WO2021230202A1 - 数値制御装置及び制御方法 - Google Patents

数値制御装置及び制御方法 Download PDF

Info

Publication number
WO2021230202A1
WO2021230202A1 PCT/JP2021/017706 JP2021017706W WO2021230202A1 WO 2021230202 A1 WO2021230202 A1 WO 2021230202A1 JP 2021017706 W JP2021017706 W JP 2021017706W WO 2021230202 A1 WO2021230202 A1 WO 2021230202A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
command
cutting
simultaneous operation
axis
Prior art date
Application number
PCT/JP2021/017706
Other languages
English (en)
French (fr)
Inventor
大輔 上西
知弘 小山田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2022521905A priority Critical patent/JP7401661B2/ja
Priority to DE112021002783.2T priority patent/DE112021002783T5/de
Priority to CN202180034345.7A priority patent/CN115552343A/zh
Priority to US17/997,746 priority patent/US20230350384A1/en
Publication of WO2021230202A1 publication Critical patent/WO2021230202A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34396Control different groups of functions, commands simultaneously, synchronized

Definitions

  • the present invention relates to a numerical control device and a control method.
  • a numerical control device that controls a machine tool or the like executes machining or the like of a workpiece by a machining program (see, for example, Patent Document 1).
  • the machining program processing apparatus described in Patent Document 1 calculates a correction reference point based on the command position of the tool tip point and the command angle of the tool attitude commanded by the machining program, and the dimensions of the tool, and calculates the correction reference point, and the tool tip point. Rewrite the command position of to the position of the correction reference point.
  • the numerical control device uses a machining program when cutting a workpiece. Since the machining program cannot be machined by simply commanding the cutting conditions, the tool mounting, the coordinate system number that stores the tool length, the position of the work, etc. before and after the program that operates under the commanded cutting conditions, etc. It is necessary to instruct various corrections. However, although it is possible to execute cutting by instructing the necessary correction, it does not always operate efficiently. For example, in many machine tools, tool change and work movement can be commanded simultaneously in one line, and tool length correction and spindle rotation command can be commanded simultaneously in one line in many cases. Workers who do not know that it is a machine tool that can give commands at the same time will execute it with an inefficient and redundant machining program by giving commands on separate lines. Therefore, it has been required to easily and efficiently perform the operation of the machine tool.
  • the numerical control device is analyzed by a machining program analysis unit that analyzes a command that allows the machine tool to operate simultaneously from a one-line machining program for commanding before and after cutting in the machine tool.
  • the machine tool is provided with a simultaneous operation control unit that controls simultaneous operations in combination with commands that can be operated simultaneously by using commands that can be operated simultaneously.
  • the control method of the numerical control device is a step of analyzing a command that allows the machine tool to operate simultaneously from a one-line machining program for commanding before and after cutting in the machine tool.
  • the machine tool is provided with a step of controlling simultaneous operation in combination with a command capable of simultaneous operation by using a command capable of simultaneous operation.
  • the operation of the machine tool can be executed easily and efficiently.
  • FIG. 1 is a diagram showing a configuration of a processing system 1.
  • the machining system 1 includes a numerical control device 2 and a machine tool 3.
  • the numerical control device 2 is a device for causing the machine tool 3 to perform predetermined machining or the like by controlling the machine tool 3.
  • the numerical control device 2 includes a control unit 21.
  • the control unit 21 is a processor such as a CPU (Central Processing Unit), and functions as a machining program analysis unit 211 and a simultaneous operation control unit 212 by executing a program stored in a storage unit (not shown).
  • CPU Central Processing Unit
  • the machine tool 3 is a device that performs predetermined machining such as cutting and measurement of tools based on the control of the numerical control device 2.
  • FIG. 2 is a diagram showing an outline of the machine tool 3.
  • the machine tool 3 includes a motor that drives the work 41 to be machined, a spindle and a feed shaft attached to the motor, jigs and tools corresponding to each of these shafts, a table 42 for fixing the work 41, and the like. .. Then, the machine tool 3 performs predetermined machining by driving the motor based on the operation command output from the numerical control device 2. Specifically, the machine tool 3 includes a cutting tool 31, a turret 32, and a table 42.
  • a plurality of types of cutting tools 31 are prepared according to the processing purpose. Each cutting tool 31 is replaced while being mounted on a dedicated tool holder. A unique tool number is assigned to each of the cutting tools 31.
  • the turret 32 is a substantially disk-shaped structure having a plurality of grips attached to the outer periphery thereof.
  • the turret 32 rotates about the rotation axis C1 at the rotation position shown in FIG.
  • the cutting tool 31 can be moved to a position facing the main shaft 34 by rotating the turret 32.
  • the work table 33 is a mechanism that movably supports the work 41 in the left-right direction (X direction) and the front-back direction (Y direction).
  • the work table 33 is provided with an X-axis motor, a Y-axis motor, an encoder, and the like (all not shown).
  • the machine tool 3 of the present embodiment processes the work 41 by moving the tool T held by the spindle 34 in the vertical direction (Z direction) while moving the work 41 in the XY directions.
  • the machining program analysis unit 211 analyzes a command that allows the machine tool 3 to operate simultaneously from a one-line machining program for commanding before and after cutting in the machine tool 3.
  • the simultaneous operation control unit 212 controls the simultaneous operation commanded by combining the command that can be operated simultaneously with the machine tool by using the analyzed commands that can be operated simultaneously.
  • the tool number for replacing the cutting tool 31 As the pre-machining code before cutting, the tool number for replacing the cutting tool 31, the tool correction number for tool length and tool diameter correction, the work coordinate system, and the coordinate system for movement management. Setting, cutting tool 31 or work 41 in the coordinate system, moving axis and moving speed of table 42, spindle rotation speed and spindle control, rotating shaft clamping and unclamping, cutting fluid control and taper cleaning and center through control, and measuring machine Including control.
  • the machining program includes post-machining codes such as origin return, origin return axis and movement speed, coordinate system and movement management coordinate system settings, tool number for replacement of cutting tool 31, and rotation axis. Includes clamping and unclamping, spindle control and cutting fluid control.
  • FIG. 3 is a diagram showing a specific example of a machining program.
  • the example of the machining program shown in FIG. 3 includes a machining program P1 and an operation explanation P2 of the machining program.
  • the machining program P1 includes a pre-machining code P11 and a post-machining code P12.
  • FIG. 4 is a flowchart showing the processing of the pre-machining code P11
  • FIG. 11 is a flowchart showing the processing of the post-machining code P12.
  • the machining program analysis unit 211 analyzes the commands corresponding to the command classification tables of FIGS. 18 and 19 described later from the machining program P1 to which the pre-machining code P11 and the post-machining code P12 are commanded.
  • the simultaneous operation control unit 212 controls the simultaneous operation according to the flowchart of FIG. 4 or FIG.
  • step S1 of FIG. 4 the machining program analysis unit 211 reads the pre-machining code P11 of the machining program from the storage unit (not shown).
  • step S2 the machining program analysis unit 211 analyzes the command corresponding to the command classification table shown in FIG. 18 from the command code of the pre-machining code P11. The details of the command classification table will be described later.
  • step S3 the simultaneous operation control unit 212 executes the tool change operation.
  • the tool change operation in step S3 will be described later.
  • step S3 "outside the tool change area” indicates a tool position outside the area defined as the tool change area.
  • the tool tip is located at the R point, and in the case of a turret type machining center, the tool tip is located at a position away from the position where the tool replacement is started.
  • the inside of the tool change area indicates the area where the tool shaft operates from the start to the end of the tool change operation.
  • the tool change area indicates an area from Z0 to the tool in the Z + direction coming out of the spindle.
  • the inside of the tool change area indicates the period from when the grip holds the tool in the turret type machining to when the turret rotates and the spindle holds the next tool and the grip separates from the holder during the tool change.
  • step S4 the control unit 21 determines whether or not all the operations have been completed. When all the operations are completed (YES), the process ends thereafter. If all the operations are not completed (NO), the process returns to step S4 again.
  • FIG. 5 to 10 are flowcharts showing specific processing of the tool change operation.
  • FIG. 5 is a flowchart showing a process related to the tool axis.
  • step S11 in FIG. 5 the simultaneous operation control unit 212 starts moving the tool shaft into the tool change area in order to start the tool change operation.
  • step S12 the simultaneous operation control unit 212 completes the movement of the tool axis to the tool change area.
  • step S13 the simultaneous operation control unit 212 starts tool replacement based on the tool number of the replacement tool system command.
  • step S14 the simultaneous operation control unit 212 completes the tool change.
  • step S15 the simultaneous operation control unit 212 starts moving the tool axis to the tool change area.
  • step S16 the simultaneous operation control unit 212 completes the movement of the tool axis to the tool change area, and the process then moves to step S4 of FIG.
  • FIG. 6 is a flowchart showing processing related to the tool system command.
  • the simultaneous operation control unit 212 starts the pre-replacement tool system command.
  • the pre-replacement tool system command includes a command for the spindle orientation and a cancel code command for each function related to the tool shaft.
  • step S22 the simultaneous operation control unit 212 completes the pre-replacement tool system command.
  • step S23 the simultaneous operation control unit 212 determines whether or not the tool change is completed. When the tool change is completed (YES), the process proceeds to step S24. If the tool change is not completed (NO), the process proceeds to step S23 again.
  • step S24 the simultaneous operation control unit 212 starts the tool system command after the replacement.
  • the post-replacement tool system command includes commands such as spindle rotation speed and spindle control or touch probe control, tool length correction, tool length correction number setting, movement management coordinate system, and tool shaft movement command.
  • step S25 the simultaneous operation control unit 212 completes the tool system command after replacement, and the process then shifts to step S4 of FIG.
  • FIG. 7 is a flowchart showing processing related to the axis system command.
  • the simultaneous operation control unit 212 starts the movement front axis system command. Specifically, the simultaneous operation control unit 212 starts the cancel code of each function related to the unclamping of the rotating shaft and the shaft movement as the movement front shaft system command.
  • step S32 the simultaneous operation control unit 212 completes the movement front axis system command.
  • step S33 the simultaneous operation control unit 212 determines whether or not the axis movement by the movement axis system command started in step S42 shown in FIG. 8 described later is completed. When the axis movement is completed (YES), the process proceeds to step S34. If the axis movement is not completed (NO), the process proceeds to step S33 again.
  • step S34 the simultaneous operation control unit 212 starts the moving rear axis system command.
  • the moving rear shaft system command includes a command such as a clamp of the rotating shaft.
  • step S35 the simultaneous operation control unit 212 completes the moving rear axis system command, and the process then shifts to step S4 of FIG.
  • FIG. 8 is a flowchart showing processing related to the moving axis system. After step S2 of FIG. 4, in step S41 of FIG. 8, if there is no interference and the movement front axis system command has been completed (YES), the process proceeds to step S42. If there is interference or the movement front axis system command is not completed (N0), the process proceeds to step S41.
  • the simultaneous operation control unit 212 starts the moving axis system command.
  • the movement axis system command includes commands such as an axis movement command, a work coordinate system, a movement management coordinate system, and a tool diameter correction number.
  • step S43 the simultaneous operation control unit 212 completes the moving axis system command, and the process then shifts to step S4 of FIG.
  • FIG. 9 is a flowchart showing processing related to peripheral devices.
  • the simultaneous operation control unit 212 starts the pre-replacement peripheral device command. Specifically, the simultaneous operation control unit 212 starts processing of the cutting fluid and the air blow OFF command as peripheral device commands.
  • step S52 the simultaneous operation control unit 212 completes the pre-replacement peripheral device command.
  • step S53 the simultaneous operation control unit 212 determines whether or not the tool change is completed. When the tool change is completed (YES), the process proceeds to step S54. If the tool change is not completed (NO), the process proceeds to step S53.
  • step S54 the simultaneous operation control unit 212 starts the peripheral device command after the replacement. Specifically, the simultaneous operation control unit 212 starts the cutting fluid control process as a peripheral device command after replacement. Specifically, the ON command for cutting fluid, air blow, and center through is started.
  • step S55 the simultaneous operation control unit 212 completes the peripheral device command after replacement, and the process then shifts to step S4 of FIG.
  • FIG. 10 is a flowchart showing processing related to peripheral devices.
  • the simultaneous operation control unit 212 determines whether or not the tool is being replaced. If the tool is being changed (YES), the process proceeds to step S62. If the tool is not being replaced (NO), the process proceeds to step S61.
  • step S62 the simultaneous operation control unit 212 starts the replacement peripheral device command. Specifically, the simultaneous operation control unit 212 starts processing of a taper cleaning command for cleaning the tapered surface of the spindle or the tool as a peripheral device command.
  • step S63 the simultaneous operation control unit 212 determines whether or not the tool change is completed. When the tool change is completed (YES), the process proceeds to step S64. If the tool change is not completed (NO), the process proceeds to step S63 again.
  • step S64 the simultaneous operation control unit 212 completes the peripheral device command during replacement, and the process then shifts to step S4 in FIG.
  • FIG. 11 is a flowchart showing the processing of the processed code P12.
  • the machining program analysis unit 211 reads the post-machining code P12 of the machining program from the storage unit (not shown).
  • step S102 the machining program analysis unit 211 analyzes the command corresponding to the command classification table shown in FIG. 19 from the command code of the post-machining code P12. The details of the command classification table will be described later.
  • step S103 the simultaneous operation control unit 212 executes the tool change operation.
  • the tool change operation in step S103 will be described later.
  • step S104 the control unit 21 determines whether or not all the operations have been completed. When all the operations are completed (YES), the process ends thereafter. If all the operations are not completed (NO), the process returns to step S104 again.
  • FIG. 12 to 17 are flowcharts showing specific processing of the tool change operation.
  • FIG. 12 is a flowchart showing a process related to the tool axis.
  • step S111 in FIG. 12 the simultaneous operation control unit 212 starts moving the tool shaft into the tool change area in order to start the tool change operation.
  • step S112 the simultaneous operation control unit 212 completes the movement of the tool axis to the tool change area.
  • step S113 the simultaneous operation control unit 212 determines whether or not the tool has been replaced by determining whether or not the tool number in the replacement tool system command has been commanded. If the tool number in the replacement tool system command is commanded (YES), the process proceeds to step S114. If the tool number is not commanded (NO), the process proceeds to step S117.
  • step S114 the simultaneous operation control unit 212 starts tool replacement based on the tool number of the replacement tool system command.
  • step S115 the simultaneous operation control unit 212 completes the tool change.
  • step S116 the simultaneous operation control unit 212 starts moving the tool axis to the tool change area.
  • step S117 the simultaneous operation control unit 212 completes the movement of the tool axis to the tool change area, and the process then moves to step S104 of FIG.
  • FIG. 13 is a flowchart showing processing related to the tool system command.
  • the simultaneous operation control unit 212 starts the pre-replacement tool system command.
  • the pre-replacement tool system command includes a command for the spindle orientation and a cancel code command for each function related to the tool shaft.
  • step S122 the simultaneous operation control unit 212 completes the pre-replacement tool system command, and the process then moves to step S104 of FIG.
  • FIG. 14 is a flowchart showing processing related to the axis system command.
  • the simultaneous operation control unit 212 starts the movement front axis system command. Specifically, the simultaneous operation control unit 212 starts the cancel code of each function related to the unclamping of the rotating shaft and the shaft movement as the movement front shaft system command. Then, in step S132, the simultaneous operation control unit 212 completes the movement front axis system command, and the process then shifts to step S104 of FIG.
  • FIG. 15 is a flowchart showing processing related to the moving axis system. After step S102 in FIG. 11, in step S141 of FIG. 15, if there is no interference and the movement front axis system command has been completed (YES), the process proceeds to step S142. If there is interference or the movement front axis system command is not completed (N0), the process proceeds to step S141 again.
  • step S142 the simultaneous operation control unit 212 starts the moving axis system command.
  • the movement axis system command includes commands such as origin return, axis movement command, work coordinate system, and movement management coordinate system.
  • step S143 the simultaneous operation control unit 212 completes the moving axis system command, and the process then shifts to step S104 of FIG.
  • FIG. 16 is a flowchart showing processing related to peripheral devices. After step S2 in FIG. 11, in step S151 in FIG. 16, the simultaneous operation control unit 212 starts the pre-replacement peripheral device command. Specifically, the simultaneous operation control unit 212 starts processing of the cutting fluid OFF command as a peripheral device command.
  • step S152 the simultaneous operation control unit 212 completes the pre-replacement peripheral device command, and the process then shifts to step S104 of FIG.
  • FIG. 17 is a flowchart showing processing related to peripheral devices.
  • the simultaneous operation control unit 212 determines whether or not the tool has been replaced by determining whether or not the tool number in the replacement tool system command has been commanded. If the tool number in the replacement tool system command is commanded (YES), the process proceeds to step S162. If the tool number is not commanded (NO), the process proceeds to step S104 in FIG.
  • step 162 the simultaneous operation control unit 212 determines whether or not the tool is being replaced as a peripheral device command. If the tool is being changed (YES), the process proceeds to step S163. If the tool is not being replaced (NO), the process proceeds to step S162 again. In step S163, the simultaneous operation control unit 212 starts the replacement peripheral device command. Specifically, the simultaneous operation control unit 212 starts processing of a taper cleaning command for cleaning the tapered surface of the spindle or the tool as a peripheral device command.
  • step S164 the simultaneous operation control unit 212 determines whether or not the tool change is completed. When the tool change is completed (YES), the process proceeds to step S165. If the tool change is not completed (NO), the process proceeds to step S164 again.
  • step S165 the simultaneous operation control unit 212 completes the peripheral device command during replacement, and the process then shifts to step S104 of FIG.
  • FIG. 18 is a diagram showing a command classification table of the pre-machining code. As shown in FIG. 18, the code and the command content are associated with each other for the tool system command, the shaft system command, and the peripheral device command.
  • FIG. 19 is a diagram showing a command classification table of the processed code. As shown in FIG. 19, the code and the command content are associated with each other for the tool system command, the shaft system command, and the peripheral device command.
  • the commands that can be operated at the same time as the tool change are divided into three types: tool system command, shaft system command, and peripheral device command. Further, each of the tool system command, the shaft system command, and the peripheral device command is divided into tool replacement, before and after replacement, or before and after the movement command and movement command.
  • Tool system commands include a moving axis parallel to the spindle control such as rotation of the cutting tool 31 mounted on the spindle and tool length compensation, and G code and M code related to tool length compensation.
  • Axis system commands include movement commands for each axis of the shaft that operates the table 42 on which the work 41 is installed, clamp / unclamp commands for rotating shafts, and G-codes and M-codes related to tool diameter correction of the cutting tool 31.
  • Peripheral equipment directives include cutting fluid control and the like. These commands are stored in the storage unit (not shown) of the numerical control device 2 as a command classification table.
  • FIG. 20 is an operation example of the tool shaft of a certain pre-machining code P11.
  • the tool axis is the Z axis
  • the inside of the tool exchange area is Z100.
  • To Z0, and the operating range of the Z axis is Z-400.
  • the position where the pre-machining code P11 is commanded outside the tool change area is the start position, and the tool shaft moves to Z0, which is inside the tool change area for tool change.
  • the tool shaft is set to Z100. Go to and perform a tool change.
  • the tool shaft moves to Z0 in the tool replacement area, and then is positioned at the end position.
  • FIG. 21 is an operation example of the tool shaft of a certain post-machining code P12.
  • the tool axis is the Z axis
  • the inside of the tool exchange area is Z100.
  • To Z0, and the operating range of the Z axis is Z-400.
  • the position where the pre-machining code P11 is commanded outside the tool change area is the start position, and the tool shaft moves to Z0, which is inside the tool change area for tool change.
  • the tool shaft is the Z100. Go to and perform a tool change.
  • the tool shaft moves to Z0 in the tool replacement area, and then is positioned at the end position.
  • Z-400 Indicates the stroke limit of the tool axis.
  • the G code is G920, which indicates the pre-machining code for cutting.
  • T indicates the replacement of the cutting tool 31, and H indicates the tool correction number.
  • G54 indicates a work coordinate system setting
  • X is a movement command in the X-axis direction
  • Y is a movement command in the Y-axis direction
  • A is a movement command in the A-axis direction
  • C is a movement command in the A-axis direction.
  • C-axis direction movement command is a work coordinate system setting
  • X is a movement command in the X-axis direction
  • Y is a movement command in the Y-axis direction
  • A is a movement command in the A-axis direction
  • C is a movement command in the A-axis direction.
  • C-axis direction movement command is a movement command in the A-axis direction
  • Z indicates the approach position at the time of tool length correction
  • S indicates the spindle rotation speed for spindle control
  • M03 indicates that the spindle rotate
  • the G code is G930, which indicates the post-machining code for cutting.
  • G930 indicates the operation of fixed cycle cancellation, tool length and tool diameter correction cancellation, and home return of the X-axis, Y-axis, A-axis, C-axis, and Z-axis.
  • X, Y, A, C and Z each indicate the origin of each coordinate axis.
  • M05 indicates a spindle stop for spindle control
  • M09 indicates that the cutting fluid is turned off
  • M101 indicates a pre-movement unclamp of the AC axis.
  • T indicates replacement of the cutting tool 31, and when there is no command, only the origin return operation of the Z axis is performed.
  • the machine tool 3 shown in FIG. 2 performs the following operations (1) to (3), for example.
  • (1) When changing tools, the spindle 34 of the machine tool 3 rises in the Z-axis direction, and the turret 32 rotates.
  • the numerical control device 2 executes the pre-replacement command tool system command and the pre-replacement peripheral device command. For example, the numerical control device 2 cancels the tool length correction, the fixed cycle, and the like at the same time as the rise in the Z-axis direction.
  • the machine tool 3 performs positioning by stopping the spindle if the spindle is rotating and orienting the phase of the spindle to the tool exchange position.
  • a measuring device such as a touch probe is attached to the spindle and the touch probe is ON, it is turned OFF.
  • peripheral devices such as cutting fluid and air blow are turned ON / OFF.
  • the numerical control device 2 cancels the tool diameter correction and the coordinate rotation as the movement front axis system command. Further, the numerical control device 2 unclamps the rotating shaft if the rotating shaft is clamped. (2) While the turret 32 is rotating, the work table 33 moves in the X-axis direction and the Y-axis direction. Further, the numerical control device 2 determines that the turret 32 is being replaced while the turret 32 is rotating, and M26, which is a peripheral device command during the replacement, executes taper cleaning.
  • the numerical control device 2 may check not only the condition while the turret 32 is rotating but also the absence of interference. (3) After the tool is replaced, the machine tool 3 executes movement of the spindle 34 in the Z-axis direction, spindle control, cutting fluid control, rotary axis clamp, and the like.
  • the numerical control device 2 can simultaneously execute the processes capable of simultaneous operations such as (1) to (3) by using the above-mentioned machining program. Therefore, for example, the numerical control device 2 can easily shorten the cycle time and can easily perform the cutting process by using the cords such as G920 and G930 described above.
  • a rotation axis movement command such as ABC may be added in addition to XYZ.
  • the AC axis moves at the same time as the XY axis.
  • M100 or M101 is commanded in the same block, when the AC axis, which is a rotation axis, is clamped when ascending in the Z-axis direction, unclamping of M11, M69, and M72 is simultaneously executed as a movement front axis system command. do.
  • the M100 simultaneously executes the clamping of the M10, M68, and M71 after the movement axis system command is completed.
  • the operation may be started without waiting.
  • the moving rear axis system command for example, when the rotary axis that employs a direct drive motor capable of high-speed operation reaches the command position before the XY axis, the rotary axis waits for the command position of the XY axis to be reached. It may be executed without.
  • the numerical control device 2 analyzes the command that the machine tool 3 can operate simultaneously from the one-line machining program for commanding before and after the cutting in the machine tool 3.
  • the machining program analysis unit 211 is provided, and the simultaneous operation control unit 212 that controls the simultaneous operation commanded by combining the machine tool 3 with the simultaneous operation command using the analyzed simultaneous operation command.
  • the numerical control device 2 can simultaneously command processes capable of simultaneous operation. Therefore, the numerical control device 2 can shorten the cycle time and can easily and efficiently execute the operation of the machine tool 3.
  • the processes that can be operated simultaneously include replacement of the cutting tool 31, tool length and tool diameter correction of the cutting tool 31, setting of the work coordinate system, setting of the coordinate system of movement management, cutting tool 31 or the work in the work coordinate system.
  • 41. Includes movement of table 42, control of spindle rotation, cutting fluid and air control, and rotation shaft clamp / unclamp control.
  • the numerical control device 2 can operate these processes at the same time in the machine tool 3.
  • the cutting tool 31 is replaced, the tool length of the cutting tool 31 and the tool correction number for tool diameter correction, the work coordinate system are set, and the movement management coordinate system is set. Includes movement of the cutting tool 31 in the coordinate system, control of spindle rotation, and control of cutting fluid. As a result, the numerical control device 2 can appropriately calculate and execute the pre-machining code.
  • the numerical control device 2 can appropriately calculate and execute the processed code.
  • the post-machining code may include the replacement of the cutting tool 31, the setting of the work coordinate system, and the movement command of the cutting tool 31 and the table 42 in the work coordinate system, instead of the homing and homing axes.
  • the numerical control device 2 can appropriately calculate and execute the processed code.
  • the machining program includes replacement of the cutting tool 31 commanded by the machining program of one line, a tool correction number for correcting the tool length and tool diameter of the cutting tool 31, a work coordinate system, a cutting tool 31 in the work coordinate system, and the cutting tool 31.
  • the command values of the movement command, the origin return, the origin return axis, the spindle control, the additional axis control, the cutting tool control, and the peripheral device control of the table 42 are described as variables.
  • the program called by the machining program executes simultaneous operations in the machine tool 3 using the variables. As a result, the numerical control device 2 can appropriately execute the simultaneous operation.
  • the program called by the machining program commands the same block to replace the cutting tool 31 and to move the cutting tool 31 and the table 42 in the work coordinate system.
  • the called program includes a tool correction number for correcting the tool length and tool diameter of the cutting tool 31, a tool axis movement command, a command for spindle control, a command for cutting liquid control, and peripheral device control. Command for the same block.
  • the numerical control device 2 can appropriately execute each command.
  • the present invention is not limited to the above-described embodiments. Moreover, the effects described in the present embodiment are merely a list of the most preferable effects resulting from the present invention, and the effects according to the present invention are not limited to those described in the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

切削加工を簡易に行うことができる数値制御装置、制御方法及び加工プログラムを提供すること。数値制御装置は、工作機械における切削加工の前後に指令するための1行の加工プログラムから、工作機械が同時動作可能な指令を解析する加工プログラム解析部と、解析された同時動作可能な指令を用いて、工作機械に同時動作可能な指令を組み合わせて指令された同時動作を制御する同時動作制御部と、を備える。

Description

数値制御装置及び制御方法
 本発明は、数値制御装置及び制御方法に関する。
 従来、工作機械等を制御する数値制御装置は、加工プログラムによってワークの加工等を実行する(例えば、特許文献1参照)。特許文献1に記載の加工プログラム処理装置は、加工プログラムによって指令される工具先端点の指令位置及び工具姿勢の指令角度と、工具の寸法とに基づいて、補正基準点を算出し、工具先端点の指令位置を補正基準点の位置に書き換える。
特開2019-70953号公報
 ところで、数値制御装置は、ワークを切削加工する際に加工プログラムによって行っている。加工プログラムは単に切削条件だけを指令するだけでは加工はできないため、指令された切削条件で動作するプログラムの前後に工具の装着や、工具長さやワークの位置などを記憶している座標系番号などの各種補正を指令する必要がある。しかし、必要な補正を指令することで切削加工を実行することは可能となるものの、必ずしも効率のよい動作をするとは限らない。例えば、工具交換とワークの移動は1行で同時に指令可能な工作機械が多く、また、工具長の補正と主軸回転指令は1行で同時に指令することも可能な場合が多い。同時に指令が出来る工作機械であることを知らない作業者は別々の行で指令することで非効率で冗長な加工プログラムで実行することになる。そのため、工作機械の動作を簡易かつ効率的に実行することが求められていた。
 本開示に係る数値制御装置は、工作機械における切削加工の前後に指令するための1行の加工プログラムから、前記工作機械が同時動作可能な指令を解析する加工プログラム解析部と、前記解析された同時動作可能な指令を用いて、前記工作機械に同時動作可能な指令を組み合わせて指令された同時動作を制御する同時動作制御部と、を備える。
 本開示に係る数値制御装置の制御方法は、工作機械における切削加工の前後に指令するための1行の加工プログラムから、前記工作機械が同時動作可能な指令を解析するステップと、前記解析された同時動作可能な指令を用いて、前記工作機械に同時動作可能な指令を組み合わせて指令された同時動作を制御するステップと、を備える。
 本発明によれば、工作機械の動作を簡易かつ効率的に実行することができる。
加工システムの構成を示す図である。 工作機械の概要を示す図である。 加工プログラムの具体例を示す図である。 加工前コードの処理を示すフローチャートである。 工具軸に関する処理を示すフローチャートである。 工具系指令に関する処理を示すフローチャートである。 軸系指令に関する処理を示すフローチャートである。 移動軸系に関する処理を示すフローチャートである。 周辺装置に関する処理を示すフローチャートである。 周辺装置に関する処理を示すフローチャートである。 加工後コードP12の処理を示すフローチャートである。 工具軸に関する処理を示すフローチャートである。 工具系指令に関する処理を示すフローチャートである。 軸系指令に関する処理を示すフローチャートである。 移動軸系に関する処理を示すフローチャートである。 周辺装置に関する処理を示すフローチャートである。 周辺装置に関する処理を示すフローチャートである。 加工前コードの指令区分表を示す図である。 加工後コードの指令区分表を示す図である。 ある加工前コードP11の工具軸の動作例である。 ある加工後コードP12の工具軸の動作例である。
 以下、本発明の実施形態の一例について説明する。
 図1は、加工システム1の構成を示す図である。図1に示すように、加工システム1は、数値制御装置2と、工作機械3と、を備える。
 数値制御装置2は、工作機械3を制御することにより、工作機械3に所定の機械加工等を行わせるための装置である。数値制御装置2は、制御部21を備える。制御部21は、CPU(Central Processing Unit)等のプロセッサであり、記憶部(図示せず)に記憶されたプログラムを実行することによって、加工プログラム解析部211及び同時動作制御部212として機能する。
 工作機械3は、数値制御装置2の制御に基づいて、切削加工等の所定の機械加工や、工具の測定等を行う装置である。図2は、工作機械3の概要を示す図である。
 工作機械3は、ワーク41を加工するために駆動するモータや、このモータに取り付けられた主軸や送り軸や、これら各軸に対応する治具や工具、ワーク41を固定するテーブル42等を備える。そして、工作機械3は、数値制御装置2から出力される動作指令に基づいてモータを駆動させることにより所定の機械加工を行う。具体的には、工作機械3は、切削工具31と、タレット32と、テーブル42と、を備える。
 切削工具31は、加工目的に合わせて複数の種類が用意されている。各切削工具31は、それぞれ専用の工具ホルダに装着された状態で交換される。切削工具31には、それぞれ固有の工具番号が割り当てられている。
 タレット32は、外周に複数のグリップが取り付けられた略円盤状の構造体である。
タレット32は、図2に示す回動位置において、回転軸C1を中心として回動する。切削工具31は、タレット32を回動させることにより、主軸34と対向する位置まで移動できる。
 ワークテーブル33は、ワーク41を左右方向(X方向)及び前後方向(Y方向)に移動自在に支持する機構である。ワークテーブル33には、X軸モータ、Y軸モータ、エンコーダ等(いずれも不図示)が設けられている。本実施形態の工作機械3は、ワーク41をX-Y方向に移動させながら、主軸34に保持された工具Tを上下方向(Z方向)に移動させることによりワーク41を加工する。
 次に、数値制御装置2の動作について説明する。
 加工プログラム解析部211は、工作機械3における切削加工の前後に指令するための1行の加工プログラムから、工作機械3が同時動作可能な指令を解析する。
 同時動作制御部212は、解析された同時動作可能な指令を用いて、工作機械に同時動作可能な指令を組み合わせて指令された同時動作を制御する。
 ここで、加工プログラムは、切削加工前の加工前コードとして、切削工具31の交換のための工具番号、工具長及び工具径補正のための工具補正番号、ワーク座標系と移動管理の座標系の設定、座標系における切削工具31又はワーク41、テーブル42の移動軸と移動速度、主軸回転数と主軸制御、回転軸のクランプとアンクランプ、切削液制御とテーパ洗浄とセンタースルー制御、並びに測定機制御を含む。
 また、加工プログラムは、切削加工後の加工後コードとして、原点復帰、原点復帰軸と移動速度、座標系と移動管理の座標系の設定、切削工具31の交換のための工具番号、回転軸のクランプとアンクランプ、主軸制御及び切削液制御を含む。
 図3は、加工プログラムの具体例を示す図である。
 図3に示す加工プログラムの例は、加工プログラムP1と、加工プログラムの動作説明P2と、を含む。加工プログラムP1は、加工前コードP11と、加工後コードP12と、を含む。
 また、図4は、加工前コードP11の処理を示すフローチャートであり、図11は、加工後コードP12の処理を示すフローチャートである。加工プログラム解析部211は、加工前コードP11と加工後コードP12が指令されている加工プログラムP1から、後述する図18及び19の指令区分表に該当する指令を解析する。同時動作制御部212は、図4又は図11のフローチャートに従って同時動作を制御する。
 図4のステップS1において、加工プログラム解析部211は、加工プログラムの加工前コードP11を記憶部(図示せず)から読み込む。
 ステップS2において、加工プログラム解析部211は、加工前コードP11の指令コードから図18に示す指令区分表に該当する指令を解析する。なお、指令区分表の詳細は後述する。
 ステップS3において、同時動作制御部212は、工具交換動作を実行する。ステップS3における工具交換動作については後述する。
 ステップS3において工具交換領域外とは、工具交換領域として定義される領域外の工具位置を示す。例えば、穴あけ加工が完了した直後の状態において、工具先端は、R点に位置するなどであり、タレット式マシニングセンタの場合、この工具先端は、工具交換が開始される位置から離れた位置となる。
 また、工具交換領域内とは、工具交換動作が開始から完了までの工具軸が動作する領域を示す。例えば、タレット式マシニングセンタの場合、工具交換領域内は、Z0からZ+方向の工具が主軸から抜けるまでの領域を示す。また、工具交換領域内は、工具交換中において、タレット式マシニングではグリップが工具を保持してから、タレットが回転し次の工具を主軸が保持し、グリップがホルダから離れるまでの間を示す。
 ステップS4において、制御部21は、全ての動作が完了したか否かを判定する。全ての動作が完了した場合(YES)、処理は、その後終了する。全ての動作が完了していない場合(NO)、処理は、再度ステップS4へ戻る。
 図5から図10は、工具交換動作の具体的な処理を示すフローチャートである。図5は、工具軸に関する処理を示すフローチャートである。
 図4のステップS2の後、図5のステップS11において、同時動作制御部212は、工具交換動作を開始するために工具交換領域内へ工具軸の移動を開始する。
 ステップS12において、同時動作制御部212は、工具交換領域へ工具軸の移動を完了する。
 ステップS13において、同時動作制御部212は、交換工具系指令の工具番号に基づいて工具交換を開始する。
 ステップS14において、同時動作制御部212は、工具交換を完了する。
 ステップS15において、同時動作制御部212は、工具交換領域まで工具軸の移動を開始する。
 ステップS16において、同時動作制御部212は、工具交換領域まで工具軸の移動を完了し、処理は、その後、図4のステップS4へ移る。
 図6は、工具系指令に関する処理を示すフローチャートである。
 図4のステップS2の後、図6のステップS21において、同時動作制御部212は、交換前工具系指令を開始する。具体的には、交換前工具系指令は、主軸オリエンテーションや工具軸に関する各機能のキャンセルコードの指令を含む。
 ステップS22において、同時動作制御部212は、交換前工具系指令を完了する。
 ステップS23において、同時動作制御部212は、工具交換が完了したか否かを判定する。工具交換が完了した場合(YES)、処理は、ステップS24へ移る。工具交換が完了していない場合(NO)、処理は、再度ステップS23へ移る。
 ステップS24において、同時動作制御部212は、交換後工具系指令を開始する。具体的には、交換後工具系指令は、主軸回転数と主軸制御又はタッチプローブ制御、工具長補正、工具長補正番号の設定、移動管理の座標系及び工具軸移動指令等の指令を含む。
 ステップS25において、同時動作制御部212は、交換後工具系指令を完了し、処理は、その後、図4のステップS4へ移る。
 図7は、軸系指令に関する処理を示すフローチャートである。
 図4のステップS2の後、図7のステップS31において、同時動作制御部212は、移動前軸系指令を開始する。具体的には、同時動作制御部212は、移動前軸系指令として、回転軸のアンクランプや軸移動に関する各機能のキャンセルコードを開始する。
 ステップS32において、同時動作制御部212は、移動前軸系指令を完了する。
 ステップS33において、同時動作制御部212は、後述の図8に示すステップS42で開始された移動軸系指令による軸移動が完了したか否かを判定する。軸移動が完了した場合(YES)、処理は、ステップS34へ移る。軸移動が完了していない場合(NO)、処理は、再度ステップS33へ移る。
 ステップS34において、同時動作制御部212は、移動後軸系指令を開始する。具体的には、移動後軸系指令は、回転軸のクランプ等の指令を含む。
 ステップS35において、同時動作制御部212は、移動後軸系指令を完了し、処理は、その後、図4のステップS4へ移る。
 図8は、移動軸系に関する処理を示すフローチャートである。
 図4のステップS2の後、図8のステップS41において、同時動作制御部212は、干渉がなく、かつ移動前軸系指令が完了済みの場合(YES)、処理は、ステップS42へ移る。干渉がある、又は移動前軸系指令が完了していない場合(N0)、処理は、ステップS41へ移る。
 ステップS42において、同時動作制御部212は、移動軸系指令を開始する。具体的には、移動軸系指令は、軸移動指令、ワーク座標系、移動管理の座標系、工具径補正番号等の指令を含む。
 ステップS43において、同時動作制御部212は、移動軸系指令を完了し、処理は、その後、図4のステップS4へ移る。
 図9は、周辺装置に関する処理を示すフローチャートである。
 図4のステップS2の後、図9のステップS51において、同時動作制御部212は、交換前周辺装置指令を開始する。具体的には、同時動作制御部212は、周辺装置指令として切削液、エアブローOFF指令の処理を開始する。
 ステップS52において、同時動作制御部212は、交換前周辺装置指令を完了する。
 ステップS53において、同時動作制御部212は、工具交換が完了したか否かを判定する。工具交換が完了した場合(YES)、処理は、ステップS54へ移る。工具交換が完了していない場合(NO)、処理は、ステップS53に移る。
 ステップS54において、同時動作制御部212は、交換後周辺装置指令を開始する。具体的には、同時動作制御部212は、交換後周辺装置指令として切削液制御の処理を開始する。具体的には切削液、エアブロー、センタースルーのON指令を開始する。
 ステップS55において、同時動作制御部212は、交換後周辺装置指令を完了し、処理は、その後、図4のステップS4へ移る。
 図10は、周辺装置に関する処理を示すフローチャートである。
 図4のステップS2の後、図10のステップS61において、同時動作制御部212は、工具交換中であるか否かを判定する。工具交換中である場合(YES)、処理は、ステップS62へ移る。工具交換中でない場合(NO)、処理は、ステップS61へ移る。
 ステップS62において、同時動作制御部212は、交換中周辺装置指令を開始する。具体的には、同時動作制御部212は、周辺装置指令として主軸や工具のテーパ面を洗浄するテーパ洗浄指令の処理を開始する。
 ステップS63において、同時動作制御部212は、工具交換が完了したか否かを判定する。工具交換が完了した場合(YES)、処理は、ステップS64へ移る。工具交換が完了していない場合(NO)、処理は、再度ステップS63へ移る。
 ステップS64において、同時動作制御部212は、交換中周辺装置指令を完了し、処理は、その後、図4のステップS4へ移る。
 図11は、加工後コードP12の処理を示すフローチャートである。
 図11のステップS101において、加工プログラム解析部211は、加工プログラムの加工後コードP12を記憶部(図示せず)から読み込む。
 ステップS102において、加工プログラム解析部211は、加工後コードP12の指令コードから図19に示す指令区分表に該当する指令を解析する。なお、指令区分表の詳細は後述する。
 ステップS103において、同時動作制御部212は、工具交換動作を実行する。ステップS103における工具交換動作については後述する。
 ステップS104において、制御部21は、全ての動作が完了したか否かを判定する。全ての動作が完了した場合(YES)、処理は、その後終了する。全ての動作が完了していない場合(NO)、処理は、再度ステップS104へ戻る。
 図12から図17は、工具交換動作の具体的な処理を示すフローチャートである。
 図12は、工具軸に関する処理を示すフローチャートである。
 図11のステップS102の後、図12のステップS111において、同時動作制御部212は、工具交換動作を開始するために工具交換領域内へ工具軸の移動を開始する。
 ステップS112において、同時動作制御部212は、工具交換領域へ工具軸の移動を完了する。
 ステップS113において、同時動作制御部212は、交換工具系指令における工具番号が指令されているか否かを判定することによって、工具交換の有無を判定する。交換工具系指令における工具番号が指令されている場合(YES)、処理は、ステップS114へ移る。工具番号が指令されていない場合(NO)、処理は、ステップS117へ移る。
 ステップS114において、同時動作制御部212は、交換工具系指令の工具番号に基づいて工具交換を開始する。
 ステップS115において、同時動作制御部212は、工具交換を完了する。
 ステップS116において、同時動作制御部212は、工具交換領域まで工具軸の移動を開始する。
 ステップS117において、同時動作制御部212は、工具交換領域まで工具軸の移動を完了し、処理は、その後、図11のステップS104へ移る。
 図13は、工具系指令に関する処理を示すフローチャートである。
 図11のステップS102の後、図13のステップS121において、同時動作制御部212は、交換前工具系指令を開始する。具体的には、交換前工具系指令は、主軸オリエンテーションや工具軸に関する各機能のキャンセルコードの指令を含む。
 ステップS122において、同時動作制御部212は、交換前工具系指令を完了し、処理は、その後、図11のステップS104へ移る。
 図14は、軸系指令に関する処理を示すフローチャートである。
 図11のステップS102の後、図14のステップS131において、同時動作制御部212は、移動前軸系指令を開始する。具体的には、同時動作制御部212は、移動前軸系指令として、回転軸のアンクランプや軸移動に関する各機能のキャンセルコードを開始する。そして、ステップS132において、同時動作制御部212は、移動前軸系指令を完了し、処理は、その後、図11のステップS104へ移る。
 図15は、移動軸系に関する処理を示すフローチャートである。
 図11のステップS102の後、図15のステップS141において、同時動作制御部212は、干渉がなく、かつ移動前軸系指令が完了済みの場合(YES)、処理は、ステップS142へ移る。干渉がある、又は移動前軸系指令が完了していない場合(N0)、処理は、再度ステップS141へ移る。
 ステップS142において、同時動作制御部212は、移動軸系指令を開始する。具体的には、移動軸系指令は、原点復帰、軸移動指令、ワーク座標系、移動管理の座標系等の指令を含む。
 ステップS143において、同時動作制御部212は、移動軸系指令を完了し、処理は、その後、図11のステップS104へ移る。
 図16は、周辺装置に関する処理を示すフローチャートである。
 図11のステップS2の後、図16のステップS151において、同時動作制御部212は、交換前周辺装置指令を開始する。具体的には、同時動作制御部212は、周辺装置指令として切削液OFF指令の処理を開始する。
 ステップS152において、同時動作制御部212は、交換前周辺装置指令を完了し、処理は、その後、図11のステップS104へ移る。
 図17は、周辺装置に関する処理を示すフローチャートである。
 ステップS161において、同時動作制御部212は、交換工具系指令における工具番号が指令されているか否かを判定することによって、工具交換の有無を判定する。交換工具系指令における工具番号が指令されている場合(YES)、処理は、ステップS162へ移る。工具番号が指令されていない場合(NO)、処理は、図11のステップS104へ移る。
 ステップ162において、同時動作制御部212は、周辺装置指令として工具交換中であるか否かを判定する。工具交換中である場合(YES)、処理は、ステップS163へ移る。工具交換中でない場合(NO)、処理は、再度ステップS162へ移る。
 ステップS163において、同時動作制御部212は、交換中周辺装置指令を開始する。具体的には、同時動作制御部212は、周辺装置指令として主軸や工具のテーパ面を洗浄するテーパ洗浄指令の処理を開始する。
 ステップS164において、同時動作制御部212は、工具交換が完了したか否かを判定する。工具交換が完了した場合(YES)、処理は、ステップS165へ移る。工具交換が完了していない場合(NO)、処理は、再度ステップS164へ移る。
 ステップS165において、同時動作制御部212は、交換中周辺装置指令を完了し、処理は、その後、図11のステップS104へ移る。
 図18は、加工前コードの指令区分表を示す図である。図18に示すように、工具系指令、軸系指令及び周辺装置指令について、コードと指令内容とが対応付けられている。図19は、加工後コードの指令区分表を示す図である。図19に示すように、工具系指令、軸系指令及び周辺装置指令について、コードと指令内容とが対応付けられている。
 具体的には、図18及び19において、工具交換と同時動作が可能な指令は、工具系指令、軸系指令及び周辺機器指令の三つに分けられる。また、工具系指令、軸系指令及び周辺機器指令のそれぞれは、工具の交換、交換前後又は移動指令及び移動指令前後に分けられる。
 工具系指令は、主軸に装着されている切削工具31の回転や工具長補正など主軸制御と主軸に並行な移動軸、工具長補正に関するGコードやMコードなどを含む。軸系指令は、ワーク41を設置しているテーブル42を動作させる軸の各軸の移動指令、回転軸のクランプ・アンクランプ指令、切削工具31の工具径補正に関するGコードやMコードなどを含む。周辺機器指令は、切削液制御などを含む。これらの指令は、指令区分表として数値制御装置2の記憶部(図示せず)に記憶される。
 図20は、ある加工前コードP11の工具軸の動作例である。図20に示す例では、工具軸をZ軸とし、工具交換領域内をZ100.からZ0とし、Z軸の動作範囲をZ-400.とする。この場合、工具交換領域外で加工前コードP11を指令した位置が、開始位置であり、工具軸は、工具交換のために工具交換領域内となるZ0へ移動する。その後、工具軸は、工具交換領域内Z0から工具交換を実行するZ100.に移動し、工具交換を実行する。そして、工具軸は、工具交換後、工具交換領域内Z0へ移動し、その後、終了位置へ位置決めする。
 図21は、ある加工後コードP12の工具軸の動作例である。図21に示す例では、工具軸をZ軸として、工具交換領域内をZ100.からZ0とし、Z軸の動作範囲をZ-400.とする。この場合、工具交換領域外で加工前コードP11を指令した位置が、開始位置であり、工具軸は、工具交換のため工具交換領域内となるZ0へ移動する。そして、工具軸は、工具交換領域内Z0から工具交換を実行するZ100.に移動し、工具交換を実行する。そして、工具軸は、工具交換後、工具交換領域内Z0へ移動し、その後、終了位置へ位置決めする。なお、図20及び21におけるZ-400.は、工具軸のストロークの限界を示す。
 加工前コードP11において、Gコードは、G920であり、切削加工の加工前コードを示す。Tは、切削工具31の交換を示し、Hは、工具補正番号を示す。また、G54は、ワーク座標系設定を示し、Xは、X軸方向の移動指令であり、Yは、Y軸方向の移動指令であり、Aは、A軸方向の移動指令であり、Cは、C軸方向の移動指令である。また、Zは、工具長補正時のアプローチ位置を示し、Sは、主軸制御のための主軸回転数を示し、M03は、主軸を正回転することを示し、M08は、切削液をONにすることを示し、M100は、AC軸の移動前アンクランプと移動後クランプを示す。
 加工後コードP12において、Gコードは、G930であり、切削加工の加工後コードを示す。G930は、固定サイクルキャンセル、工具長及び工具径補正キャンセル、並びにX軸、Y軸、A軸、C軸及びZ軸の原点復帰の動作を示す。X、Y、A、C及びZは、それぞれ各座標軸の原点を示す。また、M05は、主軸制御のための主軸停止を示し、M09は、切削液をOFFにすることを示し、M101はAC軸の移動前アンクランプを示す。また、Tは、切削工具31の交換を示し、指令がないときはZ軸の原点復帰動作のみを行う。
 図2に示す工作機械3は、例えば、以下の(1)~(3)の動作を行う。
(1)工具交換する際に、工作機械3の主軸34は、Z軸方向に上昇し、タレット32は、回動する。Z軸方向に上昇する際、つまり交換前における指令として、数値制御装置2は、交換前指令工具系指令と交換前周辺装置指令を実行する。例えば、数値制御装置2は、Z軸方向の上昇と同時に工具長補正や固定サイクルなどをキャンセルする。また、工作機械3は、主軸が回転していれば主軸を停止し、主軸の位相を工具交換位置へオリエンテーションすることにより位置決めを行う。また、主軸にタッチプローブなどの測定機が装着され、タッチプローブがONになっている場合はOFFにする。また、切削液やエアブローなどの周辺装置は、ON/OFFされる。また、数値制御装置2は、移動前軸系指令として、工具径補正や座標回転をキャンセルする。また、数値制御装置2は、回転軸がクランプされていれば、回転軸をアンクランプする。
(2)タレット32が回転している間に、ワークテーブル33は、X軸方向及びY軸方向に移動する。また、数値制御装置2は、タレット32が回転している間は交換中と判断し、交換中周辺機器指令であるM26は、テーパ洗浄を実行する。また、数値制御装置2は、タレット32が回転している間の条件だけでなく、干渉が無いことをチェックしてもよい。
(3)工具交換後に、工作機械3は、主軸34のZ軸方向の移動、主軸制御、切削液制御、回転軸クランプ等を実行する。
 本実施形態に係る数値制御装置2は、上述した加工プログラムを用いることによって、(1)~(3)のような同時動作が可能な工程を同時に実行することができる。そのため、例えば、数値制御装置2は、上述したG920及びG930のようなコードを用いることによって、簡単にサイクルタイムを短縮することができ、切削加工を簡易に行うことができる。
 加工前コードP11と加工後コードP12おいて、XYZ以外にもABCなどの回転軸移動指令が加えられてもよい。例えば、移動軸系指令としてXYZ軸と同一ブロックにAC軸を指令すると、XY軸と同時にAC軸が移動する。また、同一ブロックにおいてM100又はM101を指令すると、Z軸方向に上昇する際、回転軸であるAC軸がクランプされていれば、移動前軸系指令としてM11、M69、M72のアンクランプを同時に実行する。M100は、移動軸系指令が完了したのち、M10、M68、M71のクランプを同時に実行する。
 このとき、全ての移動前軸系指令及び移動軸系指令の完了を待機する必要はなく、移動前軸系指令では、アンクランプ状態とは関係ない軸、例えばXY軸は、回転軸のアンクランプを待機せず動作を開始してもよい。移動後軸系指令では、例えば、高速な動作が可能なダイレクトドライブモータを採用した回転軸がXY軸よりも先に指令位置に到達する場合、回転軸は、XY軸の指令位置到達を待機せず実行してもよい。
 以上説明したように、本実施形態によれば、数値制御装置2は、工作機械3における切削加工の前後に指令するための1行の加工プログラムから、工作機械3が同時動作可能な指令を解析する加工プログラム解析部211と、解析された同時動作可能な指令を用いて、工作機械3に同時動作可能な指令を組み合わせて指令された同時動作を制御する同時動作制御部212と、を備える。これにより、数値制御装置2は、同時動作が可能な工程を同時に指令することができる。そのため、数値制御装置2は、サイクルタイムを短縮することができ、工作機械3の動作を簡易かつ効率的に実行することができる。
 また、同時動作が可能な工程は、切削工具31の交換、切削工具31の工具長及び工具径補正、ワーク座標系の設定、移動管理の座標系の設定、ワーク座標系における切削工具31又はワーク41、テーブル42の移動、主軸回転の制御、切削液とエア制御並びに回転軸クランプ・アンクランプ制御を含む。これにより、数値制御装置2は、工作機械3においてこれらの工程を同時に動作させることができる。
 加工プログラムは、切削加工前の加工前コードとして、切削工具31の交換、切削工具31の工具長及び工具径補正のための工具補正番号、ワーク座標系の設定、移動管理の座標系の設定、座標系における切削工具31の移動、主軸回転の制御、並びに切削液制御を含む。これにより、数値制御装置2は、加工前コードを適切に演算及び実行することができる。
 加工プログラムは、切削加工後の加工後コードとして、切削工具31の交換、原点復帰、原点復帰軸、ワーク座標系の設定、移動管理の座標系の設定、ワーク座標系における切削工具31又はワーク41、テーブル42の移動、主軸制御、切削液及びエア制御を含む。これにより、数値制御装置2は、加工後コードを適切に演算及び実行することができる。
 また、加工後コードは、原点復帰及び原点復帰軸に代えて、切削工具31の交換、ワーク座標系の設定、並びにワーク座標系における切削工具31及びテーブル42の移動指令を含んでもよい。これにより、数値制御装置2は、加工後コードを適切に演算及び実行することができる。
 また、加工プログラムは、1行の加工プログラムによって指令される切削工具31の交換、切削工具31の工具長及び工具径補正のための工具補正番号、ワーク座標系、ワーク座標系における切削工具31及びテーブル42の移動指令、原点復帰、原点復帰軸、主軸制御、付加軸制御、切削液制御並びに周辺機器制御の指令値を変数として記述される。
 加工プログラムによって呼び出されたプログラムは、前記変数を用いて工作機械3における同時動作を実行する。これにより、数値制御装置2は、同時動作を適切に実行することができる。
 また、加工プログラムによって呼び出されたプログラムは、切削工具31の交換指令、並びにワーク座標系における切削工具31及びテーブル42の移動指令を同一ブロックに指令する。
 その後、呼び出されたプログラムは、切削工具31の工具長及び工具径補正のための工具補正番号及び工具軸の移動指令、主軸制御のための指令、切削液制御のための指令、並びに周辺機器制御のための指令を同一ブロックに指令する。これにより、数値制御装置2は、各指令を適切に実行することができる。
 以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、本実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。
 1 加工システム
 2 数値制御装置
 3 工作機械
 31 切削工具
 32 タレット
 33 ワークテーブル
 41 ワーク
 42 テーブル
 21 制御部
 211 プログラム作成部
 212 切削制御部

Claims (8)

  1.  工作機械における切削加工の前後に指令するための1行の加工プログラムから、前記工作機械が同時動作可能な指令を解析する加工プログラム解析部と、
     前記解析された同時動作可能な指令を用いて、前記工作機械に同時動作可能な指令を組み合わせて指令された同時動作を制御する同時動作制御部と、
    を備える数値制御装置。
  2.  前記同時動作が可能な工程は、前記工作機械の切削工具の交換、前記切削工具交換前、前記切削工具交換中及び前記切削工具交換後の工具系指令、軸移動前、軸移動中及び軸移動後の軸系指令、切削液制御、付加軸制御並びに周辺機器制御を含む、請求項1に記載の数値制御装置。
  3.  前記加工プログラムは、前記切削加工前の加工前コードとして、前記切削工具の交換、前記切削工具の工具長及び工具径補正のための工具補正番号、ワーク座標系の設定、前記ワーク座標系における前記切削工具及びテーブルの移動指令、主軸制御、前記付加軸制御、前記切削液制御並びに前記周辺機器制御を含む、請求項2に記載の数値制御装置。
  4.  前記加工プログラムは、前記切削加工後の加工後コードとして、原点復帰、原点復帰軸、主軸制御、前記付加軸制御及び前記切削液制御を含む、請求項2に記載の数値制御装置。
  5.  前記加工後コードは、前記原点復帰及び前記原点復帰軸に代えて、前記切削工具の交換、ワーク座標系の設定、並びにワーク座標系における前記切削工具及びテーブルの移動指令を含む請求項4に記載の数値制御装置。
  6.  前記加工プログラムは、1行の加工プログラムによって指令される前記切削工具の交換、前記切削工具の工具長及び工具径補正のための工具補正番号、ワーク座標系、ワーク座標系における前記切削工具及びテーブルの移動指令、原点復帰、原点復帰軸、前記主軸制御、前記付加軸制御、前記切削液制御並びに前記周辺機器制御の指令値を変数として記述され、
     前記加工プログラムによって呼び出されたプログラムは、前記変数を用いて前記工作機械における同時動作を実行する、請求項3から5のいずれか一項に記載の数値制御装置。
  7.  前記加工プログラムによって呼び出された前記プログラムは、前記切削工具の交換指令、並びにワーク座標系における前記切削工具及び前記テーブルの移動指令を同一ブロックに指令し、
     その後、前記プログラムは、前記切削工具の工具長及び工具径補正のための工具補正番号及び工具軸の移動指令、前記主軸制御のための指令、前記切削液制御のための指令、並びに前記周辺機器制御のための指令を同一ブロックに指令する、請求項6に記載の数値制御装置。
  8.  工作機械における切削加工の前後に指令するための1行の加工プログラムから、前記工作機械が同時動作可能な指令を解析するステップと、
     前記解析された同時動作可能な指令を用いて、前記工作機械に同時動作可能な指令を組み合わせて指令された同時動作を制御するステップと、
    を備える数値制御装置の制御方法。
PCT/JP2021/017706 2020-05-15 2021-05-10 数値制御装置及び制御方法 WO2021230202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022521905A JP7401661B2 (ja) 2020-05-15 2021-05-10 数値制御装置及び制御方法
DE112021002783.2T DE112021002783T5 (de) 2020-05-15 2021-05-10 Numerische Steuereinrichtung und Steuerverfahren
CN202180034345.7A CN115552343A (zh) 2020-05-15 2021-05-10 数值控制装置以及控制方法
US17/997,746 US20230350384A1 (en) 2020-05-15 2021-05-10 Numerical control device and control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020085902 2020-05-15
JP2020-085902 2020-05-15
JP2020151880 2020-09-10
JP2020-151880 2020-09-10

Publications (1)

Publication Number Publication Date
WO2021230202A1 true WO2021230202A1 (ja) 2021-11-18

Family

ID=78524398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017706 WO2021230202A1 (ja) 2020-05-15 2021-05-10 数値制御装置及び制御方法

Country Status (5)

Country Link
US (1) US20230350384A1 (ja)
JP (1) JP7401661B2 (ja)
CN (1) CN115552343A (ja)
DE (1) DE112021002783T5 (ja)
WO (1) WO2021230202A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249028A (ja) * 1995-03-08 1996-09-27 Fanuc Ltd 数値制御装置
JP2009193209A (ja) * 2008-02-13 2009-08-27 Brother Ind Ltd 数値制御装置及び数値制御装置用制御プログラム
JP2012141762A (ja) * 2010-12-28 2012-07-26 Brother Ind Ltd 数値制御工作機械、制御プログラム及び記憶媒体
WO2012105028A1 (ja) * 2011-02-03 2012-08-09 三菱電機株式会社 数値制御装置
WO2013118241A1 (ja) * 2012-02-06 2013-08-15 三菱電機株式会社 数値制御装置
WO2014038101A1 (ja) * 2012-09-04 2014-03-13 三菱電機株式会社 数値制御装置
JP2018142194A (ja) * 2017-02-28 2018-09-13 ファナック株式会社 数値制御装置および工作機械システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070953A (ja) 2017-10-10 2019-05-09 Dmg森精機株式会社 加工プログラム処理装置およびこれを備えた多軸加工機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249028A (ja) * 1995-03-08 1996-09-27 Fanuc Ltd 数値制御装置
JP2009193209A (ja) * 2008-02-13 2009-08-27 Brother Ind Ltd 数値制御装置及び数値制御装置用制御プログラム
JP2012141762A (ja) * 2010-12-28 2012-07-26 Brother Ind Ltd 数値制御工作機械、制御プログラム及び記憶媒体
WO2012105028A1 (ja) * 2011-02-03 2012-08-09 三菱電機株式会社 数値制御装置
WO2013118241A1 (ja) * 2012-02-06 2013-08-15 三菱電機株式会社 数値制御装置
WO2014038101A1 (ja) * 2012-09-04 2014-03-13 三菱電機株式会社 数値制御装置
JP2018142194A (ja) * 2017-02-28 2018-09-13 ファナック株式会社 数値制御装置および工作機械システム

Also Published As

Publication number Publication date
US20230350384A1 (en) 2023-11-02
JPWO2021230202A1 (ja) 2021-11-18
CN115552343A (zh) 2022-12-30
DE112021002783T5 (de) 2023-04-27
JP7401661B2 (ja) 2023-12-19

Similar Documents

Publication Publication Date Title
EP1243992B1 (en) Tool presetter and tool offset amount calculation method
JP4290639B2 (ja) 数値制御装置及び数値制御工作機械
US20080021591A1 (en) Numerical controller having interference check function
TWI781353B (zh) 工作機械以及控制裝置
CN111002088B (zh) 机床
US20230052323A1 (en) Machine tool and information processing device
JP2006075916A (ja) 工作機械の保護カバー開閉装置
JP2011237880A (ja) 工具交換位置の自動決定機能を備えた工作機械の制御装置
WO2021230202A1 (ja) 数値制御装置及び制御方法
US20190202017A1 (en) Selecting device, selecting method, and program
US7136718B2 (en) Numerical control apparatus
JP2014238782A (ja) 工作機械の制御方法
JP3264705B2 (ja) 数値制御工作機械のロボットハンドの制御方法
JP2003275941A (ja) Nc工作機械
KR20200135943A (ko) 공작 기계
JP2018161724A (ja) 工作機械システムおよびクランプ方法
JP2882534B2 (ja) ターニングセンタの工具呼出装置内臓型数値制御装置
WO2021230203A1 (ja) 工具測定システム及び制御方法
JP4066178B2 (ja) 工作機械及びその異常検査方法
JPH1063339A (ja) 数値制御工作機械の制御装置
KR20090060517A (ko) 공작기계 이송축 떨림 방지장치 및 방법
JP6919427B2 (ja) 工作機械、工作機械の制御方法、及び、工作機械の制御プログラム
WO2021015064A1 (ja) 工具情報設定装置及び工作機械
JP2010131722A (ja) Nc工作機械の原点復帰方法
WO2022190155A1 (ja) ワーク加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521905

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21805022

Country of ref document: EP

Kind code of ref document: A1