 is a positive electrode lead-out part, and the other is a negative electrode lead-out part.
  • a spacer 13 is also provided in the accommodating cavity 110. The spacer 13 is located on the side where the electrode core assembly 12 is provided with the electrode lead-out component 122, and the spacer 13 is provided with an electrode lead-out hole 131 for leading the electrode lead-out component 122.
  • a spacer 13 is provided in the packaging film 11 of the cell assembly 10, and the spacer 13 is located on the side of the electrode core assembly 12 where the electrode lead-out member 122 is provided.
  • the electrode lead-out hole 131 of the lead-out member 122 allows the electrode lead-out member 122 to be drawn out from the electrode lead-out hole 131. Therefore, the spacer 13 helps to fix the electrode lead-out member 122, which can prevent the electrode
  • the lead component 122 shakes which is beneficial to improve the stability and reliability of the connection of the electrode lead component 122, thereby prolonging the service life of the cell assembly 10.
  • electrolyte is also injected into the containing cavity 110. It can be understood that after the electrolyte is injected into the containing cavity 110, it is filled in the space between the inner surface of the packaging film 11 and the outer surface of the electrode core assembly 12. Wherein, at least one first liquid storage tank 132 is provided on the spacer ring 13, and the first liquid storage tank 132 is recessed from the outer surface of the spacer ring 13 toward the inside of the spacer ring 13. The first liquid storage tank 132 is in communication with the containing cavity 110. Therefore, after the electrolyte is injected into the containing cavity 110, the electrolyte can enter the first liquid storage tank 132, so that the first liquid storage tank 132 can be used to assist in storing the electrolyte. .
  • the electrolyte content in the battery is an important factor affecting the battery life. However, due to swelling and other reasons during the use of the battery, the electrolyte will gradually decrease, which not only affects the battery life, but also some areas of the battery will also appear in some areas such as lining, which reduces Battery safety.
  • the first reservoir 132 can store a certain amount of electrolyte, so that the cell is formed
  • the packaging film 11 is vacuumed during the process, the possibility of free electrolyte being drawn out during the vacuuming process can be reduced, and the electrolyte can be stored to a greater extent.
  • the battery when used for a long time, it can also be used in a timely manner.
  • the electrolyte is supplemented inside the battery cell assembly 10 to reduce the occurrence of battery analysis phenomena and improve the performance of the battery cycle life.
  • the spacer 13 and the packaging film 11 are not sealed, so that the first liquid storage tank 132 communicates with the containing cavity 110, that is, the spacer 13 is located in the packaging film 11.
  • the outer peripheral surface of the spacer 13 and the inner surface of the packaging film 11 are not sealed together. Therefore, when the electrolyte is injected into the accommodating cavity 110 surrounded by the packaging film 11, the electrolyte can enter the first storage tank 132, so that the first storage tank 132 can store a certain amount of electrolyte.
  • a plurality of reinforcing ribs 1321 are provided in the first liquid storage tank 132 to divide the first liquid storage tank 132 into a plurality of liquid storage units 1322.
  • the number of reinforcing ribs 1321 is three.
  • the three reinforcing ribs 1321 divide the first liquid storage tank 132 into four liquid storage units 1322. It can be understood that, in other embodiments, the number of reinforcing ribs 1321 is not limited to three, and may also be one, two, or four, five, and so on.
  • the number of liquid storage units 1322 may be but not limited to 4, and may also be less than 4 or more than 4, and so on.
  • the reinforcing rib 1321 in the first liquid storage tank 132 the overall strength of the spacer 13 can be enhanced, so that the spacer 13 can have a higher compressive strength.
  • the widths of the four liquid storage units 1322 may be equal or unequal. Therefore, the width of each liquid storage unit 1322 can be adjusted according to the layout between the liquid storage units 1322, so that the overall layout is more reasonable.
  • an opening 130 is provided on each liquid storage unit 1322, and the liquid passing through the opening 130 The effect is beneficial for the electrolyte to flow out of the liquid storage unit 1322.
  • the opening 130 connects the liquid storage unit 1322 and the electrode extraction hole 131.
  • the electrolyte in the liquid storage unit 1322 can more easily flow out of the liquid storage unit 1322 and enter the accommodating cavity 110.
  • the length of the pole core 121 extends along the first direction L
  • the thickness of the pole core 121 extends along the second direction W perpendicular to the first direction L
  • the number of the first liquid storage tanks 132 is greater.
  • a plurality of first liquid storage tanks 132 are arranged along the second direction W.
  • the first direction refers to the length direction of the pole core 121 in FIG. 1, that is, the L direction shown in FIG. 1.
  • the second direction refers to the thickness direction of the pole core 121 in FIG. 1, that is, the W direction shown in FIG. 1.
  • the number of the first liquid storage tank 132 is two, and the two first liquid storage tanks 132 are arranged along the second direction W, and are symmetrically arranged on opposite sides of the electrode extraction hole 131.
  • the number of the first liquid storage tank 132 may be three or more, which is not limited herein.
  • the space on the spacer 13 is fully utilized, so that the spacer 13 is provided with more first storage tanks 132 while ensuring its strength, which can store more electrolyte and reduce the occurrence of battery analysis. Improve battery cycle life performance.
  • the pole core set 12 includes a pole core set main body 123 and an electrode lead-out component 122 electrically connected to the pole core set main body 123.
  • the length of the pole core group main body 123 extends along the first direction L.
  • the number of the spacers 13 is two, and the two spacers 13 are respectively located on opposite sides of the pole core group main body 123 in the first direction L.
  • the two electrode extraction components 122 are respectively drawn from opposite sides of the pole core group main body 123 in the first direction L, and respectively drawn from the electrode extraction holes 131 of the corresponding spacer 13.
  • the plurality of first liquid storage tanks 132 provide a plurality of liquid storage spaces .
  • the symmetrical arrangement of the two spacers 13 makes the cell assembly 10 a symmetrical structure as a whole, with uniform force, better structural stability, and better compression resistance and collision resistance.
  • the spacer ring 13 is sleeved on the pole core group main body 123, that is, two spacer rings 13 are sleeved on the opposite sides of the pole core group main body 123 in the first direction L, as shown in the figure 4 shown.
  • FIG. 6 is an exploded schematic diagram of the battery cell assembly 10 in the first embodiment of the present disclosure.
  • Two spacer rings 13 are respectively sleeved on opposite sides of the pole core group main body 123 in the first direction L.
  • the pole core group main body 123 is respectively embedded in the receiving space 134 of the corresponding spacer 13 on two opposite sides in the first direction L.
  • the two spacers 13 are respectively located on opposite sides of the pole core set main body 123 in the first direction L, and are respectively sleeved on the two opposite sides of the pole core set main body 123 in the first direction L, the pole core set main body 123
  • the two opposite sides in the first direction L are respectively embedded in the accommodating space 134 of the corresponding spacer ring 13, so that the structural stability is better.
  • the number of spacer ring 13 is one.
  • Two electrode lead-out parts 122 extend from one side of the electrode core group 12, and the spacer 13 is arranged on the side of the electrode core group 12 where the electrode lead-out parts 122 are provided.
  • the spacer 13 is provided with electrode extraction holes 131 for leading out two electrode extraction components 122.
  • the number of spacers 13 can be reduced, and the material cost can be reduced.
  • the length of the pole core 121 extends along a first direction L
  • the thickness of the pole core 121 extends along a second direction perpendicular to the first direction L.
  • W extends
  • the main body 123 of the pole core group includes at least two pole cores 121
  • the at least two pole cores 121 are arranged along the second direction W
  • the pole cores 121 are connected in series or in parallel.
  • FIGS. 4-6 the figures show two pole cores 121 connected in parallel, and the two pole cores 121 are arranged along the thickness direction of the pole core 121, that is, the second direction W.
  • each pole core 121 includes a pole core body 1211 and two pole pieces 1213 electrically connected to the pole core body 1211 and opposite in polarity.
  • the two pole pieces 1213 are respectively located at two opposite sides of the pole core body 1211 in the first direction L. side.
  • One of the two tabs 1213 of the pole core 121 is a positive tab, and the other is a negative tab.
  • the tabs 1213 with the same polarity of the two adjacent pole cores 121 are located on the same side of the first direction L, and the two adjacent tabs 1213 with the same polarity are electrically connected to realize the parallel connection of the two adjacent pole cores 121 . Furthermore, the positive pole tabs 1213 of two adjacent pole cores 121 are located on the same side of the first direction L, and the negative pole tabs 1213 are located on the other side of the first direction L. Therefore, by changing the phases on the same side The two adjacent pole tabs 1213 are electrically connected, so that the parallel connection of two adjacent pole cores 121 can be realized.
  • the pole core 121 mentioned can also be understood as a pole core commonly used in the field of power batteries.
  • the pole core 121 and the pole core group 12 are internal components of the battery shell, and cannot be understood as the battery itself;
  • the core 121 may be a pole core 121 formed by winding, and the pole core 121 generally refers to a component that is not completely sealed. Therefore, the battery mentioned in the present disclosure cannot be simply understood as a battery module or battery pack because it includes a plurality of pole cores 121.
  • the pole core set 12 may be composed of a single pole core 121; it may also include a plurality of pole cores 121, and the plurality of pole cores 121 are connected in parallel to form the pole core set 12. For example, two pole cores 121 are connected in parallel to form a pole core set 12; or four pole cores 121 are connected in parallel to form a pole core set 12; or eight pole cores 121 are connected in parallel to form a pole core set 12.
  • the pole core set main body 123 further includes a tab support 124 located between two adjacent tabs 1213 of the same polarity, and two adjacent tabs 1213 of the same polarity are connected to the tabs 1213 respectively.
  • the support 124 is electrically connected, that is, two adjacent tabs 1213 on the same side are electrically connected by a tab support 124.
  • tab support 124 is provided on both sides of the pole core set 12 in the length direction. .
  • Each electrode lead-out member 122 of the pole core set 12 is electrically connected to one of the tab support members 124 on the side of the pole core set main body 123 in the first direction L. It is understandable that when there are three, four or even more pole cores 121 in the pole core set 12, there will be more than one pole support 124 on each side of the pole core set 12 in the length direction. .
  • the electrode lead-out member 122 of the pole core set 12 with a positive pole and the tab 1213 of the positive pole are located on the same side of the pole set 12 and are electrically connected to the tab 1213 of the positive pole.
  • the lead part 122 and the tab 1213 of the negative electrode are located on the other side of the core set 12 and are electrically connected to the tab 1213 of the negative electrode.
  • the electrode lead-out component 122 is electrically connected to one of the tab support members 124 on the same side, thereby achieving electrical connection with the corresponding tab 1213.
  • the pole core set 12 includes two pole cores 121 as an example. At this time, there is one pole core set 12 on opposite sides of the pole core set 12 along the first direction L.
  • the tab support 124, the tab support 124 on each side is located between the two tabs 1213 on the same side and is electrically connected to the two tabs 1213 on the same side.
  • the tab support 124 when the number of the tab supports 124 on the same side of the pole core 121 is two or more, the two adjacent tabs on the same side support The pieces 124 are spaced apart by the tab 1213. Therefore, in order to electrically connect the two adjacent tab support members 124, the tab support 124 needs to be arranged to extend along the first direction L to extend beyond the tab 1213. The convex edge of the edge of the two adjacent tab supports 124 can be connected to each other by the convex edge contact.
  • the connecting parts of the tab support 124, the electrode lead-out member 122 and the tab 1213 are respectively on different surfaces of the tab support 124, that is to say ,
  • the electrode lead-out member 122 and the tab 1213 that are electrically connected to the same tab support 124 are connected to the tab support 124 at different surfaces, thereby avoiding tab support.
  • the electrode lead-out component 122 and the tab 1213 are simultaneously superimposed on the same surface of the member 124, which is beneficial to reduce the thickness of the connection part of the tab support 124 with the electrode lead-out component 122 or the tab 1213.
