WO2021233044A1 - 一种电芯组件、电池、电池包及汽车 - Google Patents

一种电芯组件、电池、电池包及汽车 Download PDF

Info

Publication number
WO2021233044A1
WO2021233044A1 PCT/CN2021/088456 CN2021088456W WO2021233044A1 WO 2021233044 A1 WO2021233044 A1 WO 2021233044A1 CN 2021088456 W CN2021088456 W CN 2021088456W WO 2021233044 A1 WO2021233044 A1 WO 2021233044A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole core
spacer
cell assembly
liquid storage
electrode lead
Prior art date
Application number
PCT/CN2021/088456
Other languages
English (en)
French (fr)
Inventor
胡世超
朱燕
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to CA3178531A priority Critical patent/CA3178531A1/en
Priority to JP2022570516A priority patent/JP2023525907A/ja
Priority to EP21808008.3A priority patent/EP4142025A4/en
Priority to KR1020227043551A priority patent/KR20230010249A/ko
Publication of WO2021233044A1 publication Critical patent/WO2021233044A1/zh
Priority to US17/988,053 priority patent/US20230076552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of batteries, and in particular to a battery cell assembly, a battery, a battery pack, and an automobile.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the technical solution of the present disclosure is:
  • the first aspect of the present disclosure provides a battery cell assembly, including a packaging film and a plurality of pole core groups encapsulated in the packaging film, the pole core sets are connected in series to form a pole core string, and each pole core
  • the group contains at least one pole core; at least two adjacent pole core sets are provided with a first spacer ring, and the first spacer ring is sealed with the packaging film to seal the containing space in the packaging film Is divided into a plurality of accommodating cavities, the cavity wall of the accommodating cavity includes a first spacer ring and a packaging film connected to the first spacer ring, each of the accommodating cavities accommodates the pole core group; at least one At least one first liquid storage tank is provided on the first spacer ring, and each of the first liquid storage tanks communicates with one of the accommodating cavities on both sides of the first spacer ring.
  • the first liquid storage tank is formed by being recessed from the outer surface of the first spacer to the inside of the first spacer.
  • a plurality of reinforcing ribs are provided in the first liquid storage tank to divide the first liquid storage tank into a plurality of liquid storage units.
  • the outer surface of the first spacer includes a connecting surface and a first outer surface and a second outer surface located on both sides of the connecting surface, and the connecting surface is sealed with the packaging film. Then, the first outer surface and the second outer surface are respectively located in the accommodating cavities on both sides of the first spacer;
  • a part of the first outer surface is recessed to the inside of the first spacer to form the first reservoir or a part of the second outer surface is recessed to the inner of the first spacer to form The first liquid storage tank, or a partial area of the first outer surface and the second outer surface are all recessed toward the inside of the first spacer to form the first liquid storage tank respectively.
  • the length of the pole core group extends along a first direction, a plurality of the pole core groups are arranged in sequence along the first direction, and each of the pole core groups is provided with Two electrode lead-out parts with opposite currents and opposite polarities, the two electrode lead-out parts are respectively located at two ends of the pole core set in the first direction;
  • the first spacer ring is provided with an electrode connection hole, the two electrode lead-out parts between the two adjacent pole core groups have opposite polarities and are connected, and the two adjacent pole core groups are connected with each other.
  • the connection location of each electrode lead-out component is located in the electrode connection hole on the first spacer between two adjacent electrode core groups.
  • the length of the pole core extends in the first direction
  • the thickness of the pole core extends in a second direction perpendicular to the first direction
  • the pole core group includes at least Two pole cores, the at least two pole cores are arranged along the second direction, and the pole cores are connected in series or in parallel.
  • each pole core includes a pole core body and two pole tabs that are electrically connected to the pole core body and have opposite polarities
  • the two tab pieces are respectively located on opposite sides of the pole core body in the first direction, and two adjacent tab pieces with the same polarity of the pole cores are located at the same side in the first direction.
  • the two adjacent pole tabs with the same polarity are electrically connected to realize the parallel connection of the two adjacent pole cores.
  • the pole core set further includes a tab support member located between two adjacent tabs of the same polarity, and the two adjacent tabs of the same polarity are respectively Electrically connected to the tab support;
  • the electrode lead-out component is electrically connected to one of the tab supports electrically connected to the tab with the same polarity.
  • the connecting parts of the tab support member, the electrode lead-out component and the tab tab are respectively on different surfaces of the tab support member.
  • the tab support includes two opposite first surfaces, and the two first surfaces respectively face two adjacent tabs with the same polarity. The same two adjacent tabs are respectively directly attached to the two first surfaces of the tab support.
  • At least one tab support connected to the electrode lead-out component is a square piece; the square piece includes two first surfaces, located between the two first surfaces and To the third surface of the pole core body and the fourth surface opposite to the third surface;
  • a tab support piece electrically connected to the electrode lead-out component is connected to the electrode lead-out component through the fourth surface.
  • the interior of at least one of the tab supports is a hollow cavity, and at least one cavity wall of the hollow cavity is provided with an opening, and the opening is in contact with the tab support.
  • the accommodating cavity is connected, so that the hollow cavity forms a second liquid storage tank.
  • At least one tab support member is a U-shaped member, the opening of the U-shaped member is parallel to the first direction, and the U-shaped member includes two opposite side walls and For the bottom wall between the two opposite side walls, the outer surfaces of the two opposite side walls are the two first surfaces respectively.
  • the opening of the U-shaped member faces the pole core main body, and the tab support that is electrically connected to the electrode lead-out component is connected to the electrode lead-out component through the bottom wall.
  • the opening of the U-shaped member faces the first spacer on the same side, and the tab support member electrically connected to the electrode lead-out member passes through one of the side walls and the electrode Lead component connection.
  • an insulating spacer is provided between the tab support and the core body.
  • the opposite ends of the pole core main body in the first direction are V-shaped end faces with pointed parts protruding outward, and the two pole tabs of each pole core are respectively located at the opposite ends of the pole core body.
  • the tips of the two V-shaped end surfaces, the two adjacent pole core bodies form a V-shaped space between the V-shaped end surfaces of the same end in the first direction; the insulating spacer is in contact with the V-shaped space A V-shaped piece with matching shapes, and the V-shaped piece is fitted in the V-shaped area.
  • the V-angle of the V-shaped space is 90-150 degrees.
  • the insulating spacer and the tab support are fixed in a snap-fit manner.
  • the two ends of the pole core string are further provided with a second spacer ring, the second spacer ring is provided with an electrode lead-out hole, and the pole core set at one end of the pole core string
  • One of the electrode lead-out parts is led out from the electrode lead-out hole on the second spacer at the same end, and one of the electrode lead-out parts of the pole core set at the other end of the pole core string is led out from the electrode lead-out hole on the second spacer at the same end ;
  • a second liquid storage tank is provided on the second spacer ring, and the second liquid storage tank is recessed from the outer surface of the second spacer ring toward the inside of the second spacer ring.
  • the second liquid storage tank is in communication with the containing cavity where the pole core group located at the same end of the pole core string is located.
  • the inside of at least one tab support in the pole core set located at at least one end of the pole core string is a hollow cavity, and at least one cavity wall of the hollow cavity is provided with an opening, It communicates with the electrode lead-out hole on the second spacer at the same end, so that the hollow cavity forms a third liquid storage tank.
  • the second spacer at one end of the pole core string is sleeved on the pole core group at the same end.
  • a second aspect of the present disclosure provides a battery including a casing and at least one cell assembly encapsulated in the casing, and the cell assembly is the cell assembly described in any one of the above.
  • a third aspect of the present disclosure provides a battery module including a plurality of the above-mentioned batteries.
  • a fourth aspect of the present disclosure provides a battery pack including a plurality of the above-mentioned batteries or a plurality of the above-mentioned battery modules.
  • a fifth aspect of the present disclosure provides an automobile, including the above-mentioned battery or the above-mentioned battery pack.
  • the electrolyte is injected into the accommodating cavity, the space between the inner surface of the packaging film and the outer surface of the electrode core assembly is filled.
  • At least one first liquid storage tank is provided on at least one of the first spacers to expand the liquid storage space in each accommodating cavity, and the at least one first liquid storage tank is in communication with the accommodating cavity. Therefore, after the electrolyte is injected into the accommodating cavity, the electrolyte can enter the first storage tank, so that the first storage tank can be used to assist the storage of the electrolyte.
  • FIG. 1 is a schematic diagram of the structure of the battery cell assembly in the first embodiment of the disclosure
  • Fig. 2 is a schematic cross-sectional view of the battery cell assembly in Fig. 1 at II-II;
  • FIG. 3 is a schematic diagram of the structure of the pole core group in FIG. 1;
  • Fig. 4 is a schematic diagram of the assembly of the insulating spacer, the tab support and the electrode lead-out component in Fig. 3;
  • Fig. 5 is a schematic diagram of disassembly of Fig. 4;
