WO2021230103A1 - Substrate solution treatment device and substrate solution treatment method - Google Patents

Substrate solution treatment device and substrate solution treatment method Download PDF

Info

Publication number
WO2021230103A1
WO2021230103A1 PCT/JP2021/017152 JP2021017152W WO2021230103A1 WO 2021230103 A1 WO2021230103 A1 WO 2021230103A1 JP 2021017152 W JP2021017152 W JP 2021017152W WO 2021230103 A1 WO2021230103 A1 WO 2021230103A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
line
supply
supply tank
discharge nozzle
Prior art date
Application number
PCT/JP2021/017152
Other languages
French (fr)
Japanese (ja)
Inventor
幹雄 中島
洋司 小宮
光則 中森
淳一 北野
輝臣 南
貴久 大塚
一樹 小佐井
智明 尾嶋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202180032981.6A priority Critical patent/CN115516606A/en
Priority to KR1020227040037A priority patent/KR20230009396A/en
Priority to JP2022521839A priority patent/JP7463502B2/en
Publication of WO2021230103A1 publication Critical patent/WO2021230103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • This disclosure relates to a substrate liquid treatment apparatus and a substrate liquid treatment method.
  • a substrate liquid treatment device that suppresses the mixing of particles into the treatment liquid is known.
  • a control valve for adjusting the flow rate in the branch line since it is not necessary to interpose a control valve for adjusting the flow rate in the branch line, particles that may be generated from such a control valve do not flow in the liquid treatment unit.
  • dust generation inside the constant pressure valve can be suppressed.
  • JP-A-2015-41751 Japanese Unexamined Patent Publication No. 2017-204069
  • the present disclosure provides an advantageous technique for suppressing the mixing of particles into the treatment liquid applied to the substrate.
  • One aspect of the present disclosure is a supply tank in which the treatment liquid is supplied to the inside via a guide line, a pressurizing device for pressurizing the inside of the supply tank, a discharge nozzle for discharging the supplied treatment liquid, and a supply tank.
  • the first supply line between the supply tank and the discharge nozzle which is connected to the discharge nozzle and is not provided with an adjustment mechanism for variably restricting the flow path connecting the supply tank and the discharge nozzle.
  • a first drainage line connected to the branch portion, a liquid flow adjusting mechanism provided in the first drainage line to restrict the passage of a treatment liquid having a pressure lower than the set pressure, and a control unit for adjusting the set pressure.
  • the present invention relates to a substrate liquid processing apparatus comprising.
  • FIG. 1 is a diagram showing an outline of an example of a processing system.
  • FIG. 2 is a diagram showing an outline of an example of a processing unit.
  • FIG. 3 is a diagram showing a schematic configuration of an example of a liquid supply circuit for supplying a processing liquid to a discharge nozzle.
  • FIG. 4 is a diagram illustrating an example of a storage unit.
  • FIG. 5 is a diagram illustrating an example of a storage unit.
  • FIG. 6 is a diagram illustrating an example of a storage unit.
  • FIG. 7 is a diagram illustrating an example of a storage unit.
  • FIG. 8 is a diagram showing an outline of the first aspect of the treatment liquid supply system.
  • FIG. 9 is a diagram showing an outline of the first aspect of the treatment liquid supply system.
  • FIG. 1 is a diagram showing an outline of an example of a processing system.
  • FIG. 2 is a diagram showing an outline of an example of a processing unit.
  • FIG. 3 is a diagram showing a schematic
  • FIG. 10 is a diagram showing an outline of the first aspect of the treatment liquid supply system.
  • FIG. 11 is a diagram showing an outline of the first aspect of the treatment liquid supply system.
  • FIG. 12 is a diagram showing an outline of the second aspect of the treatment liquid supply system.
  • FIG. 13 is a diagram showing an outline of the second aspect of the treatment liquid supply system.
  • FIG. 14 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 15 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 16 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 17 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 18 is a schematic configuration diagram for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 19 is a schematic configuration diagram for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 20 is a schematic configuration diagram for explaining an example of a heating method in the first heating zone of the guide line.
  • FIG. 21 is a diagram showing an outline of the first aspect of the treatment liquid temperature adjusting system.
  • FIG. 22 is a diagram showing an outline of the second aspect of the treatment liquid temperature adjusting system.
  • FIG. 23 is a drawing illustrating an agitator installed inside a supply pipe constituting a supply line.
  • FIG. 24 is a diagram showing an example of stirring the treatment liquid in the supply tank.
  • FIG. 25 is a diagram showing a structural example of a supply tank capable of suppressing temperature unevenness of the treatment liquid.
  • FIG. 26 is a diagram showing a structural example of a supply tank capable of suppressing a decrease in the temperature of the treatment liquid.
  • FIG. 1 is a diagram showing an outline of an example of a processing system 80.
  • the processing system 80 shown in FIG. 1 has an loading / unloading station 91 and a processing station 92.
  • the loading / unloading station 91 includes a mounting section 81 including a plurality of carriers C, and a transport section 82 provided with a first transport mechanism 83 and a delivery section 84.
  • a plurality of substrates W are housed in each carrier C in a horizontal state.
  • the processing station 92 is provided with a plurality of processing units 10 installed on both sides of the transport path 86, and a second transport mechanism 85 that reciprocates in the transport path 86.
  • the substrate W is taken out from the carrier C by the first transfer mechanism 83, placed on the delivery section 84, and taken out from the delivery section 84 by the second transfer mechanism 85. Then, the substrate W is carried into the corresponding processing unit 10 by the second transport mechanism 85, and a predetermined liquid treatment (for example, chemical liquid treatment) is performed in the corresponding processing unit 10. After that, the substrate W is taken out from the corresponding processing unit 10 by the second transport mechanism 85 and mounted on the delivery section 84, and then returned to the carrier C of the mounting section 81 by the first transport mechanism 83.
  • a predetermined liquid treatment for example, chemical liquid treatment
  • the processing system 80 includes a control unit 93.
  • the control unit 93 is composed of, for example, a computer, and includes an arithmetic processing unit and a storage unit.
  • the storage unit of the control unit 93 stores programs and data for various processes performed by the processing system 80.
  • the arithmetic processing unit of the control unit 93 controls various mechanisms of the processing system 80 to perform various processing by appropriately reading and executing a program stored in the storage unit.
  • the programs and data stored in the storage unit of the control unit 93 may be those recorded in a storage medium readable by a computer and may be installed in the storage unit from the storage medium.
  • Examples of storage media that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • FIG. 2 is a diagram showing an outline of an example of the processing unit 10.
  • the processing unit 10 constitutes a substrate liquid processing apparatus together with a control unit 93 (see FIG. 1), and includes a substrate holding unit 11, a rotary drive unit 12, a liquid supply unit 15, a cup structure 21, an inert gas supply unit 22, and processing.
  • a chamber 23 is provided.
  • the substrate holding unit 11, the rotation driving unit 12, the liquid supply unit 15, and the cup structure 21 are installed inside the processing chamber 23.
  • the inert gas supply unit 22 supplies the inert gas (for example, nitrogen) into the processing chamber 23.
  • the board holding unit 11 holds the board W supplied via the second transport mechanism 85 (see FIG. 1).
  • the illustrated substrate holding portion 11 adopts a vacuum method of sucking and holding the back surface of the substrate W, but the substrate holding portion 11 may hold the substrate W by another method (for example, a mechanical chuck method).
  • the rotation drive unit 12 applies rotational power to the substrate holding unit 11 to rotate the substrate W held by the substrate holding unit 11 together with the substrate holding unit 11.
  • the rotation drive unit 12 shown is a rotation drive shaft extending on the rotation axis A1 and having a substrate holding portion 11 fixedly attached to the tip portion, and a rotation that rotates the rotation drive shaft around the rotation axis A1. It is equipped with a drive main body.
  • the substrate holding unit 11 and the rotation driving unit 12 constitute at least a part of the rotation mechanism 13 that rotates the substrate W around the rotation axis A1.
  • the liquid supply unit 15 includes a nozzle drive unit 16, a drive arm 17, and a discharge nozzle 19.
  • the nozzle drive unit 16 includes a swivel drive shaft extending on the swivel axis A2 and having a drive arm 17 fixedly attached to the tip portion, and a swivel drive main body portion that rotates the swivel drive shaft around the swivel axis A2. And.
  • a swivel drive shaft of the nozzle drive unit 16 is attached to one end side of the drive arm 17, and a discharge nozzle 19 is attached to the discharge head 18 constituting the other end of the drive arm 17.
  • the discharge nozzle 19 moves around the swivel axis A2 together with the drive arm 17 (including the discharge head 18).
  • the nozzle drive unit 16 and the drive arm 17 form at least a part of the nozzle movement mechanism for moving the discharge nozzle 19.
  • the discharge nozzle 19 discharges the processing liquid supplied via the supply line described later (see reference numeral "L4" in FIG. 3 and the like).
  • the treatment liquid discharged from the discharge nozzle 19 is applied to the substrate W held by the substrate holding unit 11 and is used for liquid treatment of the substrate W.
  • the supply line is connected to the discharge nozzle 19 through the nozzle drive unit 16 and the drive arm 17 inside the processing chamber 23.
  • a supply ejector liquid flow switching mechanism
  • the specific composition and use of the treatment liquid supplied to the discharge nozzle 19 are not limited.
  • a chemical solution for changing the characteristics of the substrate W, a rinsing solution for washing the surface of the substrate W, and a cleaning solution for cleaning the substrate W can be used as the treatment liquid.
  • the number of discharge nozzles 19 included in the liquid supply unit 15 is not limited. Although only one discharge nozzle 19 is shown in FIG. 2, the liquid supply unit 15 may include two or more discharge nozzles 19.
  • a discharge nozzle 19 for discharging a chemical solution a discharge nozzle 19 for discharging a rinse liquid such as pure water (DIW), and a discharge nozzle 19 for discharging a cleaning liquid (for example, IPA) used for cleaning a substrate are provided on the discharge head 18. It may be provided.
  • DIW pure water
  • a discharge nozzle 19 for discharging a cleaning liquid for example, IPA
  • the cup structure 21 has a ring-shaped planar shape and is provided so as to surround the substrate W held by the substrate holding portion 11.
  • the cup structure 21 receives the liquid scattered from the substrate W and guides it to a drain duct (not shown), or arranges the gas flow so as to prevent the gas around the substrate W from diffusing.
  • the specific configuration of the cup structure 21 is not limited.
  • the cup structure 21 may have a cup mainly for guiding the liquid and a cup mainly for adjusting the flow of gas as separate bodies.
  • the processing unit 10 may further include other mechanisms not described above.
  • an exhaust gas adjusting mechanism for discharging gas from the inside of the processing chamber 23 and a drainage adjusting mechanism for discharging the liquid dropped (scattered) from the substrate W may be provided.
  • a heating device for heating the liquid on the substrate W to promote the liquid treatment of the substrate W may be provided.
  • FIG. 3 is a diagram showing a schematic configuration of an example of a liquid supply circuit 30 for supplying the processing liquid P to the discharge nozzle 19.
  • the liquid supply circuit 30 is realized by the various components of the processing unit 10 and other components of the processing system 80 described above.
  • the liquid supply circuit 30 shown in FIG. 3 has a storage unit 32 connected to the processing liquid supply source 31 via the storage line L1, a supply tank 37 connected to the storage unit 32 via the guide line L2, and a supply tank 37. Is provided with a discharge nozzle 19 connected via a supply line L4.
  • the storage unit 32 stores the processing liquid P supplied from the processing liquid supply source 31 via the storage line L1.
  • the specific configuration of the storage unit 32 is not limited.
  • the storage unit 32 may have only one storage tank capable of storing the treatment liquid P, or may have a plurality of storage tanks (see FIGS. 4 to 7 described later).
  • the storage line L1 is provided with a storage on-off valve 45. By opening and closing the flow path of the storage line L1 under the control of the control unit 93, the storage on-off valve 45 can control the supply of the processing liquid P to the storage unit 32.
  • the guide line L2 is provided with a guide on-off valve 33 and a guide filter 34 located downstream of the guide on-off valve 33.
  • the guide on-off valve 33 opens and closes the flow path of the guide line L2 under the control of the control unit 93.
  • the guide filter 34 removes foreign matter from the treatment liquid P while allowing it to pass through the treatment liquid P.
  • the processing liquid P is sent from the storage unit 32 to the supply tank 37 via the guide line L2 whose flow path is opened by the guide on-off valve 33.
  • the method of sending the treatment liquid P from the storage unit 32 to the supply tank 37 is not limited.
  • a pressurizing gas for example, an inert gas such as nitrogen
  • the processing liquid P can be sent out from the storage unit 32 to the guide line L2 (FIG. 7 described later). reference).
  • a delivery device such as a pump (not shown) that directly sends the processing liquid P in the guide line L2
  • it is preferable that such a delivery device is provided on the upstream side of the guide filter 34. In this case, even if particles are emitted from the delivery device to the processing liquid P, such particles can be removed from the processing liquid P by the guide filter 34.
  • the heating zone in which the treatment liquid is heated by the heating unit is set in at least one of the guide line L2 and the supply tank 37.
  • the heating zone is set in both the guide line L2 and the supply tank 37. That is, the first heating unit 35 is provided in the vicinity of the first heating zone Z1 of the guide line L2, and the treatment liquid P in the first heating zone Z1 is heated by the first heating unit 35. Further, a second heating unit 36 is provided in the vicinity of the second heating zone Z2 of the supply tank 37, and the treatment liquid P in the second heating zone Z2 is heated by the second heating unit 36.
  • the heating zones Z1 and Z2 are set downstream from the guide filter 34.
  • the guide filter 34 removes foreign matter from the treatment liquid P flowing in the portion upstream of the heating zones Z1 and Z2 in the flow path of the treatment liquid P. The higher the temperature of the treatment liquid P passing through the guide filter 34, the easier it is for foreign matter to be released from the guide filter 34 to the treatment liquid P.
  • the liquid supply circuit 30 shown in FIG. 3 since the treatment liquid P before heating passes through the guide filter 34, it is possible to suppress the discharge of foreign matter from the guide filter 34 to the treatment liquid P. Further, in the liquid supply circuit 30 shown in FIG.
  • the heating zones Z1 and Z2 and the flow paths on the downstream side of the heating zones Z1 and Z2. Is not provided with a filter for removing foreign matter from the treatment liquid P.
  • the treatment liquid P is supplied to the inside of the supply tank 37 via the guide line L2.
  • a pressurizing device 38 is attached to the supply tank 37.
  • the pressurizing device 38 pressurizes the inside of the supply tank 37 and sends the processing liquid P from the supply tank 37 to the supply line L4.
  • the illustrated pressurizing device 38 is connected to the supply tank 37 via the gas line L3, and supplies a pressurizing gas (for example, an inert gas such as nitrogen) into the supply tank 37 via the gas line L3.
  • the pressure in the supply tank 37 can be increased.
  • a pressurizing filter 39 is provided in a portion of the gas line L3 downstream of the pressurizing device 38.
  • the pressurizing filter 39 removes foreign matter from the pressurizing gas while passing the pressurizing gas from the pressurizing device 38. Therefore, the pressurizing gas sent out from the pressurizing device 38 to the gas line L3 flows into the supply tank 37 in a clean state after the foreign matter is removed by the pressurizing filter 39.
  • the supply line L4 is connected to the supply tank 37 and the discharge nozzle 19.
  • the supply line L4 is not provided with an adjusting mechanism that variably restricts the flow path connecting the supply tank 37 and the discharge nozzle 19.
  • the "adjustment mechanism that variably limits the flow path” referred to here can be configured by any adjustment mechanism.
  • an adjusting mechanism such as a valve or a pump capable of changing the cross-sectional area of the flow path of the treatment liquid may correspond to the "adjusting mechanism that variably limits the flow path”.
  • valves that can correspond to the "adjustment mechanism that variably restricts the flow path” for example, a dispense valve that works as an on-off valve that opens and closes the flow path, and a sackback valve that pulls the liquid level at the tip of the nozzle back to the upstream side.
  • the "adjustment mechanism that variably limits the flow path” may mix particles such as dust into the liquid in the flow path.
  • the “adjustment mechanism for variably limiting the flow path” is not installed on the downstream side of the guide filter 34, processing is performed in the flow path between the guide filter 34 and the discharge nozzle 19. It is possible to prevent particles from being mixed in the liquid P.
  • the first drainage line L5 is connected to the first branch portion b1 between the supply tank 37 and the discharge nozzle 19 of the supply line L4.
  • the first drainage line L5 is provided with a liquid flow adjusting mechanism 40.
  • the liquid flow adjusting mechanism 40 can adjust the flow of the processing liquid P in the supply line L4 and the first drainage line L5, and control the discharge of the processing liquid P from the discharge nozzle 19.
  • the liquid flow adjusting mechanism 40 can be realized by various configurations, and specific examples of the liquid flow adjusting mechanism 40 will be described later (see FIGS. 8 to 13).
  • the processing liquid P that has passed through the liquid flow adjusting mechanism 40 is sent downstream via the first drainage line L5, returned to the storage unit 32, or discharged to the drain tank 41.
  • the inside of the supply tank 37 is pressurized by the pressurizing device 38, so that the processing liquid P is applied from the supply tank 37 to the discharge nozzle 19 via the supply line L4. Is supplied.
  • the treatment liquid P supplied to the discharge nozzle 19 in this way is discharged from the discharge nozzle 19 toward the substrate W. It is carried out by.
  • [Storage unit] 4 to 7 are views for explaining an example of the storage unit 32.
  • the storage unit 32 shown in FIGS. 4 to 7 has a plurality of storage tanks (that is, a first storage tank 47a and a second storage tank 47b).
  • the first storage tank 47a and the second storage tank 47b are connected to each other via a plurality of circulation lines (that is, the first circulation line L7a and the second circulation line L7b).
  • the first circulation line L7a is a line that guides the treatment liquid P from the first storage tank 47a to the second storage tank 47b.
  • the first circulation line L7a is provided with a first circulation on-off valve 49a and a first circulation filter 50a.
  • the first circulation on-off valve 49a is provided on the upstream side (that is, on the first storage tank 47a side) of the first circulation filter 50a, and opens and closes the first circulation line L7a under the control of the control unit 93.
  • the first circulation filter 50a is provided on the downstream side (that is, on the side of the second storage tank 47b) of the first circulation on-off valve 49a, and is provided from the treatment liquid P while passing through the treatment liquid P in the first circulation line L7a. Remove foreign matter.
  • the second circulation line L7b is a line that guides the treatment liquid P from the second storage tank 47b to the first storage tank 47a.
  • the second circulation line L7b is provided with a second circulation on-off valve 49b and a second circulation filter 50b.
  • the second circulation on-off valve 49b is provided on the upstream side (that is, on the second storage tank 47b side) of the second circulation filter 50b, and opens and closes the second circulation line L7b under the control of the control unit 93.
  • the second circulation filter 50b is provided on the downstream side (that is, on the side of the first storage tank 47a) of the second circulation on-off valve 49b, and is provided from the treatment liquid P while passing through the treatment liquid P in the second circulation line L7b. Remove foreign matter.
  • the first storage pressure unit 48a is attached to the first storage tank 47a
  • the second storage pressure unit 48b is attached to the second storage tank 47b.
  • the first storage pressurizing unit 48a pressurizes the inside of the first storage tank 47a
  • the second storage pressurizing unit 48b pressurizes the inside of the second storage tank 47b.
  • the specific configuration of the first storage pressure unit 48a and the second storage pressure unit 48b is not limited.
  • the first storage pressurizing unit 48a and the second storage pressurizing unit 48b may be provided with a compressor that sends a pressurizing gas inside the first storage tank 47a and the second storage tank 47b, respectively.
  • the storage line L1 is connected to the first storage tank 47a.
  • the storage line L1 is provided with a storage on-off valve 45 and a storage filter 46.
  • the storage on-off valve 45 is provided on the upstream side of the storage filter 46 (that is, on the treatment liquid supply source 31 side), and opens and closes the storage line L1 under the control of the control unit 93.
  • the storage filter 46 is provided on the downstream side of the storage on-off valve 45 (that is, on the side of the first storage tank 47a), and removes foreign matter from the treatment liquid P while passing the treatment liquid P in the storage line L1.
  • the guide line L2 is connected to the first storage tank 47a, and the first storage tank 47a is connected to the supply tank 37 via the guide line L2.
  • each of the first storage tank 47a and the second storage tank 47b is provided with a liquid amount measuring mechanism (not shown) such as a level sensor for measuring the height and / or amount of the processing liquid P stored inside. ing.
  • a liquid amount measuring mechanism such as a level sensor for measuring the height and / or amount of the processing liquid P stored inside.
  • the height of the treatment liquid P in each of the storage tanks 47a and 47b is measured by providing a plurality of sensors for detecting the presence or absence of the treatment liquid P at different heights in the storage tanks 47a and 47b. It is possible.
  • the measurement result of the liquid amount measuring mechanism is sent to the control unit 93.
  • the first drainage line L5 (see FIG. 3) may be connected to at least one of the plurality of storage tanks 47a and 47b.
  • the processing liquid that has passed through the liquid flow adjusting mechanism 40 flows into at least one of the plurality of storage tanks 47a and 47b via the first drainage line L5.
  • the first drainage line L5 may be directly connected to at least one of the plurality of storage tanks 47a and 47b, or may be connected via the storage line L1.
  • the storage unit 32 When the treatment liquid P is supplied to the storage unit 32 having the above configuration, the storage unit 32 is placed in the state shown in FIG. That is, under the control of the control unit 93, the storage line L1 is opened by the storage on-off valve 45, and the first circulation line L7a, the second circulation line L7b and the guide line L2 are the first circulation on-off valve 49a and the second circulation on-off valve 49b. And closed by the guide on-off valve 33. As a result, the treatment liquid P is supplied from the treatment liquid supply source 31 to the first storage tank 47a via the storage line L1, and the treatment liquid P is stored in the first storage tank 47a.
  • the control unit 93 monitors the height and / or the amount of the processing liquid P in the first storage tank 47a based on the measurement result of the liquid amount measuring mechanism.
  • the control unit 93 controls the storage on-off valve 45 to close the storage line L1. 1 Stop the supply of the treatment liquid P to the storage tank 47a.
  • the treatment liquid P is circulated between the plurality of storage tanks 47a and 47b, and the foreign matter is removed by the circulation filters 50a and 50b.
  • the first circulation line L7a is opened by the first circulation on-off valve 49a
  • the second circulation line L7b and the guide line L2 are the second circulation on-off valve 49b and the guide. It is closed by the on-off valve 33.
  • the first storage pressurizing unit 48a pressurizes the inside of the first storage tank 47a to send the treatment liquid P from the first storage tank 47a to the second storage tank 47b via the first circulation line L7a. Can be done. Further, as shown in FIG.
  • the second circulation line L7b is opened by the second circulation on-off valve 49b, and the first circulation line L7a and the guide line L2 are the first circulation on-off valve 49a and the guide. It is closed by the on-off valve 33.
  • the second storage pressurizing unit 48b pressurizes the inside of the second storage tank 47b, so that the processing liquid P can be sent from the second storage tank 47b to the first storage tank 47a.
  • the treatment liquid P is sent from the storage unit 32 to the supply tank 37.
  • the guide line L2 is opened by the guide on-off valve 33, and the first circulation line L7a and the second circulation line L7b are the first circulation on-off valve 49a. And closed by the second circulation on-off valve 49b.
  • the processing liquid P can be sent from the first storage tank 47a to the guide line L2.
  • the first circulation filter 50a and the second circulation filter 50b constitute "a filter that removes foreign matter from a processing liquid flowing through at least one of a plurality of circulation lines".
  • the combination of the first storage pressurizing unit 48a, the second storage pressurizing unit 48b, the first circulation on-off valve 49a, the second circulation on-off valve 49b and the guide on-off valve 33 is a plurality of storage tanks via a plurality of circulation lines. It constitutes a circulation adjustment mechanism that circulates the treatment liquid between them.
  • foreign matter may be removed from the treatment liquid by performing filtration of the treatment liquid while circulating the treatment liquid using, for example, a bellows pump.
  • a bellows pump On the other hand, according to the storage unit 32 shown in FIGS. 4 to 7 described above, foreign matter is removed from the treatment liquid P by circulating the treatment liquid P between the plurality of storage tanks 47a and 47b using, for example, a pressurizing gas. be able to. Therefore, foreign matter can be appropriately removed from the treatment liquid P by the storage unit 32 having a simple structure without using a mechanism having a complicated structure such as a bellows pump.
  • FIGS. 8 to 11 are views showing an outline of the first aspect of the treatment liquid supply system.
  • a heating unit that is, the first heating unit 35 and the second heating unit 36 in FIG. 3 for heating the treatment liquid P is provided, but the heating unit is omitted in FIGS. 8 to 11. ing. Further, detailed description of the configuration and operation of each element already described will be omitted.
  • the supply tank 37 of this embodiment is connected to the atmosphere opening line L9.
  • the atmosphere opening line L9 is provided to connect the inside of the supply tank 37 and the environment around the supply tank 37 (for example, the atmosphere), and to make the pressure inside the supply tank 37 the same as the environmental pressure (for example, the atmospheric pressure). Be done.
  • the atmosphere opening line L9 is provided with an atmosphere opening valve 63.
  • the atmosphere release valve 63 opens and closes the flow path of the atmosphere opening line L9 under the control of the control unit 93.
  • the atmosphere release valve 63 opens the atmosphere opening line L9, the inside of the supply tank 37 is opened to the surroundings, and the gas freely moves between the inside of the supply tank 37 and the surroundings via the atmosphere opening line L9. It will be possible.
  • the atmosphere release valve 63 closes the atmosphere opening line L9, the inside of the supply tank 37 is shut off from the surroundings, and gas does not flow between the inside of the supply tank 37 and the surroundings.
  • the control unit 93 controls the atmosphere release valve 63 so as to close the atmosphere opening line L9, and efficiently inside the supply tank 37. Put it in a state where it can be boosted.
  • the control unit 93 controls the atmosphere release valve 63 so as to open L9.
  • the pressurizing device 38 includes a gas supply unit 65 that flows a pressurizing gas to the gas line L3 connected to the inside of the supply tank 37, a pressure adjusting unit 66 that adjusts the pressure of the pressurizing gas flowing through the gas line L3, and a gas. It has a gas on-off valve 67 that opens and closes the flow path of the line L3.
  • the gas supply unit 65 may be driven under the control of the control unit 93, and may include, for example, a compressor.
  • the air pressure adjusting unit 66 may be driven under the control of the control unit 93, and may include, for example, an electro-pneumatic regulator.
  • the drive of the gas supply unit 65 and the air pressure adjustment unit 66 may be stopped under the control of the control unit 93, for example, when the liquid supply circuit 30 is placed in the standby state.
  • the gas on-off valve 67 is driven under the control of the control unit 93, and may be, for example, an electromagnetic valve.
  • the supply tank 37 is equipped with a liquid amount measuring mechanism (not shown) such as a level sensor that measures the height and / or amount of the processing liquid P stored inside.
  • the measurement result of the liquid amount measuring mechanism is sent to the control unit 93.
  • the discharge nozzle 19 is located above the supply tank 37 and the liquid flow adjusting mechanism 40 (specifically, the back pressure valve 42).
  • the supply tank 37 and the liquid flow adjusting mechanism 40 (back pressure valve 42) are provided at positions lower than the highest portion of the supply line L4.
  • a liquid detection sensor 61 is provided in the vicinity of the supply line L4.
  • the liquid detection sensor 61 detects the presence or absence of the processing liquid P at the first measurement point M1 located on the downstream side (that is, the discharge nozzle 19 side) of the first branch portion b1 of the supply line L4.
  • the detection method of the liquid detection sensor 61 is not limited.
  • the liquid detection sensor 61 may use an optical sensor.
  • the liquid detection sensor 61 may use a sensor that measures the capacitance or the magnetic field at the first measurement point M1.
  • the liquid detection sensor 61 transmits the detection result to the control unit 93.
  • the first branch portion b1 is located between the highest portion of the supply line L4 from the supply tank 37 to the discharge nozzle 19 and the supply tank 37.
  • the first measurement point M1 is located between the highest part of the supply line L4 from the supply tank 37 to the discharge nozzle 19 and the first branch portion b1 and is lower than the highest part of the supply line L4. Is set to.
  • a flow meter 62 is provided on the supply line L4.
  • the flow meter 62 measures the flow rate of the processing liquid P at the second measurement point M2 located on the downstream side (that is, the discharge nozzle 19 side) of the supply line L4 from the first branch portion b1.
  • the flow meter 62 transmits the measurement result to the control unit 93.
  • the control unit 93 adjusts the set pressure of the back pressure valve 42, which will be described later, based on the measurement result of the flow meter 62.
  • the first drainage line L5 is provided with a back pressure valve 42 and a drainage on-off valve 43 located downstream of the back pressure valve 42.
  • the drainage on-off valve 43 opens and closes the flow path of the first drainage line L5 under the control of the control unit 93.
  • the back pressure valve 42 functions as the above-mentioned liquid flow adjusting mechanism 40, and restricts the passage of the processing liquid P having a pressure lower than the set pressure.
  • the back pressure valve 42 of this example allows the treatment liquid P having a pressure higher than the set pressure to pass, but does not pass the treatment liquid P having a pressure lower than the set pressure. Therefore, the back pressure valve 42 adjusts the pressure of the processing liquid P in the first drainage line L5 (particularly the flow path upstream of the back pressure valve 42) and the supply line L4 to a pressure lower than the set pressure.
  • the set pressure of the back pressure valve 42 is adjusted by the control unit 93, and the flow state of the processing liquid P can be changed by changing the set pressure. For example, when the processing liquid P is supplied to the discharge nozzle 19, the control unit 93 becomes equal to or higher than the peak head pressure, which is the pressure head at the height position of the highest portion of the supply line L4 from the supply tank 37 to the discharge nozzle 19. As described above, the set pressure of the back pressure valve 42 is adjusted. On the other hand, when the processing liquid P is not supplied to the discharge nozzle 19, the control unit 93 adjusts the set pressure of the back pressure valve 42 so as to be lower than the peak head pressure.
  • the second drainage line L6 is connected to the second branch portion b2 between the supply tank 37 and the discharge nozzle 19 of the supply line L4.
  • the second branch portion b2 is set at the same position as the first branch portion b1, but the second branch portion b2 is provided upstream or downstream of the first branch portion b1. May be.
  • the second drainage line L6 may be connected to the supply line L4 via the first drainage line L5.
  • the second drainage line L6 is provided with a suction mechanism 53.
  • the drive mode of the suction mechanism 53 is a suction mode in which the flow path of the supply line L4 is sucked through the second drainage line L6 and a non-suction mode in which the flow path of the supply line L4 is not sucked through the second drainage line L6. It is possible to switch between modes. For example, when the processing liquid P is not supplied to the discharge nozzle 19, the control unit 93 adjusts the suction mechanism 53 to the suction mode at least temporarily. As a result, the processing liquid P in the supply line L4 can be quickly moved away from the discharge nozzle 19, and unintended problems such as dripping of the processing liquid P from the discharge nozzle 19 can be prevented.
  • the suction mechanism 53 of this example has a mode switching valve 54, a negative pressure tank 55, and a negative pressure regulator 56.
  • the mode switching valve 54 is provided in the second drainage line L6, and opens and closes the second drainage line L6 under the control of the control unit 93.
  • One end of the second drainage line L6 is connected to the supply line L4 (particularly the second branch portion b2), and the other end of the second drainage line L6 is connected to the negative pressure tank 55.
  • the negative pressure regulator 56 adjusts the negative pressure tank 55 to the negative pressure state.
  • the illustrated negative pressure regulator 56 has a negative pressure compressor 57, a negative pressure on-off valve 58, and a negative pressure ejector 59.
  • the negative pressure compressor 57 sends a gas (for example, an inert gas such as nitrogen) to the negative pressure line L8 under the control of the control unit 93.
  • the negative pressure on-off valve 58 is provided between the negative pressure compressor 57 and the negative pressure ejector 59, and opens and closes the negative pressure line L8 under the control of the control unit 93.
  • the negative pressure ejector 59 can be configured by an ejector connecting the negative pressure tank 55 and the negative pressure line L8, and creates a decompressed state inside the negative pressure tank 55 by the Venturi effect using the gas flowing through the negative pressure line L8.
  • the aspirator typically has a T-shaped channel consisting of a combination of horizontal and vertical channels.
  • the horizontal flow path is locally narrowed at the confluence of the vertical flow paths.
  • the control unit 93 controls the mode switching valve 54 so as to close the flow path of the second drainage line L6.
  • the control unit 93 controls the mode switching valve 54 so as to open the flow path of the second drainage line L6.
  • the liquid supply circuit 30 is placed in the state shown in FIG. 8 under the control of the control unit 93. That is, the guide line L2 is opened by the guide on-off valve 33, the atmosphere open line L9 is closed by the atmosphere open valve 63, and the gas line L3 is opened by the gas on-off valve 67. Further, the first drainage line L5 is opened by the drainage on-off valve 43, and the second drainage line L6 is closed by the mode switching valve 54. Further, the control unit 93 lowers the set pressure of the back pressure valve 42 to be lower than the above-mentioned peak head pressure.