  • the electrode lead-out component 122 includes a contact portion 1221 and a lead-out portion 1223.
  • the contact portion 1221 is directly electrically connected to the tab support 124.
  • the lead portion 1223 protrudes from the contact portion 1221 and extends along the first direction L.
  • the part of the contact portion 1221 that fits the tab support 124 is plate-shaped, which can increase the contact area between the contact portion 1221 and the tab support 124, thereby increasing the distance between the tab support 124 and the contact portion 1221 The welding area improves the reliability of the connection.
  • the lead portion 1223 is connected to the side of the contact portion 1221 in the first direction L to form an L-shaped bracket.
  • the lead portion 1223 and the contact portion 1221 are connected in the middle of the first direction L to form a T-shaped bracket.
  • the contact portion 1221 of the electrode lead-out component 122 and the tab support 124 may be electrically connected by welding.
  • the tab support 124 includes two opposite first surfaces 1241.
  • the two first surfaces 1241 face adjacent two tabs 1213 with the same polarity, and adjacent tabs 1213 with the same polarity.
  • the two tabs 1213 are directly attached to the two first surfaces 1241 of the tab support 124 respectively.
  • the tab 1213 and the tab support 124 can be electrically connected by welding.
  • At least one tab support 124 connected to the electrode lead-out member 122 is a square piece, that is, the cross-sectional shape of the tab support 124 is square, and the tab support 124 is square when viewed as a whole. It can be understood that the present disclosure can also provide that all the tab support members 124 are square members. By setting the tab support 124 as a square piece, it is possible to provide better support for the tab 1213 between adjacent tabs 1213, especially when welding the tab 1213 and the tab support 124 At this time, it is beneficial to prevent the tab support 124 from being deformed during the welding process, and increase the compression resistance of the tab support 124.
  • the square member includes two first surfaces 1241, a third surface 1243 located between the two first surfaces 1241 and facing the pole core body 1211, and a second surface 1243 opposite to the third surface 1243.
  • the tab support 124 electrically connected to the electrode lead-out component 122 is connected to the electrode lead-out component 122 through the fourth surface 1244.
  • the contact portion 1221 of the electrode lead-out component 122 is connected to the fourth surface 1244 of the tab support 124
  • the adjacent tabs 1213 are respectively connected to the two first surfaces 1241, that is, the electrode lead-out member 122 and tabs 1213 are in direct contact and connection with the tab support 124, and the connection part is at the end of the tab support 124.
  • the interior of at least one tab support 124 is a hollow cavity 1240.
  • the interior of all tab supports 124 may be configured to have a hollow cavity.
  • At least one cavity wall of the hollow cavity 1240 is provided with an opening. As shown in FIG. 7 and FIG. 8, both ends of the hollow cavity 1240 may be provided as openings.
  • the electrode lead-out holes 131 on the spacer 13 on the same side of the tab support 124 are connected, so that the hollow cavity 1240 forms a second liquid storage tank.
  • the pole core set 12 is provided with a spacer 13 on opposite sides of the first direction L, and the two electrode lead-out parts 122 of the pole core set 12 are located opposite to the pole core set 12 in the first direction L. On both sides, and lead out from the electrode lead-out holes 131 on the spacer 13 on the same side.
  • the electrolyte is injected into the packaging film 11 When inside, the electrolyte can enter the hollow cavity 1240 connected to it from the electrode lead-out hole 131, so that the hollow cavity 1240 can be used to store the electrolyte and realize the liquid storage function.
  • an opening 1245 may also be provided on the cavity wall where the fourth surface 1244 of the tab support 124 is located.
  • the opening 1245 is the same as the electrode extraction hole 131 on the spacer 13 on the same side Connected, so that the hollow cavity 1240 forms a second liquid storage tank.
  • the cavity wall where the fourth surface 1244 is located is provided with an opening communicating with the electrode lead-out hole 131, which is more conducive for the electrolyte to enter and exit the hollow cavity 1240.
  • the liquid storage space is further increased by the second liquid storage tank.
  • an insulating spacer 125 is provided between the tab support 124 and the core body 1211.
  • the insulating spacer 125 serves to electrically insulate between the pole core 121 and the tab support 124.
  • the opposite ends of the pole core main body 1211 in the first direction L are V-shaped end faces with tips protruding outward, and the two pole tabs 1213 of each pole core 121 are respectively Located at the tips of the two V-shaped end surfaces, a V-shaped space is formed between the V-shaped end surfaces of the two adjacent pole core bodies 1211 at the same end in the first direction L; the insulating spacer 125 is a V-shaped space that matches the shape of the V-shaped space
  • the V-shaped piece is fitted in the V-shaped area, that is, the outer surfaces of the V-shaped two sides of the insulating spacer 125 are respectively attached to the two V-shaped end surfaces forming the V-shaped space, which not only can separate the pole core main body 1211 and the tab support 124 can also support the V-shaped end surface of the pole core body 1211 to a certain extent, which is beneficial to prevent the pole core assembly 12 from being deformed by impact.
  • the V-angle of the V-shaped space is 90-150 degrees.
  • the range of the V-angle angle may be 100-120 degrees, or 120-145 degrees. In some embodiments, it may be 95 degrees, 110 degrees, or 125 degrees. Make a limit.
  • the opposite ends of the pole core body 1211 in the first direction L may also be straight, square, arc-shaped, or the like.
  • the shape of the insulating spacer 125 also needs to be adjusted adaptively for adaptation. There is no limitation here.
  • the insulating spacer 125 and the tab support 124 are fixed by a snap method.
  • the insulating member 125 is provided with a buckle 1251
  • the third surface 1243 of the tab support member 124 is provided with a locking hole 1246.
  • the buckle 1251 is squeezed into the buckling hole 1246 by means of squeezing deformation to form a buckle connection.
  • the number of the buckles 1251 may be two
  • the number of the buckles 1246 is two
  • the two buckles 1251 are respectively clamped into the two buckles 1246 to form a buckle connection.
  • a stable connection is formed between the insulating member 125 and the tab support member 124.
  • the insulating spacer 125 and the tab support 124 may only be in contact without a fixing member for fixing, or the two may conflict with each other and be fixed together through a reasonable spatial arrangement; in addition, the insulation
  • the spacer 125 and the tab support 124 can also be glued together or fixed together in other ways, which is not limited.
  • FIG. 10 is a schematic diagram of the three-dimensional structure of the battery cell assembly 10 in the second embodiment
  • FIG. 11 is a front view of the battery cell assembly 10 in the second embodiment
  • the tab support 124 is a U-shaped piece, the opening of the U-shaped piece is parallel to the first direction L, and the U-shaped piece includes two opposite side walls 1247 and The bottom wall 1248 is located between the two opposite side walls 1247.
  • the outer surfaces of the two opposite side walls 1247 are respectively two first surfaces 1241, that is, two adjacent tabs 1213 are attached to the opposite On the outer surface of the two side walls 1247.
  • the opening of the U-shaped piece faces the spacer 13 on the same side, that is, the opening of the U-shaped piece is located away from the pole core body 1211, and the tab support 124 electrically connected to the electrode lead-out component 122 passes through One of the side walls 1247 is connected to the electrode lead-out part 122.
  • the part of the electrode lead-out component 122 for electrical connection with the tab support 124 is located between one of the tabs 1213 and the corresponding side wall 1247, that is, the outer surface of one of the side walls 1247 is laminated
  • the electrode lead-out component 122 and a tab 1213 are welded and fixed together.
  • the opening of the U-shaped piece is communicated with the electrode lead-out hole 131 on the spacer 13 on the same side, so that the internal cavity 133 of the U-shaped piece forms a second liquid storage tank.
  • the auxiliary storage space for the electrolyte is further increased.
  • the opening of the U-shaped member faces the pole core body 1211, and the tab support 124 electrically connected to the electrode lead-out component 122 is connected to the electrode lead-out component 122 through the bottom wall 1248.
  • an insulating spacer 125 is provided between the tab support 124 and the core body 1211.
  • the opposite ends of the pole core body 1211 in the first direction L are V-shaped end surfaces with sharp parts protruding outward, and the two pole tabs 1213 of each pole core are respectively located on the two V-shaped end surfaces.
  • a V-shaped space is formed between the V-shaped end faces of the same end of the two adjacent pole core bodies 1211 in the first direction L;
  • the insulating spacer 125 is a V-shaped piece matching the shape of the V-shaped space, and the V-shaped piece is fitted In the V-shaped area.
  • the V-angle of the V-shaped space is 90-150 degrees.
  • the opposite ends of the pole core body 1211 in the first direction L are straight, square, arc-shaped, or the like.
  • the shape of the insulating spacer 125 also needs to be adjusted adaptively for adaptation. There is no limitation here.
  • the insulating spacer 125 and the tab support 124 are fixed by a snap method.
  • the insulating member 125 is provided with a buckle 1251, and the third surface 1243 of the tab support member 124 is provided with a locking hole 1246.
  • the buckle 1251 is pressed into the buckling hole 1246 by means of squeezing deformation to form a buckle connection.
  • the number of buckles 1251 is two
  • the number of buckles 1246 is two
  • the two buckles 1251 are respectively clamped into the two buckles 1246 to form a buckle connection.
  • the first liquid storage tank 132 is not provided with a reinforcing rib 1321, that is, the first liquid storage tank 132
  • the tank 132 includes only one liquid storage unit 1322.
  • the number of the first liquid storage tank 132 is two, and the two first liquid storage tanks 132 are arranged along the second direction W and are symmetrically arranged on opposite sides of the electrode extraction hole 131.
  • the number of the first liquid storage tank 132 may be three or more, which is not limited herein.
  • the space on the spacer 13 is fully utilized, so that the spacer 13 can store more electrolyte, reduce the occurrence of battery analysis, improve the battery cycle life performance, and simplify the structure of the spacer 13.
  • the opening direction of the U-shaped member may also be toward the pole core main body 1211, that is, the opening of the U-shaped member is disposed adjacent to the pole core main body 1211, and the tab support member electrically connected to the electrode lead-out member 122 124 is connected to the electrode lead-out part 122 through the bottom wall 1248, that is to say, the connection parts of the tab support 124, the electrode lead-out part 122 and the tab 1213 are respectively on different surfaces of the tab support 124, thus facilitating the electrode
  • the lead part 122 is electrically connected to the tab support 124, and at the same time, the thickness of the connection part can be reduced.
  • the battery 100 includes a casing 20 and at least one cell assembly 10 encapsulated in the casing 20.
  • the casing 20 is encapsulated
  • the plurality of battery cell assemblies 10 are arranged in sequence along the length direction of the battery 100.
  • the positive electrode lead-out part of one of the two battery cell assemblies 10 and the negative electrode lead-out part of the other cell assembly 10 are electrically connected, thereby realizing two A series connection between the cell components 10.
  • the cell assembly 10 is the cell assembly 10 described in any of the above embodiments.
  • the housing 20 is a metal housing.
  • metal housing For example, aluminum shell; of course, it can also be made of other metals according to needs.
  • the battery 100 is substantially a rectangular parallelepiped.
  • the battery 100 has a length L, a thickness W, and a height H.
  • the length L is greater than the height H, and the height H is greater than the thickness W.
  • the length of the battery 100 is 400-2500 mm.
  • the ratio of the length to the height of the battery 100 is 4-21.
  • the substantially rectangular parallelepiped shape of the battery 100 can be understood to mean that the battery 100 may be a rectangular parallelepiped shape, a cube shape, or a part of a special shape, but is roughly a rectangular parallelepiped shape, a cube shape; or part of which has gaps, protrusions, chamfers, or arcs. , Curved but the overall shape is similar to a cuboid or a cube.
  • the present disclosure also provides a battery module including a plurality of batteries 100 provided in the present disclosure.
  • the present disclosure also provides a battery pack 200, which includes a plurality of batteries 100 provided in the present disclosure or battery modules provided in the present disclosure.
  • the battery pack 200 provided by the present disclosure includes a tray 22 and batteries 100 arranged on the tray 22.
  • the present disclosure also provides an automobile 300 (refer to FIG. 20), which includes the battery module or battery pack 200 provided in the present disclosure.
  • the present disclosure has the above-mentioned excellent characteristics, so that it can improve the performance and practicability that is not available in the prior art in use, and become a product of great practical value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