  • FIG. 6 is a schematic diagram of the structure of a tab support in other embodiments of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of the battery core assembly in the second embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of the three-dimensional structure of the second spacer in FIG. 7;
  • Figure 9 is a left side view of the second spacer in Figure 8.
  • Fig. 10 is a schematic cross-sectional view of Fig. 9 at X-X;
  • FIG. 11 is a schematic structural diagram of a battery in an embodiment of the disclosure without a casing
  • FIG. 12 is a schematic structural diagram of a battery including a casing in an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a battery pack in an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of the structure of an automobile in an embodiment of the disclosure.
  • Battery pack 200 battery 100, cell assembly 10, packaging film 11, accommodating cavity 110, pole core assembly 12, pole core 121, pole core main body 1211, tab 1213, electrode lead-out component 122, contact part 1221, lead-out part 1223, pole core assembly main body 123, tab support 124, hollow cavity 1240, first surface 1241, third surface 1243, fourth surface 1244, opening 1245, card hole 1246, two side walls 1247, bottom wall 1248, Insulating spacer 125, buckle 1251, first spacer 13, electrode connection hole 131, first reservoir 132, connecting surface 133, first outer surface 134, second outer surface 135, second spacer 14, electrode Leading hole 141, third liquid storage tank 142, housing 20, tray 22, car 300.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed may be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the present disclosure provides a battery cell assembly 10, which is applied to a single battery 100, as the battery core of the single battery 100, is packaged in the housing 20 of the single battery 100, and includes a packaging film 11 And a plurality of pole core groups 12 encapsulated in the packaging film 11, the pole core sets 12 are connected in series to form a pole core string, each pole core set 12 contains at least one pole core 121; at least two adjacent pole core sets A first spacer ring 13 is arranged between 12, and the first spacer ring 13 is sealed with the packaging film 11 to divide the containing space in the packaging film 11 into a plurality of containing cavities 110, and the cavity wall of the containing cavity 110 includes the first spacer ring 13 and the packaging film 11 connected with the first spacer ring 13, each containing cavity 110 contains the pole core group 12; at least one first spacer ring 13 is provided with at least one first liquid storage tank 132, and each first spacer The liquid storage tank 132 is in communication with one of the accommodating cavities 110 on both sides of the first spacer ring 13.
  • the electrolyte after the electrolyte is injected into the accommodating cavity 110, it is filled in the space between the inner surface of the packaging film 11 and the outer surface of the electrode core assembly 12.
  • At least one first liquid storage tank 132 is provided on the at least one first spacer 13 to expand the liquid storage space in each accommodating cavity 110, and the at least one first liquid storage tank 132 is in communication with the accommodating cavity 110. Therefore, after the electrolyte is injected into the accommodating cavity 110, the electrolyte can enter the first storage tank 132, so that the first storage tank 132 can be used to assist in storing the electrolyte.
  • FIG. 1 is a schematic diagram of the structure of the cell assembly 10 in the first embodiment of the present disclosure; Schematic diagram of the cross-section at II.
  • the cell assembly 10 includes a packaging film 11 and a plurality of pole core groups 12 encapsulated in the packaging film 11, and the plurality of pole core groups 12 are connected in series to form a pole core string.
  • the plurality of pole core groups 12 includes two pole core groups 12.
  • Each pole core group 12 contains at least one pole core 121.
  • a first spacer 13 is arranged between at least two adjacent pole core groups 12. The first spacer 13 is sealed with the packaging film 11 to partition the containing space in the packaging film 11 into a plurality of containing cavities 110.
  • the cavity wall of the accommodating cavity 110 includes a first spacer 13 and a packaging film 11 connected to the first spacer 13.
  • Each accommodating cavity 110 contains a pole core group 12; at least one first spacer 13 is provided with at least one The first liquid storage tank 132, each first liquid storage tank 132 communicates with one of the two accommodating cavities 110 on both sides of the first spacer 13.
  • electrolyte is also injected into the accommodating cavity 110. It can be understood that after the electrolyte is injected into the containing cavity 110, it is filled in the space between the inner surface of the packaging film 11 and the outer surface of the electrode core assembly 12. At least one first liquid storage tank 132 is provided on the at least one first spacer 13 to expand the liquid storage space in each accommodating cavity 110, and the at least one first liquid storage tank 132 is in communication with the accommodating cavity 110. Therefore, after the electrolyte is injected into the accommodating cavity 110, the electrolyte can enter the first storage tank 132, so that the first storage tank 132 can be used to assist in storing the electrolyte.
  • the electrolyte content in the battery is an important factor affecting the battery life. However, due to swelling and other reasons during the use of the battery, the electrolyte will gradually decrease, which not only affects the battery life, but also some areas of the battery will also experience leaching and other phenomena. Battery safety.
  • the first storage tank 132 can store a certain amount of electrolyte, so that the When the packaging film 11 is vacuumed during the core forming process, the possibility of free electrolyte being drawn out during the vacuuming process can be reduced, and the electrolyte can be stored to a greater extent.
  • the battery is used for a long time, the It is possible to timely replenish the electrolyte inside the battery cell assembly 10, reduce the occurrence of battery analysis phenomena, and improve the performance of the battery cycle life.
  • the first liquid storage tank 132 is formed by being recessed from the outer surface of the first spacer 13 toward the inside of the first spacer 13.
  • the length of the cell assembly 10 extends in the first direction L, and the thickness of the cell assembly 10 extends in the second direction W, and the first direction L is perpendicular to the second direction W.
  • the outer surface of the first spacer 13 refers to the two surfaces of the first spacer 13 arranged opposite to each other in the second direction W. As shown in FIG.
  • the electrolyte stored in the first liquid storage tank 132 is not easily drawn out during the vacuuming process, so that more electrolyte can be stored in the accommodating cavity 110.
  • the first spacer 13 and the packaging film 11 are not sealed at other parts other than the part used for sealing, so that the first liquid storage tank 132 communicates with the containing cavity 110. Therefore, when the electrolyte is injected into the accommodating cavity 110 surrounded by the packaging film 11, the electrolyte can enter the first storage tank 132, so that the first storage tank 132 can store a certain amount of electrolyte.
  • a plurality of reinforcing ribs are provided in the first liquid storage tank 132 to divide the first liquid storage tank 132 into a plurality of liquid storage units.
  • the number of reinforcing ribs is three, and the three reinforcing ribs divide the first liquid storage tank 132 into four liquid storage units.
  • the number of stiffeners is not limited to three, but can also be one, two, or four, five, and so on.
  • the number of liquid storage units can be but not limited to 4, and can also be less than 4 or more than 4, and so on.
  • the overall strength of the first spacer 13 can be enhanced, so that the overall compressive strength of the first spacer 13 is stronger.
  • the outer surface of the first spacer 13 includes a connecting surface 133 and a first outer surface 134 and a second outer surface 135 located on both sides of the connecting surface 133, and the connecting surface 133 is sealed with the packaging film 11.
  • the first outer surface 134 and the second outer surface 135 are respectively located in the two accommodating cavities 110 on both sides of the first spacer 13;
  • a part of the first outer surface 134 is recessed to the inside of the first spacer 13 to form the first liquid storage tank 132, or a part of the second outer surface 135 is recessed to the inside of the first spacer 13 to form The first liquid storage tank 132 or a partial area of the first outer surface 134 and the second outer surface 135 are recessed toward the inside of the first spacer 13 to form the first liquid storage tank 132 respectively.
  • part of the first outer surface 134 and the second outer surface 135 are both recessed toward the inside of the first spacer 13 to form the first liquid storage tank 132.
  • a partial area of the first outer surface 134 or the second outer surface 135 is recessed toward the inside of the first spacer 13 to form the first liquid storage tank 132.
  • the first liquid storage tank 132 expands the liquid storage space in each accommodating cavity 110 and is used to assist in storing more electrolyte, which can reduce the amount of free electrolyte being drawn out during the vacuuming process of the electrolyte. Possibly, the electrolyte can be stored to a greater extent at the same time.
  • the electrolyte is added to the battery cell assembly 10 in time to reduce the occurrence of battery analysis phenomena and improve the battery cycle life performance.
  • a plurality of pole core groups 12 are arranged in sequence along the first direction L, and each pole core group 12 is provided with two electrode extraction members 122 for drawing current and opposite polarities.
  • One of the lead parts 122 is a positive electrode lead part, the other is a negative electrode lead part, and the two electrode lead parts 122 are respectively located at two ends of the electrode core set 12 in the first direction L;
  • the first spacer 13 is provided with an electrode connection hole 131, the two electrode lead-out parts 122 between the two adjacent pole core groups 12 have opposite polarities and are connected, and two of the two adjacent pole core groups 12
  • the connection location of the electrode lead-out component 122 is located in the electrode connection hole 131 on the first spacer 13 between two adjacent electrode core groups 12.
  • the first spacer 13 is an integral structure, for example, formed by injecting a plastic material between the two pole core groups 12, and the connection part of the two pole core groups 12 is filled with glue material.
  • the electrode connection hole 131 is a through hole that penetrates the middle part of the first spacer 13.
  • the first spacer ring 13 includes a first spacer ring part having a first groove and a second spacer ring part having a second groove, the first spacer ring part and the second spacer ring
