WO2021230392A1 - High-entropy alloy and method for manufacturing same - Google Patents

High-entropy alloy and method for manufacturing same Download PDF

Info

Publication number
WO2021230392A1
WO2021230392A1 PCT/KR2020/006209 KR2020006209W WO2021230392A1 WO 2021230392 A1 WO2021230392 A1 WO 2021230392A1 KR 2020006209 W KR2020006209 W KR 2020006209W WO 2021230392 A1 WO2021230392 A1 WO 2021230392A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting
entropy alloy
iron
copper
melting point
Prior art date
Application number
PCT/KR2020/006209
Other languages
French (fr)
Korean (ko)
Inventor
신현권
오진목
강남석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP20934927.3A priority Critical patent/EP4151766A4/en
Priority to PCT/KR2020/006209 priority patent/WO2021230392A1/en
Priority to US17/924,450 priority patent/US20230183846A1/en
Publication of WO2021230392A1 publication Critical patent/WO2021230392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the present embodiment relates to a high-entropy alloy and a method for manufacturing the same, and more particularly, to a high-entropy alloy with improved composition and process, and a method for manufacturing the same.
  • a high-entropy alloy having high fluidity and wettability while simultaneously implementing opposing characteristics, such as excellent workability and strength, has been developed.
  • a high-entropy alloy is an alloy having a single-phase structure of a face-centered cubic structure (FCC) or a body-centered cubic structure (BCC) having a high mixed entropy by including a plurality of elements in a predetermined amount or more.
  • the conventional high-entropy alloy is vulnerable to galvanic corrosion due to the difference in potential and melting point because different double phases are located in equal ratios, and segregation occurs during the casting process or extraction or cracking of the low-temperature phase occurs during the hot rolling process.
  • the present embodiment is intended to provide a high-entropy alloy having excellent strength and wear resistance while having excellent corrosion resistance, castability and workability, and a method for manufacturing the same.
  • an object of the present invention is to provide a high-entropy alloy that can have various properties according to a change in composition, have excellent productivity or can be manufactured by a simple manufacturing process, and a method for manufacturing the same.
  • the high entropy alloy according to this embodiment is a high entropy alloy having an iron-rich phase and a copper-rich phase (Cu-rich phase).
  • the common conductivity solid solution metal may include nickel (Ni).
  • the melting point lowering element may include at least one of carbon (C), silicon (Si), phosphorus (P), and manganese (Mn).
  • the high entropy alloy may further include at least one of aluminum (Al), manganese (Mn), and chromium (Cr).
  • the high entropy alloy may be 15 to 80 at% iron, 1 to 30 at% copper, 1 to 20 at% nickel, 5 to 20 at% aluminum, 0 to 20 at% manganese, 0 to 15 at% chromium, 0 to 5 at% carbon, 0 to 2 at% silicon, 0 to 2 at% phosphorus, and other unavoidable impurities.
  • the content of the copper in the iron-rich phase may be 1 to 30 at%.
  • the iron-rich phase may be included in a larger volume ratio than the copper-rich phase to exist as a main phase, and the copper-rich phase may be partially present.
  • a method of manufacturing a high entropy alloy includes: melting an iron-containing material including a melting point lowering element and iron to form a molten metal; A high melting point material melting step of melting by adding a high melting point element having a melting point higher than that of the iron-containing material into the molten metal; A copper melting step of melting by putting copper into the molten metal; and melting a low-melting-point material by inputting and melting a low-melting-point material having a melting point lower than that of copper.
  • the iron-containing material may include pig iron.
  • the melting point lowering element may include at least one of carbon, silicon, phosphorus, and manganese.
  • At least two of the first melting temperature of the iron melting step, the second melting temperature of the high melting point material melting step, the third melting temperature of the copper melting step and the fourth melting temperature of the low melting point material melting step than the temperature are mutually It may have a different temperature.
  • the second melting temperature may be higher than the first melting temperature
  • the third melting temperature may be lower than the second melting temperature
  • the fourth melting temperature may be lower than the third melting temperature.
  • the high melting point material may include a common conductivity solid solution metal in which iron and copper are each electrified.
  • the high melting point material may include at least one of nickel and chromium.
  • the low melting point material may include aluminum.
  • the aluminum ingot may be melted by pushing it into the bottom portion of the molten metal.
  • a method of manufacturing a high-entropy alloy includes the basic steps of adding a plurality of materials including iron, copper, and a common conductivity solid-solute metal in which the iron and copper are each electrified; forming an inert gas atmosphere after vacuum; and a melting step of melting the plurality of materials.
  • the plurality of materials may further include at least one of carbon, silicon, phosphorus, aluminum, manganese, and chromium, and the common conductivity solid solution metal may include nickel.
  • the iron may include pig iron or pure iron.
  • the potential difference and the melting point difference between the iron-rich phase and the copper-rich phase may be reduced by including the common conductivity solid solution metal in the high entropy alloy having the dual phase structure of the iron-rich phase and the copper-rich phase.
  • galvanic corrosion can be prevented or minimized, and segregation formation during casting, extraction of a low-temperature phase during hot rolling, or cracking can be effectively prevented.
  • strength, fluidity, wettability, corrosion resistance, workability, and castability can all be improved.
  • the material cost can be reduced by lowering the relatively expensive copper content and increasing the relatively inexpensive iron content. In this case, it is possible to manufacture a high-entropy alloy having various desired properties only by changing the composition, thereby improving productivity and quality.
  • the high-entropy alloy according to this embodiment has excellent castability, it can fill a 2mm mesh channel, so it can be applied to casting parts that require miniaturization and weight reduction, and various performances can be improved by increasing the degree of design freedom.
  • Such a high entropy alloy may be manufactured by melting under atmospheric conditions by controlling the input sequence and melting temperature to improve productivity, or may be manufactured by melting in a process using a vacuum to simplify the manufacturing process.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a high entropy alloy according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a high entropy alloy according to another embodiment of the present invention.
  • FIG. 3 is a field emission scanning electron microscope (FE-SEM) photograph of the high entropy alloy according to Example 1.
  • FIG. 3 is a field emission scanning electron microscope (FE-SEM) photograph of the high entropy alloy according to Example 1.
  • Example 4 is a photograph of performing a salt spray test on the high entropy alloy according to Example 1.
  • Example 6 is a photograph of performing a salt spray test on the high entropy alloy according to Example 2.
  • Example 7 is a photograph of performing a salt spray test on the high entropy alloy according to Example 3.
  • Example 8 is a photograph of a plate material formed by processing the high entropy alloy according to Example 1.
  • FIG. 9 is a photograph of an Oldham ring having a thickness of 1.7 mm manufactured using the high entropy alloy according to Example 1.
  • the high-entropy alloy is a term used to distinguish it from a low-entropy alloy, and may collectively refer to an alloy having an entropy of a certain level or higher.
  • the high-entropy alloy has an entropy of 1.5R or more, and generally has an entropy of 1.0R or more as well as an alloy called a high entropy alloy (high entropy alloy).
  • high entropy alloy may include an alloy called That is, the high-entropy alloy according to the present embodiment may have an entropy of 1.0R or more.
  • the high-entropy alloy according to the present embodiment is a high-entropy alloy having an iron-rich phase and a copper-rich phase, and includes a common electrical conductivity solid solution metal that is electrically dissolved in iron and copper or forms a complete solid solution with each of iron and copper. can do.
  • the common conductivity solid solution metal may include nickel (Ni).
  • the iron-rich phase may mean a phase having the highest iron content (eg, at%) among a plurality of materials (eg, elements) constituting the same, and the copper-rich phase is a plurality of materials constituting the same. It may refer to a phase having the highest iron content (eg, at%) among (eg, elements).
  • the high-entropy alloy may further include at least one of aluminum, manganese, and chromium.
  • it may further include a melting point lowering element (melting point lowering material) for lowering the melting point of the high entropy alloy, the melting point lowering element may include carbon, silicon, phosphorus, manganese, and the like.
  • Iron is inexpensive and has excellent strength and ductility, and since strength and hardness vary greatly depending on the phase structure, high entropy alloys can be easily adjusted to have desired properties.
  • Copper has a low melting point and has good electrical and thermal conductivity.
  • copper is not mixed with iron and forms a double-phase structure of an iron-rich phase and a copper-rich phase, and thus is suitable for forming a high-entropy alloy capable of improving both iron and copper properties.
  • the high entropy alloy according to the present embodiment contains iron and copper that do not mix well with each other, unless other metals are included, they do not mix with each other, making it difficult to form an alloy. Accordingly, in order to prevent phase separation of iron and copper, an alloy including aluminum, manganese, etc. having a predetermined or higher solubility in each of iron and copper may be formed. Accordingly, the high-entropy alloy has an iron-rich phase and a copper-rich phase, but the ratio of the iron-rich phase and the copper-rich phase may vary depending on the content of iron and copper.
  • it may form a complete solid solution with iron, form a perfect solid solution with copper having a high solid solubility in iron, or include a common conductivity solid solution metal having a high solid solubility in copper.
  • nickel having a high solubility in copper or a high solid solubility in iron, or nickel having a high solid solubility may be used as a common solid solution metal.
  • the inclusion of a common conductivity solid solution metal increases the solubility of copper in the iron-rich phase in a high entropy alloy having a dual-phase structure of an iron-rich phase and a copper-rich phase, and increases the solubility of copper in the copper-rich phase.
  • the potential difference and the melting point difference between the iron-rich phase and the copper-rich phase can be reduced. Accordingly, it is possible to prevent or minimize galvanic corrosion that may occur due to a potential difference between the iron-rich phase and the copper-rich phase. In addition, it is possible to effectively prevent segregation formation that may occur during casting due to the difference in melting point between the iron-rich phase and the copper-rich phase, and extraction or cracking of the low-temperature phase during hot rolling. Accordingly, casting or hot rolling is easy. Moreover, nickel has excellent corrosion resistance, which can improve the corrosion resistance of high-entropy alloys.
  • the high solubility of copper in the iron-rich phase including nickel increases, thereby reducing the copper content in the entire high-entropy alloy. Accordingly, it is possible to reduce the material cost by lowering the relatively expensive copper content and increasing the relatively inexpensive iron content. In addition, it is possible to lower the melting temperature in the process of manufacturing a high entropy alloy and improve corrosion resistance.
  • a dual-phase structure including an iron-rich phase and a copper-rich phase may be provided, but the ratios may not be equal.
  • the iron-rich phase is contained in a larger volume ratio than the copper-rich phase and is present as the main phase, and the copper-rich phase is partially present to prevent segregation, resulting in high strength, workability, and castability.
  • the high entropy alloy may have a uniform composition due to wettability.
  • the content of copper in the iron-rich phase may be 5 to 30 at% (eg, 10 to 25 at%). This is in consideration of the content of nickel included in the high entropy alloy, but the present invention is not limited thereto and may have various values.
  • the content of copper in the iron-rich phase that does not include nickel may be less than 5 at% (for example, 3 at% or less).
  • aluminum is a lightweight element (hard material) and is mixed with iron as a low melting point element (low melting point material) to form a body-centered cubic structure.
  • Aluminum can improve hardness, abrasion resistance, strength, etc. while reducing ductility.
  • manganese is included in iron, strength and ductility can be improved at the same time.
  • manganese has a lower melting point than iron and can act as a kind of melting point lowering element that lowers the melting point of a high entropy alloy. Accordingly, it is possible to improve the fluidity and castability of the high entropy alloy.
  • chromium is included in iron, it is possible to additionally improve corrosion resistance by forming a chromium oxide film on iron or iron-rich. Chromium may or may not be included in the high entropy alloy.
  • the melting point when the melting point is lowered by a melting point lowering element such as carbon, silicon, phosphorus, or manganese, it has excellent fluidity and wettability and low high temperature viscosity during the manufacturing process of a high entropy alloy to improve castability.
  • a melting point lowering element such as carbon, silicon, phosphorus, or manganese
  • the melting temperature during the production of the molten metal is low, even if it contains a low-melting-point material such as copper or aluminum, it can be cast under atmospheric conditions. Accordingly, the quality of the high-entropy alloy can be improved.
  • silicon when silicon is included as a low melting point element, castability can be improved and corrosion resistance can be improved by forming an oxide.
  • carbon is included as a low-melting-point element, the melting point can be effectively lowered. If phosphorus is included as a low-melting-point element, the melting point can be effectively lowered even with a small amount.
  • the high entropy alloy may be 15 to 80 at% iron, 1 to 30 at% copper, 1 to 20 at% nickel, 5 to 20 at% aluminum, 0 to 20 at% (e.g., 0.1 to 20 at%, eg, 5 to 20 at%) manganese, 0 to 15 at% (eg, 2 to 15 at%) chromium, 0 to 5 at% (eg, 3 to 5 at%) %) carbon, 0 to 2 at% silicon (eg 1 to 2 at%), 0 to 2 at% (eg 0 to 1 at%) phosphorus, other elements or unavoidable impurities can do.
  • the content of iron is less than 15 at%, strength, ductility, etc. may be reduced, and if the content of iron exceeds 80 at%, the content of other metals decreases, making it difficult to improve various properties in a high entropy alloy.
  • the content of copper is less than 1 at%, the effect of lowering the melting point and improving electrical conductivity or thermal conductivity by copper may not be sufficient. It can be difficult to improve various properties.
  • the content of nickel is less than 1 at%, the above-described effect by nickel may not be sufficient, and if the content of nickel exceeds 20 at%, the content of iron, copper, etc. is not sufficient, improving various properties in high entropy alloys It can be difficult to do.
  • Manganese may or may not be included in the high entropy alloy. When manganese is included in the high entropy alloy, for example, manganese may be included in an amount of 0.1 to 20 at% (eg, 5 to 20 at%). This is to improve the effect of manganese while sufficiently maintaining the content of iron, copper, and the like.
  • Chromium may or may not be included in the high entropy alloy. When chromium is included in the high entropy alloy, for example, chromium may be included in an amount of 2 at% to 15 at%. This is to improve the effect of chromium while sufficiently maintaining the content of iron, copper, and the like.
  • the content of silicon exceeds 2 at%, a precipitate may be formed in the high entropy alloy to cause cracks in the casting.
  • silicon is included in an amount of 1 at% or more, the effect of silicon can be sufficiently realized.
  • the content of carbon exceeds 5 at%, it may be difficult to sufficiently maintain the content of iron, copper, etc., and the melting point of the high entropy alloy may be increased.
  • the high-entropy alloy contains carbon, the melting point can be effectively lowered when the carbon content is 3 to 5 at%.
  • phosphorus may be included in an amount of 2 at% or less so as not to significantly affect other properties while effectively lowering the melting point.
  • the present invention is not limited to the elements and contents described above. Accordingly, elements or materials other than the above-described elements or materials may be further included, and the content of each element or material may be variously modified in consideration of the characteristics of a desired high-entropy alloy.
  • the high entropy alloy according to the present embodiment may be used in the manufacture of various products. That is, the high-entropy alloy according to this embodiment has both excellent fluidity and copper wettability, and thus has superior castability than cast iron, so it can fill a 2mm mesh channel and can be applied to cast parts requiring refinement. In addition, weight reduction may be realized by thinly forming parts that require weight reduction. In addition, various performances can be improved by increasing the degree of freedom in the design of the cast product due to the castability of the precise design. In this case, it is possible to manufacture a high-entropy alloy having various desired properties only by changing the composition.
  • Oldham Ring that prevents the scroll from rotating in the scroll compressor and enables only left and right revolutions.
  • Oldham Ring needs to be lightweight in order to reduce noise and improve efficiency during operation.
  • the Oldham ring must be manufactured to weigh less than 100g, and the key part that holds the scroll in order to combine with the scroll in the Oldham ring must be precisely processed to have an error of only ⁇ 5mm.
  • the high-entropy alloy according to this embodiment has castability that can fill the 2mm mesh channel, so it is possible to manufacture an Oldham ring with a thickness of 2mm or less, and the specific gravity can also be adjusted to 7.2 or less, so it is made of a general iron alloy. It can be lighter than Oldham Ring.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a high entropy alloy according to an embodiment of the present invention.
  • the method of manufacturing a high entropy alloy includes an iron melting step (S10), a high melting point material melting step (S12), a homogenizing step (S14), a copper melting step (S16), a low melting point It may include a material melting step (S18) and an impurity removal step (S20).
  • S10 iron melting step
  • S12 high melting point material melting step
  • S14 homogenizing step
  • S16 copper melting step
  • S16 low melting point
  • It may include a material melting step (S18) and an impurity removal step (S20).
  • the molten metal may be formed by introducing an iron-containing material including iron into the molten metal manufacturing equipment and melting it.
  • an iron-containing material including iron into the molten metal manufacturing equipment and melting it.
  • Various known equipment may be used as the molten metal manufacturing equipment.
  • the iron-containing material may include iron and a melting point lowering element.
  • pig iron or pig iron and manganese may be used together as the iron-containing material. Since pig iron contains a melting point lowering element such as carbon, silicon, manganese, and phosphorus along with iron, pig iron can be used as it is and the melting point lowering element can be added together.
  • pig iron may include 5 at% (eg, 3 to 5 at%) of carbon, 1 to 2 at% of silicon, manganese, phosphorus, and the like.
  • the melting point lowering element is melted together with iron to lower the melting point of iron to effectively lower the first melting temperature.
  • the fourth melting temperature in the low melting point material melting step (S18) performed after adding a low melting point element such as aluminum or copper having a low melting point later can be lowered. Accordingly, it is possible to prevent oxidation of aluminum, copper, etc. at a high temperature (eg, 1600°C or higher, for example, more than 1520°C) in the low-melting-point material melting step (S18). This will be described in more detail later in the melting step (S18) of the low-melting-point material.
  • the first melting temperature of the iron melting step (S10) may be 1450 to 1520 °C. In this temperature range, the iron-containing material can be stably melted, and the burden in the high-temperature process can be reduced.
  • the present invention is not limited thereto, and the melting temperature of the iron melting step S10 may be variously modified.
  • a high melting point material having a higher melting point than the iron-containing material may be introduced into the molten metal to be melted.
  • the high-melting-point material may include a common conductivity-solute metal that is electrically-dissolved in iron and copper, respectively.
  • nickel may be included as the common conductivity solid solution metal.
  • the high melting point material may further include chromium or the like.
  • the second melting temperature of the high melting point material melting step ( S12 ) may be higher than the first melting temperature of the iron melting step ( S10 ).
  • the second melting temperature of the high melting point material melting step (S12) may be 1650 to 1750 °C. In such a temperature range, a material including chromium, nickel, etc. may be stably melted, and a burden due to a high-temperature process may be reduced.
  • the present invention is not limited thereto, and the second melting temperature of the high melting point material melting step (S12) may be variously modified.
  • the homogenization step (S14) may be performed at a homogenization temperature lower than the second melting temperature.
  • the flux used to remove impurities may include Al 2 O 3 , CaO, SiO 2 , and the like.
  • the present invention is not limited thereto, and whether or not the flux is input, the material of the flux, etc. can be variously modified.
  • the homogenization temperature of the homogenization step (S14) may be 1450 to 1520 °C. In this temperature range, homogenization and stabilization are stably possible, and impurities can be removed.
  • the homogenization step (S14) or the impurity removal process included therein may be performed for 1 minute to 10 minutes (eg, 2 minutes to 3 minutes). In this time range, impurities can be stably removed, and productivity can be prevented from being reduced due to excessively long process time.
  • the present invention is not limited thereto, and the homogenization temperature and/or process time of the homogenization step S14 may be variously modified.
  • copper may be added to the molten metal to be melted.
  • the third melting temperature of the copper melting step (S16) is equal to or higher than the first melting temperature of the iron melting step (S10) and the homogenization temperature of the homogenizing step (S14), respectively, and the second melting point of the high melting point material melting step (S12) It may be equal to or lower than the melting temperature.
  • the third melting temperature may be higher than the first melting temperature of the iron melting step ( S10 ) and the homogenization temperature of the homogenizing step ( S14 ), respectively, and lower than the second melting temperature of the high melting point material melting step ( S12 ).
  • the third melting temperature of the copper melting step (S16) may be 1520 to 1650 °C.
  • the molten metal in the copper melting step (S16) contains a relatively low melting point (ie, 1150 degrees C or less, for example, 900 degrees C. It can have a melting point of 1100 degrees Celsius) d. If the third melting temperature is defined as described above in consideration of the melting efficiency along with the melting point, copper can be stably melted after the copper is added, and the burden in the high-temperature process can be reduced.
  • the present invention is not limited thereto, and the melting temperature of the copper melting step S16 may be variously modified.
  • iron or a low-melting-point material having a lower melting point than that of an iron-containing material may be introduced into the molten metal and melted.
  • the low-melting-point material include aluminum.
  • aluminum can be melted or melted by pushing the aluminum into the bottom part of the molten metal in the form of an ingot. Accordingly, it is possible to minimize or prevent aluminum oxide formed by oxidation of aluminum from floating on the surface of the molten metal.
  • the fourth melting temperature of the low-melting-point material melting step (S18) may be the same as or higher than the temperature of the copper melting step (S16).
  • the fourth melting temperature of the low melting point material melting step (S18) may be lower than the temperature of the copper melting step (S16). This is to minimize problems such as oxidation of low-melting-point materials.
  • the fourth melting temperature of the low-melting-point material melting step (S18) may be 1500 degrees C or less (for example, 1200 to 1400 degrees C).
  • the fourth melting temperature exceeds 1500 degrees Celsius (for example, 1400 degrees Celsius)
  • aluminum is oxidized at the same time as melting to form slag composed of aluminum oxide on the molten metal, and a process of removing it must be added.
  • the fourth melting temperature is 1200 degrees C or less, a homogeneous molten metal may not be formed.
  • the present invention is not limited thereto, and the melting temperature of the low solubility material melting step (S18) may be variously modified.
  • impurities eg, oxides and slag present on the surface of the molten metal
  • the flux used to remove impurities may include Al 2 O 3 , CaO, SiO 2 , and the like.
  • the present invention is not limited thereto. Therefore, the impurity removal step S20 may not be performed, and whether or not the flux is input in the impurity removal step S20 , the material of the flux, etc. may be variously modified.
  • the final molten metal from which impurities are removed is tapped at a constant tapping temperature (for example, 1400 to 1600 degrees C, for example, 1500 degrees C) and processed to have a desired shape (for example, using a mold having a desired shape) can be cast).
  • a constant tapping temperature for example, 1400 to 1600 degrees C, for example, 1500 degrees C
  • a desired shape for example, using a mold having a desired shape
  • the present invention is not limited thereto, and the tapping temperature may be variously modified.
  • the manufacturing method of the high entropy alloy according to this embodiment can be processed or cast under normal pressure conditions (ie, general atmospheric pressure conditions) rather than under vacuum conditions, thereby reducing manufacturing costs and can be used for manufacturing various parts of desired shapes.
  • normal pressure conditions ie, general atmospheric pressure conditions
  • pig iron with low purity may be used, and impurities may be easily removed, so that the quality of the manufactured high-entropy alloy may be excellent.
  • the final molten metal is sequentially injected into the prepared mold to manufacture a large number of castings together, thereby reducing costs.
  • the high-entropy alloy can have a uniform composition by adjusting the input order and melting temperature in consideration of the different melting points of a plurality of substances or elements included in the high-entropy alloy, so that the high-entropy alloy has a uniform composition. It is possible to improve the quality by preventing occurrence.
  • oxidation of a low-melting-point element for example, aluminum
  • oxidation of a low-melting-point element occurs during molten metal production, resulting in non-uniform composition or oxides entering the mold when molten metal is injected. This may cause problems such as cracking.
  • the high-entropy alloy according to the present embodiment has excellent fluidity and wettability including a melting point lowering element, so that it can be stably injected into the mold even by maintaining a temperature level of about 1400°C.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a high entropy alloy according to another embodiment of the present invention.
  • the present embodiment may include a preparation step ( S30 ), a step of forming an inert gas atmosphere after vacuum ( S32 ), and a melting step ( S34 ).
  • all materials for manufacturing a high entropy alloy may be input to the molten metal manufacturing equipment.
  • the iron may be pure iron or pig iron.
  • an inert gas atmosphere may be formed while a cleaning operation in the chamber is performed by repeatedly introducing an inert gas after creating a vacuum atmosphere.
  • the inert gas atmosphere may be, for example, an argon (Ar) gas atmosphere.
  • the molten metal may be prepared by melting at a constant melting temperature.
  • the melting temperature of the melting step (S34) is 1750 degrees C or less (for example, 1650 degrees C or less), more specifically, 1200 degrees to 1750 degrees C (for example, 1400 degrees to 1650 degrees C) seeds, for example, 1450°C to 1520°C).
  • the melting temperature of the melting step (S34) may be variously modified depending on the material constituting the high entropy alloy.
  • the melting step (S34) When the melting step (S34) is completed, it is tapped at a constant tapping temperature (eg, 1400 to 1600 degrees Celsius, for example, 1500 degrees Celsius) and processed to have a desired shape (eg, using a mold having a desired shape) can be cast).
  • a constant tapping temperature eg, 1400 to 1600 degrees Celsius, for example, 1500 degrees Celsius
  • the tapping temperature may be variously modified.
  • the melting step ( S34 ) is performed in an inert gas atmosphere after vacuum to effectively prevent a loss (eg, loss of aluminum) due to oxidation of the low-melting-point material.
  • a loss eg, loss of aluminum
  • the manufacturing process can be simplified by a single melting step (S34). Accordingly, a high-entropy alloy having a desired composition can be easily manufactured through a simple process.
  • a high-entropy alloy having a composition according to Table 1 and a chemical formula of Al 15 Ni 15 Cr 10 (CuFe) 50 Mn 10 was prepared using the manufacturing method shown in FIG. 1 .
  • the iron-containing material 4.67 at% carbon, 1.35 at% silicon, 0.27 at% manganese, 0.11 at% phosphorus, 0.02 at% sulfur, 0.08 at% titanium, 0.01 at% vanadium, the rest Pig iron containing iron and additional manganese were used.
  • a high-entropy alloy was prepared in the same manner as in Example 1, having the chemical formula of Al 15 Ni 5 Cr 10 Cu 10 Fe 43 Mn 15 Si 2 .
  • a high-entropy alloy was prepared in the same manner as in Example 1 to prepare a point having a chemical formula of Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 13 Si 2 .
  • Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 20 A high entropy alloy was prepared in the same manner as in Example 1 after preparing the point having a chemical formula of Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 20 .
  • Al 17 Ni 3 Cr 5 Cu 15 Fe 45 Mn 15 A high-entropy alloy was prepared in the same manner as in Example 1 to prepare a point having a chemical formula of Al 17 Ni 3 Cr 5 Cu 15 Fe 45 Mn 15 .
  • a high-entropy alloy was prepared in the same manner as in Example 1, having the chemical formula of Al 13 Ni 3 Cr 6 Cu 8 Fe 55 Mn 15 .
  • a single melting process was performed in vacuum to prepare a high entropy alloy having a composition according to Table 2 and a chemical formula of Al 10 Cr 20 (CuFe) 60 Mn 10 .
  • a high-entropy alloy was prepared in the same manner as in Comparative Example 1, prepared by using pure iron and having a chemical formula of Al 15 Cr 5 (FeCuMn) 80 .
  • a high-entropy alloy was prepared in the same manner as in Comparative Example 1, prepared using pig iron and having a chemical formula of Al 15 Cr 5 (FeCuMn) 80 .
  • FIG. 3 A field emission scanning electron microscope (FE-SEM) image of the high entropy alloy according to Example 1 is shown in FIG. 3 , respectively.
  • the compositions according to Tables 1 and 2 were measured by energy dispersive spectrometry (EDS), and the content of each element was expressed in at%.
  • the content of copper in the iron-rich phase is 16.01 at%, and in the high entropy alloy according to Comparative Example 1 not containing nickel It can be seen that the content of copper in the iron-rich phase is significantly higher than 2.44 at%.
  • the content of iron in the copper-rich phase was 6.04 at%, and the iron in the copper-rich phase in the high entropy alloy according to Comparative Example 1 not containing nickel was iron. It can be seen that the content is higher than 3.56 at%.
  • the copper content in the iron-rich phase and the iron content in the copper-rich phase are respectively increased. Accordingly, it can be seen that in the high-entropy alloy according to Example 1, copper or iron is dissolved in the iron-rich phase and the copper-rich phase at a certain level or more, so that the corrosion potential difference between the iron-rich phase and the copper-rich phase can be reduced. .
  • FIG. 3 it can be seen that in the high-entropy alloy according to Example 1, an iron-rich phase and a copper-rich phase having different brightnesses are coexisted and located. At this time, it can be seen that the iron-rich phase is present as the main phase and the copper-rich phase is partially present.
  • a salt spray test was performed on the high entropy alloy according to Example 1 and Comparative Example 1.
  • 5wt% of sodium chloride brine was indirectly continuously sprayed with a nozzle pressure of 1.0 kg/cm 2 , and a pH of 6.5 to 7.2 and a temperature of 35°C were maintained.
  • Attached to Figure 4 (a) before the salt spray test of the high-entropy alloy according to Example 1, attaching a photograph when maintaining 24 hours while spraying salt water in (b), (c) A photograph of the case of maintaining 72 hours while spraying saline is attached.
  • FIG. 5 is attached with a photograph of a case in which the high-entropy alloy according to Comparative Example 1 was maintained for 24 hours while spraying salt water.
  • the high entropy alloy according to Example 1 containing nickel did not significantly corrode even when salt spray was performed for a long time.
  • the high-entropy alloy according to Comparative Example 1 which does not contain nickel was greatly corroded by salt spray and thus stained. Accordingly, it can be seen that the alloy according to Example 1 including nickel has excellent corrosion resistance.
  • the high entropy alloy according to Example 1 and the stainless steel according to Comparative Example 2 were subjected to a potentiostatic polarization test, and the results are shown in Table 3.
  • a 5 wt% sodium chloride aqueous solution was used, Ag/AgCl was used as a reference electrode, and the scan rate was 0.33 (dE/dt).
  • Example 1 Comparative Example 2 Corrosion potential [V] -0.37 -0.2 Dynamic Equilibrium Current Density [log (A/cm 2 )] -7.6 -7.6
  • the high-entropy alloy according to Example 1 has high corrosion resistance similar to that of the stainless steel according to Comparative Example 2 having high corrosion resistance.
  • a salt spray test was performed on the high entropy alloys according to Examples 2 and 3.
  • 5 wt% of sodium chloride brine was indirectly continuously sprayed with a nozzle pressure of 1.0 kg/cm 2 , and a pH of 6.5 to 7.2 and a temperature of 35 ° C were maintained.
  • Figure 6 (a) a photograph before the salt spray test of the high-entropy alloy according to Example 2 is attached, and in (b) a photograph when the salt spray is maintained for 24 hours is attached. And a photograph before the salt spray test of the high-entropy alloy according to Example 3 is attached to (a) of FIG.
  • the high entropy alloys according to Examples 1 and 4 and the stainless steel according to Comparative Example 3 were lathe-processed.
  • Lathe machining was performed under the conditions of a rotation speed of 10000 rpm, a moving speed of 5000 feed, a tool of 6 pie, REM (0.5R), depth of 0.7 mm (AP), and spacing (AE) of 70% of the tool diameter, Water-soluble cutting oil was used.
  • FIG. 8 A photograph of the plate material formed by processing the high entropy alloy according to Example 1 is attached to FIG. 8 .
  • a cleanly processed plate material can be manufactured using the alloy according to Example 1.
  • Example 1 even at a high machining speed, no tool breakage was observed. From this, it can be seen that it is possible to provide a cleanly processed plate material at a high processing speed.
  • the processing speed in the high entropy alloy according to Examples 1 and 4 is significantly higher than the processing speed of the stainless steel according to Comparative Example 3.
  • the processing speed may be twice or more than the processing speed of the stainless steel according to Comparative Example 3. It is predicted that the high-entropy alloy according to Examples 1 and 4 is because the high-strength iron-rich phase and the copper-rich phase having excellent grindability or machinability are mixed or interspersed.
  • FIG. 9 A photograph of the Oldham ring having a thickness of 1.7 mm manufactured using the high entropy alloy according to Example 1 is attached to FIG. 9 . And pictures of the results of performing the 2mm mesh channel evaluation on the high entropy alloy according to Examples 5 and 6 are attached to FIGS. A photograph of the evaluation result is attached to FIG. 11 .
  • FIGS. Photographs of the results of performing wear resistance evaluation on the entropy alloy are attached to (a), (b) and (c) of FIG. 13 , respectively. And the hardness of the high-entropy alloy or cast iron according to Examples 5 and 6 and Comparative Examples 4, 5 and 6, the fillability of the 2mm microchannel, the width of the wear track, and the entropy were measured, and the results are shown in Table 5.
  • Abrasion resistance evaluation was performed using a ball made of aluminum oxide (Al 2 O 3 ) under the conditions of a normal drag of 10N, a rotational speed of 300rpm, a rotational radius of 11.5mm, and a time of 3000 seconds.
  • the high-entropy alloy according to Examples 5 and 6 has better castability than the cast iron according to Comparative Example 4 having excellent castability in the evaluation of the 2mm mesh channel. This is expected because the high-entropy alloys according to Examples 5 and 6 have high fluidity and have large wettability due to low surface energy to stably fill fine mesh channel molds. In particular, since the copper component included in the high entropy alloy according to Examples 5 and 6 may contribute to improving wettability, Examples 5 and 6 may have excellent fluidity and excellent wettability at the same time. On the other hand, the cast iron according to Comparative Example 4 has excellent fluidity but poor wettability, so it is difficult to manufacture a structure having microchannels of 2 mm or less.
  • the high-entropy alloys according to Examples 5 and 6 have excellent hardness, excellent wear resistance, and excellent castability.
  • the high entropy alloy according to Example 5 has very excellent hardness, wear resistance, and castability characteristics.
  • the high entropy alloy according to Comparative Example 5 showed excellent hardness and wear resistance, but had low fillability and non-uniform wear.
  • the high entropy alloy according to Comparative Example 5 has a very light characteristic with a small strain, a large amount of oxidation of aluminum occurs when manufactured by atmospheric casting, so that many bubbles and cracks may occur inside the casting.
  • the cast iron according to Comparative Example 4 has relatively low fillability and does not have high entropy.
  • the high entropy alloy according to Comparative Example 6 has low fillability, low hardness, and very irregular wear.

Abstract

A high-entropy alloy according to the present embodiment is a high-entropy alloy having an iron-rich phase and a copper-rich phase, and comprises a common complete solid solution metal that is completely solid-solved in iron and copper respectively. For example, the common complete solid solution metal may comprise nickel.

Description

고엔트로피 합금 및 이의 제조 방법High entropy alloy and manufacturing method thereof
본 실시예는 고엔트로피 합금 및 이의 제조 방법에 관한 것으로서, 좀더 상세하게는, 조성 및 공정을 개선한 고엔트로피 합금 및 이의 제조 방법에 관한 것이다. The present embodiment relates to a high-entropy alloy and a method for manufacturing the same, and more particularly, to a high-entropy alloy with improved composition and process, and a method for manufacturing the same.
다양한 산업의 발전에 따라 단일 소재의 특성을 넘어 상반된 특성을 동시에 나타낼 수 있는 소재의 개발이 요구되고 있다. 그리고 환경을 보호하기 위한 규제로 인하여 자동차 연비, 전자 장비의 효율 등을 향상할 수 있도록 소재를 경량화하는 것이 요구된다. With the development of various industries, it is required to develop materials that can simultaneously exhibit opposite properties beyond the properties of a single material. In addition, due to regulations for protecting the environment, it is required to reduce the weight of materials to improve fuel efficiency of automobiles, efficiency of electronic equipment, and the like.
예를 들어, 고강도, 내마모성을 가지는 미세 부품을 제조하기 위하여 서로 상반된 특성인 우수한 가공성 및 강도를 동시에 구현하며 높은 유동성 및 젖음성을 가지는 고엔트로피 합금이 개발되었다. 일반적으로 고엔트로피 합금은 일정량 이상의 원소를 복수로 포함하여 높은 혼합 엔트로피를 가지는 면심 입방 구조(FCC) 또는 체심 입방 구조(BCC)의 단상 조직을 가지는 합금이다.For example, in order to manufacture micro-parts having high strength and wear resistance, a high-entropy alloy having high fluidity and wettability while simultaneously implementing opposing characteristics, such as excellent workability and strength, has been developed. In general, a high-entropy alloy is an alloy having a single-phase structure of a face-centered cubic structure (FCC) or a body-centered cubic structure (BCC) having a high mixed entropy by including a plurality of elements in a predetermined amount or more.
그런데 종래의 고엔트로피 합금은 서로 다른 이중상이 동등 비율로 위치하여 이들의 전위차 및 용융점 차이에 의하여 갈바닉 부식에 취약하며, 주조 공정 시에 편석이 발생하거나 열간 압연 공정 시에 저온상의 추출 또는 균열 발생이 발생하여 판재로 제조하는 데 어려움이 있었다. 이와 같이 내부식성이 우수하지 않으며, 주조성 및 가공성이 우수하지 않아 미세 부품을 제조하는 데 어려움이 있었다. However, the conventional high-entropy alloy is vulnerable to galvanic corrosion due to the difference in potential and melting point because different double phases are located in equal ratios, and segregation occurs during the casting process or extraction or cracking of the low-temperature phase occurs during the hot rolling process. There was a difficulty in manufacturing it as a plate material. As such, the corrosion resistance is not excellent, and the castability and workability are not excellent, so it is difficult to manufacture the fine parts.
본 실시예는 우수한 강도 및 내마모성을 가지면서도 우수한 내부식성, 주조성 및 가공성을 가지는 고엔트로피 합금 및 이의 제조 방법을 제공하고자 한다.The present embodiment is intended to provide a high-entropy alloy having excellent strength and wear resistance while having excellent corrosion resistance, castability and workability, and a method for manufacturing the same.
특히, 조성 변화에 따라 다양한 특성을 가질 수 있으며 우수한 생산성을 가지거나 간단한 제조 공정에 의하여 제조될 수 있는 고엔트로피 합금 및 이의 제조 방법을 제공하고자 한다.In particular, an object of the present invention is to provide a high-entropy alloy that can have various properties according to a change in composition, have excellent productivity or can be manufactured by a simple manufacturing process, and a method for manufacturing the same.
본 실시예에 따른 고엔트로피 합금은, 철-리치상(Fe-rich phase) 및 구리-리치상(Cu-rich phase)을 가지는 고엔트로피 합금으로서, 철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함한다. 예를 들어, 상기 공통 전율 고용 금속이 니켈(Ni)을 포함할 수 있다. The high entropy alloy according to this embodiment is a high entropy alloy having an iron-rich phase and a copper-rich phase (Cu-rich phase). includes For example, the common conductivity solid solution metal may include nickel (Ni).
그리고 상기 고엔트로피 합금의 용융점을 저하시키는 용융점 저하 원소를 더 포함할 수 있다. 상기 용융점 저하 원소가 탄소(C), 실리콘(Si), 인(P) 및 망간(Mn) 중 적어도 하나를 포함할 수 있다. 또한, 상기 고엔트로피 합금이 알루미늄(Al), 망간(Mn) 및 크롬(Cr) 중 적어도 하나를 더 포함할 수 있다. And it may further include a melting point lowering element for lowering the melting point of the high entropy alloy. The melting point lowering element may include at least one of carbon (C), silicon (Si), phosphorus (P), and manganese (Mn). In addition, the high entropy alloy may further include at least one of aluminum (Al), manganese (Mn), and chromium (Cr).
예를 들어, 상기 고엔트로피 합금은 15 내지 80 at%의 철, 1 내지 30 at%의 구리, 1 내지 20 at%의 니켈, 5 내지 20 at%의 알루미늄, 0 내지 20 at%의 망간, 0 내지 15 at%의 크롬, 0 내지 5 at%의 탄소, 0 내지 2 at%의 실리콘, 0 내지 2 at%의 인, 그 외 불가피한 불순물을 포함할 수 잇다. For example, the high entropy alloy may be 15 to 80 at% iron, 1 to 30 at% copper, 1 to 20 at% nickel, 5 to 20 at% aluminum, 0 to 20 at% manganese, 0 to 15 at% chromium, 0 to 5 at% carbon, 0 to 2 at% silicon, 0 to 2 at% phosphorus, and other unavoidable impurities.
상기 철-리치상 내의 상기 구리의 함량이 1 내지 30 at%일 수 있다. The content of the copper in the iron-rich phase may be 1 to 30 at%.
상기 철-리치상이 상기 구리-리치상보다 많은 부피 비율로 포함되어 주요 상(main phase)으로 존재하고 상기 구리-리치상이 부분적으로 존재할 수 있다. The iron-rich phase may be included in a larger volume ratio than the copper-rich phase to exist as a main phase, and the copper-rich phase may be partially present.
일 실시예에 따른 고엔트로피 합금의 제조 방법은, 용융점 저하 원소 및 철을 포함하는 철 포함 물질을 용융하여 용탕을 형성하는, 철 용융 단계; 상기 용탕에 상기 철 포함 물질보다 높은 용융점을 가지는 고용융점 원소를 투입하여 용융하는, 고용융점 물질 용융 단계; 상기 용탕에 구리를 투입하여 용융하는, 구리 용융 단계; 및 구리보다 낮은 용융점을 가지는 저용융점 물질을 투입하여 용융하는, 저용융점 물질 용융 단계를 포함한다. A method of manufacturing a high entropy alloy according to an embodiment includes: melting an iron-containing material including a melting point lowering element and iron to form a molten metal; A high melting point material melting step of melting by adding a high melting point element having a melting point higher than that of the iron-containing material into the molten metal; A copper melting step of melting by putting copper into the molten metal; and melting a low-melting-point material by inputting and melting a low-melting-point material having a melting point lower than that of copper.
상기 철 포함 물질이 선철을 포함할 수 있다. The iron-containing material may include pig iron.
상기 용융점 저하 원소가 탄소, 실리콘, 인 및 망간 중 적어도 하나를 포함할 수 있다. The melting point lowering element may include at least one of carbon, silicon, phosphorus, and manganese.
상기 철 용융 단계의 제1 용융 온도, 상기 고용융점 물질 용융 단계의 제2 용융 온도, 상기 구리 용융 단계의 제3 용융 온도 및 온도보다 상기 저용융점 물질 용융 단계의 제4 용융 온도 중 적어도 두 개가 서로 다른 온도를 가질 수 있다. 여기서, 상기 제1 용융 온도보다 상기 제2 용융 온도가 더 높을 수 있고, 상기 제2 용융 온도보다 상기 제3 용융 온도가 낮을 수 있고, 상기 제3 용융 온도보다 상기 제4 용융 온도가 낮을 수 있다. At least two of the first melting temperature of the iron melting step, the second melting temperature of the high melting point material melting step, the third melting temperature of the copper melting step and the fourth melting temperature of the low melting point material melting step than the temperature are mutually It may have a different temperature. Here, the second melting temperature may be higher than the first melting temperature, the third melting temperature may be lower than the second melting temperature, and the fourth melting temperature may be lower than the third melting temperature. .
상기 고용융점 물질이 철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함할 수 있다. 또는, 상기 고용융점 물질이 니켈 및 크롬 중 적어도 하나를 포함할 수 있다. The high melting point material may include a common conductivity solid solution metal in which iron and copper are each electrified. Alternatively, the high melting point material may include at least one of nickel and chromium.
상기 저용융점 물질이 알루미늄을 포함할 수 있다. 상기 저용융점 물질 용융 단계에서는, 알루미늄 잉곳을 상기 용탕의 바닥 부분으로 밀어 넣어 용융할 수 있다. The low melting point material may include aluminum. In the melting of the low-melting-point material, the aluminum ingot may be melted by pushing it into the bottom portion of the molten metal.
다른 실시예에 따른 고엔트로피 합금의 제조 방법은, 철, 구리, 그리고 철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함하는 복수의 물질을 투입하는 기본 단계; 진공 후 불활성 기체 분위기를 형성하는 단계; 및 상기 복수의 물질을 용융하는 용융 단계를 포함할 수 있다. A method of manufacturing a high-entropy alloy according to another embodiment includes the basic steps of adding a plurality of materials including iron, copper, and a common conductivity solid-solute metal in which the iron and copper are each electrified; forming an inert gas atmosphere after vacuum; and a melting step of melting the plurality of materials.
상기 복수의 물질이 탄소, 실리콘, 인, 알루미늄, 망간 및 크롬 중 적어도 하나를 더 포함할 수 있고, 상기 공통 전율 고용 금속이 니켈을 포함할 수 있다. The plurality of materials may further include at least one of carbon, silicon, phosphorus, aluminum, manganese, and chromium, and the common conductivity solid solution metal may include nickel.
상기 철이 선철 또는 순철을 포함할 수 있다. The iron may include pig iron or pure iron.
본 실시예에 따르면, 철-리치상 및 구리-리치상의 이중상 구조를 가지는 고엔트로피 합금에서 공통 전율 고용 금속을 포함하여 철-리치상과 구리-리치상의 전위차 및 용융점 차이를 감소시킬 수 있다. 이에 의하여 갈바닉 부식을 방지 또는 최소화하고 주조 시 편석 형성, 열간 압연 시 저온상의 추출 또는 균열 발생을 효과적으로 방지할 수 있다. 이에 따라 강도, 유동성, 젖음성, 내부식성, 가공성, 주조성을 모두 향상할 수 있다. 그리고 상대적으로 고가인 구리 함량을 낮추고 상대적으로 저가인 철의 함량을 높여 재료 비용을 절감할 수 있다. 이때, 조성의 변화만으로 원하는 다양한 특성을 가지는 고엔트로피 합금을 제조할 수 있어 생산성 및 품질을 향상할 수 있다.According to the present embodiment, the potential difference and the melting point difference between the iron-rich phase and the copper-rich phase may be reduced by including the common conductivity solid solution metal in the high entropy alloy having the dual phase structure of the iron-rich phase and the copper-rich phase. Thereby, galvanic corrosion can be prevented or minimized, and segregation formation during casting, extraction of a low-temperature phase during hot rolling, or cracking can be effectively prevented. Accordingly, strength, fluidity, wettability, corrosion resistance, workability, and castability can all be improved. In addition, the material cost can be reduced by lowering the relatively expensive copper content and increasing the relatively inexpensive iron content. In this case, it is possible to manufacture a high-entropy alloy having various desired properties only by changing the composition, thereby improving productivity and quality.
특히, 본 실시예에 따른 고엔트로피 합금은 주조성이 우수하므로 2mm 메쉬 채널을 채울 수 있어 미세화 및 경량화가 필요한 주조 부품에 적용할 수 있으며 디자인 자유도를 크게 하여 다양한 성능을 개선할 수 있다. 이러한 고엔트로피 합금은 투입 순서 및 용융 온도를 조절하여 대기 조건에서 용융되어 제조되어 생산성을 향상할 수도 있고, 진공을 이용한 공정에서 용융되어 제조되어 제조 공정을 단순화할 수도 있다. In particular, since the high-entropy alloy according to this embodiment has excellent castability, it can fill a 2mm mesh channel, so it can be applied to casting parts that require miniaturization and weight reduction, and various performances can be improved by increasing the degree of design freedom. Such a high entropy alloy may be manufactured by melting under atmospheric conditions by controlling the input sequence and melting temperature to improve productivity, or may be manufactured by melting in a process using a vacuum to simplify the manufacturing process.
도 1은 본 발명의 일 실시예에 따른 고엔트로피 합금의 제조 방법을 도시한 흐름도이다. 1 is a flowchart illustrating a method of manufacturing a high entropy alloy according to an embodiment of the present invention.
도 2은 본 발명의 다른 실시예에 따른 고엔트로피 합금의 제조 방법을 도시한 흐름도이다. 2 is a flowchart illustrating a method of manufacturing a high entropy alloy according to another embodiment of the present invention.
도 3은 실시예 1에 따른 고엔트로피 합금의 전계 방사형 주사 전자 현미경(field emission scanning electron microscope, FE-SEM) 사진이다. 3 is a field emission scanning electron microscope (FE-SEM) photograph of the high entropy alloy according to Example 1. FIG.
도 4는 실시예 1에 따른 고엔트로피 합금에 염수 분무 테스트를 수행한 사진이다. 4 is a photograph of performing a salt spray test on the high entropy alloy according to Example 1.
도 5는 비교예 1에 따른 고엔트로피 합금에 염수 분무 테스트를 수행한 사진이다.5 is a photograph of performing a salt spray test on the high entropy alloy according to Comparative Example 1.
도 6는 실시예 2에 따른 고엔트로피 합금에 염수 분무 테스트를 수행한 사진이다. 6 is a photograph of performing a salt spray test on the high entropy alloy according to Example 2.
도 7은 실시예 3에 따른 고엔트로피 합금에 염수 분무 테스트를 수행한 사진이다. 7 is a photograph of performing a salt spray test on the high entropy alloy according to Example 3.
도 8은 실시예 1에 따른 고엔트로피 합금을 가공하여 형성된 판재의 사진이다. 8 is a photograph of a plate material formed by processing the high entropy alloy according to Example 1.
도 9는 실시예 1에 따른 고엔트로피 합금을 이용하여 제조된 1.7mm의 두께의 올담링의 사진이다. 9 is a photograph of an Oldham ring having a thickness of 1.7 mm manufactured using the high entropy alloy according to Example 1.
도 10의 (a) 및 (b)는 각기 실시예 5 및 6에 따른 고엔트로피 합금에 2mm 메쉬 채널 평가를 수행한 결과를 촬영한 사진이다. 10 (a) and (b) are photographs of the results of performing 2mm mesh channel evaluation on the high-entropy alloy according to Examples 5 and 6, respectively.
도 11은 비교예 4에 따른 주철에 2mm 메쉬 채널 평가를 수행한 결과를 촬영한 사진이다. 11 is a photograph of the result of performing 2mm mesh channel evaluation on cast iron according to Comparative Example 4.
도 12의 (a) 및 (b)는 각기 실시예 5 및 6에 따른 고엔트로피 합금에 내마모성 평가를 수행한 결과를 촬영한 사진이다. 12 (a) and (b) are photographs of the results of performing abrasion resistance evaluation on the high entropy alloy according to Examples 5 and 6, respectively.
도 13의 (a), (b) 및 (c)는 각기 비교예 4, 5 및 6에 따른 주철 또는 고엔트로피 합금에 내마모성 평가를 수행한 결과를 촬영한 사진이다. 13 (a), (b) and (c) are photographs of the results of performing wear resistance evaluation on cast iron or high entropy alloy according to Comparative Examples 4, 5 and 6, respectively.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 고엔트로피 합금 및 이의 제조 방법을 상세하게 설명한다. Hereinafter, a high-entropy alloy and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 명세서에서 고엔트로피 합금이라 함은 저엔트로피 합금과의 구별을 위하여 사용된 용어로서, 일정 수준 이상의 엔트로피를 가지는 합금을 통칭할 수 있다. 예를 들어, 본 명세서에서 고엔트로피 합금이라 함은 1.5R 이상의 엔트로피를 가져 일반적으로 고엔트로피 합금(high entropy alloy)이라 칭해지는 합금 뿐만 아니라 1.0R 이상의 엔트로피를 가져 일반적으로 중엔트로피 합금(medium entropy alloy)이라 칭해지는 합금을 포함할 수 있다. 즉, 본 실시예에 따른 고엔트로피 합금이라 함은 1.0R 이상의 엔트로피를 가질 수 있다. In the present specification, the high-entropy alloy is a term used to distinguish it from a low-entropy alloy, and may collectively refer to an alloy having an entropy of a certain level or higher. For example, in the present specification, the high-entropy alloy has an entropy of 1.5R or more, and generally has an entropy of 1.0R or more as well as an alloy called a high entropy alloy (high entropy alloy). ) may include an alloy called That is, the high-entropy alloy according to the present embodiment may have an entropy of 1.0R or more.
본 실시예에 따른 고엔트로피 합금은, 철-리치상 및 구리-리치상을 가지는 고엔트로피 합금으로서, 철 및 구리에 각기 전율 고용되거나 철 및 구리 각각과 완전한 고용체를 형성하는 공통 전율 고용 금속을 포함할 수 있다. 예를 들어, 공통 전율 고용 금속이 니켈(Ni)을 포함할 수 있다. 본 명세서에서 철-리치상은 이를 구성하는 복수의 물질(일 예로, 원소) 중에서 철의 함량(일 예로, at%)이 가장 높은 상을 의미할 수 있고, 구리-리치상은 이를 구성하는 복수의 물질(일 예로, 원소) 중에서 철의 함량(일 예로, at%)이 가장 높은 상을 의미할 수 있다. The high-entropy alloy according to the present embodiment is a high-entropy alloy having an iron-rich phase and a copper-rich phase, and includes a common electrical conductivity solid solution metal that is electrically dissolved in iron and copper or forms a complete solid solution with each of iron and copper. can do. For example, the common conductivity solid solution metal may include nickel (Ni). In the present specification, the iron-rich phase may mean a phase having the highest iron content (eg, at%) among a plurality of materials (eg, elements) constituting the same, and the copper-rich phase is a plurality of materials constituting the same. It may refer to a phase having the highest iron content (eg, at%) among (eg, elements).
그리고 고엔트로피 합금의 다양한 특성을 향상하기 위하여 고엔트로피 합금이 알루미늄, 망간, 크롬 중 적어도 하나를 더 포함할 수 있다. 그 외 고엔트로피 합금을 용융점을 저하시키는 용융점 저하 원소(용융점 저하 물질)를 더 포함할 수 있는데, 용융점 저하 원소가 탄소, 실리콘, 인, 망간 등을 포함할 수 있다.And in order to improve various properties of the high-entropy alloy, the high-entropy alloy may further include at least one of aluminum, manganese, and chromium. In addition, it may further include a melting point lowering element (melting point lowering material) for lowering the melting point of the high entropy alloy, the melting point lowering element may include carbon, silicon, phosphorus, manganese, and the like.
철은 가격이 저렴하며 강도, 연성 등이 우수하며 상 구조에 따라 강도와 경도가 크게 변화하므로 고엔트로피 합금이 원하는 특성을 가지도록 쉽게 조절할 수 있다. 구리는 용융점이 낮고 전기 전도도 및 열 전도도가 우수하다. 그리고 구리는 철과 혼합되지 않고 철-리치상 및 구리-리치상의 이중상 구조를 형성하여 철의 특성 및 구리의 특성을 함께 향상할 수 있는 고엔트로피 합금을 형성하는 데 적합하다. Iron is inexpensive and has excellent strength and ductility, and since strength and hardness vary greatly depending on the phase structure, high entropy alloys can be easily adjusted to have desired properties. Copper has a low melting point and has good electrical and thermal conductivity. In addition, copper is not mixed with iron and forms a double-phase structure of an iron-rich phase and a copper-rich phase, and thus is suitable for forming a high-entropy alloy capable of improving both iron and copper properties.
이와 같이 본 실시예에 따른 고엔트로피 합금은 서로 잘 혼합되지 않는 철과 구리를 포함하므로 다른 금속 등을 포함하지 않으면 서로 혼합되지 않아 합금을 형성하기 어렵다. 이에 철과 구리의 상 분리를 방지하기 위하여 철 및 구리 각각에 일정 이상의 고용도를 가지는 알루미늄, 망간 등을 포함하여 합금을 형성할 수 있다. 이에 따라 고엔트로피 합금은 철-리치상 및 구리-리치상을 구비하되 철-리치상 및 구리-리치상의 비율은 철 및 구리의 함량에 따라 달라질 수 있다. As described above, since the high entropy alloy according to the present embodiment contains iron and copper that do not mix well with each other, unless other metals are included, they do not mix with each other, making it difficult to form an alloy. Accordingly, in order to prevent phase separation of iron and copper, an alloy including aluminum, manganese, etc. having a predetermined or higher solubility in each of iron and copper may be formed. Accordingly, the high-entropy alloy has an iron-rich phase and a copper-rich phase, but the ratio of the iron-rich phase and the copper-rich phase may vary depending on the content of iron and copper.
이에 본 실시예에서는 철과 완전 고용체를 형성하거나 철에 높은 고용도를 가지는 구리와 완전 고용체를 형성하거나 구리에 높은 고용도를 가지는 공용 전율 고용 금속을 포함할 수 있다. 예를 들어, 구리와 전율 고용되거나 높은 고용도를 가지고 철과 전율 고용되거나 높은 고용도를 가지는 니켈을 공통 전율 고용 금속으로 사용할 수 있다. 이와 같이 공용 전율 고용 금속(예를 들어, 니켈)을 포함하면 철-리치상 및 구리-리치상의 이중상 구조를 가지는 고엔트로피 합금에서 철-리치상 내 구리 고용도를 증가시키고 구리-리치상 내 철 고용도를 증가시켜 철-리치상과 구리-리치상의 전위차 및 용융점 차이를 감소시킬 수 있다. 이에 의하여 철-리치상과 구리-리치상 사이의 전위차에 의하여 발생할 수 있는 갈바닉 부식을 방지 또는 최소화할 수 있다. 그리고 철-리치상과 구리-리치상의 용융점 차이에 의하여 주조 시 발생할 수 있는 편석 형성, 열간 압연 시 저온상의 추출 또는 균열 발생을 효과적으로 방지할 수 있다. 이에 따라 주조 또는 열간 압연이 용이하다. 더욱이, 니켈은 내부식성이 우수하여 고엔트로피 합금의 내부식성을 향상할 수 있다. Accordingly, in this embodiment, it may form a complete solid solution with iron, form a perfect solid solution with copper having a high solid solubility in iron, or include a common conductivity solid solution metal having a high solid solubility in copper. For example, nickel having a high solubility in copper or a high solid solubility in iron, or nickel having a high solid solubility may be used as a common solid solution metal. As such, the inclusion of a common conductivity solid solution metal (eg, nickel) increases the solubility of copper in the iron-rich phase in a high entropy alloy having a dual-phase structure of an iron-rich phase and a copper-rich phase, and increases the solubility of copper in the copper-rich phase. By increasing the solubility, the potential difference and the melting point difference between the iron-rich phase and the copper-rich phase can be reduced. Accordingly, it is possible to prevent or minimize galvanic corrosion that may occur due to a potential difference between the iron-rich phase and the copper-rich phase. In addition, it is possible to effectively prevent segregation formation that may occur during casting due to the difference in melting point between the iron-rich phase and the copper-rich phase, and extraction or cracking of the low-temperature phase during hot rolling. Accordingly, casting or hot rolling is easy. Moreover, nickel has excellent corrosion resistance, which can improve the corrosion resistance of high-entropy alloys.
이와 같이 니켈을 포함하여 철-리치상 내의 구리의 고용도가 증가하여 고엔트로피 합금의 전체에서 구리 함량을 저감할 수 있다. 이에 따라 상대적으로 고가인 구리 함량을 낮추고 상대적으로 저가인 철의 함량을 높여 재료 비용을 절감할 수 있다. 그리고 고엔트로피 합금을 제조하는 공정에서의 용융 온도를 낮출 수 있고 내부식성을 향상할 수 있다. As described above, the high solubility of copper in the iron-rich phase including nickel increases, thereby reducing the copper content in the entire high-entropy alloy. Accordingly, it is possible to reduce the material cost by lowering the relatively expensive copper content and increasing the relatively inexpensive iron content. In addition, it is possible to lower the melting temperature in the process of manufacturing a high entropy alloy and improve corrosion resistance.
본 실시예에서는 철-리치상 및 구리-리치상을 포함하는 이중상 구조를 가지되 이들이 비율이 동등한 비율이 아닐 수 있다. 예를 들어, 철-리치상이 구리-리치상보다 많은 부피 비율로 포함되어 주요 상(main phase)으로 존재하고 구리-리치상이 부분적으로 존재하여 편석 형상을 방지할 수 있어 높은 강도, 가공성, 주조성, 젖음성을 가져 고엔트로피 합금이 균일한 조성을 가질 수 있다. In the present embodiment, a dual-phase structure including an iron-rich phase and a copper-rich phase may be provided, but the ratios may not be equal. For example, the iron-rich phase is contained in a larger volume ratio than the copper-rich phase and is present as the main phase, and the copper-rich phase is partially present to prevent segregation, resulting in high strength, workability, and castability. , the high entropy alloy may have a uniform composition due to wettability.
예를 들어, 철-리치상 내의 구리의 함량이 5 내지 30 at%(일 예로, 10 내지 25at%)일 수 있다. 이는 고엔트로피 합금에 포함되는 니켈의 함량을 고려한 것이나 본 발명이 이에 한정되는 것은 아니며 다양한 값을 가질 수 있다. 참조로, 니켈을 포함하지 않는 철-리치상 내의 구리의 함량이 5 at% 미만(일 예로, 3 at% 이하)일 수 있다.For example, the content of copper in the iron-rich phase may be 5 to 30 at% (eg, 10 to 25 at%). This is in consideration of the content of nickel included in the high entropy alloy, but the present invention is not limited thereto and may have various values. For reference, the content of copper in the iron-rich phase that does not include nickel may be less than 5 at% (for example, 3 at% or less).
그리고 알루미늄은 경량 원소(경랑 물질)이며 저용융점 원소(저용융점 물질)로서 철에 혼합되어 체심 입방 구조를 형성하도록 한다. 알루미늄은 경도, 내마모성, 강도 등을 개선하는 한편 연성을 저감할 수 있다. 망간은 철에 포함되면 강도와 연성을 동시에 향상할 수 있다. 그리고 망간은 용융점이 철에 비하여 낮으며 고엔트로피 합금의 용융점을 저하시키는 일종의 용융점 저하 원소로 작용할 수 있다. 이에 따라 고엔트로피 합금의 유동성 및 주조성을 향상할 수 있다. 크롬은 철에 포함되면 철 또는 철-리치상에 크롬 산화막을 형성하여 추가적으로 내부식성을 향상할 수 있다. 크롬은 고엔트로피 합금에 포함될 수도 있고 포함되지 않을 수 있다.In addition, aluminum is a lightweight element (hard material) and is mixed with iron as a low melting point element (low melting point material) to form a body-centered cubic structure. Aluminum can improve hardness, abrasion resistance, strength, etc. while reducing ductility. When manganese is included in iron, strength and ductility can be improved at the same time. And manganese has a lower melting point than iron and can act as a kind of melting point lowering element that lowers the melting point of a high entropy alloy. Accordingly, it is possible to improve the fluidity and castability of the high entropy alloy. When chromium is included in iron, it is possible to additionally improve corrosion resistance by forming a chromium oxide film on iron or iron-rich. Chromium may or may not be included in the high entropy alloy.
그리고 탄소, 실리콘, 인, 망간 등의 용융점 저하 원소에 의하여 용융점을 저하시키면 고엔트로피 합금의 제조 공정 시 우수한 유동성 및 젖음성, 낮은 고온 점도를 가져 주조성을 향상할 수 있다. 그리고 용탕 제조 시의 용융 온도가 낮아 구리, 알루미늄 등의 저용융점 물질을 함유하더라도 대기 조건에서 주조할 수 있다. 이에 따라 고엔트로피 합금의 품질을 향상할 수 있다. 여기서, 저용융점 원소로 실리콘이 포함되면 주조성을 향상할 수 있고 산화물을 형성하여 내부식성을 향상할 수 있다. 저용융점 원소로 탄소가 포함되면 용융점을 효과적으로 낮출 수 있다. 인을 저용융점 원소로 포함하면 적은 양으로도 용융점을 효과적으로 낮출 수 있다. In addition, when the melting point is lowered by a melting point lowering element such as carbon, silicon, phosphorus, or manganese, it has excellent fluidity and wettability and low high temperature viscosity during the manufacturing process of a high entropy alloy to improve castability. In addition, since the melting temperature during the production of the molten metal is low, even if it contains a low-melting-point material such as copper or aluminum, it can be cast under atmospheric conditions. Accordingly, the quality of the high-entropy alloy can be improved. Here, when silicon is included as a low melting point element, castability can be improved and corrosion resistance can be improved by forming an oxide. When carbon is included as a low-melting-point element, the melting point can be effectively lowered. If phosphorus is included as a low-melting-point element, the melting point can be effectively lowered even with a small amount.
예를 들어, 고엔트로피 합금은 15 내지 80 at%의 철, 1 내지 30 at%의 구리, 1 내지 20 at%의 니켈, 5 내지 20 at%의 알루미늄, 0 내지 20 at%(예를 들어, 0.1 내지 20 at%, 일 예로, 5 내지 20 at%)의 망간, 0 내지 15 at%(예를 들어, 2 내지 15 at%)의 크롬, 0 내지 5 at%(일 예로, 3 내지 5 at%)의 탄소, 0 내지 2 at%의 실리콘(예를 들어, 1 내지 2 at%), 0 내지 2 at%(일 예로, 0 내지 1 at%)의 인, 그 외 원소 또는 불가피한 불순물을 포함할 수 있다. For example, the high entropy alloy may be 15 to 80 at% iron, 1 to 30 at% copper, 1 to 20 at% nickel, 5 to 20 at% aluminum, 0 to 20 at% (e.g., 0.1 to 20 at%, eg, 5 to 20 at%) manganese, 0 to 15 at% (eg, 2 to 15 at%) chromium, 0 to 5 at% (eg, 3 to 5 at%) %) carbon, 0 to 2 at% silicon (eg 1 to 2 at%), 0 to 2 at% (eg 0 to 1 at%) phosphorus, other elements or unavoidable impurities can do.
좀더 구체적으로, 철의 함량이 15 at% 미만이면 강도, 연성 등이 저하될 수 있고, 철의 함량이 80 at%를 초과하면 다른 금속의 함량이 적어져서 고엔트로피 합금에서 다양한 특성을 향상하기 어려울 수 있다. 구리의 함량이 1 at% 미만이면 구리에 의한 용융점 저하, 전기 전도도 또는 열 전도도 향상 효과가 충분하지 않을 수 있고, 구리의 함량이 30 at%를 초과하면 다른 금속의 함량이 적어져서 고엔트로피 합금에서 다양한 특성을 향상하기 어려울 수 있다.More specifically, if the content of iron is less than 15 at%, strength, ductility, etc. may be reduced, and if the content of iron exceeds 80 at%, the content of other metals decreases, making it difficult to improve various properties in a high entropy alloy. can If the content of copper is less than 1 at%, the effect of lowering the melting point and improving electrical conductivity or thermal conductivity by copper may not be sufficient. It can be difficult to improve various properties.
니켈의 함량이 1 at% 미만이면 니켈에 의한 상술한 효과가 충분하지 않을 수 있고, 니켈의 함량이 20 at%를 초과하면 철, 구리 등의 함량이 충분하지 않아 고엔트로피 합금에서 다양한 특성을 향상하기 어려울 수 있다. If the content of nickel is less than 1 at%, the above-described effect by nickel may not be sufficient, and if the content of nickel exceeds 20 at%, the content of iron, copper, etc. is not sufficient, improving various properties in high entropy alloys It can be difficult to do.
알루미늄의 함량이 5 at% 미만이면 알루미늄에 의한 효과가 충분하지 않을 수 있고, 알루미늄의 함량이 20 at%를 초과하면 철, 구리 등의 함량이 충분하지 않아 고엔트로피 합금에서 다양한 특성을 향상하기 어려울 수 있고 고엔트로피 합금의 연성이 저감될 수 있다. 망간은 고엔트로피 합금에 포함될 수도 있고 포함되지 않을 수 있다. 망간이 고엔트로피 합금에 포함될 경우에, 일 예로, 망간이 0.1 내지 20 at%(일 예로, 5 내지 20 at%)로 포함될 수 있다. 이는 망간에 의한 효과를 향상하면서 철, 구리 등의 함량을 충분하게 유지하기 위한 것이다. 크롬이 고엔트로피 합금에 포함될 수도 있고 포함되지 않을 수 있다. 크롬이 고엔트로피 합금에 포함될 경우, 일 예로, 크롬이 2 at% 내지 15 at%로 포함될 수 있다. 이는 크롬에 의한 효과를 향상하면서 철, 구리 등의 함량을 충분하게 유지하기 위한 것이다. If the content of aluminum is less than 5 at%, the effect of aluminum may not be sufficient. and the ductility of the high entropy alloy may be reduced. Manganese may or may not be included in the high entropy alloy. When manganese is included in the high entropy alloy, for example, manganese may be included in an amount of 0.1 to 20 at% (eg, 5 to 20 at%). This is to improve the effect of manganese while sufficiently maintaining the content of iron, copper, and the like. Chromium may or may not be included in the high entropy alloy. When chromium is included in the high entropy alloy, for example, chromium may be included in an amount of 2 at% to 15 at%. This is to improve the effect of chromium while sufficiently maintaining the content of iron, copper, and the like.
그리고 실리콘의 함량이 2 at%를 초과하면, 고엔트로피 합금 내에 석출상을 형성하여 주조품에 균열(crack)일 발생할 수 있다. 이때, 실리콘이 1 at% 이상으로 포함되면 실리콘에 의한 효과를 충분하게 구현할 수 있다. 탄소의 함량이 5 at%를 초과하면, 철, 구리 함량 등을 충분하게 유지하기 어려울 수 있고 고엔트로피 합금의 용융점이 높아질 수 있다. 고엔트로피 합금이 탄소를 포함하는 경우에는, 탄소의 함량이 3 내지 5 at%일 때 용융점을 효과적으로 저하시킬 수 있다. 그리고 인은 용융점을 효과적으로 낮추면서도 다른 특성에 큰 영향을 미치지 않도록 2 at% 이하로 포함될 수 있다. And, when the content of silicon exceeds 2 at%, a precipitate may be formed in the high entropy alloy to cause cracks in the casting. At this time, when silicon is included in an amount of 1 at% or more, the effect of silicon can be sufficiently realized. If the content of carbon exceeds 5 at%, it may be difficult to sufficiently maintain the content of iron, copper, etc., and the melting point of the high entropy alloy may be increased. When the high-entropy alloy contains carbon, the melting point can be effectively lowered when the carbon content is 3 to 5 at%. And phosphorus may be included in an amount of 2 at% or less so as not to significantly affect other properties while effectively lowering the melting point.
그러나 본 발명이 상술한 원소 및 함량에 한정되는 것은 아니다. 따라서 상술한 기재한 원소 또는 물질 이외의 원소 또는 물질을 더 포함할 수 있고, 각 원소 또는 물질의 함량은 원하는 고엔트로피 합금의 특성을 고려하여 다양하게 변형될 수 있다. However, the present invention is not limited to the elements and contents described above. Accordingly, elements or materials other than the above-described elements or materials may be further included, and the content of each element or material may be variously modified in consideration of the characteristics of a desired high-entropy alloy.
본 실시예에 따른 고엔트로피 합금은 다양한 제품의 제조에 사용될 수 있다. 즉, 본 실시예에 따른 고엔트로피 합금은 우수한 유동성 및 구리에 의한 젖음성을 모두 가져 주철보다 주조성이 우수하므로 2mm 메쉬 채널을 채울 수 있어 미세화가 필요한 주조 부품에 적용할 수 있다. 그리고 경량화가 필요한 부품을 얇게 형성하는 것에 의하여 경량화를 구현할 수도 있다. 또한, 정밀한 디자인의 주조 가능성에 의하여 주조품의 디자인 자유도를 크게 하여 다양한 성능을 개선할 수 있다. 이때, 조성의 변화만으로 원하는 다양한 특성을 가지는 고엔트로피 합금을 제조할 수 있다. The high entropy alloy according to the present embodiment may be used in the manufacture of various products. That is, the high-entropy alloy according to this embodiment has both excellent fluidity and copper wettability, and thus has superior castability than cast iron, so it can fill a 2mm mesh channel and can be applied to cast parts requiring refinement. In addition, weight reduction may be realized by thinly forming parts that require weight reduction. In addition, various performances can be improved by increasing the degree of freedom in the design of the cast product due to the castability of the precise design. In this case, it is possible to manufacture a high-entropy alloy having various desired properties only by changing the composition.
예를 들어, 본 실시예에 따른 고엔트로피 합금을 이용하여, 스크롤 압축기에서 스크롤의 회전을 방지하고 좌우 공전만 가능하게 하는 올담링(Oldam Ring)을 제조할 수 있다. 올담링은 동작 시 소음을 낮추고 효율을 향상하기 위하여 경량화가 필요하다. 예를 들어, 올담링은 전체 중량이 100g 이하로 제조되어야 하며, 올담링에서 스크롤과 결합을 위하여 스크롤을 잡아주는 키 부분이 ±5mm 수준의 오차만을 가지도록 정밀하게 가공되어야 한다. 상술한 바와 같이 본 실시예에 따른 고엔트로피 합금은 2mm 메쉬 채널을 채울 수 있는 주조성을 가져 2mm 이하의 두께의 올담링의 제작이 가능하며 비중 또한 7.2 이하로 조절이 가능하여 일반적인 철 합금으로 제작한 올담링보다 경량화할 수 있다. For example, by using the high entropy alloy according to the present embodiment, it is possible to manufacture an Oldam Ring that prevents the scroll from rotating in the scroll compressor and enables only left and right revolutions. Oldham Ring needs to be lightweight in order to reduce noise and improve efficiency during operation. For example, the Oldham ring must be manufactured to weigh less than 100g, and the key part that holds the scroll in order to combine with the scroll in the Oldham ring must be precisely processed to have an error of only ±5mm. As described above, the high-entropy alloy according to this embodiment has castability that can fill the 2mm mesh channel, so it is possible to manufacture an Oldham ring with a thickness of 2mm or less, and the specific gravity can also be adjusted to 7.2 or less, so it is made of a general iron alloy. It can be lighter than Oldham Ring.
상술한 고엔트로피 합금의 제조 방법의 일 예를 도 1을 참조하여 상세하게 설명한다. 상술한 설명과 동일 또는 극히 유사한 부분에 대해서는 상세한 설명을 생략하고 서로 다른 부분에 대해서만 상세하게 설명한다. 고엔트로피 합금에 포함되는 물질의 함량 등은 상술한 설명의 함량 등을 참조한다. An example of a method of manufacturing the above-described high-entropy alloy will be described in detail with reference to FIG. 1 . A detailed description of the same or extremely similar parts to the above description will be omitted and only different parts will be described in detail. For the content and the like included in the high entropy alloy, refer to the content of the above description.
도 1은 본 발명의 일 실시예에 따른 고엔트로피 합금의 제조 방법을 도시한 흐름도이다. 1 is a flowchart illustrating a method of manufacturing a high entropy alloy according to an embodiment of the present invention.
도 1을 참조하면, 본 실시예에 따른 고엔트로피 합금의 제조 방법은, 철 용융 단계(S10), 고용융점 물질 용융 단계(S12), 균질화 단계(S14), 구리 용융 단계(S16), 저용융점 물질 용융 단계(S18) 및 불순물 제거 단계(S20)를 포함할 수 있다. 이러한 고엔트로피 합금의 제조 방법에서는, 진공 조건이 아닌 상압 조건(즉, 일반적인 대기압 조건, 즉 대기 조건)에서 고엔트로피 합금의 주조가 가능할 수 있다. 이를 좀더 상세하게 설명한다. Referring to FIG. 1 , the method of manufacturing a high entropy alloy according to this embodiment includes an iron melting step (S10), a high melting point material melting step (S12), a homogenizing step (S14), a copper melting step (S16), a low melting point It may include a material melting step (S18) and an impurity removal step (S20). In this method of manufacturing a high entropy alloy, it may be possible to cast a high entropy alloy under normal pressure conditions (ie, general atmospheric pressure conditions, ie atmospheric conditions) rather than vacuum conditions. This will be described in more detail.
먼저, 철 용융 단계(S10)에서는 철을 포함하는 철 포함 물질을 용탕 제조 장비에 투입하여 용융하는 것에 의하여 용탕을 형성할 수 있다. 용탕 제조 장비로는 알려진 다양한 장비가 사용될 수 있다. First, in the iron melting step ( S10 ), the molten metal may be formed by introducing an iron-containing material including iron into the molten metal manufacturing equipment and melting it. Various known equipment may be used as the molten metal manufacturing equipment.
본 실시예에서 철 포함 물질은 철과 용융점 저하 원소를 포함할 수 있다. 예를 들어, 철 포함 물질로 선철, 또는 선철 및 망간을 함께 사용할 수 있다. 선철은, 철과 함께, 탄소, 실리콘, 망간, 인 등의 용융점 저하 원소를 포함하므로, 선철을 그대로 사용하여 용융점 저하 원소를 함께 투입할 수 있다. 이때, 선철은 5 at%(예를 들어, 3 내지 5 at%)의 탄소, 1 내지 2 at%의 실리콘, 망간, 인 등을 포함할 수 있다. In this embodiment, the iron-containing material may include iron and a melting point lowering element. For example, pig iron or pig iron and manganese may be used together as the iron-containing material. Since pig iron contains a melting point lowering element such as carbon, silicon, manganese, and phosphorus along with iron, pig iron can be used as it is and the melting point lowering element can be added together. In this case, pig iron may include 5 at% (eg, 3 to 5 at%) of carbon, 1 to 2 at% of silicon, manganese, phosphorus, and the like.
이와 같이 철 용융 단계(S10)에서는 용융점 저하 원소를 철과 함께 용융하여 철의 용융점을 낮춰 제1 용융 온도를 효과적으로 낮출 수 있다. 특히, 철의 용융점을 기본적으로 저감하여 추후에 낮은 용융점을 가지는 알루미늄, 구리 등의 저용융점 원소를 첨가한 후에 수행되는 저용융점 물질 용융 단계(S18)에서의 제4 용융 온도를 낮출 수 있다. 이에 따라 저용융점 물질 용융 단계(S18)에서 알루미늄, 구리 등이 높은 온도(예를 들어, 1600도씨 이상, 일 예로, 1520도씨 초과)에서 산화되는 것을 방지할 수 있다. 이에 대해서는 추후에 저용융점 물질 용융 단계(S18)에서 좀더 상세하게 설명한다. As such, in the iron melting step ( S10 ), the melting point lowering element is melted together with iron to lower the melting point of iron to effectively lower the first melting temperature. In particular, by basically reducing the melting point of iron, the fourth melting temperature in the low melting point material melting step (S18) performed after adding a low melting point element such as aluminum or copper having a low melting point later can be lowered. Accordingly, it is possible to prevent oxidation of aluminum, copper, etc. at a high temperature (eg, 1600°C or higher, for example, more than 1520°C) in the low-melting-point material melting step (S18). This will be described in more detail later in the melting step (S18) of the low-melting-point material.
예를 들어, 철 용융 단계(S10)의 제1 용융 온도가 1450 내지 1520도씨일 수 있다. 이러한 온도 범위에서 철 포함 물질이 안정적으로 용융될 수 있으며 고온 공정에서의 부담을 저감할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 철 용융 단계(S10)의 용융 온도가 다양하게 변형될 수 있다. For example, the first melting temperature of the iron melting step (S10) may be 1450 to 1520 °C. In this temperature range, the iron-containing material can be stably melted, and the burden in the high-temperature process can be reduced. However, the present invention is not limited thereto, and the melting temperature of the iron melting step S10 may be variously modified.
이어서, 고용융점 물질 용융 단계(S12)에서는, 철 포함 물질보다 높은 용융점을 가지는 고용융점 물질을 용탕에 투입하여 용융할 수 있다. 고용융점 물질은 철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함할 수 있다. 예를 들어, 공통 전율 고용 금속으로 니켈을 포함할 수 있다. 또는, 고용융점 물질이 크롬 등을 더 포함할 수 있다. Subsequently, in the melting of the high melting point material ( S12 ), a high melting point material having a higher melting point than the iron-containing material may be introduced into the molten metal to be melted. The high-melting-point material may include a common conductivity-solute metal that is electrically-dissolved in iron and copper, respectively. For example, nickel may be included as the common conductivity solid solution metal. Alternatively, the high melting point material may further include chromium or the like.
이때, 고용융점 물질 용융 단계(S12)의 제2 용융 온도는 철 용융 단계(S10)의 제1 용융 온도보다 높을 수 있다. 예를 들어, 고용융점 물질 용융 단계(S12)의 제2 용융 온도가 1650 내지 1750도씨일 수 있다. 이러한 온도 범위에서 크롬, 니켈 등을 포함하는 물질이 안정적으로 용융될 수 있으며 고온 공정에 의한 부담을 저감할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 고용융점 물질 용융 단계(S12)의 제2 용융 온도가 다양하게 변형될 수 있다.In this case, the second melting temperature of the high melting point material melting step ( S12 ) may be higher than the first melting temperature of the iron melting step ( S10 ). For example, the second melting temperature of the high melting point material melting step (S12) may be 1650 to 1750 °C. In such a temperature range, a material including chromium, nickel, etc. may be stably melted, and a burden due to a high-temperature process may be reduced. However, the present invention is not limited thereto, and the second melting temperature of the high melting point material melting step (S12) may be variously modified.
이어서, 균질화 단계(S14)에서는 제2 용융 온도보다 낮은 균질화 온도에서 수행될 수 있다. 이때, 불순물을 제거를 위하여 플럭스를 포함하여 균질화할 수 있다. 예를 들어, 불순물 제거를 위해 사용하는 플럭스로는 Al2O3, CaO, SiO2등을 포함할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 플럭스의 투입 여부, 플럭스의 물질 등은 다양하게 변형이 가능하다. Subsequently, the homogenization step (S14) may be performed at a homogenization temperature lower than the second melting temperature. At this time, in order to remove impurities, it may be homogenized by including a flux. For example, the flux used to remove impurities may include Al 2 O 3 , CaO, SiO 2 , and the like. However, the present invention is not limited thereto, and whether or not the flux is input, the material of the flux, etc. can be variously modified.
예를 들어, 균질화 단계(S14)의 균질화 온도가 1450 내지 1520도씨일 수 있다. 이러한 온도 범위에서 안정적으로 균질화 및 안정화가 가능하며 불순물을 제거할 수 있다. 균질화 단계(S14) 또는 이에 포함되는 불순물 제거 공정이 1분 내지 10분(일 예로, 2분 내지 3분) 수행될 수 있다. 이러한 시간 범위에서 안정적으로 불순물을 제거할 수 있으며 공정 시간이 지나치게 길어져서 생산성이 저하되는 것을 방지할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 균질화 단계(S14)의 균질화 온도 및/또는 공정 시간이 다양하게 변형될 수 있다.For example, the homogenization temperature of the homogenization step (S14) may be 1450 to 1520 °C. In this temperature range, homogenization and stabilization are stably possible, and impurities can be removed. The homogenization step (S14) or the impurity removal process included therein may be performed for 1 minute to 10 minutes (eg, 2 minutes to 3 minutes). In this time range, impurities can be stably removed, and productivity can be prevented from being reduced due to excessively long process time. However, the present invention is not limited thereto, and the homogenization temperature and/or process time of the homogenization step S14 may be variously modified.
이어서, 구리 용융 단계(S16)에서는 용탕에 구리를 투입하여 용융할 수 있다. Subsequently, in the copper melting step ( S16 ), copper may be added to the molten metal to be melted.
구리 용융 단계(S16)의 제3 용융 온도가 철 용융 단계(S10)의 제1 용융 온도 및 균질화 단계(S14)의 균일화 온도와 각기 같거나 그보다 높고, 고용융점 물질 용융 단계(S12)의 제2 용융 온도와 같거나 그보다 낮을 수 있다. 일 예로, 제3 용융 온도가 철 용융 단계(S10)의 제1 용융 온도 및 균질화 단계(S14)의 균일화 온도보다 각기 높고, 고용융점 물질 용융 단계(S12)의 제2 용융 온도보다 낮을 수 있다.The third melting temperature of the copper melting step (S16) is equal to or higher than the first melting temperature of the iron melting step (S10) and the homogenization temperature of the homogenizing step (S14), respectively, and the second melting point of the high melting point material melting step (S12) It may be equal to or lower than the melting temperature. For example, the third melting temperature may be higher than the first melting temperature of the iron melting step ( S10 ) and the homogenization temperature of the homogenizing step ( S14 ), respectively, and lower than the second melting temperature of the high melting point material melting step ( S12 ).
예를 들어, 구리 용융 단계(S16)의 제3 용융 온도가 1520 내지 1650도씨일 수 있다. 구리 용융 단계(S16)에서의 용탕은 낮은 용융점을 가지는 구리를 포함하여 낮은 용융점을 가지는 원소 또는 물질을 많은 양으로 포함하여 상대적으로 낮은 용융점(즉, 1150도씨 이하, 일 예로, 900도씨 내지 1100도씨의 용융점)d을 가질 수 있다. 이러한 용융점과 함께 용융 효율을 고려하여 제3 용융 온도를 상술한 바와 같이 한정하면, 구리를 투입한 이후에 구리를 안정적으로 용융할 수 있으며 고온 공정에서의 부담을 저감할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 구리 용융 단계(S16)의 용융 온도가 다양하게 변형될 수 있다. For example, the third melting temperature of the copper melting step (S16) may be 1520 to 1650 °C. The molten metal in the copper melting step (S16) contains a relatively low melting point (ie, 1150 degrees C or less, for example, 900 degrees C. It can have a melting point of 1100 degrees Celsius) d. If the third melting temperature is defined as described above in consideration of the melting efficiency along with the melting point, copper can be stably melted after the copper is added, and the burden in the high-temperature process can be reduced. However, the present invention is not limited thereto, and the melting temperature of the copper melting step S16 may be variously modified.
이어서, 저용융점 물질 용융 단계(S18)에서는 철 또는 철 포함 물질보다 낮은 용융점을 가지는 저용융점 물질을 용탕에 투입하여 용융할 수 있다. 저용융점 물질로는 알루미늄 등을 들 수 있다. 이때, 알루미늄을 잉곳 형태로 용탕의 바닥 부분으로 밀어 넣어 용용 또는 용해할 수 있다. 이에 의하여 알루미늄이 산화하여 형성된 산화 알루미늄이 용탕의 표면으로 떠오르는 것을 최소화 또는 방지할 수 있다. Subsequently, in the melting of the low-melting-point material ( S18 ), iron or a low-melting-point material having a lower melting point than that of an iron-containing material may be introduced into the molten metal and melted. Examples of the low-melting-point material include aluminum. At this time, aluminum can be melted or melted by pushing the aluminum into the bottom part of the molten metal in the form of an ingot. Accordingly, it is possible to minimize or prevent aluminum oxide formed by oxidation of aluminum from floating on the surface of the molten metal.
이때, 저용융점 물질 용융 단계(S18)의 제4 용융 온도가 구리 용융 단계(S16)의 온도와 같거나 그보다 높을 수 있다. 예를 들어, 저용융점 물질 용융 단계(S18)의 제4 용융 온도가 구리 용융 단계(S16)의 온도보다 낮을 수 있다. 이는 저용융점 물질이 산화되는 등의 문제를 최소화하기 위한 것이다. 일 예로, 저용융점 물질 용융 단계(S18)의 제4 용융 온도가 1500도씨 이하(일 예로, 1200 내지 1400도씨)일 수 있다. 제4 용융 온도가 1500도씨(일 예로, 1400 도씨)를 초과하면, 알루미늄이 용융과 동시에 산화되어 용탕 위에 산화 알루미늄으로 구성되는 슬래그를 형성하여 이를 제거하는 공정을 추가하여야 한다. 제4 용융 온도가 1200도씨 이하면 균질한 용탕이 형성되지 않을 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 저용용줌 물질 용융 단계(S18)의 용융 온도가 다양하게 변형될 수 있다.In this case, the fourth melting temperature of the low-melting-point material melting step (S18) may be the same as or higher than the temperature of the copper melting step (S16). For example, the fourth melting temperature of the low melting point material melting step (S18) may be lower than the temperature of the copper melting step (S16). This is to minimize problems such as oxidation of low-melting-point materials. For example, the fourth melting temperature of the low-melting-point material melting step (S18) may be 1500 degrees C or less (for example, 1200 to 1400 degrees C). When the fourth melting temperature exceeds 1500 degrees Celsius (for example, 1400 degrees Celsius), aluminum is oxidized at the same time as melting to form slag composed of aluminum oxide on the molten metal, and a process of removing it must be added. If the fourth melting temperature is 1200 degrees C or less, a homogeneous molten metal may not be formed. However, the present invention is not limited thereto, and the melting temperature of the low solubility material melting step (S18) may be variously modified.
이어서, 불순물 제거 단계(S20)에서는 플럭스를 사용하여 불순물(예를 들어, 용탕 표면에 존재하는 산화물, 슬래그 등)을 제거할 수 있다. 불순물 제거를 위해 사용하는 플럭스로는 Al2O3, CaO, SiO2등을 포함할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 불순물 제거 단계(S20)가 수행되지 않을 수도 있고, 불순물 제거 단계(S20)에서의 플럭스의 투입 여부, 플럭스의 물질 등은 다양하게 변형이 가능하다. Subsequently, in the impurity removal step S20 , impurities (eg, oxides and slag present on the surface of the molten metal) may be removed using a flux. The flux used to remove impurities may include Al 2 O 3 , CaO, SiO 2 , and the like. However, the present invention is not limited thereto. Therefore, the impurity removal step S20 may not be performed, and whether or not the flux is input in the impurity removal step S20 , the material of the flux, etc. may be variously modified.
이와 같이 불순물이 제거된 최종 용탕은 일정한 출탕 온도(예를 들어, 1400 내지 1600도씨, 일 예로, 1500 도씨)로 출탕되어 원하는 형상을 가지도록 가공(일 예로, 원하는 형상을 가지는 몰드를 이용하여 주조)될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 출탕 온도 등은 다양하게 변형될 수 있다. The final molten metal from which impurities are removed is tapped at a constant tapping temperature (for example, 1400 to 1600 degrees C, for example, 1500 degrees C) and processed to have a desired shape (for example, using a mold having a desired shape) can be cast). However, the present invention is not limited thereto, and the tapping temperature may be variously modified.
본 실시예에 따른 고엔트로피 합금의 제조 방법은, 진공 조건이 아닌 상압 조건(즉, 일반적인 대기압 조건)에서 가공 또는 주조가 가능하여 제조 비용을 절감할 수 있으며 원하는 형상의 다양한 부품의 제조에 사용될 수 있다. 특히, 순도가 높지 않은 선철 등을 이용할 수 있으며 불순물 제거가 용이하여 제조된 고엔트로피 합금의 품질이 우수할 수 있다. 그리고 몰드의 개수 등에 한정이 없어 최종 용탕을 준비된 몰드에 차례로 주입하여 많은 개수의 주조품을 함께 제조할 수 있어 비용을 절감할 수 있다. The manufacturing method of the high entropy alloy according to this embodiment can be processed or cast under normal pressure conditions (ie, general atmospheric pressure conditions) rather than under vacuum conditions, thereby reducing manufacturing costs and can be used for manufacturing various parts of desired shapes. have. In particular, pig iron with low purity may be used, and impurities may be easily removed, so that the quality of the manufactured high-entropy alloy may be excellent. In addition, since there is no limitation on the number of molds, the final molten metal is sequentially injected into the prepared mold to manufacture a large number of castings together, thereby reducing costs.
반면, 진공 공정을 이용한 주조에서는 최종 용탕 제조 후 몰드 주입 시에 어려움이 있으며 제조 비용의 절감이 어려울 수 있다. 그리고 공정 시간 및 비용 측면에서 상대적으로 불리할 수 있으며 순도가 높은 소재를 사용하지 않으면 최종 용탕 내 불순물 제거가 어려워 완성된 고엔트로피 합금의 품질이 낮을 수 있다. 또한 진공 챔버 내에 넣을 수 있는 몰드의 개수가 한정되어 주조품 제작이 어렵고 외부 몰드에 최종 용탕을 주입하기 위하여 진공 챔버 내의 용탕을 빼낼 수 있는 장치가 준비되어야 한다. 이에 따라 공정상에 어려움이 있고 비용이 상승될 수 있다. On the other hand, in casting using a vacuum process, it is difficult to inject a mold after manufacturing the final molten metal, and it may be difficult to reduce the manufacturing cost. In addition, it may be relatively disadvantageous in terms of process time and cost, and if a high-purity material is not used, it may be difficult to remove impurities in the final molten metal, so the quality of the finished high-entropy alloy may be low. In addition, since the number of molds that can be put into the vacuum chamber is limited, it is difficult to manufacture a casting, and a device capable of withdrawing the molten metal from the vacuum chamber must be prepared in order to inject the final molten metal into the external mold. Accordingly, there may be difficulties in the process and an increase in cost.
그리고 본 실시예에 따른 고엔트로피 합금의 제조 방법에서는 제1 내지 제4 용융 온도 중 적어도 두 개가 서로 다르다. 즉, 본 실시예에서는 고엔트로피 합금에 포함되는 복수의 물질 또는 원소의 서로 다른 용융점을 고려하여 투입 순서 및 용융 온도를 조절하여 용탕을 제조하여 고엔트로피 합금이 균일한 조성을 가지도록 할 수 있고 균열의 발생 등을 방지하여 품질을 향상할 수 있다. 반면, 투입 순서 및 용융 온도를 제어하지 않은 종래의 대기 주조 시에는 용탕 제조 시 저용융점 원소(예를 들어, 알루미늄)의 산화가 발생하여 조성이 불균일해지거나 몰드에 용탕을 주입할 때 산화물이 유입되어 균열이 발생하는 등의 문제가 발생할 수 있다.And in the method of manufacturing a high entropy alloy according to the present embodiment, at least two of the first to fourth melting temperatures are different from each other. That is, in this embodiment, the high-entropy alloy can have a uniform composition by adjusting the input order and melting temperature in consideration of the different melting points of a plurality of substances or elements included in the high-entropy alloy, so that the high-entropy alloy has a uniform composition. It is possible to improve the quality by preventing occurrence. On the other hand, in conventional atmospheric casting without controlling the input sequence and melting temperature, oxidation of a low-melting-point element (for example, aluminum) occurs during molten metal production, resulting in non-uniform composition or oxides entering the mold when molten metal is injected. This may cause problems such as cracking.
또한, 본 실시예에 따른 고엔트로피 합금은 용융점 저하 원소 등을 포함하여 유동성과 젖음성이 매우 우수하므로 1400도씨 정도의 온도 수준만 유지하여도 몰드에 안정적으로 주입할 수 있다. In addition, the high-entropy alloy according to the present embodiment has excellent fluidity and wettability including a melting point lowering element, so that it can be stably injected into the mold even by maintaining a temperature level of about 1400°C.
상술한 고엔트로피 합금의 제조 방법의 다른 예를 도 2를 참조하여 상세하게 설명한다. 상술한 설명과 동일 또는 극히 유사한 부분에 대해서는 상세한 설명을 생략하고 서로 다른 부분에 대해서만 상세하게 설명한다. Another example of the method for manufacturing the above-described high-entropy alloy will be described in detail with reference to FIG. 2 . A detailed description of the same or extremely similar parts to the above description will be omitted and only different parts will be described in detail.
도 2은 본 발명의 다른 실시예에 따른 고엔트로피 합금의 제조 방법을 도시한 흐름도이다. 2 is a flowchart illustrating a method of manufacturing a high entropy alloy according to another embodiment of the present invention.
도 2를 참조하면, 본 실시예에서는 준비 단계(S30)와, 진공 후 불활성 기체 분위기 형성 단계(S32)와, 용융 단계(S34)를 포함할 수 있다. Referring to FIG. 2 , the present embodiment may include a preparation step ( S30 ), a step of forming an inert gas atmosphere after vacuum ( S32 ), and a melting step ( S34 ).
먼저, 준비 단계(S30)에서는 고엔트로피 합금을 제조하기 위한 물질을 모두 용탕 제조 장비에 투입할 수 있다. 이때, 철은 순철 또는 선철일 수 있다. First, in the preparation step ( S30 ), all materials for manufacturing a high entropy alloy may be input to the molten metal manufacturing equipment. In this case, the iron may be pure iron or pig iron.
이어서, 진공 후 불활성 기체 분위기 형상 단계(S32)에서는 진공 분위기를 만든 후에 불활성 기체를 반복적으로 투입하여 챔버 내 세정 작업을 진행하면서 불활성 기체 분위기를 형성할 수 있다. 불활성 기체 분위기는 일 예로, 아르곤(Ar) 기체 분위기일 수 있다. Subsequently, in the step of forming an inert gas atmosphere after vacuum ( S32 ), an inert gas atmosphere may be formed while a cleaning operation in the chamber is performed by repeatedly introducing an inert gas after creating a vacuum atmosphere. The inert gas atmosphere may be, for example, an argon (Ar) gas atmosphere.
이어서, 용융 단계(S34)에서는 일정한 용융 온도에서 용융하여 용탕을 제조할 수 있다. 예를 들어, 용융 단계(S34)의 용융 온도가 1750도씨 이하(예를 들어, 1650도씨 이하), 좀더 구체적으로, 1200도씨 내지 1750도씨(예를 들어, 1400도씨 내지 1650도씨, 일 예로, 1450도씨 내지 1520도씨)일 수 있다. 그러나 용융 단계(S34)의 용융 온도는 고엔트로피 합금을 구성하는 물질 등에 의하여 다양하게 변형될 수 있다. Subsequently, in the melting step ( S34 ), the molten metal may be prepared by melting at a constant melting temperature. For example, the melting temperature of the melting step (S34) is 1750 degrees C or less (for example, 1650 degrees C or less), more specifically, 1200 degrees to 1750 degrees C (for example, 1400 degrees to 1650 degrees C) seeds, for example, 1450°C to 1520°C). However, the melting temperature of the melting step (S34) may be variously modified depending on the material constituting the high entropy alloy.
용융 단계(S34)가 완료되면 일정한 출탕 온도(예를 들어, 1400 내지 1600도씨, 일 예로, 1500 도씨)로 출탕되어 원하는 형상을 가지도록 가공(일 예로, 원하는 형상을 가지는 몰드를 이용하여 주조)될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 출탕 온도 등은 다양하게 변형될 수 있다.When the melting step (S34) is completed, it is tapped at a constant tapping temperature (eg, 1400 to 1600 degrees Celsius, for example, 1500 degrees Celsius) and processed to have a desired shape (eg, using a mold having a desired shape) can be cast). However, the present invention is not limited thereto, and the tapping temperature may be variously modified.
본 실시예에서는 진공 후 불활성 기체 분위기에서 용융 단계(S34)를 수행하여 저용융점 물질의 산화에 의한 손실(예를 들어, 알루미늄의 손실)의 문제를 효과적으로 방지할 수 있다. 특히, 고엔트로피 합금에서 저용융점 원소(예를 들어, 알루미늄)를 많이 포함할 경우에 본 실시예에 따라 제조하면 저용융점 물질의 손실 문제를 좀더 효과적으로 방지할 수 있다. 그리고 고엔트로피 합금에 포함되는 다양한 물질의 용융점을 고려하지 않아도 되므로, 단일의 용융 단계(S34)에 의하여 제조 공정을 단순화할 수 있다. 이에 따라 원하는 조성의 고엔트로피 합금을 간단한 공정으로 쉽게 제조할 수 있다.In the present embodiment, the melting step ( S34 ) is performed in an inert gas atmosphere after vacuum to effectively prevent a loss (eg, loss of aluminum) due to oxidation of the low-melting-point material. In particular, when a high-entropy alloy contains a large amount of a low-melting-point element (eg, aluminum), it is possible to more effectively prevent the loss of the low-melting-point material by manufacturing according to the present embodiment. And since it is not necessary to consider the melting points of various materials included in the high entropy alloy, the manufacturing process can be simplified by a single melting step (S34). Accordingly, a high-entropy alloy having a desired composition can be easily manufactured through a simple process.
반면, 투입 순서 및 용융 온도를 제어하지 않은 단일의 용융 단계를 구비한 종래의 대기 주조 시에는 용탕 제조 시 저용융점 원소(예를 들어, 알루미늄)의 산화가 발생하여 저용융점 원소의 손실 비율이 크고 유동성이 저하될 수 있다. 그리고 몰드에 용탕을 주입할 때 산화물이 유입되어 주조품에 균열이 발생하는 등의 문제가 발생할 수 있다.On the other hand, in conventional atmospheric casting having a single melting step in which the input sequence and melting temperature are not controlled, oxidation of a low-melting-point element (eg, aluminum) occurs during molten metal production, resulting in a large loss ratio of the low-melting-point element. Liquidity may be reduced. In addition, when the molten metal is poured into the mold, problems such as the occurrence of cracks in the casting due to the inflow of oxides may occur.
이하, 본 발명의 실험예에 의하여 본 발명을 좀더 상세하게 설명한다. 그러나 본 발명의 실험예는 본 발명을 예시하기 위한 것에 불과하며, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of experimental examples of the present invention. However, the experimental examples of the present invention are only for illustrating the present invention, and the present invention is not limited thereto.
실시예 1 Example 1
도 1에 도시한 제조 방법을 이용하여 표 1에 따른 조성을 가지며 Al15Ni15Cr10(CuFe)50Mn10의 화학식을 가지는 고엔트로피 합금을 제조하였다. 이때, 철 포함 물질로는 4.67 at%의 탄소, 1.35 at%의 실리콘, 0.27 at%의 망간, 0.11 at%의 인, 0.02 at%의 황, 0.08 at%의 티타늄, 0.01 at%의 바나듐, 나머지 철을 포함하는 선철과, 추가적인 망간을 사용하였다. A high-entropy alloy having a composition according to Table 1 and a chemical formula of Al 15 Ni 15 Cr 10 (CuFe) 50 Mn 10 was prepared using the manufacturing method shown in FIG. 1 . At this time, as the iron-containing material, 4.67 at% carbon, 1.35 at% silicon, 0.27 at% manganese, 0.11 at% phosphorus, 0.02 at% sulfur, 0.08 at% titanium, 0.01 at% vanadium, the rest Pig iron containing iron and additional manganese were used.
실시예 2 Example 2
Al15Ni5Cr10Cu10Fe43Mn15Si2의 화학식을 가진다는 점을 제조하고는 실시예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다. Al 15 Ni 5 Cr 10 Cu 10 Fe 43 Mn 15 Si 2 A high-entropy alloy was prepared in the same manner as in Example 1, having the chemical formula of Al 15 Ni 5 Cr 10 Cu 10 Fe 43 Mn 15 Si 2 .
실시예 3 Example 3
Al15Ni5Cr10Cu10Fe40Mn13Si2의 화학식을 가진다는 점을 제조하고는 실시예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다. Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 13 Si 2 A high-entropy alloy was prepared in the same manner as in Example 1 to prepare a point having a chemical formula of Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 13 Si 2 .
실시예 4 Example 4
Al15Ni5Cr10Cu10Fe40Mn20의 화학식을 가진다는 점을 제조하고는 실시예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다.Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 20 A high entropy alloy was prepared in the same manner as in Example 1 after preparing the point having a chemical formula of Al 15 Ni 5 Cr 10 Cu 10 Fe 40 Mn 20 .
실시예 5Example 5
Al17Ni3Cr5Cu15Fe45Mn15의 화학식을 가진다는 점을 제조하고는 실시예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다.Al 17 Ni 3 Cr 5 Cu 15 Fe 45 Mn 15 A high-entropy alloy was prepared in the same manner as in Example 1 to prepare a point having a chemical formula of Al 17 Ni 3 Cr 5 Cu 15 Fe 45 Mn 15 .
실시예 6 Example 6
Al13Ni3Cr6Cu8Fe55Mn15의 화학식을 가진다는 점을 제조하고는 실시예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다.Al 13 Ni 3 Cr 6 Cu 8 Fe 55 Mn 15 A high-entropy alloy was prepared in the same manner as in Example 1, having the chemical formula of Al 13 Ni 3 Cr 6 Cu 8 Fe 55 Mn 15 .
비교예 1Comparative Example 1
진공에서 단일의 용융 공정을 수행하여 표 2에 따른 조성을 가지며 Al10Cr20(CuFe)60Mn10의 화학식을 가지는 고엔트로피 합금을 제조하였다. A single melting process was performed in vacuum to prepare a high entropy alloy having a composition according to Table 2 and a chemical formula of Al 10 Cr 20 (CuFe) 60 Mn 10 .
비교예 2Comparative Example 2
스테리인리스 강(SUS316)을 준비하였다. Stainless steel (SUS316) was prepared.
비교예 3Comparative Example 3
스테리인리스 강(SUS304)을 준비하였다. Stainless steel (SUS304) was prepared.
비교예 4 Comparative Example 4
주철(GC250)을 준비하였다. Cast iron (GC250) was prepared.
비교예 5Comparative Example 5
순철을 이용하여 제조되며, Al15Cr5(FeCuMn)80의 화학식을 가진다는 점을 제조하고는 비교예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다.A high-entropy alloy was prepared in the same manner as in Comparative Example 1, prepared by using pure iron and having a chemical formula of Al 15 Cr 5 (FeCuMn) 80 .
비교예 6 Comparative Example 6
선철을 이용하여 제조되며, Al15Cr5(FeCuMn)80의 화학식을 가진다는 점을 제조하고는 비교예 1과 동일한 방법으로 고엔트로피 합금을 제조하였다.A high-entropy alloy was prepared in the same manner as in Comparative Example 1, prepared using pig iron and having a chemical formula of Al 15 Cr 5 (FeCuMn) 80 .
<조성 분석><Composition analysis>
실시예 1에 따른 고엔트로피 합금의 전계 방사형 주사 전자 현미경(field emission scanning electron microscope, FE-SEM) 사진을 도 3에 각기 나타내었다. 참조로, 표 1 및 표 2에 따른 조성은 에너지 분산형 분광분석법(energy dispersive spectrometry, EDS)에 의하여 측정되었으며, 각 원소의 함량은 at% 단위로 표시하였다. A field emission scanning electron microscope (FE-SEM) image of the high entropy alloy according to Example 1 is shown in FIG. 3 , respectively. For reference, the compositions according to Tables 1 and 2 were measured by energy dispersive spectrometry (EDS), and the content of each element was expressed in at%.
FeFe CuCu AlAl MnMn CrCr NiNi
철-리치상Iron-Rich Award 25.5125.51 16.0116.01 17.6917.69 6.656.65 10.1210.12 24.0224.02
구리-리치상Copper-Rich Award 6.046.04 64.3164.31 10.7510.75 6.376.37 0.880.88 11.6511.65
FeFe CuCu AlAl MnMn CrCr
철-리치상Iron-Rich Award 47.0747.07 2.442.44 7.377.37 10.8710.87 32.2632.26
구리-리치상Copper-Rich Award 3.563.56 73.4873.48 11.3011.30 9.889.88 1.771.77
표 1 및 표 2을 참조하면, 니켈을 포함하는 실시예 1에 따른 고엔트로피 함금에서 철-리치 상 내의 구리의 함량이 16.01 at%로서, 니켈을 포함하지 않는 비교예 1에 따른 고엔트로피 함금에서의 철-리치 상 내의 구리의 함량인 2.44 at%보다 크게 높은 것을 알 수 있다. 또한, 니켈을 포함하는 실시예 1에 따른 고엔트로피 함금에서 구리-리치 상 내의 철의 함량이 6.04 at%로서, 니켈을 포함하지 않는 비교예 1에 따른 고엔트로피 합금에서의 구리-리치 상 내의 철의 함량인 3.56 at%보다 높은 것을 알 수 있다. 즉, 니켈을 포함하는 실시예 1에 따른 고엔트로피 합금에서는 철-리치상 내의 구리 함량 및 구리-리치상 내 철 함량이 각기 증가된 것을 알 수 있다. 이에 의하여 실시예 1에 따른 고엔트로피 합금에서는 철-리치상과 구리-리치상에 구리 또는 철이 일정 수준 이상으로 고용되어 철-리치상과 구리-리치상의 부식 전위차가 저감될 수 있음을 알 수 있다. Referring to Tables 1 and 2, in the high entropy alloy according to Example 1 containing nickel, the content of copper in the iron-rich phase is 16.01 at%, and in the high entropy alloy according to Comparative Example 1 not containing nickel It can be seen that the content of copper in the iron-rich phase is significantly higher than 2.44 at%. In addition, in the high entropy alloy according to Example 1 containing nickel, the content of iron in the copper-rich phase was 6.04 at%, and the iron in the copper-rich phase in the high entropy alloy according to Comparative Example 1 not containing nickel was iron. It can be seen that the content is higher than 3.56 at%. That is, in the high entropy alloy according to Example 1 including nickel, it can be seen that the copper content in the iron-rich phase and the iron content in the copper-rich phase are respectively increased. Accordingly, it can be seen that in the high-entropy alloy according to Example 1, copper or iron is dissolved in the iron-rich phase and the copper-rich phase at a certain level or more, so that the corrosion potential difference between the iron-rich phase and the copper-rich phase can be reduced. .
그리고 도 3을 참조하면, 실시예 1에 따른 고엔트로피 합금에서는 서로 다른 밝기를 가지는 철-리치상과 구리-리치상이 함께 혼재하여 위치하는 것을 알 수 있다. 이때, 철-리치상이 주요 상으로 존재하고 구리-리치상이 부분적으로 존재하는 것을 알 수 있다. And referring to FIG. 3 , it can be seen that in the high-entropy alloy according to Example 1, an iron-rich phase and a copper-rich phase having different brightnesses are coexisted and located. At this time, it can be seen that the iron-rich phase is present as the main phase and the copper-rich phase is partially present.
<염수 분무 테스트 - 내부식성><Salt Spray Test - Corrosion Resistance>
실시예 1 및 비교예 1에 따른 고엔트로피 합금에 염수 분무 테스트를 수행하였다. 염수 분무 테스트는 5wt%의 염화나트륨 염수를 1.0 kg/cm2의 노즐압으로 간접 연속 분사하고 6.5~7.2의 pH 및 35도씨의 온도를 유지하였다. 도 4의 (a)에 실시예 1에 따른 고엔트로피 합금의 염수 분무 테스트 이전의 사진을 첨부하고, (b)에 염수를 분무하면서 24시간을 유지한 경우의 사진을 첨부하고, (c)에 염수를 분무하면서 72시간을 유지한 경우의 사진을 첨부하였다. 그리고 도 5에 비교예 1에 따른 고엔트로피 합금에 염수를 분무하면서 24시간을 유지한 경우의 사진을 첨부하였다. A salt spray test was performed on the high entropy alloy according to Example 1 and Comparative Example 1. In the salt spray test, 5wt% of sodium chloride brine was indirectly continuously sprayed with a nozzle pressure of 1.0 kg/cm 2 , and a pH of 6.5 to 7.2 and a temperature of 35°C were maintained. Attached to Figure 4 (a) before the salt spray test of the high-entropy alloy according to Example 1, attaching a photograph when maintaining 24 hours while spraying salt water in (b), (c) A photograph of the case of maintaining 72 hours while spraying saline is attached. And FIG. 5 is attached with a photograph of a case in which the high-entropy alloy according to Comparative Example 1 was maintained for 24 hours while spraying salt water.
도 4를 참조하면, 니켈을 포함하는 실시예 1에 따른 고엔트로피 합금이 염수 분무를 오랜 시간 동안 수행하여도 부식이 크게 발생하지 않은 것을 알 수 있다. 반면, 도 5을 참조하면, 니켈을 포함하지 않은 비교예 1에 따른 고엔트로피 합금은 염수 분무에 의하여 크게 부식이 일어나서 얼룩진 부분이 발생한 것을 알 수 있다. 이에 따라 니켈을 포함하는 실시예 1에 따른 합금은 우수한 내부식성을 가지는 것을 알 수 있다. Referring to FIG. 4 , it can be seen that the high entropy alloy according to Example 1 containing nickel did not significantly corrode even when salt spray was performed for a long time. On the other hand, referring to FIG. 5 , it can be seen that the high-entropy alloy according to Comparative Example 1 which does not contain nickel was greatly corroded by salt spray and thus stained. Accordingly, it can be seen that the alloy according to Example 1 including nickel has excellent corrosion resistance.
<동전위 분극 시험 - 내부식성> <Ecopotential Polarization Test - Corrosion Resistance>
실시예 1에 따른 고엔트로피 합금 및 비교예 2에 따른 스테인리스 강에 동전위 분극 시험을 수행하여 그 결과를 표 3에 나타내었다. 동전위 분극 시험에서는 5wt%의 염화나트륨 수용액을 사용하고, 기준 전극으로 Ag/AgCl을 사용하고, 스캔 속도(scan spped)가 0.33(dE/dt)였다. The high entropy alloy according to Example 1 and the stainless steel according to Comparative Example 2 were subjected to a potentiostatic polarization test, and the results are shown in Table 3. In the potentiostatic polarization test, a 5 wt% sodium chloride aqueous solution was used, Ag/AgCl was used as a reference electrode, and the scan rate was 0.33 (dE/dt).
실시예 1Example 1 비교예 2Comparative Example 2
부식 전위[V]Corrosion potential [V] -0.37-0.37 -0.2-0.2
동적 평형 전류 밀도[log (A/cm2)]Dynamic Equilibrium Current Density [log (A/cm 2 )] -7.6-7.6 -7.6-7.6
표 3을 참조하면, 실시예 1에 따른 고엔트로피 합금은 높은 내부식성을 가지는 비교예 2에 따른 스테인리스강과 유사한 높은 내부식성을 가짐을 알 수 있다. Referring to Table 3, it can be seen that the high-entropy alloy according to Example 1 has high corrosion resistance similar to that of the stainless steel according to Comparative Example 2 having high corrosion resistance.
<염수 분무 테스트 - 내부식성><Salt Spray Test - Corrosion Resistance>
실시예 2 및 3에 따른 고엔트로피 합금에 염수 분무 테스트를 수행하였다. 염수 분무 테스트는 5wt%의 염화나트륨 염수를 1.0 kg/cm2의 노즐압으로 간접 연속 분사하고 6.5~7.2의 pH 및 35도씨의 온도를 유지하였다. 도 6의 (a)에 실시예 2에 따른 고엔트로피 합금의 염수 분무 테스트 이전의 사진을 첨부하고, (b)에 염수를 분무하면서 24시간을 유지한 경우의 사진을 첨부하였다. 그리고 도 7의 (a)에 실시예 3에 따른 고엔트로피 합금의 염수 분무 테스트 이전의 사진을 첨부하고, (b)에 염수를 분무하면서 24시간을 유지한 경우의 사진을 첨부하였다.A salt spray test was performed on the high entropy alloys according to Examples 2 and 3. In the salt spray test, 5 wt% of sodium chloride brine was indirectly continuously sprayed with a nozzle pressure of 1.0 kg/cm 2 , and a pH of 6.5 to 7.2 and a temperature of 35 ° C were maintained. In Figure 6 (a), a photograph before the salt spray test of the high-entropy alloy according to Example 2 is attached, and in (b) a photograph when the salt spray is maintained for 24 hours is attached. And a photograph before the salt spray test of the high-entropy alloy according to Example 3 is attached to (a) of FIG.
도 6 및 도 7를 참조하면, 니켈의 함량이 5 at%인 실시예 2 및 3에 따른 고엔트로피 합금에 염수 분무를 수행하여도 부식이 거의 발생하지 않은 것을 알 수 있다. 일 예로, 니켈의 함량이 5 at%로 크지 않은 경우에도 실리콘을 함께 포함하는 조성을 가지면 우수한 내부식성을 가질 수 있음을 알 수 있다. 이는 실리콘을 함께 포함하여 산화물이 형성되어 내부식성이 향상된 것으로 예측된다. 이와 같이 실리콘을 포함하여 니켈의 함량을 줄이면, 고가의 니켈의 함량을 줄여 우수한 특성을 가지는 고엔트로피 합금의 재료 비용을 절감할 수 있다. Referring to FIGS. 6 and 7 , it can be seen that corrosion hardly occurs even when salt spray is performed on the high entropy alloys according to Examples 2 and 3 having a nickel content of 5 at%. For example, even when the content of nickel is not as large as 5 at%, it can be seen that excellent corrosion resistance can be obtained if the composition includes silicon together. It is expected that the corrosion resistance is improved by the formation of an oxide including silicon together. When the content of nickel including silicon is reduced as described above, the material cost of a high entropy alloy having excellent properties can be reduced by reducing the content of expensive nickel.
<연삭성> <Grindability>
실시예 1 및 4에 따른 고엔트로피 합금, 그리고 비교예 3에 따른 스테인리스 강을 선반 가공하였다. 선반 가공에서는 10000 rpm의 회전수, 5000 feed의 이동 속도, 6 파이의 공구, REM(0.5R), 0.7mm의 깊이(AP), 공구 직경의 70%의 간격(AE)의 조건으로 수행되었고, 수용성 절삭유를 사용하였다. The high entropy alloys according to Examples 1 and 4 and the stainless steel according to Comparative Example 3 were lathe-processed. Lathe machining was performed under the conditions of a rotation speed of 10000 rpm, a moving speed of 5000 feed, a tool of 6 pie, REM (0.5R), depth of 0.7 mm (AP), and spacing (AE) of 70% of the tool diameter, Water-soluble cutting oil was used.
실시예 1에 따른 고엔트로피 합금을 가공하여 형성된 판재의 사진을 도 8에 첨부하였다. 도 8를 참조하면, 실시예 1에 따른 합금을 이용하여 깨끗하게 가공된 판재를 제조할 수 있음을 알 수 있다. 일 예로, 본 실시예에서는 비교예 3과 같은 스테인리스 강에 비하여 4배 빠른 가공 속도에서도 불량 또는 손상 없이 가공이 가능하다. 이에 따라 실제 가공 제품에 적용 시에 공정 시간을 단축할 수 있다. 그리고 실시예 1에서는 빠른 가공 속도에서도 공구의 부러짐 등이 나타나지 않았다. 이로부터 빠른 가공 속도에서 깨끗하게 가공된 판재를 제공할 수 있음을 알 수 있다. A photograph of the plate material formed by processing the high entropy alloy according to Example 1 is attached to FIG. 8 . Referring to FIG. 8 , it can be seen that a cleanly processed plate material can be manufactured using the alloy according to Example 1. For example, in this embodiment, it is possible to process without defects or damage even at a processing speed 4 times faster than that of stainless steel as in Comparative Example 3. Accordingly, the processing time can be shortened when applied to an actual processed product. And, in Example 1, even at a high machining speed, no tool breakage was observed. From this, it can be seen that it is possible to provide a cleanly processed plate material at a high processing speed.
그리고 실시예 1 및 4에 따른 고엔트로피 합금, 그리고 비교예 3에 따른 스테인리스 강의 가공 속도(연삭 속도) 및 구리 함량을 표 4에 나타내었다. 이때, 800g의 하중에서 300rpm의 속도에서 단위 면적당 가공 속도가 측정되었다. And the high entropy alloy according to Examples 1 and 4, and the processing speed (grinding speed) and copper content of the stainless steel according to Comparative Example 3 are shown in Table 4. At this time, the machining speed per unit area was measured at a speed of 300 rpm under a load of 800 g.
가공 속도[초/mm2]Machining speed [sec/mm 2 ] 구리 함량[at%]Copper content [at%]
실시예 1Example 1 1.371.37 2525
실시예 4Example 4 2.922.92 1010
비교예 3Comparative Example 3 3.333.33 --
표 4를 참조하면, 실시예 1 및 4에 따른 고엔트로피 합금에서 가공 속도가 비교예 3에 따른 스테인리스 강의 가공 속도보다 크게 높은 것을 알 수 있다. 예를 들어, 실시예 1에 따른 고엔트로피 합금에서와 같이 구리 함량이 25 at% 이상이면, 가공 속도가 비교예 3에 따른 스테인리스 강의 가공 속도의 2배 이상일 수 있다. 이는 실시예 1 및 4에 따른 고엔트로피 합금은, 강도가 높은 철-리치상과 함께, 우수한 연삭성 또는 절삭성을 가지는 구리-리치상이 혼재 또는 산재되었기 때문인 것으로 예측된다. Referring to Table 4, it can be seen that the processing speed in the high entropy alloy according to Examples 1 and 4 is significantly higher than the processing speed of the stainless steel according to Comparative Example 3. For example, if the copper content is 25 at% or more as in the high-entropy alloy according to Example 1, the processing speed may be twice or more than the processing speed of the stainless steel according to Comparative Example 3. It is predicted that the high-entropy alloy according to Examples 1 and 4 is because the high-strength iron-rich phase and the copper-rich phase having excellent grindability or machinability are mixed or interspersed.
<주조성><Castability>
실시예 1에 따른 고엔트로피 합금을 이용하여 제조된 1.7mm의 두께의 올담링의 사진을 도 9에 첨부하였다. 그리고 실시예 5 및 6에 따른 고엔트로피 합금에 2mm 메쉬 채널 평가를 수행한 결과를 촬영한 사진을 각기 도 10의 (a) 및 (b)에 첨부하였고, 비교예 4에 따른 주철에 2mm 메쉬 채널 평가를 수행한 결과를 촬영한 사진을 도 11에 첨부하였다. A photograph of the Oldham ring having a thickness of 1.7 mm manufactured using the high entropy alloy according to Example 1 is attached to FIG. 9 . And pictures of the results of performing the 2mm mesh channel evaluation on the high entropy alloy according to Examples 5 and 6 are attached to FIGS. A photograph of the evaluation result is attached to FIG. 11 .
그리고 실시예 5 및 6에 따른 고엔트로피 합금에 내마모성 평가를 수행한 결과를 촬영한 사진을 도 12의 (a) 및 (b)에 각기 첨부하였고, 비교예 4, 5 및 6에 따른 주철 또는 고엔트로피 합금에 내마모성 평가를 수행한 결과를 촬영한 사진을 도 13의 (a), (b) 및 (c)에 각기 첨부하였다. 그리고 실시예 5 및 6, 그리고 비교예 4, 5 및 6에 따른 고엔트로피 합금 또는 주철의 경도, 2mm 미세 채널의 채움성, 마모 트랙의 폭, 엔트로피를 측정하여 그 결과를 표 5에 나타내었다. 내마모성 평가는 알루미늄 산화물(Al2O3)로 구성된 볼을 이용하여 수직 항력 10N, 회전 속도 300rpm, 회전 반경 11.5mm, 시간 3000초의 조건으로 수행되었다. And pictures of the results of performing abrasion resistance evaluation on the high entropy alloy according to Examples 5 and 6 are attached to FIGS. Photographs of the results of performing wear resistance evaluation on the entropy alloy are attached to (a), (b) and (c) of FIG. 13 , respectively. And the hardness of the high-entropy alloy or cast iron according to Examples 5 and 6 and Comparative Examples 4, 5 and 6, the fillability of the 2mm microchannel, the width of the wear track, and the entropy were measured, and the results are shown in Table 5. Abrasion resistance evaluation was performed using a ball made of aluminum oxide (Al 2 O 3 ) under the conditions of a normal drag of 10N, a rotational speed of 300rpm, a rotational radius of 11.5mm, and a time of 3000 seconds.
변형율strain rate 경도[Hv]Hardness [Hv] 채움성[%]Fillability [%] 마모 트랙의 폭[um]Width of wear track [um] 엔트로피entropy
실시예 5Example 5 0.0250.025 374374 8181 2313~23732313~2373 1.48R1.48R
실시예 6Example 6 0.030.03 324324 8585 3059~37823059~3782 1.40R1.40R
비교예 4Comparative Example 4 0.0360.036 -- 7777 1792~20511792~2051 --
비교예 5Comparative Example 5 0.0150.015 391391 6868 1468~24091468-2409 1.49R1.49R
비교예 6Comparative Example 6 0.0390.039 238238 7979 1252~30071252~3007 1.49R1.49R
도 9을 참조하면, 실시예 1에 따른 고엔트로피 합금을 이용하면 1.7mm의 두께를 가지는 올담링을 정밀한 가공에 의하여 형성할 수 있음을 알 수 있다. Referring to FIG. 9 , it can be seen that using the high entropy alloy according to Example 1, an Oldham ring having a thickness of 1.7 mm can be formed by precise machining.
도 10 및 도 11, 그리고 표 5를 참조하면, 실시예 5 및 6에 따른 고엔트로피 합금은 2mm 메쉬 채널 평가에서 우수한 주조성을 가지는 비교예 4에 따른 주철보다 우수한 주조성을 가지는 것을 알 수 잇다. 이는 실시예 5 및 6에 따른 고엔트로피 합금이 높은 유동성을 가지며 낮은 표면 에너지로 인하여 큰 젖음성을 가져서 미세한 메쉬 채널 몰드를 안정적으로 채울 수 있기 때문으로 예측된다. 특히 실시예 5 및 6에 따른 고엔트로피 합금에 포함된 구리 성분은 젖음성을 개선하는 데 기여할 수 있으므로, 실시예 5 및 6에는 우수한 유동성 및 우수한 젖음성을 동시에 가질 수 있다. 반면, 비교예 4에 따른 주철은 유동성은 뛰어나지만 젖음성이 좋지 않아 2mm 이하의 미세 채널을 구비하는 구조물을 제조하는 데 어려움이 있다. 10 and 11, and referring to Table 5, it can be seen that the high-entropy alloy according to Examples 5 and 6 has better castability than the cast iron according to Comparative Example 4 having excellent castability in the evaluation of the 2mm mesh channel. This is expected because the high-entropy alloys according to Examples 5 and 6 have high fluidity and have large wettability due to low surface energy to stably fill fine mesh channel molds. In particular, since the copper component included in the high entropy alloy according to Examples 5 and 6 may contribute to improving wettability, Examples 5 and 6 may have excellent fluidity and excellent wettability at the same time. On the other hand, the cast iron according to Comparative Example 4 has excellent fluidity but poor wettability, so it is difficult to manufacture a structure having microchannels of 2 mm or less.
도 12 및 표 5을 참조하면, 실시예 5 및 6에 따른 고엔트로피 합금은 우수한 경도, 우수한 내마모성 및 우수한 주조성을 가지는 것을 알 수 있다. 특히, 실시예 5에 따른 고엔트로피 합금은 경도, 내마모성 및 주조성 특성이 매우 우수한 것을 알 수 있다. 그리고 도 13의 (b) 및 표 5를 참조하면, 비교예 5에 따른 고엔트로피 합금은 경도 및 내마모성이 우수하게 나타났으나 채움성이 낮고 마모가 불균일하게 발생한 것을 알 수 있다. 그리고 비교예 5에 따른 고엔트로피 합금은 변형율(strain)이 작은 매우 경한 특성을 가지므로 대기 주조로 제조 시 알루미늄의 산화가 다량 발생하여 주조품 내부에 많은 기포 및 균열이 발생할 수 있다. 그리고 비교예 4에 따른 주철은 채움성이 상대적으로 낮고 고엔트로피를 가지지 않는다. 또한, 비교예 6에 따른 고엔트로피 합금은 채움성이 낮고 경도가 낮으며 마모가 매우 불규칙하게 발생한 것을 알 수 있다. 12 and Table 5, it can be seen that the high-entropy alloys according to Examples 5 and 6 have excellent hardness, excellent wear resistance, and excellent castability. In particular, it can be seen that the high entropy alloy according to Example 5 has very excellent hardness, wear resistance, and castability characteristics. And referring to (b) of FIG. 13 and Table 5, it can be seen that the high entropy alloy according to Comparative Example 5 showed excellent hardness and wear resistance, but had low fillability and non-uniform wear. And, since the high entropy alloy according to Comparative Example 5 has a very light characteristic with a small strain, a large amount of oxidation of aluminum occurs when manufactured by atmospheric casting, so that many bubbles and cracks may occur inside the casting. And the cast iron according to Comparative Example 4 has relatively low fillability and does not have high entropy. In addition, it can be seen that the high entropy alloy according to Comparative Example 6 has low fillability, low hardness, and very irregular wear.
상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, etc. as described above are included in at least one embodiment of the present invention, and are not necessarily limited to one embodiment. Furthermore, features, structures, effects, etc. illustrated in each embodiment can be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.

Claims (20)

  1. 철-리치상 및 구리-리치상을 가지는 고엔트로피 합금으로서, A high entropy alloy having an iron-rich phase and a copper-rich phase, the alloy comprising:
    철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함하는 고엔트로피 합금. A high-entropy alloy containing a common conductive solid solution metal that is conductively dissolved in iron and copper, respectively.
  2. 제1항에 있어서, According to claim 1,
    상기 공통 전율 고용 금속이 니켈(Ni)을 포함하는 고엔트로피 합금. A high entropy alloy in which the common conductivity solid solution metal includes nickel (Ni).
  3. 제1항에 있어서, According to claim 1,
    상기 고엔트로피 합금의 용융점을 저하시키는 용융점 저하 원소를 더 포함하는 고엔트로피 합금. High entropy alloy further comprising a melting point lowering element for lowering the melting point of the high entropy alloy.
  4. 제3항에 있어서, 4. The method of claim 3,
    상기 용융점 저하 원소가 탄소, 실리콘, 인 및 망간 중 적어도 하나를 포함하는 고엔트로피 합금. The high-entropy alloy wherein the melting point lowering element includes at least one of carbon, silicon, phosphorus, and manganese.
  5. 제1항에 있어서, According to claim 1,
    상기 고엔트로피 합금이 알루미늄, 망간 및 크롬 중 적어도 하나를 더 포함하는 고엔트로피 합금. The high entropy alloy further comprises at least one of aluminum, manganese, and chromium.
  6. 제1항에 있어서, According to claim 1,
    상기 고엔트로피 합금은 15 내지 80 at%의 철, 1 내지 30 at%의 구리, 1 내지 20 at%의 니켈, 5 내지 20 at%의 알루미늄, 0 내지 20 at%의 망간, 0 내지 15 at%의 크롬, 0 내지 5 at%의 탄소, 0 내지 2 at%의 실리콘, 0 내지 2 at%의 인, 그 외 불가피한 불순물을 포함하는 고엔트로피 합금. The high entropy alloy comprises 15 to 80 at% iron, 1 to 30 at% copper, 1 to 20 at% nickel, 5 to 20 at% aluminum, 0 to 20 at% manganese, 0 to 15 at% of chromium, 0 to 5 at% carbon, 0 to 2 at% silicon, 0 to 2 at% phosphorus, and other unavoidable impurities.
  7. 제1항에 있어서, According to claim 1,
    상기 철-리치상 내의 상기 구리의 함량이 5 내지 30 at%인 고엔트로피 합금. A high entropy alloy in which the content of the copper in the iron-rich phase is 5 to 30 at%.
  8. 제1항에 있어서, According to claim 1,
    상기 철-리치상이 상기 구리-리치상보다 많은 부피 비율로 포함되어 주요 상(main phase)으로 존재하고 상기 구리-리치상이 부분적으로 존재하는 고엔트뢰 합금. The high-entresia alloy in which the iron-rich phase is included in a larger volume ratio than the copper-rich phase to exist as a main phase, and the copper-rich phase is partially present.
  9. 용융점 저하 원소 및 철을 포함하는 철 포함 물질을 용융하여 용탕을 형성하는, 철 용융 단계; an iron melting step of melting an iron-containing material including a melting point lowering element and iron to form a molten metal;
    상기 용탕에 상기 철 포함 물질보다 높은 용융점을 가지는 고용융점 원소를 투입하여 용융하는, 고용융점 물질 용융 단계; A high melting point material melting step of melting by adding a high melting point element having a melting point higher than that of the iron-containing material into the molten metal;
    상기 용탕에 구리를 투입하여 용융하는, 구리 용융 단계; 및 A copper melting step of melting by putting copper into the molten metal; and
    구리보다 낮은 용융점을 가지는 저용융점 물질을 투입하여 용융하는, 저용융점 물질 용융 단계Low-melting-point material melting step of melting a low-melting-point material having a lower melting point than copper
    를 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high entropy alloy comprising a.
  10. 제9항에 있어서, 10. The method of claim 9,
    상기 철 포함 물질이 선철을 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high-entropy alloy in which the iron-containing material includes pig iron.
  11. 제9항에 있어서, 10. The method of claim 9,
    상기 용융점 저하 원소가 탄소, 실리콘, 인 및 망간 중 적어도 하나를 포함하는 고엔트로피 합금. The high-entropy alloy wherein the melting point lowering element includes at least one of carbon, silicon, phosphorus, and manganese.
  12. 제9항에 있어서, 10. The method of claim 9,
    상기 철 용융 단계의 제1 용융 온도, 상기 고용융점 물질 용융 단계의 제2 용융 온도, 상기 구리 용융 단계의 제3 용융 온도 및 온도보다 상기 저용융점 물질 용융 단계의 제4 용융 온도 중 적어도 두 개가 서로 다른 온도를 가지는 고엔트로피 합금의 제조 방법. At least two of the first melting temperature of the iron melting step, the second melting temperature of the high melting point material melting step, the third melting temperature of the copper melting step and the fourth melting temperature of the low melting point material melting step than the temperature are mutually A method for producing high entropy alloys having different temperatures.
  13. 제12항에 있어서, 13. The method of claim 12,
    상기 제1 용융 온도보다 상기 제2 용융 온도가 더 높고, the second melting temperature is higher than the first melting temperature;
    상기 제2 용융 온도보다 상기 제3 용융 온도가 낮고, The third melting temperature is lower than the second melting temperature,
    상기 제3 용융 온도보다 상기 제4 용융 온도가 낮은 고엔트로피 합금의 제조 방법. The method of manufacturing a high entropy alloy wherein the fourth melting temperature is lower than the third melting temperature.
  14. 제9항에 있어서,10. The method of claim 9,
    상기 고용융점 물질이 철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high-entropy alloy comprising the high-melting point material having a common electrical conductivity solid solution in iron and copper, respectively.
  15. 제9항에 있어서,10. The method of claim 9,
    상기 고용융점 물질이 니켈 및 크롬 중 적어도 하나를 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high-entropy alloy wherein the high melting point material includes at least one of nickel and chromium.
  16. 제9항에 있어서, 10. The method of claim 9,
    상기 저용융점 물질이 알루미늄을 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high-entropy alloy in which the low-melting-point material includes aluminum.
  17. 제16항에 있어서, 17. The method of claim 16,
    상기 저용융점 물질 용융 단계에서는, 알루미늄 잉곳을 상기 용탕의 바닥 부분으로 밀어 넣어 용융하는 고엔트로피 합금의 제조 방법. In the melting step of the low-melting-point material, the method of manufacturing a high-entropy alloy for melting by pushing the aluminum ingot into the bottom portion of the molten metal.
  18. 철, 구리, 그리고 철 및 구리에 각기 전율 고용되는 공통 전율 고용 금속을 포함하는 복수의 물질을 투입하는 기본 단계; A basic step of inputting a plurality of materials including iron, copper, and a common conductivity solid solution metal that is electrically conductively dissolved in the iron and copper, respectively;
    진공 후 불활성 기체 분위기를 형성하는 단계; 및 forming an inert gas atmosphere after vacuum; and
    상기 복수의 물질을 용융하는 용융 단계a melting step of melting the plurality of substances
    를 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high entropy alloy comprising a.
  19. 제18항에 있어서,19. The method of claim 18,
    상기 복수의 물질이 탄소, 실리콘, 인, 알루미늄, 망간 및 크롬 중 적어도 하나를 더 포함하고, The plurality of materials further comprises at least one of carbon, silicon, phosphorus, aluminum, manganese and chromium,
    상기 공통 전율 고용 금속이 니켈을 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high entropy alloy in which the common conductivity solid solution metal includes nickel.
  20. 제18항에 있어서, 19. The method of claim 18,
    상기 철이 선철 또는 순철을 포함하는 고엔트로피 합금의 제조 방법. A method for producing a high-entropy alloy wherein the iron includes pig iron or pure iron.
PCT/KR2020/006209 2020-05-12 2020-05-12 High-entropy alloy and method for manufacturing same WO2021230392A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20934927.3A EP4151766A4 (en) 2020-05-12 2020-05-12 High-entropy alloy and method for manufacturing same
PCT/KR2020/006209 WO2021230392A1 (en) 2020-05-12 2020-05-12 High-entropy alloy and method for manufacturing same
US17/924,450 US20230183846A1 (en) 2020-05-12 2020-05-12 High-entropy alloy and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/006209 WO2021230392A1 (en) 2020-05-12 2020-05-12 High-entropy alloy and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2021230392A1 true WO2021230392A1 (en) 2021-11-18

Family

ID=78524645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006209 WO2021230392A1 (en) 2020-05-12 2020-05-12 High-entropy alloy and method for manufacturing same

Country Status (3)

Country Link
US (1) US20230183846A1 (en)
EP (1) EP4151766A4 (en)
WO (1) WO2021230392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572880A (en) * 2022-09-23 2023-01-06 华南理工大学 High-entropy metal alkene and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170275745A1 (en) * 2016-03-11 2017-09-28 The Industry & Academic Cooperation In Chungnam National University (Iac) High Entropy Alloy Having Composite Microstructure and Method of Manufacturing the Same
KR101928329B1 (en) * 2017-02-24 2018-12-12 국민대학교산학협력단 Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom
CN110541104A (en) * 2019-09-05 2019-12-06 华南理工大学 Low-density two-phase high-entropy alloy material and preparation method thereof
KR20200006906A (en) * 2018-07-11 2020-01-21 엘지전자 주식회사 Medium-entropy alloys with spinodal decomposition-induced extended solubility
KR20200045432A (en) * 2018-10-22 2020-05-04 서울대학교산학협력단 Complex copper alloy comprising high entropy alloy and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA704351B (en) * 1969-06-26 1971-03-31 Nat Res Dev Improvements in and relating to iron/copper alloys
CN109252083B (en) * 2018-11-07 2021-04-16 安阳工学院 Multiphase high-entropy alloy and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170275745A1 (en) * 2016-03-11 2017-09-28 The Industry & Academic Cooperation In Chungnam National University (Iac) High Entropy Alloy Having Composite Microstructure and Method of Manufacturing the Same
KR101928329B1 (en) * 2017-02-24 2018-12-12 국민대학교산학협력단 Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom
KR20200006906A (en) * 2018-07-11 2020-01-21 엘지전자 주식회사 Medium-entropy alloys with spinodal decomposition-induced extended solubility
KR20200045432A (en) * 2018-10-22 2020-05-04 서울대학교산학협력단 Complex copper alloy comprising high entropy alloy and method for manufacturing the same
CN110541104A (en) * 2019-09-05 2019-12-06 华南理工大学 Low-density two-phase high-entropy alloy material and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151766A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572880A (en) * 2022-09-23 2023-01-06 华南理工大学 High-entropy metal alkene and preparation method and application thereof
CN115572880B (en) * 2022-09-23 2023-06-16 华南理工大学 High-entropy metallocenes, preparation method and application thereof

Also Published As

Publication number Publication date
EP4151766A4 (en) 2023-12-20
US20230183846A1 (en) 2023-06-15
EP4151766A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2011122784A2 (en) Magnesium alloy for room temperature and manufacturing method thereof
WO2020085755A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
WO2021230392A1 (en) High-entropy alloy and method for manufacturing same
CN111014623B (en) Semi-continuous casting method for large-size copper-magnesium alloy slab ingot
WO2012124846A1 (en) Method for manufacturing oxide-dispersion strengthened platinum-rhodium alloy
WO2011074720A1 (en) Production method and production device for a composite metal powder using the gas spraying method
JP3212024B2 (en) Target material for Al-based sputtering and method for producing the same
WO2023224218A1 (en) Copper-nickel-silicon-manganese-tin-based copper alloy material having excellent strength, electrical conductivity, and bending workability, and method for manufacturing same
JP3819487B2 (en) Manufacturing method of semiconductor device
WO2018079945A1 (en) Method for producing hot-stamped aluminum case and hot-stamped aluminum case produced by method
JP3946966B2 (en) Method for producing Sn-based alloy containing Sn-Ti compound
WO2022235053A1 (en) High-strength aluminum alloy for 3d printing, and manufacturing method therefor
WO2019124837A1 (en) Highly electrically conductive and high strength copper alloy and manufacturing method thereof
WO2023096150A1 (en) Method for producing copper alloy sheet for vehicle or electric/electronic component having excellent strength, electrical conductivity, and bendability, and copper alloy sheet produced thereby
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
WO2022240023A1 (en) Aluminum alloy, method for manufacturing same, and parts using same
WO2018117762A1 (en) Magnesium alloy plate material with excellent corrosion resistance, and method for producing same
WO2018117713A1 (en) High strength magnesium alloy with excellent flame retardancy, and method for producing same
WO2013015641A2 (en) Aluminum alloy including iron-manganese homogeneous solid solution and preparation method thereof
EP0305986A2 (en) Mold Member and Rapidly Solidifying Water Cooled Rotary Roll Member
WO2014077653A1 (en) Zinc alloy and preparation method therefor
WO2012161397A1 (en) Filler metal for welding aluminum and manufacturing method thereof
WO2023085532A1 (en) Fe-cu alloy having mesh structure and method for manufacturing same
WO2012070818A2 (en) Aluminum-magnesium alloy and manufacturing method thereof
JP7433263B2 (en) Manufacturing method of Cu-Ni-Sn alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020934927

Country of ref document: EP

Effective date: 20221212