本公开提供一种电芯组件(10)、电池(100)、电池包(200)及汽车(300),电芯组件(10)包括封装膜(11)及极芯组(12),极芯组位于封装膜包围形成的容纳腔(110)中,极芯组(12)含有至少一个极芯(121);极芯组上设有用于引出电流且极性相反的两个电极引出部件(122);容纳腔(110)内还设有隔圈(13),隔圈位于极芯组(12)设有电极引出部件的一侧,隔圈上设有用于引出电极引出部件的电极引出孔(131)。同时,本公开还提供了基于本公开提供的电芯组件的电池(100)、电池包(200)和汽车(300)。

Description

一种电芯组件、电池、电池包及汽车
相关申请的交叉引用
本公开基于申请号为202010421322.9,申请日为2020年5月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及电池领域,尤其涉及一种电芯组件、电池、电池包及汽车。
背景技术
随着新能源汽车的不断普及,对新能源汽车中动力电池的使用要求变得越来越高。特别是用户对动力电池的寿命要求不断提高,尤其是出租车、公交车,一般要求寿命在5年100万公里以上。现有的电池为了提供容量,通常会在内部设置多个电连接的电芯,电芯的用于引出电流的正负端子一般是直接从电芯两侧直接引出,使得正负端子容易产生较大晃动,从而会对电芯之间的连接造成不利影响,如容易使得电芯之间的连接断开,影响电池的使用。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。
为解决上述技术问题,本公开的技术方案是:
本公开第一方面提供一种电芯组件,包括封装膜及极芯组,所述极芯组位于所述封装膜包围形成的容纳腔中,所述极芯组含有至少一个极芯;
所述极芯组上设有用于引出电流且极性相反的两个电极引出部件;
所述容纳腔内还设有隔圈,所述隔圈位于所述极芯组设有所述电极引出部件的一侧,所述隔圈上设有用于引出所述电极引出部件的电极引出孔。
在本公开的一些实施例中,所述容纳腔中注入有电解液,所述隔圈上设有至少一个第一储液槽,所述第一储液槽从所述隔圈的外侧表面向所述隔圈的内部凹陷;所述第一储液槽与所述容纳腔连通。
在本公开的一些实施例中,所述隔圈和所述封装膜之间未封接,以使所述第一储液槽与所述容纳腔连通。
在本公开的一些实施例中,所述第一储液槽内设置有多个加强筋,以将所述第一储液槽分隔成多个储液单元。
在本公开的一些实施例中,所述极芯的长度沿第一方向延伸,所述极芯的厚度沿与所述第一方向垂直的第二方向延伸,所述第一储液槽的数量为多个,多个所述第一储液槽沿所述第二方向排列。
在本公开的一些实施例中,所述极芯组包括极芯组主体和与所述极芯组主体电连接的所述电极引出部件,所述极芯组主体的长度沿第一方向延伸;
两个所述电极引出部件分别从所述极芯组主体在所述第一方向相对的两侧引出,所述隔圈的数量为两个,两个所述隔圈分别位于所述极芯组主体在所述第一方向相对的两侧。
在本公开的一些实施例中,所述极芯的长度沿第一方向延伸,所述极芯的厚度沿与所述第一方向垂直的第二方向延伸,所述极芯组主体含有至少两个极芯,所述至少两个极芯沿所述第二方向排列,所述极芯间串联或并联。
在本公开的一些实施例中,相邻两个所述极芯间并联,每个所述极芯包括极芯主体以及与所述极芯主体电连接且极性相反的两个极耳片,所述两个极耳片分别位于所述极芯主体在所述第一方向的相对两侧,并且相邻两个所述极芯的极性相同的极耳片位于所述第一方向的同一侧,极性相同的相邻两个所述极耳片电连接,以实现相邻两个所述极芯并联。
在本公开的一些实施例中,所述极芯组主体还包括位于极性相同的相邻两个所述极耳片之间的极耳支撑件,所述极性相同的相邻两个极耳片分别与所述极耳支撑件电连接;
每个所述电极引出部件与位于所述极芯组主体在所述第一方向一侧的其中一个所述极耳支撑件电连接。
在本公开的一些实施例中,所述极耳支撑件与所述电极引出部件和所述极耳片的连接部位分别处于所述极耳支撑件的不同表面上。
在本公开的一些实施例中,所述极耳支撑件包括相对的两个第一表面,所述两个第一表面分别面对所述极性相同的相邻两个极耳片,所述极性相同的相邻两个极耳片分别与所述极耳支撑件的两个所述第一表面直接贴合。
在本公开的一些实施例中,至少一个与所述电极引出部件连接的极耳支撑件为方形件;所述方形件包括两个所述第一表面、位于两个所述第一表面之间且面对所述极芯主 体的第三表面、以及与所述第三表面相对的第四表面;
与所述电极引出部件电连接的极耳支撑件通过所述第四表面与所述电极引出部件连接。
在本公开的一些实施例中,至少一个所述极耳支撑件的内部为中空腔体。
在本公开的一些实施例中,所述中空腔体的至少一个腔壁上设有开口,以与位于同一侧隔圈上的电极引出孔连通,进而使所述中空腔体形成第二储液槽。
在本公开的一些实施例中,至少一个所述极耳支撑件为U形件,所述U形件的开口朝向与所述第一方向平行,所述U形件包括相对的两个侧壁和位于相对的两个侧壁之间的底壁,所述相对的两个侧壁的外表面分别为所述两个第一表面。
在本公开的一些实施例中,所述U形件的开口朝向所述极芯主体,与所述电极引出部件电连接的极耳支撑件通过所述底壁与所述电极引出部件连接。
在本公开的一些实施例中,所述U形件的开口朝向位于同一侧的所述隔圈,与所述电极引出部件电连接的极耳支撑件通过其中一个所述侧壁与所述电极引出部件连接。
在本公开的一些实施例中,所述U形件的开口与位于同一侧的所述隔圈上的电极引出孔连通,以使所述U形件的内部腔体形成第二储液槽。
在本公开的一些实施例中,所述极耳支撑件和所述极芯主体之间设置有绝缘隔件。
在本公开的一些实施例中,所述极芯主体在第一方向的相对两端为尖部向外突出的V形端面,每个所述极芯的两个极耳片分别位于两个所述V形端面的尖部,所述相邻两个极芯主体在所述第一方向的同一端的V形端面之间形成V形空间;
所述绝缘隔件为与所述V形空间形状匹配的V形件,所述V形件嵌合在所述V形区域中。
在本公开的一些实施例中,所述V形空间的V角角度为90-150度。
在本公开的一些实施例中,所述绝缘隔件与极耳支撑件通过卡扣方式固定。
在本公开的一些实施例中,所述隔圈面对所述极芯组主体的一侧具有容纳空间,两个所述隔圈分别套接在所述极芯组主体在第一方向相对的两侧上,所述极芯组主体在第一方向相对的两侧分别嵌入对应隔圈的容纳空间中。
本公开的第二方面,提供一种电池,包括壳体和封装于所述壳体内的至少一个电芯组件,所述电芯组件为上述任意一项电芯组件。
本公开的第三方面,提供一种电池模组,包括多个上述电池。
本公开的第四方面,提供一种电池包,包括多个上述电池或者包括多个上述电池模组。
本公开的第五方面,提供一种汽车,包括上述电池模组或上述电池包。
与现有技术相比,本公开的有益效果在于:
本公开提供的电芯组件,所述封装膜内设置有隔圈,所述隔圈位于所述极芯组设有所述电极引出部件的一侧,所述隔圈上设有用于引出所述电极引出部件的电极引出孔,所述电极引出部件从所述电极引出孔中穿出,从而利用隔圈的作用可有助于对所述电极引出部件进行固定,使得所述电极引出部件不容易发生晃动或者移动而连接稳定可靠,从而,有利于延长电芯组件的使用寿命。
附图说明
图1为本公开第一实施例中的电芯组件的结构示意图;
图2为图1中的电芯组件的主视图;
图3为图2中的电芯组件在III-III处的剖面示意图;
图4为图1中的电芯组件去掉封装膜后的结构示意图;
图5为图4中的电芯组件去掉隔圈的结构示意图;
图6为本公开第一实施例中的电芯组件的***示意图;
图7为本公开第一实施例中的绝缘隔件、极耳支撑件和电极引出部件的组装示意图;
图8为图7的拆解示意图;
图9为另一实施例中的极耳支撑件的结构示意图;
图10为本公开第二实施例中的电芯组件的结构示意图;
图11为图10中的电芯组件的主视图;
图12为图11中的电芯组件在XII-XII处的剖面示意图;
图13为本公开第二实施例中的隔圈在一个方向上的立体结构示意图;
图14为本公开第二实施例中的隔圈的左视图;
图15为图14在XV-XV处的剖面示意图;
图16为本公开第二实施例中的隔圈在另一个方向上的立体结构示意图;
图17为本公开一实施例中的电池不包括外壳的结构示意图;
图18为本公开一实施例中的电池包括外壳的结构示意图;