  • the pressurizing gas supplied from the gas supply unit 65 to the gas line L3 is pressure-adjusted by the air pressure adjusting unit 66 and then supplied into the supply tank 37 through the pressurizing filter 39.
  • the inside of the supply tank 37 is pressurized, and the processing liquid P is sent out from the supply tank 37 to the supply line L4.
  • the treatment liquid P is supplied to the supply tank 37 from the storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7) via the guide line L2.
  • the control unit 93 controls the guide on / off valve 33 to open / close the guide line L2 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37, and the supply tank 37 has an appropriate amount of the processing liquid P. To store.
  • the processing liquid P that has passed through the back pressure valve 42 is sent to the storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7) through the first drainage line L5.
  • the treatment liquid P may be sent directly from the first drainage line L5 to the storage unit 32, or may be sent from the first drainage line L5 to the storage unit 32 via a tank or line (not shown). good.
  • the processing liquid P sent from the first drainage line L5 to the storage unit 32 is returned to the supply tank 37 via the guide line L2.
  • the processing liquid P sent out from the supply tank 37 to the supply line L4 is not discharged from the discharge nozzle 19, and the first drainage line L5, It is returned to the supply tank 37 through the storage unit 32 and the guide line L2.
  • the treatment liquid P is heated in the heating zone (not shown in FIG. 8; see the first heating zone Z1 and the second heating zone Z2 in FIG. 3) while circulating in the liquid supply circuit 30 in this way, and gradually rises as a whole. It is warmed and adjusted to the desired temperature.
  • the liquid supply circuit 30 is controlled by the control unit 93 in FIG. It is placed in the state shown in.
  • the control unit 93 sets the set pressure of the back pressure valve 42 to be equal to or higher than the above-mentioned peak head pressure (preferably higher than the peak head pressure).
  • the guide line L2 is closed by the guide on-off valve 33, but the open / closed state of the atmosphere opening line L9, the gas line L3, the first drainage line L5 and the second drainage line L6 is set to the same state as shown in FIG. Be taken.
  • the pressurizing device 38 (particularly, the pressure adjusting unit 66) is provided so that the processing liquid P sent from the supply tank 37 to the supply line L4 has a pressure equal to or higher than the peak head pressure (preferably higher than the peak head pressure). Pressurize the inside of the supply tank 37.
  • the treatment liquid P in the supply line L4 is adjusted to the same pressure as the "set pressure equal to or higher than the peak head pressure" by the back pressure valve 42. As a result, the treatment liquid P reaches the highest portion of the supply line L4 and is then supplied to the discharge nozzle 19.
  • the control unit 93 may adjust the set pressure of the back pressure valve 42 based on the measurement result of the flow meter 62. For example, when the control unit 93 determines from the measurement result of the flow meter 62 that the amount of the processing liquid P supplied to the discharge nozzle 19 is insufficient, the set pressure of the back pressure valve 42 is increased to increase the amount. The processing liquid P may be supplied to the discharge nozzle 19. Further, when the control unit 93 determines from the measurement result of the flow meter 62 that the amount of the processing liquid P supplied to the discharge nozzle 19 is too large, the control unit 93 reduces the set pressure of the back pressure valve 42 to the discharge nozzle 19. The amount of the processing liquid P supplied may be reduced.
  • the negative pressure on-off valve 58 opens the negative pressure line L8 under the control of the control unit 93, and the negative pressure tank 55 is in a negative pressure state. Is adjusted to.
  • the liquid supply circuit 30 Is placed in the state shown in FIG. 10 under the control of the control unit 93.
  • control unit 93 lowers the set pressure of the back pressure valve 42 to be lower than the above-mentioned peak head pressure.
  • the back pressure valve 42 adjusts the treatment liquid P in the supply line L4 to a pressure lower than the peak head pressure.
  • the processing liquid P cannot reach the highest portion of the supply line L4, and the processing liquid P is not supplied to the discharge nozzle 19.
  • the second drainage line L6 is opened by the mode switching valve 54 under the control of the control unit 93, and the suction mechanism 53 is adjusted to the suction mode.
  • the negative pressure tank 55 is connected to the supply line L4 via the second drainage line L6, and the processing liquid P of the supply line L4 is sucked into the negative pressure tank 55 via the second drainage line L6.
  • the head position of the treatment liquid P in the supply line L4 can be quickly moved away from the discharge nozzle 19, and the discharge of the treatment liquid P from the discharge nozzle 19 can be stopped momentarily.
  • the treatment liquid P flowing into the negative pressure tank 55 is sent to the storage unit 32 via the negative pressure ejector 59 and the negative pressure line L8.
  • the control unit 93 switches the suction mechanism 53, which will be described later, from the suction mode to the non-suction mode according to the detection result of the liquid detection sensor 61. While the detection result of the liquid detection sensor 61 indicates that the processing liquid P is present at the first measurement point M1, the control unit 93 uses the suction mechanism 53 (particularly the mode switching valve) so that the suction mode is maintained. 54) is controlled. On the other hand, when the detection result of the liquid detection sensor 61 indicates that the processing liquid P does not exist at the first measurement point M1, the control unit 93 controls the suction mechanism 53 (particularly the mode) so that the suction mode can be switched to the non-suction mode. The switching valve 54) is controlled. As a result, the head position of the treatment liquid P in the supply line L4 can be surely kept away from the discharge nozzle 19.
  • the atmosphere opening line L9 is opened by the atmosphere opening valve 63, and the gas line L3 is closed by the gas on-off valve 67.
  • the pressure inside the supply tank 37 is adjusted to be the same as the pressure around the supply tank 37, and the pressure of the processing liquid P from the supply tank 37 to the supply line L4 can be weakened.
  • the open / closed state of the guide line L2 and the first drainage line L5 is set to the same state as shown in FIG.
  • the liquid supply circuit 30 is placed in the standby state, the liquid supply circuit 30 is placed in the state shown in FIG. 11 under the control of the control unit 93.
  • the control unit 93 lowers the set pressure of the back pressure valve 42 to be lower than the above-mentioned peak head pressure.
  • the first drainage line L5 is closed by the drainage on-off valve 43
  • the atmosphere opening line L9 is opened by the atmosphere opening valve 63
  • the gas line L3 is closed by the gas on-off valve 67.
  • the second drainage line L6 is closed by the mode switching valve 54
  • the negative pressure line L8 is closed by the negative pressure on-off valve 58.
  • the processing liquid P in the supply tank 37 and the supply line L4 is not supplied to the discharge nozzle 19 and does not circulate.
  • the inside of the supply tank 37 is not pressurized, and the treatment liquid P in the supply line L4 is not discharged via the first drainage line L5 and the second drainage line L6. Therefore, the liquid level height of the treatment liquid P in the supply line L4 is the same as the liquid level of the treatment liquid P in the supply tank 37.
  • the guide line L2 is opened by the guide on-off valve 33, and the processing liquid P is supplied from the storage unit 32 to the supply tank 37 via the guide line L2.
  • the control unit 93 monitors the amount of the processing liquid P stored in the supply tank 37 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37. Then, the control unit 93 closes the guide line L2 by the guide on-off valve 33 at the timing when the treatment liquid P in the supply tank 37 reaches an appropriate amount, and stops the supply of the treatment liquid P to the supply tank 37.
  • the presence or absence of discharge of the treatment liquid from the discharge nozzle is determined by controlling the opening and closing of the on-off valve provided in the supply line while applying pressure to the treatment liquid even in the vicinity of the discharge nozzle. It may be switched.
  • the liquid supply circuit 30 shown in FIGS. 8 to 11 it is possible to switch whether or not the processing liquid P is discharged from the discharge nozzle 19 by changing the set pressure of the back pressure valve 42. Therefore, according to the liquid supply circuit 30 of this embodiment, it is not necessary to install a device for applying pressure to the processing liquid P in the vicinity of the discharge nozzle 19 or to install an on-off valve in the supply line L4.
  • the flow rate of the processing liquid in the supply line may be adjusted by a constant pressure valve provided in the supply line to control the supply amount of the processing liquid to the discharge nozzle.
  • the supply amount of the processing liquid P to the discharge nozzle 19 can be changed by using the pressurizing gas sent from the pressurizing device 38 to the supply tank 37. .. Therefore, according to the liquid supply circuit 30 of this embodiment, it is not necessary to install a constant pressure valve in the supply line L4.
  • FIGS. 12 and 13 are views showing an outline of the second aspect of the treatment liquid supply system.
  • a heating unit that is, the first heating unit 35 and the second heating unit 36 in FIG. 3 for heating the treatment liquid P is provided, but the illustration is omitted in FIGS. 12 and 13. .. Further, detailed description of the configuration and operation of each element already described will be omitted.
  • the liquid supply circuit 30 of this embodiment also includes a supply tank 37, a pressurizing device 38, a discharge nozzle 19, and a supply line L4 similar to the liquid supply circuit 30 of the first aspect described above. That is, the supply tank 37 is supplied with the processing liquid P inside via the guide line L2, the pressurizing device 38 pressurizes the inside of the supply tank 37, and the discharge nozzle 19 discharges the supplied processing liquid P. ..
  • the supply line L4 is connected to the supply tank 37 and the discharge nozzle 19, and is not provided with an adjusting mechanism that variably restricts the flow path connecting the supply tank 37 and the discharge nozzle 19.
  • the liquid supply circuit 30 of this embodiment further includes a supply ejector 69.
  • the supply ejector 69 is provided in the first branch portion b1 and processes the portion of the supply line L4 connecting the first branch portion b1 and the discharge nozzle 19 according to the flow of the processing liquid P in the first drain line L5. It functions as a liquid flow switching mechanism for switching whether or not to flow the liquid P.
  • the supply ejector 69 can be configured as an ejector connecting the discharge nozzle 19, the supply line L4, and the first drainage line L5.
  • the supply ejector 69 can create a depressurized state in the discharge nozzle 19 by the Venturi effect using the processing liquid P flowing from the supply line L4 to the first drainage line L5.
  • the first drainage line L5 connected to the first branch portion b1 in this way is connected to the supply line L4 at the supply ejector 69.
  • the first drainage line L5 branches into a first branch drainage line L5a provided with a back pressure valve 42 and a second branch drainage line L5b provided with a drainage on-off valve 43.
  • the first branch drainage line L5a and the second branch drainage line L5b are connected to a storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7).
  • the highest part of the first drainage line L5 is provided at the same height as the height of the highest part of the supply line L4, or at a position lower than the highest part of the supply line L4.
  • the first branch drainage line L5a and the second branch drainage line L5b are provided at positions lower than the highest portion of the supply line L4.
  • the back pressure valve 42 restricts the passage of the processing liquid P having a pressure lower than the set pressure, allowing the processing liquid P having a pressure higher than the set pressure to pass, but not passing the processing liquid P having a pressure lower than the set pressure.
  • the drainage on-off valve 43 opens and closes the second branch drainage line L5b under the control of the control unit 93.
  • the back pressure valve 42 and the drainage on-off valve 43 function as a liquid flow adjusting mechanism 40 for adjusting the flow of the processing liquid P in the first drainage line L5 under the control of the control unit 93.
  • the processing liquid P in the first drainage line L5 is stored in the storage unit via the second branch drainage line L5b. Sent to 32. Therefore, the treatment liquid P in the first drainage line L5 is basically smoothly sent downstream without adjusting the pressure.
  • the back pressure valve 42 sets the pressure of the processing liquid P in the first drainage line L5 to be higher than the set pressure. The flow of the treatment liquid P in the first drainage line L5 is obstructed so as to adjust to a low pressure.
  • the discharge nozzle 19 is located above the supply tank 37 and the liquid flow adjusting mechanism 40 (specifically, the back pressure valve 42 and the drainage on-off valve 43).
  • the liquid supply circuit 30 is placed in the state shown in FIG. 12 under the control of the control unit 93. That is, the guide line L2 is opened by the guide on-off valve 33, the atmosphere open line L9 is closed by the atmosphere open valve 63, the gas line L3 is opened by the gas on-off valve 67, and the second branch drainage line L5b is a drainage on-off valve. Opened by 43.
  • the pressurizing gas supplied from the gas supply unit 65 to the gas line L3 is pressure-adjusted by the air pressure adjusting unit 66 and then supplied into the supply tank 37 through the pressurizing filter 39.
  • the inside of the supply tank 37 is pressurized, and the processing liquid P is sent out from the supply tank 37 to the supply line L4.
  • the pressurizing device 38 (particularly, the pressure adjusting unit 66) is inside the supply tank 37 so that the processing liquid P sent from the supply tank 37 to the supply line L4 has a pressure higher than the above-mentioned peak head pressure. Pressurize.
  • the treatment liquid P is supplied to the supply tank 37 from the storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7) via the guide line L2.
  • the control unit 93 controls the guide on / off valve 33 to open / close the guide line L2 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37, and the supply tank 37 has an appropriate amount of the processing liquid P. To store.
  • the processing liquid P that has flowed into the supply line L4 from the supply tank 37 flows into the first drainage line L5 at the first branch portion b1 and is sent to the storage unit 32 via the second branch drainage line L5b. That is, the treatment liquid P in the supply line L4 flows into the first drainage line L5 at an increased flow rate in the supply ejector 69.
  • the portion of the supply line L4 between the first branch portion b1 and the discharge nozzle 19 is depressurized.
  • basically all of the processing liquid P in the supply line L4 flows into the first drainage line L5 and is not supplied to the discharge nozzle 19.
  • the gas around the discharge nozzle 19 flows into the supply line L4 through the discharge nozzle 19, and an air flow from the discharge nozzle 19 toward the first branch portion b1 is generated.
  • the processing liquid P sent from the second branch drainage line L5b to the storage unit 32 is returned to the supply tank 37 via the guide line L2.
  • the liquid supply circuit 30 takes the state shown in FIG. 12 in this way, the processing liquid P sent out from the supply tank 37 to the supply line L4 is not discharged from the discharge nozzle 19, and the first drainage line L5, It is returned to the supply tank 37 through the storage unit 32 and the guide line L2.
  • the treatment liquid P is heated in the heating zone (not shown in FIG. 12; see the first heating zone Z1 and the second heating zone Z2 in FIG. 3) while circulating in the liquid supply circuit 30 in this way, and gradually rises as a whole. It is warmed and adjusted to the desired temperature.
  • the liquid supply circuit 30 is controlled by the control unit 93 in FIG. It is placed in the state shown in.
  • the second branch drainage line L5b is closed by the drainage on-off valve 43, and the guide line L2 is closed by the guide on-off valve 33.
  • the open / closed state of the atmosphere opening line L9 and the gas line L3 is set to the same state as shown in FIG.
  • the pressurizing device 38 (particularly, the atmospheric pressure adjusting unit 66) pressurizes the inside of the supply tank 37 so that the processing liquid P sent from the supply tank 37 to the supply line L4 has a pressure higher than the peak head pressure.
  • the flow of the treatment liquid P in the supply line L4 is obstructed by the back pressure valve 42, and the pressure is adjusted to the same pressure as the "set pressure equal to or higher than the peak head pressure" by the back pressure valve 42.
  • the processing liquid P also flows into the portion of the supply line L4 between the first branch portion b1 and the discharge nozzle 19 in the supply ejector 69, and is supplied to the discharge nozzle 19.
  • the processing liquid P that has flowed into the first drainage line L5 and has passed through the back pressure valve 42 is sent to the storage unit 32 via the first branch drainage line L5a.
  • the gas line L3 is closed by the gas on-off valve 67, and the atmosphere opening line L9 is opened to the atmosphere. Opened by valve 63.
  • the treatment liquid P in the supply line L4 is adjusted to a pressure lower than the peak head pressure, and as a result, the treatment liquid P cannot reach the highest portion of the supply line L4 and reaches the discharge nozzle 19. Will not be supplied with the treatment liquid P.
  • the control unit 93 monitors the amount of the processing liquid P stored in the supply tank 37 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37. Then, the control unit 93 closes the guide line L2 by the guide on-off valve 33 at the timing when the treatment liquid P in the supply tank 37 reaches an appropriate amount, and stops the supply of the treatment liquid P to the supply tank 37.
  • Heating zone and heating section Next, a specific embodiment of heating of the treatment liquid P in the heating zone (particularly the first heating zone Z1) will be illustrated.
  • the first heating unit 35 can heat the treatment liquid P in the first heating zone Z1 by the temperature adjusting liquid Q having a temperature higher than that of the treatment liquid P in the first heating zone Z1.
  • the guide pipe 71 constituting the guide line L2 is made of a material (for example, PFA (polytetrafluoroalkoxy)) capable of allowing the temperature control liquid Q used in the first heating unit 35 to permeate, the treatment of the guide line L2.
  • the temperature control liquid Q may be mixed with the liquid P.
  • a liquid having the same composition as the treatment liquid P flowing through the guide line L2 may be used as the temperature adjusting liquid Q in the first heating unit 35.
  • the composition of the treatment liquid P flowing through the guide line L2 does not change, and the treatment liquid P having an appropriate composition is discharged. It can be supplied to the nozzle 19.
  • the guide pipe 71 also has an appropriate composition even when the guide pipe 71 is made of a material (for example, metal) that does not allow the temperature control liquid Q (preferably both the treatment liquid P and the temperature control liquid Q) to permeate.
  • the processing liquid P can be supplied to the discharge nozzle 19.
  • the guide pipe 71 constituting the guide line L2 may have an inner pipe 71a and an outer coat 71b provided on the outside of the inner pipe 71a.
  • at least one of the inner pipe 71a and the outer coat 71b is preferably made of a material that does not allow the treatment liquid P to permeate.
  • at least one of the inner pipe 71a and the outer coat 71b is made of a material that does not allow the temperature adjusting liquid Q to permeate.
  • the outer coat 71b is made of a material that does not allow the temperature control liquid Q (preferably both the treatment liquid P and the temperature control liquid Q) to permeate. It is preferable to be done.
  • FIGS. 18 to 20 are schematic configuration diagrams for explaining an example of a heating method in the first heating zone Z1 of the guide line L2.
  • the temperature control tank 75 is seen through, and the guide pipe 71 located inside the temperature control tank 75 is shown.
  • the first heating zone Z1 may include a portion of the guide pipe 71 constituting the guide line L2 having a spiral shape.
  • the first heating unit 35 for heating the treatment liquid P in the first heating zone Z1 can be miniaturized, and the treatment liquid P can be efficiently heated in a limited space.
  • the treatment liquid P flowing through the guide line L2 may suddenly boil due to heating in the first heating zone Z1.
  • the pressure suddenly increases in the guide pipe 71 constituting the guide line L2, which may cause damage to the guide pipe 71.
  • the first heating unit 35 uses, for example, the high temperature temperature control liquid Q stored in the temperature control tank 75 as shown in FIG. Alternatively, the treatment liquid P in the first heating zone Z1 may be heated.
  • the first heating unit 35 shown in FIG. 18 includes a temperature adjustment tank 75, a flow path switching unit 74 connected to the temperature adjustment tank 75 via the adjustment liquid supply line 76, and a gas / liquid connected to the temperature adjustment tank 75. It has a discharge line 77.
  • the guide pipe 71 constituting the guide line L2 penetrates the temperature control tank 75, and the first heating zone Z1 including the spiral-shaped portion of the guide pipe 71 is located inside the temperature control tank 75.
  • a flow path switching unit 74 is attached to the adjustment liquid supply line 76 connected to the temperature adjustment tank 75, and a temperature adjustment liquid supply unit 72 and a purge gas supply unit 73 are connected to the flow path switching unit 74.
  • the flow path switching unit 74 has the temperature control liquid Q supplied from the temperature control liquid supply unit 72 and the purge gas supplied from the purge gas supply unit 73 (for example, an inert gas such as nitrogen). ) And can be selectively introduced inside the temperature control tank 75.
  • the temperature control tank 75 is connected to the temperature control liquid supply unit 72 via the gas / liquid discharge line 77.
  • the flow path switching unit 74 uses the high temperature temperature control liquid Q supplied from the temperature control liquid supply unit 72 under the control of the control unit 93. It is sent to the temperature control tank 75 via the supply line 76. As a result, the treatment liquid P is heated by the temperature control liquid Q in the temperature control tank 75 at the portion of the guide line L2 located inside the temperature control tank 75.
  • the flow path switching unit 74 supplies the purge gas supplied from the purge gas supply unit 73 under the control of the control unit 93 to the adjusting liquid supply line. It is sent to the temperature control tank 75 via 76. As a result, the temperature control liquid Q in the temperature control tank 75 is pushed out to the gas-liquid discharge line 77 by the purge gas. The temperature control liquid Q discharged from the temperature control tank 75 to the gas liquid discharge line 77 is sent to the temperature control liquid supply unit 72 via the gas liquid discharge line 77.
  • the flow path switching unit 74 introduces the purge gas inside the temperature control tank 75, so that the temperature control liquid Q becomes the temperature control tank 75. Is quickly discharged to the gas / liquid discharge line 77.
  • the heating of the treatment liquid P in the first heating zone Z1 can be quickly stopped.
  • the bumping of the treatment liquid P in the guide line L2 (particularly in the vicinity of the first heating zone Z1 and the first heating zone Z1) can be effectively prevented.
  • the relief line L10 provided with the relief valve 87 may be connected to the guide line L2. While the pressure of the treatment liquid P in the guide line L2 is smaller than the set relief pressure of the relief valve 87, the relief valve 87 closes the relief line L10. On the other hand, when the pressure of the treatment liquid P in the guide line L2 becomes equal to or higher than the set relief pressure of the relief valve 87, the relief line L10 is opened by the relief valve 87, and the treatment liquid P is released from the guide line L2 to the relief line L10. .. As a result, even if the treatment liquid P suddenly boils in the guide line L2, it is possible to prevent the pressure in the guide line L2 from becoming excessive and prevent the guide pipe 71 from being damaged.
  • the first heating unit 35 heats the treatment liquid P in the first heating zone Z1 by using an electric heater 88 as shown in FIG. 20 instead of the temperature control liquid Q stored in the temperature control tank 75. May be good.
  • the electric heater 88 is arranged so as to penetrate the spiral-shaped portion of the guide pipe 71. By switching the energization of the electric heater 88 on and off by the control unit 93, it is possible to switch between heating and non-heating of the processing liquid P in the first heating zone Z1. From the viewpoint of preventing the sudden boiling of the treatment liquid P, it is preferable that the temperature of the electric heater 88 drops in a short time when the heating state is switched to the non-heating state. Therefore, the electric heater 88 is preferably a heater having a small heat capacity, and for example, a halogen heater can be used as the electric heater 88.
  • the treatment liquid P stored in the supply tank 37 is adjusted to a temperature higher than the desired temperature, and a low temperature treatment liquid P is added.
  • the treatment liquid P in the supply line L4 may be adjusted to a desired temperature.
  • at least one of the supply tank 37 and the supply line L4 may be provided with a cooling liquid supply unit that supplies the low-temperature processing liquid P.
  • FIG. 21 is a diagram showing an outline of the first aspect of the treatment liquid temperature adjustment system.
  • the temperature of the processing liquid P is adjusted by supplying the processing liquid P having a temperature lower than the desired temperature from the coolant supply unit 101 to the supply tank 37. That is, a coolant supply unit 101 for supplying the low-temperature treatment liquid P is provided for the supply tank 37.
  • the cooling liquid supply unit 101 shown in FIG. 21 includes a cooling treatment liquid supply unit 102, a cooling liquid on-off valve 103, a cooling flow meter 108, and a cooling liquid filter 104.
  • the cooling treatment liquid supply unit 102 sends out the treatment liquid P having a temperature lower than the desired temperature to the coolant line L11 connected to the inside of the supply tank 37.
  • the processing liquid P sent out by the cooling treatment liquid supply unit 102 to the cooling liquid line L11 may have a temperature lower than the environmental temperature, or may have the same temperature as the environmental temperature.
  • the coolant on-off valve 103 opens and closes the coolant line L11 under the control of the control unit 93.
  • the coolant on-off valve 103 closes the coolant line L11, the low-temperature treatment liquid P sent from the cooling treatment liquid supply unit 102 to the coolant line L11 is not sent to the supply tank 37.
  • the coolant on-off valve 103 opens the coolant line L11, the low-temperature treatment liquid P sent out from the cooling treatment liquid supply unit 102 to the coolant line L11 is sent to the supply tank 37.
  • the cooling flow meter 108 measures the flow rate of the low-temperature processing liquid P flowing through the cooling liquid line L11. The measurement result of the cooling flow meter 108 is sent to the control unit 93.
  • the coolant filter 104 removes foreign matter from the treatment liquid P while passing the treatment liquid P in the coolant line L11.
  • a liquid temperature measurement sensor 105 and a level sensor 106 are installed in the supply tank 37.
  • the liquid temperature measurement sensor 105 measures the temperature of the processing liquid P stored in the supply tank 37.
  • the level sensor 106 measures the liquid level height of the processing liquid P stored in the supply tank 37.
  • the measurement results of the liquid temperature measurement sensor 105 and the level sensor 106 are sent to the control unit 93.
  • the supply tank 37 is connected to a third drainage line L12.
  • the third drainage line L12 is provided with a temperature control on-off valve 107 and a drainage flow meter 109.
  • the temperature control on-off valve 107 opens and closes the third drainage line L12 under the control of the control unit 93.
  • the drainage flow meter 109 measures the flow rate of the processing liquid P flowing through the third drainage line L12. The measurement result of the drainage flow meter 109 is sent to the control unit 93.
  • the control unit 93 of this embodiment controls the second heating unit 36 so that the temperature of the treatment liquid P stored in the supply tank 37 (that is, the second heating zone Z2) becomes higher than the desired temperature.
  • the treatment liquid P stored in is heated.
  • control unit 93 determines from the measurement result of the liquid temperature measurement sensor 105 that the processing liquid P in the supply tank 37 has a temperature higher than the desired temperature
  • the control unit 93 determines that the treatment liquid P has a temperature higher than the desired temperature
  • the control unit 93 determines that the treatment liquid P has a temperature higher than the desired temperature.
  • a predetermined amount of the treatment liquid P is discharged from. That is, the control unit 93 controls the temperature control on-off valve 107 to open the third drainage line L12, and discharges the high-temperature processing liquid P from the supply tank 37 to the third drainage line L12.
  • control unit 93 determines from the measurement result of the drainage flow meter 109 that the discharge amount of the high-temperature processing liquid P from the supply tank 37 has reached a predetermined amount, the control unit 93 controls the temperature adjustment on-off valve 107 to control the third. Close the drainage line L12.
  • the low-temperature processing liquid P is supplied from the coolant supply unit 101 to the supply tank 37 via the coolant line L11. That is, the control unit 93 controls the coolant on-off valve 103 to open the coolant line L11, and supplies the low-temperature treatment liquid P from the coolant supply unit 101 to the supply tank 37.
  • the coolant supply unit 101 supplies the treatment liquid P having a second temperature lower than the first temperature to the supply tank 37. Supply to.
  • control unit 93 determines from the measurement result of the cooling flow meter 108 that the supply amount of the low-temperature processing liquid P to the supply tank 37 has reached a predetermined amount, the control unit 93 controls the cooling liquid on-off valve 103 to control the cooling liquid line. Close L11.
  • the temperature of the treatment liquid P sent from the supply tank 37 to the supply line L4 is stabilized at a desired temperature. Can be adjusted.
  • the amount of the processing liquid P discharged from the supply tank 37 via the third drainage line L12 is the same as the amount of the treatment liquid P supplied to the supply tank 37 via the coolant line L11. It may or may not be different. Further, the amount of the processing liquid P discharged from the supply tank 37 via the third drainage line L12 may be a predetermined fixed amount, or is determined according to the measurement result of the liquid temperature measurement sensor 105. It may be the amount to be. The amount of the processing liquid P supplied to the supply tank 37 via the coolant line L11 may be a fixed amount, or may be an amount determined according to the amount of the treatment liquid P discharged from the supply tank 37. The amount may be determined according to the measurement result of the liquid temperature measurement sensor 105.
  • FIG. 22 is a diagram showing an outline of the second aspect of the treatment liquid temperature adjusting system.
  • the temperature of the processing liquid P is adjusted by supplying the processing liquid P having a temperature lower than the desired temperature from the coolant supply unit 101 to the supply line L4. That is, the coolant line L11 is connected to the supply line L4 instead of the supply tank 37, and the coolant supply unit 101 supplies the low-temperature treatment liquid P to the supply line L4 via the coolant line L11.
  • the high-temperature treatment liquid P that has flowed into the supply line L4 from the supply tank 37 is mixed with the low-temperature treatment liquid P that has flowed into the supply line L4 via the coolant line L11, and the treatment liquid is mixed in the supply line L4. P is adjusted to the desired temperature.
  • the amount of the low-temperature processing liquid P supplied from the coolant supply unit 101 to the supply line L4 is determined based on the temperature and amount of the treatment liquid P flowing into the supply line L4 from the supply tank 37.
  • the control unit 93 acquires "the temperature of the processing liquid P flowing from the supply tank 37 into the supply line L4" from the measurement result of the liquid temperature measurement sensor 105, and "the temperature of the processing liquid P flowing from the supply tank 37 to the supply line L4" is obtained from the measurement result of the flow meter 62.
  • the temperature of the processing liquid P flowing into the The control unit 93 determines "the amount of low-temperature processing liquid P to be supplied from the cooling liquid supply unit 101 to the supply line L4" based on the measurement result of the liquid temperature measurement sensor 105 and the measurement result of the flow meter 62. Then, while monitoring the "amount of the low-temperature processing liquid P supplied from the cooling liquid supply unit 101 to the supply line L4" based on the measurement result of the cooling flow meter 108, the determined amount of the low-temperature processing liquid P is obtained.
  • the coolant on-off valve 103 is controlled so as to flow into the supply line L4.
  • the stirring body 116 (stirring unit) inside the supply pipe 115 constituting the supply line L4, the processing liquid P is stirred by the stirring body 116 while flowing through the supply line L4.
  • NS The specific shape of the stirrer 116 is not limited, and the stirrer 116 can be configured by, for example, a static mixer.
  • the processing liquid P in the supply tank 37 can be agitated by the pressurizing gas N supplied from the pressurizing device 38 via the gas line L3.
  • the pressurizing gas N is ejected from the one end portion of the gas line L3 in a state where one end portion (stirring portion) is located in the processing liquid P in the supply tank 37.
  • the temperature unevenness of the treatment liquid P in the supply line L4 can be reduced. It can be suppressed. For example, as shown in FIG. 25, even if the height of the supply tank 37 is reduced and the width is increased while the second heating unit 36 is provided so as to surround the supply tank 37 from the upward, downward, and horizontal directions. good. In this case, the portion of the processing liquid P stored in the supply tank 37 that is far from the second heating unit 36 can be reduced to prevent uneven heating of the treatment liquid P.
  • the temperature of the processing liquid P in the supply tank 37 is likely to change due to the influence of the environmental temperature, the temperature of the processing liquid P sent from the supply tank 37 to the supply line L4 should be stably maintained at a desired temperature. Becomes difficult. Therefore, it is preferable that the supply tank 37 has a structure in which the temperature of the treatment liquid P in the supply tank 37 is not easily affected by the environmental temperature.
  • the supply tank 37 has a heat insulating portion 37c, and heat transfer and heat transfer between the treatment liquid P in the supply tank 37 and the periphery of the supply tank 37 are reduced by the heat insulating portion 37c. May be good.
  • the supply tank 37 shown in FIG. 26 is composed of an inner structure 37a in which the treatment liquid P is stored, an outer structure 37b provided outside the inner structure 37a, an inner structure 37a, and an outer structure 37b. It has a heat insulating portion 37c provided between them.
  • the heat insulating portion 37c shows a numerical value that makes it difficult to transfer heat with respect to at least one of, for example, thermal conductivity, thermal diffusivity, thermal diffusivity, and heat transfer coefficient, as compared with the inner structure 37a.
  • the heat insulating portion 37c can be composed of any gas, liquid and / or solid, and may be composed of the same gas as the gas (for example, air) around the supply tank 37.
  • the supply tank 37 shown in FIG. 26 is integrally configured with the second heating unit 36, and the second heating unit 36 is attached to the inner structure 37a.
  • the technical categories that embody the above-mentioned technical ideas are not limited.
  • the above-mentioned substrate liquid processing apparatus may be applied to other apparatus.
  • the above-mentioned technical idea may be embodied by a computer program for causing a computer to execute one or a plurality of procedures (steps) included in the above-mentioned substrate liquid treatment method.
  • the above-mentioned technical idea may be embodied by a computer-readable non-transitory recording medium in which such a computer program is recorded.

Abstract

Provided is a technique which is favorable for suppressing the mixing of particles into a treatment solution to be applied to a substrate. This substrate solution treatment device is equipped with: a supply tank into which a treatment solution is supplied via a guide line; a pressurizing device for pressurizing the inside of the supply tank; a discharge nozzle for discharging the treatment solution to be supplied; a supply line which is connected to the supply tank and discharge nozzle, and is not provided with an adjustment mechanism for variably limiting the channel connecting the supply tank and discharge nozzle; a first waste fluid line connected to a first branching section of the supply line between the supply tank and the discharge nozzle; a flow adjustment mechanism which limits the passage of the treatment solution, the pressure of which is lower than a set pressure, and is provided to the first waste fluid line; and a control unit for adjusting the set pressure.

Description

基板液処理装置及び基板液処理方法Substrate liquid treatment equipment and substrate liquid treatment method
 本開示は、基板液処理装置及び基板液処理方法に関する。 This disclosure relates to a substrate liquid treatment apparatus and a substrate liquid treatment method.
 処理液へのパーティクルの混入が抑えられている基板液処理装置が知られている。特許文献1の装置では、分岐ラインに流量調節のための制御弁を介在させる必要がないので、そのような制御弁から発生しうるパーティクルが液処理ユニットにおいて流れることがない。特許文献2の装置では、定圧弁内部での発塵を抑制することができる。 A substrate liquid treatment device that suppresses the mixing of particles into the treatment liquid is known. In the apparatus of Patent Document 1, since it is not necessary to interpose a control valve for adjusting the flow rate in the branch line, particles that may be generated from such a control valve do not flow in the liquid treatment unit. In the apparatus of Patent Document 2, dust generation inside the constant pressure valve can be suppressed.
特開2015-41751号公報JP-A-2015-41751 特開2017-204069号公報Japanese Unexamined Patent Publication No. 2017-204069
 本開示は、基板に付与される処理液にパーティクルが混入することを抑制するのに有利な技術を提供する。 The present disclosure provides an advantageous technique for suppressing the mixing of particles into the treatment liquid applied to the substrate.
 本開示の一態様は、案内ラインを介して内側に処理液が供給される供給タンクと、供給タンクの内側を加圧する加圧装置と、供給される処理液を吐出する吐出ノズルと、供給タンク及び吐出ノズルに接続され、供給タンクと吐出ノズルとをつなぐ流路を可変的に制限する調整機構が設けられていない供給ラインと、供給ラインのうちの供給タンクと吐出ノズルとの間の第1分岐部分に接続される第1排液ラインと、第1排液ラインに設けられ、設定圧よりも低い圧力の処理液の通過を制限する液流調整機構と、設定圧を調整する制御部と、を備える基板液処理装置に関する。 One aspect of the present disclosure is a supply tank in which the treatment liquid is supplied to the inside via a guide line, a pressurizing device for pressurizing the inside of the supply tank, a discharge nozzle for discharging the supplied treatment liquid, and a supply tank. And the first supply line between the supply tank and the discharge nozzle, which is connected to the discharge nozzle and is not provided with an adjustment mechanism for variably restricting the flow path connecting the supply tank and the discharge nozzle. A first drainage line connected to the branch portion, a liquid flow adjusting mechanism provided in the first drainage line to restrict the passage of a treatment liquid having a pressure lower than the set pressure, and a control unit for adjusting the set pressure. The present invention relates to a substrate liquid processing apparatus comprising.
 本開示によれば、基板に付与される処理液にパーティクルが混入することを抑制するのに有利である。 According to the present disclosure, it is advantageous to prevent particles from being mixed in the treatment liquid applied to the substrate.
図1は、処理システムの一例の概略を示す図である。FIG. 1 is a diagram showing an outline of an example of a processing system. 図2は、処理ユニットの一例の概略を示す図である。FIG. 2 is a diagram showing an outline of an example of a processing unit. 図3は、吐出ノズルに処理液を供給するための液供給回路の一例の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of an example of a liquid supply circuit for supplying a processing liquid to a discharge nozzle. 図4は、貯留ユニットの一例を説明する図である。FIG. 4 is a diagram illustrating an example of a storage unit. 図5は、貯留ユニットの一例を説明する図である。FIG. 5 is a diagram illustrating an example of a storage unit. 図6は、貯留ユニットの一例を説明する図である。FIG. 6 is a diagram illustrating an example of a storage unit. 図7は、貯留ユニットの一例を説明する図である。FIG. 7 is a diagram illustrating an example of a storage unit. 図8は、処理液供給系の第1態様の概略を示す図である。FIG. 8 is a diagram showing an outline of the first aspect of the treatment liquid supply system. 図9は、処理液供給系の第1態様の概略を示す図である。FIG. 9 is a diagram showing an outline of the first aspect of the treatment liquid supply system. 図10は、処理液供給系の第1態様の概略を示す図である。FIG. 10 is a diagram showing an outline of the first aspect of the treatment liquid supply system. 図11は、処理液供給系の第1態様の概略を示す図である。FIG. 11 is a diagram showing an outline of the first aspect of the treatment liquid supply system. 図12は、処理液供給系の第2態様の概略を示す図である。FIG. 12 is a diagram showing an outline of the second aspect of the treatment liquid supply system. 図13は、処理液供給系の第2態様の概略を示す図である。FIG. 13 is a diagram showing an outline of the second aspect of the treatment liquid supply system. 図14は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための部分断面図である。FIG. 14 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line. 図15は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための部分断面図である。FIG. 15 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line. 図16は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための部分断面図である。FIG. 16 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line. 図17は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための部分断面図である。FIG. 17 is a partial cross-sectional view for explaining an example of a heating method in the first heating zone of the guide line. 図18は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための概略構成図である。FIG. 18 is a schematic configuration diagram for explaining an example of a heating method in the first heating zone of the guide line. 図19は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための概略構成図である。FIG. 19 is a schematic configuration diagram for explaining an example of a heating method in the first heating zone of the guide line. 図20は、案内ラインの第1加熱ゾーンにおける加熱方式例を説明するための概略構成図である。FIG. 20 is a schematic configuration diagram for explaining an example of a heating method in the first heating zone of the guide line. 図21は、処理液温度調整系の第1態様の概略を示す図である。FIG. 21 is a diagram showing an outline of the first aspect of the treatment liquid temperature adjusting system. 図22は、処理液温度調整系の第2態様の概略を示す図である。FIG. 22 is a diagram showing an outline of the second aspect of the treatment liquid temperature adjusting system. 図23は、供給ラインを構成する供給配管の内側に設置される攪拌体を例示する図面である。FIG. 23 is a drawing illustrating an agitator installed inside a supply pipe constituting a supply line. 図24は、供給タンク内の処理液の攪拌例を示す図である。FIG. 24 is a diagram showing an example of stirring the treatment liquid in the supply tank. 図25は、処理液の温度むらを抑えることができる供給タンクの構造例を示す図である。FIG. 25 is a diagram showing a structural example of a supply tank capable of suppressing temperature unevenness of the treatment liquid. 図26は、処理液の温度低下を抑えることができる供給タンクの構造例を示す図である。FIG. 26 is a diagram showing a structural example of a supply tank capable of suppressing a decrease in the temperature of the treatment liquid.
 図1は、処理システム80の一例の概略を示す図である。図1に示す処理システム80は、搬入出ステーション91及び処理ステーション92を有する。搬入出ステーション91は、複数のキャリアCを具備する載置部81と、第1搬送機構83及び受渡部84が設けられている搬送部82とを含む。各キャリアCには、複数の基板Wが水平状態で収容されている。処理ステーション92には、搬送路86の両側に設置されている複数の処理ユニット10と、搬送路86を往復移動する第2搬送機構85とが設けられている。 FIG. 1 is a diagram showing an outline of an example of a processing system 80. The processing system 80 shown in FIG. 1 has an loading / unloading station 91 and a processing station 92. The loading / unloading station 91 includes a mounting section 81 including a plurality of carriers C, and a transport section 82 provided with a first transport mechanism 83 and a delivery section 84. A plurality of substrates W are housed in each carrier C in a horizontal state. The processing station 92 is provided with a plurality of processing units 10 installed on both sides of the transport path 86, and a second transport mechanism 85 that reciprocates in the transport path 86.
 基板Wは、第1搬送機構83によりキャリアCから取り出されて受渡部84に載せられ、第2搬送機構85によって受渡部84から取り出される。そして基板Wは、第2搬送機構85によって対応の処理ユニット10に搬入され、対応の処理ユニット10において所定の液処理(例えば薬液処理)が施される。その後、基板Wは、第2搬送機構85によって対応の処理ユニット10から取り出されて受渡部84に載せられ、その後、第1搬送機構83によって載置部81のキャリアCに戻される。 The substrate W is taken out from the carrier C by the first transfer mechanism 83, placed on the delivery section 84, and taken out from the delivery section 84 by the second transfer mechanism 85. Then, the substrate W is carried into the corresponding processing unit 10 by the second transport mechanism 85, and a predetermined liquid treatment (for example, chemical liquid treatment) is performed in the corresponding processing unit 10. After that, the substrate W is taken out from the corresponding processing unit 10 by the second transport mechanism 85 and mounted on the delivery section 84, and then returned to the carrier C of the mounting section 81 by the first transport mechanism 83.
 処理システム80は制御部93を備える。制御部93は、例えばコンピュータによって構成され、演算処理部及び記憶部を具備する。制御部93の記憶部には、処理システム80で行われる各種処理のためのプログラム及びデータが記憶される。制御部93の演算処理部は、記憶部に記憶されているプログラムを適宜読み出して実行することにより、処理システム80の各種機構を制御して各種処理を行う。 The processing system 80 includes a control unit 93. The control unit 93 is composed of, for example, a computer, and includes an arithmetic processing unit and a storage unit. The storage unit of the control unit 93 stores programs and data for various processes performed by the processing system 80. The arithmetic processing unit of the control unit 93 controls various mechanisms of the processing system 80 to perform various processing by appropriately reading and executing a program stored in the storage unit.
 制御部93の記憶部に記憶されるプログラム及びデータは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から記憶部にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)及びメモリカードなどがある。 The programs and data stored in the storage unit of the control unit 93 may be those recorded in a storage medium readable by a computer and may be installed in the storage unit from the storage medium. Examples of storage media that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 図2は、処理ユニット10の一例の概略を示す図である。 FIG. 2 is a diagram showing an outline of an example of the processing unit 10.
 処理ユニット10は、制御部93(図1参照)とともに基板液処理装置を構成し、基板保持部11、回転駆動部12、液体供給部15、カップ構造体21、不活性ガス供給部22及び処理チャンバー23を備える。基板保持部11、回転駆動部12、液体供給部15及びカップ構造体21は、処理チャンバー23の内側に設置されている。不活性ガス供給部22は、不活性ガス(例えば窒素)を処理チャンバー23内に供給する。 The processing unit 10 constitutes a substrate liquid processing apparatus together with a control unit 93 (see FIG. 1), and includes a substrate holding unit 11, a rotary drive unit 12, a liquid supply unit 15, a cup structure 21, an inert gas supply unit 22, and processing. A chamber 23 is provided. The substrate holding unit 11, the rotation driving unit 12, the liquid supply unit 15, and the cup structure 21 are installed inside the processing chamber 23. The inert gas supply unit 22 supplies the inert gas (for example, nitrogen) into the processing chamber 23.
 基板保持部11は、第2搬送機構85(図1参照)を介して供給される基板Wを保持する。図示の基板保持部11は基板Wの裏面を吸着保持するバキューム方式を採用するが、基板保持部11は他の方式(例えばメカニカルチャック方式)によって基板Wを保持してもよい。回転駆動部12は、基板保持部11に回転動力を与えて、基板保持部11に保持されている基板Wを基板保持部11とともに回転させる。図示の回転駆動部12は、回転軸線A1上に延在し且つ先端部に基板保持部11が固定的に取り付けられている回転駆動軸と、回転軸線A1を中心に回転駆動軸を回転させる回転駆動本体部とを具備する。このように図示の例では、基板保持部11及び回転駆動部12によって、回転軸線A1を中心に基板Wを回転させる回転機構13の少なくとも一部が構成されている。 The board holding unit 11 holds the board W supplied via the second transport mechanism 85 (see FIG. 1). The illustrated substrate holding portion 11 adopts a vacuum method of sucking and holding the back surface of the substrate W, but the substrate holding portion 11 may hold the substrate W by another method (for example, a mechanical chuck method). The rotation drive unit 12 applies rotational power to the substrate holding unit 11 to rotate the substrate W held by the substrate holding unit 11 together with the substrate holding unit 11. The rotation drive unit 12 shown is a rotation drive shaft extending on the rotation axis A1 and having a substrate holding portion 11 fixedly attached to the tip portion, and a rotation that rotates the rotation drive shaft around the rotation axis A1. It is equipped with a drive main body. As described above, in the illustrated example, the substrate holding unit 11 and the rotation driving unit 12 constitute at least a part of the rotation mechanism 13 that rotates the substrate W around the rotation axis A1.
 液体供給部15は、ノズル駆動部16、駆動アーム17及び吐出ノズル19を備える。ノズル駆動部16は、旋回軸線A2上に延在し且つ先端部に駆動アーム17が固定的に取り付けられている旋回駆動軸と、旋回軸線A2を中心に旋回駆動軸を回転させる旋回駆動本体部とを具備する。駆動アーム17の一端側には、ノズル駆動部16の旋回駆動軸が取り付けられており、駆動アーム17の他端部を構成する吐出ヘッド18には吐出ノズル19が取り付けられている。吐出ノズル19は、駆動アーム17(吐出ヘッド18を含む)とともに旋回軸線A2を中心に移動する。このように図示の例では、ノズル駆動部16及び駆動アーム17によって、吐出ノズル19を移動させるノズル移動機構の少なくとも一部が構成されている。 The liquid supply unit 15 includes a nozzle drive unit 16, a drive arm 17, and a discharge nozzle 19. The nozzle drive unit 16 includes a swivel drive shaft extending on the swivel axis A2 and having a drive arm 17 fixedly attached to the tip portion, and a swivel drive main body portion that rotates the swivel drive shaft around the swivel axis A2. And. A swivel drive shaft of the nozzle drive unit 16 is attached to one end side of the drive arm 17, and a discharge nozzle 19 is attached to the discharge head 18 constituting the other end of the drive arm 17. The discharge nozzle 19 moves around the swivel axis A2 together with the drive arm 17 (including the discharge head 18). As described above, in the illustrated example, the nozzle drive unit 16 and the drive arm 17 form at least a part of the nozzle movement mechanism for moving the discharge nozzle 19.
 吐出ノズル19は、後述の供給ライン(図3等の符号「L4」参照)を介して供給される処理液を吐出する。吐出ノズル19から吐出された処理液は、基板保持部11により保持されている基板Wに付与され、基板Wの液処理に供される。供給ラインは、処理チャンバー23の内側において、ノズル駆動部16及び駆動アーム17を通って吐出ノズル19につながっている。なお移動可能に設けられる駆動アーム17には、吐出ノズル19に加え、後述の供給エジェクター(液流切換機構)(図12等の符号「69」参照)等が取り付けられうる。 The discharge nozzle 19 discharges the processing liquid supplied via the supply line described later (see reference numeral "L4" in FIG. 3 and the like). The treatment liquid discharged from the discharge nozzle 19 is applied to the substrate W held by the substrate holding unit 11 and is used for liquid treatment of the substrate W. The supply line is connected to the discharge nozzle 19 through the nozzle drive unit 16 and the drive arm 17 inside the processing chamber 23. In addition to the discharge nozzle 19, a supply ejector (liquid flow switching mechanism) (see reference numeral “69” in FIG. 12 and the like) and the like, which will be described later, may be attached to the movable drive arm 17.
 吐出ノズル19に供給される処理液の具体的な組成や用途は限定されない。例えば、基板Wの特性に変化を与えるための薬液、基板Wの表面を洗い流すためのリンス液、及び基板Wを洗浄するための洗浄液を、処理液として使用しうる。また液体供給部15が有する吐出ノズル19の数は限定されない。図2には1つの吐出ノズル19のみが図示されているが、液体供給部15は2以上の吐出ノズル19を具備していてもよい。例えば、薬液を吐出する吐出ノズル19、純水(DIW)等のリンス液を吐出する吐出ノズル19、及び基板の洗浄に用いられる洗浄液(例えばIPA)を吐出する吐出ノズル19が、吐出ヘッド18に設けられていてもよい。 The specific composition and use of the treatment liquid supplied to the discharge nozzle 19 are not limited. For example, a chemical solution for changing the characteristics of the substrate W, a rinsing solution for washing the surface of the substrate W, and a cleaning solution for cleaning the substrate W can be used as the treatment liquid. Further, the number of discharge nozzles 19 included in the liquid supply unit 15 is not limited. Although only one discharge nozzle 19 is shown in FIG. 2, the liquid supply unit 15 may include two or more discharge nozzles 19. For example, a discharge nozzle 19 for discharging a chemical solution, a discharge nozzle 19 for discharging a rinse liquid such as pure water (DIW), and a discharge nozzle 19 for discharging a cleaning liquid (for example, IPA) used for cleaning a substrate are provided on the discharge head 18. It may be provided.
 カップ構造体21は、リング状の平面形状を有し、基板保持部11に保持されている基板Wを取り囲むように設けられている。カップ構造体21は、基板Wから飛散した液体を受け止めてドレンダクト(図示省略)に案内したり、基板Wの周囲の気体が拡散するのを防ぐように気体の流れを整えたりする。カップ構造体21の具体的な構成は限定されない。例えば、カップ構造体21は、主として液体を案内するためのカップと、主として気体の流れを整えるためのカップとを、別体として有していてもよい。 The cup structure 21 has a ring-shaped planar shape and is provided so as to surround the substrate W held by the substrate holding portion 11. The cup structure 21 receives the liquid scattered from the substrate W and guides it to a drain duct (not shown), or arranges the gas flow so as to prevent the gas around the substrate W from diffusing. The specific configuration of the cup structure 21 is not limited. For example, the cup structure 21 may have a cup mainly for guiding the liquid and a cup mainly for adjusting the flow of gas as separate bodies.
 処理ユニット10は、上述されていない他の機構を更に具備していてもよい。例えば、処理チャンバー23内から気体を排出するための排気調整機構や、基板Wから落下(飛散)した液体を処理チャンバー23内から排出するための排液調整機構が設けられていてもよい。また基板W上の液体を加熱して基板Wの液処理を促進するための加熱装置が設けられていてもよい。 The processing unit 10 may further include other mechanisms not described above. For example, an exhaust gas adjusting mechanism for discharging gas from the inside of the processing chamber 23 and a drainage adjusting mechanism for discharging the liquid dropped (scattered) from the substrate W may be provided. Further, a heating device for heating the liquid on the substrate W to promote the liquid treatment of the substrate W may be provided.
[液供給回路]
 図3は、吐出ノズル19に処理液Pを供給するための液供給回路30の一例の概略構成を示す図である。液供給回路30は、上述の処理ユニット10の各種構成要素及び処理システム80の他の構成要素によって実現される。
[Liquid supply circuit]
FIG. 3 is a diagram showing a schematic configuration of an example of a liquid supply circuit 30 for supplying the processing liquid P to the discharge nozzle 19. The liquid supply circuit 30 is realized by the various components of the processing unit 10 and other components of the processing system 80 described above.
 図3に示す液供給回路30は、処理液供給源31に貯留ラインL1介して接続される貯留ユニット32と、貯留ユニット32に案内ラインL2を介して接続される供給タンク37と、供給タンク37に供給ラインL4を介して接続される吐出ノズル19とを備える。 The liquid supply circuit 30 shown in FIG. 3 has a storage unit 32 connected to the processing liquid supply source 31 via the storage line L1, a supply tank 37 connected to the storage unit 32 via the guide line L2, and a supply tank 37. Is provided with a discharge nozzle 19 connected via a supply line L4.
 貯留ユニット32は、貯留ラインL1を介して処理液供給源31から供給される処理液Pを貯留する。貯留ユニット32の具体的な構成は限定されない。例えば貯留ユニット32は、処理液Pを貯留可能な貯留タンクを、1つのみ有していてもよいし、複数有していてもよい(後述の図4~図7参照)。貯留ラインL1には、貯留開閉弁45が設けられている。貯留開閉弁45が制御部93の制御下で貯留ラインL1の流路を開閉することによって、貯留ユニット32に対する処理液Pの供給をコントロールすることができる。 The storage unit 32 stores the processing liquid P supplied from the processing liquid supply source 31 via the storage line L1. The specific configuration of the storage unit 32 is not limited. For example, the storage unit 32 may have only one storage tank capable of storing the treatment liquid P, or may have a plurality of storage tanks (see FIGS. 4 to 7 described later). The storage line L1 is provided with a storage on-off valve 45. By opening and closing the flow path of the storage line L1 under the control of the control unit 93, the storage on-off valve 45 can control the supply of the processing liquid P to the storage unit 32.
 案内ラインL2には、案内開閉弁33と、案内開閉弁33よりも下流に位置する案内フィルター34とが設けられている。案内開閉弁33は、制御部93の制御下で案内ラインL2の流路を開閉する。案内フィルター34は、処理液Pを通過させつつ当該処理液Pから異物を除去する。案内開閉弁33により流路が開放されている案内ラインL2を介し、貯留ユニット32から供給タンク37に処理液Pが送られる。 The guide line L2 is provided with a guide on-off valve 33 and a guide filter 34 located downstream of the guide on-off valve 33. The guide on-off valve 33 opens and closes the flow path of the guide line L2 under the control of the control unit 93. The guide filter 34 removes foreign matter from the treatment liquid P while allowing it to pass through the treatment liquid P. The processing liquid P is sent from the storage unit 32 to the supply tank 37 via the guide line L2 whose flow path is opened by the guide on-off valve 33.
 貯留ユニット32から供給タンク37に処理液Pを送る方法は限定されない。例えば、貯留ユニット32の貯留タンク内に加圧用気体(例えば窒素などの不活性ガス)を吹き込むことによって、貯留ユニット32から案内ラインL2に処理液Pを送り出すことが可能である(後述の図7参照)。また貯留ユニット32及び案内ラインL2を供給タンク37よりも上方に設置することにより、重力を利用して、貯留ユニット32から供給タンク37に処理液Pを送ることが可能である。案内ラインL2内の処理液Pを直接的に送り出すポンプ(図示省略)等の送出装置を使う場合、そのような送出装置は案内フィルター34よりも上流側に設けられることが好ましい。この場合、たとえ送出装置から処理液Pにパーティクルが放出されても、案内フィルター34によってそのようなパーティクルを処理液Pから取り除くことができる。 The method of sending the treatment liquid P from the storage unit 32 to the supply tank 37 is not limited. For example, by blowing a pressurizing gas (for example, an inert gas such as nitrogen) into the storage tank of the storage unit 32, the processing liquid P can be sent out from the storage unit 32 to the guide line L2 (FIG. 7 described later). reference). Further, by installing the storage unit 32 and the guide line L2 above the supply tank 37, it is possible to send the processing liquid P from the storage unit 32 to the supply tank 37 by using gravity. When a delivery device such as a pump (not shown) that directly sends the processing liquid P in the guide line L2 is used, it is preferable that such a delivery device is provided on the upstream side of the guide filter 34. In this case, even if particles are emitted from the delivery device to the processing liquid P, such particles can be removed from the processing liquid P by the guide filter 34.
 加熱部によって処理液が加熱される加熱ゾーンが、案内ラインL2及び供給タンク37のうち少なくともいずれか一方に設定される。図3に示す例では、加熱ゾーンが案内ラインL2及び供給タンク37の両方に設定されている。すなわち案内ラインL2の第1加熱ゾーンZ1の近傍に第1加熱部35が設けられ、第1加熱ゾーンZ1における処理液Pが第1加熱部35によって加熱される。また供給タンク37の第2加熱ゾーンZ2の近傍に第2加熱部36が設けられ、第2加熱ゾーンZ2における処理液Pが第2加熱部36によって加熱される。 The heating zone in which the treatment liquid is heated by the heating unit is set in at least one of the guide line L2 and the supply tank 37. In the example shown in FIG. 3, the heating zone is set in both the guide line L2 and the supply tank 37. That is, the first heating unit 35 is provided in the vicinity of the first heating zone Z1 of the guide line L2, and the treatment liquid P in the first heating zone Z1 is heated by the first heating unit 35. Further, a second heating unit 36 is provided in the vicinity of the second heating zone Z2 of the supply tank 37, and the treatment liquid P in the second heating zone Z2 is heated by the second heating unit 36.
 加熱ゾーンZ1、Z2は、案内フィルター34よりも下流に設定される。案内フィルター34は、処理液Pの流路のうち加熱ゾーンZ1、Z2よりも上流側の部分を流れる処理液Pから、異物を取り除く。案内フィルター34を通過する処理液Pが高温になるほど、案内フィルター34から処理液Pに異物が放出されやすくなる傾向がある。図3に示す液供給回路30では、加熱前の処理液Pが案内フィルター34を通過するので、案内フィルター34から処理液Pへの異物の放出を抑制することができる。また図3に示す液供給回路30では、案内ラインL2から吐出ノズル19に至る処理液Pの流路のうち、加熱ゾーンZ1、Z2と、当該加熱ゾーンZ1、Z2よりも下流側の流路とには、処理液Pから異物を取り除くためのフィルターが設けられていない。このように加熱ゾーンZ1、Z2において加熱された高温の処理液Pがフィルターを通過しないようにすることで、処理液Pの汚染を防ぐことができる。 The heating zones Z1 and Z2 are set downstream from the guide filter 34. The guide filter 34 removes foreign matter from the treatment liquid P flowing in the portion upstream of the heating zones Z1 and Z2 in the flow path of the treatment liquid P. The higher the temperature of the treatment liquid P passing through the guide filter 34, the easier it is for foreign matter to be released from the guide filter 34 to the treatment liquid P. In the liquid supply circuit 30 shown in FIG. 3, since the treatment liquid P before heating passes through the guide filter 34, it is possible to suppress the discharge of foreign matter from the guide filter 34 to the treatment liquid P. Further, in the liquid supply circuit 30 shown in FIG. 3, among the flow paths of the processing liquid P from the guide line L2 to the discharge nozzle 19, the heating zones Z1 and Z2 and the flow paths on the downstream side of the heating zones Z1 and Z2. Is not provided with a filter for removing foreign matter from the treatment liquid P. By preventing the high-temperature treatment liquid P heated in the heating zones Z1 and Z2 from passing through the filter in this way, contamination of the treatment liquid P can be prevented.
 供給タンク37の内側には、案内ラインL2を介して処理液Pが供給される。供給タンク37には加圧装置38が取り付けられている。加圧装置38は、供給タンク37の内側を加圧して、供給タンク37から供給ラインL4に処理液Pを送り出す。図示の加圧装置38は、気体ラインL3を介して供給タンク37に接続されており、気体ラインL3を介して供給タンク37内に加圧用気体(例えば窒素などの不活性ガス)を供給し、供給タンク37内の圧力を高めることができる。気体ラインL3のうち加圧装置38よりも下流の部分には、加圧フィルター39が設けられている。加圧フィルター39は、加圧装置38からの加圧用気体を通過させつつ、当該加圧用気体から異物を除去する。したがって加圧装置38から気体ラインL3に送り出された加圧用気体は、加圧フィルター39により異物が除去された後、清浄な状態で供給タンク37内に流入する。 The treatment liquid P is supplied to the inside of the supply tank 37 via the guide line L2. A pressurizing device 38 is attached to the supply tank 37. The pressurizing device 38 pressurizes the inside of the supply tank 37 and sends the processing liquid P from the supply tank 37 to the supply line L4. The illustrated pressurizing device 38 is connected to the supply tank 37 via the gas line L3, and supplies a pressurizing gas (for example, an inert gas such as nitrogen) into the supply tank 37 via the gas line L3. The pressure in the supply tank 37 can be increased. A pressurizing filter 39 is provided in a portion of the gas line L3 downstream of the pressurizing device 38. The pressurizing filter 39 removes foreign matter from the pressurizing gas while passing the pressurizing gas from the pressurizing device 38. Therefore, the pressurizing gas sent out from the pressurizing device 38 to the gas line L3 flows into the supply tank 37 in a clean state after the foreign matter is removed by the pressurizing filter 39.
 供給ラインL4は、供給タンク37及び吐出ノズル19に接続されている。供給ラインL4には、供給タンク37と吐出ノズル19とをつなぐ流路を可変的に制限する調整機構が設けられていない。ここで言う「流路を可変的に制限する調整機構」は任意の調整機構によって構成可能である。典型的には、処理液の流路の断面積を変えることができる弁やポンプ等の調整機構が「流路を可変的に制限する調整機構」に該当しうる。「流路を可変的に制限する調整機構」に該当しうる弁として、例えば、流路を開閉する開閉弁として働くディスペンスバルブや、ノズル先端における液面を上流側に引き戻すためのサックバックバルブが挙げられる。「流路を可変的に制限する調整機構」は、塵等のパーティクルを流路内の液体に混入させることがある。図3に示す液供給回路30では「流路を可変的に制限する調整機構」が案内フィルター34よりも下流側には設置されないので、案内フィルター34と吐出ノズル19との間の流路において処理液Pにパーティクルが混入することを防ぐことができる。 The supply line L4 is connected to the supply tank 37 and the discharge nozzle 19. The supply line L4 is not provided with an adjusting mechanism that variably restricts the flow path connecting the supply tank 37 and the discharge nozzle 19. The "adjustment mechanism that variably limits the flow path" referred to here can be configured by any adjustment mechanism. Typically, an adjusting mechanism such as a valve or a pump capable of changing the cross-sectional area of the flow path of the treatment liquid may correspond to the "adjusting mechanism that variably limits the flow path". As valves that can correspond to the "adjustment mechanism that variably restricts the flow path", for example, a dispense valve that works as an on-off valve that opens and closes the flow path, and a sackback valve that pulls the liquid level at the tip of the nozzle back to the upstream side. Can be mentioned. The "adjustment mechanism that variably limits the flow path" may mix particles such as dust into the liquid in the flow path. In the liquid supply circuit 30 shown in FIG. 3, since the “adjustment mechanism for variably limiting the flow path” is not installed on the downstream side of the guide filter 34, processing is performed in the flow path between the guide filter 34 and the discharge nozzle 19. It is possible to prevent particles from being mixed in the liquid P.
 供給ラインL4のうちの供給タンク37と吐出ノズル19との間の第1分岐部分b1には、第1排液ラインL5が接続されている。第1排液ラインL5には液流調整機構40が設けられている。液流調整機構40は、供給ラインL4及び第1排液ラインL5における処理液Pの流れを調整し、吐出ノズル19からの処理液Pの吐出をコントロールすることができる。液流調整機構40は様々な構成によって実現可能であり、液流調整機構40の具体例は後述される(図8~図13参照)。液流調整機構40を通過した処理液Pは、第1排液ラインL5を介して下流に送られ、貯留ユニット32に戻されたり、ドレーンタンク41に排出されたりする。 The first drainage line L5 is connected to the first branch portion b1 between the supply tank 37 and the discharge nozzle 19 of the supply line L4. The first drainage line L5 is provided with a liquid flow adjusting mechanism 40. The liquid flow adjusting mechanism 40 can adjust the flow of the processing liquid P in the supply line L4 and the first drainage line L5, and control the discharge of the processing liquid P from the discharge nozzle 19. The liquid flow adjusting mechanism 40 can be realized by various configurations, and specific examples of the liquid flow adjusting mechanism 40 will be described later (see FIGS. 8 to 13). The processing liquid P that has passed through the liquid flow adjusting mechanism 40 is sent downstream via the first drainage line L5, returned to the storage unit 32, or discharged to the drain tank 41.
 上述の構成を有する液供給回路30(基板液処理装置)では、加圧装置38により供給タンク37の内側を加圧することで、供給ラインL4を介して供給タンク37から吐出ノズル19に処理液Pが供給される。基板Wに処理液Pを付与して基板Wの液処理を行う基板液処理方法は、このようにして吐出ノズル19に供給される処理液Pが、吐出ノズル19から基板Wに向けて吐出されることにより実施される。 In the liquid supply circuit 30 (board liquid processing device) having the above configuration, the inside of the supply tank 37 is pressurized by the pressurizing device 38, so that the processing liquid P is applied from the supply tank 37 to the discharge nozzle 19 via the supply line L4. Is supplied. In the substrate liquid treatment method in which the treatment liquid P is applied to the substrate W to treat the substrate W, the treatment liquid P supplied to the discharge nozzle 19 in this way is discharged from the discharge nozzle 19 toward the substrate W. It is carried out by.
 次に、液供給回路30の構成要素の具体例について説明する。 Next, a specific example of the components of the liquid supply circuit 30 will be described.
[貯留ユニット]
 図4~図7は、貯留ユニット32の一例を説明する図である。
[Storage unit]
4 to 7 are views for explaining an example of the storage unit 32.
 図4~図7に示す貯留ユニット32は、複数の貯留タンク(すなわち第1貯留タンク47a及び第2貯留タンク47b)を有する。第1貯留タンク47a及び第2貯留タンク47bは、複数の循環ライン(すなわち第1循環ラインL7a及び第2循環ラインL7b)を介してお互いに接続されている。 The storage unit 32 shown in FIGS. 4 to 7 has a plurality of storage tanks (that is, a first storage tank 47a and a second storage tank 47b). The first storage tank 47a and the second storage tank 47b are connected to each other via a plurality of circulation lines (that is, the first circulation line L7a and the second circulation line L7b).
 第1循環ラインL7aは、第1貯留タンク47aから第2貯留タンク47bに処理液Pを導くラインである。第1循環ラインL7aには、第1循環開閉弁49a及び第1循環フィルター50aが設けられている。第1循環開閉弁49aは、第1循環フィルター50aよりも上流側(すなわち第1貯留タンク47a側)に設けられ、制御部93の制御下で第1循環ラインL7aを開閉する。第1循環フィルター50aは、第1循環開閉弁49aよりも下流側(すなわち第2貯留タンク47b側)に設けられ、第1循環ラインL7a内の処理液Pを通過させつつ、当該処理液Pから異物を除去する。 The first circulation line L7a is a line that guides the treatment liquid P from the first storage tank 47a to the second storage tank 47b. The first circulation line L7a is provided with a first circulation on-off valve 49a and a first circulation filter 50a. The first circulation on-off valve 49a is provided on the upstream side (that is, on the first storage tank 47a side) of the first circulation filter 50a, and opens and closes the first circulation line L7a under the control of the control unit 93. The first circulation filter 50a is provided on the downstream side (that is, on the side of the second storage tank 47b) of the first circulation on-off valve 49a, and is provided from the treatment liquid P while passing through the treatment liquid P in the first circulation line L7a. Remove foreign matter.
 第2循環ラインL7bは、第2貯留タンク47bから第1貯留タンク47aに処理液Pを導くラインである。第2循環ラインL7bには、第2循環開閉弁49b及び第2循環フィルター50bが設けられている。第2循環開閉弁49bは、第2循環フィルター50bよりも上流側(すなわち第2貯留タンク47b側)に設けられ、制御部93の制御下で第2循環ラインL7bを開閉する。第2循環フィルター50bは、第2循環開閉弁49bよりも下流側(すなわち第1貯留タンク47a側)に設けられ、第2循環ラインL7b内の処理液Pを通過させつつ、当該処理液Pから異物を除去する。 The second circulation line L7b is a line that guides the treatment liquid P from the second storage tank 47b to the first storage tank 47a. The second circulation line L7b is provided with a second circulation on-off valve 49b and a second circulation filter 50b. The second circulation on-off valve 49b is provided on the upstream side (that is, on the second storage tank 47b side) of the second circulation filter 50b, and opens and closes the second circulation line L7b under the control of the control unit 93. The second circulation filter 50b is provided on the downstream side (that is, on the side of the first storage tank 47a) of the second circulation on-off valve 49b, and is provided from the treatment liquid P while passing through the treatment liquid P in the second circulation line L7b. Remove foreign matter.
 第1貯留タンク47aには第1貯留加圧ユニット48aが取り付けられており、第2貯留タンク47bには第2貯留加圧ユニット48bが取り付けられている。制御部93の制御下で、第1貯留加圧ユニット48aは第1貯留タンク47aの内側を加圧し、第2貯留加圧ユニット48bは第2貯留タンク47bの内側を加圧する。第1貯留加圧ユニット48a及び第2貯留加圧ユニット48bの具体的な構成は限定されない。例えば、第1貯留加圧ユニット48a及び第2貯留加圧ユニット48bは、それぞれ第1貯留タンク47a及び第2貯留タンク47bの内側に加圧用気体を送り出すコンプレッサーを具備していてもよい。 The first storage pressure unit 48a is attached to the first storage tank 47a, and the second storage pressure unit 48b is attached to the second storage tank 47b. Under the control of the control unit 93, the first storage pressurizing unit 48a pressurizes the inside of the first storage tank 47a, and the second storage pressurizing unit 48b pressurizes the inside of the second storage tank 47b. The specific configuration of the first storage pressure unit 48a and the second storage pressure unit 48b is not limited. For example, the first storage pressurizing unit 48a and the second storage pressurizing unit 48b may be provided with a compressor that sends a pressurizing gas inside the first storage tank 47a and the second storage tank 47b, respectively.
 貯留ラインL1は第1貯留タンク47aに接続されている。貯留ラインL1には、貯留開閉弁45及び貯留フィルター46が設けられている。貯留開閉弁45は、貯留フィルター46よりも上流側(すなわち処理液供給源31側)に設けられ、制御部93の制御下で貯留ラインL1を開閉する。貯留フィルター46は、貯留開閉弁45よりも下流側(すなわち第1貯留タンク47a側)に設けられ、貯留ラインL1内の処理液Pを通過させつつ、当該処理液Pから異物を除去する。 The storage line L1 is connected to the first storage tank 47a. The storage line L1 is provided with a storage on-off valve 45 and a storage filter 46. The storage on-off valve 45 is provided on the upstream side of the storage filter 46 (that is, on the treatment liquid supply source 31 side), and opens and closes the storage line L1 under the control of the control unit 93. The storage filter 46 is provided on the downstream side of the storage on-off valve 45 (that is, on the side of the first storage tank 47a), and removes foreign matter from the treatment liquid P while passing the treatment liquid P in the storage line L1.
 案内ラインL2は第1貯留タンク47aに接続されており、第1貯留タンク47aは案内ラインL2を介して供給タンク37に接続されている。 The guide line L2 is connected to the first storage tank 47a, and the first storage tank 47a is connected to the supply tank 37 via the guide line L2.
 さらに貯留ユニット32は、必要に応じて、他の図示しない機構類が設けられている。例えば第1貯留タンク47a及び第2貯留タンク47bの各々には、内側に貯留される処理液Pの高さ及び/又は量を計測するレベルセンサー等の液量計測機構(図示省略)が設置されている。例えば、処理液Pの有無を検出する複数のセンサーを、各貯留タンク47a、47b内においてお互いに異なる高さに設けることによって、各貯留タンク47a、47b内における処理液Pの高さを計測することが可能である。当該液量計測機構の計測結果は制御部93に送られる。 Further, the storage unit 32 is provided with other mechanisms (not shown) as needed. For example, each of the first storage tank 47a and the second storage tank 47b is provided with a liquid amount measuring mechanism (not shown) such as a level sensor for measuring the height and / or amount of the processing liquid P stored inside. ing. For example, the height of the treatment liquid P in each of the storage tanks 47a and 47b is measured by providing a plurality of sensors for detecting the presence or absence of the treatment liquid P at different heights in the storage tanks 47a and 47b. It is possible. The measurement result of the liquid amount measuring mechanism is sent to the control unit 93.
 複数の貯留タンク47a、47bの少なくともいずれかに第1排液ラインL5(図3参照)を接続してもよい。この場合、液流調整機構40を通過した処理液は、第1排液ラインL5を介し、複数の貯留タンク47a、47bの少なくともいずれかに流入する。第1排液ラインL5は、複数の貯留タンク47a、47bの少なくともいずれかに対して直接的に接続されてもよいし、貯留ラインL1を介して接続されてもよい。貯留ラインL1のうち貯留フィルター46よりも上流の部分に第1排液ラインL5を接続することによって、第1排液ラインL5から貯留ラインL1に流入した処理液Pは、貯留フィルター46により異物が除去された後に、第1貯留タンク47aに流入する。 The first drainage line L5 (see FIG. 3) may be connected to at least one of the plurality of storage tanks 47a and 47b. In this case, the processing liquid that has passed through the liquid flow adjusting mechanism 40 flows into at least one of the plurality of storage tanks 47a and 47b via the first drainage line L5. The first drainage line L5 may be directly connected to at least one of the plurality of storage tanks 47a and 47b, or may be connected via the storage line L1. By connecting the first drainage line L5 to the portion of the storage line L1 upstream of the storage filter 46, the processing liquid P that has flowed into the storage line L1 from the first drainage line L5 has foreign matter removed by the storage filter 46. After being removed, it flows into the first storage tank 47a.
 上述の構成を有する貯留ユニット32に処理液Pを供給する場合、貯留ユニット32は図4に示す状態に置かれる。すなわち制御部93の制御下で、貯留ラインL1が貯留開閉弁45によって開かれ、第1循環ラインL7a、第2循環ラインL7b及び案内ラインL2が第1循環開閉弁49a、第2循環開閉弁49b及び案内開閉弁33によって閉じられる。これにより、貯留ラインL1を介して処理液供給源31から第1貯留タンク47aに処理液Pが供給され、第1貯留タンク47aに処理液Pが貯留される。 When the treatment liquid P is supplied to the storage unit 32 having the above configuration, the storage unit 32 is placed in the state shown in FIG. That is, under the control of the control unit 93, the storage line L1 is opened by the storage on-off valve 45, and the first circulation line L7a, the second circulation line L7b and the guide line L2 are the first circulation on-off valve 49a and the second circulation on-off valve 49b. And closed by the guide on-off valve 33. As a result, the treatment liquid P is supplied from the treatment liquid supply source 31 to the first storage tank 47a via the storage line L1, and the treatment liquid P is stored in the first storage tank 47a.
 制御部93は、液量計測機構の計測結果に基づいて、第1貯留タンク47a内の処理液Pの高さ及び/又は量を監視する。第1貯留タンク47a内の処理液Pが所定の高さ及び/又は量(例えば300cc~500cc程度)に達した場合、制御部93は貯留開閉弁45を制御して貯留ラインL1を閉じ、第1貯留タンク47aに対する処理液Pの供給を停止する。 The control unit 93 monitors the height and / or the amount of the processing liquid P in the first storage tank 47a based on the measurement result of the liquid amount measuring mechanism. When the treatment liquid P in the first storage tank 47a reaches a predetermined height and / or amount (for example, about 300 cc to 500 cc), the control unit 93 controls the storage on-off valve 45 to close the storage line L1. 1 Stop the supply of the treatment liquid P to the storage tank 47a.
 その後、処理液Pは複数の貯留タンク47a、47b間を循環させられ、循環フィルター50a、50bによって異物が取り除かれる。例えば図5に示すように、制御部93の制御下で、第1循環ラインL7aが第1循環開閉弁49aによって開かれ、第2循環ラインL7b及び案内ラインL2が第2循環開閉弁49b及び案内開閉弁33によって閉じられる。この状態で第1貯留加圧ユニット48aが第1貯留タンク47aの内側を加圧することによって、第1循環ラインL7aを介して第1貯留タンク47aから第2貯留タンク47bに処理液Pを送ることができる。また図6に示すように、制御部93の制御下で、第2循環ラインL7bが第2循環開閉弁49bによって開かれ、第1循環ラインL7a及び案内ラインL2が第1循環開閉弁49a及び案内開閉弁33によって閉じられる。この状態で第2貯留加圧ユニット48bが第2貯留タンク47bの内側を加圧することによって、第2貯留タンク47bから第1貯留タンク47aに処理液Pを送ることができる。 After that, the treatment liquid P is circulated between the plurality of storage tanks 47a and 47b, and the foreign matter is removed by the circulation filters 50a and 50b. For example, as shown in FIG. 5, under the control of the control unit 93, the first circulation line L7a is opened by the first circulation on-off valve 49a, and the second circulation line L7b and the guide line L2 are the second circulation on-off valve 49b and the guide. It is closed by the on-off valve 33. In this state, the first storage pressurizing unit 48a pressurizes the inside of the first storage tank 47a to send the treatment liquid P from the first storage tank 47a to the second storage tank 47b via the first circulation line L7a. Can be done. Further, as shown in FIG. 6, under the control of the control unit 93, the second circulation line L7b is opened by the second circulation on-off valve 49b, and the first circulation line L7a and the guide line L2 are the first circulation on-off valve 49a and the guide. It is closed by the on-off valve 33. In this state, the second storage pressurizing unit 48b pressurizes the inside of the second storage tank 47b, so that the processing liquid P can be sent from the second storage tank 47b to the first storage tank 47a.
 このようにして循環フィルター50a、50bにより処理液Pから異物が除去された後、貯留ユニット32から供給タンク37に処理液Pが送られる。具体的には、図7に示すように、制御部93の制御下で、案内ラインL2が案内開閉弁33によって開かれ、第1循環ラインL7a及び第2循環ラインL7bが第1循環開閉弁49a及び第2循環開閉弁49bによって閉じられる。この状態で第1貯留加圧ユニット48aにより第1貯留タンク47aの内側を加圧することにより、第1貯留タンク47aから案内ラインL2に処理液Pを送ることができる。 After the foreign matter is removed from the treatment liquid P by the circulation filters 50a and 50b in this way, the treatment liquid P is sent from the storage unit 32 to the supply tank 37. Specifically, as shown in FIG. 7, under the control of the control unit 93, the guide line L2 is opened by the guide on-off valve 33, and the first circulation line L7a and the second circulation line L7b are the first circulation on-off valve 49a. And closed by the second circulation on-off valve 49b. By pressurizing the inside of the first storage tank 47a with the first storage pressurizing unit 48a in this state, the processing liquid P can be sent from the first storage tank 47a to the guide line L2.
 上述の図4~図7に示す例では、第1循環フィルター50a及び第2循環フィルター50bが「複数の循環ラインの少なくともいずれかを流れる処理液から異物を取り除くフィルター」を構成する。また第1貯留加圧ユニット48a、第2貯留加圧ユニット48b、第1循環開閉弁49a、第2循環開閉弁49b及び案内開閉弁33の組み合わせが「複数の循環ラインを介して複数の貯留タンク間で処理液を循環させる循環調整機構」を構成する。 In the example shown in FIGS. 4 to 7 described above, the first circulation filter 50a and the second circulation filter 50b constitute "a filter that removes foreign matter from a processing liquid flowing through at least one of a plurality of circulation lines". Further, the combination of the first storage pressurizing unit 48a, the second storage pressurizing unit 48b, the first circulation on-off valve 49a, the second circulation on-off valve 49b and the guide on-off valve 33 "is a plurality of storage tanks via a plurality of circulation lines. It constitutes a circulation adjustment mechanism that circulates the treatment liquid between them.
 従来の基板液処理装置では、例えばベローズポンプを用いて処理液を循環させつつ、処理液のフィルトレーションを行うことで、処理液から異物を取り除くことがある。一方、上述の図4~図7に示す貯留ユニット32によれば、例えば加圧用気体を使って複数の貯留タンク47a、47b間で処理液Pを循環させることで、処理液Pから異物を取り除くことができる。したがってベローズポンプのような複雑な構造の機構を用いることなく、簡素な構成の貯留ユニット32によって、処理液Pから異物を適切に取り除くことができる。 In the conventional substrate liquid treatment apparatus, foreign matter may be removed from the treatment liquid by performing filtration of the treatment liquid while circulating the treatment liquid using, for example, a bellows pump. On the other hand, according to the storage unit 32 shown in FIGS. 4 to 7 described above, foreign matter is removed from the treatment liquid P by circulating the treatment liquid P between the plurality of storage tanks 47a and 47b using, for example, a pressurizing gas. be able to. Therefore, foreign matter can be appropriately removed from the treatment liquid P by the storage unit 32 having a simple structure without using a mechanism having a complicated structure such as a bellows pump.
 次に、供給タンク37から吐出ノズル19への処理液Pの供給系の具体例について説明する。以下、そのような処理液供給系の2つの構造例(すなわち「処理液供給系の第1態様」及び「処理液供給系の第2態様」)を説明する。 Next, a specific example of the supply system of the processing liquid P from the supply tank 37 to the discharge nozzle 19 will be described. Hereinafter, two structural examples of such a treatment liquid supply system (that is, “first aspect of the treatment liquid supply system” and “second aspect of the treatment liquid supply system”) will be described.
[処理液供給系の第1態様]
 図8~図11は、処理液供給系の第1態様の概略を示す図である。図8~図11では、構成要素の一部の図示が省略されている。例えば、本態様では処理液Pを加熱する加熱部(すなわち図3の第1加熱部35及び第2加熱部36)が設けられているが、図8~図11では加熱部の図示が省略されている。また既に説明した各要素の構成及び作用については、詳細な説明を省略する。
[First aspect of treatment liquid supply system]
8 to 11 are views showing an outline of the first aspect of the treatment liquid supply system. In FIGS. 8 to 11, some of the components are not shown. For example, in this embodiment, a heating unit (that is, the first heating unit 35 and the second heating unit 36 in FIG. 3) for heating the treatment liquid P is provided, but the heating unit is omitted in FIGS. 8 to 11. ing. Further, detailed description of the configuration and operation of each element already described will be omitted.
 本態様の供給タンク37には、上述の案内ラインL2、気体ラインL3及び供給ラインL4に加え、大気開放ラインL9が接続されている。大気開放ラインL9は、供給タンク37の内側と、供給タンク37の周囲の環境(例えば大気)とをつなぎ、供給タンク37の内部の圧力を環境圧(例えば大気圧)と同一にするために設けられる。大気開放ラインL9には大気開放弁63が設けられている。大気開放弁63は、制御部93の制御下で、大気開放ラインL9の流路を開閉する。大気開放弁63が大気開放ラインL9を開くことによって、供給タンク37の内側が周囲に対して開放され、大気開放ラインL9を介して供給タンク37の内側と周囲との間で気体が自由に移動可能となる。一方、大気開放弁63が大気開放ラインL9を閉じることによって、供給タンク37の内側は周囲から遮断され、供給タンク37の内側と周囲との間で気体は流れない。例えば吐出ノズル19に処理液Pを供給する場合(後述の図9参照)、制御部93は、大気開放ラインL9を閉鎖するように大気開放弁63を制御し、供給タンク37の内側を効率的に昇圧可能な状態に置く。また吐出ノズル19に処理液Pを供給しない場合(後述の図10及び図11参照)、制御部93はL9を開放するように大気開放弁63を制御する。 In addition to the above-mentioned guide line L2, gas line L3, and supply line L4, the supply tank 37 of this embodiment is connected to the atmosphere opening line L9. The atmosphere opening line L9 is provided to connect the inside of the supply tank 37 and the environment around the supply tank 37 (for example, the atmosphere), and to make the pressure inside the supply tank 37 the same as the environmental pressure (for example, the atmospheric pressure). Be done. The atmosphere opening line L9 is provided with an atmosphere opening valve 63. The atmosphere release valve 63 opens and closes the flow path of the atmosphere opening line L9 under the control of the control unit 93. When the atmosphere release valve 63 opens the atmosphere opening line L9, the inside of the supply tank 37 is opened to the surroundings, and the gas freely moves between the inside of the supply tank 37 and the surroundings via the atmosphere opening line L9. It will be possible. On the other hand, when the atmosphere release valve 63 closes the atmosphere opening line L9, the inside of the supply tank 37 is shut off from the surroundings, and gas does not flow between the inside of the supply tank 37 and the surroundings. For example, when the processing liquid P is supplied to the discharge nozzle 19 (see FIG. 9 described later), the control unit 93 controls the atmosphere release valve 63 so as to close the atmosphere opening line L9, and efficiently inside the supply tank 37. Put it in a state where it can be boosted. When the processing liquid P is not supplied to the discharge nozzle 19 (see FIGS. 10 and 11 described later), the control unit 93 controls the atmosphere release valve 63 so as to open L9.
 加圧装置38は、供給タンク37の内側に接続される気体ラインL3に加圧用気体を流す気体供給部65と、気体ラインL3を流れる加圧用気体の圧力を調整する気圧調整部66と、気体ラインL3の流路を開閉する気体開閉弁67とを有する。気体供給部65は、制御部93の制御下で駆動してもよく、例えばコンプレッサーを具備することができる。気圧調整部66は、制御部93の制御下で駆動してもよく、例えば電空レギュレータを具備することができる。気体供給部65及び気圧調整部66は、例えば液供給回路30が待機状態に置かれる場合、制御部93の制御下で駆動が停止されてもよい。気体開閉弁67は、制御部93の制御下で駆動し、例えば電磁弁であってもよい。 The pressurizing device 38 includes a gas supply unit 65 that flows a pressurizing gas to the gas line L3 connected to the inside of the supply tank 37, a pressure adjusting unit 66 that adjusts the pressure of the pressurizing gas flowing through the gas line L3, and a gas. It has a gas on-off valve 67 that opens and closes the flow path of the line L3. The gas supply unit 65 may be driven under the control of the control unit 93, and may include, for example, a compressor. The air pressure adjusting unit 66 may be driven under the control of the control unit 93, and may include, for example, an electro-pneumatic regulator. The drive of the gas supply unit 65 and the air pressure adjustment unit 66 may be stopped under the control of the control unit 93, for example, when the liquid supply circuit 30 is placed in the standby state. The gas on-off valve 67 is driven under the control of the control unit 93, and may be, for example, an electromagnetic valve.
 供給タンク37には、内側に貯留される処理液Pの高さ及び/又は量を計測するレベルセンサー等の液量計測機構(図示省略)が設置されている。当該液量計測機構の計測結果は制御部93に送られる。 The supply tank 37 is equipped with a liquid amount measuring mechanism (not shown) such as a level sensor that measures the height and / or amount of the processing liquid P stored inside. The measurement result of the liquid amount measuring mechanism is sent to the control unit 93.
 吐出ノズル19は、供給タンク37及び液流調整機構40(具体的には背圧弁42)よりも上方に位置している。供給タンク37及び液流調整機構40(背圧弁42)は、供給ラインL4のうち最も高い部分よりも低い位置に設けられている。 The discharge nozzle 19 is located above the supply tank 37 and the liquid flow adjusting mechanism 40 (specifically, the back pressure valve 42). The supply tank 37 and the liquid flow adjusting mechanism 40 (back pressure valve 42) are provided at positions lower than the highest portion of the supply line L4.
 供給ラインL4の近傍には液検知センサー61が設けられている。液検知センサー61は、供給ラインL4のうちの第1分岐部分b1よりも下流側(すなわち吐出ノズル19側)に位置する第1計測箇所M1における処理液Pの有無を検知する。液検知センサー61の検知方式は限定されない。例えば、光を透過可能な部材によって供給ラインL4が構成される場合、液検知センサー61は光学式のセンサーを用いてもよい。また液検知センサー61は、第1計測箇所M1における静電容量又は磁場を計測するセンサーを用いてもよい。液検知センサー61は、検知結果を制御部93に送信する。 A liquid detection sensor 61 is provided in the vicinity of the supply line L4. The liquid detection sensor 61 detects the presence or absence of the processing liquid P at the first measurement point M1 located on the downstream side (that is, the discharge nozzle 19 side) of the first branch portion b1 of the supply line L4. The detection method of the liquid detection sensor 61 is not limited. For example, when the supply line L4 is configured by a member capable of transmitting light, the liquid detection sensor 61 may use an optical sensor. Further, the liquid detection sensor 61 may use a sensor that measures the capacitance or the magnetic field at the first measurement point M1. The liquid detection sensor 61 transmits the detection result to the control unit 93.
 第1分岐部分b1は、供給タンク37から吐出ノズル19に至る供給ラインL4のうちの最も高い部分と、供給タンク37との間に位置する。第1計測箇所M1は、供給タンク37から吐出ノズル19に至る供給ラインL4のうちの最も高い部分と、第1分岐部分b1との間に位置し、供給ラインL4の最も高い部分よりも低い位置に設定される。 The first branch portion b1 is located between the highest portion of the supply line L4 from the supply tank 37 to the discharge nozzle 19 and the supply tank 37. The first measurement point M1 is located between the highest part of the supply line L4 from the supply tank 37 to the discharge nozzle 19 and the first branch portion b1 and is lower than the highest part of the supply line L4. Is set to.
 供給ラインL4には流量計62が設けられている。流量計62は、供給ラインL4のうち第1分岐部分b1よりも下流側(すなわち吐出ノズル19側)に位置する第2計測箇所M2における処理液Pの流量を計測する。流量計62は、計測結果を制御部93に送信する。制御部93は、流量計62の計測結果に基づいて、後述の背圧弁42の設定圧を調整する。 A flow meter 62 is provided on the supply line L4. The flow meter 62 measures the flow rate of the processing liquid P at the second measurement point M2 located on the downstream side (that is, the discharge nozzle 19 side) of the supply line L4 from the first branch portion b1. The flow meter 62 transmits the measurement result to the control unit 93. The control unit 93 adjusts the set pressure of the back pressure valve 42, which will be described later, based on the measurement result of the flow meter 62.
 第1排液ラインL5には、背圧弁42と、背圧弁42よりも下流に位置する排液開閉弁43とが設けられている。排液開閉弁43は、制御部93の制御下で第1排液ラインL5の流路を開閉する。背圧弁42は、上述の液流調整機構40として機能し、設定圧よりも低い圧力の処理液Pの通過を制限する。本例の背圧弁42は、設定圧以上の圧力の処理液Pを通過させつつ、設定圧よりも低い圧力の処理液Pを通過させない。したがって背圧弁42は、第1排液ラインL5(特に背圧弁42よりも上流の流路)及び供給ラインL4における処理液Pの圧力を、設定圧よりも低い圧力に調整する。 The first drainage line L5 is provided with a back pressure valve 42 and a drainage on-off valve 43 located downstream of the back pressure valve 42. The drainage on-off valve 43 opens and closes the flow path of the first drainage line L5 under the control of the control unit 93. The back pressure valve 42 functions as the above-mentioned liquid flow adjusting mechanism 40, and restricts the passage of the processing liquid P having a pressure lower than the set pressure. The back pressure valve 42 of this example allows the treatment liquid P having a pressure higher than the set pressure to pass, but does not pass the treatment liquid P having a pressure lower than the set pressure. Therefore, the back pressure valve 42 adjusts the pressure of the processing liquid P in the first drainage line L5 (particularly the flow path upstream of the back pressure valve 42) and the supply line L4 to a pressure lower than the set pressure.
 背圧弁42の設定圧は制御部93によって調整され、当該設定圧を変えることによって処理液Pの流動状態を変えることができる。例えば吐出ノズル19に処理液Pを供給する場合、制御部93は、供給タンク37から吐出ノズル19に至る供給ラインL4のうち最も高い部分の高さ位置における圧力水頭であるピーク水頭圧以上となるように、背圧弁42の設定圧を調整する。一方、吐出ノズル19に処理液Pを供給しない場合、制御部93は、ピーク水頭圧よりも低くなるように、背圧弁42の設定圧を調整する。 The set pressure of the back pressure valve 42 is adjusted by the control unit 93, and the flow state of the processing liquid P can be changed by changing the set pressure. For example, when the processing liquid P is supplied to the discharge nozzle 19, the control unit 93 becomes equal to or higher than the peak head pressure, which is the pressure head at the height position of the highest portion of the supply line L4 from the supply tank 37 to the discharge nozzle 19. As described above, the set pressure of the back pressure valve 42 is adjusted. On the other hand, when the processing liquid P is not supplied to the discharge nozzle 19, the control unit 93 adjusts the set pressure of the back pressure valve 42 so as to be lower than the peak head pressure.
 供給ラインL4のうち供給タンク37と吐出ノズル19との間の第2分岐部分b2には、第2排液ラインL6が接続されている。図8~図11に示す例では、第2分岐部分b2は第1分岐部分b1と同じ位置に設定されているが、第2分岐部分b2は第1分岐部分b1よりも上流又は下流に設けられていてもよい。また第2排液ラインL6は、第1排液ラインL5を介して供給ラインL4に接続されていてもよい。 The second drainage line L6 is connected to the second branch portion b2 between the supply tank 37 and the discharge nozzle 19 of the supply line L4. In the examples shown in FIGS. 8 to 11, the second branch portion b2 is set at the same position as the first branch portion b1, but the second branch portion b2 is provided upstream or downstream of the first branch portion b1. May be. Further, the second drainage line L6 may be connected to the supply line L4 via the first drainage line L5.
 第2排液ラインL6には吸引機構53が設けられている。吸引機構53の駆動モードは、第2排液ラインL6を介して供給ラインL4の流路を吸引する吸引モードと、第2排液ラインL6を介して供給ラインL4の流路を吸引しない非吸引モードとの間で、切り換え可能である。例えば吐出ノズル19に処理液Pを供給しない場合、制御部93は、少なくとも一時的に吸引機構53を吸引モードに調整する。これにより供給ラインL4内の処理液Pを吐出ノズル19から素早く遠ざけることができ、吐出ノズル19からの処理液Pの垂れ等の意図しない不具合の発生を防ぐことができる。 The second drainage line L6 is provided with a suction mechanism 53. The drive mode of the suction mechanism 53 is a suction mode in which the flow path of the supply line L4 is sucked through the second drainage line L6 and a non-suction mode in which the flow path of the supply line L4 is not sucked through the second drainage line L6. It is possible to switch between modes. For example, when the processing liquid P is not supplied to the discharge nozzle 19, the control unit 93 adjusts the suction mechanism 53 to the suction mode at least temporarily. As a result, the processing liquid P in the supply line L4 can be quickly moved away from the discharge nozzle 19, and unintended problems such as dripping of the processing liquid P from the discharge nozzle 19 can be prevented.
 本例の吸引機構53は、モード切換弁54、負圧タンク55及び負圧調整器56を有する。モード切換弁54は第2排液ラインL6に設けられ、制御部93の制御下で第2排液ラインL6を開閉する。第2排液ラインL6の一端は供給ラインL4(特に第2分岐部分b2)に接続され、第2排液ラインL6の他端は負圧タンク55に接続されている。負圧調整器56は、負圧タンク55を負圧状態に調整する。 The suction mechanism 53 of this example has a mode switching valve 54, a negative pressure tank 55, and a negative pressure regulator 56. The mode switching valve 54 is provided in the second drainage line L6, and opens and closes the second drainage line L6 under the control of the control unit 93. One end of the second drainage line L6 is connected to the supply line L4 (particularly the second branch portion b2), and the other end of the second drainage line L6 is connected to the negative pressure tank 55. The negative pressure regulator 56 adjusts the negative pressure tank 55 to the negative pressure state.
 図示の負圧調整器56は、負圧コンプレッサー57、負圧開閉弁58及び負圧エジェクター59を有する。負圧コンプレッサー57は、制御部93の制御下で負圧ラインL8に気体(例えば窒素等の不活性ガス)を送り出す。負圧開閉弁58は、負圧コンプレッサー57と負圧エジェクター59との間に設けられ、制御部93の制御下で負圧ラインL8を開閉する。負圧エジェクター59は、負圧タンク55と負圧ラインL8とをつなぐアスピレーターによって構成可能であり、負圧ラインL8に流される気体を利用したベンチュリ効果によって負圧タンク55の内側に減圧状態を作り出すことができる。アスピレーターは、典型的には、水平流路及び垂直流路の組み合わせから成るT字状流路を有する。水平流路は、垂直流路の合流部で局所的に細くなっている。水平流路に流体(本例では負圧コンプレッサー57からの気体)を流すことにより、合流部では、流体の流速が増すとともに圧力が低下し、その結果、垂直流路内の流体が水平流路側に引かれる。 The illustrated negative pressure regulator 56 has a negative pressure compressor 57, a negative pressure on-off valve 58, and a negative pressure ejector 59. The negative pressure compressor 57 sends a gas (for example, an inert gas such as nitrogen) to the negative pressure line L8 under the control of the control unit 93. The negative pressure on-off valve 58 is provided between the negative pressure compressor 57 and the negative pressure ejector 59, and opens and closes the negative pressure line L8 under the control of the control unit 93. The negative pressure ejector 59 can be configured by an ejector connecting the negative pressure tank 55 and the negative pressure line L8, and creates a decompressed state inside the negative pressure tank 55 by the Venturi effect using the gas flowing through the negative pressure line L8. be able to. The aspirator typically has a T-shaped channel consisting of a combination of horizontal and vertical channels. The horizontal flow path is locally narrowed at the confluence of the vertical flow paths. By flowing a fluid (gas from the negative pressure compressor 57 in this example) through the horizontal flow path, the flow velocity of the fluid increases and the pressure decreases at the confluence, and as a result, the fluid in the vertical flow path is on the horizontal flow path side. Is drawn to.
 吸引機構53を非吸引モードに調整する場合、制御部93は、第2排液ラインL6の流路を閉鎖するようにモード切換弁54を制御する。一方、吸引機構53を吸引モードに調整する場合、制御部93は、第2排液ラインL6の流路を開放するようにモード切換弁54を制御する。 When adjusting the suction mechanism 53 to the non-suction mode, the control unit 93 controls the mode switching valve 54 so as to close the flow path of the second drainage line L6. On the other hand, when the suction mechanism 53 is adjusted to the suction mode, the control unit 93 controls the mode switching valve 54 so as to open the flow path of the second drainage line L6.
 例えば処理液Pの温度調整を行う場合、液供給回路30は、制御部93の制御下で図8に示す状態に置かれる。すなわち案内ラインL2が案内開閉弁33によって開かれ、大気開放ラインL9が大気開放弁63によって閉じられ、気体ラインL3が気体開閉弁67によって開かれる。また第1排液ラインL5が排液開閉弁43によって開かれ、第2排液ラインL6がモード切換弁54によって閉じられる。また制御部93は、背圧弁42の設定圧を、上記のピーク水頭圧よりも低くする。 For example, when adjusting the temperature of the processing liquid P, the liquid supply circuit 30 is placed in the state shown in FIG. 8 under the control of the control unit 93. That is, the guide line L2 is opened by the guide on-off valve 33, the atmosphere open line L9 is closed by the atmosphere open valve 63, and the gas line L3 is opened by the gas on-off valve 67. Further, the first drainage line L5 is opened by the drainage on-off valve 43, and the second drainage line L6 is closed by the mode switching valve 54. Further, the control unit 93 lowers the set pressure of the back pressure valve 42 to be lower than the above-mentioned peak head pressure.
 この状態で、気体供給部65から気体ラインL3に供給された加圧用気体が、気圧調整部66によって圧力調整された後、加圧フィルター39を通って供給タンク37内に供給される。これにより供給タンク37の内側が加圧され、供給タンク37から供給ラインL4に処理液Pが送り出される。その一方で、供給タンク37には、貯留ユニット32(例えば図4~図7に示す第1貯留タンク47a)から案内ラインL2を介して処理液Pが供給される。制御部93は、供給タンク37に設けられた液量計測機構(図示省略)の計測結果に基づき、案内開閉弁33を制御して案内ラインL2を開閉し、供給タンク37に適量の処理液Pを貯留する。 In this state, the pressurizing gas supplied from the gas supply unit 65 to the gas line L3 is pressure-adjusted by the air pressure adjusting unit 66 and then supplied into the supply tank 37 through the pressurizing filter 39. As a result, the inside of the supply tank 37 is pressurized, and the processing liquid P is sent out from the supply tank 37 to the supply line L4. On the other hand, the treatment liquid P is supplied to the supply tank 37 from the storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7) via the guide line L2. The control unit 93 controls the guide on / off valve 33 to open / close the guide line L2 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37, and the supply tank 37 has an appropriate amount of the processing liquid P. To store.
 供給タンク37から供給ラインL4に流入した処理液Pの一部は、第1分岐部分b1を介して第1排液ラインL5に流入し、背圧弁42に到達する。背圧弁42の設定圧はピーク水頭圧よりも低くなるように調整されているので、背圧弁42は、処理液Pを通過させつつ、供給ラインL4における処理液Pをピーク水頭圧よりも低い圧力に調整する。これにより供給ラインL4における処理液Pは、供給ラインL4のうちの最も高い部分よりも低い高さ位置までしか到達することができず、吐出ノズル19には処理液Pが供給されない。 A part of the processing liquid P flowing from the supply tank 37 into the supply line L4 flows into the first drainage line L5 via the first branch portion b1 and reaches the back pressure valve 42. Since the set pressure of the back pressure valve 42 is adjusted to be lower than the peak head pressure, the back pressure valve 42 allows the treatment liquid P in the supply line L4 to be lower than the peak head pressure while passing the treatment liquid P. Adjust to. As a result, the processing liquid P in the supply line L4 can reach only a height position lower than the highest portion of the supply line L4, and the processing liquid P is not supplied to the discharge nozzle 19.
 背圧弁42を通過した処理液Pは、第1排液ラインL5を通って、貯留ユニット32(例えば図4~図7に示す第1貯留タンク47a)に送られる。なお処理液Pは、第1排液ラインL5から直接的に貯留ユニット32に送られてもよいし、図示しないタンクやラインを介して第1排液ラインL5から貯留ユニット32に送られてもよい。第1排液ラインL5から貯留ユニット32に送られた処理液Pは、案内ラインL2を介して供給タンク37に戻される。 The processing liquid P that has passed through the back pressure valve 42 is sent to the storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7) through the first drainage line L5. The treatment liquid P may be sent directly from the first drainage line L5 to the storage unit 32, or may be sent from the first drainage line L5 to the storage unit 32 via a tank or line (not shown). good. The processing liquid P sent from the first drainage line L5 to the storage unit 32 is returned to the supply tank 37 via the guide line L2.
 このように液供給回路30が図8に示す状態をとる場合、供給タンク37から供給ラインL4に送り出された処理液Pは、吐出ノズル19から吐出されることなく、第1排液ラインL5、貯留ユニット32及び案内ラインL2を通って供給タンク37に戻される。処理液Pは、このように液供給回路30を循環しつつ加熱ゾーン(図8では図示省略;図3の第1加熱ゾーンZ1及び第2加熱ゾーンZ2参照)で加熱され、全体として徐々に昇温して所望温度に調整される。 When the liquid supply circuit 30 takes the state shown in FIG. 8 in this way, the processing liquid P sent out from the supply tank 37 to the supply line L4 is not discharged from the discharge nozzle 19, and the first drainage line L5, It is returned to the supply tank 37 through the storage unit 32 and the guide line L2. The treatment liquid P is heated in the heating zone (not shown in FIG. 8; see the first heating zone Z1 and the second heating zone Z2 in FIG. 3) while circulating in the liquid supply circuit 30 in this way, and gradually rises as a whole. It is warmed and adjusted to the desired temperature.
 処理液Pが所望温度に調整された後、吐出ノズル19に処理液Pを供給して吐出ノズル19から処理液Pを吐出する場合、液供給回路30は、制御部93の制御下で図9に示す状態に置かれる。 After the treatment liquid P is adjusted to a desired temperature, when the treatment liquid P is supplied to the discharge nozzle 19 and the treatment liquid P is discharged from the discharge nozzle 19, the liquid supply circuit 30 is controlled by the control unit 93 in FIG. It is placed in the state shown in.
 すなわち制御部93は、背圧弁42の設定圧を、上記のピーク水頭圧以上にする(好ましくはピーク水頭圧より高くする)。案内ラインL2は案内開閉弁33によって閉じられるが、大気開放ラインL9、気体ラインL3、第1排液ラインL5及び第2排液ラインL6の開閉状態は、図8に示す状態と同じ状態に置かれる。また加圧装置38(特に気圧調整部66)は、供給タンク37から供給ラインL4に送り出される処理液Pが、ピーク水頭圧以上の圧力(好ましくはピーク水頭圧より高い圧力)を有するように、供給タンク37の内側を加圧する。 That is, the control unit 93 sets the set pressure of the back pressure valve 42 to be equal to or higher than the above-mentioned peak head pressure (preferably higher than the peak head pressure). The guide line L2 is closed by the guide on-off valve 33, but the open / closed state of the atmosphere opening line L9, the gas line L3, the first drainage line L5 and the second drainage line L6 is set to the same state as shown in FIG. Be taken. Further, the pressurizing device 38 (particularly, the pressure adjusting unit 66) is provided so that the processing liquid P sent from the supply tank 37 to the supply line L4 has a pressure equal to or higher than the peak head pressure (preferably higher than the peak head pressure). Pressurize the inside of the supply tank 37.
 これにより供給ラインL4における処理液Pは、背圧弁42によって「ピーク水頭圧以上の設定圧」と同じ圧力に調整される。その結果、処理液Pは、供給ラインL4のうちの最も高い部分に到達し、その後に吐出ノズル19に供給される。 As a result, the treatment liquid P in the supply line L4 is adjusted to the same pressure as the "set pressure equal to or higher than the peak head pressure" by the back pressure valve 42. As a result, the treatment liquid P reaches the highest portion of the supply line L4 and is then supplied to the discharge nozzle 19.
 なお制御部93は、流量計62の計測結果に基づいて、背圧弁42の設定圧を調整してもよい。例えば、制御部93は、流量計62の計測結果から、吐出ノズル19に供給されている処理液Pの量が足りないと判定する場合、背圧弁42の設定圧を大きくして、より多量の処理液Pを吐出ノズル19に供給してもよい。また制御部93は、流量計62の計測結果から、吐出ノズル19に供給されている処理液Pの量が多すぎると判定する場合、背圧弁42の設定圧を小さくして、吐出ノズル19に供給される処理液Pの量を低減してもよい。 The control unit 93 may adjust the set pressure of the back pressure valve 42 based on the measurement result of the flow meter 62. For example, when the control unit 93 determines from the measurement result of the flow meter 62 that the amount of the processing liquid P supplied to the discharge nozzle 19 is insufficient, the set pressure of the back pressure valve 42 is increased to increase the amount. The processing liquid P may be supplied to the discharge nozzle 19. Further, when the control unit 93 determines from the measurement result of the flow meter 62 that the amount of the processing liquid P supplied to the discharge nozzle 19 is too large, the control unit 93 reduces the set pressure of the back pressure valve 42 to the discharge nozzle 19. The amount of the processing liquid P supplied may be reduced.
 図9に示す例では、吐出ノズル19に処理液Pが供給されている間に、制御部93の制御下で負圧開閉弁58が負圧ラインL8を開き、負圧タンク55が負圧状態に調整される。 In the example shown in FIG. 9, while the processing liquid P is being supplied to the discharge nozzle 19, the negative pressure on-off valve 58 opens the negative pressure line L8 under the control of the control unit 93, and the negative pressure tank 55 is in a negative pressure state. Is adjusted to.
 そして、吐出ノズル19に処理液Pが供給されている状態から、吐出ノズル19に対する処理液Pの供給を停止して、吐出ノズル19からの処理液Pの吐出を停止する場合、液供給回路30は、制御部93の制御下で図10に示す状態に置かれる。 Then, when the supply of the processing liquid P to the discharge nozzle 19 is stopped from the state in which the treatment liquid P is supplied to the discharge nozzle 19 and the discharge of the treatment liquid P from the discharge nozzle 19 is stopped, the liquid supply circuit 30 Is placed in the state shown in FIG. 10 under the control of the control unit 93.
 すなわち制御部93は、背圧弁42の設定圧を、上記のピーク水頭圧より低くする。これにより背圧弁42は、供給ラインL4における処理液Pをピーク水頭圧よりも低い圧力に調整する。その結果、処理液Pは、供給ラインL4のうちの最も高い部分に到達することができず、吐出ノズル19には処理液Pが供給されなくなる。 That is, the control unit 93 lowers the set pressure of the back pressure valve 42 to be lower than the above-mentioned peak head pressure. As a result, the back pressure valve 42 adjusts the treatment liquid P in the supply line L4 to a pressure lower than the peak head pressure. As a result, the processing liquid P cannot reach the highest portion of the supply line L4, and the processing liquid P is not supplied to the discharge nozzle 19.
 また第2排液ラインL6が制御部93の制御下でモード切換弁54によって開かれ、吸引機構53が吸引モードに調整される。これにより、負圧タンク55が第2排液ラインL6を介して供給ラインL4に接続され、供給ラインL4の処理液Pが第2排液ラインL6を介して負圧タンク55に吸引される。その結果、供給ラインL4における処理液Pの水頭位置を、素早く、吐出ノズル19から遠ざけることができ、吐出ノズル19からの処理液Pの吐出を瞬間的に停止させることも可能である。負圧タンク55に流入した処理液Pは、負圧エジェクター59及び負圧ラインL8を介し、貯留ユニット32に送られる。 Further, the second drainage line L6 is opened by the mode switching valve 54 under the control of the control unit 93, and the suction mechanism 53 is adjusted to the suction mode. As a result, the negative pressure tank 55 is connected to the supply line L4 via the second drainage line L6, and the processing liquid P of the supply line L4 is sucked into the negative pressure tank 55 via the second drainage line L6. As a result, the head position of the treatment liquid P in the supply line L4 can be quickly moved away from the discharge nozzle 19, and the discharge of the treatment liquid P from the discharge nozzle 19 can be stopped momentarily. The treatment liquid P flowing into the negative pressure tank 55 is sent to the storage unit 32 via the negative pressure ejector 59 and the negative pressure line L8.
 制御部93は、液検知センサー61の検知結果に応じて、後述の吸引機構53を吸引モードから非吸引モードに切り換える。液検知センサー61の検知結果が、第1計測箇所M1に処理液Pが存在していることを示す間は、吸引モードが維持されるように、制御部93は吸引機構53(特にモード切換弁54)を制御する。一方、液検知センサー61の検知結果が、第1計測箇所M1に処理液Pが存在しないことを示す場合、吸引モードから非吸引モードに切り換えられるように、制御部93は吸引機構53(特にモード切換弁54)を制御する。これにより、供給ラインL4における処理液Pの水頭位置を、確実に、吐出ノズル19から遠ざけることができる。 The control unit 93 switches the suction mechanism 53, which will be described later, from the suction mode to the non-suction mode according to the detection result of the liquid detection sensor 61. While the detection result of the liquid detection sensor 61 indicates that the processing liquid P is present at the first measurement point M1, the control unit 93 uses the suction mechanism 53 (particularly the mode switching valve) so that the suction mode is maintained. 54) is controlled. On the other hand, when the detection result of the liquid detection sensor 61 indicates that the processing liquid P does not exist at the first measurement point M1, the control unit 93 controls the suction mechanism 53 (particularly the mode) so that the suction mode can be switched to the non-suction mode. The switching valve 54) is controlled. As a result, the head position of the treatment liquid P in the supply line L4 can be surely kept away from the discharge nozzle 19.
 また大気開放ラインL9が大気開放弁63によって開かれ、気体ラインL3が気体開閉弁67によって閉じられる。これにより、供給タンク37の内側の圧力が供給タンク37の周囲の圧力と同じに調整され、供給タンク37から供給ラインL4への処理液Pの圧力を弱めることができる。 Further, the atmosphere opening line L9 is opened by the atmosphere opening valve 63, and the gas line L3 is closed by the gas on-off valve 67. As a result, the pressure inside the supply tank 37 is adjusted to be the same as the pressure around the supply tank 37, and the pressure of the processing liquid P from the supply tank 37 to the supply line L4 can be weakened.
 なお案内ラインL2及び第1排液ラインL5の開閉状態は、図9に示す状態と同じ状態に置かれる。 The open / closed state of the guide line L2 and the first drainage line L5 is set to the same state as shown in FIG.
 そして液供給回路30を待機状態に置く場合、液供給回路30は、制御部93の制御下で図11に示す状態に置かれる。 Then, when the liquid supply circuit 30 is placed in the standby state, the liquid supply circuit 30 is placed in the state shown in FIG. 11 under the control of the control unit 93.
 すなわち制御部93は、背圧弁42の設定圧を、上記のピーク水頭圧より低くする。第1排液ラインL5が排液開閉弁43によって閉じられ、大気開放ラインL9が大気開放弁63によって開かれ、気体ラインL3が気体開閉弁67によって閉じられる。第2排液ラインL6がモード切換弁54によって閉じられ、負圧ラインL8が負圧開閉弁58によって閉じられる。 That is, the control unit 93 lowers the set pressure of the back pressure valve 42 to be lower than the above-mentioned peak head pressure. The first drainage line L5 is closed by the drainage on-off valve 43, the atmosphere opening line L9 is opened by the atmosphere opening valve 63, and the gas line L3 is closed by the gas on-off valve 67. The second drainage line L6 is closed by the mode switching valve 54, and the negative pressure line L8 is closed by the negative pressure on-off valve 58.
 これにより供給タンク37及び供給ラインL4における処理液Pは、吐出ノズル19に供給されず、循環もしない。供給タンク37の内側は加圧もされず、供給ラインL4における処理液Pは第1排液ラインL5及び第2排液ラインL6を介して排出もされない。そのため供給ラインL4における処理液Pの液面高さは、供給タンク37内の処理液Pと同じ液面高さとなる。 As a result, the processing liquid P in the supply tank 37 and the supply line L4 is not supplied to the discharge nozzle 19 and does not circulate. The inside of the supply tank 37 is not pressurized, and the treatment liquid P in the supply line L4 is not discharged via the first drainage line L5 and the second drainage line L6. Therefore, the liquid level height of the treatment liquid P in the supply line L4 is the same as the liquid level of the treatment liquid P in the supply tank 37.
 一方、案内ラインL2が案内開閉弁33によって開かれ、案内ラインL2を介して貯留ユニット32から供給タンク37に処理液Pが供給される。制御部93は、供給タンク37に設けられた液量計測機構(図示省略)の計測結果に基づいて、供給タンク37に貯留される処理液Pの量を監視する。そして制御部93は、供給タンク37内の処理液Pが適量に達したタイミングで、案内開閉弁33によって案内ラインL2を閉じ、供給タンク37に対する処理液Pの供給を停止する。 On the other hand, the guide line L2 is opened by the guide on-off valve 33, and the processing liquid P is supplied from the storage unit 32 to the supply tank 37 via the guide line L2. The control unit 93 monitors the amount of the processing liquid P stored in the supply tank 37 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37. Then, the control unit 93 closes the guide line L2 by the guide on-off valve 33 at the timing when the treatment liquid P in the supply tank 37 reaches an appropriate amount, and stops the supply of the treatment liquid P to the supply tank 37.
 従来の基板液処理装置では、吐出ノズルの近傍においても処理液に圧力をかけつつ、当該供給ラインに設けられた開閉弁の開閉制御を行うことで、吐出ノズルからの処理液の吐出の有無が切り換えられることがある。一方、図8~図11に示す液供給回路30によれば、背圧弁42の設定圧を変えることで吐出ノズル19からの処理液Pの吐出の有無を切り換えることができる。したがって本態様の液供給回路30によれば、吐出ノズル19の近傍における処理液Pに圧力をかけるための装置の設置や、供給ラインL4における開閉弁の設置が不要である。 In the conventional substrate liquid treatment device, the presence or absence of discharge of the treatment liquid from the discharge nozzle is determined by controlling the opening and closing of the on-off valve provided in the supply line while applying pressure to the treatment liquid even in the vicinity of the discharge nozzle. It may be switched. On the other hand, according to the liquid supply circuit 30 shown in FIGS. 8 to 11, it is possible to switch whether or not the processing liquid P is discharged from the discharge nozzle 19 by changing the set pressure of the back pressure valve 42. Therefore, according to the liquid supply circuit 30 of this embodiment, it is not necessary to install a device for applying pressure to the processing liquid P in the vicinity of the discharge nozzle 19 or to install an on-off valve in the supply line L4.
 また従来の基板液処理装置では、供給ラインに設けられる定圧弁によって、供給ラインにおける処理液の流量を調整し、吐出ノズルに対する処理液の供給量を制御することがある。一方、図8~図11に示す液供給回路30によれば、加圧装置38から供給タンク37に送り出される加圧用気体を使って、吐出ノズル19に対する処理液Pの供給量を変えることができる。したがって本態様の液供給回路30によれば、供給ラインL4における定圧弁の設置が不要である。 Further, in the conventional substrate liquid processing apparatus, the flow rate of the processing liquid in the supply line may be adjusted by a constant pressure valve provided in the supply line to control the supply amount of the processing liquid to the discharge nozzle. On the other hand, according to the liquid supply circuit 30 shown in FIGS. 8 to 11, the supply amount of the processing liquid P to the discharge nozzle 19 can be changed by using the pressurizing gas sent from the pressurizing device 38 to the supply tank 37. .. Therefore, according to the liquid supply circuit 30 of this embodiment, it is not necessary to install a constant pressure valve in the supply line L4.
[処理液供給系の第2態様]
 図12及び図13は、処理液供給系の第2態様の概略を示す図である。図12及び図13では、構成要素の一部の図示が省略されている。例えば、本態様では、処理液Pを加熱する加熱部(すなわち図3の第1加熱部35及び第2加熱部36)が設けられているが、図12及び図13では図示が省略されている。またまた既に説明した各要素の構成及び作用については、詳細な説明を省略する。
[Second aspect of treatment liquid supply system]
12 and 13 are views showing an outline of the second aspect of the treatment liquid supply system. In FIGS. 12 and 13, some of the components are not shown. For example, in this embodiment, a heating unit (that is, the first heating unit 35 and the second heating unit 36 in FIG. 3) for heating the treatment liquid P is provided, but the illustration is omitted in FIGS. 12 and 13. .. Further, detailed description of the configuration and operation of each element already described will be omitted.
 本態様の液供給回路30も、上述の第1態様の液供給回路30と同様の供給タンク37、加圧装置38、吐出ノズル19及び供給ラインL4を備える。すなわち供給タンク37は、案内ラインL2を介して内側に処理液Pが供給され、加圧装置38は、供給タンク37の内側を加圧し、吐出ノズル19は、供給される処理液Pを吐出する。供給ラインL4は、供給タンク37及び吐出ノズル19に接続され、供給タンク37と吐出ノズル19とをつなぐ流路を可変的に制限する調整機構が設けられていない。 The liquid supply circuit 30 of this embodiment also includes a supply tank 37, a pressurizing device 38, a discharge nozzle 19, and a supply line L4 similar to the liquid supply circuit 30 of the first aspect described above. That is, the supply tank 37 is supplied with the processing liquid P inside via the guide line L2, the pressurizing device 38 pressurizes the inside of the supply tank 37, and the discharge nozzle 19 discharges the supplied processing liquid P. .. The supply line L4 is connected to the supply tank 37 and the discharge nozzle 19, and is not provided with an adjusting mechanism that variably restricts the flow path connecting the supply tank 37 and the discharge nozzle 19.
 本態様の液供給回路30は、更に供給エジェクター69を備える。供給エジェクター69は、第1分岐部分b1に設けられ、第1排液ラインL5における処理液Pの流れに応じて、供給ラインL4のうち第1分岐部分b1と吐出ノズル19とをつなぐ部分に処理液Pを流すか否かを切り換える液流切換機構として機能する。具体的には、供給エジェクター69は、吐出ノズル19と、供給ラインL4と、第1排液ラインL5とをつなぐアスピレーターとして構成可能である。供給エジェクター69は、供給ラインL4から第1排液ラインL5に流される処理液Pを利用したベンチュリ効果によって、吐出ノズル19に減圧状態を作り出すことができる。 The liquid supply circuit 30 of this embodiment further includes a supply ejector 69. The supply ejector 69 is provided in the first branch portion b1 and processes the portion of the supply line L4 connecting the first branch portion b1 and the discharge nozzle 19 according to the flow of the processing liquid P in the first drain line L5. It functions as a liquid flow switching mechanism for switching whether or not to flow the liquid P. Specifically, the supply ejector 69 can be configured as an ejector connecting the discharge nozzle 19, the supply line L4, and the first drainage line L5. The supply ejector 69 can create a depressurized state in the discharge nozzle 19 by the Venturi effect using the processing liquid P flowing from the supply line L4 to the first drainage line L5.
 このように第1分岐部分b1に接続される第1排液ラインL5は、供給エジェクター69において供給ラインL4に接続される。第1排液ラインL5は、背圧弁42が設けられる第1分岐排液ラインL5aと、排液開閉弁43が設けられる第2分岐排液ラインL5bとに分岐する。第1分岐排液ラインL5a及び第2分岐排液ラインL5bは、貯留ユニット32(例えば図4~図7に示す第1貯留タンク47a)に接続される。 The first drainage line L5 connected to the first branch portion b1 in this way is connected to the supply line L4 at the supply ejector 69. The first drainage line L5 branches into a first branch drainage line L5a provided with a back pressure valve 42 and a second branch drainage line L5b provided with a drainage on-off valve 43. The first branch drainage line L5a and the second branch drainage line L5b are connected to a storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7).
 第1排液ラインL5のうち最も高い部分は、供給ラインL4のうちの最も高い部分の高さと同じ高さ位置か、供給ラインL4の最も高い部分よりも低い位置に設けられている。特に第1分岐排液ラインL5a及び第2分岐排液ラインL5bは、供給ラインL4のうちの最も高い部分よりも低い位置に設けられている。 The highest part of the first drainage line L5 is provided at the same height as the height of the highest part of the supply line L4, or at a position lower than the highest part of the supply line L4. In particular, the first branch drainage line L5a and the second branch drainage line L5b are provided at positions lower than the highest portion of the supply line L4.
 背圧弁42は、設定圧よりも低い圧力の処理液Pの通過を制限し、設定圧以上の圧力の処理液Pを通過させつつ、設定圧よりも低い圧力の処理液Pを通過させない。排液開閉弁43は、制御部93の制御下で第2分岐排液ラインL5bを開閉する。 The back pressure valve 42 restricts the passage of the processing liquid P having a pressure lower than the set pressure, allowing the processing liquid P having a pressure higher than the set pressure to pass, but not passing the processing liquid P having a pressure lower than the set pressure. The drainage on-off valve 43 opens and closes the second branch drainage line L5b under the control of the control unit 93.
 背圧弁42及び排液開閉弁43は、制御部93の制御下で、第1排液ラインL5における処理液Pの流れを調整する液流調整機構40として機能する。例えば排液開閉弁43により第2分岐排液ラインL5bが開かれている場合(図12参照)、第1排液ラインL5における処理液Pは、第2分岐排液ラインL5bを介して貯留ユニット32に送られる。そのため第1排液ラインL5における処理液Pは、基本的に圧力が調整されることなく、スムーズに下流に送られる。一方、排液開閉弁43によって第2分岐排液ラインL5bが閉じられている場合(図13参照)、背圧弁42が、第1排液ラインL5における処理液Pの圧力を、設定圧よりも低い圧力に調整するように、第1排液ラインL5における処理液Pの流れを阻害する。 The back pressure valve 42 and the drainage on-off valve 43 function as a liquid flow adjusting mechanism 40 for adjusting the flow of the processing liquid P in the first drainage line L5 under the control of the control unit 93. For example, when the second branch drainage line L5b is opened by the drainage on-off valve 43 (see FIG. 12), the processing liquid P in the first drainage line L5 is stored in the storage unit via the second branch drainage line L5b. Sent to 32. Therefore, the treatment liquid P in the first drainage line L5 is basically smoothly sent downstream without adjusting the pressure. On the other hand, when the second branch drainage line L5b is closed by the drainage on-off valve 43 (see FIG. 13), the back pressure valve 42 sets the pressure of the processing liquid P in the first drainage line L5 to be higher than the set pressure. The flow of the treatment liquid P in the first drainage line L5 is obstructed so as to adjust to a low pressure.
 他の構成は、上述の第1態様の液供給回路30(図8~図11参照)と同様である。例えば吐出ノズル19は、供給タンク37及び液流調整機構40(具体的には背圧弁42及び排液開閉弁43)より上方に位置している。 Other configurations are the same as those of the liquid supply circuit 30 of the first aspect described above (see FIGS. 8 to 11). For example, the discharge nozzle 19 is located above the supply tank 37 and the liquid flow adjusting mechanism 40 (specifically, the back pressure valve 42 and the drainage on-off valve 43).
 例えば処理液Pの温度調整を行う場合、液供給回路30は、制御部93の制御下で図12に示す状態に置かれる。すなわち案内ラインL2が案内開閉弁33によって開かれ、大気開放ラインL9が大気開放弁63によって閉じられ、気体ラインL3が気体開閉弁67によって開かれ、第2分岐排液ラインL5bが排液開閉弁43によって開かれる。 For example, when adjusting the temperature of the processing liquid P, the liquid supply circuit 30 is placed in the state shown in FIG. 12 under the control of the control unit 93. That is, the guide line L2 is opened by the guide on-off valve 33, the atmosphere open line L9 is closed by the atmosphere open valve 63, the gas line L3 is opened by the gas on-off valve 67, and the second branch drainage line L5b is a drainage on-off valve. Opened by 43.
 この状態で、気体供給部65から気体ラインL3に供給された加圧用気体が、気圧調整部66によって圧力調整された後、加圧フィルター39を通って供給タンク37内に供給される。これにより供給タンク37の内側が加圧され、供給タンク37から供給ラインL4に処理液Pが送り出される。この際、加圧装置38(特に気圧調整部66)は、供給タンク37から供給ラインL4に送り出される処理液Pが、上記のピーク水頭圧よりも高い圧力を有するように、供給タンク37の内側を加圧する。 In this state, the pressurizing gas supplied from the gas supply unit 65 to the gas line L3 is pressure-adjusted by the air pressure adjusting unit 66 and then supplied into the supply tank 37 through the pressurizing filter 39. As a result, the inside of the supply tank 37 is pressurized, and the processing liquid P is sent out from the supply tank 37 to the supply line L4. At this time, the pressurizing device 38 (particularly, the pressure adjusting unit 66) is inside the supply tank 37 so that the processing liquid P sent from the supply tank 37 to the supply line L4 has a pressure higher than the above-mentioned peak head pressure. Pressurize.
 その一方で、供給タンク37には、貯留ユニット32(例えば図4~図7に示す第1貯留タンク47a)から案内ラインL2を介して処理液Pが供給される。制御部93は、供給タンク37に設けられた液量計測機構(図示省略)の計測結果に基づき、案内開閉弁33を制御して案内ラインL2を開閉し、供給タンク37に適量の処理液Pを貯留する。 On the other hand, the treatment liquid P is supplied to the supply tank 37 from the storage unit 32 (for example, the first storage tank 47a shown in FIGS. 4 to 7) via the guide line L2. The control unit 93 controls the guide on / off valve 33 to open / close the guide line L2 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37, and the supply tank 37 has an appropriate amount of the processing liquid P. To store.
 供給タンク37から供給ラインL4に流入した処理液Pは、第1分岐部分b1において第1排液ラインL5に流入し、第2分岐排液ラインL5bを介して貯留ユニット32に送られる。すなわち供給ラインL4における処理液Pは、供給エジェクター69において流速が増大して第1排液ラインL5に流入する。その一方で、供給ラインL4のうち第1分岐部分b1と吐出ノズル19との間の部分は減圧される。その結果、供給ラインL4における処理液Pは、基本的にすべてが第1排液ラインL5に流入し、吐出ノズル19には供給されない。具体的には、吐出ノズル19の周囲の気体が吐出ノズル19を介して供給ラインL4に流入し、吐出ノズル19から第1分岐部分b1に向かう気流が発生する。 The processing liquid P that has flowed into the supply line L4 from the supply tank 37 flows into the first drainage line L5 at the first branch portion b1 and is sent to the storage unit 32 via the second branch drainage line L5b. That is, the treatment liquid P in the supply line L4 flows into the first drainage line L5 at an increased flow rate in the supply ejector 69. On the other hand, the portion of the supply line L4 between the first branch portion b1 and the discharge nozzle 19 is depressurized. As a result, basically all of the processing liquid P in the supply line L4 flows into the first drainage line L5 and is not supplied to the discharge nozzle 19. Specifically, the gas around the discharge nozzle 19 flows into the supply line L4 through the discharge nozzle 19, and an air flow from the discharge nozzle 19 toward the first branch portion b1 is generated.
 第2分岐排液ラインL5bから貯留ユニット32に送られた処理液Pは、案内ラインL2を介して供給タンク37に戻される。このように液供給回路30が図12に示す状態をとる場合、供給タンク37から供給ラインL4に送り出された処理液Pは、吐出ノズル19から吐出されることなく、第1排液ラインL5、貯留ユニット32及び案内ラインL2を通って供給タンク37に戻される。処理液Pは、このように液供給回路30を循環しつつ加熱ゾーン(図12では図示省略;図3の第1加熱ゾーンZ1及び第2加熱ゾーンZ2参照)で加熱され、全体として徐々に昇温して所望温度に調整される。 The processing liquid P sent from the second branch drainage line L5b to the storage unit 32 is returned to the supply tank 37 via the guide line L2. When the liquid supply circuit 30 takes the state shown in FIG. 12 in this way, the processing liquid P sent out from the supply tank 37 to the supply line L4 is not discharged from the discharge nozzle 19, and the first drainage line L5, It is returned to the supply tank 37 through the storage unit 32 and the guide line L2. The treatment liquid P is heated in the heating zone (not shown in FIG. 12; see the first heating zone Z1 and the second heating zone Z2 in FIG. 3) while circulating in the liquid supply circuit 30 in this way, and gradually rises as a whole. It is warmed and adjusted to the desired temperature.
 処理液Pが所望温度に調整された後、吐出ノズル19に処理液Pを供給して吐出ノズル19から処理液Pを吐出する場合、液供給回路30は、制御部93の制御下で図13に示す状態に置かれる。 After the treatment liquid P is adjusted to a desired temperature, when the treatment liquid P is supplied to the discharge nozzle 19 and the treatment liquid P is discharged from the discharge nozzle 19, the liquid supply circuit 30 is controlled by the control unit 93 in FIG. It is placed in the state shown in.
 すなわち第2分岐排液ラインL5bが排液開閉弁43によって閉じられ、案内ラインL2が案内開閉弁33によって閉じられる。大気開放ラインL9及び気体ラインL3の開閉状態は、図12に示す状態と同じ状態に置かれる。そして加圧装置38(特に気圧調整部66)は、供給タンク37から供給ラインL4に送り出される処理液Pが、ピーク水頭圧より高い圧力を有するように、供給タンク37の内側を加圧する。 That is, the second branch drainage line L5b is closed by the drainage on-off valve 43, and the guide line L2 is closed by the guide on-off valve 33. The open / closed state of the atmosphere opening line L9 and the gas line L3 is set to the same state as shown in FIG. Then, the pressurizing device 38 (particularly, the atmospheric pressure adjusting unit 66) pressurizes the inside of the supply tank 37 so that the processing liquid P sent from the supply tank 37 to the supply line L4 has a pressure higher than the peak head pressure.
 これにより供給ラインL4における処理液Pは、背圧弁42によって流れが阻害され、背圧弁42によって「ピーク水頭圧以上の設定圧」と同じ圧力に調整される。その結果、処理液Pは、供給エジェクター69において、供給ラインL4のうちの第1分岐部分b1と吐出ノズル19との間の部分にも流入し、吐出ノズル19に供給される。 As a result, the flow of the treatment liquid P in the supply line L4 is obstructed by the back pressure valve 42, and the pressure is adjusted to the same pressure as the "set pressure equal to or higher than the peak head pressure" by the back pressure valve 42. As a result, the processing liquid P also flows into the portion of the supply line L4 between the first branch portion b1 and the discharge nozzle 19 in the supply ejector 69, and is supplied to the discharge nozzle 19.
 第1排液ラインL5に流入して背圧弁42を通過した処理液Pは、第1分岐排液ラインL5aを介して貯留ユニット32に送られる。 The processing liquid P that has flowed into the first drainage line L5 and has passed through the back pressure valve 42 is sent to the storage unit 32 via the first branch drainage line L5a.
 そして、吐出ノズル19に対する処理液Pの供給を停止して、吐出ノズル19からの処理液Pの吐出を停止する場合、気体ラインL3が気体開閉弁67によって閉じられ、大気開放ラインL9が大気開放弁63によって開かれる。これにより供給ラインL4における処理液Pはピーク水頭圧よりも低い圧力に調整され、その結果、処理液Pは、供給ラインL4のうちの最も高い部分に到達することができず、吐出ノズル19には処理液Pが供給されなくなる。 Then, when the supply of the processing liquid P to the discharge nozzle 19 is stopped and the discharge of the treatment liquid P from the discharge nozzle 19 is stopped, the gas line L3 is closed by the gas on-off valve 67, and the atmosphere opening line L9 is opened to the atmosphere. Opened by valve 63. As a result, the treatment liquid P in the supply line L4 is adjusted to a pressure lower than the peak head pressure, and as a result, the treatment liquid P cannot reach the highest portion of the supply line L4 and reaches the discharge nozzle 19. Will not be supplied with the treatment liquid P.
 そして液供給回路30を待機状態に置く場合、気体ラインL3が気体開閉弁67によって閉じられ、大気開放ラインL9が大気開放弁63によって開かれ、案内ラインL2が案内開閉弁33によって開かれる。これにより供給タンク37及び供給ラインL4における処理液Pは、吐出ノズル19に供給されず循環もしないが、案内ラインL2を介して貯留ユニット32から供給タンク37に処理液Pが供給される。制御部93は、供給タンク37に設けられた液量計測機構(図示省略)の計測結果に基づいて、供給タンク37に貯留される処理液Pの量を監視する。そして制御部93は、供給タンク37内の処理液Pが適量に達したタイミングで、案内開閉弁33によって案内ラインL2を閉じ、供給タンク37に対する処理液Pの供給を停止する。 Then, when the liquid supply circuit 30 is placed in the standby state, the gas line L3 is closed by the gas on-off valve 67, the atmosphere opening line L9 is opened by the atmosphere opening valve 63, and the guide line L2 is opened by the guide on-off valve 33. As a result, the processing liquid P in the supply tank 37 and the supply line L4 is not supplied to the discharge nozzle 19 and does not circulate, but the processing liquid P is supplied from the storage unit 32 to the supply tank 37 via the guide line L2. The control unit 93 monitors the amount of the processing liquid P stored in the supply tank 37 based on the measurement result of the liquid amount measuring mechanism (not shown) provided in the supply tank 37. Then, the control unit 93 closes the guide line L2 by the guide on-off valve 33 at the timing when the treatment liquid P in the supply tank 37 reaches an appropriate amount, and stops the supply of the treatment liquid P to the supply tank 37.
[加熱ゾーン及び加熱部]
 次に、加熱ゾーン(特に第1加熱ゾーンZ1)における処理液Pの加熱の具体的態様を例示する。
[Heating zone and heating section]
Next, a specific embodiment of heating of the treatment liquid P in the heating zone (particularly the first heating zone Z1) will be illustrated.
 図14~図17は、案内ラインL2の第1加熱ゾーンZ1における加熱方式例を説明するための部分断面図である。第1加熱部35は、第1加熱ゾーンZ1における処理液Pよりも高温の温度調整液Qによって、第1加熱ゾーンZ1における処理液Pを加熱することができる。 14 to 17 are partial cross-sectional views for explaining an example of a heating method in the first heating zone Z1 of the guide line L2. The first heating unit 35 can heat the treatment liquid P in the first heating zone Z1 by the temperature adjusting liquid Q having a temperature higher than that of the treatment liquid P in the first heating zone Z1.
 案内ラインL2を構成する案内配管71が、第1加熱部35で用いられる温度調整液Qを透過させうる材料(例えばPFA(ポリテトラフロオロエチレン))によって構成される場合、案内ラインL2の処理液Pに温度調整液Qが混ざる懸念がある。当該懸念を回避するため、例えば図14に示すように、案内ラインL2を流される処理液Pと同じ組成の液体を、第1加熱部35で温度調整液Qとして用いてもよい。この場合、たとえ温度調整液Qが案内配管71を透過して案内ラインL2に侵入しても、案内ラインL2を流れる処理液Pの組成は変化せず、適切な組成を有する処理液Pを吐出ノズル19に供給することができる。 When the guide pipe 71 constituting the guide line L2 is made of a material (for example, PFA (polytetrafluoroalkoxy)) capable of allowing the temperature control liquid Q used in the first heating unit 35 to permeate, the treatment of the guide line L2. There is a concern that the temperature control liquid Q may be mixed with the liquid P. In order to avoid this concern, for example, as shown in FIG. 14, a liquid having the same composition as the treatment liquid P flowing through the guide line L2 may be used as the temperature adjusting liquid Q in the first heating unit 35. In this case, even if the temperature adjusting liquid Q passes through the guide pipe 71 and enters the guide line L2, the composition of the treatment liquid P flowing through the guide line L2 does not change, and the treatment liquid P having an appropriate composition is discharged. It can be supplied to the nozzle 19.
 また図15に示すように、温度調整液Q(好ましくは処理液P及び温度調整液Qの両方)を透過させない材料(例えば金属)によって案内配管71が作られる場合にも、適切な組成を有する処理液Pを吐出ノズル19に供給することができる。 Further, as shown in FIG. 15, the guide pipe 71 also has an appropriate composition even when the guide pipe 71 is made of a material (for example, metal) that does not allow the temperature control liquid Q (preferably both the treatment liquid P and the temperature control liquid Q) to permeate. The processing liquid P can be supplied to the discharge nozzle 19.
 また図16に示すように、案内ラインL2を構成する案内配管71が、インナーパイプ71aと、インナーパイプ71aの外側に設けられるアウターコート71bとを有していてもよい。この場合、インナーパイプ71a及びアウターコート71bのうちの少なくともいずれか一方は、処理液Pを透過させない材料によって構成されることが好ましい。またインナーパイプ71a及びアウターコート71bの少なくともいずれか一方は、温度調整液Qを透過させない材料によって構成されることが好ましい。例えば、インナーパイプ71aが温度調整液Qを透過させうる材料により構成される場合、アウターコート71bは、温度調整液Q(好ましくは処理液P及び温度調整液Qの両方)を透過させない材料によって構成されることが好ましい。 Further, as shown in FIG. 16, the guide pipe 71 constituting the guide line L2 may have an inner pipe 71a and an outer coat 71b provided on the outside of the inner pipe 71a. In this case, at least one of the inner pipe 71a and the outer coat 71b is preferably made of a material that does not allow the treatment liquid P to permeate. Further, it is preferable that at least one of the inner pipe 71a and the outer coat 71b is made of a material that does not allow the temperature adjusting liquid Q to permeate. For example, when the inner pipe 71a is made of a material that can allow the temperature control liquid Q to permeate, the outer coat 71b is made of a material that does not allow the temperature control liquid Q (preferably both the treatment liquid P and the temperature control liquid Q) to permeate. It is preferable to be done.
 また図17に示すように、処理液Pよりも密度が高い液体を温度調整液Qとして用いることで、温度調整液Qが案内配管71を透過するのを防ぐことができる。 Further, as shown in FIG. 17, by using a liquid having a higher density than the treatment liquid P as the temperature adjusting liquid Q, it is possible to prevent the temperature adjusting liquid Q from passing through the guide pipe 71.
 図18~図20は、案内ラインL2の第1加熱ゾーンZ1における加熱方式例を説明するための概略構成図である。図18及び図19では、温度調整タンク75が透視され、温度調整タンク75の内側に位置する案内配管71が図示されている。 18 to 20 are schematic configuration diagrams for explaining an example of a heating method in the first heating zone Z1 of the guide line L2. In FIGS. 18 and 19, the temperature control tank 75 is seen through, and the guide pipe 71 located inside the temperature control tank 75 is shown.
 第1加熱ゾーンZ1は、案内ラインL2を構成する案内配管71のうち螺旋形状を有する部分を含んでいてもよい。この場合、第1加熱ゾーンZ1の処理液Pを加熱する第1加熱部35を小型化することができ、限られたスペースで処理液Pを効率良く加熱することができる。 The first heating zone Z1 may include a portion of the guide pipe 71 constituting the guide line L2 having a spiral shape. In this case, the first heating unit 35 for heating the treatment liquid P in the first heating zone Z1 can be miniaturized, and the treatment liquid P can be efficiently heated in a limited space.
 案内ラインL2を流れる処理液Pは、第1加熱ゾーンZ1における加熱によって、突沸することがある。処理液Pが突沸すると、案内ラインL2を構成する案内配管71内で圧力が急激に増大し、案内配管71の破損を招きうる。 The treatment liquid P flowing through the guide line L2 may suddenly boil due to heating in the first heating zone Z1. When the treatment liquid P suddenly boils, the pressure suddenly increases in the guide pipe 71 constituting the guide line L2, which may cause damage to the guide pipe 71.
 そのような処理液Pの突沸に起因する案内配管71の破損を防ぐため、第1加熱部35は、例えば図18に示すような温度調整タンク75に貯留される高温の温度調整液Qを使って、第1加熱ゾーンZ1における処理液Pを加熱してもよい。 In order to prevent the guide pipe 71 from being damaged due to the sudden boiling of the treatment liquid P, the first heating unit 35 uses, for example, the high temperature temperature control liquid Q stored in the temperature control tank 75 as shown in FIG. Alternatively, the treatment liquid P in the first heating zone Z1 may be heated.
 図18に示す第1加熱部35は、温度調整タンク75と、調整液供給ライン76を介して温度調整タンク75に接続される流路切換部74と、温度調整タンク75に接続される気液排出ライン77とを有する。案内ラインL2を構成する案内配管71は温度調整タンク75を貫通し、案内配管71の螺旋形状部分を含む第1加熱ゾーンZ1が温度調整タンク75の内側に位置する。温度調整タンク75に接続される調整液供給ライン76には流路切換部74が取り付けられ、流路切換部74には温度調整液供給部72及びパージ気体供給部73が接続されている。流路切換部74は、制御部93の制御下で、温度調整液供給部72から供給される温度調整液Qと、パージ気体供給部73から供給されるパージ気体(例えば窒素等の不活性ガス)とを、選択的に、温度調整タンク75の内側に導入することができる。このように温度調整液供給部72及びパージ気体供給部73の各々は、流路切換部74を介して調整液供給ライン76に接続可能となっている。また温度調整タンク75は、気液排出ライン77を介して温度調整液供給部72に接続されている。 The first heating unit 35 shown in FIG. 18 includes a temperature adjustment tank 75, a flow path switching unit 74 connected to the temperature adjustment tank 75 via the adjustment liquid supply line 76, and a gas / liquid connected to the temperature adjustment tank 75. It has a discharge line 77. The guide pipe 71 constituting the guide line L2 penetrates the temperature control tank 75, and the first heating zone Z1 including the spiral-shaped portion of the guide pipe 71 is located inside the temperature control tank 75. A flow path switching unit 74 is attached to the adjustment liquid supply line 76 connected to the temperature adjustment tank 75, and a temperature adjustment liquid supply unit 72 and a purge gas supply unit 73 are connected to the flow path switching unit 74. Under the control of the control unit 93, the flow path switching unit 74 has the temperature control liquid Q supplied from the temperature control liquid supply unit 72 and the purge gas supplied from the purge gas supply unit 73 (for example, an inert gas such as nitrogen). ) And can be selectively introduced inside the temperature control tank 75. In this way, each of the temperature adjusting liquid supply unit 72 and the purge gas supply unit 73 can be connected to the adjusting liquid supply line 76 via the flow path switching unit 74. Further, the temperature control tank 75 is connected to the temperature control liquid supply unit 72 via the gas / liquid discharge line 77.
 例えば第1加熱ゾーンZ1において処理液Pを加熱する場合、流路切換部74は、制御部93の制御下で、温度調整液供給部72から供給される高温の温度調整液Qを、調整液供給ライン76を介して温度調整タンク75に送る。これにより処理液Pは、案内ラインL2のうちの温度調整タンク75の内側に位置する部分において、温度調整タンク75内の温度調整液Qにより加熱される。 For example, when the treatment liquid P is heated in the first heating zone Z1, the flow path switching unit 74 uses the high temperature temperature control liquid Q supplied from the temperature control liquid supply unit 72 under the control of the control unit 93. It is sent to the temperature control tank 75 via the supply line 76. As a result, the treatment liquid P is heated by the temperature control liquid Q in the temperature control tank 75 at the portion of the guide line L2 located inside the temperature control tank 75.
 一方、第1加熱ゾーンZ1において処理液Pの加熱を停止する場合、流路切換部74は、制御部93の制御下で、パージ気体供給部73から供給されるパージ気体を、調整液供給ライン76を介して温度調整タンク75に送る。これにより、温度調整タンク75内の温度調整液Qがパージ気体により気液排出ライン77に押し出される。温度調整タンク75から気液排出ライン77に排出された温度調整液Qは、気液排出ライン77を介して温度調整液供給部72に送られる。 On the other hand, when the heating of the processing liquid P is stopped in the first heating zone Z1, the flow path switching unit 74 supplies the purge gas supplied from the purge gas supply unit 73 under the control of the control unit 93 to the adjusting liquid supply line. It is sent to the temperature control tank 75 via 76. As a result, the temperature control liquid Q in the temperature control tank 75 is pushed out to the gas-liquid discharge line 77 by the purge gas. The temperature control liquid Q discharged from the temperature control tank 75 to the gas liquid discharge line 77 is sent to the temperature control liquid supply unit 72 via the gas liquid discharge line 77.
 このように温度調整タンク75に温度調整液Qが貯留されている状態で、流路切換部74が温度調整タンク75の内側にパージ気体を導入することによって、温度調整液Qが温度調整タンク75から気液排出ライン77に迅速に排出される。パージ気体を使って温度調整タンク75から温度調整液Qを迅速に排出することにより、第1加熱ゾーンZ1における処理液Pの加熱を迅速に停止することができる。これにより、案内ラインL2(特に第1加熱ゾーンZ1及び第1加熱ゾーンZ1の近傍)における処理液Pの突沸を効果的に防ぐことができる。 In the state where the temperature control liquid Q is stored in the temperature control tank 75 in this way, the flow path switching unit 74 introduces the purge gas inside the temperature control tank 75, so that the temperature control liquid Q becomes the temperature control tank 75. Is quickly discharged to the gas / liquid discharge line 77. By rapidly discharging the temperature control liquid Q from the temperature control tank 75 using the purge gas, the heating of the treatment liquid P in the first heating zone Z1 can be quickly stopped. As a result, the bumping of the treatment liquid P in the guide line L2 (particularly in the vicinity of the first heating zone Z1 and the first heating zone Z1) can be effectively prevented.
 また図19に示すように、リリーフ弁87が設けられているリリーフラインL10を、案内ラインL2に接続してもよい。案内ラインL2における処理液Pの圧力がリリーフ弁87の設定リリーフ圧よりも小さい間は、リリーフ弁87はリリーフラインL10を閉じる。一方、案内ラインL2における処理液Pの圧力がリリーフ弁87の設定リリーフ圧以上になった場合、リリーフラインL10がリリーフ弁87により開かれ、案内ラインL2からリリーフラインL10に処理液Pが逃がされる。これにより、案内ラインL2において処理液Pの突沸が発生しても、案内ラインL2内の圧力が過大になることを防いで、案内配管71の破損を防ぐことができる。 Further, as shown in FIG. 19, the relief line L10 provided with the relief valve 87 may be connected to the guide line L2. While the pressure of the treatment liquid P in the guide line L2 is smaller than the set relief pressure of the relief valve 87, the relief valve 87 closes the relief line L10. On the other hand, when the pressure of the treatment liquid P in the guide line L2 becomes equal to or higher than the set relief pressure of the relief valve 87, the relief line L10 is opened by the relief valve 87, and the treatment liquid P is released from the guide line L2 to the relief line L10. .. As a result, even if the treatment liquid P suddenly boils in the guide line L2, it is possible to prevent the pressure in the guide line L2 from becoming excessive and prevent the guide pipe 71 from being damaged.
 また第1加熱部35は、温度調整タンク75に貯留される温度調整液Qの代わりに、図20に示すような電気ヒーター88を使って、第1加熱ゾーンZ1における処理液Pを加熱してもよい。図20に示す例では、案内配管71のうちの螺旋形状部を貫通するように電気ヒーター88が配置されている。制御部93が電気ヒーター88に対する通電のオン及びオフを切り換えることによって、第1加熱ゾーンZ1における処理液Pの加熱及び非加熱を切り換えることができる。処理液Pの突沸を防ぐ観点からは、電気ヒーター88は、加熱状態から非加熱状態に切り換えられた場合に、温度が短時間で低下することが好ましい。そのため電気ヒーター88は熱容量の小さいヒーターであることが好ましく、例えばハロゲンヒーターを電気ヒーター88として用いることができる。 Further, the first heating unit 35 heats the treatment liquid P in the first heating zone Z1 by using an electric heater 88 as shown in FIG. 20 instead of the temperature control liquid Q stored in the temperature control tank 75. May be good. In the example shown in FIG. 20, the electric heater 88 is arranged so as to penetrate the spiral-shaped portion of the guide pipe 71. By switching the energization of the electric heater 88 on and off by the control unit 93, it is possible to switch between heating and non-heating of the processing liquid P in the first heating zone Z1. From the viewpoint of preventing the sudden boiling of the treatment liquid P, it is preferable that the temperature of the electric heater 88 drops in a short time when the heating state is switched to the non-heating state. Therefore, the electric heater 88 is preferably a heater having a small heat capacity, and for example, a halogen heater can be used as the electric heater 88.
[処理液の温度調整]
 多量の処理液Pが供給タンク37に貯留される場合、供給タンク37から供給ラインL4に供給する処理液Pの温度を所望温度にキープすることは難しい。特に、供給タンク37における処理液Pの貯留量が多くなるほど、処理液Pの温度が所望温度よりも高くなったり低くなったりしやすい。一方、基板Wの液処理を安定的に行うために、供給ラインL4における処理液Pは所望温度に安定的に調整されていることが好ましい。
[Temperature adjustment of treatment liquid]
When a large amount of the processing liquid P is stored in the supply tank 37, it is difficult to keep the temperature of the processing liquid P supplied from the supply tank 37 to the supply line L4 to a desired temperature. In particular, as the amount of the treatment liquid P stored in the supply tank 37 increases, the temperature of the treatment liquid P tends to be higher or lower than the desired temperature. On the other hand, in order to stably perform the liquid treatment of the substrate W, it is preferable that the treatment liquid P in the supply line L4 is stably adjusted to a desired temperature.
 供給ラインL4における処理液Pの温度を所望温度に調整するために、供給タンク37に貯留されている処理液Pを所望温度よりも高い温度に調整し、低温の処理液Pを追加することによって供給ラインL4における処理液Pを所望温度に調整してもよい。例えば、供給タンク37及び供給ラインL4のうち少なくともいずれか一方に、低温の処理液Pを供給する冷却液供給ユニットが設けられてもよい。 In order to adjust the temperature of the treatment liquid P in the supply line L4 to a desired temperature, the treatment liquid P stored in the supply tank 37 is adjusted to a temperature higher than the desired temperature, and a low temperature treatment liquid P is added. The treatment liquid P in the supply line L4 may be adjusted to a desired temperature. For example, at least one of the supply tank 37 and the supply line L4 may be provided with a cooling liquid supply unit that supplies the low-temperature processing liquid P.
 図21は、処理液温度調整系の第1態様の概略を示す図である。 FIG. 21 is a diagram showing an outline of the first aspect of the treatment liquid temperature adjustment system.
 本態様では、所望温度よりも低温の処理液Pが冷却液供給ユニット101から供給タンク37に供給されることによって、処理液Pの温度が調整される。すなわち、低温の処理液Pを供給するための冷却液供給ユニット101が、供給タンク37に対して設けられている。図21に示す冷却液供給ユニット101は、冷却処理液供給部102、冷却液開閉弁103、冷却流量計108及び冷却液フィルター104を有する。 In this embodiment, the temperature of the processing liquid P is adjusted by supplying the processing liquid P having a temperature lower than the desired temperature from the coolant supply unit 101 to the supply tank 37. That is, a coolant supply unit 101 for supplying the low-temperature treatment liquid P is provided for the supply tank 37. The cooling liquid supply unit 101 shown in FIG. 21 includes a cooling treatment liquid supply unit 102, a cooling liquid on-off valve 103, a cooling flow meter 108, and a cooling liquid filter 104.
 冷却処理液供給部102は、供給タンク37の内側に接続されている冷却液ラインL11に、所望温度よりも低温の処理液Pを送り出す。冷却処理液供給部102が冷却液ラインL11に送り出す処理液Pは、環境温度よりも低い温度を有していてもよいし、環境温度と同じ温度であってもよい。 The cooling treatment liquid supply unit 102 sends out the treatment liquid P having a temperature lower than the desired temperature to the coolant line L11 connected to the inside of the supply tank 37. The processing liquid P sent out by the cooling treatment liquid supply unit 102 to the cooling liquid line L11 may have a temperature lower than the environmental temperature, or may have the same temperature as the environmental temperature.
 冷却液開閉弁103は、制御部93の制御下で冷却液ラインL11を開閉する。冷却液開閉弁103が冷却液ラインL11を閉じることによって、冷却処理液供給部102から冷却液ラインL11に送り出された低温の処理液Pは、供給タンク37には送られない。一方、冷却液開閉弁103が冷却液ラインL11を開くことによって、冷却処理液供給部102から冷却液ラインL11に送り出された低温の処理液Pは、供給タンク37に送られる。 The coolant on-off valve 103 opens and closes the coolant line L11 under the control of the control unit 93. When the coolant on-off valve 103 closes the coolant line L11, the low-temperature treatment liquid P sent from the cooling treatment liquid supply unit 102 to the coolant line L11 is not sent to the supply tank 37. On the other hand, when the coolant on-off valve 103 opens the coolant line L11, the low-temperature treatment liquid P sent out from the cooling treatment liquid supply unit 102 to the coolant line L11 is sent to the supply tank 37.
 冷却流量計108は、冷却液ラインL11を流れる低温の処理液Pの流量を計測する。冷却流量計108の計測結果は制御部93に送られる。冷却液フィルター104は、冷却液ラインL11内の処理液Pを通過させつつ、当該処理液Pから異物を除去する。 The cooling flow meter 108 measures the flow rate of the low-temperature processing liquid P flowing through the cooling liquid line L11. The measurement result of the cooling flow meter 108 is sent to the control unit 93. The coolant filter 104 removes foreign matter from the treatment liquid P while passing the treatment liquid P in the coolant line L11.
 供給タンク37には液温計測センサー105及びレベルセンサー106が設置されている。液温計測センサー105は、供給タンク37に貯留されている処理液Pの温度を計測する。レベルセンサー106は、供給タンク37に貯留されている処理液Pの液面高さを計測する。液温計測センサー105及びレベルセンサー106の計測結果は制御部93に送られる。 A liquid temperature measurement sensor 105 and a level sensor 106 are installed in the supply tank 37. The liquid temperature measurement sensor 105 measures the temperature of the processing liquid P stored in the supply tank 37. The level sensor 106 measures the liquid level height of the processing liquid P stored in the supply tank 37. The measurement results of the liquid temperature measurement sensor 105 and the level sensor 106 are sent to the control unit 93.
 供給タンク37には、上述の案内ラインL2、大気開放ラインL9、気体ラインL3、冷却液ラインL11及び供給ラインL4に加え、第3排液ラインL12が接続されている。第3排液ラインL12には温度調整開閉弁107及び排液流量計109が設けられている。温度調整開閉弁107は、制御部93の制御下で第3排液ラインL12を開閉する。排液流量計109は、第3排液ラインL12を流れる処理液Pの流量を計測する。排液流量計109の計測結果は制御部93に送られる。 In addition to the above-mentioned guide line L2, open air line L9, gas line L3, coolant line L11 and supply line L4, the supply tank 37 is connected to a third drainage line L12. The third drainage line L12 is provided with a temperature control on-off valve 107 and a drainage flow meter 109. The temperature control on-off valve 107 opens and closes the third drainage line L12 under the control of the control unit 93. The drainage flow meter 109 measures the flow rate of the processing liquid P flowing through the third drainage line L12. The measurement result of the drainage flow meter 109 is sent to the control unit 93.
 本態様の制御部93は第2加熱部36を制御し、供給タンク37(すなわち第2加熱ゾーンZ2)に貯留されている処理液Pの温度が所望温度よりも高くなるように、供給タンク37に貯留されている処理液Pを加熱する。 The control unit 93 of this embodiment controls the second heating unit 36 so that the temperature of the treatment liquid P stored in the supply tank 37 (that is, the second heating zone Z2) becomes higher than the desired temperature. The treatment liquid P stored in is heated.
 そして制御部93は、液温計測センサー105の計測結果から、供給タンク37内の処理液Pが所望温度よりも高い温度を有すると判定する場合、第3排液ラインL12を介して供給タンク37から所定量の処理液Pが排出される。すなわち制御部93は、温度調整開閉弁107を制御して第3排液ラインL12を開き、供給タンク37から第3排液ラインL12に高温の処理液Pを排出する。制御部93は、排液流量計109の計測結果から、供給タンク37からの高温の処理液Pの排出量が所定量に達したと判定する場合、温度調整開閉弁107を制御して第3排液ラインL12を閉じる。 Then, when the control unit 93 determines from the measurement result of the liquid temperature measurement sensor 105 that the processing liquid P in the supply tank 37 has a temperature higher than the desired temperature, the control unit 93 determines that the treatment liquid P has a temperature higher than the desired temperature, and the control unit 93 determines that the treatment liquid P has a temperature higher than the desired temperature. A predetermined amount of the treatment liquid P is discharged from. That is, the control unit 93 controls the temperature control on-off valve 107 to open the third drainage line L12, and discharges the high-temperature processing liquid P from the supply tank 37 to the third drainage line L12. When the control unit 93 determines from the measurement result of the drainage flow meter 109 that the discharge amount of the high-temperature processing liquid P from the supply tank 37 has reached a predetermined amount, the control unit 93 controls the temperature adjustment on-off valve 107 to control the third. Close the drainage line L12.
 その一方で、冷却液ラインL11を介して冷却液供給ユニット101から供給タンク37に低温の処理液Pが供給される。すなわち制御部93は、冷却液開閉弁103を制御して冷却液ラインL11を開き、冷却液供給ユニット101から供給タンク37に低温の処理液Pを供給する。例えば、第2加熱部36が第2加熱ゾーンZ2における処理液Pを第1温度に加熱する場合、冷却液供給ユニット101は、第1温度よりも低い第2温度の処理液Pを供給タンク37に供給する。制御部93は、冷却流量計108の計測結果から、供給タンク37への低温の処理液Pの供給量が所定量に達したと判定する場合、冷却液開閉弁103を制御して冷却液ラインL11を閉じる。 On the other hand, the low-temperature processing liquid P is supplied from the coolant supply unit 101 to the supply tank 37 via the coolant line L11. That is, the control unit 93 controls the coolant on-off valve 103 to open the coolant line L11, and supplies the low-temperature treatment liquid P from the coolant supply unit 101 to the supply tank 37. For example, when the second heating unit 36 heats the treatment liquid P in the second heating zone Z2 to the first temperature, the coolant supply unit 101 supplies the treatment liquid P having a second temperature lower than the first temperature to the supply tank 37. Supply to. When the control unit 93 determines from the measurement result of the cooling flow meter 108 that the supply amount of the low-temperature processing liquid P to the supply tank 37 has reached a predetermined amount, the control unit 93 controls the cooling liquid on-off valve 103 to control the cooling liquid line. Close L11.
 このように高温の処理液Pを供給タンク37から排出しつつ低温の処理液Pを供給タンク37に供給することによって、供給タンク37から供給ラインL4に送り出す処理液Pの温度を所望温度に安定的に調整することができる。 By supplying the low-temperature treatment liquid P to the supply tank 37 while discharging the high-temperature treatment liquid P from the supply tank 37 in this way, the temperature of the treatment liquid P sent from the supply tank 37 to the supply line L4 is stabilized at a desired temperature. Can be adjusted.
 なお、第3排液ラインL12を介して供給タンク37から排出される処理液Pの量は、冷却液ラインL11を介して供給タンク37に供給される処理液Pの量と同じであってもよいし、異なっていてもよい。また、第3排液ラインL12を介して供給タンク37から排出される処理液Pの量は、予め定められた固定量であってもよいし、液温計測センサー105の計測結果に応じて決められる量であってもよい。冷却液ラインL11を介して供給タンク37に供給される処理液Pの量は、固定量であってもよいし、供給タンク37から排出される処理液Pの量に応じて決められる量であってもよいし、液温計測センサー105の計測結果に応じて決められる量であってもよい。 Even if the amount of the processing liquid P discharged from the supply tank 37 via the third drainage line L12 is the same as the amount of the treatment liquid P supplied to the supply tank 37 via the coolant line L11. It may or may not be different. Further, the amount of the processing liquid P discharged from the supply tank 37 via the third drainage line L12 may be a predetermined fixed amount, or is determined according to the measurement result of the liquid temperature measurement sensor 105. It may be the amount to be. The amount of the processing liquid P supplied to the supply tank 37 via the coolant line L11 may be a fixed amount, or may be an amount determined according to the amount of the treatment liquid P discharged from the supply tank 37. The amount may be determined according to the measurement result of the liquid temperature measurement sensor 105.
 図22は、処理液温度調整系の第2態様の概略を示す図である。 FIG. 22 is a diagram showing an outline of the second aspect of the treatment liquid temperature adjusting system.
 本態様では、所望温度よりも低温の処理液Pが冷却液供給ユニット101から供給ラインL4に供給されることによって、処理液Pの温度が調整される。すなわち冷却液ラインL11は、供給タンク37の代わりに供給ラインL4に接続されており、冷却液供給ユニット101は、冷却液ラインL11を介して供給ラインL4に低温の処理液Pを供給する。 In this embodiment, the temperature of the processing liquid P is adjusted by supplying the processing liquid P having a temperature lower than the desired temperature from the coolant supply unit 101 to the supply line L4. That is, the coolant line L11 is connected to the supply line L4 instead of the supply tank 37, and the coolant supply unit 101 supplies the low-temperature treatment liquid P to the supply line L4 via the coolant line L11.
 他の構成は、上述の第1態様(図21参照)と同様である。 Other configurations are the same as those of the above-mentioned first aspect (see FIG. 21).
 本態様では、供給タンク37から供給ラインL4に流入した高温の処理液Pに、冷却液ラインL11を介して供給ラインL4に流入した低温の処理液Pが混ぜられて、供給ラインL4において処理液Pが所望温度に調整される。 In this embodiment, the high-temperature treatment liquid P that has flowed into the supply line L4 from the supply tank 37 is mixed with the low-temperature treatment liquid P that has flowed into the supply line L4 via the coolant line L11, and the treatment liquid is mixed in the supply line L4. P is adjusted to the desired temperature.
 冷却液供給ユニット101から供給ラインL4に供給される低温の処理液Pの量は、供給タンク37から供給ラインL4に流入する処理液Pの温度及び量に基づいて決定される。制御部93は、液温計測センサー105の計測結果から「供給タンク37から供給ラインL4に流入する処理液Pの温度」を取得し、流量計62の計測結果から「供給タンク37から供給ラインL4に流入する処理液Pの温度」を取得する。制御部93は、液温計測センサー105の計測結果及び流量計62の計測結果に基づいて、「冷却液供給ユニット101から供給ラインL4に供給すべき低温の処理液Pの量」を決定する。そして、冷却流量計108の計測結果に基づいて「冷却液供給ユニット101から供給ラインL4に供給される低温の処理液Pの量」を監視しつつ、決定された量の低温の処理液Pが供給ラインL4に流入するように冷却液開閉弁103を制御する。 The amount of the low-temperature processing liquid P supplied from the coolant supply unit 101 to the supply line L4 is determined based on the temperature and amount of the treatment liquid P flowing into the supply line L4 from the supply tank 37. The control unit 93 acquires "the temperature of the processing liquid P flowing from the supply tank 37 into the supply line L4" from the measurement result of the liquid temperature measurement sensor 105, and "the temperature of the processing liquid P flowing from the supply tank 37 to the supply line L4" is obtained from the measurement result of the flow meter 62. The temperature of the processing liquid P flowing into the The control unit 93 determines "the amount of low-temperature processing liquid P to be supplied from the cooling liquid supply unit 101 to the supply line L4" based on the measurement result of the liquid temperature measurement sensor 105 and the measurement result of the flow meter 62. Then, while monitoring the "amount of the low-temperature processing liquid P supplied from the cooling liquid supply unit 101 to the supply line L4" based on the measurement result of the cooling flow meter 108, the determined amount of the low-temperature processing liquid P is obtained. The coolant on-off valve 103 is controlled so as to flow into the supply line L4.
 なお、供給ラインL4における処理液Pの温度むらを抑えるためには、処理液Pを攪拌することが好ましい。 In order to suppress the temperature unevenness of the treatment liquid P in the supply line L4, it is preferable to stir the treatment liquid P.
 具体的には、供給ラインL4において処理液Pを攪拌することで、供給ラインL4における処理液Pの温度むらを抑えることができる。例えば図23に示すように、供給ラインL4を構成する供給配管115の内側に攪拌体116(攪拌部)を設置することによって、処理液Pは、供給ラインL4を流れつつ攪拌体116により攪拌される。攪拌体116の具体的な形状は限定されず、例えばスタティックミキサーによって攪拌体116を構成することができる。 Specifically, by stirring the treatment liquid P in the supply line L4, it is possible to suppress the temperature unevenness of the treatment liquid P in the supply line L4. For example, as shown in FIG. 23, by installing the stirring body 116 (stirring unit) inside the supply pipe 115 constituting the supply line L4, the processing liquid P is stirred by the stirring body 116 while flowing through the supply line L4. NS. The specific shape of the stirrer 116 is not limited, and the stirrer 116 can be configured by, for example, a static mixer.
 また供給タンク37において処理液Pを攪拌することで、供給タンク37及び供給ラインL4における処理液Pの温度むらを抑えることができる。例えば図24に示すように、加圧装置38から気体ラインL3を介して供給される加圧用気体Nによって、供給タンク37内の処理液Pを攪拌することができる。図24に示す例では、気体ラインL3の一端部(攪拌部)が供給タンク37内の処理液P中に位置している状態で、当該一端部から加圧用気体Nが噴出される。 Further, by stirring the treatment liquid P in the supply tank 37, it is possible to suppress the temperature unevenness of the treatment liquid P in the supply tank 37 and the supply line L4. For example, as shown in FIG. 24, the processing liquid P in the supply tank 37 can be agitated by the pressurizing gas N supplied from the pressurizing device 38 via the gas line L3. In the example shown in FIG. 24, the pressurizing gas N is ejected from the one end portion of the gas line L3 in a state where one end portion (stirring portion) is located in the processing liquid P in the supply tank 37.
 また、供給タンク37の高さ(すなわち鉛直方向サイズ)を小さくしたり、供給タンク37の幅(すなわち水平方向サイズ)を小さくしたりすることによっても、供給ラインL4における処理液Pの温度むらを抑えることができる。例えば図25に示すように、供給タンク37を上方向、下方向、及び水平方向から取り囲むように第2加熱部36を設けつつ、供給タンク37の高さを小さくし且つ幅を大きくしてもよい。この場合、供給タンク37に貯留される処理液Pのうち第2加熱部36から遠くなる部分を低減して、処理液Pの加熱むらを防ぐことができる。 Further, by reducing the height of the supply tank 37 (that is, the vertical size) or the width of the supply tank 37 (that is, the horizontal size), the temperature unevenness of the treatment liquid P in the supply line L4 can be reduced. It can be suppressed. For example, as shown in FIG. 25, even if the height of the supply tank 37 is reduced and the width is increased while the second heating unit 36 is provided so as to surround the supply tank 37 from the upward, downward, and horizontal directions. good. In this case, the portion of the processing liquid P stored in the supply tank 37 that is far from the second heating unit 36 can be reduced to prevent uneven heating of the treatment liquid P.
 また、供給タンク37内の処理液Pの温度が環境温度の影響を受けて変化しやすい場合には、供給タンク37から供給ラインL4に送り出す処理液Pの温度を所望温度に安定的に保つことが難しくなる。そのため、供給タンク37内の処理液Pの温度が環境温度の影響を受けにくい構造を、供給タンク37は有することが好ましい。 When the temperature of the processing liquid P in the supply tank 37 is likely to change due to the influence of the environmental temperature, the temperature of the processing liquid P sent from the supply tank 37 to the supply line L4 should be stably maintained at a desired temperature. Becomes difficult. Therefore, it is preferable that the supply tank 37 has a structure in which the temperature of the treatment liquid P in the supply tank 37 is not easily affected by the environmental temperature.
 例えば図26に示すように、供給タンク37は断熱部37cを有し、供給タンク37内の処理液Pと供給タンク37の周囲との間における熱移動及び熱伝達を断熱部37cによって低減してもよい。図26に示す供給タンク37は、内側に処理液Pが貯留されるインナー構造体37aと、インナー構造体37aの外側に設けられるアウター構造体37bと、インナー構造体37aとアウター構造体37bとの間に設けられる断熱部37cとを有する。断熱部37cは、インナー構造体37aに比べて、例えば熱伝導率、熱拡散率、熱拡散係数及び熱伝達係数のうちの少なくとも1以上に関し、熱を伝えにくい数値を示す。断熱部37cは、任意の気体、液体及び/又は固体によって構成可能であり、供給タンク37の周囲の気体(例えば空気)と同じ気体により構成されていてもよい。図26に示す供給タンク37は第2加熱部36と一体的に構成されており、インナー構造体37aに第2加熱部36が取り付けられている。 For example, as shown in FIG. 26, the supply tank 37 has a heat insulating portion 37c, and heat transfer and heat transfer between the treatment liquid P in the supply tank 37 and the periphery of the supply tank 37 are reduced by the heat insulating portion 37c. May be good. The supply tank 37 shown in FIG. 26 is composed of an inner structure 37a in which the treatment liquid P is stored, an outer structure 37b provided outside the inner structure 37a, an inner structure 37a, and an outer structure 37b. It has a heat insulating portion 37c provided between them. The heat insulating portion 37c shows a numerical value that makes it difficult to transfer heat with respect to at least one of, for example, thermal conductivity, thermal diffusivity, thermal diffusivity, and heat transfer coefficient, as compared with the inner structure 37a. The heat insulating portion 37c can be composed of any gas, liquid and / or solid, and may be composed of the same gas as the gas (for example, air) around the supply tank 37. The supply tank 37 shown in FIG. 26 is integrally configured with the second heating unit 36, and the second heating unit 36 is attached to the inner structure 37a.
 本明細書で開示されている実施形態はすべての点で例示に過ぎず限定的には解釈されないことに留意されるべきである。上述の実施形態及び変形例は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態での省略、置換及び変更が可能である。例えば上述の実施形態及び変形例が組み合わされてもよく、また上述以外の実施形態が上述の実施形態又は変形例と組み合わされてもよい。 It should be noted that the embodiments disclosed herein are merely exemplary in all respects and are not to be construed in a limited way. The above-described embodiments and modifications can be omitted, replaced or modified in various forms without departing from the scope and purpose of the attached claims. For example, the above-described embodiment and modification may be combined, or an embodiment other than the above may be combined with the above-mentioned embodiment or modification.
 また上述の技術的思想を具現化する技術的カテゴリーは限定されない。例えば上述の基板液処理装置が他の装置に応用されてもよい。また上述の基板液処理方法に含まれる1又は複数の手順(ステップ)をコンピュータに実行させるためのコンピュータプログラムによって、上述の技術的思想が具現化されてもよい。またそのようなコンピュータプログラムが記録されたコンピュータが読み取り可能な非一時的(non-transitory)な記録媒体によって、上述の技術的思想が具現化されてもよい。 Also, the technical categories that embody the above-mentioned technical ideas are not limited. For example, the above-mentioned substrate liquid processing apparatus may be applied to other apparatus. Further, the above-mentioned technical idea may be embodied by a computer program for causing a computer to execute one or a plurality of procedures (steps) included in the above-mentioned substrate liquid treatment method. Further, the above-mentioned technical idea may be embodied by a computer-readable non-transitory recording medium in which such a computer program is recorded.

Claims (23)

  1.  案内ラインを介して内側に処理液が供給される供給タンクと、
     前記供給タンクの内側を加圧する加圧装置と、
     供給される前記処理液を吐出する吐出ノズルと、
     前記供給タンク及び前記吐出ノズルに接続され、前記供給タンクと前記吐出ノズルとをつなぐ流路を可変的に制限する調整機構が設けられていない供給ラインと、
     前記供給ラインのうちの前記供給タンクと前記吐出ノズルとの間の第1分岐部分に接続される第1排液ラインと、
     前記第1排液ラインに設けられ、設定圧よりも低い圧力の前記処理液の通過を制限する液流調整機構と、
     前記設定圧を調整する制御部と、を備える基板液処理装置。
    A supply tank in which the treatment liquid is supplied to the inside via the guide line,
    A pressurizing device that pressurizes the inside of the supply tank,
    A discharge nozzle that discharges the supplied processing liquid and
    A supply line connected to the supply tank and the discharge nozzle and not provided with an adjustment mechanism for variably limiting the flow path connecting the supply tank and the discharge nozzle.
    A first drainage line connected to a first branch portion between the supply tank and the discharge nozzle of the supply line,
    A liquid flow adjusting mechanism provided in the first drainage line and restricting the passage of the treated liquid having a pressure lower than the set pressure,
    A substrate liquid processing apparatus including a control unit for adjusting the set pressure.
  2.  前記吐出ノズルは、前記供給タンク及び前記液流調整機構の各々よりも上方に位置しており、
     前記制御部は、
     前記吐出ノズルに前記処理液を供給する場合、前記供給タンクから前記吐出ノズルに至る前記供給ラインのうち最も高い部分の高さ位置における圧力水頭であるピーク水頭圧以上となるように、前記設定圧を調整し、
     前記吐出ノズルに前記処理液を供給しない場合、前記ピーク水頭圧よりも低くなるように、前記設定圧を調整する請求項1に記載の基板液処理装置。
    The discharge nozzle is located above each of the supply tank and the liquid flow adjusting mechanism.
    The control unit
    When the treatment liquid is supplied to the discharge nozzle, the set pressure is equal to or higher than the peak head pressure, which is the pressure head at the height position of the highest portion of the supply line from the supply tank to the discharge nozzle. Adjust and
    The substrate liquid treatment apparatus according to claim 1, wherein when the treatment liquid is not supplied to the discharge nozzle, the set pressure is adjusted so as to be lower than the peak head pressure.
  3.  前記供給ラインに接続される第2排液ラインと、
     前記第2排液ラインに設けられ、前記第2排液ラインを介して前記供給ラインを吸引する吸引モードと、前記第2排液ラインを介して前記供給ラインを吸引しない非吸引モードとの間で切り換え可能な吸引機構と、を備え、
     前記制御部は、前記吐出ノズルに前記処理液を供給しない場合、少なくとも一時的に、前記吸引機構を前記吸引モードに調整する請求項1又は2に記載の基板液処理装置。
    The second drainage line connected to the supply line and
    Between a suction mode provided in the second drainage line and sucking the supply line through the second drainage line and a non-suction mode in which the supply line is not sucked through the second drainage line. Equipped with a suction mechanism that can be switched with
    The substrate liquid treatment apparatus according to claim 1 or 2, wherein the control unit adjusts the suction mechanism to the suction mode at least temporarily when the treatment liquid is not supplied to the discharge nozzle.
  4.  前記吸引機構は、前記第2排液ラインに設けられるモード切換弁と、前記第2排液ラインに接続される負圧タンクと、前記負圧タンクを負圧状態に調整する負圧調整器と、を有し、
     前記制御部は、
     前記供給ラインと前記負圧タンクとの間の前記第2排液ラインの流路を閉鎖するように前記モード切換弁を制御することで、前記吸引機構を前記非吸引モードに調整し、
     前記供給ラインと前記負圧タンクとの間の前記第2排液ラインの流路を開放するように前記モード切換弁を制御することで、前記吸引機構を前記吸引モードに調整する請求項3に記載の基板液処理装置。
    The suction mechanism includes a mode switching valve provided in the second drainage line, a negative pressure tank connected to the second drainage line, and a negative pressure regulator for adjusting the negative pressure tank to a negative pressure state. Have,
    The control unit
    By controlling the mode switching valve so as to close the flow path of the second drainage line between the supply line and the negative pressure tank, the suction mechanism is adjusted to the non-suction mode.
    According to claim 3, the suction mechanism is adjusted to the suction mode by controlling the mode switching valve so as to open the flow path of the second drainage line between the supply line and the negative pressure tank. The substrate liquid processing apparatus described.
  5.  前記供給ラインのうち前記第1分岐部分よりも下流側に位置する第1計測箇所における前記処理液の有無を検知する液検知センサーを備え、
     前記制御部は、前記液検知センサーの検知結果に応じて、前記吸引機構を前記吸引モードから前記非吸引モードに切り換える請求項3又は4に記載の基板液処理装置。
    A liquid detection sensor for detecting the presence or absence of the treatment liquid at the first measurement point located on the downstream side of the first branch portion of the supply line is provided.
    The substrate liquid processing apparatus according to claim 3 or 4, wherein the control unit switches the suction mechanism from the suction mode to the non-suction mode according to the detection result of the liquid detection sensor.
  6.  前記供給ラインのうち前記第1分岐部分よりも下流側に位置する第2計測箇所における前記処理液の流量を計測する流量計を備え、
     前記制御部は、前記流量計の計測結果に基づいて、前記設定圧を調整する請求項1~5のいずれか一項に記載の基板液処理装置。
    A flow meter for measuring the flow rate of the processing liquid at the second measurement point located on the downstream side of the first branch portion of the supply line is provided.
    The substrate liquid processing apparatus according to any one of claims 1 to 5, wherein the control unit adjusts the set pressure based on the measurement result of the flow meter.
  7.  案内ラインを介して内側に処理液が供給される供給タンクと、
     前記供給タンクの内側を加圧する加圧装置と、
     供給される前記処理液を吐出する吐出ノズルと、
     前記供給タンク及び前記吐出ノズルに接続され、前記供給タンクと前記吐出ノズルとをつなぐ流路を可変的に制限する調整機構が設けられていない供給ラインと、
     前記供給ラインのうちの前記供給タンクと前記吐出ノズルとの間の第1分岐部分に接続される第1排液ラインと、
     前記第1排液ラインにおける前記処理液の流れを調整する液流調整機構と、
     前記第1分岐部分に設けられ、前記第1排液ラインにおける前記処理液の流れに応じて、前記供給ラインのうち前記第1分岐部分と前記吐出ノズルとをつなぐ部分に前記処理液を流すか否かを切り換える液流切換機構と、
     前記液流調整機構を制御する制御部と、を備える基板液処理装置。
    A supply tank in which the treatment liquid is supplied to the inside via the guide line,
    A pressurizing device that pressurizes the inside of the supply tank,
    A discharge nozzle that discharges the supplied processing liquid and
    A supply line connected to the supply tank and the discharge nozzle and not provided with an adjustment mechanism for variably limiting the flow path connecting the supply tank and the discharge nozzle.
    A first drainage line connected to a first branch portion between the supply tank and the discharge nozzle of the supply line,
    A liquid flow adjusting mechanism for adjusting the flow of the treated liquid in the first drainage line, and a liquid flow adjusting mechanism.
    Whether the treatment liquid is provided in the first branch portion and flows to the portion of the supply line connecting the first branch portion and the discharge nozzle according to the flow of the treatment liquid in the first drainage line. A liquid flow switching mechanism that switches whether or not to use
    A substrate liquid processing device including a control unit for controlling the liquid flow adjusting mechanism.
  8.  移動可能に設けられ、前記液流切換機構及び前記吐出ノズルが取り付けられているアームを備える請求項7に記載の基板液処理装置。 The substrate liquid processing apparatus according to claim 7, which is movably provided and includes an arm to which the liquid flow switching mechanism and the discharge nozzle are attached.
  9.  前記供給タンクの内側と前記供給タンクの周囲の環境とをつなぐ大気開放ラインと、
     前記大気開放ラインに設けられる大気開放弁と、を備え、
     前記制御部は、前記吐出ノズルに前記処理液を供給する場合、前記大気開放ラインを閉鎖するように前記大気開放弁を制御する請求項1~8のいずれか一項に記載の基板液処理装置。
    An atmospheric open line connecting the inside of the supply tank and the environment around the supply tank,
    The atmosphere opening valve provided in the atmosphere opening line is provided.
    The substrate liquid treatment apparatus according to any one of claims 1 to 8, wherein the control unit controls the atmosphere release valve so as to close the atmosphere release line when the treatment liquid is supplied to the discharge nozzle. ..
  10.  前記案内ラインを介して前記供給タンクに接続される貯留ユニットを備え、
     前記貯留ユニットは、複数の貯留タンクと、前記複数の貯留タンクをお互いに接続する複数の循環ラインと、前記複数の循環ラインの少なくともいずれかを流れる前記処理液から異物を取り除くフィルターと、前記複数の循環ラインを介して前記複数の貯留タンク間で前記処理液を循環させる循環調整機構と、を有する請求項1~9のいずれか一項に記載の基板液処理装置。
    A storage unit connected to the supply tank via the guide line.
    The storage unit includes a plurality of storage tanks, a plurality of circulation lines connecting the plurality of storage tanks to each other, and a filter for removing foreign matter from the treatment liquid flowing through at least one of the plurality of circulation lines. The substrate liquid treatment apparatus according to any one of claims 1 to 9, further comprising a circulation adjusting mechanism for circulating the treatment liquid between the plurality of storage tanks via the circulation line of the above.
  11.  前記第1排液ラインは、前記複数の貯留タンクの少なくともいずれかに接続され、
     前記液流調整機構を通過した前記処理液は、前記第1排液ラインを介し、前記複数の貯留タンクの少なくともいずれかに流入する請求項10に記載の基板液処理装置。
    The first drainage line is connected to at least one of the plurality of storage tanks.
    The substrate liquid treatment apparatus according to claim 10, wherein the treatment liquid that has passed through the liquid flow adjusting mechanism flows into at least one of the plurality of storage tanks via the first drainage line.
  12.  前記加圧装置は、前記供給タンクの内側に接続される気体ラインに気体を流す気体供給部と、前記気体ラインを流れる前記気体の圧力を調整する気圧調整部と、を有し、
     前記気圧調整部は、電空レギュレータである請求項1~11のいずれか一項に記載の基板液処理装置。
    The pressurizing device has a gas supply unit for flowing a gas to a gas line connected to the inside of the supply tank, and a pressure adjusting unit for adjusting the pressure of the gas flowing through the gas line.
    The substrate liquid processing apparatus according to any one of claims 1 to 11, wherein the atmospheric pressure adjusting unit is an electropneumatic regulator.
  13.  前記案内ライン及び前記供給タンクのうち少なくともいずれか一方に設定される加熱ゾーンにおける前記処理液を加熱する加熱部と、
     前記処理液の流路のうち、前記加熱ゾーンよりも上流側の部分を流れる前記処理液から異物を取り除くフィルターと、を備え、
     前記案内ラインから前記吐出ノズルに至る前記処理液の流路のうち、前記加熱ゾーンと、前記加熱ゾーンよりも下流側の流路とには、前記処理液から異物を取り除く前記フィルターが設けられていない請求項1~12のいずれか一項に記載の基板液処理装置。
    A heating unit that heats the treatment liquid in a heating zone set in at least one of the guide line and the supply tank.
    A filter for removing foreign matter from the treatment liquid flowing in the portion upstream of the heating zone in the flow path of the treatment liquid is provided.
    Of the flow paths of the treatment liquid from the guide line to the discharge nozzle, the heating zone and the flow path on the downstream side of the heating zone are provided with the filter for removing foreign matter from the treatment liquid. The substrate liquid processing apparatus according to any one of claims 1 to 12.
  14.  前記加熱ゾーンは、前記案内ラインに設定される第1加熱ゾーンを含み、
     前記加熱部は、前記第1加熱ゾーンにおける前記処理液を加熱する第1加熱部を含み、
     前記第1加熱部は、前記第1加熱ゾーンにおける前記処理液よりも高温の温度調整液によって、前記第1加熱ゾーンにおける前記処理液を加熱する請求項13に記載の基板液処理装置。
    The heating zone includes a first heating zone set in the guide line.
    The heating unit includes a first heating unit that heats the treatment liquid in the first heating zone.
    The substrate liquid treatment apparatus according to claim 13, wherein the first heating unit heats the treatment liquid in the first heating zone with a temperature adjusting liquid having a temperature higher than that of the treatment liquid in the first heating zone.
  15.  前記第1加熱部は、
     前記第1加熱ゾーンが内側に位置する温度調整タンクと、
     前記温度調整タンクの内側に前記温度調整液及びパージ気体を選択的に導入する流路切換部と、
     前記温度調整タンクに接続される気液排出ラインと、を有し、
     前記温度調整タンクに前記温度調整液が貯留されている状態で、前記流路切換部が前記温度調整タンクの内側に前記パージ気体を導入することによって、前記温度調整液が前記温度調整タンクから前記気液排出ラインに排出される請求項14に記載の基板液処理装置。
    The first heating unit is
    The temperature control tank in which the first heating zone is located inside,
    A flow path switching unit that selectively introduces the temperature control liquid and the purge gas inside the temperature control tank, and
    With a gas-liquid discharge line connected to the temperature control tank,
    In a state where the temperature adjusting liquid is stored in the temperature adjusting tank, the flow path switching unit introduces the purge gas inside the temperature adjusting tank, so that the temperature adjusting liquid is discharged from the temperature adjusting tank. The substrate liquid processing apparatus according to claim 14, which is discharged to a gas / liquid discharge line.
  16.  前記案内ラインに接続され、リリーフ弁が設けられているリリーフラインを備える請求項13~15のいずれか一項に記載の基板液処理装置。 The substrate liquid treatment apparatus according to any one of claims 13 to 15, further comprising a relief line connected to the guide line and provided with a relief valve.
  17.  前記加熱部は、電気ヒーターを具備する請求項13に記載の基板液処理装置。 The substrate liquid processing device according to claim 13, wherein the heating unit includes an electric heater.
  18.  前記供給タンク及び前記供給ラインのうち少なくともいずれか一方に前記処理液を供給する冷却液供給ユニットを備え、
     前記加熱ゾーンは、前記供給タンクに設定される第2加熱ゾーンを含み、
     前記加熱部は、前記第2加熱ゾーンにおける前記処理液を第1温度に加熱する第2加熱部を含み、
     前記冷却液供給ユニットは、前記第1温度よりも低い第2温度の前記処理液を、前記供給タンク及び前記供給ラインのうち少なくともいずれか一方に供給する請求項13~17のいずれか一項に記載の基板液処理装置。
    A coolant supply unit for supplying the treatment liquid is provided in at least one of the supply tank and the supply line.
    The heating zone includes a second heating zone set in the supply tank.
    The heating unit includes a second heating unit that heats the treatment liquid in the second heating zone to a first temperature.
    According to any one of claims 13 to 17, the coolant supply unit supplies the treatment liquid having a second temperature lower than the first temperature to at least one of the supply tank and the supply line. The substrate liquid processing apparatus described.
  19.  前記供給タンク及び前記供給ラインのうち少なくともいずれか一方における前記処理液を攪拌する攪拌部を備える請求項13~18のいずれか一項に記載の基板液処理装置。 The substrate liquid treatment apparatus according to any one of claims 13 to 18, further comprising a stirring unit for stirring the treatment liquid in at least one of the supply tank and the supply line.
  20.  前記加熱部は、前記供給タンクを上方向、下方向及び水平方向から取り囲むように設けられる請求項13~19のいずれか一項に記載の基板液処理装置。 The substrate liquid treatment apparatus according to any one of claims 13 to 19, wherein the heating unit is provided so as to surround the supply tank from an upward direction, a downward direction, and a horizontal direction.
  21.  前記供給タンクは、断熱部を有する請求項1~20のいずれか一項に記載の基板液処理装置。 The substrate liquid treatment apparatus according to any one of claims 1 to 20, wherein the supply tank has a heat insulating portion.
  22.  案内ラインを介して内側に処理液が供給される供給タンクと、前記供給タンクの内側を加圧する加圧装置と、供給される前記処理液を吐出する吐出ノズルと、前記供給タンク及び前記吐出ノズルに接続され、前記供給タンクと前記吐出ノズルとをつなぐ流路を可変的に制限する調整機構が設けられていない供給ラインと、前記供給ラインのうちの前記供給タンクと前記吐出ノズルとの間の第1分岐部分に接続される第1排液ラインと、前記第1排液ラインに設けられ、設定圧よりも低い圧力の前記処理液の通過を制限する液流調整機構と、を備える基板液処理装置において、
     前記加圧装置によって前記供給タンクの内側を加圧し、前記供給タンクから前記供給ラインを介して前記吐出ノズルに前記処理液を供給する工程を含む基板液処理方法。
    A supply tank in which the treatment liquid is supplied to the inside via a guide line, a pressurizing device for pressurizing the inside of the supply tank, a discharge nozzle for discharging the supplied treatment liquid, the supply tank, and the discharge nozzle. Between a supply line connected to the supply line and not provided with an adjusting mechanism for variably limiting the flow path connecting the supply tank and the discharge nozzle, and between the supply tank and the discharge nozzle in the supply line. A substrate liquid provided with a first drainage line connected to a first branch portion and a liquid flow adjusting mechanism provided in the first drainage line to limit the passage of the treatment liquid having a pressure lower than a set pressure. In the processing equipment
    A substrate liquid treatment method comprising a step of pressurizing the inside of the supply tank with the pressurizing device and supplying the treatment liquid from the supply tank to the discharge nozzle via the supply line.
  23.  案内ラインを介して内側に処理液が供給される供給タンクと、前記供給タンクの内側を加圧する加圧装置と、供給される前記処理液を吐出する吐出ノズルと、前記供給タンク及び前記吐出ノズルに接続され、前記供給タンクと前記吐出ノズルとをつなぐ流路を可変的に制限する調整機構が設けられていない供給ラインと、前記供給ラインのうちの前記供給タンクと前記吐出ノズルとの間の第1分岐部分に接続される第1排液ラインと、前記第1排液ラインにおける前記処理液の圧力を調整する液流調整機構と、前記第1分岐部分に設けられ、前記第1排液ラインにおける前記処理液の圧力に応じて、前記供給ラインのうち前記第1分岐部分と前記吐出ノズルとをつなぐ部分に前記処理液を流すか否かを切り換える液流調整機構と、を備える基板液処理装置において、
     前記加圧装置によって前記供給タンクの内側を加圧し、前記供給タンクから前記供給ラインを介して前記吐出ノズルに前記処理液を供給する工程を含む基板液処理方法。
    A supply tank in which the treatment liquid is supplied to the inside via a guide line, a pressurizing device for pressurizing the inside of the supply tank, a discharge nozzle for discharging the supplied treatment liquid, the supply tank, and the discharge nozzle. Between a supply line connected to the supply line and not provided with an adjusting mechanism for variably limiting the flow path connecting the supply tank and the discharge nozzle, and between the supply tank and the discharge nozzle in the supply line. A first drainage line connected to the first branch portion, a liquid flow adjusting mechanism for adjusting the pressure of the treatment liquid in the first drainage line, and the first drainage portion provided in the first branch portion. A substrate liquid provided with a liquid flow adjusting mechanism for switching whether or not to flow the treatment liquid to a portion of the supply line connecting the first branch portion and the discharge nozzle according to the pressure of the treatment liquid in the line. In the processing equipment
    A substrate liquid treatment method comprising a step of pressurizing the inside of the supply tank with the pressurizing device and supplying the treatment liquid from the supply tank to the discharge nozzle via the supply line.
PCT/JP2021/017152 2020-05-12 2021-04-30 Substrate solution treatment device and substrate solution treatment method WO2021230103A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180032981.6A CN115516606A (en) 2020-05-12 2021-04-30 Substrate liquid processing apparatus and substrate liquid processing method
KR1020227040037A KR20230009396A (en) 2020-05-12 2021-04-30 Substrate liquid processing device and substrate liquid processing method
JP2022521839A JP7463502B2 (en) 2020-05-12 2021-04-30 Substrate liquid processing apparatus and substrate liquid processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084009 2020-05-12
JP2020-084009 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021230103A1 true WO2021230103A1 (en) 2021-11-18

Family

ID=78525747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017152 WO2021230103A1 (en) 2020-05-12 2021-04-30 Substrate solution treatment device and substrate solution treatment method

Country Status (4)

Country Link
JP (1) JP7463502B2 (en)
KR (1) KR20230009396A (en)
CN (1) CN115516606A (en)
WO (1) WO2021230103A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059735A (en) * 2011-09-14 2013-04-04 Advance Denki Kogyo Kk Liquid feeder
JP2016105505A (en) * 2016-02-22 2016-06-09 株式会社Screenホールディングス Processing liquid supply method
JP2018137367A (en) * 2017-02-22 2018-08-30 株式会社Screenホールディングス Substrate processing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893592B2 (en) 2013-08-23 2016-03-23 東京エレクトロン株式会社 Liquid processing equipment
JP6695735B2 (en) 2016-05-10 2020-05-20 東京エレクトロン株式会社 Liquid processing apparatus, control method thereof, and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059735A (en) * 2011-09-14 2013-04-04 Advance Denki Kogyo Kk Liquid feeder
JP2016105505A (en) * 2016-02-22 2016-06-09 株式会社Screenホールディングス Processing liquid supply method
JP2018137367A (en) * 2017-02-22 2018-08-30 株式会社Screenホールディングス Substrate processing apparatus

Also Published As

Publication number Publication date
JPWO2021230103A1 (en) 2021-11-18
KR20230009396A (en) 2023-01-17
JP7463502B2 (en) 2024-04-08
CN115516606A (en) 2022-12-23

Similar Documents

Publication Publication Date Title
US9711380B2 (en) Liquid processing apparatus, liquid processing method and storage medium
KR101801987B1 (en) Substrate processing method and method of controlling a movement speed of a fluid nozzle
JP6808423B2 (en) Substrate processing equipment and processing liquid supply method
JP4697882B2 (en) Treatment liquid supply apparatus, treatment liquid supply method, and treatment liquid supply control program
US8286580B2 (en) Apparatus and method for treating substrate
KR101761429B1 (en) Liquid processing apparatus, control method of liquid processing apparatus, and computer readable storage medium
US10290518B2 (en) Substrate liquid processing apparatus
US11594427B2 (en) Substrate processing apparatus and substrate processing method
JP7220537B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR20120074197A (en) Substrate liquid processing apparatus, substrate liquid processing method and computer readable recording medium having substrate liquid processing program
US20210111043A1 (en) Liquid supply device and liquid supply method
JP2006339434A (en) Substrate cleaning method, recording medium, substrate cleaner
US11801537B2 (en) Substrate processing apparatus and substrate processing method
WO2021230103A1 (en) Substrate solution treatment device and substrate solution treatment method
US9675992B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable storage medium storing substrate processing program
JP2001170539A (en) Film-forming apparatus
TW202203314A (en) Liquid processing device and liquid processing method
JP2010239013A (en) Substrate treatment apparatus and substrate treatment method
JP7390837B2 (en) Substrate processing method and substrate processing apparatus
JP4353628B2 (en) Coating device
JP2000138148A (en) Method and device for treating substrate
JP7292417B2 (en) Substrate liquid processor
KR20080060786A (en) Cooling unit and apparatus for treating substrate with the cooling unit
WO2022163450A1 (en) Substrate liquid treatment device and substrate liquid treatment method
JP2004179323A (en) Device and method for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803083

Country of ref document: EP

Kind code of ref document: A1