  • the first groove and the second groove are opposite to form the electrode connection hole 131, that is, the first spacer 13 may be composed of two spacer parts, and the two spacer parts are arranged opposite to each other.
  • the groove openings on the two spacer parts are arranged face to face to cooperate to form the electrode connection hole 131.
  • the two adjacent pole core groups 12 can be connected in series first, and then a blocking member is arranged on the groove of the spacer part, and the groove reserves the accommodating space for the connection part of the two pole core groups 12,
  • the two spacer parts are arranged on both sides of the connection part to clamp the connection part together.
  • the two spacer parts and the connection part can be bonded to make the spacer part and The gap between the connecting parts is sealed by glue.
  • the electrode connection hole 131 is provided with a blocking member in the electrode connection hole 131 to seal the electrode, except that the connection part where the two electrode lead-out parts 122 between two adjacent electrode core groups 12 are connected in series is located therein.
  • the connecting hole 131 therefore, the electrolyte cannot flow through the electrode connecting hole 131 in the two adjacent accommodating cavities 110.
  • the length of the pole core 121 extends along the first direction L, and the thickness of the pole core 121 extends along the second direction W perpendicular to the first direction L.
  • the pole core group 12 contains multiple poles
  • a plurality of pole cores 121 are sequentially arranged along the second direction W;
  • the number of first liquid storage tanks 132 is multiple, and the plurality of first liquid storage tanks 132 are arranged along the second direction W.
  • the figure shows two first liquid storage tanks 132.
  • the two first liquid storage tanks 132 are arranged along the second direction W and are located on opposite sides of the electrode connection hole 131.
  • the first spacer 13 can be provided with a plurality of first liquid storage tanks 132, so that the space on the first spacer 13 is fully utilized, so that the first spacer 13 is provided with more first liquid tanks while ensuring its strength.
  • the liquid storage tank 132 can store more electrolyte, reduce the occurrence of battery analysis phenomena, and improve the performance of the battery cycle life.
  • the pole core set 12 includes at least two pole cores 121, the at least two pole cores 121 are arranged along the second direction W, and the pole cores 121 are connected in series or in parallel. As shown in FIGS. 2-3, the figure shows two pole cores 121 connected in parallel, and the two pole cores 121 are arranged along the thickness direction of the pole core 121, that is, the second direction W.
  • each pole core 121 includes a pole core body 1211 and two poles that are electrically connected to the pole core body 1211 and have opposite polarities.
  • Two lugs 1213 are respectively located on opposite sides of the pole core body 1211 in the first direction L, and the pole lugs 1213 with the same polarity of the two adjacent pole cores 121 are located on the same side of the first direction L
  • two adjacent pole tabs 1213 with the same polarity are electrically connected, so that two adjacent pole cores 121 are connected in parallel.
  • the pole core 121 mentioned can also be understood as a pole core commonly used in the field of power batteries.
  • the pole core 121 and the pole core group 12 are internal components of the battery shell, and cannot be understood as the battery itself;
  • the core 121 may be a pole core 121 formed by winding, and the pole core 121 generally refers to a component that is not completely sealed. Therefore, the battery mentioned in the present disclosure cannot be simply understood as a battery module or battery pack because it includes a plurality of pole cores 121.
  • the pole core set 12 may be composed of a single pole core 121; it may also include a plurality of pole cores 121, and the plurality of pole cores 121 are connected in parallel to form the pole core set 12. For example, two pole cores 121 are connected in parallel to form a pole core set 12; or four pole cores 121 are connected in parallel to form a pole core set 12; or eight pole cores 121 are connected in parallel to form a pole core set 12.
  • the pole core set 12 further includes a tab support 124 located between two adjacent tabs 1213 with the same polarity.
  • the two adjacent tabs 1213 are electrically connected to the tab support 124 respectively; that is, the two adjacent tabs 1213 on the same side are electrically connected by the tab support 124, as shown in FIG. 3, in the pole core Tab supports 124 are provided on both sides of the group 12 in the length direction.
  • Each electrode lead-out member 122 of the pole core set 12 is electrically connected to one of the tab support members 124 on the side of the pole core set main body 123 in the first direction L. It is understandable that when there are three, four or even more pole cores 121 in the pole core set 12, there will be more than one pole support 124 on each side of the pole core set 12 in the length direction. .
  • the electrode lead-out member 122 of the pole core set 12 with a positive pole and the tab 1213 of the positive pole are located on the same side of the pole set 12 and are electrically connected to the tab 1213 of the positive pole.
  • the lead part 122 and the tab 1213 of the negative electrode are located on the other side of the core set 12 and are electrically connected to the tab 1213 of the negative electrode.
  • the electrode lead-out component 122 is electrically connected to one of the tab support members 124 on the same side, thereby achieving electrical connection with the corresponding tab 1213.
  • the pole core set 12 includes two pole cores 121 as an example. At this time, there is one pole core set 12 on opposite sides of the pole core set 12 along the first direction L.
  • the tab support 124, the tab support 124 on each side is located between the two tabs 1213 on the same side and is electrically connected to the two tabs 1213 on the same side.
  • the tab support 124 when the number of the tab supports 124 on the same side of the pole core 121 is two or more, the two adjacent tabs on the same side support The pieces 124 are spaced apart by the tab 1213. Therefore, in order to electrically connect the two adjacent tab support members 124, the tab support 124 needs to be arranged to extend along the first direction L to extend beyond the tab 1213. The convex edge of the edge of the two adjacent tab supports 124 can be connected to each other by the convex edge contact.
  • the connecting parts of the tab support 124, the electrode lead-out member 122 and the tab 1213 are respectively on different surfaces of the tab support 124, that is to say ,
  • the electrode lead-out component 122 and the tab 1213 that are electrically connected to the same tab support 124 are connected to the tab support 124 at different surfaces, so that the tab support 124 can be avoided.
  • the electrode lead-out component 122 and the tab 1213 are superimposed on the same surface of the 124 at the same time, which is beneficial to reduce the thickness of the connection part of the tab support 124 with the electrode lead-out component 122 or the tab 1213.
  • the electrode lead-out component 122 includes a contact portion 1221 and a lead-out portion 1223.
  • the contact portion 1221 is directly electrically connected to the tab support 124.
  • the lead portion 1223 protrudes from the contact portion 1221 and extends along the first direction L.
  • the part of the contact portion 1221 that fits the tab support 124 is plate-shaped, which can increase the contact area between the contact portion 1221 and the tab support 124, thereby increasing the distance between the tab support 124 and the contact portion 1221 The welding area improves the reliability of the connection.
  • the lead portion 1223 is connected to the side of the contact portion 1221 in the first direction L to form an L-shaped bracket.
  • the lead portion 1223 and the contact portion 1221 are connected in the middle of the first direction L to form a T-shaped bracket.
  • the contact portion 1221 of the electrode lead-out component 122 and the tab support 124 may be electrically connected by welding.
  • the tab support 124 includes two opposite first surfaces 1241, and the two first surfaces 1241 respectively face two adjacent tabs 1213 with the same polarity. Two adjacent tabs 1213 are directly attached to the two first surfaces 1241 of the tab support 124 respectively. Wherein, the tab 1213 and the tab support 124 can be electrically connected by welding. By attaching and fixing the tab 1213 on the first surface 1241 of the tab support 124, it is beneficial to prevent the tab 1213 from shifting or shifting.
  • At least one tab support 124 connected to the electrode lead-out member 122 is a square piece, that is, the cross-sectional shape of the tab support 124 is square, and the tab support 124 is square when viewed as a whole. It can be understood that the present disclosure can also provide that all the tab support members 124 are square members. By setting the tab support 124 as a square piece, it is possible to provide better support for the tab 1213 between adjacent tabs 1213, especially when welding the tab 1213 and the tab support 124 At this time, it is beneficial to prevent the tab support 124 from being deformed during the welding process, and increase the compression resistance of the tab support 124.
  • the square member includes two first surfaces 1241, a third surface 1243 located between the two first surfaces 1241 and facing the pole core body 1211, and a second surface 1243 opposite to the third surface 1243.
  • the tab support 124 electrically connected to the electrode lead-out component 122 is connected to the electrode lead-out component 122 through the fourth surface 1244.
  • the contact portion 1221 of the electrode lead-out component 122 is connected to the fourth surface 1244 of the tab support 124
  • the adjacent tabs 1213 are respectively connected to the two first surfaces 1241, that is, the electrode lead-out member 122 and tabs 1213 are in direct contact and connection with the tab support 124, and the connection part is at the end of the tab support 124.
  • the interior of at least one tab support 124 is a hollow cavity 1240.
  • the interior of all tab supports 124 may be configured to have a hollow cavity 1240.
  • At least one cavity wall of the hollow cavity 1240 is provided with an opening. As shown in 4 and 5, both ends of the hollow cavity 1240 may be provided as openings.
  • the electrode connecting holes 131 on the first spacer 13 on the same side of the tab support 124 are connected, so that the hollow cavity 1240 forms a second liquid storage tank.
  • an opening 1245 may also be provided on the cavity wall where the fourth surface 1244 of the tab support 124 is located, and the opening 1245 is connected to the electrode on the first spacer 13 on the same side.
  • the holes 131 are connected, so that the hollow cavity 1240 forms a second liquid storage tank.