图19为本公开一实施例中的电池包的结构示意图;
图20为本公开一实施例中的汽车的结构示意图。
附图标记:
电芯组件10,封装膜11,容纳腔110,极芯组12,极芯121,极芯主体1211,极耳片1213,电极引出部件122,接触部1221,引出部1223,极芯组主体123,极耳支撑件124,中空腔体1240,第一表面1241,第三表面1243,第四表面1244,底壁1248,开口1245,侧壁1247,绝缘隔件125,卡孔1246,卡扣1251,隔圈13,开口130,电极引出孔131,第一储液槽132,加强筋1321,储液单元1322,内部腔体133,容纳空间134,电池100,电池包200,托盘22,壳体20,汽车300。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
本公开提供了一种电芯组件10,该电芯组件10应用于单体电池100中,作为单体电池100的电芯而封装于单体电池100的壳体20内,其包括至少一个电芯组件10,电芯组件10包括封装膜11及极芯组12,极芯组12位于封装膜11包围形成的容纳腔110中,极芯组12含有至少一个极芯121;
极芯组12上设有用于引出电流且极性相反的两个电极引出部件122;
容纳腔110内还设有隔圈13,隔圈13位于极芯组12设有电极引出部件122的一侧,隔圈13上设有用于引出电极引出部件122的电极引出孔131,电极引出孔131贯穿隔圈 13。
与现有技术相比,本公开的有益效果在于:
在电芯组件10中,封装膜11内设置有隔圈13,隔圈13位于极芯组12设有电极引出部件122的一侧,隔圈13上设有用于引出电极引出部件122的电极引出孔131,电极引出部件122从电极引出孔131中穿出,从而利用隔圈13的作用可有助于对电极引出部件122进行固定,使得电极引出部件122不容易发生晃动或者移动而连接稳定可靠,从而,有利于延长电芯组件10的使用寿命。
请参考图1、图2和图3,图1为本公开第一实施例中的电芯组件10的结构示意图;图2为图1中的电芯组件10的主视图;图3为图2中的电芯组件10在III-III处的剖面示意图。电芯组件10包括封装膜11和一个极芯组12。封装膜11包围形成容纳腔110,极芯组12位于容纳腔110中,极芯组12含有至少一个极芯121。请参考图4和图5,图4为图1中的电芯组件10去掉封装膜11后的结构示意图,也即极芯组12的结构示意图;图5为图4中的电芯组件10去掉隔圈13的结构示意图。极芯组12上设有用于引出电流且极性相反的两个电极引出部件122,两个电极引出部件122中的其中一个为正电极引出部件,另一个为负电极引出部件。容纳腔110内还设有隔圈13。隔圈13位于极芯组12设有电极引出部件122的一侧,且隔圈13上设有用于引出电极引出部件122的电极引出孔131。
从而,本公开实施例中,电芯组件10的封装膜11内设置有隔圈13,隔圈13位于极芯组12设有电极引出部件122的一侧,隔圈13上设有用于引出电极引出部件122的电极引出孔131,从而使得电极引出部件122从电极引出孔131中引出,由此,通过隔圈13的作用有助于对电极引出部件122进行固定,能够在一定程度上防止电极引出部件122产生晃动,从而有利于提高电极引出部件122的连接的稳定可靠性,从而,可以延长电芯组件10的使用寿命。
在本公开的一些实施例中,容纳腔110中还注入有电解液。可以理解的是,电解液注入容纳腔110后是填充于封装膜11的内表面和极芯组12的外表面之间的空间中。其中,隔圈13上设有至少一个第一储液槽132,第一储液槽132从隔圈13的外侧表面向隔圈13的内部凹陷。第一储液槽132与容纳腔110连通,因此当在容纳腔110内注入电解液后,电解液可以进入到第一储液槽132中,从而可以利用第一储液槽132辅助储存电解液。
电池内的电解液含量是影响电池寿命的重要因素,然而,电池在使用过程中由于膨胀等原因,电解液会逐渐减少,不仅影响电池寿命,且电池部分区域还会出现析里等现 象,降低电池安全性。
本公开实施例中,通过在隔圈13上设置第一储液槽132,在往封装膜11内注入电解液时,第一储液槽132能够存储一定量的电解液,从而在电芯成型过程中对封装膜11内进行抽真空时,可以减少抽真空过程中游离电解液被抽出的可能,同时可以更大程度的储存电解液,另外,当电池在长时间使用过程中,还可以及时为电芯组件10内部补充电解液,减少电池析理现象的发生,提高电池循环寿命的性能。
在本公开的一些实施例中,隔圈13和封装膜11之间未封接,以使第一储液槽132与容纳腔110连通,也就是说,隔圈13是位于封装膜11内,但隔圈13的外周面与封装膜11的内表面之间并没有封接在一起的。从而,当向封装膜11包围成的容纳腔110内注入电解液时,电解液能够进入第一储液槽132内,从而第一储液槽132可以存储一定量的电解液。
在本公开的一些实施例中,第一储液槽132内设置有多个加强筋1321,以将第一储液槽132分隔成多个储液单元1322。
在一些实施例中,本实施例中,加强筋1321的数量为三个。三个加强筋1321将第一储液槽132分割成四个储液单元1322。可以理解的是,在其它实施例中,加强筋1321的数量不限于3个,还可以是1个、2个或者4个、5个等。储液单元1322可以是但不限于4个,还可以是少于4个或者多于4个等。
从而,通过在第一储液槽132内设置加强筋1321,可以增强隔圈13的整体强度,使得隔圈13能够具有更高的抗压强度。
可选择地,在本公开的一些实施例中,四个储液单元1322的宽度可以相等,也可以不相等。从而,可以根据储液单元1322之间的布局而调整每个储液单元1322的宽度,使得整体布局更加合理。
可选择地,在本公开的一些实施例中,为了使得每个储液单元1322中的电解液能够流出至容纳腔110中,每个储液单元1322上设置一个开口130,通过该开口130的作用有利于电解液从储液单元1322中流出。
可选择地,在本公开的一些实施例中,开口130将储液单元1322和电极引出孔131连通。
从而,使得位于储液单元1322中的电解液能够更容易的流出储液单元1322并进入容纳腔110中。
在本公开的一些实施例中,极芯121的长度沿第一方向L延伸,极芯121的厚度沿与第一方向L垂直的第二方向W延伸,第一储液槽132的数量为多个,多个第一储液槽 132沿第二方向W排列。
本公开中,第一方向指的是图1中的极芯121的长度方向,也即附图1中所示的L方向。第二方向指的是图1中的极芯121的厚度方向,也即附图1中所示的W方向。
本实施例中,第一储液槽132的数量为两个,两个第一储液槽132沿第二方向W排列,且对称的设置于电极引出孔131的相对的两侧。
可以理解的是,在本公开的一些实施例中,第一储液槽132的数量可以是三个或者多个,在此不做限定。
从而,隔圈13上的空间得到充分利用,使得隔圈13在保证其强度的情况下设置更多的第一储液槽132,可以储存更多的电解液,减少电池析理现象的发生,提高电池循环寿命的性能。
在本公开的一些实施例中,请参考图4,极芯组12包括极芯组主体123和与极芯组主体123电连接的电极引出部件122。极芯组主体123的长度沿第一方向L延伸。隔圈13的数量为两个,两个隔圈13分别位于极芯组主体123在第一方向L相对的两侧。两个电极引出部件122分别从极芯组主体123在第一方向L相对的两侧引出,并分别从对应的隔圈13的电极引出孔131中引出。
从而,当隔圈13的数量为两个且两个隔圈13分别位于极芯组主体123在第一方向L相对的两侧时,多个第一储液槽132提供了多个储液空间,且两个隔圈13的对称式设置,使得电芯组件10整体呈对称式结构,受力均匀,结构稳定性更好,抗压性能和防撞性能也更好。
在本公开的一些实施例中,隔圈13套接在极芯组主体123上,即两个隔圈13分别套接在极芯组主体123在第一方向L相对的两侧上,正如图4所示。请一并参考图6,图6为本公开第一实施例中的电芯组件10的***示意图,隔圈13面对极芯组主体123的一侧具有容纳空间134。两个隔圈13分别套接在极芯组主体123在第一方向L相对的两侧上。极芯组主体123在第一方向L相对的两侧分别嵌入对应隔圈13的容纳空间134中。
从而,两个隔圈13分别位于极芯组主体123在第一方向L相对的两侧,且分别套接在极芯组主体123在第一方向L相对的两侧上,极芯组主体123在第一方向L相对的两侧分别嵌入对应隔圈13的容纳空间134中,结构稳定性更好。
可选择地,在本公开的一些实施例中,隔圈13的数量为一个。两个电极引出部件122从极芯组12的一侧伸出,隔圈13设置在极芯组12的设有电极引出部件122的一侧。隔圈13上设有用于引出两个电极引出部件122的电极引出孔131。
从而,在保证电芯组件10的抗压性能的前提下,可以减少隔圈13的数量,降低用材成本。
根据本公开的一些实施例,请再次参考图3,在本公开的实施例中,极芯121的长度沿第一方向L延伸,极芯121的厚度沿与第一方向L垂直的第二方向W延伸,极芯组主体123含有至少两个极芯121,至少两个极芯121沿第二方向W排列,极芯121间串联或并联。如图4-6所示中,图中示意出了两个并联的极芯121,两个极芯121沿极芯121的厚度方向也即第二方向W排列。
在本公开的一些实施例中,相邻两个极芯121间并联。每个极芯121包括极芯主体1211以及与极芯主体1211电连接且极性相反的两个极耳片1213,两个极耳片1213分别位于极芯主体1211在第一方向L的相对两侧。极芯121的两个极耳片1213中的其中一个为正极极耳片,另一个为负极极耳片。
其中,相邻两个极芯121的极性相同的极耳片1213位于第一方向L的同一侧,极性相同的相邻两极耳片1213电连接,以实现相邻两个极芯121并联。进一步而言,相邻两个极芯121的正极极耳片1213位于第一方向L的同一侧,负极极耳片1213位于第一方向L的另一侧,因此,通过将位于同一侧的相邻两极耳片1213电连接从而可以实现相邻两个极芯121的并联。
在本公开中,所提到的极芯121,也可以理解为动力电池领域常用的极芯,极芯121以及极芯组12为电池外壳内部的组成部分,而不能被理解为电池本身;极芯121可以是卷绕形成的极芯121,极芯121一般是指未完全密封的组件。因而,在本公开提到的电池,不能因其包含多个极芯121,而将其简单的理解为电池模组或电池组。在本公开中,极芯组12可以是由一个单独的极芯121组成;也可以包括多个极芯121,且多个极芯121并联连接,构成极芯组12。例如,两个极芯121并联后,形成极芯组12;或者四个极芯121并联后,构成极芯组12;或者八个极芯121并联后,构成极芯组12。
在本公开的一些实施例中,极芯组主体123还包括位于极性相同的相邻两极耳片1213之间的极耳支撑件124,极性相同的相邻两极耳片1213分别与极耳支撑件124电连接,即位于同一侧的相邻两极耳片1213通过极耳支撑件124电连接,如图3所示,在极芯组12的长度方向两侧均设置有极耳支撑件124。
极芯组12的每个电极引出部件122与位于极芯组主体123在第一方向L一侧的其中一个极耳支撑件124电连接。可以理解的是,当极芯组12中的极芯121有三个、四个或者甚至更多个时,极芯组12在长度方向每一侧的极耳支撑件124的数量也会有多个。本公开实施例中,极芯组12的极性为正极的电极引出部件122与正极的极耳片1213位 于极芯组12的同一侧,且与正极的极耳片1213电连接,负极的电极引出部件122与负极的极耳片1213位于极芯组12的另一侧,且与负极的极耳片1213电连接。根据本公开的一些实施例,电极引出部件122通过与位于同一侧的其中一个极耳支撑件124电连接,进而实现与对应的极耳片1213电连接。
其中,如图3至图6所示的实施例中,均是以极芯组12含有两个极芯121为例,此时在极芯组12沿第一方向L的相对两侧各有一个极耳支撑件124,每侧的极耳支撑件124位于同侧的两个极耳片1213之间并与同侧的两个极耳片1213电连接。
可以理解的是,在本公开的一些实施例中,当位于极芯121同侧的极耳支撑件124的数量为两个或者多个时,由于位于同一侧的相邻的两个极耳支撑件124之间被极耳片1213间隔开,因此,为了使得相邻的两个极耳支撑件124电性连接,极耳支撑件124需设置沿着第一方向L延伸至超出极耳片1213的边缘的凸沿而使得相邻的两个极耳支撑件124之间能够通过凸沿接触的方式相互连接。
在本公开的一些实施例中,请参考图5至图8,极耳支撑件124与电极引出部件122和极耳片1213的连接部位分别处于极耳支撑件124的不同表面上,也就是说,与同一个极耳支撑件124电连接的电极引出部件122和极耳片1213各自与极耳支撑件124的连接部位是处于极耳支撑件124的不同表面上,由此可以避免极耳支撑件124的同一个表面上同时叠加了电极引出部件122和极耳片1213,有利于降低极耳支撑件124中与电极引出部件122或极耳片1213的连接部位的厚度。
在本公开的一些实施例中,电极引出部件122包括接触部1221和引出部1223。接触部1221与极耳支撑件124直接电连接。引出部1223自接触部1221上伸出并沿着第一方向L延伸。接触部1221贴合极耳支撑件124的部分呈板状,可以增大接触部1221与极耳支撑件124之间的接触面积,从而,可以增大极耳支撑件124与接触部1221之间的焊接面积,提高连接的可靠性。本实施例中,引出部1223与接触部1221位于第一方向L上的一侧连接而形成L形的支架。可以理解的是,在其它实施例中,引出部1223与接触部1221位于第一方向L的中部连接而形成T形的支架。其中,电极引出部件122的接触部1221与极耳支撑件124之间可以通过焊接的方式实现电连接。
在本公开的一些实施例中,极耳支撑件124包括相对的两个第一表面1241,两个第一表面1241分别面对极性相同的相邻两极耳片1213,极性相同的相邻两极耳片1213分别与极耳支撑件124的两个第一表面1241直接贴合。其中,极耳片1213与极耳支撑件124之间可以通过焊接的方式实现电连接。通过将极耳片1213贴合固定在极耳支撑件124的第一表面1241上,有利于防止极耳片1213发生窜动或者位移。
在本公开的一些实施例中,至少一个与电极引出部件122连接的极耳支撑件124为方形件,即极耳支撑件124的截面形状为方形,从整体上看极耳支撑件124为方体结构,可以理解的是,本公开也可以设置所有极耳支撑件124均为方形件。通过将极耳支撑件124设置为方形件,从而可以在相邻极耳片1213之间为极耳片1213提供更好的支撑能力,尤其是在将极耳片1213与极耳支撑件124焊接时,有利于防止极耳支撑件124在焊接过程产生变形,增加极耳支撑件124的抗压性能。
在本公开的一些实施例中,方形件包括两个第一表面1241、位于两个第一表面1241之间且面对极芯主体1211的第三表面1243、以及与第三表面1243相对的第四表面1244。
其中,与电极引出部件122电连接的极耳支撑件124通过第四表面1244与电极引出部件122连接,具体为电极引出部件122的接触部1221与极耳支撑件124的第四表面1244连接,而相邻极耳片1213则分别与两个第一表面1241连接,即电极引出部件122和极耳片1213均是与极耳支撑件124直接接触连接,且连接部位处于极耳支撑件124的不同表面上,因而可以避免极耳支撑件124上的同一个表面同时叠加有电极引出部件122和极耳片1213,可以降低极耳支撑件124与电极引出部件122和极耳片1213的连接部位的厚度,并且也更方便实现电极引出部件122与极耳支撑件124的连接。
在本公开的一些实施例中,至少一个极耳支撑件124的内部为中空腔体1240,例如可以将所有极耳支撑件124的内部均设置为具有中空腔体。通过设置中空的极耳支撑件124,可以在确保支撑强度的同时能够减小重量。
在本公开的一些实施例中,中空腔体1240的至少一个腔壁上设有开口,如7和图8所示,可以是在中空腔体1240的两端面均设置为开口,该开口和与极耳支撑件124位于同一侧的隔圈13上的电极引出孔131连通,进而使中空腔体1240形成第二储液槽。如图6所示,极芯组12在第一方向L的相对两侧各自设有一个隔圈13,极芯组12的两个电极引出部件122位于极芯组12在第一方向L的相对两侧,并从同一侧的隔圈13上的电极引出孔131引出,通过使极耳支撑件124与同一侧的隔圈13上的电极引出孔131连通,从而在将电解液注入封装膜11内时,电解液可以从电极引出孔131进入到与其连通的中空腔体1240内,从而可以利用中空腔体1240存储电解液,实现储液功能。
在另一些实施例中,请参考图9,也可以在极耳支撑件124的第四表面1244所在的腔壁上设置开口1245,该开口1245与位于同一侧隔圈13上的电极引出孔131连通,进而使中空腔体1240形成第二储液槽。在第四表面1244所在的腔壁设置与电极引出孔131连通的开口,更有利于电解液进出中空腔体1240。从而,通过第二储液槽进一步地增大了储液空间。
在本公开的一些实施例中,请再次参考图3、图6、图7和图8,极耳支撑件124和极芯主体1211之间设置有绝缘隔件125。绝缘隔件125起到对极芯121和极耳支撑件124之间的电绝缘。
在本公开的一些实施例中,请再次参考图3,极芯主体1211在第一方向L的相对两端为尖部向外突出的V形端面,每个极芯121的两极耳片1213分别位于两个V形端面的尖部,相邻两个极芯主体1211在第一方向L的同一端的V形端面之间形成V形空间;绝缘隔件125为与V形空间形状匹配的V形件,V形件嵌合在V形区域中,即绝缘隔件125的V形两侧的外表面分别贴合在形成V形空间的两个V形端面上,由此不仅能够间隔极芯主体1211和极耳支撑件124,且还能够对极芯主体1211的V形端面起到一定的支撑作用,有利于防止极芯组12受撞击而产生变形。
在本公开的一些实施例中,V形空间的V角角度为90-150度。根据本公开的一些实施例,例如该V角角度的范围可以是100-120度,或者为120-145度,在一些实施例中,可以是95度、110度或者125度等,对此不做限定。
当然,在其他的一些实施例中,极芯主体1211在第一方向L的相对的两端也可以是平直的、方形、弧形等。相应地,绝缘隔件125的形状也需要做适应性调整以进行适配。在此不做限定。
在本公开的一些实施例中,绝缘隔件125与极耳支撑件124通过卡扣方式固定。在一些实施例中,请参考图8,绝缘件125上设置有卡扣1251,极耳支撑件124的第三表面1243上设置有卡孔1246。卡扣1251通过挤压变形的方式卡入卡孔1246中而形成卡扣连接。其中,卡扣1251的数量可以为两个,卡孔1246的数量为两个,两个卡扣1251分别卡入两个卡孔1246中而形成卡扣连接。从而,绝缘件125与极耳支撑件124之间形成稳固的连接。
需要说明的是,绝缘隔件125与极耳支撑件124之间可以仅是接触而没有采用固定件进行固定,或者可以通过合理的空间布置而使得两者相互抵触而固定在一起;此外,绝缘隔件125和极耳支撑件124还可以采用胶水黏结在一起,或者采用其他方式固定在一起,对此不做限定。
请参考图10、图11和图12,图10为第二实施例中的电芯组件10的立体结构示意图;图11为第二实施例中的电芯组件10的主视图;图12为第二实施例中的电芯组件10在XII-XII向上的剖面示意图。与第一实施例不同的是,第二实施例中,极耳支撑件124为U形件,U形件的开口朝向与第一方向L平行,U形件包括相对的两个侧壁1247和位于相对的两个侧壁1247之间的底壁1248,相对的两个侧壁1247的外表面分别为两 个第一表面1241,也就是说,相邻两极耳片1213分别贴合在相对的两个侧壁1247的外表面上。
其中,如图12所示,U形件的开口朝向位于同一侧的隔圈13,即U形件的开口远离极芯主体1211设置,而与电极引出部件122电连接的极耳支撑件124通过其中一个侧壁1247与电极引出部件122连接。在一些实施例中,电极引出部件122中用于与极耳支撑件124电连接的部分位于其中一个极耳片1213和对应侧壁1247之间,即其中一侧壁1247的外表面上层叠了电极引出部件122和一个极耳片1213,三者焊接固定在一起。
其中,U形件的开口与位于同一侧的隔圈13上的电极引出孔131连通,以使U形件的内部腔体133形成第二储液槽。从而,进一步地增加了电解液的辅助存储空间。
在本公开的一些实施例中,U形件的开口朝向极芯主体1211,与电极引出部件122电连接的极耳支撑件124通过底壁1248与电极引出部件122连接。
在本公开的一些实施例中,在极耳支撑件124和极芯主体1211之间设置有绝缘隔件125。
在本公开的一些实施例中,极芯主体1211在第一方向L的相对两端为尖部向外突出的V形端面,每个极芯的两极耳片1213分别位于两个V形端面的尖部,相邻两个极芯主体1211在第一方向L的同一端的V形端面之间形成V形空间;绝缘隔件125为与V形空间形状匹配的V形件,V形件嵌合在V形区域中。
在本公开的一些实施例中,V形空间的V角角度为90-150度。
在本公开的一些实施例中,极芯主体1211在第一方向L的相对的两端为平直的、方形、弧形等。相应地,绝缘隔件125的形状也需要做适应性调整以进行适配。在此不做限定。
在本公开的一些实施例中,绝缘隔件125与极耳支撑件124通过卡扣方式固定。
在本公开的一些实施例中,绝缘件125上设置有卡扣1251,极耳支撑件124的第三表面1243上设置有卡孔1246。卡扣1251通过挤压变形的方式压入卡孔1246中而形成卡扣连接。
本实施例中,卡扣1251的数量为两个,卡孔1246的数量为两个,两个卡扣1251分别卡入两个卡扣1246中而形成卡扣连接。
从而,绝缘件125与极耳支撑件124之间形成稳固的连接,使得绝缘件125对极耳支撑件124和极芯主体1211之间的绝缘。
与第一实施例不同的是,第二实施例中,请参考图13、图14、图15和图16,第一储液槽132内没有设置加强筋1321,也就是说,第一储液槽132只包括一个储液单元 1322。第一储液槽132的数量为两个,两个第一储液槽132沿第二方向W排列,且对称的设置于电极引出孔131的相对的两侧。
在本公开的一些实施例中,第一储液槽132的数量可以是三个或者多个,在此不做限定。
从而,隔圈13上的空间得到充分利用,使得隔圈13可以储存更多的电解液,减少电池析理现象的发生,提高电池循环寿命的性能,且简化隔圈13的结构。
当然,在其他一些实施例中,U形件的开口朝向也可以是朝向极芯主体1211,即U形件的开口邻近极芯主体1211设置,而与电极引出部件122电连接的极耳支撑件124通过底壁1248与电极引出部件122连接,也就是说极耳支撑件124与电极引出部件122和极耳片1213的连接部位分别处于极耳支撑件124的不同表面上,由此既方便电极引出部件122与极耳支撑件124实现电连接,同时也可以减小连接部位的厚度。
请参考图17和图18,本公开提供的电池的实施例中,电池100包括壳体20和封装于壳体20内的至少一个电芯组件10,如图17所示,壳体20内封装有多个电芯组件10,多个电芯组件10沿电池100的长度方向依次排列。其中,当多个电芯组件10为串联时,两个电芯组件10中的其中一个电芯组件10的正极电极引出部件和另一个电芯组件10的负极电极引出部件电连接,从而实现两个电芯组件10间的串联。其中,电芯组件10为上述任一实施例所描述的电芯组件10。
在本公开的一些实施例中,壳体20为金属壳体。比如,铝壳;当然,根据需要也可以选择其他金属制成。
在本公开的一些实施例中,电池100大体为长方体,电池100具有长度L、厚度W和高度H,长度L大于高度H,高度H大于厚度W。其中,电池100的长度为400-2500mm。电池100的长度与高度的比值为4-21。
需要说明的是,电池100大体为长方体可以理解为,电池100可为长方体形、正方体形,或局部存在异形,但大致为长方体形、正方体形;或部分存在缺口、凸起、倒角、弧度、弯曲但整体呈近似长方体形、正方体形。
本公开还提供了一种电池模组,包括多个本公开提供的电池100。
本公开还提供了一种电池包200,包括多个本公开提供的电池100或者本公开提供的电池模组。
请参阅图19,本公开提供的电池包200,包括托盘22和排布在托盘22上的电池100。
本公开还提供了一种汽车300(参照图20),包括本公开提供的电池模组或电池包200。
综上所述可知本公开乃具有以上所述的优良特性,得以令其在使用上,增进以往技术中所未有的效能而具有实用性,成为一极具实用价值的产品。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的思想和原则之内所作的任何修改、等同替换或改进等,均应包含在本公开的保护范围之内。

Claims (26)

  1. 一种电芯组件,其特征在于,包括封装膜及极芯组,所述极芯组位于所述封装膜包围形成的容纳腔中,所述极芯组含有至少一个极芯;
    所述极芯组上设有用于引出电流且极性相反的两个电极引出部件;
    所述容纳腔内还设有隔圈,所述隔圈位于所述极芯组设有所述电极引出部件的一侧,所述隔圈上设有用于引出所述电极引出部件的电极引出孔。
  2. 根据权利要求1所述的电芯组件,其特征在于,所述容纳腔中注入有电解液,所述隔圈上设有至少一个第一储液槽,所述第一储液槽从所述隔圈的外侧表面向所述隔圈的内部凹陷;所述第一储液槽与所述容纳腔连通。
  3. 根据权利要求2所述的电芯组件,其特征在于,所述隔圈和所述封装膜之间未封接,以使所述第一储液槽与所述容纳腔连通。
  4. 根据权利要求2所述的电芯组件,其特征在于,所述第一储液槽内设置有多个加强筋,以将所述第一储液槽分隔成多个储液单元。
  5. 根据权利要求2所述的电芯组件,其特征在于,所述极芯的长度沿第一方向延伸,所述极芯的厚度沿与所述第一方向垂直的第二方向延伸,所述第一储液槽的数量为多个,多个所述第一储液槽沿所述第二方向排列。
  6. 根据权利要求1-5中任一项所述的电芯组件,其特征在于,所述极芯组包括极芯组主体和与所述极芯组主体电连接的所述电极引出部件,所述极芯组主体的长度沿第一方向延伸;
    两个所述电极引出部件分别从所述极芯组主体在所述第一方向相对的两侧引出,所述隔圈的数量为两个,两个所述隔圈分别位于所述极芯组主体在所述第一方向相对的两侧。
  7. 根据权利要求6所述的电芯组件,其特征在于,所述极芯的长度沿第一方向延伸,所述极芯的厚度沿与所述第一方向垂直的第二方向延伸,所述极芯组主体含有至少两个极芯,所述至少两个极芯沿所述第二方向排列,所述极芯间串联或并联。
  8. 根据权利要求7所述的电芯组件,其特征在于,相邻两个所述极芯间并联,每个所述极芯包括极芯主体以及与所述极芯主体电连接且极性相反的两个极耳片,所述两个极耳片分别位于所述极芯主体在所述第一方向的相对两侧,并且相邻两个所述极芯的极性相同的极耳片位于所述第一方向的同一侧,极性相同的相邻两个所述极耳片电连接,以实现相邻两个所述极芯并联。
  9. 根据权利要求8所述的电芯组件,其特征在于,所述极芯组主体还包括位于极性相同的相邻两个所述极耳片之间的极耳支撑件,所述极性相同的相邻两个极耳片分别与所述极耳支撑件电连接;
    每个所述电极引出部件与位于所述极芯组主体在所述第一方向一侧的其中一个所述极耳支撑件电连接。
  10. 根据权利要求9所述的电芯组件,其特征在于,所述极耳支撑件与所述电极引出部件和所述极耳片的连接部位分别处于所述极耳支撑件的不同表面上。
  11. 根据权利要求9所述的电芯组件,其特征在于,所述极耳支撑件包括相对的两个第一表面,所述两个第一表面分别面对所述极性相同的相邻两个极耳片,所述极性相同的相邻两个极耳片分别与所述极耳支撑件的两个所述第一表面直接贴合。
  12. 根据权利要求11所述的电芯组件,其特征在于,至少一个与所述电极引出部件连接的极耳支撑件为方形件;所述方形件包括两个所述第一表面、位于两个所述第一表面之间且面对所述极芯主体的第三表面、以及与所述第三表面相对的第四表面;
    与所述电极引出部件电连接的极耳支撑件通过所述第四表面与所述电极引出部件连接。
  13. 根据权利要求9所述的电芯组件,其特征在于,至少一个所述极耳支撑件的内部为中空腔体。
  14. 根据权利要求13所述的电芯组件,其特征在于,所述中空腔体的至少一个腔壁上设有开口,以与位于同一侧隔圈上的电极引出孔连通,进而使所述中空腔体形成第二储液槽。
  15. 根据权利要求11所述的电芯组件,其特征在于,至少一个所述极耳支撑件为U形件,所述U形件的开口朝向与所述第一方向平行,所述U形件包括相对的两个侧壁和位于相对的两个侧壁之间的底壁,所述相对的两个侧壁的外表面分别为所述两个第一表面。
  16. 根据权利要求15所述的电芯组件,其特征在于,所述U形件的开口朝向所述极芯主体,与所述电极引出部件电连接的极耳支撑件通过所述底壁与所述电极引出部件连接。
  17. 根据权利要求15所述的电芯组件,其特征在于,所述U形件的开口朝向位于同一侧的所述隔圈,与所述电极引出部件电连接的极耳支撑件通过其中一个所述侧壁与所述电极引出部件连接。
  18. 根据权利要求15所述的电芯组件,其特征在于,所述U形件的开口与位于同一 侧的所述隔圈上的电极引出孔连通,以使所述U形件的内部腔体形成第二储液槽。
  19. 根据权利要求9至18任何一项所述的电芯组件,其特征在于,所述极耳支撑件和所述极芯主体之间设置有绝缘隔件。
  20. 根据权利要求19所述的电芯组件,其特征在于,所述极芯主体在第一方向的相对两端为尖部向外突出的V形端面,每个所述极芯的两个极耳片分别位于两个所述V形端面的尖部,所述相邻两个极芯主体在所述第一方向的同一端的V形端面之间形成V形空间;
    所述绝缘隔件为与所述V形空间形状匹配的V形件,所述V形件嵌合在所述V形区域中。
  21. 根据权利要求20所述的电芯组件,其特征在于,所述V形空间的V角角度为90-150度。
  22. 根据权利要求19所述的电芯组件,其特征在于,所述绝缘隔件与极耳支撑件通过卡扣方式固定。
  23. 根据权利要求6至22任何一项所述的电芯组件,其特征在于,所述隔圈面对所述极芯组主体的一侧具有容纳空间,两个所述隔圈分别套接在所述极芯组主体在第一方向相对的两侧上,所述极芯组主体在第一方向相对的两侧分别嵌入对应隔圈的容纳空间中。
  24. 一种电池,其特征在于,包括壳体和封装于所述壳体内的至少一个电芯组件,所述电芯组件为权利要求1至23任意一项所述的电芯组件。
  25. 一种电池包,其特征在于,包括多个如权利要求24所述的电池。
  26. 一种汽车,其特征在于,包括权利要求24所述的电池或权利要求25所述的电池包。
PCT/CN2021/088457 2020-05-18 2021-04-20 一种电芯组件、电池、电池包及汽车 WO2021233045A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227043915A KR20230011373A (ko) 2020-05-18 2021-04-20 셀 어셈블리, 배터리, 배터리 팩, 및 차량
CA3178508A CA3178508A1 (en) 2020-05-18 2021-04-20 Battery core assembly, battery, battery pack and vehicle
EP21808137.0A EP4138184A1 (en) 2020-05-18 2021-04-20 Cell assembly, battery, battery pack, and vehicle
JP2022570575A JP2023527294A (ja) 2020-05-18 2021-04-20 電池セルアセンブリ、電池、電池パック及び自動車
US17/988,006 US20230069873A1 (en) 2020-05-18 2022-11-16 Battery core assembly, battery, battery pack and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421322.9A CN113764791B (zh) 2020-05-18 2020-05-18 一种电芯组件、电池、电池包及汽车
CN202010421322.9 2020-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,006 Continuation US20230069873A1 (en) 2020-05-18 2022-11-16 Battery core assembly, battery, battery pack and vehicle

Publications (1)

Publication Number Publication Date
WO2021233045A1 true WO2021233045A1 (zh) 2021-11-25

Family

ID=78709153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088457 WO2021233045A1 (zh) 2020-05-18 2021-04-20 一种电芯组件、电池、电池包及汽车

Country Status (7)

Country Link
US (1) US20230069873A1 (zh)
EP (1) EP4138184A1 (zh)
JP (1) JP2023527294A (zh)
KR (1) KR20230011373A (zh)
CN (1) CN113764791B (zh)
CA (1) CA3178508A1 (zh)
WO (1) WO2021233045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217134614U (zh) * 2022-05-12 2022-08-05 比亚迪股份有限公司 电池、电池包和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448041A (zh) * 2018-05-02 2018-08-24 中航锂电技术研究院有限公司 一种软包锂离子电池模块及连接方法
CN110429234A (zh) * 2019-07-05 2019-11-08 恒大新能源科技集团有限公司 一种无汇流排电池模组结构及组装方法
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN212587691U (zh) * 2020-05-18 2021-02-23 比亚迪股份有限公司 一种电芯组件、电池、电池包及汽车

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490545B1 (ko) * 2002-12-18 2005-05-17 삼성에스디아이 주식회사 이차 전지
KR100496290B1 (ko) * 2002-12-18 2005-06-17 삼성에스디아이 주식회사 고용량 파우치형 이차전지
KR100873308B1 (ko) * 2006-06-05 2008-12-12 주식회사 엘지화학 두 개 이상의 유닛 셀들을 포함하고 있는 고용량 전지셀
CN201936935U (zh) * 2010-05-31 2011-08-17 比亚迪股份有限公司 一种电池隔圈、电芯保护结构及动力电池
CN102867968B (zh) * 2012-10-08 2016-05-11 中国电子科技集团公司第十八研究所 一种大容量一次锂电池
CN205992559U (zh) * 2016-09-20 2017-03-01 宁德时代新能源科技股份有限公司 护套及电池
CN106898823B (zh) * 2017-04-17 2019-03-29 深圳瑞隆新能源科技有限公司 一种储液式软包装锂离子电芯以及电池的制备方法
CN107579174A (zh) * 2017-09-08 2018-01-12 广东天劲新能源科技股份有限公司 超长循环寿命高能量密度软包聚合物动力电池
JP6996932B2 (ja) * 2017-10-20 2022-02-03 矢崎総業株式会社 電池パック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448041A (zh) * 2018-05-02 2018-08-24 中航锂电技术研究院有限公司 一种软包锂离子电池模块及连接方法
CN110429234A (zh) * 2019-07-05 2019-11-08 恒大新能源科技集团有限公司 一种无汇流排电池模组结构及组装方法
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN212587691U (zh) * 2020-05-18 2021-02-23 比亚迪股份有限公司 一种电芯组件、电池、电池包及汽车

Also Published As

Publication number Publication date
JP2023527294A (ja) 2023-06-28
CN113764791B (zh) 2023-04-07
CN113764791A (zh) 2021-12-07
KR20230011373A (ko) 2023-01-20
CA3178508A1 (en) 2021-11-25
EP4138184A1 (en) 2023-02-22
US20230069873A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP5889418B2 (ja) 信頼性が向上した電池モジュールアセンブリ及びこれを含む中大型電池パック
JP7037720B2 (ja) 組電池と、組電池に用いられる単電池の製造方法
CN214336804U (zh) 电池单体、电池以及用电装置
WO2021233043A1 (zh) 一种电芯组件、电池、电池包及汽车
CN117203830A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
KR20230011370A (ko) 배터리, 배터리 팩, 및 자동차
WO2021233045A1 (zh) 一种电芯组件、电池、电池包及汽车
WO2021233044A1 (zh) 一种电芯组件、电池、电池包及汽车
CN115843398A (zh) 电池、用电设备、制备电池的方法和设备
CN218414973U (zh) 隔离板组件、电池模组、电池包、用电装置
CN219123438U (zh) 电池单体、电池及用电装置
CN115064757B (zh) 电池单体、电池及用电装置
WO2024016491A1 (zh) 极片、电极组件、电池单体、电池及用电装置
WO2023060713A1 (zh) 电池单体、电池、用电设备、制备电池的方法和设备
CN219717059U (zh) 电芯及具有其的电池包
CN220628008U (zh) 电芯、电池包和车辆
WO2023133747A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024000502A1 (zh) 电池及用电设备
WO2024055311A1 (zh) 电池单体、电池及用电设备
CN217009494U (zh) 电芯和电池包
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3178508

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022570575

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021808137

Country of ref document: EP

Effective date: 20221115

ENP Entry into the national phase

Ref document number: 20227043915

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE