WO2022240023A1 - Aluminum alloy, method for manufacturing same, and parts using same - Google Patents

Aluminum alloy, method for manufacturing same, and parts using same Download PDF

Info

Publication number
WO2022240023A1
WO2022240023A1 PCT/KR2022/006090 KR2022006090W WO2022240023A1 WO 2022240023 A1 WO2022240023 A1 WO 2022240023A1 KR 2022006090 W KR2022006090 W KR 2022006090W WO 2022240023 A1 WO2022240023 A1 WO 2022240023A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
weight
present
silicon
aluminum
Prior art date
Application number
PCT/KR2022/006090
Other languages
French (fr)
Korean (ko)
Inventor
김지혜
정철호
송기창
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227038990A priority Critical patent/KR102565559B1/en
Priority to EP22807671.7A priority patent/EP4339316A1/en
Publication of WO2022240023A1 publication Critical patent/WO2022240023A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the present invention can be applied to various devices such as home appliances, and relates to an aluminum alloy, a manufacturing method thereof, and parts using the same.
  • Die casting also called die casting, is a precision casting method that manufactures parts having the same shape as the mold by injecting molten metal into a mold precisely processed to match the shape of the configuration of the device such as necessary parts, that is, the casting shape. can do. Parts or products produced by such die casting are also referred to as die casting castings.
  • die casting can be said to be a casting method suitable for mass production.
  • aluminum alloy is widely used as a material for die casting. Castings made of aluminum alloys are used in very diverse fields, and various types of aluminum alloys are used according to each main purpose.
  • Aluminum alloys can be used for various parts and the like.
  • various components used in a sturdy exterior material such as a TV stand and inside home appliances such as a washing machine or a refrigerator may be made of aluminum alloy.
  • various mechanical properties may be required for aluminum alloys to be used in such exterior materials or various parts.
  • a certain level of corrosion resistance, castability, mechanical strength, and the like may be required for aluminum alloys.
  • mass productivity may be required in order to manufacture various parts with such an aluminum alloy.
  • the Gravity Die-Casting (GDC) method makes mass production impossible.
  • elements such as Ti, Cr, or Zr are used as additives in order to realize particle refinement for improving the corrosion properties of aluminum alloys.
  • the technical problem to be solved by the present invention is to provide an aluminum alloy with improved corrosion resistance and castability, a manufacturing method thereof, and parts using the same.
  • the present invention is to provide an aluminum alloy that does not require an additional painting process to enhance the corrosion resistance of the aluminum alloy, a manufacturing method thereof, and a part using the same.
  • the present invention in the aluminum alloy for die casting, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight %, iron (Fe) 0.1 to 0.5% by weight, the balance is aluminum (Al) and other unavoidable impurities, and the aluminum alloy has a crystal grain size of 10 to 50 ⁇ m.
  • 1.0 to 1.5 wt% of zinc (Zn) may be further included.
  • 0.01 to 0.1% by weight of magnesium may be further included.
  • the content of manganese may be 0.8 to 1.5% by weight.
  • the iron (Fe) content may be 0.1 to 0.3 wt%.
  • the composition may not include at least one of Ti, Zr, and Cr.
  • the Ti, Zr, and Cr may be materials used for grain refinement in the die casting process.
  • the silicon content may be 0.1 to 0.2% by weight.
  • the present invention is a die-casting part made of an aluminum alloy, wherein the aluminum alloy contains 2.0 to 6.0% by weight of calcium (Ca), 1.0 to 3.0% by weight of manganese (Mn), It is composed of 0.1 to 1.0% by weight of silicon (Si), 0.1 to 0.5% by weight of iron (Fe), the balance aluminum (Al) and other unavoidable impurities, and the crystal grain size of the aluminum alloy is 10 to 50 ⁇ m. do.
  • the aluminum alloy contains 2.0 to 6.0% by weight of calcium (Ca), 1.0 to 3.0% by weight of manganese (Mn), It is composed of 0.1 to 1.0% by weight of silicon (Si), 0.1 to 0.5% by weight of iron (Fe), the balance aluminum (Al) and other unavoidable impurities, and the crystal grain size of the aluminum alloy is 10 to 50 ⁇ m. do.
  • the present invention provides a method for producing an aluminum alloy using die casting, comprising: melting an ingot; molten metal cleaning step; injecting the molten alloy into the mold; Injecting by applying pressure; And including the step of opening and extruding, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, It is characterized in that it is composed of aluminum (Al) and other unavoidable impurities.
  • the pressure may be 125 to 130 kgf/cm 2 .
  • mechanical properties including corrosion resistance and castability of an aluminum alloy can be improved.
  • an additional painting process is not required to enhance the corrosion resistance of the aluminum alloy, so the number of processes and process time can be reduced, thereby reducing costs.
  • it is intended to provide an aluminum alloy in which intermetallic compounds are evenly distributed and dispersed.
  • FIG. 1 is a diagram showing examples of products and parts that can be manufactured using an aluminum alloy according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the yield strength of specimens manufactured using an aluminum alloy according to an embodiment of the present invention.
  • Figure 3 is a photograph of the results of salt spray evaluation and powder detergent evaluation for a spider manufactured through an aluminum alloy according to an embodiment of the present invention and a comparative example.
  • FIG. 4 is a photograph of the surface of a spider made of an aluminum alloy according to a comparative example.
  • FIG. 5 is a photograph of the surface of a spider made of an aluminum alloy according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing crystal grains and crack propagation of an aluminum alloy according to a comparative example.
  • FIG. 7 is a conceptual diagram illustrating crystal grains and crack propagation of an aluminum alloy according to an embodiment of the present invention.
  • FIG. 8 is a flow chart showing a method for manufacturing an aluminum alloy according to an embodiment of the present invention.
  • an aluminum alloy for die casting may be produced by a composition containing 0.1 to 0.5% by weight, the balance of aluminum (Al) and other unavoidable impurities.
  • the content of manganese in the above composition may be 0.8 to 1.5% by weight.
  • the content of iron (Fe) in the above composition may be 0.1 to 0.3% by weight.
  • an aluminum alloy with improved corrosion resistance and castability can be obtained using the composition presented above, but the corrosion resistance and castability of the aluminum alloy can be further improved through the content of manganese and / or iron defined in more detail as described above.
  • composition of the aluminum alloy for die casting 1.0 to 1.5% by weight of zinc (Zn) may be further included.
  • magnesium may be further included.
  • an aluminum alloy for die casting in the aluminum alloy for die casting, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 0.8 to 1.5% by weight, zinc (Zn) 1.0 to 1.5% by weight, silicon
  • An aluminum alloy for die casting may be manufactured by a composition including 0.1 to 1.0 wt% of (Si), 0.1 to 0.3 wt% of iron (Fe), the balance of aluminum (Al), and other unavoidable impurities.
  • the composition of the aluminum alloy for die casting may not include at least one of Ti, Zr, and Cr.
  • composition of the aluminum alloy for die casting may not include Ti, Zr, and Cr.
  • These Ti, Zr, and Cr may be materials used for grain refinement in an aluminum die casting process.
  • additives such as Ti, Cr, or Zr may be added in order to realize grain refinement for improving corrosion properties.
  • an aluminum alloy can be manufactured using a high pressure die-casting (HPDC) method. As a result, it is possible to manufacture an aluminum alloy having particularly excellent corrosion resistance properties.
  • HPDC high pressure die-casting
  • the aluminum alloy according to the present invention may exhibit equivalent anti-corrosion properties compared to an aluminum alloy produced by the GDC method by adding a specific element as an additive.
  • an aluminum alloy having excellent corrosion resistance characteristics can be implemented without adding a specific element (Ti, Cr, Zr, etc.) for grain refinement. Due to this, there are advantages such as reduction in production time by omitting the additional flux treatment process along with the effect of reducing the cost of expensive raw materials.
  • composition of the aluminum alloy of the present invention a part using the same, and a manufacturing method will be described later in detail with reference to the drawings.
  • FIG. 1 is a diagram showing examples of products and parts that can be manufactured using an aluminum alloy according to an embodiment of the present invention.
  • an aluminum alloy according to an embodiment of the present invention may be used for parts of a washing machine 10.
  • aluminum alloy can be used in various cast-type products or parts that can be manufactured through a die casting process.
  • FIG. 1(B) a spider 11, which is a part that can be used in a washing machine as shown in FIG. 1(A), is shown. Also, referring to FIG. 1(C), a hub 12, which is a part that can be used in a washing machine as shown in FIG. 1(A), is shown.
  • the spider 11 may be mounted on a driving unit of the washing machine 10, including a drum type and a through type, and the hub 12 may be mounted on a motor and a connection unit of the washing machine 10.
  • the spider 11 and the hub 12 are parts that are continuously driven when the washing machine 10 operates, and thus require durability, and since they can always come into contact with water and detergent, corrosion resistance may also be required. Moreover, since the washing machine 10 can be visually recognized from the outside when the washing machine 10 is driven and is highly likely to come into contact with clothes, gloss characteristics may be important.
  • the composition of the aluminum alloy is required to satisfy a certain level of durability, corrosion resistance, glossiness, and castability.
  • the aluminum alloy according to one embodiment of the present invention may be used for exterior materials for electronic products such as TV stands in addition to the washing machine products described above.
  • aluminum alloy may be applied to various parts constituting a TV stand such as a base, a bracket, and a cover.
  • FIG. 2 is a graph showing the yield strength of specimens manufactured using an aluminum alloy according to an embodiment of the present invention.
  • the yield strength is approximately 170 MPa in the sample prepared primarily. It can be seen that there is an improvement compared to The secondary sample may be according to the first embodiment of the present invention.
  • the tertiary sample may be according to the second embodiment of the present invention.
  • an embodiment of the present invention may correspond to any one or more of the first embodiment and the second embodiment.
  • the silicon content of silicon (Si) is related to the gloss of aluminum alloy products, the silicon content can be reduced even if the yield strength is partially reduced within the limit allowed by the product.
  • Figure 3 is a photograph of the results of salt spray evaluation and powder detergent evaluation for a spider manufactured through an aluminum alloy according to an embodiment of the present invention and a comparative example.
  • composition of the aluminum alloy according to the comparative example and an embodiment of the present invention is as shown in Table 1 below.
  • composition of the aluminum alloy according to one embodiment of the present invention summarized in Table 1 is approximately the same as the composition of the aluminum alloy for die casting described above.
  • composition of one embodiment of the present invention summarized in Table 1 is the composition described above, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, the balance may fall within the range of the composition including aluminum (Al) and other unavoidable impurities.
  • composition of the comparative example has magnesium (Mg) 2.5 to 3.0% by weight and silicon (Si) 9.6 to 10.5% by weight as the main composition, and manganese (Mn) and iron (Fe) are added in small amounts.
  • the salt spray evaluation in FIG. 3 was made over 1000 hours. In addition, powder detergent evaluation was made over 456 hours.
  • FIG. 4 is a photograph of the surface of a spider made of an aluminum alloy according to a comparative example.
  • 5 is a surface photograph of a spider made of an aluminum alloy according to an embodiment of the present invention.
  • FIG. 4 shows the results of an anodizing experiment of a spider made of an aluminum alloy according to a comparative example.
  • FIG. 5 shows the results of an anodizing experiment of a spider made of an aluminum alloy according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing crystal grains and crack propagation of an aluminum alloy according to a comparative example
  • FIG. 7 is a conceptual diagram showing crystal grains and crack propagation of an aluminum alloy according to an embodiment of the present invention.
  • FIG. 6(A) schematically shows the surface shape of an aluminum alloy according to a comparative example. On the surface of these aluminum alloys, grains and grain boundaries exist. At this time, intermetallic compounds such as Al 6 Mn and Al 13 Fe 4 are mainly distributed in crystal grain boundaries having an unstable structure.
  • Figure 7 (A) schematically shows the surface shape of an aluminum alloy according to an embodiment of the present invention.
  • the intermetallic compound is evenly distributed or dispersed over the entire surface.
  • An aluminum alloy in which such an intermetallic compound is evenly distributed or dispersed over the entire surface may be formed by crystal grain refinement.
  • the grain size may be approximately 100 ⁇ m.
  • the crystal grain size may be smaller than this. Referring to FIG. 7(A) , it can be seen that the size of the crystal grains is significantly reduced compared to FIG. 6 .
  • the crack may stop at a certain level without continuously propagating along the grain boundary.
  • the breaking strength of the aluminum alloy may be improved.
  • the grain size of the aluminum alloy according to one embodiment of the present invention may be 10 to 50 ⁇ m.
  • the intermetallic compound since the intermetallic compound is evenly distributed or dispersed over the entire surface of the aluminum alloy, the intermetallic compound may be located inside these crystal grains. That is, according to one embodiment of the present invention, the mechanical properties of the aluminum alloy can be improved according to the micronized grain size.
  • corrosion of metals including aluminum alloy can occur in the process of pitting ⁇ propagation ⁇ re-pasivation (passivation film).
  • crevice corrosion may occur mainly at grain boundaries.
  • the boundaries of the grain boundaries may also become unclear (the boundaries are broken in the middle), and propagation may stop after crevice corrosion occurs.
  • the aluminum alloy according to an embodiment of the present invention may not include at least one of Ti, Zr, and Cr. Characteristically, the aluminum alloy according to an embodiment of the present invention may not include all of Ti, Zr, and Cr.
  • Ti, Zr, and Cr may be materials related to grain refinement, but according to an embodiment of the present invention, a desired level of grain refinement may be achieved without including Ti, Zr, and Cr.
  • the grain size of the aluminum alloy according to an embodiment of the present invention may be 10 to 50 ⁇ m.
  • the composition of silicon (Si) in the aluminum alloy may be 0.2% by weight or less.
  • the silicon content may be 0.1 to 0.2% by weight.
  • Silicon (Si) is a unique raw material and has a color (dark gray). Therefore, when the silicon content is increased, a color unique to the silicon element may appear on the surface of the alloy. For example, when the silicon content is high, stains caused by silicon or its precipitates may occur on the surface of the alloy.
  • the silicon content can be suppressed when high gloss properties are used.
  • the aluminum alloy when the aluminum alloy has the composition described above and the silicon content is 0.1 to 0.2% by weight, it can be used for products or parts having sufficient mechanical properties and high gloss.
  • Such an aluminum alloy according to an embodiment of the present invention may be formed by having the composition described above.
  • an aluminum alloy according to an embodiment of the present invention having the above characteristics can be manufactured by the manufacturing method described below together with the composition described above. Features of this manufacturing method will be described in detail below.
  • FIG. 8 is a flow chart showing a method for manufacturing an aluminum alloy according to an embodiment of the present invention.
  • a high pressure die-casting (HPDC) method may be used as a manufacturing method of the aluminum alloy. As a result, it is possible to manufacture an aluminum alloy having particularly excellent corrosion resistance properties.
  • the aluminum alloy according to one embodiment of the present invention may exhibit equivalent anti-corrosion properties compared to an aluminum alloy produced by the GDC method by adding a specific element as an additive.
  • an aluminum alloy having excellent corrosion resistance characteristics can be implemented without adding a specific element (Ti, Cr, Zr, etc.) for grain refinement. Due to this, there are advantages such as reduction in production time by omitting the additional flux treatment process along with the effect of reducing the cost of expensive raw materials.
  • the step of melting the ingot (S10) may correspond to a process of melting the raw material to achieve the composition described above. This melting process may be performed at approximately 700 °C.
  • the molten metal cleaning step (S20) may include a process of removing dross after introducing a degassing agent into the ingot.
  • the molten alloy is injected into the mold.
  • the injection process (S40) may be performed by applying pressure and pushing the molten alloy into the mold at high pressure.
  • An embodiment of the present invention is characterized in that a pressure of 125 to 130 kgf/cm 2 is used for crystal grain refinement.
  • a pressure of 125 to 130 kgf/cm 2 may be used in the mold process in order to achieve a desired level of crystal grain refinement without adding a specific element (Ti, Cr, Zr, etc.).
  • these pressure conditions may be related to the alloy composition described above.
  • Target fracture strength can be achieved using such alloy composition and/or pressure conditions. That is, crystal grain refinement can be achieved using such alloy composition and/or pressure conditions, and the intermetallic compound (Al 3 Fe/Al 4 Mn or Al 6 Mn, Al 13 Fe 4 ) is evenly dispersed, thereby increasing the strength of the aluminum alloy. can be improved.
  • the cooling time of the aluminum alloy may be shorter than that of a conventional manufacturing method (usually about 10 seconds).
  • the growth of crystal grains can be completed within a short time by such a fast cooling rate. Accordingly, the grain size can be miniaturized to a desired level.
  • the cooling time of this aluminum alloy may correspond to 3 to 5 seconds.
  • metal nuclei are created and grown, and grain boundaries that meet the growth of other nuclei must be formed at the boundary of the growth.
  • the total amount of crystals of a specific material is 100, if the cooling rate is slow, for example, even with 5 nuclei, the total amount can be adjusted by grain growth. However, when the cooling rate is fast, grain growth is suppressed and the total amount cannot be matched. In this case, 5 or more nuclei are required to achieve thermodynamic equilibrium, and the total amount can be adjusted with 5 or more nuclei. In other words, crystal grains can be refined.
  • the size can be miniaturized.
  • mechanical properties of the aluminum alloy may be improved by such grain refinement.
  • a spider or a door hinge of a washing machine may be manufactured using the improved aluminum alloy.
  • the present invention it is applicable to various devices such as home appliances, and it is possible to provide an aluminum alloy, a manufacturing method thereof, and parts using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Forging (AREA)

Abstract

The present invention is applicable to various devices such as home appliances, and relates to an aluminum alloy, a method for manufacturing same, and parts using same. The present invention relates to an aluminum alloy for die casting, comprising 2.0 wt% to 6.0 wt% of calcium (Ca), 1.0 wt% to 3.0 wt% of manganese (Mn), 0.1 wt% to 1.0 wt% of silicon (Si), 0.1 wt% to 0.5 wt% of iron (Fe), the balance aluminum (Al), and other unavoidable impurities, wherein the grain size of the aluminum alloy is 10 ㎛ to 50 ㎛.

Description

알루미늄 합금, 그 제조 방법 및 이를 이용한 부품Aluminum alloy, manufacturing method thereof and parts using the same
본 발명은 가전 제품 등 각종 장치에 적용 가능하며, 알루미늄 합금, 그 제조 방법 및 이를 이용한 부품에 관한 것이다.The present invention can be applied to various devices such as home appliances, and relates to an aluminum alloy, a manufacturing method thereof, and parts using the same.
다이캐스팅(Die casting)은 다이 주조라고도 불리며, 필요한 부품 등 장치의 구성의 형상, 즉 주조 형상에 일치하도록 정밀하게 가공된 금형에 용융 금속을 주입하여 금형과 동일한 형상의 부품 등을 제작하는 정밀 주조법이라 할 수 있다. 이러한 다이캐스팅에 의해서 생산된 부품 또는 제품을 다이캐스팅 주물이라고도 한다.Die casting, also called die casting, is a precision casting method that manufactures parts having the same shape as the mold by injecting molten metal into a mold precisely processed to match the shape of the configuration of the device such as necessary parts, that is, the casting shape. can do. Parts or products produced by such die casting are also referred to as die casting castings.
이러한 다이캐스팅을 통해서 치수가 매우 정확한 주물이 제작되기 때문에 표면 가공 등 후속 공정이 거의 필요가 없다. 따라서, 다이캐스팅은 대량 생산에 적합한 주조 방법이라 할 수 있다.Since castings with very accurate dimensions are produced through such die casting, there is little need for subsequent processes such as surface processing. Therefore, die casting can be said to be a casting method suitable for mass production.
일반적으로 다이캐스팅용 재질로 알루미늄 합금이 많이 사용되고 있다. 알루미늄 합금으로 제작된 주물은 매우 다양한 분야에 사용되고 있으며, 각각의 주 목적에 따라 다양한 종류의 알루미늄 합금이 이용되고 있다.In general, aluminum alloy is widely used as a material for die casting. Castings made of aluminum alloys are used in very diverse fields, and various types of aluminum alloys are used according to each main purpose.
이러한 알루미늄 합금이 다양한 부품 등에 이용될 수 있다. 예를 들어, TV 스탠드와 같은 견고한 외장재, 세탁기나 냉장고 등의 가전제품의 내부에 이용되는 각종 부품 등이 알루미늄 합금으로 제작될 수 있다.These aluminum alloys can be used for various parts and the like. For example, various components used in a sturdy exterior material such as a TV stand and inside home appliances such as a washing machine or a refrigerator may be made of aluminum alloy.
따라서, 알루미늄 합금이 이러한 외장재나 각종 부품에 이용되기 위하여 여러 기계적 성질이 요구될 수 있다. 예를 들어, 알루미늄 합금에서 일정 수준 이상의 내식성, 주조성, 기계적 강도 등을 요구될 수 있다.Therefore, various mechanical properties may be required for aluminum alloys to be used in such exterior materials or various parts. For example, a certain level of corrosion resistance, castability, mechanical strength, and the like may be required for aluminum alloys.
또한, 이러한 알루미늄 합금으로 각종 부품을 제작하기 위해서는 양산성이 요구될 수 있다.In addition, mass productivity may be required in order to manufacture various parts with such an aluminum alloy.
일례로, GDC(Gravity Die-Casting) 공법은 양산품 제작이 불가능하다. 또한, 이러한 GDC 공법에서는 알루미늄 합금의 부식 특성을 개선하기 위한 입자 미세화를 구현하기 위해서 Ti, Cr 또는 Zr 등의 원소를 첨가제로 이용된다.For example, the Gravity Die-Casting (GDC) method makes mass production impossible. In addition, in this GDC method, elements such as Ti, Cr, or Zr are used as additives in order to realize particle refinement for improving the corrosion properties of aluminum alloys.
이들 첨가제는 고가일 뿐 아니라, 이러한 첨가제를 이용하는 공정으로 인하여, 공정 단계가 추가되고, 공정 시간이 증가하는 문제점 등이 발생할 수 있다.These additives are not only expensive, but also problems such as an additional process step and an increase in process time may occur due to a process using these additives.
따라서, 이와 같은 문제점들을 극복하기 위한 개선 방안이 요구된다.Therefore, an improved method for overcoming these problems is required.
본 발명의 해결하고자 하는 기술적 과제는 내식성과 주조성이 향상된 알루미늄 합금, 그 제조 방법 및 이를 이용한 부품을 제공하고자 한다.The technical problem to be solved by the present invention is to provide an aluminum alloy with improved corrosion resistance and castability, a manufacturing method thereof, and parts using the same.
또한, 본 발명은 알루미늄 합금의 내식성 강화를 위하여 추가 도장 공정이 필요하지 않은 알루미늄 합금, 그 제조 방법 및 이를 이용한 부품을 제공하고자 한다.In addition, the present invention is to provide an aluminum alloy that does not require an additional painting process to enhance the corrosion resistance of the aluminum alloy, a manufacturing method thereof, and a part using the same.
또한, 알루미늄 합금에서 금속간 화합물이 고르게 분포 및 분산된 알루미늄 합금, 그 제조 방법 및 이를 이용한 부품을 제공하고자 한다.In addition, it is intended to provide an aluminum alloy in which intermetallic compounds are evenly distributed and dispersed in the aluminum alloy, a manufacturing method thereof, and a part using the same.
상기 목적을 달성하기 위한 제1관점으로서, 본 발명은, 다이캐스팅용 알루미늄 합금에 있어서, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되고, 상기 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛인 것을 특징으로 한다.As a first aspect for achieving the above object, the present invention, in the aluminum alloy for die casting, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight %, iron (Fe) 0.1 to 0.5% by weight, the balance is aluminum (Al) and other unavoidable impurities, and the aluminum alloy has a crystal grain size of 10 to 50 μm.
예시적인 실시예로서, 아연(Zn) 1.0 내지 1.5 중량%를 더 포함할 수 있다.As an exemplary embodiment, 1.0 to 1.5 wt% of zinc (Zn) may be further included.
예시적인 실시예로서, 마그네슘 0.01 내지 0.1 중량%를 더 포함할 수 있다.As an exemplary embodiment, 0.01 to 0.1% by weight of magnesium may be further included.
예시적인 실시예로서, 상기 망간의 함량은 0.8 내지 1.5 중량%일 수 있다.As an exemplary embodiment, the content of manganese may be 0.8 to 1.5% by weight.
예시적인 실시예로서, 상기 철(Fe)의 함량은 0.1 내지 0.3 중량%일 수 있다.As an exemplary embodiment, the iron (Fe) content may be 0.1 to 0.3 wt%.
예시적인 실시예로서, 상기 조성은 Ti, Zr, 및 Cr 중 적어도 어느 하나를 포함하지 않을 수 있다.As an exemplary embodiment, the composition may not include at least one of Ti, Zr, and Cr.
예시적인 실시예로서, 상기 Ti, Zr, 및 Cr은 상기 다이캐스팅 공정 중에서 결정립(grain) 미세화를 위하여 이용되는 물질일 수 있다.As an exemplary embodiment, the Ti, Zr, and Cr may be materials used for grain refinement in the die casting process.
예시적인 실시예로서, 상기 실리콘 함량은 0.1 내지 0.2 중량%일 수 있다.As an exemplary embodiment, the silicon content may be 0.1 to 0.2% by weight.
상기 목적을 달성하기 위한 제2관점으로서, 본 발명은, 알루미늄 합금으로 제작되는 다이캐스팅 부품에 있어서, 상기 알루미늄 합금은, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되고, 상기 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛인 것을 특징으로 한다.As a second aspect for achieving the above object, the present invention is a die-casting part made of an aluminum alloy, wherein the aluminum alloy contains 2.0 to 6.0% by weight of calcium (Ca), 1.0 to 3.0% by weight of manganese (Mn), It is composed of 0.1 to 1.0% by weight of silicon (Si), 0.1 to 0.5% by weight of iron (Fe), the balance aluminum (Al) and other unavoidable impurities, and the crystal grain size of the aluminum alloy is 10 to 50 μm. do.
상기 목적을 달성하기 위한 제2관점으로서, 본 발명은, 다이캐스팅을 이용한 알루미늄 합금의 제조 방법에 있어서, 잉곳 용융하는 단계; 용탕 클리닝 단계; 금형에 용융된 합금을 주입하는 단계; 압력을 가하여 사출하는 단계; 및 형개 및 압출하는 단계를 포함하고, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되는 것을 특징으로 한다.As a second aspect for achieving the above object, the present invention provides a method for producing an aluminum alloy using die casting, comprising: melting an ingot; molten metal cleaning step; injecting the molten alloy into the mold; Injecting by applying pressure; And including the step of opening and extruding, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, It is characterized in that it is composed of aluminum (Al) and other unavoidable impurities.
예시적인 실시예로서, 상기 압력은 125 내지 130 kgf/㎠일 수 있다.As an exemplary embodiment, the pressure may be 125 to 130 kgf/cm 2 .
본 발명의 일 실시예에 따르면, 다음과 같은 효과가 있다.According to one embodiment of the present invention, there are the following effects.
먼저, 본 발명의 일 실시예에 의하면, 알루미늄 합금의 내식성과 주조성 등을 포함하는 기계적 특성이 향상될 수 있다.First, according to an embodiment of the present invention, mechanical properties including corrosion resistance and castability of an aluminum alloy can be improved.
또한, 본 발명의 일 실시예에 의하면, 알루미늄 합금의 내식성 강화를 위하여 추가 도장 공정이 필요하지 않아, 공정 수 및 공정 시간이 단축될 수 있고, 이로 인한 비용을 절감할 수 있다.In addition, according to one embodiment of the present invention, an additional painting process is not required to enhance the corrosion resistance of the aluminum alloy, so the number of processes and process time can be reduced, thereby reducing costs.
또한, 본 발명의 일 실시예에 의하면, 금속간 화합물이 고르게 분포 및 분산된 알루미늄 합금을 제공하고자 한다.In addition, according to one embodiment of the present invention, it is intended to provide an aluminum alloy in which intermetallic compounds are evenly distributed and dispersed.
나아가, 본 발명의 실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전취지를 통해 이해할 수 있다.Furthermore, according to the embodiments of the present invention, there are additional technical effects not mentioned herein. A person skilled in the art can understand the entire meaning of the specification and drawings.
도 1은 본 발명의 일 실시예에 따른 알루미늄 합금을 이용하여 제작될 수 있는 제품 및 부품의 예를 나타내는 도이다.1 is a diagram showing examples of products and parts that can be manufactured using an aluminum alloy according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 알루미늄 합금을 이용하여 제작된 시편의 항복강도를 나타내는 그래프이다.2 is a graph showing the yield strength of specimens manufactured using an aluminum alloy according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예와 비교예에 의한 알루미늄 합금을 통해서 제작된 스파이더에 대한 염수분무평가 및 분말세제평가 결과에 대한 사진이다.Figure 3 is a photograph of the results of salt spray evaluation and powder detergent evaluation for a spider manufactured through an aluminum alloy according to an embodiment of the present invention and a comparative example.
도 4는 비교예에 의한 알루미늄 합금을 통해서 제작된 스파이더의 표면 사진이다. 4 is a photograph of the surface of a spider made of an aluminum alloy according to a comparative example.
도 5는 본 발명의 일 실시예에 의한 알루미늄 합금을 통해서 제작된 스파이더의 표면 사진이다.5 is a photograph of the surface of a spider made of an aluminum alloy according to an embodiment of the present invention.
도 6은 비교예에 의한 알루미늄 합금의 결정립 및 크랙의 전파를 나타내는 개념도이다.6 is a conceptual diagram showing crystal grains and crack propagation of an aluminum alloy according to a comparative example.
도 7은 본 발명의 일 실시예에 의한 알루미늄 합금의 결정립 및 크랙의 전파를 나타내는 개념도이다.7 is a conceptual diagram illustrating crystal grains and crack propagation of an aluminum alloy according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 의한 알루미늄 합금의 제조 방법을 나타내는 순서도이다.8 is a flow chart showing a method for manufacturing an aluminum alloy according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. Hereinafter, the embodiments disclosed in this specification will be described in detail with reference to the accompanying drawings, but the same or similar elements are given the same reference numerals regardless of reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used together in consideration of ease of writing the specification, and do not have meanings or roles that are distinct from each other by themselves.
또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, in describing the embodiments disclosed in this specification, if it is determined that a detailed description of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed description will be omitted. In addition, it should be noted that the accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and should not be construed as limiting the technical idea disclosed in this specification by the accompanying drawings.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.Furthermore, although each drawing is described for convenience of explanation, it is also within the scope of the present invention for those skilled in the art to implement another embodiment by combining at least two or more drawings.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다. It is also to be understood that when an element such as a layer, region or substrate is referred to as being “on” another element, it may be directly on the other element or intervening elements may exist therebetween. There will be.
본 발명의 일 실시예에 의하면, 다이캐스팅용 알루미늄 합금에 있어서, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하는 조성에 의하여 다이캐스팅용 알루미늄 합금이 제작될 수 있다.According to one embodiment of the present invention, in the aluminum alloy for die casting, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) An aluminum alloy for die casting may be produced by a composition containing 0.1 to 0.5% by weight, the balance of aluminum (Al) and other unavoidable impurities.
이때, 더 상세하게, 위의 조성에서 망간의 함량은 0.8 내지 1.5 중량%일 수 있다. 또한, 더 상세하게, 위의 조성에서 철(Fe)의 함량은 0.1 내지 0.3 중량%일 수 있다. At this time, in more detail, the content of manganese in the above composition may be 0.8 to 1.5% by weight. In addition, in more detail, the content of iron (Fe) in the above composition may be 0.1 to 0.3% by weight.
즉, 위에서 제시된 조성을 이용하여 내식성과 주조성이 향상된 알루미늄 합금을 얻을 수 있으나, 위와 같이 더 상세하게 한정된 망간 및/또는 철의 함량을 통하여 알루미늄 합금의 내식성과 주조성이 더 향상될 수 있다.That is, an aluminum alloy with improved corrosion resistance and castability can be obtained using the composition presented above, but the corrosion resistance and castability of the aluminum alloy can be further improved through the content of manganese and / or iron defined in more detail as described above.
한편, 이러한 다이캐스팅용 알루미늄 합금의 조성에서, 아연(Zn) 1.0 내지 1.5 중량%를 더 포함될 수 있다. Meanwhile, in the composition of the aluminum alloy for die casting, 1.0 to 1.5% by weight of zinc (Zn) may be further included.
또한, 마그네슘 0.1 내지 0.01 중량%를 더 포함될 수 있다.In addition, 0.1 to 0.01% by weight of magnesium may be further included.
다시 말하면, 본 발명의 다른 실시예에 의하면, 다이캐스팅용 알루미늄 합금에 있어서, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 0.8 내지 1.5 중량%, 아연(Zn) 1.0 내지 1.5 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.3 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하는 조성에 의하여 다이캐스팅용 알루미늄 합금이 제작될 수 있다.In other words, according to another embodiment of the present invention, in the aluminum alloy for die casting, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 0.8 to 1.5% by weight, zinc (Zn) 1.0 to 1.5% by weight, silicon An aluminum alloy for die casting may be manufactured by a composition including 0.1 to 1.0 wt% of (Si), 0.1 to 0.3 wt% of iron (Fe), the balance of aluminum (Al), and other unavoidable impurities.
이러한 다이캐스팅용 알루미늄 합금의 조성은 Ti, Zr, 및 Cr 중 적어도 어느 하나를 포함하지 않을 수 있다.The composition of the aluminum alloy for die casting may not include at least one of Ti, Zr, and Cr.
또한, 이러한 다이캐스팅용 알루미늄 합금의 조성은 Ti, Zr, 및 Cr을 포함하지 않을 수 있다.In addition, the composition of the aluminum alloy for die casting may not include Ti, Zr, and Cr.
이러한 Ti, Zr, 및 Cr은 알루미늄 다이캐스팅 공정 중에서 결정립(grain) 미세화를 위하여 이용되는 물질일 수 있다.These Ti, Zr, and Cr may be materials used for grain refinement in an aluminum die casting process.
일례로, GDC(Gravity Die-Casting) 공법에 의하여 알루미늄 합금을 제작하는 경우에, 부식특성을 개선하기 위한 입자 미세화를 구현하기 위해서는 첨가제인 Ti, Cr 또는 Zr 등의 원소를 투입할 수 있다.For example, in the case of manufacturing an aluminum alloy by a Gravity Die-Casting (GDC) method, additives such as Ti, Cr, or Zr may be added in order to realize grain refinement for improving corrosion properties.
반면, 본 발명에서는 HPDC(High Pressure Die-Casting) 공법을 이용하여 알루미늄 합금을 제작할 수 있다. 이로 인하여 내부식 특성이 특히 우수한 알루미늄 합금을 제작할 수 있다.On the other hand, in the present invention, an aluminum alloy can be manufactured using a high pressure die-casting (HPDC) method. As a result, it is possible to manufacture an aluminum alloy having particularly excellent corrosion resistance properties.
본 발명에서 이용한 HPDC 공법은 냉각 속도가 빠르기 때문에 특정 원소(Ti, Cr 또는 Zr 등)를 넣지 않아도 결정립 미세화가 가능하다. 이러한 본 발명에 의한 알루미늄 합금은 특정 원소를 첨가제로 넣고 GDC 공법으로 제작한 알루미늄 합금과 비교해서 동등한 내부식 특성을 나타낼 수 있다.Since the HPDC method used in the present invention has a fast cooling rate, crystal grain refinement is possible without adding a specific element (Ti, Cr, Zr, etc.). The aluminum alloy according to the present invention may exhibit equivalent anti-corrosion properties compared to an aluminum alloy produced by the GDC method by adding a specific element as an additive.
이와 같이, 본 발명에서는 입자 미세화를 위한 특정 원소(Ti, Cr 또는 Zr 등)를 넣지 않고도 내부식 특성이 우수한 알루미늄 합금을 구현할 수 있다. 이로 인하여, 고가인 원재료 원가 절감 효과와 함께 추가 플럭스(Flux) 처리 공정이 생략되어 생산 시간 단축 등의 이점이 있다.As such, in the present invention, an aluminum alloy having excellent corrosion resistance characteristics can be implemented without adding a specific element (Ti, Cr, Zr, etc.) for grain refinement. Due to this, there are advantages such as reduction in production time by omitting the additional flux treatment process along with the effect of reducing the cost of expensive raw materials.
이와 같은 본 발명의 알루미늄 합금의 조성, 이를 이용한 부품, 및 제조 방법은 도면을 참조하여 자세히 후술한다.The composition of the aluminum alloy of the present invention, a part using the same, and a manufacturing method will be described later in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 알루미늄 합금을 이용하여 제작될 수 있는 제품 및 부품의 예를 나타내는 도이다.1 is a diagram showing examples of products and parts that can be manufactured using an aluminum alloy according to an embodiment of the present invention.
도 1(A)를 참조하면, 본 발명의 일 실시예에 따른 알루미늄 합금은 세탁기(10)의 부품에 이용될 수 있다. 구체적인 예로, 알루미늄 합금은 다이캐스팅 공정을 통해서 제작될 수 있는 각종 주물형 제품 또는 부품에 이용될 수 있다.Referring to FIG. 1(A) , an aluminum alloy according to an embodiment of the present invention may be used for parts of a washing machine 10. As a specific example, aluminum alloy can be used in various cast-type products or parts that can be manufactured through a die casting process.
도 1(B)를 참조하면 도 1(A)와 같은 세탁기에 이용될 수 있는 부품인 스파이더(11)를 도시하고 있다. 또한, 도 1(C)를 참조하면 도 1(A)와 같은 세탁기에 이용될 수 있는 부품인 허브(12)를 나타내고 있다.Referring to FIG. 1(B), a spider 11, which is a part that can be used in a washing machine as shown in FIG. 1(A), is shown. Also, referring to FIG. 1(C), a hub 12, which is a part that can be used in a washing machine as shown in FIG. 1(A), is shown.
스파이더(11)는 드럼형 및 통돌이형 등을 비롯한 세탁기(10)의 구동부에 장착될 수 있고, 허브(12)는 세탁기(10)의 모터와 연결부에 장착될 수 있다.The spider 11 may be mounted on a driving unit of the washing machine 10, including a drum type and a through type, and the hub 12 may be mounted on a motor and a connection unit of the washing machine 10.
이와 같은 스파이더(11)와 허브(12)는 세탁기(10)가 작동할 때 계속적으로 구동되는 부품으로써 내구성이 요구되고, 또한, 물과 세제 등과 항상 접촉할 수 있으므로 내식성이 함께 요구될 수 있다. 더욱이, 세탁기(10) 구동 시에 외부에서 시인될 수 있고, 의류와 접촉할 가능성이 높으므로 광택 특성이 중요할 수 있다.As such, the spider 11 and the hub 12 are parts that are continuously driven when the washing machine 10 operates, and thus require durability, and since they can always come into contact with water and detergent, corrosion resistance may also be required. Moreover, since the washing machine 10 can be visually recognized from the outside when the washing machine 10 is driven and is highly likely to come into contact with clothes, gloss characteristics may be important.
따라서, 이러한 알루미늄 합금으로 이루어지는 부품에서 내구성, 내식성, 광택성 뿐만 아니라 주조성 등의 특성은 매우 중요한 특성이라고 할 수 있다. 따라서, 알루미늄 합금의 조성은 일정 수준 이상의 내구성, 내식성, 광택성, 및 주조성을 만족하는 것이 요구된다.Therefore, in parts made of such an aluminum alloy, properties such as durability, corrosion resistance, and gloss as well as castability can be said to be very important properties. Therefore, the composition of the aluminum alloy is required to satisfy a certain level of durability, corrosion resistance, glossiness, and castability.
본 발명의 일 실시예에 의한 알루미늄 합금은 위에서 예를 들어 설명한 세탁기 제품 외에도 TV 스탠드와 같은 전자제품 외장재에도 이용될 수 있다. 예를 들어, 베이스, 브라켓, 커버 등의 TV 스탠드를 이루는 각종 부품에 알루미늄 합금이 적용될 수 있다.The aluminum alloy according to one embodiment of the present invention may be used for exterior materials for electronic products such as TV stands in addition to the washing machine products described above. For example, aluminum alloy may be applied to various parts constituting a TV stand such as a base, a bracket, and a cover.
도 2는 본 발명의 일 실시예에 따른 알루미늄 합금을 이용하여 제작된 시편의 항복강도를 나타내는 그래프이다.2 is a graph showing the yield strength of specimens manufactured using an aluminum alloy according to an embodiment of the present invention.
1차적으로 Al94Ca2.3Mn2.0Zn1.0Si0.2Fe0.2의 조성으로 알루미늄 합금을 이용하여 스파이더 부품을 제작했을 때의 항복강도는 대략 150 MPa를 보이고 있다.The yield strength when a spider part is manufactured using an aluminum alloy with a composition of primarily Al 94 Ca 2.3 Mn 2.0 Zn 1.0 Si 0.2 Fe 0.2 shows approximately 150 MPa.
이후, 2차적으로 칼슘(Ca)의 함량을 변경하여 Al92Ca4.8Mn1.0Zn1.5Si0.2Fe0.2의 조성으로 알루미늄 합금을 제작한 경우의 항복강도는 대략 170 MPa 정도로 1차적으로 제작한 시료에 비하여 개선된 것을 알 수 있다. 2차 시료는 본 발명의 제1 실시예에 의한 것일 수 있다.Thereafter, when the aluminum alloy is fabricated with a composition of Al 92 Ca 4.8 Mn 1.0 Zn 1.5 Si 0.2 Fe 0.2 by changing the content of calcium (Ca) secondarily, the yield strength is approximately 170 MPa in the sample prepared primarily. It can be seen that there is an improvement compared to The secondary sample may be according to the first embodiment of the present invention.
한편, 3차 시료는 Al91Ca4.8Mn1.0Zn1.5Si0.75Fe0.2의 조성으로 실리콘(Si)의 함량을 조절하여 스파이더를 제작한 경우, 항복강도는 190 MPa까지 상승한 것을 알 수 있다. 3차 시료는 본 발명의 제2 실시예에 의한 것일 수 있다. 이하에서 본 발명의 일 실시예라 함은 이러한 제1 실시예 및 제2 실시예 중 어느 하나 또는 그 이상에 해당할 수 있다.On the other hand, when the spider was manufactured by controlling the content of silicon (Si) in the third sample with a composition of Al 91 Ca 4.8 Mn 1.0 Zn 1.5 Si 0.75 Fe 0.2 , it can be seen that the yield strength increased to 190 MPa. The tertiary sample may be according to the second embodiment of the present invention. Hereinafter, an embodiment of the present invention may correspond to any one or more of the first embodiment and the second embodiment.
이와 같이, 필요한 성능에 따라 일부 주요 조성인 칼륨(Ca)과 실리콘(Si)의 함량을 변경하여 스파이더 등의 제품에 적용 가능하다.In this way, it is possible to apply to products such as spiders by changing the contents of potassium (Ca) and silicon (Si), which are some main components, according to the required performance.
위에서 언급한 바와 같이, 실리콘(Si)의 함량은 알루미늄 합금 제품의 광택과 관련이 있으므로, 항복강도는 제품이 허용하는 한도 내에서 일정 부분 저하되더라도 실리콘 함량을 줄일 수 있다.As mentioned above, since the content of silicon (Si) is related to the gloss of aluminum alloy products, the silicon content can be reduced even if the yield strength is partially reduced within the limit allowed by the product.
도 3은 본 발명의 일 실시예와 비교예에 의한 알루미늄 합금을 통해서 제작된 스파이더에 대한 염수분무평가 및 분말세제평가 결과에 대한 사진이다.Figure 3 is a photograph of the results of salt spray evaluation and powder detergent evaluation for a spider manufactured through an aluminum alloy according to an embodiment of the present invention and a comparative example.
이때, 비교예 및 본 발명의 일 실시예에 의한 알루미늄 합금의 조성은 아래의 표 1에서 나타내는 바와 같다.At this time, the composition of the aluminum alloy according to the comparative example and an embodiment of the present invention is as shown in Table 1 below.
AlAl SiSi MgMg CaCa MnMn FeFe
비교예comparative example 90.0 이하90.0 or less 9.6~10.69.6~10.6 2.5~3.02.5 to 3.0 -- 0.5~0.60.5~0.6 0.6~0.70.6~0.7
본 발명the present invention 90.0 이상90.0 or higher 1.0 이하below 1.0 0.1 이하0.1 or less 2.0~6.02.0 to 6.0 1.0~3.01.0 to 3.0 0.5 이하less than 0.5
이러한 표 1에 정리된 본 발명의 일 실시예에 의한 알루미늄 합금의 조성은 위에서 설명한 바 있는 다이캐스팅용 알루미늄 합금의 조성과 대략적으로 일치한다.The composition of the aluminum alloy according to one embodiment of the present invention summarized in Table 1 is approximately the same as the composition of the aluminum alloy for die casting described above.
즉, 표 1에서 정리된 본 발명의 일 실시예의 조성은 위에서 설명한 조성, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하는 조성의 범위 내에 속할 수 있다.That is, the composition of one embodiment of the present invention summarized in Table 1 is the composition described above, calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, the balance may fall within the range of the composition including aluminum (Al) and other unavoidable impurities.
이에 비하여, 비교예의 조성은 마그네슘(Mg) 2.5~3.0 중량%, 실리콘(Si) 9.6~10.5 중량%를 주요 조성으로 하고, 여기에 망간(Mn)과 철(Fe)가 미량 첨가된 상태임을 알 수 있다.In contrast, the composition of the comparative example has magnesium (Mg) 2.5 to 3.0% by weight and silicon (Si) 9.6 to 10.5% by weight as the main composition, and manganese (Mn) and iron (Fe) are added in small amounts. can
도 3의 염수분무평가는 1000 시간에 걸쳐서 이루어졌다. 또한, 분말세제평가는 456 시간에 걸쳐서 이루어졌다.The salt spray evaluation in FIG. 3 was made over 1000 hours. In addition, powder detergent evaluation was made over 456 hours.
도 3의 사진에서 나타내는 바와 같이, 염수분무평가 및 분말세제평가 결과를 보면 본 발명의 일 실시예의 경우에 표면의 변화가 비교예에 비하여 거의 일어나지 않은 것을 알 수 있다. 즉, 비교예에 비하여 염수분무평가 및 분말세제평가 결과가 크게 개선된 것을 알 수 있다.As shown in the photograph of Figure 3, looking at the salt spray evaluation and powder detergent evaluation results, it can be seen that in the case of one embodiment of the present invention, almost no change in the surface occurred compared to the comparative example. That is, it can be seen that the salt spray evaluation and powder detergent evaluation results are greatly improved compared to the comparative example.
도 4는 비교예에 의한 알루미늄 합금을 통해서 제작된 스파이더의 표면 사진이다. 또한, 도 5는 본 발명의 일 실시예에 의한 알루미늄 합금을 통해서 제작된 스파이더의 표면 사진이다.4 is a photograph of the surface of a spider made of an aluminum alloy according to a comparative example. 5 is a surface photograph of a spider made of an aluminum alloy according to an embodiment of the present invention.
이러한 도 4는 비교예에 의한 알루미늄 합금을 통해서 제작된 스파이더의 아노다이징 실험 결과를 나타내고 있다. 또한, 도 5는 본 발명의 일 실시예에 의한 알루미늄 합금을 통해서 제작된 스파이더의 아노다이징 실험 결과를 나타내고 있다.4 shows the results of an anodizing experiment of a spider made of an aluminum alloy according to a comparative example. In addition, FIG. 5 shows the results of an anodizing experiment of a spider made of an aluminum alloy according to an embodiment of the present invention.
도 4 및 도 5의 (A) 및 (B)는 각각 SEM(scanning electron microscope)과 EPMA(electron probe X-ray microanalyzer) 사진을 나타내고 있다.4 and 5 (A) and (B) show SEM (scanning electron microscope) and EPMA (electron probe X-ray microanalyzer) photographs, respectively.
도 4의 아노다이징 결과를 참조하면, 비교예에 의한 알루미늄 합금의 경우, 다량의 석출물이 발생하여 표면이 거칠게 된 것을 확인할 수 있다. 이는 실리콘(Si)과 구리(Cu)의 석출물로 확인된다. 표면 전체에 걸쳐서 실리콘을 주성분으로 하는 석출물이 확인되는데 석출물의 크기는 10 내지 20 ㎛ 정도로 확인된다. 이와 같이, 실리콘에 의하여 스머트가 발생하고 구리에 의하여 기공이 발생할 수 있다. 따라서, 비교예의 경우, 아노다이징시 고광택의 색을 구현하기 어려움을 알 수 있다.Referring to the anodizing result of FIG. 4 , in the case of the aluminum alloy according to the comparative example, it can be confirmed that a large amount of precipitates are generated and the surface is rough. This is confirmed as a precipitate of silicon (Si) and copper (Cu). Precipitates containing silicon as a main component are found over the entire surface, and the size of the precipitates is confirmed to be about 10 to 20 μm. As such, smut may be generated by silicon and pores may be generated by copper. Therefore, in the case of the comparative example, it can be seen that it is difficult to implement a high-gloss color during anodizing.
반면, 도 5에서 도시하는 본 발명의 실시예의 아노다이징 결과를 참조하면, 실리콘과 구리의 석출이 거의 발생하지 않은 것을 알 수 있다. 도 5(A)를 참조하면 표면에서 일부분의 실리콘(Si) 석출물을 확인할 수 있으나 전체적으로 고광택을 이루는 것을 알 수 있다.On the other hand, referring to the anodizing result of the embodiment of the present invention shown in FIG. 5, it can be seen that precipitation of silicon and copper hardly occurred. Referring to FIG. 5(A), it can be seen that a part of the silicon (Si) precipitate is confirmed on the surface, but it can be seen that the entire surface has a high gloss.
이와 같이, 본 발명의 일 실시예에 의하면 실리콘(Si) 성분비를 조절하고 구리(Cu)는 배제하고 마그네슘(Mg)은 최소화하여 깊은 색감을 표현할 수 있고, 깨끗한 색 표현을 구현할 수 있다.As such, according to an embodiment of the present invention, it is possible to express a deep color and implement a clear color expression by adjusting the component ratio of silicon (Si), excluding copper (Cu), and minimizing magnesium (Mg).
도 6은 비교예에 의한 알루미늄 합금의 결정립 및 크랙의 전파를 나타내는 개념도이고, 도 7은 본 발명의 일 실시예에 의한 알루미늄 합금의 결정립 및 크랙의 전파를 나타내는 개념도이다.6 is a conceptual diagram showing crystal grains and crack propagation of an aluminum alloy according to a comparative example, and FIG. 7 is a conceptual diagram showing crystal grains and crack propagation of an aluminum alloy according to an embodiment of the present invention.
도 6(A)은 비교예에 의한 알루미늄 합금의 표면 형상을 도식적으로 나타내고 있다. 이러한 알루미늄 합금의 표면에는 결정립(grain) 및 결정립계(grain boundary)가 존재한다. 이때, Al6Mn, Al13Fe4와 같은 금속간 화합물이 불안정한 구조인 결정립계에 주로 분포하게 된다.6(A) schematically shows the surface shape of an aluminum alloy according to a comparative example. On the surface of these aluminum alloys, grains and grain boundaries exist. At this time, intermetallic compounds such as Al 6 Mn and Al 13 Fe 4 are mainly distributed in crystal grain boundaries having an unstable structure.
이러한 비교예와 같은 구조를 가지는 알루미늄 합금에서 어떤 이유에 의하여 크랙(crack)이 전파되는 경우, 도 6(B)에서 도시하는 바와 같이, 결정립계에 분포된 금속간 화합물이 크랙의 전파를 막지 못하며, 이는 파괴강도의 저하로 이어질 수 있다.When cracks propagate for some reason in an aluminum alloy having a structure like this Comparative Example, as shown in FIG. This may lead to a decrease in breaking strength.
도 7(A)은 본 발명의 일 실시예에 의한 알루미늄 합금의 표면 형상을 도식적으로 나타내고 있다. 본 발명의 일 실시예에 의한 알루미늄 합금은 금속간 화합물이 표면 전체에 걸쳐 골고루 분포 또는 분산하는 것을 알 수 있다.Figure 7 (A) schematically shows the surface shape of an aluminum alloy according to an embodiment of the present invention. In the aluminum alloy according to an embodiment of the present invention, it can be seen that the intermetallic compound is evenly distributed or dispersed over the entire surface.
이와 같은 금속간 화합물이 표면 전체에 걸쳐 골고루 분포 또는 분산된 알루미늄 합금은 결정립 미세화에 의하여 이루어질 수 있다.An aluminum alloy in which such an intermetallic compound is evenly distributed or dispersed over the entire surface may be formed by crystal grain refinement.
일반적으로 GC(Gravity Casting) 또는 GDC(Gravity Die-Casting) 공법에 의하여 제작되는 알루미늄 합금의 경우 결정립 크기는 대략 100 ㎛ 수준일 수 있다.Generally, in the case of an aluminum alloy manufactured by a GC (Gravity Casting) or GDC (Gravity Die-Casting) method, the grain size may be approximately 100 μm.
또한, 통상의 HPDC(High pressure Die-Casting) 공법에 의하여 제작되는 알루미늄 합금의 경우 결정립 크기가 이보다 작아질 수 있다. 도 7(A)을 참조하면, 결정립의 크기가 도 6에 비하여 크게 감소한 것을 알 수 있다.In addition, in the case of an aluminum alloy manufactured by a conventional HPDC (High Pressure Die-Casting) method, the crystal grain size may be smaller than this. Referring to FIG. 7(A) , it can be seen that the size of the crystal grains is significantly reduced compared to FIG. 6 .
이때, 결정립계를 따라 크랙(crack)이 발생하는 경우, 도 7(B)에서 도시하는 바와 같이, 크랙이 결정립계를 따라 계속 전파(propagation)되지 않고 일정 수준에서 멈출 수 있다. 이로 인하여 알루미늄 합금의 파괴강도가 향상될 수 있다.At this time, when a crack occurs along the grain boundary, as shown in FIG. 7(B), the crack may stop at a certain level without continuously propagating along the grain boundary. As a result, the breaking strength of the aluminum alloy may be improved.
이러한 본 발명의 일 실시예에 의한 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛일 수 있다. 또한, 금속간 화합물은 알루미늄 합금의 표면 전체에 걸쳐 골고루 분포 또는 분산하게 되므로, 금속간 화합물은 이러한 결정립 내부에 위치할 수 있다. 즉, 본 발명의 일 실시예에 의하면 미세화된 결정립 크기에 따라 알루미늄 합금의 기계적 특성이 향상될 수 있다.The grain size of the aluminum alloy according to one embodiment of the present invention may be 10 to 50 μm. In addition, since the intermetallic compound is evenly distributed or dispersed over the entire surface of the aluminum alloy, the intermetallic compound may be located inside these crystal grains. That is, according to one embodiment of the present invention, the mechanical properties of the aluminum alloy can be improved according to the micronized grain size.
통상적으로 알루미늄 합금을 비롯한 금속의 부식은 Pitting(틈새부식) →Propagation(전파) → Re-pasivation(부동태피막)의 과정으로 일어날 수 있다. 또한, 틈새부식은 결정립계에서 주로 발생할 수 있다.In general, corrosion of metals including aluminum alloy can occur in the process of pitting → propagation → re-pasivation (passivation film). In addition, crevice corrosion may occur mainly at grain boundaries.
금속의 전체 표면에 결정립계의 수가 작으면, 다시 말하면, 결정립의 크기가 크면, 결정립계들의 연결이 확연하고 그 결정립계의 영역을 따라 틈새부식이 크게 전파해 나가는 현상이 발생할 수 있다(부식 전파).If the number of grain boundaries is small on the entire surface of the metal, in other words, if the size of the grains is large, the connection between the grain boundaries is clear, and crevice corrosion may greatly propagate along the grain boundary area (corrosion propagation).
그러나 본 발명의 일 실시예에 의한 알루미늄 합금의 경우와 같이, 결정립이 미세화되면 결정립계의 경계도 불분명해질 수 있으며(경계가 중간 중간 끊어짐) 틈새부식 발생한 이후 전파가 멈줄 수 있는 것이다.However, as in the case of the aluminum alloy according to an embodiment of the present invention, when the crystal grains are refined, the boundaries of the grain boundaries may also become unclear (the boundaries are broken in the middle), and propagation may stop after crevice corrosion occurs.
이러한 본 발명의 일 실시예에 의한 알루미늄 합금은 Ti, Zr, 및 Cr 중 적어도 어느 하나를 포함하지 않을 수 있다. 특징적으로, 본 발명의 일 실시예에 의한 알루미늄 합금은 Ti, Zr, 및 Cr를 모두 포함하지 않을 수 있다.The aluminum alloy according to an embodiment of the present invention may not include at least one of Ti, Zr, and Cr. Characteristically, the aluminum alloy according to an embodiment of the present invention may not include all of Ti, Zr, and Cr.
Ti, Zr, 및 Cr은 결정립 미세화와 관계되는 물질일 수 있으나, 본 발명의 일 실시예에 의하면, 이러한 Ti, Zr, 및 Cr을 포함하지 않고도 원하는 수준의 결정립 미세화를 이룰 수 있다.Ti, Zr, and Cr may be materials related to grain refinement, but according to an embodiment of the present invention, a desired level of grain refinement may be achieved without including Ti, Zr, and Cr.
위에서 언급한 바와 같이, 본 발명의 일 실시예에 의한 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛일 수 있다.As mentioned above, the grain size of the aluminum alloy according to an embodiment of the present invention may be 10 to 50 μm.
한편, 위에서 2차 시료(제1 실시예)에 대하여 설명한 바와 같이, 알루미늄 합금에서 실리콘(Si)의 조성은 0.2 중량% 또는 그 이하일 수 있다. 일례로, 실리콘 함량은 0.1 내지 0.2 중량%일 수 있다.Meanwhile, as described above for the secondary sample (first embodiment), the composition of silicon (Si) in the aluminum alloy may be 0.2% by weight or less. In one example, the silicon content may be 0.1 to 0.2% by weight.
실리콘(Si)은 특유의 원재로 색상(짙은회색)을 지닌다. 따라서, 실리콘 함량이 많아지면 합금 표면에 실리콘 원소 특유의 색상이 나타날 수 있다. 예를 들어, 실리콘 함량이 커지면 합금 표면에 실리콘 또는 그 석출물에 의한 얼룩이 발생할 수 있다.Silicon (Si) is a unique raw material and has a color (dark gray). Therefore, when the silicon content is increased, a color unique to the silicon element may appear on the surface of the alloy. For example, when the silicon content is high, stains caused by silicon or its precipitates may occur on the surface of the alloy.
따라서, 실시예에 따라, 고광택 특성을 이용할 경우에는 실리콘 함량을 억제할 수 있다.Therefore, depending on the embodiment, the silicon content can be suppressed when high gloss properties are used.
본 발명의 일 실시예에 의하면, 알루미늄 합금이 위에서 설명한 조성을 가지는 경우, 실리콘 함량은 0.1 내지 0.2 중량%인 경우, 충분한 기계적 성질을 지니면서 고광택을 지니는 제품 또는 부품에 이용될 수 있다.According to one embodiment of the present invention, when the aluminum alloy has the composition described above and the silicon content is 0.1 to 0.2% by weight, it can be used for products or parts having sufficient mechanical properties and high gloss.
이와 같은 본 발명의 일 실시예에 의한 알루미늄 합금은 위에서 설명한 조성을 가짐으로 이루어질 수 있다. 또한, 위에서 설명한 조성과 함께 아래에서 설명하는 제조 방법에 의하여 위와 같은 특성을 가지는 본 발명의 일 실시예에 의한 알루미늄 합금이 제조될 수 있다. 이러한 제조 방법의 특징에 대해서는 아래에서 자세히 후술한다.Such an aluminum alloy according to an embodiment of the present invention may be formed by having the composition described above. In addition, an aluminum alloy according to an embodiment of the present invention having the above characteristics can be manufactured by the manufacturing method described below together with the composition described above. Features of this manufacturing method will be described in detail below.
도 8은 본 발명의 일 실시예에 의한 알루미늄 합금의 제조 방법을 나타내는 순서도이다.8 is a flow chart showing a method for manufacturing an aluminum alloy according to an embodiment of the present invention.
도 8을 참조하면, 본 발명의 일 실시예에 의한 다이캐스팅을 이용한 알루미늄 합금의 제조 방법은, 잉곳 용융하는 단계(S10), 용탕 클리닝 단계(S20), 금형에 용융된 합금을 주입하는 단계(주탕; S30), 압력을 가하여 사출하는 단계(고압 사출; S40), 및 응고시킨 후 형개 및 압출하는 단계(S50)를 포함할 수 있다.Referring to FIG. 8 , in the method of manufacturing an aluminum alloy using die casting according to an embodiment of the present invention, the step of melting the ingot (S10), the step of cleaning the molten metal (S20), and the step of injecting the molten alloy into the mold (molten metal ; S30), applying pressure to inject (high pressure injection; S40), and solidifying and then opening and extruding the mold (S50).
이러한 제조 방법에 의하여, 위에서 설명한 바 있는, 칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되는 알루미늄 합금을 제조할 수 있다.By this manufacturing method, as described above, 2.0 to 6.0% by weight of calcium (Ca), 1.0 to 3.0% by weight of manganese (Mn), 0.1 to 1.0% by weight of silicon (Si), and 0.1 to 0.5% by weight of iron (Fe) , aluminum (Al) and other unavoidable impurities.
이러한 알루미늄 합금의 제조 방법은 HPDC(High Pressure Die-Casting) 공법을 이용할 수 있다. 이로 인하여 내부식 특성이 특히 우수한 알루미늄 합금을 제작할 수 있다.A high pressure die-casting (HPDC) method may be used as a manufacturing method of the aluminum alloy. As a result, it is possible to manufacture an aluminum alloy having particularly excellent corrosion resistance properties.
본 발명에서 이용한 HPDC 공법은 냉각 속도가 빠르기 때문에 특정 원소(Ti, Cr 또는 Zr 등)를 넣지 않아도 결정립 미세화가 가능하다. 이러한 본 발명의 일 실시예에 의한 알루미늄 합금은 특정 원소를 첨가제로 넣고 GDC 공법으로 제작한 알루미늄 합금과 비교해서 동등한 내부식 특성을 나타낼 수 있다.Since the HPDC method used in the present invention has a fast cooling rate, crystal grain refinement is possible without adding a specific element (Ti, Cr, Zr, etc.). The aluminum alloy according to one embodiment of the present invention may exhibit equivalent anti-corrosion properties compared to an aluminum alloy produced by the GDC method by adding a specific element as an additive.
이와 같이, 본 발명에서는 입자 미세화를 위한 특정 원소(Ti, Cr 또는 Zr 등)를 넣지 않고도 내부식 특성이 우수한 알루미늄 합금을 구현할 수 있다. 이로 인하여, 고가인 원재료 원가 절감 효과와 함께 추가 플럭스(Flux) 처리 공정이 생략되어 생산 시간 단축 등의 이점이 있다.As such, in the present invention, an aluminum alloy having excellent corrosion resistance characteristics can be implemented without adding a specific element (Ti, Cr, Zr, etc.) for grain refinement. Due to this, there are advantages such as reduction in production time by omitting the additional flux treatment process along with the effect of reducing the cost of expensive raw materials.
이하, 본 발명의 일 실시예에 의한 다이캐스팅을 이용한 알루미늄 합금의 제조 방법을 간략히 설명한다.Hereinafter, a method for manufacturing an aluminum alloy using die casting according to an embodiment of the present invention will be briefly described.
먼저, 잉곳 용융하는 단계(S10)는 위에서 설명한 조성이 이루어지도록 원재료를 용융시키는 과정에 해당할 수 있다. 이러한 융용 과정은 대략 700 ℃에서 이루어질 수 있다.First, the step of melting the ingot (S10) may correspond to a process of melting the raw material to achieve the composition described above. This melting process may be performed at approximately 700 °C.
이후, 용탕 클리닝 단계(S20)는 잉곳에 탈가스제를 투입 후에 드로스를 제거하는 과정을 포함할 수 있다.Thereafter, the molten metal cleaning step (S20) may include a process of removing dross after introducing a degassing agent into the ingot.
다음, 주탕 단계(S30)에서, 용융된 합금을 금형에 주입하게 된다.Next, in the pouring step (S30), the molten alloy is injected into the mold.
이후, 압력을 가하여 용융된 합금을 고압으로 금형에 밀어 넣어 사출 과정(S40)이 이루어질 수 있다.Thereafter, the injection process (S40) may be performed by applying pressure and pushing the molten alloy into the mold at high pressure.
일반적으로 HPDC 공법에서 9.5 MPa(97kgf/㎠) 내지 13.5 MPa(138 kgf/cm2㎠) 범위의 압력 설정이 가능하다.In general, in the HPDC method, it is possible to set the pressure in the range of 9.5 MPa (97 kgf/cm 2 ) to 13.5 MPa (138 kgf/cm 2 cm 2 ).
본 발명의 실시예에서는 결정립 미세화를 위하여 125 내지 130 kgf/㎠의 압력을 이용한 것을 특징으로 한다. 다시 말하면, 특정 원소(Ti, Cr 또는 Zr 등)를 넣지 않고 원하는 수준의 결정립 미세화를 이루기 위하여 금형 과정에서 125 내지 130 kgf/㎠의 압력을 이용할 수 있다. 또한, 이러한 압력 조건은 위에서 설명한 합금 조성과 관계된 것일 수 있다.An embodiment of the present invention is characterized in that a pressure of 125 to 130 kgf/cm 2 is used for crystal grain refinement. In other words, a pressure of 125 to 130 kgf/cm 2 may be used in the mold process in order to achieve a desired level of crystal grain refinement without adding a specific element (Ti, Cr, Zr, etc.). Also, these pressure conditions may be related to the alloy composition described above.
이와 같은 합금 조성 및/또는 압력 조건을 이용하여 목표 파괴강도를 달성할 수 있다. 즉, 이와 같은 합금 조성 및/또는 압력 조건을 이용하여 결정립 미세화를 이룰 수 있어, 금속간 화합물(Al3Fe/Al4Mn 또는 Al6Mn, Al13Fe4)이 고르게 분산되어 알루미늄 합금의 강도가 개선될 수 있다.Target fracture strength can be achieved using such alloy composition and/or pressure conditions. That is, crystal grain refinement can be achieved using such alloy composition and/or pressure conditions, and the intermetallic compound (Al 3 Fe/Al 4 Mn or Al 6 Mn, Al 13 Fe 4 ) is evenly dispersed, thereby increasing the strength of the aluminum alloy. can be improved.
이후, 형개 및 압출하는 단계(S50)에서, 용융된 합금 재료가 응고된 후, 냉각 과정이 이루어지고 형틀을 열어서 제품을 꺼내게 된다.Thereafter, in the step of opening and extruding the mold (S50), after the molten alloy material is solidified, a cooling process is performed and the mold is opened to take out the product.
이때, 형개 및 압출하는 단계(S50)에서, 알루미늄 합금의 냉각 시간은 통상의 제조 방법(보통 10초 가량)에 비하여 작아질 수 있다. 이와 같은 빠른 냉각 속도에 의하여 결정립의 성장이 빠른 시간 내에 마무리될 수 있다. 따라서, 결정립의 크기가 원하는 수준으로 미세화될 수 있다. 이러한 알루미늄 합금의 냉각 시간은 3 내지 5초에 해당할 수 있다.At this time, in the step of opening and extruding the mold (S50), the cooling time of the aluminum alloy may be shorter than that of a conventional manufacturing method (usually about 10 seconds). The growth of crystal grains can be completed within a short time by such a fast cooling rate. Accordingly, the grain size can be miniaturized to a desired level. The cooling time of this aluminum alloy may correspond to 3 to 5 seconds.
알루미늄 합금의 제작 과정에서 결정립(grain)이 만들어지려면 금속의 핵이 생성되고 성장하며 그 성장의 경계면에 다른 핵의 성장과 만나는 결정립계(Grain boundary)가 형성되어야 한다.In order for grains to be created during the manufacturing process of aluminum alloy, metal nuclei are created and grown, and grain boundaries that meet the growth of other nuclei must be formed at the boundary of the growth.
예를 들면, 특정 재료의 결정이 될수 있는 총량이 100이라고 하면 냉각속도가 느린 경우, 예를 들어, 5개의 핵으로도 결정립 성장으로 총량을 맞출 수 있다. 그러나 냉각속도가 빠른 경우는 결정립 성장이 억제되어 총량을 맞출 수가 없고, 이 경우, 열역학적 평형을 이루기 위해 5개 이상의 핵이 더 필요하며, 5개 이상의 핵으로 총량을 맞출 수 있게 된다. 다시 말해, 결정립이 미세화될 수 있다.For example, if the total amount of crystals of a specific material is 100, if the cooling rate is slow, for example, even with 5 nuclei, the total amount can be adjusted by grain growth. However, when the cooling rate is fast, grain growth is suppressed and the total amount cannot be matched. In this case, 5 or more nuclei are required to achieve thermodynamic equilibrium, and the total amount can be adjusted with 5 or more nuclei. In other words, crystal grains can be refined.
즉, 결정립(grain)의 성장이 빠른시간 안에 마무리되기 때문에 그 크기가 미세화될 수 있는 것이다. 또한, 이러한 결정립 미세화에 의하여 알루미늄 합금의 기계적 성질이 개선될 수 있다.That is, since the growth of grains is completed in a short time, the size can be miniaturized. In addition, mechanical properties of the aluminum alloy may be improved by such grain refinement.
이상 설명한 바와 같이, 본 발명의 실시예에 의하면, 입자 미세화를 위한 특정 원소(Ti, Cr 또는 Zr)를 넣지 않고도 내부식 특성이 우수한 알루미늄 합금을 구현할 수 있다.As described above, according to the embodiment of the present invention, it is possible to implement an aluminum alloy having excellent corrosion resistance without adding a specific element (Ti, Cr, or Zr) for particle refinement.
이로 인하여, 원재료 원가 절감 효과 함께 추가 플럭스(Flux) 처리 등의 공정이 생략될 수 있어, 생산 시간이 단축될 수 있는 등의 이점이 있다.Due to this, there is an advantage in that the production time can be shortened because a process such as additional flux treatment can be omitted along with the effect of reducing raw material costs.
또한, 본 발명의 일 실시예에 의하면, 내식성과 주조성이 개선된 알루미늄 합금을 제공할 수 있다.In addition, according to one embodiment of the present invention, it is possible to provide an aluminum alloy with improved corrosion resistance and castability.
또한, 본 발명의 일 실시예에 의하면, 통상의 알루미늄 합금의 강도 및 주조성은 유지하면서 내식성을 개선한 알루미늄 합금을 제공할 수 있다.In addition, according to one embodiment of the present invention, it is possible to provide an aluminum alloy with improved corrosion resistance while maintaining the strength and castability of a conventional aluminum alloy.
이때, 내식성 강화를 위해 추가 도장 공정이 요구되지 않을 수 있다.In this case, an additional painting process may not be required to enhance corrosion resistance.
이와 같이, 본 발명의 실시예에 의하면, 내식성, 주조성 그리고 강도 특성이 높은 알루미늄 합금 주물을 제공할 수 있다.In this way, according to an embodiment of the present invention, it is possible to provide an aluminum alloy casting having high corrosion resistance, castability and strength characteristics.
이러한 개선된 알루미늄 합금을 이용하여 세탁기의 스파이더나 도어 힌지 등을 제조할 수 있다.A spider or a door hinge of a washing machine may be manufactured using the improved aluminum alloy.
또한, 본 발명의 일 실시예에 의하면, 다이캐스팅이 가능한 고광택 아노다이징용 주물을 제공할 수 있다. 이러한 주물을 이용하여 가전제품의 각종 기구물(TV 스탠드 등) 및 외장재를 제작할 수 있다.In addition, according to one embodiment of the present invention, it is possible to provide a casting for high gloss anodizing capable of die casting. These castings can be used to manufacture various appliances (TV stands, etc.) and exterior materials for home appliances.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely an example of the technical idea of the present invention, and various modifications and variations can be made to those skilled in the art without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The protection scope of the present invention should be construed according to the claims below, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.
본 발명에 의하면 가전 제품 등 각종 장치에 적용 가능하며, 알루미늄 합금, 그 제조 방법 및 이를 이용한 부품을 제공할 수 있다.According to the present invention, it is applicable to various devices such as home appliances, and it is possible to provide an aluminum alloy, a manufacturing method thereof, and parts using the same.

Claims (20)

  1. 다이캐스팅용 알루미늄 합금에 있어서,In the aluminum alloy for die casting,
    칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되고,Calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, the balance aluminum (Al) and other unavoidable impurities made up of,
    상기 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛인 것을 특징으로 하는 알루미늄 합금.The aluminum alloy, characterized in that the grain size of the aluminum alloy is 10 to 50 ㎛.
  2. 제1항에 있어서, 아연(Zn) 1.0 내지 1.5 중량%를 더 포함하는 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, further comprising 1.0 to 1.5% by weight of zinc (Zn).
  3. 제1항에 있어서, 마그네슘 0.01 내지 0.1 중량%를 더 포함하는 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, further comprising 0.01 to 0.1% by weight of magnesium.
  4. 제1항에 있어서, 상기 망간의 함량은 0.8 내지 1.5 중량%인 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, wherein the manganese content is 0.8 to 1.5% by weight.
  5. 제1항에 있어서, 상기 철(Fe)의 함량은 0.1 내지 0.3 중량%인 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, wherein the content of iron (Fe) is 0.1 to 0.3% by weight.
  6. 제1항에 있어서, 상기 조성은 Ti, Zr, 및 Cr 중 적어도 어느 하나를 포함하지 않는 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, wherein the composition does not include at least one of Ti, Zr, and Cr.
  7. 제1항에 있어서, 상기 Ti, Zr, 및 Cr은 상기 다이캐스팅 공정 중에서 결정립(grain) 미세화를 위하여 이용되는 물질인 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, wherein the Ti, Zr, and Cr are materials used for grain refinement in the die casting process.
  8. 제1항에 있어서, 상기 실리콘 함량은 0.1 내지 0.2 중량%인 것을 특징으로 하는 알루미늄 합금.The aluminum alloy according to claim 1, wherein the silicon content is 0.1 to 0.2% by weight.
  9. 알루미늄 합금으로 제작되는 다이캐스팅 부품에 있어서,In the die-casting parts made of aluminum alloy,
    상기 알루미늄 합금은,The aluminum alloy,
    칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되고, Calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, the balance aluminum (Al) and other unavoidable impurities made up of,
    상기 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛인 것을 특징으로 하는 부품.Part characterized in that the grain size of the aluminum alloy is 10 to 50 ㎛.
  10. 제9항에 있어서, 아연(Zn) 1.0 내지 1.5 중량%를 더 포함하는 것을 특징으로 하는 부품.10. The component according to claim 9, further comprising 1.0 to 1.5% by weight of zinc (Zn).
  11. 제9항에 있어서, 마그네슘 0.01 내지 0.1 중량%를 더 포함하는 것을 특징으로 하는 부품.10. The component according to claim 9, further comprising 0.01 to 0.1% by weight of magnesium.
  12. 제9항에 있어서, 상기 실리콘 함량은 0.1 내지 0.2 중량%인 것을 특징으로 하는 부품.10. The component according to claim 9, wherein the silicon content is between 0.1 and 0.2% by weight.
  13. 제9항에 있어서, 상기 조성은 Ti, Zr, 및 Cr 중 적어도 어느 하나를 포함하지 않는 것을 특징으로 하는 부품.10. The component according to claim 9, wherein the composition does not contain at least one of Ti, Zr, and Cr.
  14. 제9항에 있어서, 상기 망간의 함량은 0.8 내지 1.5 중량%인 것을 특징으로 하는 부품.10. The component according to claim 9, wherein the content of manganese is 0.8 to 1.5% by weight.
  15. 제9항에 있어서, 상기 철(Fe)의 함량은 0.1 내지 0.3 중량%인 것을 특징으로 하는 부품.10. The component according to claim 9, wherein the content of iron (Fe) is 0.1 to 0.3% by weight.
  16. 다이캐스팅을 이용한 알루미늄 합금의 제조 방법에 있어서,In the method for producing an aluminum alloy using die casting,
    잉곳 용융하는 단계;melting the ingot;
    용탕 클리닝 단계;molten metal cleaning step;
    금형에 용융된 합금을 주입하는 단계;injecting the molten alloy into the mold;
    압력을 가하여 사출하는 단계; 및Injecting by applying pressure; and
    형개 및 압출하는 단계를 포함하고,Including the steps of opening and extruding the mold,
    칼슘(Ca) 2.0 내지 6.0 중량%, 망간(Mn) 1.0 내지 3.0 중량%, 실리콘(Si) 0.1 내지 1.0 중량%, 철(Fe) 0.1 내지 0.5 중량%, 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함하여 조성되는 것을 특징으로 하는 알루미늄 합금의 제조 방법.Calcium (Ca) 2.0 to 6.0% by weight, manganese (Mn) 1.0 to 3.0% by weight, silicon (Si) 0.1 to 1.0% by weight, iron (Fe) 0.1 to 0.5% by weight, the balance aluminum (Al) and other unavoidable impurities Method for producing an aluminum alloy, characterized in that the composition comprising.
  17. 제16항에 있어서, 상기 압력은 125 내지 130 kgf/㎠인 것을 특징으로 하는 알루미늄 합금의 제조 방법.The method of claim 16, wherein the pressure is 125 to 130 kgf/cm 2 .
  18. 제16항에 있어서, 상기 알루미늄 합금의 결정립 크기는 10 내지 50 ㎛인 것을 특징으로 하는 알루미늄 합금의 제조 방법.The method of claim 16, wherein the aluminum alloy has a crystal grain size of 10 to 50 μm.
  19. 제16항에 있어서, 상기 실리콘 함량은 0.1 내지 0.2 중량%인 것을 특징으로 하는 알루미늄 합금의 제조 방법.17. The method of claim 16, wherein the silicon content is 0.1 to 0.2% by weight.
  20. 제16항에 있어서, 상기 조성은 Ti, Zr, 및 Cr 중 적어도 어느 하나를 포함하지 않는 것을 특징으로 하는 알루미늄 합금의 제조 방법.17. The method of claim 16, wherein the composition does not include at least one of Ti, Zr, and Cr.
PCT/KR2022/006090 2021-05-14 2022-04-28 Aluminum alloy, method for manufacturing same, and parts using same WO2022240023A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227038990A KR102565559B1 (en) 2021-05-14 2022-04-28 Aluminum alloy, manufacturing method thereof and parts using the same
EP22807671.7A EP4339316A1 (en) 2021-05-14 2022-04-28 Aluminum alloy, method for manufacturing same, and parts using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0062469 2021-05-14
KR20210062469 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022240023A1 true WO2022240023A1 (en) 2022-11-17

Family

ID=84029248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006090 WO2022240023A1 (en) 2021-05-14 2022-04-28 Aluminum alloy, method for manufacturing same, and parts using same

Country Status (3)

Country Link
EP (1) EP4339316A1 (en)
KR (1) KR102565559B1 (en)
WO (1) WO2022240023A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126448A (en) * 1977-03-31 1978-11-21 Alcan Research And Development Limited Superplastic aluminum alloy products and method of preparation
JP2000355722A (en) * 1999-06-17 2000-12-26 Nippon Light Metal Co Ltd Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JP2004162140A (en) * 2002-11-14 2004-06-10 Toyota Motor Corp Al-Mg ALLOY FOR DIE CASTING AND METHOD FOR MANUFACTURING DIE-CAST PRODUCT MADE FROM Al-Mg ALLOY
KR20040068021A (en) * 2003-01-23 2004-07-30 알루미늄 라인펠덴 게엠베하 Aluminium alloy for diecasting
CN102796925A (en) * 2011-05-27 2012-11-28 广东鸿泰科技股份有限公司 High-strength die-casting aluminum alloy for pressure casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273579B1 (en) * 2010-10-19 2013-06-11 한국생산기술연구원 Aluminum alloy extruded products and manufacturing method thereof
KR102444566B1 (en) * 2016-07-12 2022-09-20 니폰게이긴조쿠가부시키가이샤 Aluminum alloy plastic working material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126448A (en) * 1977-03-31 1978-11-21 Alcan Research And Development Limited Superplastic aluminum alloy products and method of preparation
JP2000355722A (en) * 1999-06-17 2000-12-26 Nippon Light Metal Co Ltd Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JP2004162140A (en) * 2002-11-14 2004-06-10 Toyota Motor Corp Al-Mg ALLOY FOR DIE CASTING AND METHOD FOR MANUFACTURING DIE-CAST PRODUCT MADE FROM Al-Mg ALLOY
KR20040068021A (en) * 2003-01-23 2004-07-30 알루미늄 라인펠덴 게엠베하 Aluminium alloy for diecasting
CN102796925A (en) * 2011-05-27 2012-11-28 广东鸿泰科技股份有限公司 High-strength die-casting aluminum alloy for pressure casting

Also Published As

Publication number Publication date
KR102565559B1 (en) 2023-08-11
KR20220155441A (en) 2022-11-22
EP4339316A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
WO2020040602A1 (en) Aluminium alloy for die casting, method for manufacturing same, and die casting method
WO2011062447A2 (en) Aluminum alloy and manufacturing method thereof
WO2011122785A2 (en) Magnesium-based alloy for high temperature and manufacturing method thereof
WO2017191961A1 (en) Highly corrosion-resistant aluminum alloy for casting
WO2011062448A2 (en) Aluminum alloy and manufacturing method thereof
WO2011122784A2 (en) Magnesium alloy for room temperature and manufacturing method thereof
WO2011122786A2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2012161484A2 (en) Magnesium-based alloy produced using a silicon compound and method for producing same
WO2012161460A2 (en) Aluminium alloy and manufacturing method for same
WO2020209485A1 (en) Cu-co-si-fe-p-based copper alloy having excellent bending workability and method for preparing same
WO2022102807A1 (en) Al-mg-si-based aluminum alloy and method for manufacturing same
KR101965418B1 (en) Heat treatment method of aluminum alloy
WO2022240023A1 (en) Aluminum alloy, method for manufacturing same, and parts using same
WO2012053813A2 (en) Aluminum alloy having improved oxidation resistance, corrosion resistance, or fatigue resistance, and die-cast material and extruded material produced from the aluminum alloy
WO2020088635A1 (en) Aluminum alloy material, aluminum alloy molded part and preparation method therefor, and terminal device
WO2013055074A2 (en) High heat conductivity al-mg-fe-si alloy for die casting
WO2022235053A1 (en) High-strength aluminum alloy for 3d printing, and manufacturing method therefor
WO2023224218A1 (en) Copper-nickel-silicon-manganese-tin-based copper alloy material having excellent strength, electrical conductivity, and bending workability, and method for manufacturing same
WO2021230392A1 (en) High-entropy alloy and method for manufacturing same
WO2018079945A1 (en) Method for producing hot-stamped aluminum case and hot-stamped aluminum case produced by method
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
WO2023096150A1 (en) Method for producing copper alloy sheet for vehicle or electric/electronic component having excellent strength, electrical conductivity, and bendability, and copper alloy sheet produced thereby
WO2018117315A1 (en) Aluminum alloy composition for high heat conductivity and high strength die casting, capable of thin wall molding, and preparation method therefor
WO2012161485A2 (en) Magnesium-based alloy produced using a silicon compound and a calcium compound and method for producing same
WO2018117713A1 (en) High strength magnesium alloy with excellent flame retardancy, and method for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20227038990

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18290418

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023133010

Country of ref document: RU

Ref document number: 2022807671

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807671

Country of ref document: EP

Effective date: 20231214