  • An opening 1234 communicating with the electrode connection hole 131 is provided on the cavity wall where the fourth surface 1244 is located, which is more conducive for the electrolyte to enter and exit the hollow cavity 1240.
  • the liquid storage space is further increased by the second liquid storage tank.
  • an insulating spacer 125 is provided between the tab support 124 and the core body 1211.
  • the insulating spacer 125 serves to electrically insulate between the pole core 121 and the tab support 124.
  • the opposite ends of the pole core main body 1211 in the first direction L are V-shaped end faces with tips protruding outward, and the two pole tabs 1213 of each pole core 121 are respectively Located at the tips of the two V-shaped end surfaces, a V-shaped space is formed between the V-shaped end surfaces of the two adjacent pole core bodies 1211 at the same end in the first direction L; the insulating spacer 125 is a V-shaped space that matches the shape of the V-shaped space
  • the V-shaped piece is fitted in the V-shaped area, that is, the outer surfaces of the V-shaped two sides of the insulating spacer 125 are respectively attached to the two V-shaped end faces forming the V-shaped space, which not only can separate the pole core main body 1211 and the tab support 124, and can also support the V-shaped end surface of the pole core body 1211 to a certain extent, which is beneficial to prevent the pole core 12 from being deformed by impact.
  • the V-angle of the V-shaped space is 90-150 degrees.
  • the range of the V-angle angle may be 100-120 degrees, or 120-145 degrees. In some embodiments, it may be 95 degrees, 110 degrees, or 125 degrees. Make a limit.
  • the opposite ends of the pole core body 1211 in the first direction L may also be straight, square, arc-shaped, or the like.
  • the shape of the insulating spacer 125 also needs to be adjusted adaptively for adaptation. There is no limitation here.
  • the insulating spacer 125 and the tab support 124 are fixed by a snap method.
  • the insulating member 125 is provided with a buckle 1251
  • the third surface 1243 of the tab support member 124 is provided with a locking hole 1246.
  • the buckle 1251 is squeezed into the buckling hole 1246 by means of squeezing deformation to form a buckle connection.
  • the number of the buckles 1251 is two
  • the number of the buckles 1246 is two
  • the two buckles 1251 are respectively clamped into the two buckles 1246 to form a buckle connection.
  • a stable connection is formed between the insulator 125 and the tab support 124, so that the insulator 125 insulates the tab support 124 and the pole core main body 1211.
  • the insulating spacer 125 and the tab support 124 may only be in contact without a fixing member for fixing, or the two may conflict with each other and be fixed together through a reasonable spatial arrangement; in addition, the insulation
  • the spacer 125 and the tab support 124 can also be glued together or fixed together in other ways, which is not limited.
  • FIG. 7 is a schematic cross-sectional view of the battery cell assembly in the second embodiment.
  • the tab support 124 is a U-shaped piece, the opening of the U-shaped piece is parallel to the first direction L, and the U-shaped piece includes two opposite side walls 1247 and The bottom wall 1248 is located between the two opposite side walls 1247.
  • the outer surfaces of the two opposite side walls 1247 are respectively two first surfaces 1241, that is, two adjacent tabs 1213 are attached to the On the outer surface of the two opposite side walls 1247.
  • the opening of the U-shaped member faces the first spacer 13 on the same side, that is, the opening of the U-shaped member is located away from the pole core main body 1211, and the tab support member electrically connected to the electrode lead-out member 122 124 is connected to the electrode lead-out member 122 through one of the side walls 1247.
  • the part of the electrode lead-out component 122 for electrical connection with the tab support 124 is located between one of the tabs 1213 and the corresponding side wall 1247, that is, the outer surface of one of the side walls 1247 is laminated
  • the electrode lead-out component 122 and a tab 1213 are welded and fixed together.
  • the opening of the U-shaped piece is communicated with the electrode connection hole 131 on the first spacer 13 on the same side, so that the inner cavity of the U-shaped piece forms a second liquid storage tank.
  • the auxiliary storage space for the electrolyte is further increased.
  • the opening of the U-shaped member faces the pole core body 1211, and the tab support 124 electrically connected to the electrode lead-out component 122 is connected to the electrode lead-out component 122 through the bottom wall 1248. At this time, the opening of the U-shaped member communicates with the electrode connection hole 131 on the first spacer 13 on the same side, so that the internal cavity of the U-shaped member can also form a second liquid storage tank.
  • the two ends of the pole core string are also provided with a second spacer ring 14, and the second spacer ring 14 is provided with a penetrating second spacer ring
  • the electrode lead-out hole 141 of 14 is located at one end of the electrode core string.
  • One of the electrode lead-out parts 122 of the electrode core set 12 is led out from the electrode lead-out hole 141 on the second spacer 14 at the same end, and is located at the other end of the electrode core string.
  • One of the electrode lead-out parts 122 of 12 is led out from the electrode lead-out hole 141 on the second spacer 14 at the same end; the second spacer 14 is provided with a second reservoir, and the second reservoir is from the second spacer 14
  • the outer surface is recessed toward the inside of the second spacer ring 14, and the second liquid storage tank on the second spacer ring 14 communicates with the receiving cavity 110 where the pole core group 12 located at the same end of the pole core string is located.
  • a plurality of reinforcing ribs are provided in the third liquid storage tank 142 to divide the third liquid storage tank 142 into a plurality of liquid storage units.
  • the number of reinforcing ribs is three, and the three reinforcing ribs divide the third liquid storage tank 142 into four liquid storage units.
  • the number of reinforcing ribs is not limited to three, and may be one, two, or four, five, etc.
  • the number of liquid storage units can be but not limited to 4, and can also be less than 4 or more than 4, and so on.
  • the overall strength of the second spacer ring 14 can be enhanced, so that the overall compressive strength of the second spacer ring 14 is stronger.
  • the third liquid storage tank 142 is not provided with reinforcing ribs, that is, the third liquid storage tank 142 only includes A liquid storage unit.
  • the number of the third liquid storage tank 142 is two, and the two third liquid storage tanks 142 are arranged along the second direction W and are symmetrically arranged on opposite sides of the electrode extraction hole 141.
  • the number of the third liquid storage tank 142 may be three or more, which is not limited herein.
  • the space on the second spacer 14 is fully utilized, so that the second spacer 14 can store more electrolyte, reduce the occurrence of battery analysis phenomena, improve battery cycle life performance, and simplify the structure.
  • each accommodating cavity 110 includes two second spacers 14, and the two second spacers 14 are respectively located on opposite sides of the pole core group main body 123 in the first direction L, and are respectively sleeved on the pole cores.
  • the group main body 123 is on two opposite sides in the first direction L, and the pole core group main body 123 is respectively embedded in the accommodating space corresponding to the second spacer 14 on the two opposite sides in the first direction L.
  • the sealing of the packaging film 11 is between two adjacent second spacers 14.
  • the battery 100 includes a casing 20 and at least one cell assembly 10 encapsulated in the casing 20.
  • the casing 20 is encapsulated
  • the plurality of battery cell assemblies 10 are arranged in sequence along the length direction of the battery 100.
  • the positive electrode lead-out part 122 of one of the two cell assemblies 10 and the negative electrode lead-out part 122 of the other cell assembly 10 are electrically connected, thereby The series connection between the two battery cell assemblies 10 is realized.
  • the cell assembly 10 is the cell assembly 10 described in any of the above embodiments.
  • the housing 20 is a metal housing.
  • metal housing For example, aluminum shell; of course, it can also be made of other metals according to needs.
  • the battery 100 is substantially a rectangular parallelepiped.
  • the battery 100 has a length L, a thickness W, and a height H.
  • the length L is greater than the height H, and the height H is greater than the thickness W.
  • the length of the battery 100 is 400-2500 mm.
  • the ratio of the length to the height of the battery 100 is 4-21.
  • the substantially rectangular parallelepiped shape of the battery 100 can be understood to mean that the battery 100 may be a rectangular parallelepiped shape, a cube shape, or a part of a special shape, but is roughly a rectangular parallelepiped shape, a cube shape; or part of which has gaps, protrusions, chamfers, or arcs. , Curved but the overall shape is similar to a cuboid or a cube.
  • the present disclosure also provides a battery module including a plurality of batteries 100 provided in the present disclosure.
  • the present disclosure also provides a battery pack including a plurality of batteries 100 provided in the present disclosure or battery modules provided in the present disclosure.
  • the number of pole core groups 12 connected in series is determined according to the output voltage of each pole core group 12, the width of the battery pack, and the overall voltage requirements of the battery pack. For example, for a vehicle type, the output voltage of the battery system needs to be 300V, and the voltage of a traditional iron-lithium battery is 3.2V. In the prior art, 100 batteries need to be connected in series in the package to meet the demand. In the battery pack provided by the present disclosure, assuming that one battery cell assembly 10 is connected in series with two electrode core groups 12, only 50 battery cell assemblies 10 need to be arranged. The design of the whole package and the arrangement of the battery 100 are greatly reduced, and the space can be effectively used and the space utilization rate can be improved.
  • the battery pack 200 provided by the present disclosure includes a tray 22 and batteries 100 arranged on the tray 22.
  • the present disclosure also provides an automobile 300 (refer to FIG. 14), which includes the battery module or battery pack 100 provided in the present disclosure.
  • the present disclosure has the above-mentioned excellent characteristics, so that it can improve the performance and practicability that is not available in the prior art in use, and become a product of great practical value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

本公开提供了一种电芯组件(10)、电池(100)、电池包(200)及汽车(300),电芯组件包括封装膜(11)及封装于所述封装膜内的多个极芯组(12),极芯组之间串联以形成极芯串,每个极芯组含有至少一个极芯(121);至少两个相邻的极芯组之间设置有第一隔圈(13),第一隔圈与封装膜封接以将封装膜内的容纳空间分隔成多个容纳腔(110);至少一个第一隔圈上设置有至少一个第一储液槽(132),每个第一储液槽与第一隔圈两侧的其中一个容纳腔连通。同时,本公开还提供了基于本公开提供的电芯组件的电池、电池包和汽车。

Description

一种电芯组件、电池、电池包及汽车
相关申请的交叉引用
本公开基于申请号为202010422006.3,申请日为2020年5月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及电池领域,尤其涉及一种电芯组件、电池、电池包及汽车。
背景技术
随着新能源汽车的不断普及,对新能源汽车中动力电池的使用要求变得越来越高。特别是用户对动力电池的寿命要求不断提高,尤其是出租车、公交车,一般要求寿命在5年100万公里以上。然而,影响电池寿命一个很重要的方面,就是电池内电解液的含量。电池中充足的电解液可以保证电池的循环要求,减少电池析理现象的发生。而常规的软包电池由于生产工艺中抽真空的要求,往往无法在电池内部设计较多的电解液,使得电池在长寿命的要求中有所不足。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。
为解决上述技术问题,本公开的技术方案是:
本公开第一方面提供一种电芯组件,包括封装膜及封装于所述封装膜内的多个极芯组,所述极芯组之间串联以形成极芯串,每个所述极芯组含有至少一个极芯;至少两个相邻的所述极芯组之间设置有第一隔圈,所述第一隔圈与所述封装膜封接以将所述封装膜内的容纳空间分隔成多个容纳腔,所述容纳腔的腔壁包括第一隔圈和与所述第一隔圈连接的封装膜,每个所述容纳腔中容纳有所述极芯组;至少一个所述第一隔圈上设置有至少一个第一储液槽,每个所述第一储液槽与所述第一隔圈两侧的其中一个所述容纳腔连通。
在本公开的一些实施例中,所述第一储液槽为从所述第一隔圈的外侧表面向所述第 一隔圈的内部凹陷形成。
在本公开的一些实施例中,所述第一储液槽内设置有多个加强筋,以将所述第一储液槽分隔成多个储液单元。
在本公开的一些实施例中,所述第一隔圈的外侧表面包括连接面和位于所述连接面两侧的第一外侧表面和第二外侧表面,所述连接面与所述封装膜封接,所述第一外侧表面和所述第二外侧表面分别位于所述第一隔圈两侧的容纳腔中;
所述第一外侧表面的部分区域向所述第一隔圈的内部凹陷以形成所述第一储液槽或所述第二外侧表面的部分区域向所述第一隔圈的内部凹陷以形成所述第一储液槽,或者所述第一外侧表面和第二外侧表面的部分区域均向所述第一隔圈的内部凹陷以分别形成所述第一储液槽。
在本公开的一些实施例中,所述极芯组的长度沿第一方向延伸,多个所述极芯组沿所述第一方向依次排列,每个所述极芯组上设有用于引出电流且极性相反的两个电极引出部件,所述两个电极引出部件分别位于所述极芯组在所述第一方向的两端;
所述第一隔圈上设置有电极连接孔,相邻两个所述极芯组之间的两个电极引出部件极性相反且连接,且相邻两个所述极芯组之间的两个电极引出部件的连接部位位于相邻两个所述极芯组之间的第一隔圈上的所述电极连接孔中。
在本公开的一些实施例中,所述极芯的长度沿所述第一方向延伸,所述极芯的厚度沿与所述第一方向垂直的第二方向延伸,所述极芯组含有至少两个极芯,所述至少两个极芯沿所述第二方向排列,所述极芯之间串联或并联。
在本公开的一些实施例中,相邻两个所述极芯间并联,每个所述极芯包括极芯主体以及与所述极芯主体电连接且极性相反的两个极耳片,所述两个极耳片分别位于所述极芯主体在所述第一方向的相对两侧,并且相邻两个所述极芯的极性相同的极耳片位于所述第一方向的同一侧,所述极性相同的相邻两个极耳片电连接,以实现相邻两个所述极芯并联。
在本公开的一些实施例中,所述极芯组还包括位于极性相同的相邻两个极耳片之间的极耳支撑件,所述极性相同的相邻两个极耳片分别与所述极耳支撑件电连接;
所述电极引出部件和与其极性相同的极耳片所电连接的其中一个极耳支撑件电连接。
在本公开的一些实施例中,所述极耳支撑件与所述电极引出部件和所述极耳片的连接部位分别处于所述极耳支撑件的不同表面上。
在本公开的一些实施例中,所述极耳支撑件包括相对的两个第一表面,所述两个第一表面分别面对极性相同的相邻两个极耳片,所述极性相同的相邻两个极耳片分别与所 述极耳支撑件的两个所述第一表面直接贴合。
在本公开的一些实施例中,至少一个与所述电极引出部件连接的极耳支撑件为方形件;所述方形件包括两个所述第一表面、位于两个第一表面之间且面对所述极芯主体的第三表面、以及与所述第三表面相对的第四表面;
与所述电极引出部件电连接的极耳支撑件通过所述第四表面与所述电极引出部件连接。
在本公开的一些实施例中,至少一个所述极耳支撑件的内部为中空腔体,所述中空腔体的至少一个腔壁上设有开口,所述开口与所述极耳支撑件所在的容纳腔连通,进而使所述中空腔体形成第二储液槽。
在本公开的一些实施例中,至少一个极耳支撑件为U形件,所述U形件的开口朝向与所述第一方向平行,所述U形件包括相对的两个侧壁和位于所述相对的两个侧壁之间的底壁,所述相对的两个侧壁的外表面分别为所述两个第一表面。
在本公开的一些实施例中,所述U形件的开口朝向所述极芯主体,与所述电极引出部件电连接的极耳支撑件通过所述底壁与所述电极引出部件连接。
在本公开的一些实施例中,所述U形件的开口朝向位于同一侧的第一隔圈,与所述电极引出部件电连接的极耳支撑件通过其中一个所述侧壁与所述电极引出部件连接。
在本公开的一些实施例中,所述极耳支撑件和所述极芯主体之间设置有绝缘隔件。
在本公开的一些实施例中,所述极芯主体在所述第一方向的相对两端为尖部向外突出的V形端面,每个所述极芯的两个极耳片分别位于所述两个V形端面的尖部,所述相邻两个极芯主体在所述第一方向的同一端的V形端面之间形成V形空间;所述绝缘隔件为与所述V形空间形状匹配的V形件,所述V形件嵌合在所述V形区域中。
在本公开的一些实施例中,所述V形空间的V角角度为90-150度。
在本公开的一些实施例中,所述绝缘隔件与所述极耳支撑件通过卡扣方式固定。
在本公开的一些实施例中,所述极芯串的两端还设置有第二隔圈,所述第二隔圈上设有电极引出孔,位于所述极芯串一端的极芯组的其中一个电极引出部件从同一端的第二隔圈上的电极引出孔引出,位于所述极芯串另一端的极芯组的其中一个电极引出部件从同一端的第二隔圈上的电极引出孔引出;
所述第二隔圈上设有第二储液槽,所述第二储液槽从所述第二隔圈的外侧表面向所述第二隔圈的内部凹陷,所述第二隔圈上的第二储液槽与位于所述极芯串同一端的极芯组所在的容纳腔连通。
在本公开的一些实施例中,位于所述极芯串至少一端的极芯组中的至少一个极耳支 撑件内部为中空腔体,所述中空腔体的至少一个腔壁上设有开口,以与位于同一端的第二隔圈上的电极引出孔连通,进而使所述中空腔体形成第三储液槽。
在本公开的一些实施例中,位于所述极芯串一端的第二隔圈套接在同一端的极芯组上。
本公开第二方面提供一种电池,包括壳体和封装于所述壳体内的至少一个电芯组件,所述电芯组件为上述任一项所述的电芯组件。
本公开第三方面提供一种电池模组,包括多个上述电池。
本公开第四方面提供一种电池包,包括多个上述电池或者包括多个上述电池模组。
本公开第五方面提供一种汽车,包括上述电池或上述电池包。
与现有技术相比,本公开的有益效果在于:
本公开提供的电芯组件,电解液注入容纳腔后是填充于所述封装膜的内表面和所述极芯组的外表面之间的空间中。至少一个所述第一隔圈上设置有至少一个第一储液槽来拓展每个容纳腔内的储液空间,所述至少一个第一储液槽与所述容纳腔连通。因此当在容纳腔内注入电解液后,电解液可以进入到第一储液槽中,从而可以利用第一储液槽辅助储存电解液。
附图说明
图1为本公开第一实施例中的电芯组件的结构示意图;
图2为图1中的电芯组件在II-II处的剖面示意图;
图3为图1中的极芯组的结构示意图;
图4为图3中的绝缘隔件、极耳支撑件和电极引出部件的组装示意图;
图5为图4的拆解示意图;
图6为本公开另一些实施例中的极耳支撑件的结构示意图;
图7为本公开第二实施例中的电芯组件的截面示意图;
图8为图7中的第二隔圈的立体结构示意图;
图9为图8中的第二隔圈的左视图;
图10为图9在X-X处的剖面示意图;
图11为本公开一实施例中的电池不包括外壳的结构示意图;
图12为本公开一实施例中的电池包括外壳的结构示意图;
图13为本公开一实施例中的电池包的结构示意图;
图14为本公开一实施例中的汽车的结构示意图。
附图标记:
电池包200,电池100,电芯组件10,封装膜11,容纳腔110,极芯组12,极芯121,极芯主体1211,极耳片1213,电极引出部件122,接触部1221,引出部1223,极芯组主体123,极耳支撑件124,中空腔体1240,第一表面1241,第三表面1243,第四表面1244,开口1245,卡孔1246,两侧壁1247,底壁1248,绝缘隔件125,卡扣1251,第一隔圈13,电极连接孔131,第一储液槽132,连接面133,第一外侧表面134,第二外侧表面135,第二隔圈14,电极引出孔141,第三储液槽142,壳体20,托盘22,汽车300。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
本公开提供了一种电芯组件10,该电芯组件10应用于单体电池100中,作为单体电池100的电芯而封装于单体电池100的壳体20内,其包括封装膜11及封装于封装膜11内的多个极芯组12,极芯组12之间串联以形成极芯串,每个极芯组12含有至少一个极芯121;至少两个相邻的极芯组12之间设置有第一隔圈13,第一隔圈13与封装膜 11封接以将封装膜11内的容纳空间分隔成多个容纳腔110,容纳腔110的腔壁包括第一隔圈13和与第一隔圈13连接的封装膜11,每个容纳腔110中容纳有极芯组12;至少一个第一隔圈13上设置有至少一个第一储液槽132,每个第一储液槽132与第一隔圈13两侧的其中一个容纳腔110连通。
与现有技术相比,本公开的有益效果在于:
本公开中,电解液注入容纳腔110后是填充于封装膜11的内表面和极芯组12的外表面之间的空间中。至少一个第一隔圈13上设置有至少一个第一储液槽132来拓展每个容纳腔110内的储液空间,至少一个第一储液槽132与容纳腔110连通。因此当在容纳腔110内注入电解液后,电解液可以进入到第一储液槽132中,从而可以利用第一储液槽132辅助储存电解液。
请参考图1和图2,图1为本公开第一实施例中的电芯组件10的结构示意图;图2为本公开第一实施例中的电芯组件10去掉封装膜11之后在II-II处的剖面示意图。电芯组件10包括封装膜11及封装于封装膜11内的多个极芯组12,多个极芯组12之间串联以形成极芯串。可以理解的是,本实施例中,多个极芯组12包括两个极芯组12。每个极芯组12含有至少一个极芯121。至少两个相邻的极芯组12之间设置有第一隔圈13。第一隔圈13与封装膜11封接以将封装膜11内的容纳空间分隔成多个容纳腔110。容纳腔110的腔壁包括第一隔圈13和与第一隔圈13连接的封装膜11,每个容纳腔110中容纳有极芯组12;至少一个第一隔圈13上设置有至少一个第一储液槽132,每个第一储液槽132与第一隔圈13两侧的两个容纳腔110中的其中一个连通。
本公开中,容纳腔110中还注入有电解液。可以理解的是,电解液注入容纳腔110后是填充于封装膜11的内表面和极芯组12的外表面之间的空间中。至少一个第一隔圈13上设置有至少一个第一储液槽132来拓展每个容纳腔110内的储液空间,至少一个第一储液槽132与容纳腔110连通。因此当在容纳腔110内注入电解液后,电解液可以进入到第一储液槽132中,从而可以利用第一储液槽132辅助储存电解液。
电池内的电解液含量是影响电池寿命的重要因素,然而,电池在使用过程中由于膨胀等原因,电解液会逐渐减少,不仅影响电池寿命,且电池部分区域还会出现析里等现象,降低电池安全性。
本公开实施例中,通过在第一隔圈13上设置第一储液槽132,在往封装膜11内注入电解液时,第一储液槽132能够存储一定量的电解液,从而在电芯成型过程中对封装膜11内进行抽真空时,可以减少抽真空过程中游离电解液被抽出的可能,同时可以更大程度的储存电解液,另外,当电池在长时间使用过程中,还可以及时为电芯组件10 内部补充电解液,减少电池析理现象的发生,提高电池循环寿命的性能。
在本公开的一些实施例中,第一储液槽132为从第一隔圈13的外侧表面向第一隔圈13的内部凹陷形成。
在一些实施例中,电芯组件10的长度沿第一方向L延伸,电芯组件10的厚度沿第二方向W延伸,第一方向L与第二方向W相垂直。第一隔圈13的外侧表面是指第一隔圈13在第二方向W上相对设置的两个表面。
从而,储存在第一储液槽132中的电解液不易在抽真空的过程中被抽出,可以使得更多的电解液存储在容纳腔110中。
在本公开的一些实施例中,第一隔圈13和封装膜11之间除用于封接的部位以外的其他部位上未封接,以使第一储液槽132与容纳腔110连通。从而,当向封装膜11包围成的容纳腔110内注入电解液时,电解液能够进入第一储液槽132内,从而第一储液槽132可以存储一定量的电解液。
在本公开的一些实施例中,第一储液槽132内设置有多个加强筋,以将第一储液槽132分隔成多个储液单元。在一些实施例中,本实施例中,加强筋的数量为三个,三个加强筋将第一储液槽132分成四个储液单元。在其它实施例中,加强筋的数量不限于3个,还可以是1个、2个或者4个、5个等。储液单元可以是但不限于4个,还可以是少于4个或者多于4个等。
从而,通过在第一储液槽132内设置加强筋,可以增强第一隔圈13的整体强度,使得第一隔圈13的整体抗压强度更强。
在本公开的一些实施例中,第一隔圈13的外侧表面包括连接面133和位于连接面133两侧的第一外侧表面134和第二外侧表面135,连接面133与封装膜11封接,第一外侧表面134和第二外侧表面135分别位于第一隔圈13两侧的两个容纳腔110中;
所述第一外侧表面134的部分区域向第一隔圈13的内部凹陷以形成所述第一储液槽132,或第二外侧表面135的部分区域向第一隔圈13的内部凹陷以形成所述第一储液槽132,或者所述第一外侧表面134和第二外侧表面135的部分区域均向第一隔圈13的内部凹陷以分别形成所述第一储液槽132。
本实施例中,第一外侧表面134和第二外侧表面135的部分区域均向第一隔圈13的内部凹陷以形成第一储液槽132。
在其它实施例中,第一外侧表面134或第二外侧表面135的部分区域向第一隔圈13的内部凹陷以形成第一储液槽132。
从而,第一储液槽132使得每个容纳腔110内的储液空间得到拓展,用于辅助储存 更多的电解液,可使电解液在抽真空工作过程中,减少游离电解液被抽出的可能,同时可以更大程度的储存电解液,当电芯组件10在长时间使用过程中,及时为电芯组件10内部补充电解液,减少电池析理现象的发生,提高电池循环寿命的性能。
在本公开的一些实施例中,多个极芯组12沿第一方向L依次排列,每个极芯组12上设有用于引出电流且极性相反的两个电极引出部件122,两个电极引出部件122中的其中一个为正电极引出部件,另一个为负电极引出部件,两个电极引出部件122分别位于极芯组12在第一方向L的两端;
第一隔圈13上设置有电极连接孔131,相邻两个极芯组12之间的两个电极引出部件122极性相反且连接,且相邻两个极芯组12之间的两个电极引出部件122的连接部位位于相邻两个极芯组12之间的第一隔圈13上的电极连接孔131中。
在本公开的一些实施例中,第一隔圈13为一体式结构,例如,通过在两个极芯组12之间注射塑胶材料而形成,两个极芯组12的连接部位被灌胶材料包围,电极连接孔131为贯穿第一隔圈13的中间部位的通孔。
在本公开的另一些实施例中,第一隔圈13包括具有第一凹槽的第一隔圈部以及具有第二凹槽的第二隔圈部,第一隔圈部和第二隔圈部相互配合固定,且第一凹槽和第二凹槽正对形成电极连接孔131,也就是说,第一隔圈13可以是由两个隔圈部构成,两个隔圈部相对设置,两个隔圈部上的凹槽开口面对面设置以配合形成电极连接孔131。装配时,可以先将相邻两个极芯组12串联,然后通过在隔圈部的凹槽上设置封堵件,并使得凹槽预留两个极芯组12的连接部位的容纳空间,将两个隔圈部设在该连接部位的两侧以共同夹持连接部位,为了更好地密封电极连接孔131,可以使两个隔圈部与连接部位粘接,以使得隔圈部和连接部位之间的间隙被黏胶所密封。
可以理解的是,电极连接孔131除了使得相邻两个极芯组12之间的两个电极引出部件122串联后的连接部位位于其中以外,电极连接孔131内设置有封堵件以密封电极连接孔131,因此,电解液并不能通过电极连接孔131在相邻两个容纳腔110内流动。
在本公开的一些实施例中,极芯121的长度沿第一方向L延伸,极芯121的厚度沿与第一方向L垂直的第二方向W延伸,当极芯组12内含有多个极芯121时,多个极芯121沿第二方向W依次排列;
第一储液槽132的数量为多个,多个第一储液槽132沿第二方向W排列。
如图2所示,图中示意出了两个第一储液槽132,两个第一储液槽132沿第二方向W排列,并且位于电极连接孔131的相对的两侧上。
从而,第一隔圈13可以设置多个第一储液槽132,使得第一隔圈13上的空间得到 充分利用,使得第一隔圈13在保证其强度的情况下设置更多的第一储液槽132,可以储存更多的电解液,减少电池析理现象的发生,提高电池循环寿命的性能。
在本公开的一些实施例中,极芯组12含有至少两个极芯121,至少两个极芯121沿第二方向W排列,极芯121之间串联或并联。如图2-3所示中,图中示意出了两个并联的极芯121,两个极芯121沿极芯121的厚度方向也即第二方向W排列。
在本公开的一些实施例中,请参考图3,相邻两个极芯121间并联,每一极芯121包括极芯主体1211以及与极芯主体1211电连接且极性相反的两个极耳片1213,两个极耳片1213分别位于极芯主体1211在第一方向L的相对两侧,并且相邻两个极芯121的极性相同的极耳片1213位于第一方向L的同一侧,极性相同的相邻两个极耳片1213电连接,以实现相邻两个极芯121并联。
在本公开中,所提到的极芯121,也可以理解为动力电池领域常用的极芯,极芯121以及极芯组12为电池外壳内部的组成部分,而不能被理解为电池本身;极芯121可以是卷绕形成的极芯121,极芯121一般是指未完全密封的组件。因而,在本公开提到的电池,不能因其包含多个极芯121,而将其简单的理解为电池模组或电池组。在本公开中,极芯组12可以是由一个单独的极芯121组成;也可以包括多个极芯121,且多个极芯121并联连接,构成极芯组12。例如,两个极芯121并联后,形成极芯组12;或者四个极芯121并联后,构成极芯组12;或者八个极芯121并联后,构成极芯组12。
在本公开的一些实施例中,请一并参考图4和图5,极芯组12还包括位于极性相同的相邻两个极耳片1213之间的极耳支撑件124,极性相同的相邻两个极耳片1213分别与极耳支撑件124电连接;即位于同一侧的相邻两个极耳片1213通过极耳支撑件124电连接,如图3所示,在极芯组12的长度方向两侧均设置有极耳支撑件124。
极芯组12的每个电极引出部件122与位于极芯组主体123在第一方向L一侧的其中一个极耳支撑件124电连接。可以理解的是,当极芯组12中的极芯121有三个、四个或者甚至更多个时,极芯组12在长度方向每一侧的极耳支撑件124的数量也会有多个。本公开实施例中,极芯组12的极性为正极的电极引出部件122与正极的极耳片1213位于极芯组12的同一侧,且与正极的极耳片1213电连接,负极的电极引出部件122与负极的极耳片1213位于极芯组12的另一侧,且与负极的极耳片1213电连接。根据本公开的一些实施例,电极引出部件122通过与位于同一侧的其中一个极耳支撑件124电连接,进而实现与对应的极耳片1213电连接。
其中,如图3至图5所示的实施例中,均是以极芯组12含有两个极芯121为例,此时在极芯组12沿第一方向L的相对两侧各有一个极耳支撑件124,每侧的极耳支撑件 124位于同侧的两个极耳片1213之间并与同侧的两个极耳片1213电连接。
可以理解的是,在本公开的一些实施例中,当位于极芯121同侧的极耳支撑件124的数量为两个或者多个时,由于位于同一侧的相邻的两个极耳支撑件124之间被极耳片1213间隔开,因此,为了使得相邻的两个极耳支撑件124电性连接,极耳支撑件124需设置沿着第一方向L延伸至超出极耳片1213的边缘的凸沿而使得相邻的两个极耳支撑件124之间能够通过凸沿接触的方式相互连接。
在本公开的一些实施例中,请参考图3至图5,极耳支撑件124与电极引出部件122和极耳片1213的连接部位分别处于极耳支撑件124的不同表面上,也就是说,与同一极耳支撑件124电连接的电极引出部件122和极耳片1213各自与极耳支撑件124的连接部位是处于极耳支撑件124的不同表面上,由此可以避免极耳支撑件124的同一个表面上同时叠加了电极引出部件122和极耳片1213,有利于降低极耳支撑件124中与电极引出部件122或极耳片1213的连接部位的厚度。
在本公开的一些实施例中,电极引出部件122包括接触部1221和引出部1223。接触部1221与极耳支撑件124直接电连接。引出部1223自接触部1221上伸出并沿着第一方向L延伸。接触部1221贴合极耳支撑件124的部分呈板状,可以增大接触部1221与极耳支撑件124之间的接触面积,从而,可以增大极耳支撑件124与接触部1221之间的焊接面积,提高连接的可靠性。本实施例中,引出部1223与接触部1221位于第一方向L上的一侧连接而形成L形的支架。在其它实施例中,引出部1223与接触部1221位于第一方向L的中部连接而形成T形的支架。其中,电极引出部件122的接触部1221与极耳支撑件124之间可以通过焊接的方式实现电连接。
在本公开的一些实施例中,极耳支撑件124包括相对的两个第一表面1241,两个第一表面1241分别面对极性相同的相邻两个极耳片1213,极性相同的相邻两个极耳片1213分别与极耳支撑件124的两个第一表面1241直接贴合。其中,极耳片1213与极耳支撑件124之间可以通过焊接的方式实现电连接。通过将极耳片1213贴合固定在极耳支撑件124的第一表面1241上,有利于防止极耳片1213发生窜动或者位移。
在本公开的一些实施例中,至少一个与电极引出部件122连接的极耳支撑件124为方形件,即极耳支撑件124的截面形状为方形,从整体上看极耳支撑件124为方体结构,可以理解的是,本公开也可以设置所有极耳支撑件124均为方形件。通过将极耳支撑件124设置为方形件,从而可以在相邻极耳片1213之间为极耳片1213提供更好的支撑能力,尤其是在将极耳片1213与极耳支撑件124焊接时,有利于防止极耳支撑件124在焊接过程产生变形,增加极耳支撑件124的抗压性能。
在本公开的一些实施例中,方形件包括两个第一表面1241、位于两个第一表面1241之间且面对极芯主体1211的第三表面1243、以及与第三表面1243相对的第四表面1244;
其中,与电极引出部件122电连接的极耳支撑件124通过第四表面1244与电极引出部件122连接,具体为电极引出部件122的接触部1221与极耳支撑件124的第四表面1244连接,而相邻极耳片1213则分别与两个第一表面1241连接,即电极引出部件122和极耳片1213均是与极耳支撑件124直接接触连接,且连接部位处于极耳支撑件124的不同表面上,因而可以避免极耳支撑件124上的同一个表面同时叠加有电极引出部件122和极耳片1213,可以降低极耳支撑件124与电极引出部件122和极耳片1213的连接部位的厚度,并且也更方便实现电极引出部件122与极耳支撑件124的连接。
在本公开的一些实施例中,至少一个极耳支撑件124的内部为中空腔体1240,例如可以将所有极耳支撑件124的内部均设置为具有中空腔体1240。通过设置中空的极耳支撑件124,可以在确保支撑强度的同时能够减小重量。
在本公开的一些实施例中,中空腔体1240的至少一个腔壁上设有开口,如4和图5所示,可以是在中空腔体1240的两端面均设置为开口,该开口和与极耳支撑件124位于同一侧的第一隔圈13上的电极连接孔131连通,进而使中空腔体1240形成第二储液槽。通过使极耳支撑件124与同一侧的第一隔圈13上的电极连接孔131连通,从而在将电解液注入封装膜11内时,电解液可以从电极连接孔131进入到与其连通的中空腔体1240内,从而可以利用中空腔体1240存储电解液,实现储液功能。
在另一些实施例中,请参考图6,也可以在极耳支撑件124的第四表面1244所在的腔壁上设置开口1245,该开口1245与位于同一侧第一隔圈13上的电极连接孔131连通,进而使中空腔体1240形成第二储液槽。在第四表面1244所在的腔壁设置与电极连接孔131连通的开口1234,更有利于电解液进出中空腔体1240。从而,通过第二储液槽进一步地增大了储液空间。
在本公开的一些实施例中,请参考图3、图4和图5,极耳支撑件124和极芯主体1211之间设置有绝缘隔件125。绝缘隔件125起到对极芯121和极耳支撑件124之间的电绝缘。
在本公开的一些实施例中,请再次参考图3,极芯主体1211在第一方向L的相对两端为尖部向外突出的V形端面,每个极芯121的两极耳片1213分别位于两个V形端面的尖部,相邻两个极芯主体1211在第一方向L的同一端的V形端面之间形成V形空间;绝缘隔件125为与V形空间形状匹配的V形件,V形件嵌合在V形区域中,即绝缘隔件125的V形两侧的外表面分别贴合在形成V形空间的两个V形端面上,由此不仅能够间 隔极芯主体1211和极耳支撑件124,且还能够对极芯主体1211的V形端面起到一定的支撑作用,有利于防止极芯12受撞击而产生变形。
在本公开的一些实施例中,V形空间的V角角度为90-150度。根据本公开的一些实施例,例如该V角角度的范围可以是100-120度,或者为120-145度,在一些实施例中,可以是95度、110度或者125度等,对此不做限定。
当然,在其他的一些实施例中,极芯主体1211在第一方向L的相对的两端也可以是为平直的、方形、弧形等。相应地,绝缘隔件125的形状也需要做适应性调整以进行适配。在此不做限定。
在本公开的一些实施例中,绝缘隔件125与极耳支撑件124通过卡扣方式固定。在一些实施例中,请参考图5,绝缘件125上设置有卡扣1251,极耳支撑件124的第三表面1243上设置有卡孔1246。卡扣1251通过挤压变形的方式卡入卡孔1246中而形成卡扣连接。其中,卡扣1251的数量为两个,卡孔1246的数量为两个,两个卡扣1251分别卡入两个卡孔1246中而形成卡扣连接。从而,绝缘件125与极耳支撑件124之间形成稳固的连接,使得绝缘件125对极耳支撑件124和极芯主体1211之间的绝缘。
需要说明的是,绝缘隔件125与极耳支撑件124之间可以仅是接触而没有采用固定件进行固定,或者可以通过合理的空间布置而使得两者相互抵触而固定在一起;此外,绝缘隔件125和极耳支撑件124还可以采用胶水黏结在一起,或者采用其他方式固定在一起,对此不做限定。
请参考图7,图7为第二实施例中的电芯组件的剖面示意图。与第一实施例不同的是,第二实施例中,极耳支撑件124为U形件,U形件的开口朝向与第一方向L平行,U形件包括相对的两个侧壁1247和位于相对的两个侧壁1247之间的底壁1248,相对的两个侧壁1247的外表面分别为两个第一表面1241,也就是说,相邻两个极耳片1213分别贴合在相对的两个侧壁1247的外表面上。
其中,如图7所示,U形件的开口朝向位于同一侧的第一隔圈13,即U形件的开口远离极芯主体1211设置,而与电极引出部件122电连接的极耳支撑件124通过其中一个侧壁1247与电极引出部件122连接。在一些实施例中,电极引出部件122中用于与极耳支撑件124电连接的部分位于其中一个极耳片1213和对应侧壁1247之间,即其中一个侧壁1247的外表面上层叠了电极引出部件122和一个极耳片1213,三者焊接固定在一起。
其中,U形件的开口与位于同一侧的第一隔圈13上的电极连接孔131连通,以使U形件的内部腔体形成第二储液槽。从而,进一步地增加了电解液的辅助存储空间。
在本公开的一些实施例中,U形件的开口朝向极芯主体1211,与电极引出部件122电连接的极耳支撑件124通过底壁1248与电极引出部件122连接。此时,U形件的开口与位于同一侧的第一隔圈13上的电极连接孔131连通,以使U形件的内部腔体同样可以形成第二储液槽。
在本公开的一些实施例中,请一并参考图1,图2和图7,极芯串的两端还设置有第二隔圈14,第二隔圈14上设有贯通第二隔圈14的电极引出孔141,位于极芯串一端的极芯组12的其中一个电极引出部件122从同一端的第二隔圈14上的电极引出孔141引出,位于极芯串另一端的极芯组12的其中一个电极引出部件122从同一端的第二隔圈14上的电极引出孔141引出;第二隔圈14上设有第二储液槽,第二储液槽从第二隔圈14的外侧表面向第二隔圈14的内部凹陷,第二隔圈14上的第二储液槽与位于极芯串同一端的极芯组12所在的容纳腔110连通。
在本公开的一些实施例中,第三储液槽142内设置有多个加强筋,以将第三储液槽142分隔成多个储液单元。在一实施例中,加强筋的数量为三个,三个加强筋将第三储液槽142分成四个储液单元。在其它实施例中,加强筋的数量不限于3个,可以是1个、2个或者4个、5个等。储液单元可以是但不限于4个,还可以是少于4个或者多于4个等。
从而,通过在第三储液槽142内设置加强筋,可以增强第二隔圈14的整体强度,使得第二隔圈14的整体抗压强度更强。
与第一实施例不同的是,第二实施例中,请参考图8、图9和图10,第三储液槽142内没有设置加强筋,也就是说,第三储液槽142只包括一个储液单元。第三储液槽142的数量为两个,两个第三储液槽142沿第二方向W排列,且对称的设置于电极引出孔141的相对的两侧。
在本公开的一些实施例中,第三储液槽142的数量可以是三个或者多个,在此不做限定。
从而,第二隔圈14上的空间得到充分利用,使得第二隔圈14可以储存更多的电解液,减少电池析理现象的发生,提高电池循环寿命的性能,且能够简化结构。
在本公开的一些其它实施例中,第一隔圈13的结构与第二隔圈14的结构相同。也就是说,每个容纳腔110中包括两个第二隔圈14,两个第二隔圈14分别位于极芯组主体123在第一方向L相对的两侧,且分别套接在极芯组主体123在第一方向L相对的两侧上,极芯组主体123在第一方向L相对的两侧分别嵌入对应第二隔圈14的容纳空间中。而且,封装膜11的封接是在相邻两个第二隔圈14之间。
请参考图11和图12,本公开提供的电池的实施例中,电池100包括壳体20和封装于壳体20内的至少一个电芯组件10,如图11所示,壳体20内封装有多个电芯组件10,多个电芯组件10沿电池100的长度方向依次排列。其中,当多个电芯组件10为串联时,两个电芯组件10中的其中一个电芯组件10的正极电极引出部件122和另一个电芯组件10的负极电极引出部件122电连接,从而实现两个电芯组件10间的串联。其中,电芯组件10为上述任一实施例所描述的电芯组件10。
在本公开的一些实施例中,壳体20为金属壳体。比如,铝壳;当然,根据需要也可以选择其他金属制成。
在本公开的一些实施例中,电池100大体为长方体,电池100具有长度L、厚度W和高度H,长度L大于高度H,高度H大于厚度W。其中,电池100的长度为400-2500mm。电池100的长度与高度的比值为4-21。
需要说明的是,电池100大体为长方体可以理解为,电池100可为长方体形、正方体形,或局部存在异形,但大致为长方体形、正方体形;或部分存在缺口、凸起、倒角、弧度、弯曲但整体呈近似长方体形、正方体形。
本公开还提供了一种电池模组,包括多个本公开提供的电池100。
本公开还提供了一种电池包,包括多个本公开提供的电池100或者本公开提供的电池模组。
一般情况下,串联极芯组12的个数,根据每个极芯组12的输出电压、电池包的宽度以及电池包整体电压需求而定。比如,一种车型,需要电池***输出的电压为300V,一个传统铁锂电池的电压为3.2V,现有技术中,包体内需要串联100个电池才能满足需求。而本公开提供的电池包中,假设一个电芯组件10内部串联2个极芯组12,则仅需要排布50个电芯组件10即可。极大的减少了整包的设计和电池100的排布,可以有效的利用空间,提高空间利用率。
请参阅图13,本公开提供的电池包200,包括托盘22和排布在托盘22上的电池100。
本公开还提供了一种汽车300(参照图14),包括本公开提供的电池模组或电池包100。
综上所述可知本公开乃具有以上所述的优良特性,得以令其在使用上,增进以往技术中所未有的效能而具有实用性,成为一极具实用价值的产品。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的思想和原则之内所作的任何修改、等同替换或改进等,均应包含在本公开的保护范围之内。

Claims (21)

  1. 一种电芯组件,其特征在于,包括封装膜及封装于所述封装膜内的多个极芯组,所述极芯组之间串联以形成极芯串,每个所述极芯组含有至少一个极芯;
    至少两个相邻的所述极芯组之间设置有第一隔圈,所述第一隔圈与所述封装膜封接以将所述封装膜内的容纳空间分隔成多个容纳腔,所述容纳腔的腔壁包括第一隔圈和与所述第一隔圈连接的封装膜,每个所述容纳腔中容纳有所述极芯组;
    至少一个所述第一隔圈上设置有至少一个第一储液槽,每个所述第一储液槽与所述第一隔圈两侧的其中一个所述容纳腔连通。
  2. 根据权利要求1所述的电芯组件,其特征在于,所述第一储液槽为从所述第一隔圈的外侧表面向所述第一隔圈的内部凹陷形成。
  3. 根据权利要求1或2中所述的电芯组件,其特征在于,所述第一隔圈的外侧表面包括连接面和位于所述连接面两侧的第一外侧表面和第二外侧表面,所述连接面与所述封装膜封接,所述第一外侧表面和所述第二外侧表面分别位于所述第一隔圈两侧的容纳腔中;
    所述第一外侧表面的部分区域向所述第一隔圈的内部凹陷以形成所述第一储液槽,或所述第二外侧表面的部分区域向所述第一隔圈的内部凹陷以形成所述第一储液槽,或者所述第一外侧表面和所述第二外侧表面的部分区域均向所述第一隔圈的内部凹陷以分别形成所述第一储液槽;
    所述第一储液槽内设置有多个加强筋,以将所述第一储液槽分隔成多个储液单元。
  4. 根据权利要求1-3中任一项所述的电芯组件,其特征在于,所述极芯组的长度沿第一方向延伸,多个所述极芯组沿所述第一方向依次排列,每个所述极芯组上设有用于引出电流且极性相反的两个电极引出部件,所述两个电极引出部件分别位于所述极芯组在所述第一方向的两端;
    所述第一隔圈上设置有电极连接孔,相邻两个所述极芯组之间的两个电极引出部件极性相反且连接,且相邻两个所述极芯组之间的两个电极引出部件的连接部位位于相邻两个所述极芯组之间的第一隔圈上的所述电极连接孔中。
  5. 根据权利要求4所述的电芯组件,其特征在于,所述极芯的长度沿所述第一方向延伸,所述极芯的厚度沿与所述第一方向垂直的第二方向延伸,所述极芯组含有至少两个极芯,所述至少两个极芯沿所述第二方向排列,所述极芯之间串联或并联。
  6. 根据权利要求5所述的电芯组件,其特征在于,相邻两个所述极芯间并联,每个 所述极芯包括极芯主体以及与所述极芯主体电连接且极性相反的两个极耳片,所述两个极耳片分别位于所述极芯主体在所述第一方向的相对两侧,并且相邻两个所述极芯的极性相同的极耳片位于所述第一方向的同一侧,所述极性相同的相邻两个极耳片电连接,以实现相邻两个所述极芯并联;
    所述极芯组还包括位于极性相同的相邻两个极耳片之间的极耳支撑件,所述极性相同的相邻两个极耳片分别与所述极耳支撑件电连接;
    所述电极引出部件和与其极性相同的极耳片所电连接的其中一个极耳支撑件电连接。
  7. 根据权利要求6所述的电芯组件,其特征在于,所述极耳支撑件与所述电极引出部件和所述极耳片的连接部位分别处于所述极耳支撑件的不同表面上。
  8. 根据权利要求6所述的电芯组件,其特征在于,所述极耳支撑件包括相对的两个第一表面,所述两个第一表面分别面对极性相同的相邻两个极耳片,所述极性相同的相邻两个极耳片分别与所述极耳支撑件的两个所述第一表面直接贴合。
  9. 根据权利要求8所述的电芯组件,其特征在于,至少一个与所述电极引出部件连接的极耳支撑件为方形件;所述方形件包括两个所述第一表面、位于两个第一表面之间且面对所述极芯主体的第三表面、以及与所述第三表面相对的第四表面;
    与所述电极引出部件电连接的极耳支撑件通过所述第四表面与所述电极引出部件连接。
  10. 根据权利要求6所述的电芯组件,其特征在于,至少一个所述极耳支撑件的内部为中空腔体,所述中空腔体的至少一个腔壁上设有开口,所述开口与所述极耳支撑件所在的容纳腔连通,进而使所述中空腔体形成第二储液槽。
  11. 根据权利要求6所述的电芯组件,其特征在于,至少一个极耳支撑件为U形件,所述U形件的开口朝向与所述第一方向平行,所述U形件包括相对的两个侧壁和位于所述相对的两个侧壁之间的底壁,所述相对的两个侧壁的外表面分别为所述两个第一表面。
  12. 根据权利要求11所述的电芯组件,其特征在于,所述U形件的开口朝向所述极芯主体,与所述电极引出部件电连接的极耳支撑件通过所述底壁与所述电极引出部件连接;或者,
    所述U形件的开口朝向位于同一侧的第一隔圈,与所述电极引出部件电连接的极耳支撑件通过其中一个所述侧壁与所述电极引出部件连接。
  13. 根据权利要求6至12任何一项所述的电芯组件,其特征在于,所述极耳支撑件和所述极芯主体之间设置有绝缘隔件。
  14. 根据权利要求13所述的电芯组件,其特征在于,所述极芯主体在所述第一方向 的相对两端为尖部向外突出的V形端面,每个所述极芯的两个极耳片分别位于所述两个V形端面的尖部,所述相邻两个极芯主体在所述第一方向的同一端的V形端面之间形成V形空间;
    所述绝缘隔件为与所述V形空间形状匹配的V形件,所述V形件嵌合在所述V形区域中。
  15. 根据权利要求14所述的电芯组件,其特征在于,所述V形空间的V角角度为90-150度;所述绝缘隔件与所述极耳支撑件通过卡扣方式固定。
  16. 根据权利要求1-15中任一项所述的电芯组件,其特征在于,所述极芯串的两端还设置有第二隔圈,所述第二隔圈上设有电极引出孔,位于所述极芯串一端的极芯组的其中一个电极引出部件从同一端的第二隔圈上的电极引出孔引出,位于所述极芯串另一端的极芯组的其中一个电极引出部件从同一端的第二隔圈上的电极引出孔引出;
    所述第二隔圈上设有第二储液槽,所述第二储液槽从所述第二隔圈的外侧表面向所述第二隔圈的内部凹陷,所述第二隔圈上的第二储液槽与位于所述极芯串同一端的极芯组所在的容纳腔连通。
  17. 根据权利要求16所述的电芯组件,其特征在于,位于所述极芯串至少一端的极芯组中的至少一个极耳支撑件内部为中空腔体,所述中空腔体的至少一个腔壁上设有开口,以与位于同一端的第二隔圈上的电极引出孔连通,进而使所述中空腔体形成第三储液槽。
  18. 根据权利要求16任何一项所述的电芯组件,其特征在于,位于所述极芯串一端的第二隔圈套接在同一端的极芯组上。
  19. 一种电池,其特征在于,包括壳体和封装于所述壳体内的至少一个电芯组件,所述电芯组件为权利要求1至18任意一项所述的电芯组件。
  20. 一种电池包,其特征在于,包括多个如权利要求19所述的电池。
  21. 一种汽车,其特征在于,包括权利要求19所述的电池或权利要求20所述的电池包。
PCT/CN2021/088456 2020-05-18 2021-04-20 一种电芯组件、电池、电池包及汽车 WO2021233044A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3178531A CA3178531A1 (en) 2020-05-18 2021-04-20 Battery core assembly, battery, battery pack and vehicle
JP2022570516A JP2023525907A (ja) 2020-05-18 2021-04-20 電池コアアセンブリ、電池、電池パック及び自動車
EP21808008.3A EP4142025A4 (en) 2020-05-18 2021-04-20 BATTERY CELL SET, BATTERY, BATTERY PACK AND AUTOMOBILE
KR1020227043551A KR20230010249A (ko) 2020-05-18 2021-04-20 배터리 셀 어셈블리, 배터리, 배터리 팩 및 차량
US17/988,053 US20230076552A1 (en) 2020-05-18 2022-11-16 Battery core assembly, battery, battery pack and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010422006.3 2020-05-18
CN202010422006.3A CN113764787B (zh) 2020-05-18 2020-05-18 一种电芯组件、电池、电池包及汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,053 Continuation US20230076552A1 (en) 2020-05-18 2022-11-16 Battery core assembly, battery, battery pack and vehicle

Publications (1)

Publication Number Publication Date
WO2021233044A1 true WO2021233044A1 (zh) 2021-11-25

Family

ID=78709151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088456 WO2021233044A1 (zh) 2020-05-18 2021-04-20 一种电芯组件、电池、电池包及汽车

Country Status (7)

Country Link
US (1) US20230076552A1 (zh)
EP (1) EP4142025A4 (zh)
JP (1) JP2023525907A (zh)
KR (1) KR20230010249A (zh)
CN (1) CN113764787B (zh)
CA (1) CA3178531A1 (zh)
WO (1) WO2021233044A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172949B (zh) * 2022-09-09 2023-06-16 江苏时代新能源科技有限公司 电池单体、电池、用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748707A (zh) * 2011-08-24 2014-04-23 Sk新技术株式会社 电池模块
CN108448041A (zh) * 2018-05-02 2018-08-24 中航锂电技术研究院有限公司 一种软包锂离子电池模块及连接方法
CN109428125A (zh) * 2017-08-29 2019-03-05 通用汽车环球科技运作有限责任公司 具有过量电解质容量以提高寿命的锂离子电化学装置
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579174A (zh) * 2017-09-08 2018-01-12 广东天劲新能源科技股份有限公司 超长循环寿命高能量密度软包聚合物动力电池
CN110429234A (zh) * 2019-07-05 2019-11-08 恒大新能源科技集团有限公司 一种无汇流排电池模组结构及组装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748707A (zh) * 2011-08-24 2014-04-23 Sk新技术株式会社 电池模块
CN109428125A (zh) * 2017-08-29 2019-03-05 通用汽车环球科技运作有限责任公司 具有过量电解质容量以提高寿命的锂离子电化学装置
CN108448041A (zh) * 2018-05-02 2018-08-24 中航锂电技术研究院有限公司 一种软包锂离子电池模块及连接方法
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4142025A4 *

Also Published As

Publication number Publication date
US20230076552A1 (en) 2023-03-09
EP4142025A1 (en) 2023-03-01
CN113764787B (zh) 2022-12-09
EP4142025A4 (en) 2024-04-10
KR20230010249A (ko) 2023-01-18
CN113764787A (zh) 2021-12-07
JP2023525907A (ja) 2023-06-19
CA3178531A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP4087000A1 (en) Battery, battery module, battery pack, and automobile
CN214336804U (zh) 电池单体、电池以及用电装置
US20230075479A1 (en) Battery core assembly, battery, battery pack and vehicle
EP4145618A1 (en) Battery, battery pack, and vehicle
WO2021233044A1 (zh) 一种电芯组件、电池、电池包及汽车
WO2021233045A1 (zh) 一种电芯组件、电池、电池包及汽车
CN113782890B (zh) 一种电池包及电动车
CN219321570U (zh) 电池单体、电池及用电装置
CN115064757B (zh) 电池单体、电池及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2021233034A1 (zh) 一种电池、电池包及汽车
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
CN218414973U (zh) 隔离板组件、电池模组、电池包、用电装置
WO2023133747A1 (zh) 电池、用电设备、制备电池的方法和设备
CN218827695U (zh) 电池和用电装置
CN217719860U (zh) 电池结构、电池包及用电设备
CN218414902U (zh) 电池包以及用电装置
WO2024000502A1 (zh) 电池及用电设备
CN220324497U (zh) 电池
WO2024055311A1 (zh) 电池单体、电池及用电设备
CN217009494U (zh) 电芯和电池包
WO2024016491A1 (zh) 极片、电极组件、电池单体、电池及用电装置
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
CN116420271A (zh) 电池、用电设备、制备电池单体的方法和设备
CN114824682A (zh) 电池结构、电池模组以及电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3178531

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022570516

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021808008

Country of ref document: EP

Effective date: 20221121

ENP Entry into the national phase

Ref document number: 20227043551

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE